WO2014067113A1 - 硅酸盐发光材料及其制备方法 - Google Patents

硅酸盐发光材料及其制备方法 Download PDF

Info

Publication number
WO2014067113A1
WO2014067113A1 PCT/CN2012/083880 CN2012083880W WO2014067113A1 WO 2014067113 A1 WO2014067113 A1 WO 2014067113A1 CN 2012083880 W CN2012083880 W CN 2012083880W WO 2014067113 A1 WO2014067113 A1 WO 2014067113A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent material
silicate luminescent
silicate
mixture
compound
Prior art date
Application number
PCT/CN2012/083880
Other languages
English (en)
French (fr)
Inventor
周明杰
王荣
Original Assignee
海洋王照明科技股份有限公司
深圳市海洋王照明工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司, 深圳市海洋王照明工程有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to EP12887525.9A priority Critical patent/EP2915863B1/en
Priority to CN201280076460.1A priority patent/CN104736666A/zh
Priority to PCT/CN2012/083880 priority patent/WO2014067113A1/zh
Priority to JP2015538247A priority patent/JP5965551B2/ja
Priority to US14/438,450 priority patent/US20150284631A1/en
Publication of WO2014067113A1 publication Critical patent/WO2014067113A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/87Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing platina group metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/87Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing platina group metals
    • C09K11/873Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7743Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
    • C09K11/77492Silicates

Definitions

  • the invention relates to the technical field of luminescent materials, in particular to a silicate luminescent material and a preparation method thereof. Background technique
  • the fluorescent materials used in current field emission devices are mainly those used in conventional cathode ray tubes and projection television tubes, oxide series and oxide series luminescent materials.
  • the luminescence brightness is higher and has certain conductivity, but it is easily decomposed under the bombardment of large beam electron beams, releasing the elemental sulfur "poisoning" cathode tip, and generating other The precipitate covers the surface of the luminescent material, which reduces the luminous efficiency of the luminescent material and shortens the service life of the field emission device.
  • the value of X ranges from 0.02 ⁇ x ⁇ 0.10.
  • the value of y ranges from lx l0_ 5 ⁇ y 5 ⁇ 10_ 3 .
  • the above silicate luminescent material effectively overcomes the structural defects of the titanate luminescent material by doping the metal particles, reduces the probability of non-radiative transition, and makes the luminous efficiency of the titanate luminescent material under the same excitation condition extremely great. Raise, the wavelength of the emitted light does not change.
  • the silicate luminescent material has good stability, overcomes the defects of easy decomposition of sulfide and sulfur oxide series luminescent materials, and can be used in field emission devices instead of sulfide and sulfur oxide series luminescent materials.
  • a method for preparing a silicate luminescent material comprising the steps of:
  • a molar ratio of M to Si ratio y of the element is added to the airgel Si0 2 M salt solution, the mixture was stirred at 50 ⁇ 75 ° C were mixed solution hook, the mixed solution was sonicated, The sonicated solution is dried at 60 to 150 ° C, and the mixture obtained after drying is uniformly ground and calcined at 600 to 1200 ° C to obtain a Si 2 aerogel containing M ions, wherein
  • the M is at least one of Ag, Au, Pt, Pd, and Cu metal nanoparticles, and the range of y is 0 ⁇ y ⁇ lxl (T 2 ; according to the molar ratio of Li, Ca, Tb, and Si elements
  • For the ratio of 2: ( 1 -x) :x: 1 weigh out the Li compound, the Ca compound and the Tb compound, and the M 2 -containing SiO 2 aerogel, and grind and mix uniformly to obtain a mixture, wherein X is taken
  • the value range is 0 ⁇
  • the mixture is subjected to calcination treatment at 500 to 1000 ° C, and the mixture is placed in a reducing atmosphere at 800 to 1200 ° C for reduction treatment, and then the reduced mixture is cooled to room temperature. Grinding to obtain the silicate luminescent material having the chemical formula of Li 2 Ca 1 ⁇ c SiO 4 :Tb x ,M y , wherein Tb and M are doped in Li 2 Ca 1-x SiO 4 , and Tb and M are doped particles.
  • the solute in the salt solution of M is at least one of HAuCl 4 , H 2 PtCl 6 , AgN 0 3 , PdCl 2 —2H 2 0 and Cu(N0 3 ) 2 , and the solvent is ethanol.
  • the concentration of the M salt solution is 5x lO_ 6 ⁇ lx lO_ 2 mol / L.
  • the Li compound is an oxide, a carbonate, a nitrate, or a vinegar of Li.
  • the Tb compound is an oxide, a carbonate, a nitrate, an acetic acid of Tb Salt or oxalate.
  • the reducing atmosphere is a CO reducing atmosphere or a H 2 reducing atmosphere or a mixed reducing atmosphere having a volume fraction of 95% N 2 and 5% 3 ⁇ 4.
  • X has a value range of 0.02 ⁇ x ⁇ 0.10; y has a value range of lxl (T 5 ⁇ y 5xl (T 3 ) .
  • the method for preparing the above silicate luminescent material firstly adsorbs metal ions by a SiO 2 aerogel to obtain a SiO 2 aerogel containing metal ions, and then, a compound of Li, Ca, and Tb, and Si0 containing a metal ion.
  • 2 aerogel is used as raw material to reduce metal ions into metal element under reducing atmosphere, ie, silicate luminescent material with chemical formula of Li 2 Ca 1 ⁇ c Si0 4 :Tb x ,M y is prepared, preparation process tube Single, low cost, non-polluting, easy to control reaction, suitable for industrial production, the resulting silicate luminescent materials have high luminosity efficiency and good stability, and have broad application prospects in field emission devices.
  • 1 is a flow chart showing a method of preparing a silicate luminescent material according to an embodiment
  • FIG. 2 is a comparison diagram of luminescence light of a luminescent material prepared in Example 3 under a cathode ray excitation at a voltage of 1.5 kV, wherein curve 1 is a metal doped Li 2 Ca 9 oSi0 4 : Tb i o, Ag 2.
  • the luminescence spectrum of the 5xl o-4 luminescent material, and the curve 2 is the luminescence spectrum of the undoped metal Li Cao. oSiO ⁇ Tbo.K) luminescent material.
  • the silicate luminescent material of one embodiment has a chemical formula of Li 2 Ca 1 ⁇ c Si0 4 :Tb x ,M y .
  • Tb and M are doped in Li 2 Ca 1-x SiO 4
  • Tb and M are doped particles.
  • M is at least one of Ag, Au, Pt, Pd, and Cu metal nanoparticles.
  • the value of X ranges from 0 ⁇ x ⁇ 0.2.
  • y is the molar ratio of M to Si elements.
  • the value of y ranges from 0 ⁇ y ⁇ lxl (T 2 .
  • the value range of X may also be 0.02 ⁇ x ⁇ 0.10, and the range of y may also be lxl (T 5 ⁇ y ⁇ 5xl (T 3 ) .
  • the embodiment further provides a method for preparing a silicate luminescent material, as shown in FIG. 1, which includes the following steps:
  • Step S110 adding a SiO 2 aerogel to the salt solution of M according to the ratio of molar ratio of M to Si, and mixing and stirring at 50-75 ° C to obtain a mixed solution, and then performing the mixed solution.
  • the mixture is sonicated, and the mixed solution after sonication is dried at 60 to 150 ° C.
  • the mixture obtained after drying is uniformly ground and calcined at 600 to 1200 ° C to obtain a Si 2 aerogel containing M ions.
  • M is at least one of Ag, Au, Pt, Pd and Cu metal nanoparticles.
  • the value of y ranges from 0 ⁇ y ⁇ lxl (T 2 .
  • the solute in the salt solution of M is at least one of HAuCl 4 , H 2 PtCl 6 , AgN0 3 , PdCl 2 -2H 2 0 and Cu(N0 3 ) 2 . species, and the solvent is ethanol.
  • the concentration range of the M salt solution is 5x 10- 6 ⁇ lx l0- 2 mol / L.
  • Step S120 weighing the Li compound, the Ca compound and the Tb compound, and the SiO 2 aerogel containing the M ion according to a molar ratio of Li, Ca, Tb and Si elements of 2:(lx):x:l, grinding Mix well and obtain a mixture.
  • the Li compound is an oxide, carbonate, nitrate, acetate or oxalate of Li.
  • Ca compound An oxide, carbonate, nitrate, acetate or oxalate of Ca.
  • the Tb compound is an oxide, carbonate, nitrate, acetate or oxalate of Tb.
  • Step S130 the mixture is placed at 500 ⁇ 1000 °C for calcination treatment, and then the mixture is placed in a reducing atmosphere at 800 ⁇ 1200 °C for reduction treatment, and then the reduced mixture is cooled to room temperature. Grinding to obtain a silicate luminescent material having a chemical formula of Li 2 Ca 1 ⁇ c SiO 4 :Tb x ,My. Wherein Tb and M are doped in Li 2 Ca 1-x SiO 4 , and Tb and M are doped particles.
  • the reducing atmosphere may be a CO reducing atmosphere or a H 2 reducing atmosphere or a mixed reducing atmosphere having a volume fraction of 95% N 2 and 5% 3 ⁇ 4.
  • the silicate luminescent material effectively overcomes the structural defects of the titanate luminescent material by doping the metal particles, reduces the probability of non-radiative transition, and makes the luminous efficiency of the titanate luminescent material under the same excitation condition extremely great. Raise, the wavelength of the emitted light does not change.
  • the silicate luminescent material has good stability, overcomes the defects of easy decomposition of sulfide and sulfur oxide series luminescent materials, and can replace the sulphide and sulfur oxide series luminescent materials in field emission devices.
  • the method for preparing the silicate luminescent material firstly adsorbing metal ions by a SiO 2 aerogel, To a SiO 2 aerogel containing a metal ion, and then using a compound of Li, Ca, and Tb and a SiO 2 aerogel containing a metal ion as a raw material, reducing the metal ion to a metal element under a reducing atmosphere, that is, preparing A silicate luminescent material having a chemical formula of Li 2 Ca 1 ⁇ c SiO 4 :Tb x ,M y is obtained, and the preparation process is simple, low in cost, non-polluting, easy to control, and suitable for industrial production, and the obtained silicic acid Salt luminescent materials have high luminescence efficiency and good stability, and have broad application prospects in field emission devices.
  • the test of the different compositions of the silicate luminescent materials, the preparation method thereof, and the properties thereof will be described below in conjunction with specific examples.
  • composition of the silicate luminescent material of this embodiment is Li 2 Ca 85 Si0 4 : Tb i5 , Au lxl ( ) -2 , and the preparation process is as follows:
  • the mixture prepared above is placed in an agate mortar and fully ground to a mixing hook; then the powder is transferred to a corundum crucible, heat treated at 500 ° C for 15 h in a muffle furnace; and then reduced in a tube furnace at a C atmosphere. after sintering at 1000 ° C 2h, Au 3+ is reduced to about to elemental Au; cooled to room temperature, the sample was ground into a powder, to obtain the Au-doped Li 2 Cao 85 Si0 4: Tbo 15,.. Au lxl o- 2 luminescent material.
  • composition of the silicate luminescent material of this embodiment is , the preparation process is as follows:
  • Si0 2 aerogels were dissolved in 6mL concentration of 5 ⁇ 10_ 3 mol / L chloroplatinic acid (H 2 PtCl 6) in ethanol and the resulting mixture was stirred for 3 h at 50 ° C, Then, it was sonicated for 10 min, and then dried at 60 ° C. The sample obtained after drying was uniformly ground and then calcined at 600 ° C for 4 h to obtain Pt 4+. Si0 2 aerogel.
  • H 2 PtCl 6 chloroplatinic acid
  • Li 2 CO 3 lithium carbonate
  • CaCO 3 0.3924 g of 4 carbonic acid
  • Tb 2 (C0 3 ) 3 cesium carbonate
  • 0.2404 g of the above-prepared Si 2 2 containing Pt 4+ were weighed. Aerogel, preparation of the mixture.
  • the mixture prepared above is placed in an agate mortar and fully ground to a mixing hook; then the powder is transferred to a corundum crucible, heat treated at 1000 ° C for 2 h in a muffle furnace; and then reduced in a CO furnace at a CO atmosphere. After sintering at 1200 ° C for 0.5 h, that is, Pt 4+ is reduced to Pt elemental; after cooling to room temperature, the obtained sample is ground into a powder to obtain P 2 -doped Li 2 Cao. 98 Si0 4 : Tbo. 2 , Pt 5xl () - 3 luminescent materials.
  • the mixture prepared above was placed in an agate mortar and thoroughly ground to a homogenous hook; then the powder was transferred to a corundum crucible, heat treated at 600 ° C for 4 h in a muffle furnace; and 95% N in a tube furnace.
  • 2 + 5% 3 ⁇ 4 (volume fraction) in a mixed reducing atmosphere is sintered at 1000 ° C for 4 h, that is, after Ag + is reduced to Ag element; after cooling to room temperature, the obtained sample is ground into a powder to obtain Ag-doped Li 2 Ca 0 . 90 SiO 4 : Tb 0 . 10 , Ag 2 . 5 ⁇ 10 ⁇ 4 luminescent material.
  • the doped metal Ag prepared in this embodiment is the doped metal Ag prepared in this embodiment.
  • composition of the silicate luminescent material of this embodiment is Li 2 Ca 8() SiO 4 : Tb 2 (), Pd lxl () - 5 , and the preparation process is as follows:
  • the mixture prepared above is placed in an agate mortar and thoroughly ground to a homogenous hook; then the powder is transferred to a corundum crucible, heat treated at 700 ° C for 5 h in a muffle furnace; and in a tubular furnace at H 2 Sintering at 800 ° C for 6 h in a reducing atmosphere, that is, Pd 4+ is reduced to Pd elemental; after cooling to room temperature, the obtained sample is ground into a powder to obtain Pd -doped Li 2 Cao. 8 oSi0 4 : Tbo. 2 o, Pd lxl o- 5 luminescent material.
  • composition of the silicate luminescent material of this embodiment is Li 2 Ca 95 Si0 4 : Tb () 5 , Cu lxl (H , the preparation process is as follows:
  • Si0 2 aerogel 0.3606 g of Si0 2 aerogel was weighed and dissolved in 12 mL of a solution of copper nitrate (Cu(N0 3 ) 2 ) having a concentration of 5 ⁇ 10_ 5 mol/L, and the obtained mixed solution was stirred at 70 ° C for 1 h. Then, it was ultrasonicated for 10 min, and then dried at 70 ° C. The sample obtained after drying was ground and hooked, and calcined at 800 ° C for 2 h to obtain a SiO 2 aerogel containing Cu 2+ .
  • Cu(N0 3 ) 2 copper nitrate
  • composition of the silicate luminescent material of this embodiment is Li 2 Ca 88 Si0 4 : Tb i2 , Ag 5 xl () -4 , and the preparation process is as follows:
  • the mixture prepared above is placed in an agate mortar and fully ground to a homogenous hook; then the powder is transferred to a corundum crucible, heat treated at 500 ° C for 10 h in a muffle furnace; and then in a tubular furnace at H 2 After sintering at 1100 ° C for 3 h in a reducing atmosphere, the Ag + is reduced to Ag element; after cooling to room temperature, the obtained sample is ground into a powder to obtain Ag-doped Li 2 Ca 88 Si0 4 : Tb i2 , Ag 5 xl () -4 luminescent material.
  • composition of the silicate luminescent material of this embodiment is Li Cao ⁇ SiO ⁇ Tbo.os Ago.s/Auo. ⁇ . xK ⁇ , and the preparation process is as follows:
  • the mixture prepared above was placed in an agate mortar and thoroughly ground to a homogenous hook; then the powder was transferred to a corundum crucible, heat treated at 700 ° C for 8 h in a muffle furnace; and 95% N in a tube furnace.
  • the obtained sample is ground into a powder to obtain I ⁇ Cao ⁇ SiO ⁇ Tbo.os Ago.s/Auo. ⁇ xK luminescent material doped with Ag and Au .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

提供一种硅酸盐发光材料及其制备方法,该硅酸盐发光材料具有化学通式:Li2Ca1-xSiO4:Tbx,My;其中,Tb和M掺杂在Li2Ca1-xSiO4中,且Tb和M为掺杂粒子;M为Ag、Au、Pt、Pd和Cu金属纳米粒子中的至少一种,x的取值范围为0<x≤0.2;y为M与硅酸盐发光材料钟Si的摩尔之比,y的取值为0<y≤1×10—2。上述硅酸盐发光材料,通过掺杂金属粒子,使得钛酸盐发光材料在同样激发条件下的发光效率得到极大的提高,发射光的波长没有改变。该硅酸盐发光材料具有良好的稳定性,克服了硫化物和硫氧化物系列发光材料容易分解的缺陷,能替代硫化物和硫氧化物系列发光材料在场发射器件中应用。此外,还提供一种硅酸盐发光材料的制备方法。

Description

说明书 发明名称: 硅酸盐发光材料及其制备方法 技术领域
本发明涉及发光材料技术领域, 特别是涉及一种硅酸盐发光材料及其制备 方法。 背景技术
20世纪 60年代, Ken Shoulder首次提出基于场发射阴极阵列( FEAs )电子 束微型装置的设想,于是利用 FEAs设计和制造平板显示与光源器件的研究引起 了人们的极大兴趣。 这种新型的场发射器件的工作原理与和传统的阴极射线管 ( CRT )类似, 通过电子束轰击红、 绿、 蓝三色发光材料发光而实现成像或照 明用途。 该种器件在亮度、 视角、 响应时间、 工作温度范围、 能耗等方面均具 有潜在的优势。
制备性能优良的场发射器件的关键因素之一是高性能发光材料的制备。 目 前场发射器件所采用的荧光材料主要是一些用于传统阴极射线管和投影电视显 象管的 化物系列、 氧化物系列和 氧化物系列发光材料。 对于^ ^化物和 氧 化物系列发光材料来说, 发光亮度较高, 且具有一定的导电性, 但在大束流电 子束的轰击下容易发生分解,放出单质硫"毒化"阴极针尖,并生成其他沉淀物覆 盖在发光材料表面, 降低了发光材料的发光效率, 缩短了场发射器件的使用寿 命。
由于硫化物和硫氧化物系列发光材料存在缺陷, 研究者希望用稳定性能好 的硅酸盐发光材料来替代硫化物和硫氧化物系列发光材料, 但传统的硅酸盐发 光材料普遍存在发光效率较低的问题。 发明内容
基于此, 有必要提供一种发光效率较高的硅酸盐发光材料及其制备方法。 一种硅酸盐发光材料, 化学通式为 Li2Ca1→cSi04:Tbx,My; 其中, Tb和 M掺 杂在 Li2Ca1-xSi04中, 且 Tb和 M为掺杂粒子; M为 Ag、 Au、 Pt、 Pd和 Cu金 属纳米粒子中的至少一种, X的取值范围为 0<x≤0.2, y为 M与 Si元素的摩尔之 比, y的取值范围为 0<y≤l x l(T2
在其中一个实施例中, X的取值范围为 0.02<x≤0.10。
在其中一个实施例中, y的取值范围为 l x l0_5<y≤5 < 10_3
上述硅酸盐发光材料通过掺杂金属粒子, 有效地克服了钛酸盐发光材料的 结构缺陷, 降低了非辐射跃迁几率, 使得钛酸盐发光材料在同样激发条件下的 发光效率得到极大的提高, 发射光的波长没有改变。 该硅酸盐发光材料具有良 好的稳定性, 克服了硫化物和硫氧化物系列发光材料容易分解的缺陷, 能替代 硫化物和硫氧化物系列发光材料在场发射器件中应用。
一种硅酸盐发光材料的制备方法, 包括如下步骤:
按照 M与 Si元素的摩尔比为 y的比例,向 M的盐溶液中加入 Si02气凝胶, 于 50~75°C下搅拌混合均勾得到混合溶液,对所述混合溶液进行超声处理, 并将 超声处理后的所述混合溶液于 60~150°C下干燥, 将干燥后得到的混合物研磨均 匀, 并于 600~1200°C下煅烧, 得到含 M离子的 Si02气凝胶, 其中, 所述 M为 Ag、 Au、 Pt、 Pd和 Cu金属纳米粒子中的至少一种, y的取值范围为 0<y≤l x l(T2; 按照 Li、 Ca、 Tb及 Si元素的摩尔比为 2: ( 1 -x) :x: 1的比例称取 Li化合物、 Ca化合物和 Tb化合物以及所述含 M离子的 Si02气凝胶, 研磨混合均匀, 得到 混合料, 其中, X的取值范围为 0<x≤0.2; 及
将所述混合料置于 500~1000°C下进行煅烧处理, 再将所述混合料置于还原 气氛中于 800~1200°C下进行还原处理,之后将还原处理后的混合料冷却至室温, 研磨, 得到化学通式为 Li2Ca1→cSi04:Tbx,My的所述硅酸盐发光材料, 其中, Tb 和 M掺杂在 Li2Ca1-xSi04中, 且 Tb和 M为掺杂粒子。
在其中一个实施例中,所述 M的盐溶液中溶质为 HAuCl4、 H2PtCl6、 AgN03、 PdCl2-2H20和 Cu(N03)2中的至少一种, 溶剂为乙醇。
在其中一个实施例中, 所述 M的盐溶液的浓度为 5x lO_6~l x lO_2mol/L。
在其中一个实施例中, 所述 Li化合物为 Li的氧化物、 碳酸盐、 硝酸盐、 醋 酸盐或草酸盐; 所述 Ca化合物 Ca的氧化物、 碳酸盐、 硝酸盐、 醋酸盐或草酸 盐; 所述 Tb化合物为 Tb的氧化物、 碳酸盐、 硝酸盐、 醋酸盐或草酸盐。
在其中一个实施例中, 所述还原气氛为 CO还原气氛或 H2还原气氛或体积 分数为 95%N2与 5%¾的混合还原气氛。
在其中一个实施例中, X 的取值范围为 0.02<x≤0.10 ; y 的取值范围为 lxl(T5<y≤5xl(T3
上述硅酸盐发光材料的制备方法首先通过 Si02气凝胶吸附金属离子, 得到 包含有金属离子的 Si02气凝胶, 然后, 再以 Li、 Ca和 Tb的化合物以及包含有 金属离子的 Si02气凝胶为原料, 在还原气氛下将金属离子还原成金属单质, 即 制备得到化学通式为 Li2Ca1→cSi04:Tbx,My的硅酸盐发光材料, 制备工艺筒单、 成 本低、 无污染、 反应易于控制、 适于工业化生产, 得到的硅酸盐发光材料发光 性效率较高且稳定性好, 在场发射器件中具有广阔的应用前景。 附图说明
图 1为一实施方式的硅酸盐发光材料的制备方法的流程图;
图 2为实施例 3制备的发光材料在电压为 1.5KV下的阴极射线激发下的发 光光 i普对比图,其中曲线 1是掺杂金属 Ag的 Li2Ca 9oSi04:Tb io,Ag2.5xlo-4发光材 料的发光光谱,曲线 2是未掺杂金属的 Li Cao. oSiO^Tbo.K)发光材料的发光光谱。 具体实施方式
下面结合附图及具体实施例对硅酸盐发光材料及其制备方法进行进一步的 说明。
一实施方式的硅酸盐发光材料, 化学通式为 Li2Ca1→cSi04:Tbx,My。 其中, Tb 和 M掺杂在 Li2Ca1-xSi04中, 且 Tb和 M为掺杂粒子。 M为 Ag、 Au、 Pt、 Pd 和 Cu金属纳米粒子中的至少一种。 X的取值范围为 0<x≤0.2。 y为 M与 Si元素 的摩尔之比。 y的取值范围为 0<y≤lxl(T2
进一步, 在其他优选的实施方式中, X的取值范围还可以为 0.02<x≤0.10, y 的取值范围还可以为 lxl(T5<y≤5xl(T3。 此外, 本实施方式还提供了一种硅酸盐发光材料的制备方法, 如图 1所示, 其包括如下步骤:
步骤 S 110 , 按照 M与 Si元素的摩尔比为 y的比例, 向 M的盐溶液中加入 Si02气凝胶, 于 50~75 °C下搅拌混合均勾得到混合溶液,再对混合溶液进行超声 处理, 并将超声处理后的混合溶液于 60~150°C下干燥, 将干燥后得到的混合物 研磨均匀, 并于 600~1200°C下煅烧, 得到含 M离子的 Si02气凝胶。
其中, M为 Ag、 Au、 Pt、 Pd和 Cu金属纳米粒子中的至少一种。 y的取值 范围为 0<y≤l x l(T2。 M的盐溶液中溶质为 HAuCl4、 H2PtCl6、 AgN03、 PdCl2-2H20 和 Cu(N03)2中的至少一种, 溶剂为乙醇。 在本实施方式中, M的盐溶液的浓度 范围为 5x 10— 6~l x l0— 2mol/L。
步骤 S 120 , 按照 Li、 Ca、 Tb及 Si元素的摩尔比为 2:(l-x):x: l的比例称取 Li化合物、 Ca化合物和 Tb化合物以及含 M离子的 Si02气凝胶,研磨混合均匀, 得到混合料。
其中, X的取值范围为 0<x≤0.2。 Li化合物为 Li的氧化物、碳酸盐、硝酸盐、 醋酸盐或草酸盐。 Ca化合物 Ca的氧化物、 碳酸盐、 硝酸盐、 醋酸盐或草酸盐。
Tb化合物为 Tb的氧化物、 碳酸盐、 硝酸盐、 醋酸盐或草酸盐。
步骤 S 130 , 将混合料置于 500~1000 °C下进行煅烧处理, 再将混合料置于还 原气氛中于 800~1200 °C下进行还原处理, 之后将还原处理后的混合料冷却至室 温, 研磨, 得到化学通式为 Li2Ca1→cSi04:Tbx,My的硅酸盐发光材料。 其中, Tb 和 M掺杂在 Li2Ca1-xSi04中, 且 Tb和 M为掺杂粒子。
在本实施方式中, 还原气氛可以为 CO还原气氛或 H2还原气氛或体积分数 为 95%N2与 5%¾的混合还原气氛。
该硅酸盐发光材料通过掺杂金属粒子, 有效地克服了钛酸盐发光材料的结 构缺陷, 降低了非辐射跃迁几率, 使得钛酸盐发光材料在同样激发条件下的发 光效率得到极大的提高, 发射光的波长没有改变。 该硅酸盐发光材料具有良好 的稳定性, 克服了硫化物和硫氧化物系列发光材料容易分解的缺陷, 能替代硫 化物和硫氧化物系列发光材料在场发射器件中应用。
且该硅酸盐发光材料的制备方法, 首先通过 Si02气凝胶吸附金属离子, 得 到包含有金属离子的 Si02气凝胶, 然后再以 Li、 Ca和 Tb的化合物以及包含有 金属离子的 Si02气凝胶为原料, 在还原气氛下将金属离子还原成金属单质, 即 制备得到化学通式为 Li2Ca1→cSi04:Tbx,My的硅酸盐发光材料, 制备工艺筒单、 成 本低、 无污染、 反应易于控制、 适于工业化生产, 得到的硅酸盐发光材料发光 性效率较高且稳定性好, 在场发射器件中具有广阔的应用前景。 下面结合具体实施例来说明硅酸盐发光材料的不同组成、 其制备方法以及 其性能等方面的测试。
实施例 1
本实施例的硅酸盐发光材料的组成为 Li2Ca 85Si04:Tb i5,Aulxl()-2, 制备过程 如下:
称取 0.7212g Si02气凝胶溶解于 12mL浓度为 lxl(T2mol/L的氯金酸 (HAuCl4) 的乙醇溶液中, 将得到的混合溶液于 75°C下搅拌 0.5h, 然后超声 lOmin, 再于 150°C下干燥, 将干燥后得到的样品研磨均匀后, 于 1200°C下煅烧 0.5h, 得到含 有 Au3+的 Si02气凝胶。
称取 0· 1195g氧化锂 (Li20)、 0· 1904g氧化钙 (CaO)、 0· 1121g七氧化四铽 (Tb407) 和 0.2405g上述制备得到的含有 Au3+的 Si02气凝胶, 制备混合料。
将上述制备得到的混合料置于玛瑙研钵中充分研磨至混合均勾; 然后将粉 末转移到刚玉坩埚中, 于马弗炉中 500°C热处理 15h; 再于管式炉中在 C还原气 氛中于 1000°C下烧结 2h, 即将 Au3+还原成 Au单质后; 冷却至室温, 将得到的 样品研磨成粉末, 即可得到掺杂 Au的 Li2Cao.85Si04:Tbo.15,Aulxlo-2发光材料。 实施例 2
本实施例的硅酸盐发光材料的组成为
Figure imgf000007_0001
, 制备过程 如下:
称取 0.3606g Si02气凝胶溶解于 6mL浓度为 5 <10_3mol/L的氯铂酸 (H2PtCl6) 的乙醇溶液中,将得到的混合溶液于 50°C下搅拌 3 h,然后超声 lOmin,再于 60 °C 下干燥, 将干燥后得到的样品研磨均匀后, 于 600 °C下煅烧 4h, 得到含有 Pt4+ 的 Si02气凝胶。
称取 0.2955g碳酸锂 (Li2C03)、 0.3924g碳酸 4弓(CaC03)、 0.0199g碳酸铽 (Tb2(C03)3)和 0.2404g上述制备得到的含有 Pt4+的 Si02气凝胶, 制备混合料。
将上述制备得到的混合料置于玛瑙研钵中充分研磨至混合均勾; 然后将粉 末转移到刚玉坩埚中, 于马弗炉中 1000°C热处理 2h; 再于管式炉中在 CO还原 气氛中于 1200°C下烧结 0.5h, 即将 Pt4+还原成 Pt单质后; 冷却至室温, 将得到 的样品研磨成粉末, 即可得到掺杂 Pt的 Li2Cao.98Si04:Tbo.o2,Pt5xl()-3发光材料。 实施例 3
本实施例的硅酸盐发光材料的组成为
Figure imgf000008_0001
制备过程 如下:
称取 0.3606g Si02气凝胶溶解于 7.5mL浓度为 2xl(T4mol/L的硝酸银 (AgN03) 的乙醇溶液中,将得到的混合溶液于 60 °C下搅拌 2 h,然后超声 lOmin,再于 80°C 下干燥, 将干燥后得到的样品研磨均匀后, 于 800°C下煅烧 2h, 得到含有 Ag+ 的 Si02气凝胶。
称取 0.2955g碳酸裡 (Li2C03)、 0.2016g氧化钙 (CaO)、 0.0747g七氧化四铽 (Tb407)和 0.2524g上述制备得到的含有 Ag+的 Si02气凝胶, 制备混合料。
将上述制备得到的混合料置于玛瑙研钵中充分研磨至混合均勾; 然后将粉 末转移到刚玉坩埚中, 于马弗炉中 600°C热处理 4h ; 再于管式炉中在 95%N2+5%¾(体积分数)的混合还原气氛中于 1000°C下烧结 4h,即将 Ag+还原成 Ag 单质后; 冷却至室温, 将得到的样品研磨成粉末, 即可得到掺杂 Ag 的 Li2Ca0.90SiO4:Tb0.10,Ag2.5xl0-4发光材料。
如图 2所示是本实施例制备的掺杂金属 Ag的
Figure imgf000008_0002
发光材料 (曲线 1)与未掺杂金属的 Li2Cao.9oSi04:Tb i()发光材料 (曲线 2)在 1.5KV 电压下的阴极射线发光光 i普对比图, 从图中可以看出在 544nm处的发射峰, 掺 杂金属后发光材料的发光强度较未掺杂金属的发光材料增强了 29%, 本实施例 的发光材料具有稳定性好、 色纯度好、 并且发光效率较高的特点。 实施例 4
本实施例的硅酸盐发光材料的组成为 Li2Ca 8()Si04:Tb 2(),Pdlxl()-5, 制备过程 如下:
称取 0.3005g Si02气凝胶溶解于 10mL 浓度为 5xl(T6mol/L 的氯化钯 ( PdCl2.2¾0 ) 的乙醇溶液中, 将得到的混合溶液于 65 °C下搅拌 1.5 h, 然后超 声 lOmin, 再于 120°C下干燥, 将干燥后得到的样品研磨均匀后, 于 1100°C下煅 烧 2h, 得到含有 Pd4+的 Si02气凝胶。
称取 0.4076g草酸裡 (Li2C204)、 0.4096g草酸钙 (CaC204)、 0.2327g草酸铽 (Tb2(C204)3)和 0.2524g上述制备得到的含有 Pd4+的 Si02气凝胶, 制备混合料。
将上述制备得到的混合料置于玛瑙研钵中充分研磨至混合均勾; 然后将粉 末转移到刚玉坩埚中, 于马弗炉中 700°C热处理 5h; 再于管式炉中在 H2的还原 气氛中于 800°C下烧结 6h, 即将 Pd4+还原成 Pd单质后; 冷却至室温, 将得到的 样品研磨成粉末, 即可得到掺杂 Pd的 Li2Cao.8oSi04:Tbo.2o,Pdlxlo-5发光材料。 实施例 5
本实施例的硅酸盐发光材料的组成为 Li2Ca 95Si04:Tb ()5,Cul x l(H , 制备过程 如下:
称取 0.3606g Si02气凝胶溶解于 12mL 浓度为 5 <10_5mol/L 的硝酸铜 ( Cu(N03)2 ) 的乙醇溶液中, 将得到的混合溶液于 70°C下搅拌 1 h, 然后超声 lOmin,再于 70°C下干燥,将干燥后得到的样品研磨均勾后,于 800°C下煅烧 2h, 得到含有 Cu2+的 Si02气凝胶。
称取 0.5516g硝酸裡 (LiN03)、 0.6232g硝酸 4弓 (Ca(N03)2)、 0.0689g硝酸铽 (Tb(N03)3)和 0.2404g上述制备得到的含有 Cu2+的 Si02气凝胶, 制备混合料。
将上述制备得到的混合料置于玛瑙研钵中充分研磨至混合均勾; 然后将粉 末转移到刚玉坩埚中, 于马弗炉中 600°C热处理 4h ; 再于管式炉中在 95%N2+5%¾(体积分数)的混合还原气氛中于 1000°C下烧结 6h, 即将 Cu2+还原 成 Cu单质后; 冷却至室温, 将得到的样品研磨成粉末, 即可得到掺杂 Cu 的 Li2Ca0.95Si04:Tbo.05,Cul x l o-4发光材料。 实施例 6
本实施例的硅酸盐发光材料的组成为 Li2Ca 88Si04:Tb i2,Ag5 x l ()-4 , 制备过程 如下:
称取 0.3606g Si02气凝胶溶解于 12mL 浓度为 2.5xl(T4mol/L 的硝酸银 ( AgN03 ) 的乙醇溶液中, 将得到的混合溶液于 65°C下搅拌 1.5 h, 然后超声 lOmin, 再于 120°C下干燥, 将干燥后得到的样品研磨均匀后, 于 900 °C下煅烧 3h, 得到含有 Ag+的 Si02气凝胶。
称取 0.2955g碳酸锂 (Li2C03)、 0.4506g草酸钙 (CaC204)、 0.1396g草酸铽 (Tb2(C204)3)和 0.2404g上述制备得到的含有 Ag+的 Si02气凝胶, 制备混合料。
将上述制备得到的混合料置于玛瑙研钵中充分研磨至混合均勾; 然后将粉 末转移到刚玉坩埚中, 于马弗炉中 500°C热处理 10h; 再于管式炉中在 H2的还 原气氛中于 1100°C下烧结 3h, 即将 Ag+还原成 Ag单质后; 冷却至室温, 将得 到的样品研磨成粉末,即可得到掺杂 Ag的 Li2Ca 88Si04:Tb i2,Ag5 x l ()-4发光材料。 实施例 7
本实施例的硅酸盐发光材料的组成为 Li Cao^SiO^Tbo.os Ago.s/Auo.^. xK^ , 制备过程如下:
称取 0.7212g Si02气凝胶溶解于 15mL含浓度为 Ixl0_3mol/L 的硝酸银 (AgN03)和浓度为 I l0"3mol/L的氯金酸 (HAuC )的乙醇溶液中, 将得到的混合 溶液于 60°C下搅拌 2 h, 然后超声 lOmin, 再于 80°C下干燥, 将干燥后得到的样 品研磨均匀后, 于 1000 °C下煅烧 4h, 得到含有 Ag+和 Au3+的 Si02气凝胶。
称取 0.5279g醋酸裡 (C¾COOLi)、 0.5821g醋酸 4丐 ((C¾COO)2Ca)、 0.1075g 醋酸铽 ((C¾COO)3Tb)和 0.2524g上述制备得到的含有 Ag+和 Au3+的 Si02气凝胶, 制备混合料。
将上述制备得到的混合料置于玛瑙研钵中充分研磨至混合均勾; 然后将粉 末转移到刚玉坩埚中, 于马弗炉中 700°C热处理 8h ; 再于管式炉中在 95%N2+5%¾(体积分数)的混合还原气氛中于 900°C下烧结 5h, 即将 Ag+和 Au3+ 还原成 Ag单质和 Au单质后; 冷却至室温, 将得到的样品研磨成粉末, 即可得 到掺杂 Ag和 Au的 I^Cao^SiO^Tbo.os Ago.s/Auo.^^xK 发光材料。 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本领域 的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和 改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以所附 权利要求为准。

Claims

权 利 要 求 书
1、 一种硅酸盐发光材料, 其特征在于, 化学通式为
Figure imgf000012_0001
其中, Tb和 M掺杂在 Li2Ca1→cSi04中, 且 Tb和 M为掺杂粒子; M为 Ag、 Au、 Pt、 Pd和 Cu金属纳米粒子中的至少一种, 0<x≤0.2 , y为 M与 Si元素的摩尔之 比, 0<y≤l x l0-2
2、 根据权利要求 1所述的硅酸盐发光材料, 其特征在于, 0.02<x≤0.10。
3、根据权利要求 1所述的硅酸盐发光材料, 其特征在于, l x l 0_5<y≤5x l(r3
4、 一种硅酸盐发光材料的制备方法, 其特征在于, 包括如下步骤: 按照 M与 Si元素的摩尔比为 y的比例,向 M的盐溶液中加入 Si02气凝胶, 于 50~75 °C下搅拌混合均勾得到混合溶液,对所述混合溶液进行超声处理, 并将 超声处理后的所述混合溶液于 60~150°C下干燥, 将干燥后得到的混合物研磨均 匀, 并于 600~1200°C下煅烧, 得到含 M离子的 Si02气凝胶, 其中, 所述 M为 Ag、 Au、 Pt、 Pd和 Cu金属纳米粒子中的至少一种, y的取值范围为 0<y≤l x l(T2;
按照 Li、 Ca、 Tb及 Si元素的摩尔比为 2: ( 1 -x) :x: 1的比例称取 Li化合物、 Ca化合物和 Tb化合物以及所述含 M离子的 Si02气凝胶, 研磨混合均匀, 得到 混合料, 其中, X的取值范围为 0<x≤0.2; 及
将所述混合料置于 500~1000 °C下进行煅烧处理, 再将所述混合料置于还原 气氛中于 800~1200°C下进行还原处理,之后将还原处理后的混合料冷却至室温, 研磨, 得到化学通式为 Li2Ca1→cSi04:Tbx,My的所述硅酸盐发光材料, 其中, Tb 和 M掺杂在 Li2Ca1-xSi04中, 且 Tb和 M为掺杂粒子。
5、 根据权利要求 4所述的硅酸盐发光材料的制备方法, 其特征在于, 所述 M的盐溶液中溶质为 HAuCl4、 H2PtCl6、 AgN03、 PdCl2'2H20和 Cu(N03)2中的 至少一种, 溶剂为乙醇。
6、 根据权利要求 5所述的硅酸盐发光材料的制备方法, 其特征在于, 所述 M的盐溶液的浓度为 5x lO—6~l x l(T2mol/L。
7、 根据权利要求 4所述的硅酸盐发光材料的制备方法, 其特征在于, 所述 Li化合物为 Li的氧化物、 碳酸盐、 硝酸盐、 醋酸盐或草酸盐; 所述 Ca化合物 Ca的氧化物、 碳酸盐、 硝酸盐、 醋酸盐或草酸盐; 所述 Tb化合物为 Tb的 氧化物、 碳酸盐、 硝酸盐、 醋酸盐或草酸盐。
8、 根据权利要求 4所述的硅酸盐发光材料的制备方法, 其特征在于, 所述 还原气氛为 CO还原气氛或 H2还原气氛或体积分数为 95%N2与 5%¾的混合还 原气氛。
9、 根据权利要求 4所述的硅酸盐发光材料的制备方法, 其特征在于, X的 取值范围为 0.02<x≤0.10; y的取值范围为 lxl0_5<y≤5xl(T3
PCT/CN2012/083880 2012-10-31 2012-10-31 硅酸盐发光材料及其制备方法 WO2014067113A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12887525.9A EP2915863B1 (en) 2012-10-31 2012-10-31 Silicate luminescent material and preparation method therefor
CN201280076460.1A CN104736666A (zh) 2012-10-31 2012-10-31 硅酸盐发光材料及其制备方法
PCT/CN2012/083880 WO2014067113A1 (zh) 2012-10-31 2012-10-31 硅酸盐发光材料及其制备方法
JP2015538247A JP5965551B2 (ja) 2012-10-31 2012-10-31 ケイ酸塩発光材料及びその製造方法
US14/438,450 US20150284631A1 (en) 2012-10-31 2012-10-31 Silicate luminescent material and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083880 WO2014067113A1 (zh) 2012-10-31 2012-10-31 硅酸盐发光材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2014067113A1 true WO2014067113A1 (zh) 2014-05-08

Family

ID=50626337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083880 WO2014067113A1 (zh) 2012-10-31 2012-10-31 硅酸盐发光材料及其制备方法

Country Status (5)

Country Link
US (1) US20150284631A1 (zh)
EP (1) EP2915863B1 (zh)
JP (1) JP5965551B2 (zh)
CN (1) CN104736666A (zh)
WO (1) WO2014067113A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150275083A1 (en) * 2012-10-31 2015-10-01 Ocean's King Lighting Science & Technology Co., Ltd Silicate luminescent material and preparation method therefor
CN110452690A (zh) * 2019-08-24 2019-11-15 宝艺新材料股份有限公司 一种用于纸板表面的防伪发光材料的制备方法
CN112408837A (zh) * 2020-11-23 2021-02-26 保利长大工程有限公司 一种基于花岗岩石粉的复合矿物掺合料及其制备方法
CN112408836A (zh) * 2020-11-23 2021-02-26 贵州四方联达科技有限公司 一种复合矿物掺合料及其制备方法
CN116376538B (zh) * 2023-05-11 2024-04-19 广西师范大学 一种掺杂混合价态Eu离子的无机非光致变色荧光可调材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391320A (en) * 1989-08-28 1995-02-21 Lockheed Missiles & Space Company, Inc. Terbium activated silicate luminescent glasses
JP2008208325A (ja) * 2007-01-30 2008-09-11 Nichia Chem Ind Ltd アルカリ土類金属アルミン酸塩蛍光体及びそれを用いた蛍光ランプ
CN101348714A (zh) * 2008-09-12 2009-01-21 东北师范大学 紫光led转换白光用红色稀土发光材料及制备方法
CN102050573A (zh) * 2009-10-30 2011-05-11 海洋王照明科技股份有限公司 发光玻璃及其制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379000A (en) * 1976-12-22 1978-07-12 Agency Of Ind Science & Technol Lithium calcium silicate and production thereof
DE10238399A1 (de) * 2002-08-22 2004-02-26 Philips Intellectual Property & Standards Gmbh Vorrichtung zur Erzeugung von Strahlung
JP2006232906A (ja) * 2005-02-23 2006-09-07 Sumitomo Chemical Co Ltd 蛍光体およびそれを用いた発光装置
JP4899319B2 (ja) * 2005-02-23 2012-03-21 住友化学株式会社 白色led
CN101760195B (zh) * 2010-01-22 2013-05-08 海洋王照明科技股份有限公司 硅酸盐蓝色发光材料及其制备方法
CN102906220A (zh) * 2010-06-09 2013-01-30 海洋王照明科技股份有限公司 氧化物锡酸盐发光材料及其制备方法
CN102337120B (zh) * 2010-07-15 2014-07-23 海洋王照明科技股份有限公司 荧光材料及其制备方法
EP2597133B1 (en) * 2010-07-19 2016-12-07 Ocean's King Lighting Science&Technology Co., Ltd. Luminescent material of silicate and preparing method thereof
CN102337123B (zh) * 2010-07-20 2013-11-27 海洋王照明科技股份有限公司 硅酸盐发光材料及其制备方法
CN102337121B (zh) * 2010-07-21 2014-07-23 海洋王照明科技股份有限公司 硅酸盐发光材料及其制备方法
JP5701383B2 (ja) * 2010-07-28 2015-04-15 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー ケイ酸塩蛍光物質の製造方法
CN102373059B (zh) * 2010-08-13 2013-10-02 海洋王照明科技股份有限公司 硅酸盐荧光材料及其制造方法
WO2013166663A1 (zh) * 2012-05-08 2013-11-14 海洋王照明科技股份有限公司 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法
CN102703066A (zh) * 2012-06-13 2012-10-03 中国计量学院 一种氟硅酸盐荧光粉及其制备方法
US20150275083A1 (en) * 2012-10-31 2015-10-01 Ocean's King Lighting Science & Technology Co., Ltd Silicate luminescent material and preparation method therefor
CN104130774B (zh) * 2014-08-15 2016-05-11 昆明学院 一种氯硅酸盐荧光粉及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391320A (en) * 1989-08-28 1995-02-21 Lockheed Missiles & Space Company, Inc. Terbium activated silicate luminescent glasses
JP2008208325A (ja) * 2007-01-30 2008-09-11 Nichia Chem Ind Ltd アルカリ土類金属アルミン酸塩蛍光体及びそれを用いた蛍光ランプ
CN101348714A (zh) * 2008-09-12 2009-01-21 东北师范大学 紫光led转换白光用红色稀土发光材料及制备方法
CN102050573A (zh) * 2009-10-30 2011-05-11 海洋王照明科技股份有限公司 发光玻璃及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2915863A4 *

Also Published As

Publication number Publication date
JP5965551B2 (ja) 2016-08-10
US20150284631A1 (en) 2015-10-08
EP2915863A1 (en) 2015-09-09
JP2015532938A (ja) 2015-11-16
EP2915863A4 (en) 2016-06-08
EP2915863B1 (en) 2019-11-06
CN104736666A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2011147088A1 (zh) 含有金属粒子的稀土掺杂的卤氧化物发光材料及其制备方法
WO2014067113A1 (zh) 硅酸盐发光材料及其制备方法
CN102382646A (zh) 一种硅酸钇钠绿光发光材料及其制备方法
US9115309B2 (en) Zinc manganese silicate containing metal particles luminescent materials and preparation methods thereof
JP5655141B2 (ja) 珪酸塩発光材料及びその調製方法
JP6017679B2 (ja) 金属ナノ粒子を被覆するケイ酸塩発光材料およびその製造方法
US9605202B2 (en) Silicate luminescent materials doped with metal nano particles and preparation methods therefor
CN103849383B (zh) 铝酸锌锰发光材料及其制备方法
US20150284630A1 (en) Aluminate luminescent material and preparation method therefor
US20150275083A1 (en) Silicate luminescent material and preparation method therefor
CN103773362A (zh) 偏硅酸钙发光材料及其制备方法
US8936733B2 (en) Borate luminescent materials, preparation methods and uses thereof
WO2010099665A1 (zh) 三价铥激活的氧化物发光材料及其制备方法
EP2832818A1 (en) Luminescent materials doped with metal nano particles and preparation methods therefor
WO2014019152A1 (zh) 锡酸盐荧光材料及其制备方法
CN103773370A (zh) 稀土-铝酸盐发光材料及其制备方法
CN103788950A (zh) 稀土铝酸镧发光材料及其制备方法
CN104119878A (zh) 一种铝酸锶发光材料及其制备方法
CN104119877A (zh) 一种铝酸锶铽发光材料及其制备方法
CN103788949A (zh) 稀土铝酸镧发光材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887525

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012887525

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14438450

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015538247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE