WO2013191292A1 - 車両の制動力制御装置 - Google Patents

車両の制動力制御装置 Download PDF

Info

Publication number
WO2013191292A1
WO2013191292A1 PCT/JP2013/067199 JP2013067199W WO2013191292A1 WO 2013191292 A1 WO2013191292 A1 WO 2013191292A1 JP 2013067199 W JP2013067199 W JP 2013067199W WO 2013191292 A1 WO2013191292 A1 WO 2013191292A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
wheel
vehicle
braking
force
Prior art date
Application number
PCT/JP2013/067199
Other languages
English (en)
French (fr)
Inventor
篤人 廣田
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Priority to US14/397,148 priority Critical patent/US9393939B2/en
Priority to DE201311003134 priority patent/DE112013003134T5/de
Publication of WO2013191292A1 publication Critical patent/WO2013191292A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17551Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve determining control parameters related to vehicle stability used in the regulation, e.g. by calculations involving measured or detected parameters

Definitions

  • the present invention relates to a vehicle braking force control device.
  • braking force (braking torque) generated in a vehicle decreases with respect to braking force (braking torque) corresponding to the pressing force (or wheel cylinder hydraulic pressure) of a friction braking member.
  • This phenomenon is caused by a phenomenon that the friction coefficient of the friction braking member decreases due to excessive temperature rise of the friction braking member (brake pad) (so-called fade), or friction braking member (brake pad) and disc member (brake disc) It may occur due to a phenomenon (so-called snow fade) or the like in which ice and snow intrude between them and the coefficient of friction between them decreases.
  • a wheel in which this phenomenon occurs is referred to as a “braking force decreasing wheel”.
  • Japanese Patent Application Laid-Open No. 2009-101918 discloses that when there is a braking force reduction wheel due to snow fade, the wheel cylinder hydraulic pressure is largely fluctuated periodically with respect to the braking force reduction wheel. It describes that snow fade elimination control of a wheel with reduced braking force is performed by performing snow fade elimination control such as temporarily increasing the wheel cylinder hydraulic pressure to an excessively high pressure for the braking force reduced wheel.
  • Japanese Patent Application Laid-Open No. 2007-237899 discloses a wheel cylinder hydraulic pressure that increases the wheel cylinder hydraulic pressure with respect to the braking force reduced wheel when there is a braking force reduced wheel caused by fading during antilock brake control. It is described that the increase in the braking distance is suppressed by performing control such as decreasing the pressure reducing speed or increasing the pressure increasing speed of the wheel cylinder hydraulic pressure.
  • the devices described in the above two documents cope with the above problem by adjusting the wheel cylinder hydraulic pressure (the pressing force of the friction braking member) of the braking force reducing wheel itself when the braking force reducing wheel exists.
  • the wheel cylinder hydraulic pressure the pressing force of the friction braking member
  • the “braking force reduction degree” (the degree of reduction of the braking force generated in the vehicle with respect to the braking force according to the pressing force of the friction braking member) is large in the braking force reducing wheel. Even if the wheel cylinder hydraulic pressure (the pressing force of the friction braking member) is increased, a situation where the intended braking force (braking torque) cannot be sufficiently generated in the braking force-decreasing wheel may occur. As a result, the state in which the intended vehicle state cannot be realized can continue.
  • An object of the present invention is to provide a braking force control device for a vehicle, which can realize an intended vehicle state even when a “braking force reduction degree” in a braking force reducing wheel is large. is there.
  • the generated (friction) braking force is reduced with respect to “the braking force according to the pressing force of the friction braking member (with respect to the rotating member rotating integrally with the wheel)”.
  • Determination means for determining whether or not there is a wheel (braking force reduced wheel) and the determination that the braking force reduced wheel exists, the wheels other than the braking force reduced wheel Braking force compensation means for increasing the pressing force of the friction braking member based on a shortage of braking force in the braking force reducing wheel.
  • the determination means is configured to generate a braking force due to the vehicle stability control during the vehicle stability control. And it is configured to determine whether or not there is a braking force lowering wheel that is a wheel whose braking force is reduced with respect to the braking force according to the pressing force of the friction braking member, and Based on the determination that the braking force-decreasing wheel is present, the braking force compensation means determines that the vehicle stability control is “to increase the running stability” among the plurality of wheels excluding the braking force-decreasing wheel.
  • the first braking force distribution wheel By increasing the braking force, the desired turning moment is reliably generated, and the vehicle stability control can be achieved.
  • a front wheel on the outside of the turn and a rear wheel on the outside of the turn may be set in order of the priority.
  • understeer suppression control that suppresses understeer of the vehicle is adopted as the vehicle stability control, the rear wheel on the inside of the turn, the front wheel on the inside of the turn, the rear wheel on the outside of the turn, the turn An outer front wheel can be set.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a vehicle braking force control apparatus according to a first embodiment of the present invention. It is a schematic block diagram of the brake fluid pressure control part shown in FIG. It is the graph which showed the relationship between the command electric current and command differential pressure about the normally open linear solenoid valve shown in FIG. It is a figure for demonstrating the relationship between the braking force which acts on each wheel of a vehicle, and the turning moment resulting from the braking force.
  • FIG. 3 is a flowchart showing a routine for performing control for compensating for an insufficient amount of braking force when a braking force-reduced wheel is present, which is executed by the CPU shown in FIG. 1.
  • FIG. It is a graph which shows the relationship between the braking force which acts on each wheel, and the magnitude
  • FIG. 1 shows a schematic configuration of a vehicle equipped with a vehicle brake device 10 including a vehicle brake control device according to an embodiment of the present invention.
  • “**” added to the end of various variables or the like is attached to the end of the various variables or the like to indicate whether the various variables or the like relates to the wheels FR, FL, RR, or RL.
  • Inclusive notation such as “fr” and “fl”.
  • the vehicle brake device 10 includes a brake fluid pressure control unit 30 that generates friction braking force (friction braking torque) due to wheel cylinder fluid pressure on the wheel **.
  • the brake hydraulic pressure control unit 30 includes a brake hydraulic pressure generating unit 32 that generates a hydraulic pressure corresponding to the stroke (or pedaling force) of the brake pedal BP, and a wheel cylinder disposed on the wheel **.
  • the brake fluid pressure adjusting units 33 to 36 capable of adjusting the wheel cylinder hydraulic pressure supplied to W ** and the return brake fluid supplying unit 37 are configured.
  • the friction braking member (brake pad) is pressed against the “brake disc rotating integrally with the wheel” with a pressing force corresponding to the wheel cylinder hydraulic pressure of W **, so that it corresponds to the wheel cylinder hydraulic pressure. Friction braking torque is applied.
  • the brake fluid pressure generating unit 32 includes a vacuum booster VB that responds to the brake pedal BP, and a master cylinder MC that is connected to the vacuum booster VB.
  • the vacuum booster VB uses the air pressure (negative pressure) in the intake pipe of the engine (not shown) to assist the operating force of the brake pedal BP at a predetermined ratio and transmit the assisted operating force to the master cylinder MC. It has become.
  • the master cylinder MC has two output ports, receives the supply of brake fluid from the reservoir RS, and supplies the hydraulic pressure (master cylinder hydraulic pressure Pm) corresponding to the assisted operating force to the two ports. It comes to be generated from each. Since the configurations and operations of the master cylinder MC and the vacuum booster VB are well known, a detailed description thereof will be omitted here.
  • a normally open linear solenoid valve PC1 is interposed between one port of the master cylinder MC and the upstream portion of the brake fluid pressure adjusting unit 33, 34, and the other port of the master cylinder MC and the brake fluid pressure adjustment.
  • a normally open linear electromagnetic valve PC2 is interposed between the upstream portions of the portions 35 and 36. Details of the linear solenoid valves PC1 and PC2 will be described later.
  • the brake fluid pressure adjusting units 33 to 36 include a pressure-increasing valve PU ** which is a 2-port 2-position switching type normally open electromagnetic on-off valve, and a pressure reducing valve PD ** which is a 2-port 2-position switching type normally closed electromagnetic on-off valve. It consists of and.
  • the pressure increasing valve PU ** can communicate / block the upstream portion of the corresponding adjusting portion of the brake fluid pressure adjusting portions 33 to 36 and the wheel cylinder W **.
  • the pressure reducing valve PD ** can communicate / block the wheel cylinder W ** and the corresponding one of the reservoirs RS1 and RS2.
  • the hydraulic pressure of the wheel cylinder W ** (wheel cylinder hydraulic pressure Pw **) can be increased, held and reduced by controlling the pressure increasing valve PU ** and the pressure reducing valve PD **. Yes.
  • the reflux brake fluid supply unit 37 includes a DC motor MT and two hydraulic pumps (gear pumps) HP1 and HP2 that are simultaneously driven by the motor MT.
  • the hydraulic pumps HP1 and HP2 pump up the brake fluid in the reservoirs RS1 and RS2 returned from the pressure reducing valve PD **, and supply the pumped brake fluid to upstream portions of the brake fluid pressure adjusting units 33 to 36, respectively. It is like that.
  • a force in an opening direction based on a biasing force from a coil spring (not shown) is constantly applied to the valve bodies of the normally open linear electromagnetic valves PC1 and PC2, and a corresponding adjusting unit among the brake fluid pressure adjusting units 33 to 36.
  • a closing force based on a suction force that increases proportionally according to Id) acts.
  • the command differential pressure ⁇ Pd which is the command value of the linear valve differential pressure ⁇ P is determined so as to increase in proportion to the command current Id.
  • I0 is a current value corresponding to the biasing force of the coil spring.
  • the normally open linear solenoid valves PC1 and PC2 are closed when ⁇ Pd is larger than ⁇ P, and are opened when ⁇ Pd is smaller than ⁇ P.
  • the brake fluid upstream of the corresponding adjusting unit among the brake hydraulic pressure adjusting units 33 to 36 corresponds to the corresponding electromagnetic among the normally open linear electromagnetic valves PC1 and PC2.
  • the linear valve differential pressure ⁇ P can be adjusted to coincide with the command differential pressure ⁇ Pd by flowing to the corresponding port side of the master cylinder MC via the valve.
  • the brake fluid that has flowed into the corresponding port side of the master cylinder MC is returned to the corresponding reservoir among the reservoirs RS1 and RS2.
  • the linear valve differential pressure ⁇ P can be controlled in accordance with the command current Id of the normally open linear electromagnetic valves PC1 and PC2. ing.
  • the pressure upstream of the brake fluid pressure adjusting units 33 to 36 is a value (Pm + ⁇ P) obtained by adding the linear valve differential pressure ⁇ P to the master cylinder fluid pressure Pm. Note that after the hydraulic pumps HP1 and HP2 are stopped in a state where the linear valve differential pressure ⁇ P is adjusted to a value larger than zero, the linear valve differential pressure is adjusted by adjusting the command current Id in the decreasing direction. ⁇ P can still be adjusted only in the decreasing direction.
  • the brake hydraulic pressure control unit 30 includes two hydraulic circuits, a system related to the left and right front wheels FR and FL and a system related to the left and right rear wheels RR and RL.
  • the brake hydraulic pressure control unit 30 adjusts the wheel cylinder hydraulic pressure Pw ** to a value equal to the master cylinder hydraulic pressure Pm when all the solenoid valves are in the non-excited state.
  • the wheel cylinder hydraulic pressure Pw ** is set to the hydraulic pressure (Pm + ⁇ P) by driving the motor MT (therefore, the hydraulic pumps HP1, HP2) and controlling the normally open linear solenoid valves PC1, PC2. Adjusted to Furthermore, the wheel cylinder hydraulic pressure Pw ** can be independently adjusted for each wheel by controlling the pressure increasing valve PU ** and the pressure reducing valve PD **. That is, regardless of the operation of the brake pedal BP by the driver, the braking force applied to the wheel ** can be adjusted independently for each wheel.
  • this vehicle brake device 10 includes a wheel speed sensor 41 ** that detects the rotational speed of the wheel and a brake switch that selectively outputs a signal corresponding to whether or not the brake pedal BP is operated. 42, a yaw rate sensor 43 for detecting the yaw rate of the vehicle, a master cylinder hydraulic pressure sensor 44 (see FIG. 2) for detecting the master cylinder hydraulic pressure Pm, and the like.
  • the vehicle brake device 10 further includes an electronic control device 50.
  • the electronic control device 50 is a microcomputer including a CPU 51, a ROM 52, a RAM 53, a backup RAM 54, an interface 55, and the like.
  • the interface 55 is connected to the sensors 41 to 44 and various other sensors, supplies signals from the sensors 41 to 44 and the like to the CPU 51, and in response to instructions from the CPU 51, the brake fluid pressure control unit 30 Drive signals are sent to the solenoid valves (normally open linear solenoid valves PC1, PC2, pressure increasing valve PU **, and pressure reducing valve PD **) and motor MT.
  • solenoid valves normally open linear solenoid valves PC1, PC2, pressure increasing valve PU **, and pressure reducing valve PD **
  • the brake device 10 (specifically, the CPU 51) executes well-known vehicle stability control for increasing the running stability of the vehicle.
  • the vehicle stability control will be briefly described with reference to FIG.
  • the front wheel on the outside of the turn, the rear wheel on the outside of the turn, the front wheel on the inside of the turn, and the rear wheel on the inside of the turn are respectively referred to as “outer front wheel”, “outer rear wheel”, “inner front wheel”, and “inner rear wheel”.
  • vehicle stability control specifically refers to oversteer suppression control and understeer suppression control.
  • the oversteer suppression control is not dependent on the driver's braking operation (operation of the brake pedal BP) when the vehicle is determined to be oversteering based on the turning state of the vehicle (the braking operation is being executed). Or even during non-execution), adjust the wheel cylinder hydraulic pressure of each wheel (and hence the pressing force of the friction braking member) to positively apply the turning outward moment (see FIG. 4) around the center of gravity of the vehicle.
  • This control is generated automatically.
  • a turning outward moment is generated mainly by applying a braking force to the outer front wheel and the outer rear wheel.
  • Understeer suppression control does not depend on the driver's braking operation (operation of the brake pedal BP) when the vehicle is determined to be understeering based on the turning state of the vehicle (the braking operation is being executed). Or even during non-execution), adjust the wheel cylinder hydraulic pressure of each wheel (and hence the pressing force of the friction braking member) to positively apply a turning inward moment (see FIG. 4) around the center of gravity of the vehicle. This control is generated automatically. In the understeer suppression control, specifically, a turning inward moment is generated mainly by applying a braking force to the inner rear wheel and the inner front wheel.
  • the target braking force (target braking torque, target wheel cylinder hydraulic pressure, etc.) for each wheel is set according to the turning state of the vehicle, and the actual braking force (actual braking torque, The actual wheel cylinder hydraulic pressure or the like is controlled so as to coincide with the corresponding target braking force.
  • the wheel to which the braking force is applied, the magnitude of the applied braking force, and the like are the same as well-known ones, so detailed description thereof is omitted here.
  • the “wheel to which the braking force is applied” is referred to as “control target wheel”.
  • the vehicle stability control is being executed and the wheel to be controlled is a wheel with a reduced braking force
  • the wheel to be controlled is a wheel with a reduced braking force
  • the braking force is applied only to the outer front wheel during oversteer suppression control
  • the outer front wheel becomes a braking force reduced wheel
  • the turning outward moment will sufficiently act on the vehicle.
  • a situation in which the oversteer tendency cannot be sufficiently eliminated may occur.
  • the brake device 10 reduces the braking force without increasing the wheel cylinder hydraulic pressure of the braking force reduced wheel when it is determined that the wheel to be controlled is a braking force reduced wheel during the vehicle stability control.
  • a braking force is generated on the “other wheels that should generate the braking force to achieve vehicle stability control” except for the wheels (the wheel cylinder hydraulic pressure of the other wheels is increased).
  • This control is executed without depending on the driver's braking operation (operation of the brake pedal BP) (whether the braking operation is being executed or not being executed).
  • FIG. 5 shows a flow of processing of a program stored in the ROM 52 so that the CPU 51 executes this control. This process is repeatedly executed every elapse of a predetermined timing (for example, 6 milliseconds).
  • step 505 it is determined whether or not the vehicle stability control is being executed. Specifically, it is determined whether or not oversteer (OS) suppression control or understeer (US) suppression control is being executed. When the vehicle stability control is not being executed, the processing of this program ends. Hereinafter, a case where the vehicle stability control is being executed will be described.
  • OS oversteer
  • US understeer
  • step 510 the first braking force of each wheel is estimated based on the wheel cylinder hydraulic pressure of each wheel.
  • step 515 the second braking force of each wheel is estimated based on the slip ratio (and contact load) of each wheel. As will be described later, the first and second braking forces are used to determine the presence or absence of a braking force-decreasing wheel and to estimate the insufficient braking force for the braking force-decreasing wheel.
  • the first braking force of each wheel is determined by referring to a map (table) indicating the relationship of “wheel cylinder hydraulic pressure ⁇ braking force” stored in the ROM 52 and the current wheel cylinder hydraulic pressure of the corresponding wheel. Is required by applying This map is created based on the result of an experiment or the like performed on a wheel having a normal coefficient of friction between the brake pad and the brake disk (that is, not a braking force reducing wheel).
  • the current wheel cylinder hydraulic pressure of a certain wheel can be acquired based on the detection result of a wheel cylinder hydraulic pressure sensor (not shown), for example.
  • the “current slip ratio of the corresponding wheel” is applied to a map (table) indicating the relationship of “slip ratio ⁇ friction coefficient” stored in the ROM 52. This is obtained by multiplying the friction coefficient obtained by the ground contact load of the corresponding wheel.
  • the current slip ratio of a certain wheel can be calculated based on the estimated vehicle body speed obtained from the detection result of the wheel speed sensor 41 ** and the current wheel speed of the wheel.
  • the ground contact load of a certain wheel may be a constant value (static value) obtained only from the specifications of the vehicle, or a value obtained by adding or subtracting the inertial force based on the acceleration of the vehicle (dynamic value). Value).
  • step 520 it is determined whether or not there is a braking force-reduced wheel among the wheels to be controlled (that is, one or more wheels whose wheel cylinder hydraulic pressure has increased due to execution of vehicle stability control). Is done. Specifically, for example, for each wheel to be controlled, it is determined whether or not the value obtained by subtracting the second braking force from the first braking force is greater than a predetermined value (positive value). When there is a wheel in which the value obtained by subtracting the second braking force from the first braking force is greater than a predetermined value (positive value), it is determined that the wheel (one wheel) is a braking force reduced wheel. This determination may be made based on the detection result of a sensor that measures the temperature of the brake pad, for example.
  • step 520 If it is determined in step 520 that no braking force reducing wheel exists, the processing of this program ends.
  • an insufficient braking force (insufficient braking force) is estimated for the braking force reduced wheel. This insufficient braking force is obtained, for example, by subtracting the second braking force from the first braking force.
  • the insufficient braking force may be estimated based on, for example, a detection result of a sensor that measures the temperature of the brake pad and the like.
  • step 530 the wheel to which the braking force is to be applied (that is, the wheel cylinder hydraulic pressure is increased) among the “other wheels that should generate the braking force to achieve vehicle stability control” excluding the wheel to be controlled.
  • Wheel to be one wheel, hereinafter referred to as “first braking force distribution wheel”.
  • Table 1 for each control being executed, a priority order for “wheels that should generate braking force” is determined in advance.
  • the outer front wheel and the outer rear wheel are set in descending order of priority.
  • the inner rear wheel, the inner front wheel, the outer rear wheel, and the outer front wheel are set in descending order of priority.
  • the first braking force distribution wheel is determined to be the highest priority wheel other than the braking force reduction wheel. For example, during execution of OS suppression control, when it is determined that only the outer front wheel or the outer front wheel and the outer rear wheel are the control target wheels and the outer front wheel is the braking force reduced wheel, the first braking force distribution wheel Is determined to be the outer rear wheel. If the outer front wheel and the outer rear wheel are control target wheels, and it is determined that the outer rear wheel is a braking force reduced wheel, the first braking force distribution wheel is determined as the outer front wheel.
  • the first braking force distribution wheel is determined as the inner front wheel.
  • the first braking force distribution wheel is determined as the inner rear wheel.
  • the braking force (distributed braking force) distributed to the first braking force distribution wheel is also determined.
  • the distributed braking force is determined by, for example, multiplying the insufficient braking force estimated in step 525 by a coefficient K.
  • the coefficient K may be smaller or larger than 1, and may be constant or variable.
  • the coefficient K is “a turn generated due to the braking force having the same magnitude as the insufficient braking force applied to the reduced braking force wheel. It may be determined based on the specifications of the vehicle (for example, a tread) so that a turning moment having the same magnitude and the same direction as “moment” can be obtained.
  • “determined distributed braking force” is added to the target braking force of the first braking force distribution wheel in the vehicle stability control in step 535.
  • the target braking force of the first braking force distribution wheel is corrected. Note that the target braking force of the wheels other than the first braking force distribution wheel is not corrected.
  • the target braking force of the first control distributing wheel exceeds a predetermined upper limit value due to the correction of the target braking force of the first control distributing wheel (in other words, the target of the wheel cylinder hydraulic pressure (pressing force of the brake pad))
  • the target braking force of the first control distribution wheel is set to a value equal to the predetermined upper limit value, and the “exceeding the upper limit value” is the second control distribution wheel. May be distributed.
  • the second control distribution wheel is determined to be the second highest priority wheel other than the braking force reduction wheel. Specifically, for example, during execution of the US suppression control, when only the inner rear wheel or the inner rear wheel and the inner front wheel are the control target wheels, the inner rear wheel is the braking force reduction wheel, and the first control wheel When the power distribution wheel is determined as the inner front wheel, the second braking force distribution wheel is determined as the outer rear wheel.
  • the “predetermined upper limit value” may be constant or variable.
  • the “predetermined upper limit value” may be determined based on the slip ratio of the first braking force distribution wheel based on the map shown in FIG. As can be understood from FIG. 6, when the wheel cylinder hydraulic pressure (pressing force of the brake pad) of the outer rear wheel is gradually increased to increase the slip ratio of the outer rear wheel, the turning outward moment is initially zero. And then decreases to zero, and then becomes negative. This means that when the braking force (braking torque, wheel cylinder hydraulic pressure) applied to the outer rear wheel as the first braking force distribution wheel exceeds a certain value during execution of the OS suppression control, the braking force turns. It means no longer contributing to the generation of outward moments.
  • the slip ratio of the outer rear wheel is “outside of the turn” as the “predetermined upper limit value”.
  • the wheel cylinder hydraulic pressure (pressing force on the brake pad) of the inner front wheel is gradually increased to increase the slip ratio of the inner front wheel, the turning inward moment initially increases from 0 and then decreases. It becomes 0 and becomes a negative value thereafter.
  • the braking force braking torque, wheel cylinder hydraulic pressure
  • the slip ratio of the inner front wheel is determined as “turning inward moment” as the “predetermined upper limit value”.
  • step 535 the target braking force of the first braking force distribution wheel is corrected based on the “predetermined upper limit value”, and the first braking force distribution wheel is corrected.
  • the target braking force of the two braking force distribution wheels is corrected based on the above “exceeding the upper limit value”.
  • the target braking force of the wheels other than the first and second braking force distribution wheels is not corrected.
  • the vehicle stability control is executed based on the corrected target braking force of each wheel.
  • the wheel cylinder hydraulic pressure (the pressing force of the brake pad) of the braking force-reduced wheel itself is not corrected.
  • the wheel cylinder hydraulic pressure (the pressing force of the brake pad) of the first braking force distribution wheel (and the second braking force distribution wheel) other than the braking force reduction wheel is increased.
  • the desired turning moment is increased by the increase of the braking force of the first braking force distribution wheel (and the second braking force distribution wheel). It occurs reliably and vehicle stability control can be achieved.
  • control for compensating for a shortage of braking force is executed only during execution of vehicle stability control (see step 505).
  • the “control for compensating for the shortage of the braking force” may be executed. In this case, it is determined whether or not the braking force reduction wheels are present for all the wheels. Then, when the braking force-reduced wheel exists, the insufficient braking force (see step 525) is applied to wheels other than the braking force-reduced wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

 車両の走行安定性を高めるために車輪毎にブレーキパッドの押圧力を調整して制動力を発生させる車両安定性制御が実行される。車両安定性制御中において「車両安定性制御の対象車輪であり、且つ、フェード等に起因してその制動力がブレーキパッドの押圧力に応じた制動力に対して低下している車輪」(制動力低下輪)の存在の有無が判定される。制動力低下輪が存在する場合、制動力低下輪を除いた車輪のうち「車両安定性制御において走行安定性を高めるために制動力を発生すべき車輪についての予め定められた優先順位が最も高い車輪」(第1制動力分配輪)が特定され、第1制動力分配輪のブレーキパッドの押圧力が制動力低下輪における「制動力の不足分」に基づいて増大させられる。これにより、車両の制動力制御装置であって、制動力低下輪における「制動力の低下度合い」が大きい場合であっても所期の車両状態を実現し得るものが提供され得る。

Description

車両の制動力制御装置
 本発明は、車両の制動力制御装置に関する。
 従来より、車両に発生している制動力(制動トルク)が、摩擦制動部材の押圧力(或いは、ホイールシリンダ液圧)に応じた制動力(制動トルク)に対して低下する現象が知られている。この現象は、摩擦制動部材(ブレーキパッド)の過剰な温度上昇により摩擦制動部材の摩擦係数が低下する現象(所謂、フェード)、或いは、摩擦制動部材(ブレーキパッド)とディスク部材(ブレーキディスク)との間に氷雪が侵入して両者間の摩擦係数が低下する現象(所謂、スノーフェード)等に起因して発生し得る。以下、この現象が発生している車輪を「制動力低下輪」と呼ぶ。
 制動力低下輪が存在すると、所期の車両状態(減速状態、旋回状態等)が実現され難い。特に、オーバステア抑制制御、アンダステア抑制制御等の車両安定性制御の実行中において同制御に起因して制動力が発生している車輪が制動力低下輪となる場合、所期の旋回モーメント等が発生し難いこと等に起因して同制御が達成され難くなる。
 この問題に対処するため、特開2009-101918号公報には、スノーフェードに起因する制動力低下輪が存在する場合、制動力低下輪についてホイールシリンダ液圧を周期的に大きく変動させる、或いは、制動力低下輪についてホイールシリンダ液圧を一時的に過剰な高圧にする、等のスノーフェード解消制御を行って、制動力低下輪のスノーフェードを解消することが記載されている。
 また、特開2007-237899号公報には、アンチロックブレーキ制御中にフェードに起因する制動力低下輪が存在する場合、制動力低下輪について、ホイールシリンダ液圧を増大する、ホイールシリンダ液圧の減圧速度を小さくする、或いは、ホイールシリンダ液圧の増圧速度を大きくする、等の制御を行って、制動距離の増大を抑制することが記載されている。
 ところで、上記2つの文献に記載の装置は、制動力低下輪が存在する場合において、制動力低下輪そのもののホイールシリンダ液圧(摩擦制動部材の押圧力)を調整することによって上記問題に対処する点で共通する。
 しかしながら、制動力低下輪における「制動力の低下度合い」(車両に発生している制動力の、摩擦制動部材の押圧力に応じた制動力に対する低下度合)が大きい場合、制動力低下輪についてのホイールシリンダ液圧(摩擦制動部材の押圧力)を増大しても、制動力低下輪において所期の制動力(制動トルク)が十分に発生し得ない事態も発生し得る。この結果、所期の車両状態がなおも実現され得ない状態が継続し得る。
 本発明の目的は、車両の制動力制御装置であって、制動力低下輪における「制動力の低下度合い」が大きい場合であっても所期の車両状態を実現し得るものを提供することにある。
 本発明に係る車両の制動力制御装置は、発生している(摩擦)制動力が「(車輪と一体で回転する回転部材に対する)摩擦制動部材の押圧力に応じた制動力」に対して低下している車輪(=制動力低下輪)が存在するか否かを判定する判定手段と、前記制動力低下輪が存在するとの判定に基づいて、前記制動力低下輪以外の他の車輪の前記摩擦制動部材の押圧力を前記制動力低下輪における制動力の不足分に基づいて増大する制動力補償手段と、を備える。
 これによれば、制動力低下輪が存在する場合、(制動力低下輪そのものの摩擦制動部材の押圧力(ホイールシリンダ液圧)を調整することなく)制動力低下輪以外の他の車輪の摩擦制動部材の押圧力が増大される。従って、制動力低下輪における「制動力の低下度合い」が大きい場合であっても、前記他の車輪の制動力の増大によって制動力の不足が確実に補償され得、所期の車両状態が実現され得る。
 上記本発明に係る制動力制御装置が前記車両安定性制御を行う制御手段を備える場合、前記判定手段は、前記車両安定性制御中において、「前記車両安定性制御に起因して制動力が発生し、且つ、その制動力が摩擦制動部材の押圧力に応じた制動力に対して低下している車輪」である制動力低下輪が存在するか否かを判定するように構成され、且つ、前記制動力補償手段は、前記制動力低下輪が存在するとの判定に基づいて、前記制動力低下輪を除いた複数の車輪のうち、前記車両安定性制御において「前記走行安定性を高めるために制動力を発生すべき車輪についての予め定められた優先順位が最も高い車輪」(=第1制動力分配輪)を特定し、前記第1制動力分配輪の前記摩擦制動部材の押圧力を前記制動力低下輪における制動力の不足分に基づいて増大するように構成されることが好適である。
 これによれば、オーバステア抑制制御、アンダステア抑制制御等の車両安定性制御の実行中において、制動力低下輪における「制動力の低下度合い」が大きい場合であっても、前記第1制動力分配輪の制動力の増大によって所期の旋回モーメントが確実に発生し、同車両安定性制御が達成され得る。
 なお、前記車両安定性制御として、前記車両のオーバステアを抑制するオーバステア抑制制御が採用される場合、前記優先順位の高い順に、旋回外側の前輪、旋回外側の後輪が設定され得る。また、前記車両安定性制御として、前記車両のアンダステアを抑制するアンダステア抑制制御が採用される場合、前記優先順位の高い順に、旋回内側の後輪、旋回内側の前輪、旋回外側の後輪、旋回外側の前輪が設定され得る。
本発明の第1実施形態に係る車両の制動力制御装置を搭載した車両の概略構成図である。 図1に示したブレーキ液圧制御部の概略構成図である。 図2に示した常開リニア電磁弁についての指令電流と指令差圧との関係を示したグラフである。 車両の各輪に作用する制動力と、その制動力に起因する旋回モーメントとの関係を説明するための図である。 図1に示したCPUが実行する、制動力低下輪が存在するときの制動力の不足分を補償する制御を行うためのルーチンを示すフローチャートである。 各輪に作用する制動力と、その制動力に起因する旋回モーメントの大きさ及び向きとの関係を示すグラフである。
 以下、本発明による車両のブレーキ制御装置の実施形態について図面を参照しつつ説明する。
(第1実施形態)
 図1は、本発明の実施形態に係る車両のブレーキ制御装置を含む車両のブレーキ装置10を搭載した車両の概略構成を示している。以下、各種変数等の末尾に付された「**」は、各種変数等が車輪FR、FL、RR、RLのいずれに関するものであるかを示すために各種変数等の末尾に付される「fr」,「fl」等の包括表記である。
 車両のブレーキ装置10は、車輪**にホイールシリンダ液圧による摩擦制動力(摩擦制動トルク)を発生させるブレーキ液圧制御部30を含んでいる。図2に示すように、ブレーキ液圧制御部30は、ブレーキペダルBPのストローク(或いは、踏力)に応じた液圧を発生するブレーキ液圧発生部32と、車輪**に配置されたホイールシリンダW**に供給されるホイールシリンダ液圧を調整可能なブレーキ液圧調整部33~36と、還流ブレーキ液供給部37と、を含んで構成されている。車輪**では、W**のホイールシリンダ液圧に応じた押圧力で摩擦制動部材(ブレーキパッド)が「車輪と一体回転するブレーキディスク」に押し付けられることによって、前記ホイールシリンダ液圧に応じた摩擦制動トルクが付与される。
 ブレーキ液圧発生部32は、ブレーキペダルBPに応動するバキュームブースタVBと、バキュームブースタVBに連結されたマスタシリンダMCとから構成されている。バキュームブースタVBは、図示しないエンジンの吸気管内の空気圧力(負圧)を利用してブレーキペダルBPの操作力を所定の割合で助勢して助勢された操作力をマスタシリンダMCに伝達するようになっている。
 マスタシリンダMCは、2つの出力ポートを有していて、リザーバRSからのブレーキ液の供給を受けて、上記助勢された操作力に応じた液圧(マスタシリンダ液圧Pm)を上記2つのポートからそれぞれ発生するようになっている。マスタシリンダMC及びバキュームブースタVBの構成及び作動は周知であるので、ここではそれらの詳細な説明を省略する。
 マスタシリンダMCの一方のポートと、ブレーキ液圧調整部33、34の上流部との間には、常開リニア電磁弁PC1が介装され、マスタシリンダMCの他方のポートと、ブレーキ液圧調整部35、36の上流部との間には、常開リニア電磁弁PC2が介装されている。リニア電磁弁PC1、PC2の詳細については後述する。
 ブレーキ液圧調整部33~36は、2ポート2位置切換型の常開電磁開閉弁である増圧弁PU**と、2ポート2位置切換型の常閉電磁開閉弁である減圧弁PD**とで構成されている。増圧弁PU**は、ブレーキ液圧調整部33~36のうち対応する調整部の上流部とホイールシリンダW**とを連通・遮断できるようになっている。減圧弁PD**は、ホイールシリンダW**とリザーバRS1、RS2のうち対応するリザーバとを連通・遮断できるようになっている。この結果、増圧弁PU**、及び減圧弁PD**を制御することでホイールシリンダW**の液圧(ホイールシリンダ液圧Pw**)が増圧・保持・減圧され得るようになっている。
 還流ブレーキ液供給部37は、直流モータMTと、モータMTにより同時に駆動される2つの液圧ポンプ(ギヤポンプ)HP1、HP2を含んでいる。液圧ポンプHP1、HP2は、減圧弁PD**から還流されてきたリザーバRS1、RS2内のブレーキ液をそれぞれ汲み上げ、汲み上げたブレーキ液をブレーキ液圧調整部33~36の上流部にそれぞれ供給するようになっている。
 次に、常開リニア電磁弁PC1、PC2について説明する。常開リニア電磁弁PC1、PC2の弁体には、図示しないコイルスプリングからの付勢力に基づく開方向の力が常時作用しているとともに、ブレーキ液圧調整部33~36のうち対応する調整部の上流部の圧力からマスタシリンダ液圧Pmを減じることで得られる差圧(リニア弁差圧ΔP)に基づく開方向の力と、常開リニア電磁弁PC1、PC2に供給される電流(指令電流Id)に応じて比例的に増加する吸引力に基づく閉方向の力が作用するようになっている。
 この結果、図3に示したように、リニア弁差圧ΔPの指令値である指令差圧ΔPdが指令電流Idに応じて比例的に増加するように決定される。ここで、I0はコイルスプリングの付勢力に相当する電流値である。常開リニア電磁弁PC1、PC2は、ΔPdがΔPよりも大きいときに閉弁する一方、ΔPdがΔPよりも小さいとき開弁する。この結果、液圧ポンプHP1、HP2が駆動されている場合、ブレーキ液圧調整部33~36のうち対応する調整部の上流部のブレーキ液が常開リニア電磁弁PC1、PC2のうち対応する電磁弁を介してマスタシリンダMCの対応するポート側に流れることによって、リニア弁差圧ΔPが指令差圧ΔPdに一致するように調整され得るようになっている。なお、マスタシリンダMCの対応するポート側へ流入したブレーキ液はリザーバRS1、RS2のうち対応するリザーバへと還流される。
 換言すれば、モータMT(従って、液圧ポンプHP1、HP2)が駆動されている場合、常開リニア電磁弁PC1、PC2の指令電流Idに応じてリニア弁差圧ΔPが制御され得るようになっている。ブレーキ液圧調整部33~36の上流部の圧力は、マスタシリンダ液圧Pmにリニア弁差圧ΔPを加算した値(Pm+ΔP)となる。なお、リニア弁差圧ΔPがゼロより大きい値に調整されている状態において液圧ポンプHP1、HP2の駆動が停止された後は、指令電流Idを減少方向に調整することによって、リニア弁差圧ΔPを減少方向のみにおいてなお継続して調整することができる。
 常開リニア電磁弁PC1、PC2を非励磁状態にすると(即ち、指令電流Idを「0」に設定すると)、PC1、PC2はコイルスプリングの付勢力により開状態を維持するようになっている。このとき、リニア弁差圧ΔPが「0」になって、ブレーキ液圧調整部33~36の上流部の圧力がマスタシリンダPmと等しくなる。
 以上、説明した構成により、ブレーキ液圧制御部30は、左右前輪FR、FLに係わる系統と、左右後輪RR、RLに係わる系統の2系統の液圧回路から構成されている。ブレーキ液圧制御部30は、全ての電磁弁が非励磁状態にあるとき、ホイールシリンダ液圧Pw**がマスタシリンダ液圧Pmと等しい値に調整される。
 他方、この状態にて、モータMT(従って、液圧ポンプHP1,HP2)を駆動するとともに常開リニア電磁弁PC1,PC2を制御することによって、ホイールシリンダ液圧Pw**が液圧(Pm+ΔP)に調整される。更には、増圧弁PU**、及び減圧弁PD**を制御することで、ホイールシリンダ液圧Pw**が車輪毎に独立して調整され得る。即ち、運転者によるブレーキペダルBPの操作にかかわらず、車輪**に付与される制動力が車輪毎に独立して調整され得る。
 再び、図1を参照すると、この車両用ブレーキ装置10は、車輪の回転速度を検出する車輪速度センサ41**と、ブレーキペダルBPの操作の有無に応じた信号を選択的に出力するブレーキスイッチ42と、車両のヨーレイトを検出するヨーレイトセンサ43と、マスタシリンダ液圧Pmを検出するマスタシリンダ液圧センサ44(図2を参照)等を備えている。
 この車両用ブレーキ装置10は、更に、電子制御装置50を備えている。電子制御装置50は、CPU51、ROM52、RAM53、バックアップRAM54、及びインターフェース55等からなるマイクロコンピュータである。
 インターフェース55は、前記センサ41~44、並びに、その他の種々のセンサと接続され、CPU51にセンサ41~44等からの信号を供給するとともに、CPU51の指示に応じて、ブレーキ液圧制御部30の電磁弁(常開リニア電磁弁PC1、PC2、増圧弁PU**、及び減圧弁PD**)、及びモータMTに駆動信号を送出するようになっている。
(車両安定性制御)
 このブレーキ装置10(具体的には、CPU51)は、車両の走行安定性を高めるための周知の車両安定性制御を実行する。図4を参照しながら、この車両安定性制御について簡単に説明する。以下、説明の便宜上、旋回外側の前輪、旋回外側の後輪、旋回内側の前輪、旋回内側の後輪をそれぞれ、「外前輪」、「外後輪」、「内前輪」、「内後輪」と呼ぶ。
 車両安定性制御とは、本例では、具体的には、オーバステア抑制制御、並びに、アンダステア抑制制御を指す。オーバステア抑制制御は、車両の旋回状態に基づいて車両がオーバステア傾向にあると判定された場合に、運転者の制動操作(ブレーキペダルBPの操作)に依存することなく(制動操作の実行中であっても非実行中であっても)、各輪のホイールシリンダ液圧(従って、摩擦制動部材の押圧力)を調整して、車両の重心周りについて旋回外向きモーメント(図4を参照)を積極的に発生させる制御である。オーバステア抑制制御では、具体的には、主として、外前輪、外後輪に制動力が付与されることによって旋回外向きモーメントが発生させられる。
 アンダステア抑制制御は、車両の旋回状態に基づいて車両がアンダステア傾向にあると判定された場合に、運転者の制動操作(ブレーキペダルBPの操作)に依存することなく(制動操作の実行中であっても非実行中であっても)、各輪のホイールシリンダ液圧(従って、摩擦制動部材の押圧力)を調整して、車両の重心周りについて旋回内向きモーメント(図4を参照)を積極的に発生させる制御である。アンダステア抑制制御では、具体的には、主として、内後輪、内前輪に制動力が付与されることによって旋回内向きモーメントが発生させられる。
 車両安定性制御の実行中では、車両の旋回状態に応じて各輪に対する目標制動力(目標制動トルク、目標ホイールシリンダ液圧等)がそれぞれ設定され、各輪の実制動力(実制動トルク、実ホイールシリンダ液圧等)が、対応する目標制動力に一致するようにそれぞれ制御される。車両安定性制御において、制動力が付与される対象となる車輪、並びに、付与される制動力の大きさ等については、周知のものと同じであるので、ここではそれらの詳細な説明は省略する。以下、「制動力が付与される対象となる車輪」を「制御対象車輪」と呼ぶ。
(制動力低下輪の制動力の不足分を補償する制御)
 ところで、このブレーキ装置10では、摩擦制動部材(ブレーキパッド)の過剰な温度上昇により摩擦制動部材の摩擦係数が低下する現象(所謂、フェード)、或いは、摩擦制動部材(ブレーキパッド)とディスク部材(ブレーキディスク)との間に氷雪が侵入して両者間の摩擦係数が低下する現象(所謂、スノーフェード)等が不可避的に発生し得る。このような現象が発生すると、車両に発生している制動力(制動トルク)が、「摩擦制動部材の押圧力(或いは、ホイールシリンダ液圧)に応じた(予定された)制動力(制動トルク)」に対して過剰に低下する。以下、このように制動力が低下している車輪を「制動力低下輪」と呼ぶ。
 車両安定性制御の実行中において、制御対象車輪が制動力低下輪となっている場合、所期の旋回モーメント等が発生し難いこと等に起因して同制御が達成され難くなる。具体的には、例えば、オーバステア抑制制御中にて外前輪にのみ制動力が付与されている状況において、外前輪が制動力低下輪となった場合、旋回外向きモーメントが車両に十分に作用せず、この結果、オーバステア傾向が十分に解消され得ない事態も発生し得る。
 この場合、制動力低下輪のホイールシリンダ液圧(摩擦制動部材の押圧力)を増大することも考えられる。しかしながら、制動力低下輪における「制動力の低下度合い」(換言すれば、フェードの度合い)が大きい場合、制動力低下輪のホイールシリンダ液圧(摩擦制動部材の押圧力)を増大しても、制動力低下輪において所期の制動力(制動トルク)がなおも発生し得ず、この結果、所期の車両状態が実現され得ない状態がなおも継続し得る。
 そこで、このブレーキ装置10は、車両安定性制御実行中において、制御対象車輪が制動力低下輪であると判定された場合、制動力低下輪のホイールシリンダ液圧を増大することなく、制動力低下輪を除いた「車両安定性制御を達成するために制動力を発生すべき他の車輪」に制動力を発生させる(他の車輪のホイールシリンダ液圧を増大させる)。これにより、制動力低下輪の制動力の不足分が補償される。なお、この制御は、運転者の制動操作(ブレーキペダルBPの操作)に依存することなく(制動操作の実行中であっても非実行中であっても)実行される。
 以下、この制御について、図5を参照しながら説明する。図5は、この制御をCPU51が実行するためにROM52内に格納されたプログラムの処理の流れを示す。この処理は、所定のタイミング(例えば、6ミリ秒)の経過毎に繰り返し実行される。
 先ず、ステップ505では、車両安定性制御の実行中であるか否かが判定される。具体的には、オーバステア(OS)抑制制御、又は、アンダステア(US)抑制制御の実行中であるか否かが判定される。車両安定性制御が非実行中の場合は、このプログラムの処理が終了する。以下、車両安定性制御が実行中の場合について説明していく。
 ステップ510では、各輪のホイールシリンダ液圧に基づいて、各輪の第1制動力がそれぞれ推定される。ステップ515では、各輪のスリップ率(及び接地荷重)に基づいて、各輪の第2制動力がそれぞれ推定される。後述するように、第1、第2制動力は、制動力低下輪の有無の判定、並びに、制動力低下輪についての不足制動力の推定に使用される。
 各輪の第1制動力は、具体的には、ROM52内に格納されている「ホイールシリンダ液圧-制動力」の関係を示すマップ(テーブル)に、対応する車輪の現在のホイールシリンダ液圧を適用することによって求められる。このマップは、ブレーキパッドとブレーキディスクとの間の摩擦係数が正常である(即ち、制動力低下輪でない)車輪について実行された実験等の結果に基づいて作成されている。或る車輪の現在のホイールシリンダ液圧は、例えば、ホイールシリンダ液圧センサ(図示せず)の検出結果に基づいて取得され得る。
 各輪の第2制動力は、具体的には、ROM52内に格納されている「スリップ率-摩擦係数」の関係を示すマップ(テーブル)に「対応する車輪の現在のスリップ率」を適用して得られる摩擦係数に、対応する車輪の接地荷重を乗じることによって求められる。或る車輪の現在のスリップ率は、車輪速度センサ41**の検出結果から得られる推定車体速度と、その車輪の現在の車輪速度と、に基づいて算出され得る。或る車輪の接地荷重は、車両の諸元のみから得られる一定値(静的な値)であってもよいし、前記一定値に車両の加速度に基づく慣性力を加減した値(動的な値)であってもよい。
 ステップ520では、制御対象車輪(即ち、車両安定性制御の実行に起因してホイールシリンダ液圧が増大した1つ又は複数の車輪)のうちで、制動力低下輪が存在するか否かが判定される。具体的には、例えば、各制御対象車輪について、第1制動力から第2制動力を減じた値が所定値(正の値)より大きいか否かが判定される。第1制動力から第2制動力を減じた値が所定値(正の値)より大きい車輪が存在したとき、その車輪(1つの車輪)が制動力低下輪であると判定される。なお、この判定は、例えば、ブレーキパッドの温度等を計測するセンサの検出結果に基づいてなされてもよい。
 ステップ520にて、制動力低下輪が存在しない場合は、このプログラムの処理が終了する。以下、制御対象車輪のうちで制動力低下輪が存在する場合について説明していく。この場合、ステップ525にて、制動力低下輪について、不足している制動力(不足制動力)が推定される。この不足制動力は、例えば、第1制動力から第2制動力を減じることによって得られる。なお、この不足制動力は、例えば、ブレーキパッドの温度等を計測するセンサの検出結果に基づいて推定されてもよい。
 ステップ530では、制御対象車輪を除いた「車両安定性制御を達成するために制動力を発生すべき他の車輪」の中から、制動力を付与すべき車輪(即ち、ホイールシリンダ液圧を増大すべき車輪)(1つの車輪、以下、「第1制動力分配輪」と呼ぶ。)が決定される。具体的には、下記表1に示すように、実行されている制御毎に、「制動力を発生すべき車輪」についての優先順位が予め定められている。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、OS抑制制御については、優先順位の高い順に、外前輪、外後輪が設定されている。一方、US抑制制御については、優先順位の高い順に、内後輪、内前輪、外後輪、外前輪が設定されている。
 第1制動力分配輪は、制動力低下輪以外で、優先順位が最も高い車輪に決定される。例えば、OS抑制制御実行中において、外前輪のみ、或いは、外前輪及び外後輪が制御対象車輪である場合において外前輪が制動力低下輪であると判定された場合、第1制動力分配輪は外後輪に決定される。外前輪及び外後輪が制御対象車輪である場合において外後輪が制動力低下輪であると判定された場合、第1制動力分配輪は外前輪に決定される。
 例えば、US抑制制御実行中において、内後輪のみ、或いは、内後輪及び内前輪が制御対象車輪である場合において内後輪が制動力低下輪であると判定された場合、第1制動力分配輪は内前輪に決定される。内後輪及び内前輪が制御対象車輪である場合において内前輪が制動力低下輪であると判定された場合、第1制動力分配輪は内後輪に決定される。
 ステップ530では、第1制動力分配輪に分配される制動力(分配制動力)も決定される。分配制動力は、例えば、ステップ525にて推定された不足制動力に係数Kを乗じることによって決定される。係数Kは、1より小さくても大きくてもよく、また、一定であっても可変であってもよい。
 係数Kは、例えば、第1制動力分配輪に分配制動力を付与した場合に、「制動力低下輪に不足制動力と等しい大きさの制動力が付与されたことに起因して発生する旋回モーメント」と同じ大きさ・同じ向きの旋回モーメントが得られるように、車両の諸元(例えば、トレッド等)に基づいて決定されてもよい。
 第1制動力分配輪、及び、分配制動力が決定されると、ステップ535にて、車両安定性制御における第1制動力分配輪の目標制動力に「決定された分配制動力」が加算されて、第1制動力分配輪の目標制動力が補正される。なお、第1制動力分配輪以外の車輪の目標制動力は補正されない。
 この第1制御分配輪の目標制動力の補正によって、第1制御分配輪の目標制動力が所定の上限値を超えた場合(換言すれば、ホイールシリンダ液圧(ブレーキパッドの押圧力)の目標値が所定の上限値を超えた場合)、第1制御分配輪の目標制動力が所定の上限値と等しい値に設定され、且つ、前記「上限値を超えた分」が第2制御分配輪に分配されてもよい。
 第2制御分配輪としては、制動力低下輪以外で、優先順位が2番目に高い車輪に決定される。具体的には、例えば、US抑制制御実行中において、内後輪のみ、或いは、内後輪及び内前輪が制御対象車輪である場合において、内後輪が制動力低下輪であり、第1制動力分配輪が内前輪に決定されている場合、第2制動力分配輪は、外後輪に決定される。
 上記「所定の上限値」は、一定であってもよいし、可変であってもよい。上記「所定の上限値」は、図6に示すマップに基づいて、第1制動力分配輪のスリップ率に基づいて決定されてもよい。図6から理解できるように、外後輪のホイールシリンダ液圧(ブレーキパッドの押圧力)を次第に増加して外後輪のスリップ率を増加していくと、旋回外向きモーメントが、初めは0から増加し、その後、減少して0になり、その後は負の値となる。このことは、OS抑制制御実行中において、第1制動力分配輪としての外後輪に付与される制動力(制動トルク、ホイールシリンダ液圧)が或る値を超えると、その制動力が旋回外向きモーメントの発生に寄与しなくなることを意味する。このことを考慮して、OS抑制制御実行中において、第1制動力分配輪が外後輪に決定されている場合、上記「所定の上限値」として、外後輪のスリップ率が「旋回外向きモーメント=0に対応する値」となるときの外後輪の制動力(制動トルク、ホイールシリンダ液圧)が使用され得る。
 同様に、内前輪のホイールシリンダ液圧(ブレーキパッドの押圧力)を次第に増加して内前輪のスリップ率を増加していくと、旋回内向きモーメントが、初めは0から増加し、その後、減少して0になり、その後は負の値となる。このことは、US抑制制御実行中において、第1制動力分配輪としての内前輪に付与される制動力(制動トルク、ホイールシリンダ液圧)が或る値を超えると、その制動力が旋回内向きモーメントの発生に寄与しなくなることを意味する。このことを考慮して、US抑制制御実行中において、第1制動力分配輪が内前輪に決定されている場合、上記「所定の上限値」として、内前輪のスリップ率が「旋回内向きモーメント=0に対応する値」となるときの内前輪の制動力(制動トルク、ホイールシリンダ液圧)が使用され得る。
 このように、第2制動力分配輪にも制動力が分配される場合、ステップ535にて、第1制動力分配輪の目標制動力が上記「所定の上限値」に基づいて補正され、第2制動力分配輪の目標制動力が上記「上限値を超えた分」に基づいて補正される。なお、第1、第2制動力分配輪以外の車輪の目標制動力は補正されない。
 このように各輪の目標制動力の補正が完了すると、車両安定性制御が、補正された各輪の目標制動力に基づいて実行される。この結果、このブレーキ装置10によれば、制御対象車輪のうちで制動力低下輪が存在する場合、制動力低下輪そのもののホイールシリンダ液圧(ブレーキパッドの押圧力)が修正されることなく、制動力低下輪以外の第1制動力分配輪(及び、第2制動力分配輪)のホイールシリンダ液圧(ブレーキパッドの押圧力)が増大される。
 従って、制動力低下輪における「制動力の低下度合い」が大きい場合であっても、第1制動力分配輪(及び、第2制動力分配輪)の制動力の増大によって所期の旋回モーメントが確実に発生し、車両安定性制御が達成され得る。
 本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、図5に示すように、車両安定性制御の実行中においてのみ「制動力の不足分を補償する制御」が実行される(ステップ505を参照)。これに対し、車両安定性制御の実行中か否かにかかわらず、「制動力の不足分を補償する制御」が実行されてもよい。この場合、全ての車輪に対して制動力低下輪が存在するか否かが判定される。そして、制動力低下輪が存在した場合、制動力低下輪以外の他の車輪に前記不足制動力(ステップ525を参照)が付与される。
 また、上記実施形態では、ブレーキパッドの押圧力がホイールシリンダ液圧を利用して発生する態様が採用されているが、例えば、ブレーキパッドの押圧力が電気モータの駆動力を利用して発生する態様が採用されてもよい。

Claims (6)

  1.  発生している制動力が摩擦制動部材の押圧力に応じた制動力に対して低下している車輪である制動力低下輪が存在するか否かを判定する判定手段と、
     前記制動力低下輪が存在するとの判定に基づいて、前記制動力低下輪以外の他の車輪の前記摩擦制動部材の押圧力を前記制動力低下輪における制動力の不足分に基づいて増大する制動力補償手段と、
     を備えた車両の制動力制御装置。
  2.  運転者による制動操作に依存することなく車両の走行安定性を高めるために車輪毎に摩擦制動部材の押圧力を調整して制動力を発生させる車両安定性制御を行う制御手段を備えた車両の制動力制御装置であって、
     前記車両安定性制御中において、前記車両安定性制御に起因して制動力が発生し、且つ、その制動力が摩擦制動部材の押圧力に応じた制動力に対して低下している車輪、である制動力低下輪が存在するか否かを判定する判定手段と、
     前記制動力低下輪が存在するとの判定に基づいて、前記制動力低下輪を除いた複数の車輪のうち、前記車両安定性制御において前記走行安定性を高めるために制動力を発生すべき車輪についての予め定められた優先順位が最も高い車輪、である第1制動力分配輪を特定し、前記第1制動力分配輪の前記摩擦制動部材の押圧力を前記制動力低下輪における制動力の不足分に基づいて増大する制動力補償手段と、
     を備えた、車両の制動力制御装置。
  3.  請求項2に記載の車両の制動力制御装置において、
     前記制動力補償手段は、
     前記第1制動力分配輪の前記摩擦制動部材の押圧力の増大によってその押圧力が所定の上限値を超える場合、前記第1制動力分配輪の前記摩擦制動部材の押圧力を前記上限値と等しい値に調整し、且つ、前記制動力低下輪を除いた複数の車輪のうち前記優先順位が2番目に高い車輪、である第2制動力分配輪の前記摩擦制動部材の押圧力を、前記上限値を超える分に基づいて増大するように構成された、車両の制動力制御装置。
  4.  請求項3に記載の車両の制動力制御装置において、
     前記上限値は、前記第1制動力分配輪のスリップ率に基づいて設定された、車両の制動力制御装置。
  5.  請求項1乃至請求項4の何れか一項に記載の車両の制動力制御装置において、
     前記車両安定性制御は、前記車両のオーバステアを抑制するオーバステア抑制制御であり、
     前記優先順位の高い順に、旋回外側の前輪、旋回外側の後輪が設定された、車両の制動力制御装置。
  6.  請求項1乃至請求項4の何れか一項に記載の車両の制動力制御装置において、
     前記車両安定性制御は、前記車両のアンダステアを抑制するアンダステア抑制制御であり、
     前記優先順位の高い順に、旋回内側の後輪、旋回内側の前輪、旋回外側の後輪、旋回外側の前輪が設定された、車両の制動力制御装置。
PCT/JP2013/067199 2012-06-22 2013-06-24 車両の制動力制御装置 WO2013191292A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/397,148 US9393939B2 (en) 2012-06-22 2013-06-24 Vehicle braking force control apparatus
DE201311003134 DE112013003134T5 (de) 2012-06-22 2013-06-24 Fahrzeugbremskraftsteuergerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-140784 2012-06-22
JP2012140784A JP5962906B2 (ja) 2012-06-22 2012-06-22 車両の制動力制御装置

Publications (1)

Publication Number Publication Date
WO2013191292A1 true WO2013191292A1 (ja) 2013-12-27

Family

ID=49768883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067199 WO2013191292A1 (ja) 2012-06-22 2013-06-24 車両の制動力制御装置

Country Status (4)

Country Link
US (1) US9393939B2 (ja)
JP (1) JP5962906B2 (ja)
DE (1) DE112013003134T5 (ja)
WO (1) WO2013191292A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9592810B2 (en) * 2013-02-19 2017-03-14 Mitsubishi Electric Corporation Brake control device, and brake control method
JP6584877B2 (ja) * 2014-09-25 2019-10-02 Ntn株式会社 電動ブレーキシステム
JP6531739B2 (ja) * 2016-08-09 2019-06-19 トヨタ自動車株式会社 ブレーキ制御装置
JP6485418B2 (ja) 2016-08-09 2019-03-20 トヨタ自動車株式会社 ブレーキ制御装置
JP6381080B2 (ja) * 2016-09-07 2018-08-29 株式会社Subaru 車両の制動力制御装置
DE102017202296A1 (de) * 2017-02-14 2018-08-16 Audi Ag Schätzverfahren für den Reibwert eines hydraulischen Bremssystems
GB2562281B (en) * 2017-05-11 2022-06-22 Arrival Ltd Method and apparatus for controlling a vehicle
DE102017008948A1 (de) * 2017-09-25 2019-03-28 Lucas Automotive Gmbh Kraftfahrzeug-Bremsanlage, Verfahren zum Betreiben derselben und Steuergerät hierfür
JP7211352B2 (ja) * 2019-12-20 2023-01-24 トヨタ自動車株式会社 制動能力低下判定装置
CN112298137B (zh) * 2020-02-26 2021-10-15 中国地质大学(北京) 商用车气压制动系统的控制方法及整车制动方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310364A (ja) * 1995-05-16 1996-11-26 Mitsubishi Motors Corp 車両の旋回制御装置
JPH10250548A (ja) * 1997-03-14 1998-09-22 Mitsubishi Motors Corp 車両の自動ブレーキ装置
JPH10273025A (ja) * 1997-03-28 1998-10-13 Mitsubishi Motors Corp 車両の制動力制御装置
JPH1134831A (ja) * 1997-05-21 1999-02-09 Denso Corp ブレーキ制御装置
JP3257354B2 (ja) * 1995-07-07 2002-02-18 三菱自動車工業株式会社 車両の旋回制御装置
JP2003104186A (ja) * 2001-09-27 2003-04-09 Nissan Motor Co Ltd 4輪駆動車の加速スリップ制御装置
JP2008179272A (ja) * 2007-01-25 2008-08-07 Toyota Motor Corp 摩擦係合部の温度に基づいて前後輪間摩擦制動力配分を変更する車輌

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032232B2 (ja) * 1990-04-16 2000-04-10 日産自動車株式会社 車両の旋回挙動制御装置
JPH09207736A (ja) * 1996-02-02 1997-08-12 Aisin Seiki Co Ltd 車両の運動制御装置
DE19651460A1 (de) * 1996-12-11 1998-06-18 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung der Bremskraftverteilung bei einem Fahrzeug
JP3425728B2 (ja) * 1997-03-28 2003-07-14 三菱ふそうトラック・バス株式会社 車両の挙動制御装置
US6547343B1 (en) * 1997-09-08 2003-04-15 General Motors Corporation Brake system control
JP4161401B2 (ja) * 1998-04-03 2008-10-08 日産自動車株式会社 車両挙動制御装置
JP3872242B2 (ja) * 1999-09-21 2007-01-24 トヨタ自動車株式会社 ブレーキ制御装置
JP4193971B2 (ja) * 2002-09-10 2008-12-10 株式会社アドヴィックス 車両の運動制御装置
JP4595941B2 (ja) * 2004-07-08 2010-12-08 トヨタ自動車株式会社 車輌の制動力制御装置
EP1950116B1 (en) * 2005-12-27 2010-02-17 Honda Motor Co., Ltd Vehicle control device
KR101008320B1 (ko) * 2005-12-27 2011-01-13 혼다 기켄 고교 가부시키가이샤 차량 제어 장치
JP2007237899A (ja) 2006-03-08 2007-09-20 Advics:Kk アンチロックブレーキ制御装置
JP4910986B2 (ja) 2007-10-24 2012-04-04 トヨタ自動車株式会社 スノーフェード発生を持続的に推定してスノーフェード解消制御を行う車輌
JP5471078B2 (ja) * 2009-06-30 2014-04-16 株式会社アドヴィックス 車両運動制御装置
JP5411759B2 (ja) * 2010-03-16 2014-02-12 トヨタ自動車株式会社 制動制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310364A (ja) * 1995-05-16 1996-11-26 Mitsubishi Motors Corp 車両の旋回制御装置
JP3257354B2 (ja) * 1995-07-07 2002-02-18 三菱自動車工業株式会社 車両の旋回制御装置
JPH10250548A (ja) * 1997-03-14 1998-09-22 Mitsubishi Motors Corp 車両の自動ブレーキ装置
JPH10273025A (ja) * 1997-03-28 1998-10-13 Mitsubishi Motors Corp 車両の制動力制御装置
JPH1134831A (ja) * 1997-05-21 1999-02-09 Denso Corp ブレーキ制御装置
JP2003104186A (ja) * 2001-09-27 2003-04-09 Nissan Motor Co Ltd 4輪駆動車の加速スリップ制御装置
JP2008179272A (ja) * 2007-01-25 2008-08-07 Toyota Motor Corp 摩擦係合部の温度に基づいて前後輪間摩擦制動力配分を変更する車輌

Also Published As

Publication number Publication date
JP5962906B2 (ja) 2016-08-03
US9393939B2 (en) 2016-07-19
JP2014004885A (ja) 2014-01-16
US20150112568A1 (en) 2015-04-23
DE112013003134T5 (de) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5962906B2 (ja) 車両の制動力制御装置
WO2015045759A1 (ja) 電動車両の制御装置
US7695076B2 (en) Vehicle brake control device
JP4797934B2 (ja) 車両用ディスクブレーキ制御装置
WO2018079696A1 (ja) 車両用制動装置
JP5215027B2 (ja) ブレーキ制御装置
JP2017109664A (ja) 制動力制御装置
JP4526342B2 (ja) 4輪駆動車両の運動制御装置
JP3724053B2 (ja) 制動力制御装置
CN103223935A (zh) 车辆的制动控制装置
JP4935760B2 (ja) ブレーキ制御装置
JP5668711B2 (ja) 車両のブレーキ制御装置
JP6701656B2 (ja) 車両の制動制御装置
JP6623952B2 (ja) 車両用制動装置
WO2017170596A1 (ja) 車両用制動装置
JP2007015494A (ja) 車両の制動制御装置、及び車両の制動制御方法
JP5209589B2 (ja) 車両用ブレーキ液圧制御装置
WO2014157162A1 (ja) 車両用ブレーキ液圧制御装置
JP5067001B2 (ja) 車両用制動制御装置
JP5966994B2 (ja) 車両用ブレーキ制御装置
JP5025339B2 (ja) アンダーステア状態での車両減速制御装置
JP2004217131A (ja) 制動システム
JP4893448B2 (ja) 車両用制動制御装置
JP2022093451A (ja) 車両の制動制御装置
JP5098419B2 (ja) 車両用制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397148

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013003134

Country of ref document: DE

Ref document number: 1120130031345

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807728

Country of ref document: EP

Kind code of ref document: A1