WO2013166659A1 - 钛酸盐发光材料及其制备方法 - Google Patents

钛酸盐发光材料及其制备方法 Download PDF

Info

Publication number
WO2013166659A1
WO2013166659A1 PCT/CN2012/075197 CN2012075197W WO2013166659A1 WO 2013166659 A1 WO2013166659 A1 WO 2013166659A1 CN 2012075197 W CN2012075197 W CN 2012075197W WO 2013166659 A1 WO2013166659 A1 WO 2013166659A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent material
titanate luminescent
preparation
titanate
material according
Prior art date
Application number
PCT/CN2012/075197
Other languages
English (en)
French (fr)
Inventor
周明杰
王荣
陈贵堂
Original Assignee
海洋王照明科技股份有限公司
深圳市海洋王照明工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司, 深圳市海洋王照明工程有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN201280071686.2A priority Critical patent/CN104169394B/zh
Priority to US14/398,765 priority patent/US9447320B2/en
Priority to PCT/CN2012/075197 priority patent/WO2013166659A1/zh
Priority to JP2015510594A priority patent/JP5872735B2/ja
Priority to EP12876469.3A priority patent/EP2832820B1/en
Publication of WO2013166659A1 publication Critical patent/WO2013166659A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/87Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing platina group metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals

Definitions

  • the invention relates to the field of luminescent materials, in particular to a titanate luminescent material and a preparation method thereof. ⁇ Background technique ⁇
  • the titanate matrix has good chemical stability, and the color purity of the phosphor obtained by doping rare earth luminescent center ions
  • rare earth ion-activated titanate matrix phosphors are expected to replace Zn 1 ⁇ Cd x S sulfide red phosphors, making them a new generation of non-toxic, highly stable phosphors for ideal red FED. Materials, therefore, further improving the luminescent properties of this material is a goal that researchers have been working on.
  • a titanate luminescent material having a molecular formula of A 1-x Ti0 3 :Pr x @Ti0 2 @M y ;
  • A is at least one of Ca, Sr and Ba elements
  • M is a metal nanoparticle, and the metal nanoparticle is at least one of Ag, Au, Pt, Pd, and Cu;
  • X is 0 ⁇ x ⁇ 0.01
  • y is the molar ratio of M to A 1-x Ti0 3 :Pr x @Ti0 2 in Ti, and the value is 0 ⁇ y ⁇ 1 x 10" 2 ; @ is cladding, M is core, ⁇ 0 2 is intermediate layer Shell, A 1-x Ti0 3 :Pr x is the outer shell.
  • a method for preparing a titanate luminescent material comprising the steps of:
  • the reducing agent is added, and the mixture is heated and stirred at a temperature of 120-160 ° C to form a Ti0 2 @M y colloid, which is washed and dried to obtain a core-shell structure Ti0. 2 @M y solid, wherein M is at least one of Ag, Au, Pt, Pd and Cu nanoparticles, y is the molar ratio of M to ⁇ , 0 ⁇ y ⁇ 1 X 10" 2 ;
  • Step 2 Mix the source compound of A, the source compound of Pr and the Ti0 2 @M y solid uniformly, and heat the mixture to 800 ° C to 1200 ° C for 2 hours to 12 hours, and then at 1000 ° C to 1400 ° C. Heating in a reducing atmosphere for 0.5 hour to 6 hours, cooling and grinding to obtain A 1-x Ti0 3 :Pr x @Ti0 2 @M y powder, wherein A is at least one of Ca, Sr and Ba elements, 0 ⁇ x ⁇ 0.01, @ means cladding, M is core, ⁇ 0 2 is the intermediate layer shell, A 1 ⁇ ( Ti0 3 :Pr x is the outer shell.
  • the source compound of A is an oxide, carbonate, nitrate or hydroxide of A.
  • the source compound of the Pr is an oxide, carbonate, nitrate or hydroxide of Pr.
  • the reducing agent in the first step, is dinonyl amide, and the volume of the reducing agent accounts for a salt solution of the metal, the triethanolamine titanium isopropoxide, and the reducing agent. 20% ⁇ 80% of the sum of the volumes.
  • the volume of the reducing agent is from 25% to 50% of the sum of the volume of the metal salt solution, the triethanolamine titanium isopropoxide, and the reducing agent.
  • the Ti0 2 @M y colloid in the first step, is subjected to centrifugal precipitation and washed with ethanol.
  • the reducing atmosphere is at least one of a mixed reducing atmosphere of nitrogen and hydrogen, a carbon powder reducing atmosphere, a carbon monoxide reducing atmosphere, and a pure hydrogen reducing atmosphere.
  • Titanate above light emitting material A 1-x Ti0 3: Pr x @ Ti0 2 @M y, by ⁇ 0 2 coated metal nanoparticles by A 1 (Ti0 3: Pr x coated ⁇ 0 2, i.e. metal nano The particles are cores, ⁇ 0 2 is an intermediate layer shell, and A 1-x Ti0 3 :Pr x is an outer shell, thereby forming a core-shell titanate luminescent material, thereby improving the internal quantum efficiency thereof; and the above-mentioned titanate luminescent material Adding metal nanoparticles to enhance its luminous intensity, making it The titanate luminescent material has high stability and good luminescent properties.
  • the above titanate luminescent material has high stability and good luminescent properties.
  • a 1-x Ti0 3 :Pr x @Ti0 2 @M y can be widely used in lighting and display fields.
  • the above preparation method has the advantages of low order, low cost, no pollution, easy reaction control, and is suitable for industrial production.
  • FIG. 1 is a flow chart of a method for preparing a titanate luminescent material according to an embodiment
  • Example 2 is a luminescent material of Example 2 and Ca of uncoated metal nanoparticles. 998 Ti0 3 : Pr. ⁇ 2 @Ti0 2 Comparison of cathode ray luminescence spectra of luminescent materials at 1.5kV .
  • titanate luminescent material and its preparation method will be further described in detail below mainly with reference to the accompanying drawings and specific embodiments.
  • the molecular formula is A 1 ⁇ ( Ti0 3 :Pr x @Ti0 2 @M y .
  • A is at least one of Ca, Sr and Ba elements.
  • M is at least one of Ag, Au, Pt, Pd, and Cu nanoparticles.
  • y is the molar ratio of ⁇ to Ti in A 1-x Ti0 3 :Pr x @Ti0 2 and takes a value of 0 ⁇ y ⁇ 1 x 10" 2 ; preferably, lxl0 -5 y 5xl0 -3 .
  • M is a core
  • ⁇ 0 2 is an intermediate layer shell
  • a 1 ( Ti0 3 :Pr x is an outer shell.
  • ⁇ 0 2 is spherical.
  • the above titanate luminescent material coats the metal nanoparticles with ⁇ 0 2 and passes A 1 ⁇ ( Ti0 3 :Pr x- clad ⁇ 2 2 , that is, the metal nanoparticles are used as the core, and ⁇ 0 2 is the intermediate layer shell, A 1 ⁇ ( Ti0 3 :Pr x is an outer shell, thereby forming a core-shell titanate luminescent material, thereby improving the internal quantum efficiency thereof; and the above-mentioned titanate luminescent material is added with metal nanoparticles, thereby enhancing the luminescence intensity thereof,
  • the above titanate luminescent material has high stability and good luminescent properties.
  • the above titanate luminescent materials can be widely used in the fields of illumination and display.
  • a method for preparing a titanate luminescent material includes the following steps: Step S1: after mixing a metal salt solution and triethanolamine titanium isopropoxide, adding a reducing agent at a temperature of 120 ⁇ Heating and stirring at 160 ° C (preferably 140 ° C) to form Ti0 2 @M y colloid, washed and dried The Ti0 2 @M y solid of the core-shell structure is obtained, wherein M is at least one of Ag, Au, Pt, Pd and Cu nanoparticles, and y is the molar ratio of M to ⁇ , 0 ⁇ ylx l0 -2 .
  • the salt solution of the metal is at least one of a soluble salt solution of Ag, Au, Pt, Pd and Cu.
  • the reducing agent is dinonyl amide, and the volume of the reducing agent is 20% to 80% of the sum of the volume of the metal salt solution, the triethanolamine titanium isopropoxide and the reducing agent; further, the reducing agent The volume accounts for 25% to 50% of the sum of the volume of the metal salt solution, the triethanolamine titanium isopropoxide and the reducing agent.
  • Step S2 mixing the source compound of A, the source compound of Pr, and the Ti0 2 @M y solid uniformly, and heating to 800 ° C to 1200 ° C for 2 hours to 12 hours, and then at 1000 ° C to 1400 ° C.
  • a 1-x Ti0 3 :Pr x @Ti0 2 @M y powder wherein A is at least one of Ca, Sr and Ba elements, 0 ⁇ x ⁇ 0.01, @ means cladding, M is core, ⁇ 0 2 is an intermediate layer shell, A 1 ⁇ ( Ti0 3 :Pr x is an outer shell.
  • the source compound of A is an oxide, carbonate, nitrate or hydroxide of A.
  • the source compound of the Pr is an oxide, carbonate, nitrate or hydroxide of Pr.
  • the reducing atmosphere is at least one of a mixed atmosphere of nitrogen and hydrogen, carbon powder, carbon monoxide, and pure hydrogen.
  • the reducing atmosphere is a mixed reducing atmosphere of nitrogen (N 2 ) and hydrogen (H 2 ), a reducing atmosphere of carbon powder (C), a reducing atmosphere of carbon monoxide (CO), and a reducing atmosphere of pure hydrogen (H 2 ). At least one.
  • the above preparation method has the advantages of low order, low cost, no pollution, easy reaction control, and is suitable for industrial production.
  • Example 1 The following are specific embodiments: Example 1
  • titanate luminescent material Sro.999Ti0 3 Pro.ooi@Ti02@ Au lxl0 - 2 : Weigh SrO 0.5175g, Pr 6 O 0.0009g and 0.4195g of TiO 2 @Au lxl0 - 2 powder, placed in agate In the mortar, the mixture is fully ground to uniform mixing, and then the powder is transferred to corundum crucible, heat treated at 800 ° C for 12 h in a muffle furnace, and then sintered in a tube furnace at 1300 ° C for 4 h in a H 2 reducing atmosphere, and cooled to Room temperature, that is, titanate luminescent material Sr 0 . 999 TiO 3 :Pr 0 . 001 @TiO 2 @ Au lxl0 - 2 .
  • the titanate luminescent material prepared in the present embodiment is shown.
  • titanate luminescent material Ba 0 . 995 TiO 3 Pr 0 . ⁇ 5 @TiO 2 @Pt 5xl0 - 3 by high temperature solid phase method
  • Titanate luminescent material Ca. 99 Ti0 3 : Pr 0 .oi@Ti0 2 @ Pd lxl . - Preparation of 5 : Weigh Ca(N0 3 ) 2 0.6494g, Pr (N0 3 ) 3 0.0137g and 0.3260g of ⁇ 0 2 @ Pd lxl .
  • Titanate luminescent material (Ca.. 6 Sr.. 4 ). 996 Ti0 3 : Pr. . ⁇ 4 @Ti0 2 @Cu lxl .
  • Preparation of -4 Ca(OH) 2 0.1817 g, Sr(OH) 2 0.0485 g Pr 6 O 0.0027 g and 0.196 g of Ti0 2 @Cu lxl were weighed .
  • - 4 powder placed in an agate mortar and ground to a uniform mixing, then transferred to a corundum crucible, heat treated at 900 ° C for 3 h in a muffle furnace, and then sintered at 1000 ° C in a CO furnace in a CO furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种钛酸盐发光材料,分子通式为A 1-xTiO3:Prx@TiO2@My;其中,A为Ca、Sr和Ba元素中的至少一种;M为Ag、Au、Pt、Pd及Cu纳米粒子中的至少一种;0<x≤0.01;y为M与A1-xTiO3:Prx@TiO2中Ti的摩尔之比,0<y≤1×10-2;@表示包覆,M为核,TiO2为中间层壳,A1-xTiO3:Prx为外层壳。上述钛酸盐发光材料稳定性高、发光性能较好。此外,还提供上述钛酸盐发光材料的制备方法。

Description

说明书
发明名称: 钛酸盐发光材料及其制备方法 【技术领域】
本发明涉及发光材料领域, 特别涉及一种钛酸盐发光材料及其制备方法。 【背景技术】
与红色 Zn1 <CdxS (x=0~1.0)硫化物低压电致荧光粉相比, 钛酸盐基质具有较 好的化学稳定性,掺杂稀土发光中心离子获得的荧光粉的色纯度较好,如 CaTi03: Pr3+在光致发光和阴极射线激发时产生的红色坐标为 x=0.680,y=0.311 , 与美国 NTSC系统规定的理想红色非常接近。 从材料稳定性和发光颜色等方面考虑, 稀 土离子激活的钛酸盐基质荧光粉有望替代 Zn1 <CdxS硫化物红色荧光粉, 成为新 一代无毒性、 高稳定的理想红色 FED用荧光粉材料, 因此, 进一步提高该种材 料的发光性能是研究人员一直努力的目标。
【发明内容】
基于此, 有必要提供一种稳定性高、 发光性能较好的钛酸盐发光材料及其 制备方法。
一种钛酸盐发光材料, 分子通式为 A1-xTi03:Prx@Ti02@My;
其中, A为 Ca、 Sr和 Ba元素中的至少一种;
M为金属纳米粒子, 所述金属纳米粒子为 Ag、 Au、 Pt、 Pd及 Cu中的至少 一种;
X为 0 < x < 0.01;
y为 M与 A1-xTi03:Prx@Ti02中 Ti的摩尔之比, 取值为 0 < y < 1 x 10"2; @是包覆, M为核, Τί02为中间层壳, A1-xTi03:Prx为外层壳。
在其中一个实施例中, 0.001 x 0.005。 在其中一个实施例中, Ixl0_5 y 5xl0_3
一种钛酸盐发光材料的制备方法, 包括如下步骤:
将金属的盐溶液及三乙醇胺异丙醇钛混合后, 加入还原剂, 在温度为 120~160°C中加热搅拌, 形成 Ti02@My胶体, 经洗涤、 干燥后得到核壳结构的 Ti02@My固体, 其中 M为 Ag、 Au、 Pt、 Pd及 Cu纳米粒子中的至少一种, y为 M与 Τί的摩尔之比, 0 < y < 1 X 10"2
步骤二: 将 A的源化合物、 Pr的源化合物及所述 Ti02@My固体混合均匀, 升温至 800°C~1200°C煅烧 2小时 ~12小时,再于 1000°C~1400°C中还原气氛下加 热 0.5小时 ~6小时, 经冷却、 研磨得到 A1-xTi03:Prx@Ti02@My粉体, 其中, A为 Ca、 Sr和 Ba元素中的至少一种, 0 < x < 0.01 , @表示包覆, M为核, Τί02为中 间层壳, A1→(Ti03:Prx为外层壳。
在其中一个实施例中, 步骤二中, 所述 A的源化合物为 A的氧化物、 碳酸 盐、 硝酸盐或氢氧化物。
在其中一个实施例中, 步骤二中, 所述 Pr的源化合物为 Pr的氧化物、 碳酸 盐、 硝酸盐或氢氧化物。
在其中一个实施例中, 步骤一中, 所述还原剂为二曱基曱酰胺, 所述还原 剂的体积占所述金属的盐溶液、 所述三乙醇胺异丙醇钛及所述还原剂的体积之 和的 20% ~ 80%。
在其中一个实施例中, 所述还原剂的体积占所述金属的盐溶液、 所述三乙 醇胺异丙醇钛及所述还原剂的体积之和的 25% ~ 50%。
在其中一个实施例中, 步骤一中, 所述 Ti02@My胶体采用离心沉淀, 并采 用乙醇洗涤。
在其中一个实施例中, 步骤二中, 所述还原气氛为氮气与氢气的混合还原 气氛、 碳粉还原气氛、 一氧化碳还原气氛及纯氢气还原气氛中的至少一种。
上述钛酸盐发光材料 A1-xTi03:Prx@Ti02@My, 通过 Τί02包覆金属纳米粒子, 并通过 A1 (Ti03:Prx 包覆 Τί02 , 即以金属纳米粒子为核, Τί02为中间层壳, A1-xTi03:Prx为外层壳,从而形成核壳钛酸盐发光材料,从而提高了其内量子效率; 且上述钛酸盐发光材料添加有金属纳米粒子, 从而增强了其发光强度, 使得上 述钛酸盐发光材料稳定性高、 发光性能较好。 上述钛酸盐发光材料
A1-xTi03:Prx@Ti02@My可广泛用于照明和显示等领域。 上述制备方法筒单、 对设 备要求低、 成本低、 无污染、 反应易于控制, 适于工业化生产。
【附图说明】
图 1为一实施方式的钛酸盐发光材料的制备方法流程图;
图 2为实施例 2的发光材料与未包覆金属纳米粒子的 Ca。.998Ti03: Pr。.∞2@Ti02 发光材料在 1.5kv电压下的阴极射线发光光谱对比图。
【具体实施方式】
下面主要结合附图及具体实施例对钛酸盐发光材料及其制备方法作进一步 详细的说明。
一实施方式的钛酸盐发光材料, 分子通式为 A1→(Ti03:Prx@Ti02@My
其中, A为 Ca、 Sr和 Ba元素中的至少一种。
M为 Ag、 Au、 Pt、 Pd及 Cu纳米粒子中的至少一种。
X ^7 0 < x < 0.01; 优选的, 0·001 χ 0·005。
y为 Μ与 A1-xTi03:Prx@Ti02中 Ti的摩尔之比, 取值为 0 < y < 1 x 10"2; 优选 的, lxl0-5 y 5xl0-3
@是包覆, M为核, Τί02为中间层壳, A1 (Ti03:Prx为外层壳。 在本实施方 式中, Τί02为球形。
上述钛酸盐发光材料, 通过 Τί02包覆金属纳米粒子, 并通过 A1→(Ti03:Prx包 覆 Τί02, 即以金属纳米粒子为核, Τί02为中间层壳, A1→(Ti03:Prx为外层壳, 从而 形成核壳钛酸盐发光材料, 从而提高了其内量子效率; 且上述钛酸盐发光材料 添加有金属纳米粒子, 从而增强了其发光强度, 使得上述钛酸盐发光材料稳定 性高、 发光性能较好。 上述钛酸盐发光材料可广泛用于照明和显示等领域。
如图 1所示, 一实施方式的钛酸盐发光材料的制备方法, 包括如下步骤: 步骤 S1: 将金属的盐溶液及三乙醇胺异丙醇钛混合后, 加入还原剂, 在温 度为 120~160°C (优选 140°C ) 中加热搅拌, 形成 Ti02@My胶体, 经洗涤、 干燥 后得到核壳结构的 Ti02@My固体, 其中 M为 Ag、 Au、 Pt、 Pd及 Cu纳米粒子中 的至少一种, y为 M与 Τί的摩尔之比, 0<y l x l0-2
所述金属的盐溶液为 Ag、 Au、 Pt、 Pd及 Cu的可溶性盐溶液中的至少一种。 在本实施例中, 还原剂为二曱基曱酰胺, 还原剂的体积占金属的盐溶液、 三乙醇胺异丙醇钛及还原剂的体积之和的 20% ~ 80%; 进一步地, 还原剂的体积 占金属的盐溶液、 三乙醇胺异丙醇钛及还原剂的体积之和的 25%~50%。
本实施例中, 形成的 Ti02@My胶体先采用离心沉淀, 再采用乙醇洗涤。 步骤 S2: 将 A的源化合物、 Pr的源化合物及所述 Ti02@My固体混合均匀, 升温至 800°C~1200°C煅烧 2小时 ~12小时,再于 1000°C~1400°C中还原气氛下加 热 0.5小时 ~6小时, 经冷却、 研磨得到 A1-xTi03:Prx@Ti02@My粉体, 其中, A为 Ca、 Sr和 Ba元素中的至少一种, 0<x<0.01, @表示包覆, M为核, Τί02为中 间层壳, A1→(Ti03:Prx为外层壳。
所述 A的源化合物为 A的氧化物、 碳酸盐、 硝酸盐或氢氧化物。
所述 Pr的源化合物为 Pr的氧化物、 碳酸盐、 硝酸盐或氢氧化物。
所述还原气氛为氮气与氢气的混合气氛、 碳粉、 一氧化碳及纯氢气中的至 少一种。
在本实施例中, 还原气氛为氮气(N2)与氢气 (H2) 的混合还原气氛、 碳粉 (C)还原气氛、 一氧化碳 (CO)还原气氛及纯氢气 (H2)还原气氛中的至少一种。
上述制备方法筒单、 对设备要求低、 成本低、 无污染、 反应易于控制, 适 于工业化生产。
以下为具体实施例部分: 实施例 1
高温固相法制备钛酸盐发光材料 Sr0_999T\03:Pr0_001@T\02@Aulxio-2:
Ti02@ Auixio-2的制备: 称取 10.3mg氯金酸( AuCI3'H 4H20 )溶解于去离子 水中, 得到 20mL 5xl0-3mol/L氯金酸溶液; 移取 5mL 4.3mol/L的三乙醇胺异丙 醇钛, 用异丙醇稀释至 lmol/L。移取 10mL5xl0-3mol/L氯金酸溶液和 5mLlmol/L 的三乙醇胺异丙醇钛的异丙醇溶液,搅拌均匀;接着加入 15mL的二曱基曱酰胺, 室温下搅拌 15min后, 采用冷凝回流装置进行加热搅拌, 加热温度为 160°C , 溶 液经由无色到浅棕色,再到深棕色时,停止加热,冷却至室温,得到 Ti02@Aulxl。-2 胶体。 然后经离心, 乙醇洗涤, 干燥得到 TiO2@ Aulxl0-2固体, 其中 y为: Lxl0—2
钛酸盐发光材料 Sro.999Ti03:Pro.ooi@Ti02@ Aulxl0-2的制备: 称取 SrO 0.5175g, Pr6O 0.0009g和 0.4195g的 TiO2@Aulxl0-2粉末, 置于玛瑙研钵中充分研磨至混 合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 800°C热处理 12h , 再于管 式炉中在 H2还原气氛下 1300°C烧结 4h还原, 冷却至室温, 即钛酸盐发光材料 Sr0.999TiO3:Pr0.001@TiO2@ Aulxl0-2
实施例 2
高温固相法法制备钛酸盐发光材料 Ca0.998TiO3:Pr0.∞2@TiO2@Ag5xl0-4:
Τί02@ Ag5xl。-4的制备: 称取 3.4mg硝酸银(AgN03 )溶解于去离子水中, 得 到 20mL Ixl0"3mol/L硝酸银溶液; 移取 10mL 4.3mol/L的三乙醇胺异丙醇钛, 用 异丙醇稀释至 0.22mol/L。 移取 2mLlxl(y3mol/L硝酸银溶液和 18mL0.22mol/L的 三乙醇胺异丙醇钛的异丙醇溶液, 搅拌均匀; 接着加入 10mL的二曱基曱酰胺, 室温下搅拌 15min后, 采用冷凝回流装置进行加热搅拌, 加热温度为 140°C , 溶 液经由无色到浅棕色,再到深棕色时,停止加热,冷却至室温,得到 Ti02@ Ag5)<1o-4 胶体。 然后经离心, 乙醇洗涤, 干燥得到 Ti02@ Ag5xl0-4固体, 其中 y为 5χ10—4
钛酸盐发光材料 Cao.998Ti03:Pro.oo2@Ti02@Ag5xio-4 的制备: 称取 CaC03 0.3996g, Pr6O 0.0014g和 0.3196g的 TiO2@Ag5xl0-3粉末, 置于玛瑙研钵中充分 研磨至混合均匀,然后将粉末转移到刚玉坩埚中,于马弗炉中 1000°C热处理 6h , 再于管式炉中在 95%N2+5%H2弱还原气氛 1200°C烧结 4h还原, 冷却至室温, 即 可得到钛酸盐发光材料 Ca0.998TiO3:Pr0.002@TiO2@Ag5xl0-4
如 图 2 所 示 是 本 实 施 例 制 备 的 钛 酸 盐 发 光 材 料
Cao.998Ti03:Pro.oo2@Ti02@Ag5xio-4与未包覆金属纳米粒子的 Ca0.998TiO3: Pr0.002@TiO2 发光材料在 1.5kv电压下的阴极射线发光光谱对比图,从图中可以看出在 612nm 处的发射峰, 包覆金属纳米粒子后发光材料的发光强度较未包覆金属纳米粒子 Ag的 Ca。.998Ti03: Pr。.。。2@Ti02增强了 30%, 本实施例的发光材料具有稳定性好、 色纯度好、 并且发光效率较高的特点。 实施例 3
高温固相法制备钛酸盐发光材料 Ba0.995TiO3: Pr0.∞5@TiO2@Pt5xl0-3:
Ti02@Pt5xl。-3的制备:称取 25.9mg氯铂酸( H2PtCI6.6H20 )溶解于去离子水中, 得到 10m L 2.5xlO"3mol/L氯铂酸溶液; 移取 5mL 4.3mol/L的三乙醇胺异丙醇钛, 用异丙醇稀释至 0.5mol/L。 移取 8mL 2.5xlO"3mol/L氯铂酸溶液和 16mL 0.5mol/L 的三乙醇胺异丙醇钛的异丙醇溶液, 搅拌均匀; 接着加入 6mL的二曱基曱酰胺, 室温下搅拌 15min后, 采用冷凝回流装置进行加热搅拌, 加热温度为 140°C , 溶 液经由无色到浅棕色,再到深棕色时,停止加热,冷却至室温,得到 Ti02@ Pt5xl0-3 胶体。 然后经离心, 乙醇洗涤, 干燥得到 TiO2@ Pt5xl0-3固体, 其中 y为 5x10—3。
钛酸盐发光材料 Bao.995Ti03:Pro.oo5@Ti02@ Pt5xl0-3的制备: 称取 Ba(OH)2 0.6819g, Pi^Ou O.OC Ag和 0.3196g的 Τί02@ Pt5xl0-3粉末, 置于玛瑙研钵中充分 研磨至混合均匀,然后将粉末转移到刚玉坩埚中,于马弗炉中 1200°C热处理 2h , 再于管式炉中在碳粉还原气氛 1400°C烧结 0.5h还原, 冷却至室温, 即可得到钛 酸盐发光材料的 Ba。.995TiO3:Pr。.。。5@TiO2@Pt5xl0-3。 实施例 4
高温固相法制备钛酸盐发光材料 Ca0.99TiO3: Pr0.oi@Ti02@ Pdlxl0-5:
Ti02@ Pdix!o-s的制备: 称取 0.22mg氯化钯( PdCI2.2H20 )溶解于去离子水中, 得到 20mL 5xl0"5mol/L氯化钯溶液; 移取 10mL 4.3mol/L的三乙醇胺异丙醇钛, 用异丙醇稀释至 2.5mol/L 。 移取 5mL5xl0"5mol/L氯化钯溶液和 10m L 2.5mol/L 的三乙醇胺异丙醇钛的异丙醇溶液, 搅拌均匀; 接着加入 5mL的二曱基曱酰胺, 室温下搅拌 15min后, 采用冷凝回流装置进行加热搅拌, 加热温度为 130°C , 溶 液经由无色到浅棕色,再到深棕色时,停止加热,冷却至室温,得到 Ti02@ Pdlxl0-5 胶体。 然后经离心, 乙醇洗涤, 干燥得到 TiO2@ Pdlxl0-5固体, 其中 y为: Lxl0—5
钛酸盐发光材料 Ca。.99Ti03: Pr0.oi@Ti02@ Pdlxl。-5的制备: 称取 Ca(N03)2 0.6494g, Pr (N03)3 0.0137g和 0.3260g的 Τί02@ Pdlxl。-5粉末, 置于玛瑙研钵中 充分研磨至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 1100°C热处 理 4h ,再于管式炉中在 95%N2+5%H2弱还原气氛 1200 °C烧结 6h还原,冷却至室 温, 即可得到钛酸盐发光材料 Ca。.99Ti03: Pr0.oi@Ti02@ Pdlxl0-5。 实施例 5
高温固相法制备钛酸盐发光材料 (Ca0.6Sr0.4)0.996TiO3:Pr0.∞4@TiO2@Culxl0-4: Ti02@Culxl。-4的制备: 称取 1.6mg硝酸铜溶解到 16mL的乙醇中, 得到 20mL 4xlO"4mol/L硝酸铜溶液; 移取 5mL 4.3mol/L的三乙醇胺异丙醇钛, 用异丙醇稀 释至 2mol/L 。 移取 2m L 4xlO"4mol/L硝酸铜溶液和 4m L 2mol/L的三乙醇胺异丙 醇钛的异丙醇溶液, 搅拌均勾; 接着加入 24mL 的二曱基曱酰胺, 室温下搅拌 15min后, 采用冷凝回流装置进行加热搅拌, 加热温度为 120°C , 溶液经由无色 到浅棕色, 再到深棕色时, 停止加热, 冷却至室温, 得到 Ti02@Culxl。-4胶体。 然后经离心, 乙醇洗涤, 干燥得到 Ti02@Culxl。-4固体, 其中 y为 ΙχΙθΛ
钛酸盐发光材料(Ca。.6Sr。.4)。.996Ti03: Pr。.∞4@Ti02@Culxl。-4 的制备: 称取 Ca(OH)2 0.1817g, Sr(OH)2 0.0485g Pr6O 0.0027g和 0.196g的 Ti02@Culxl。-4粉末, 置于玛瑙研钵中充分研磨至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗 炉中 900°C热处理 3h, 再于管式炉中 CO还原气氛下 1000°C烧结 6h还原, 冷却 至室温,即可得到钛酸盐发光材料的 (Ca。.6Sr。.4)。.996Ti03: Pr。.∞4@Ti02@Culxl。-4发光 材料。 实施例 6
高温固相法制备钛酸盐发光材料 Ba0.994TiO3:Pr0.006@TiO2@(Ag0.5/Au0.5)
1.25x10-3 :
Ti02@(Ago.5/Auo.5) 1.25x10-3的制备:称取 6.2mg氯金酸( AuCI3-HCI-4H20 )和 2.5mg AgN03溶解到 28mL的去离子水中,得到 30mL的总金属浓度为 Ixl0_3mol/L氯金 酸和硝酸银的混合溶液 (氯金酸和硝酸银溶液浓度各为 0.5xl0_3mol/L); 移取 2m L 4.3mol/L的三乙醇胺异丙醇钛,用异丙醇稀释至 0.4mol/L 。移取 5mL Ixl0"3mol/L 加热搅拌, 加热温度为 150°C, 溶液经由无色到浅棕色, 再到深棕色时, 停止加 热, 冷却至室温, 得到 ΤΐΌ2@ (Ag。.5/AUQ.5) L ^胶体。 然后经离心, 乙醇洗涤, 干燥得到 Ti02@ (Ago.5/Au0.5) !.25x10-3固体, 其中 y为 1.25xl0-3
钛酸盐发光材料 Baa994TiO3:Pra。。6@TiO2@(Ag0.5/Au 5) !.25^0-3 的制备: 称取 BaC03 0.7845g, Pr6On O.OOlOg和 0.3196g的 TiO2@Culxl0-4粉末, 置于玛瑙研钵中 充分研磨至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 900°C热处理 5h,再于管式炉中在 95%N2+5%H2弱还原气氛 1300°C烧结 4h还原,冷却至室温, 即可得到钛酸盐发光材料 Baa994TiO3:Pr0.006@TiO2@(Ag0.5/Au0.5)
以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详细, 但并不能因此而理解为对本发明专利范围的限制。应当指出的是, 对于本领域的 普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以所附权利要求 为准。

Claims

权利要求书
1、 一种钛酸盐发光材料, 其特征在于, 分子通式为 A1-xTi03:Prx@Ti02@My; 其中, A为 Ca、 Sr和 Ba元素中的至少一种;
M为 Ag、 Au、 Pt、 Pd及 Cu纳米粒子中的至少一种;
0 < x < 0.01;
y为 M与 A1-xTi03:Prx@Ti02中 Ti的摩尔之比, 0 < y < 1 x 10"2
@表示包覆, M为核, Τί02为中间层壳, A1-xTi03:Prx为外层壳。
2、根据权利要求 1所述的钛酸盐发光材料, 其特征在于, 0.001 x 0.005。
3、根据权利要求 1所述的钛酸盐发光材料,其特征在于, Ixl0"5^y^5xl0"3
4、 一种钛酸盐发光材料的制备方法, 其特征在于, 包括如下步骤: 步骤一: 将金属的盐溶液及三乙醇胺异丙醇钛混合后, 加入还原剂, 在温 度为 120~160°C中加热搅拌, 形成 Ti02@My胶体, 经洗涤、 干燥后得到核壳结 构的 Ti02@My固体, 其中 M为 Ag、 Au、 Pt、 Pd及 Cu纳米粒子中的至少一种, y为 M与 Τί的摩尔之比, 0 < y < 1 X 10"2
步骤二: 将 A的源化合物、 Pr的源化合物及所述 Ti02@My固体混合均匀, 升温至 800°C~1200°C煅烧 2小时 ~12小时,再于 1000°C~1400°C中还原气氛下加 热 0.5小时 ~6小时, 经冷却、 研磨得到 A1-xTi03:Prx@Ti02@My粉体, 其中, A为 Ca、 Sr和 Ba元素中的至少一种, 0 < x < 0.01 , @表示包覆, M为核, Τί02为中 间层壳, A1→(Ti03:Prx为外层壳。
5、 根据权利要求 4所述的钛酸盐发光材料的制备方法, 其特征在于, 步骤 二中, 所述 A的源化合物为 A的氧化物、 碳酸盐、 硝酸盐或氢氧化物。
6、 根据权利要求 4所述的钛酸盐发光材料的制备方法, 其特征在于, 步骤 二中, 所述 Pr的源化合物为 Pr的氧化物、 碳酸盐、 硝酸盐或氢氧化物。
7、 根据权利要求 4所述的钛酸盐发光材料的制备方法, 其特征在于, 步骤 一中, 所述还原剂为二曱基曱酰胺, 所述还原剂的体积占所述金属的盐溶液、 所述三乙醇胺异丙醇钛及所述还原剂的体积之和的 20% ~ 80%。
8、 根据权利要求 7所述的钛酸盐发光材料的制备方法, 其特征在于, 所述 还原剂的体积占所述金属的盐溶液、 所述三乙醇胺异丙醇钛及所述还原剂的体 积之和的 25% ~ 50%。
9、 根据权利要求 4所述的钛酸盐发光材料的制备方法, 其特征在于, 步骤 一中, 所述 Ti02@My胶体先采用离心沉淀, 再采用乙醇洗涤。
10、 根据权利要求 4所述的钛酸盐发光材料的制备方法, 其特征在于, 步 骤二中, 所述还原气氛为氮气与氢气的混合气氛、 碳粉、 一氧化碳及纯氢气中 的至少一种。
PCT/CN2012/075197 2012-05-08 2012-05-08 钛酸盐发光材料及其制备方法 WO2013166659A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280071686.2A CN104169394B (zh) 2012-05-08 2012-05-08 钛酸盐发光材料及其制备方法
US14/398,765 US9447320B2 (en) 2012-05-08 2012-05-08 Titanate luminescent material and preparation method therefor
PCT/CN2012/075197 WO2013166659A1 (zh) 2012-05-08 2012-05-08 钛酸盐发光材料及其制备方法
JP2015510594A JP5872735B2 (ja) 2012-05-08 2012-05-08 チタン酸塩発光材料、及び、その製造方法
EP12876469.3A EP2832820B1 (en) 2012-05-08 2012-05-08 Titanate luminescent material and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/075197 WO2013166659A1 (zh) 2012-05-08 2012-05-08 钛酸盐发光材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2013166659A1 true WO2013166659A1 (zh) 2013-11-14

Family

ID=49550065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075197 WO2013166659A1 (zh) 2012-05-08 2012-05-08 钛酸盐发光材料及其制备方法

Country Status (5)

Country Link
US (1) US9447320B2 (zh)
EP (1) EP2832820B1 (zh)
JP (1) JP5872735B2 (zh)
CN (1) CN104169394B (zh)
WO (1) WO2013166659A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105623659A (zh) * 2016-01-25 2016-06-01 深圳市聚飞光电股份有限公司 一种led用钛酸盐荧光粉的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108033483B (zh) * 2017-12-19 2019-08-23 沈阳理工大学 一种可悬浮型钛酸镨材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775279A (zh) * 2010-01-28 2010-07-14 海洋王照明科技股份有限公司 核壳结构荧光粉及其制备方法
CN102408892A (zh) * 2010-09-26 2012-04-11 海洋王照明科技股份有限公司 一种钛酸盐发光材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071609B2 (en) * 2003-05-12 2006-07-04 Noritake Itron Corporation Red phosphor for low-voltage electron beam
JP4173057B2 (ja) * 2003-06-16 2008-10-29 株式会社ノリタケカンパニーリミテド 蛍光体および蛍光表示装置
KR101111747B1 (ko) * 2005-05-16 2012-06-12 삼성엘이디 주식회사 혼합 나노 입자 및 이를 이용한 전자소자
US20130075661A1 (en) * 2010-06-13 2013-03-28 Ocean's King Lighting Science & Technology Co., Ltd. Silicate luminous material and preparation method thereof
CN101899294B (zh) * 2010-06-28 2014-04-02 海洋王照明科技股份有限公司 一种荧光粉材料及其制备方法
EP2599852B1 (en) * 2010-07-30 2016-03-02 Ocean's King Lighting Science&Technology Co., Ltd. Metal nano particles doped with silicate luminescent materials and preparation methods thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775279A (zh) * 2010-01-28 2010-07-14 海洋王照明科技股份有限公司 核壳结构荧光粉及其制备方法
CN102408892A (zh) * 2010-09-26 2012-04-11 海洋王照明科技股份有限公司 一种钛酸盐发光材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105623659A (zh) * 2016-01-25 2016-06-01 深圳市聚飞光电股份有限公司 一种led用钛酸盐荧光粉的制备方法

Also Published As

Publication number Publication date
US9447320B2 (en) 2016-09-20
EP2832820A4 (en) 2015-12-09
CN104169394B (zh) 2015-11-25
JP5872735B2 (ja) 2016-03-01
EP2832820B1 (en) 2016-08-03
EP2832820A1 (en) 2015-02-04
US20150102260A1 (en) 2015-04-16
CN104169394A (zh) 2014-11-26
JP2015519436A (ja) 2015-07-09

Similar Documents

Publication Publication Date Title
EP2554630B1 (en) Double core-shell fluorescent materials and preparation methods thereof
CN104302732B (zh) 包覆有金属纳米粒子的钛酸盐荧光材料及其制备方法
WO2011156960A1 (zh) 铈酸锶发光材料及其制备方法和应用
WO2012083517A1 (zh) 一种铟酸镓发光材料及其制备方法
WO2013166659A1 (zh) 钛酸盐发光材料及其制备方法
JP5951136B2 (ja) アルミン酸亜鉛発光材料、及びその製造方法
CN103154194B (zh) 卤硅酸盐发光材料及其制备方法
CN104059653B (zh) 钛酸钇发光材料及其制备方法
CN103773362A (zh) 偏硅酸钙发光材料及其制备方法
WO2014019153A1 (zh) 铝酸锌荧光材料及其制备方法
CN104169393B (zh) 锡酸盐荧光材料及其制备方法
JP5677568B2 (ja) 酸化物発光材料及びその調製方法
CN103849389B (zh) 钙钇锡酸盐发光材料及其制备方法
JP5951135B2 (ja) チタン酸塩発光材料、及び、その製造方法
WO2014067109A1 (zh) 铝酸盐发光材料及其制备方法
WO2014040222A1 (zh) 氧化镥发光材料及其制备方法
EP2896673A1 (en) Silicate luminescent material and preparation method thereof
CN104119903A (zh) 包覆金属纳米粒子的钛酸盐发光材料及其制备方法
EP2896675B1 (en) Stannate luminescent material and preparation method thereof
CN104119901A (zh) 包覆金属纳米粒子的钛酸盐发光材料及其制备方法
CN103666464A (zh) 一种掺铅锰的硅酸钙发光材料及其制备方法
WO2014067114A1 (zh) 硫氧化物发光材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510594

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012876469

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012876469

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14398765

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE