WO2013191208A1 - 2相ステンレス鋼 - Google Patents

2相ステンレス鋼 Download PDF

Info

Publication number
WO2013191208A1
WO2013191208A1 PCT/JP2013/066844 JP2013066844W WO2013191208A1 WO 2013191208 A1 WO2013191208 A1 WO 2013191208A1 JP 2013066844 W JP2013066844 W JP 2013066844W WO 2013191208 A1 WO2013191208 A1 WO 2013191208A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
stainless steel
duplex stainless
corrosion resistance
Prior art date
Application number
PCT/JP2013/066844
Other languages
English (en)
French (fr)
Inventor
雅之 相良
亜希子 富尾
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP13806836.6A priority Critical patent/EP2865776B1/en
Priority to US14/406,978 priority patent/US10202675B2/en
Priority to IN10355DEN2014 priority patent/IN2014DN10355A/en
Priority to CA2875644A priority patent/CA2875644C/en
Priority to CN201380031907.8A priority patent/CN104411850B/zh
Priority to ES13806836.6T priority patent/ES2688150T3/es
Priority to JP2013533030A priority patent/JP5403192B1/ja
Publication of WO2013191208A1 publication Critical patent/WO2013191208A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a duplex stainless steel, and more particularly to a duplex stainless steel having excellent local corrosion resistance against pitting corrosion and crevice corrosion.
  • duplex stainless steel is excellent in corrosion resistance, particularly seawater resistance, it is widely used as a material for offshore structures such as heat exchanger tubes, oil well tubes for oil wells or gas wells, and line pipes.
  • Patent Document 1 discloses a duplex stainless steel excellent in stress corrosion cracking resistance in which an appropriate amount of B is contained in accordance with the N content and Ni content of the ⁇ (austenite) phase.
  • Patent Document 2 by actively adding W, it has high strength and high corrosion resistance, is excellent in thermal structure stability, is sensitized even in normal welding construction or stress relief treatment, or is brittle.
  • a high-strength duplex stainless steel having excellent stress-relieving corrosion resistance that is not transformed is disclosed.
  • Patent Document 3 discloses a duplex stainless steel having excellent pitting corrosion resistance with the Cr, Mo, and N contents in the austenite phase adjusted. Furthermore, Patent Document 4 discloses a duplex stainless steel having both high corrosion resistance and excellent mechanical properties, in which the composition and element distribution of both ferrite and austenite phases are adjusted.
  • Japanese Unexamined Patent Publication No. 2004-360035 Japanese Patent Laid-Open No. 5-132741 Japanese Unexamined Patent Publication No. 11-80901 Japanese National Table 2005-501969
  • An object of the present invention is to provide a duplex stainless steel having excellent local corrosion resistance against pitting corrosion, crevice corrosion, and the like.
  • the present inventors have conducted intensive research on a method for improving the local corrosion resistance of duplex stainless steel.
  • the inventors have increased the critical potential (pitting corrosion potential) at which pitting corrosion occurs, and the pitting corrosion resistance and crevice corrosion resistance are improved. It was clarified that it was remarkably improved.
  • the present invention has been completed based on such findings, and the gist thereof is the duplex stainless steel shown in the following (1) or (2).
  • the duplex stainless steel according to one embodiment of the present invention is, in mass%, C: 0.005 to 0.03%, Si: 0.05 to 1.0%, Mn: 0.1 to 4.0%, Ni: 3 to 8%, Cr: 20 to 35%, Mo: 0.01 to 4.0%, Al: 0.001 to 0.30%, N: 0.05 to 0.60 %, Re: 2.0% or less, Ga: 2.0% or less, and Ge: 2.0% or less, and further containing Fe and impurities.
  • Duplex stainless steel is, in mass%, C: 0.005 to 0.03%, Si: 0.05 to 1.0%, Mn: 0.1 to 4.0%, Ni: 3 to 8%, Cr: 20 to 35%, Mo: 0.01 to 4.0%, Al: 0.001 to 0.30%, N: 0.05 to 0.60 %, Re: 2.0% or less, Ga: 2.0% or less, and Ge: 2.0% or less, and further containing Fe and impurities.
  • the duplex stainless steel described in (1) above contains, in place of a part of the Fe, in mass%, and further contains one or more elements selected from the following first group and second group May be.
  • the duplex stainless steel of the present invention has excellent resistance (local corrosion resistance) to local corrosion such as pitting corrosion and crevice corrosion. For this reason, it can be suitably used as a material for marine structures such as heat exchanger tubes, oil well tubes for use in oil wells or gas wells, or line pipes where corrosion becomes a problem in harsh environments.
  • the upper limit of the C content is 0.03%.
  • the upper limit of the C content is preferably 0.02%.
  • the lower limit of the C content is preferably 0.005%.
  • Si 0.05 to 1.0% Si is an element effective as a deoxidizer for alloys.
  • the lower limit of the Si content is preferably 0.05%.
  • the upper limit of Si content is 1.0%.
  • the upper limit of Si content is preferably 0.5%.
  • Mn 0.1 to 4.0%
  • Mn is an element that is effective as a deoxidizer for alloys, as is the case with Si.
  • the lower limit of the Mn content is preferably 0.1%, and more preferably 0.3%.
  • the upper limit of the Mn content is 4.0%.
  • the upper limit of the Mn content is preferably 2.0%, and more preferably 1.2%.
  • Ni 3-8% Ni is an austenite stabilizing element and an essential element for duplex stainless steel. However, if the Ni content is less than 3%, a sufficient effect cannot be obtained. On the other hand, if the Ni content exceeds 8%, an appropriate ferrite-austenite phase balance cannot be obtained. Therefore, the Ni content is 3 to 8%. The lower limit of the Ni content is preferably 3.5%.
  • Cr 20-35%
  • Cr is an element necessary for obtaining the ferrite structure of the duplex stainless steel and an essential element for improving the pitting corrosion resistance of the duplex stainless steel.
  • the lower limit of the Cr content needs to be 20%.
  • the Cr content is 20 to 35%.
  • the Cr content is preferably 21 to 28%.
  • Mo 0.01 to 4.0% Mo, like Cr, is an element that has the effect of increasing pitting corrosion resistance, and the lower limit of the Mo content needs to be 0.01%. On the other hand, if the Mo content exceeds 4.0%, the workability of the material during production deteriorates. Therefore, the Mo content is set to 0.01 to 4.0%.
  • the Mo content is preferably 1.0 to 3.5%.
  • Al 0.001 to 0.30%
  • Al is an element effective as a deoxidizer.
  • Al has an action of fixing oxygen and suppressing generation of Si or Mn oxide that is harmful to hot workability.
  • the lower limit of the Al content is preferably 0.001%, and more preferably 0.01%.
  • the upper limit of the Al content is 0.30%.
  • the upper limit of the Al content is preferably 0.20%, and more preferably 0.10%.
  • N 0.05 to 0.60%
  • N is an element that increases the stability of austenite and increases the pitting corrosion resistance and crevice corrosion resistance of the duplex stainless steel.
  • N like C, has the effect of stabilizing the austenite phase and improving the strength.
  • the content is less than 0.05%, a sufficient effect cannot be obtained.
  • the N content exceeds 0.60%, the toughness and hot workability deteriorate. Therefore, the N content is 0.05 to 0.60%.
  • the lower limit of the N content is preferably more than 0.17%, and more preferably 0.20%.
  • the upper limit of N content is 0.35%, and it is more preferable that it is 0.30%.
  • Re, Ga, and Ge are elements that remarkably improve pitting corrosion resistance and crevice corrosion resistance It is. However, even if each of the above elements exceeds 2.0%, the corrosion resistance improving effect is saturated. Moreover, when each said element is contained exceeding 2.0%, hot workability will fall. Therefore, the contents of Re, Ga, and Ge are each 2.0% or less.
  • the content of each element is preferably 1.0% or less.
  • the content of Re, Ga or Ge is preferably 0.01% or more, more preferably 0.03% or more, and 0.05% or more. Further preferred.
  • said Re, Ga, and Ge can contain only 1 type, or can contain 2 or more types in combination. The total amount when these elements are contained in combination is preferably 4% or less.
  • the duplex stainless steel according to this embodiment contains each of the above elements, with the balance being Fe and impurities.
  • the “impurities” refer to ores and scraps as raw materials mixed in from a manufacturing environment or the like when industrially producing stainless steel.
  • the impurity element is not particularly defined, but P and S are preferably limited to the following contents or less. The reason will be described below.
  • P 0.040% or less
  • P is an impurity element inevitably mixed in steel.
  • the P content is preferably 0.040% or less.
  • S 0.020% or less S, like P, is an impurity element inevitably mixed in steel. The smaller the S content, the better. However, when the S content exceeds 0.020%, the hot workability may be significantly reduced. Therefore, the S content is preferably 0.020% or less.
  • the duplex stainless steel according to this embodiment is selected from the following first group and second group in place of part of Fe for the purpose of further improving the strength, corrosion resistance, and hot workability.
  • One or more elements may be contained.
  • W 6.0% or less W, like Mo, is an element that improves pitting corrosion resistance and crevice corrosion resistance. W is an element that improves the strength by solid solution strengthening. Therefore, in order to acquire these effects, you may make it contain as needed.
  • the lower limit of the W content is preferably 0.5%.
  • the lower limit of the W content is more preferably 1.5%.
  • the upper limit of the W content in the case of inclusion is 6.0%.
  • Cu 4.0% or less Cu is an element that improves corrosion resistance and intergranular corrosion resistance. Therefore, you may make it contain as needed.
  • the lower limit of the Cu content is preferably 0.1%, and more preferably 0.3%.
  • the upper limit of Cu content in the case of making it contain shall be 4.0%.
  • the upper limit of the Cu content is more preferably 3.0%, and further preferably 2.0%.
  • Ca 0.01% or less Ca is an element having an effect of improving hot workability. In order to acquire the effect, you may make it contain as needed. In order to obtain the above effect, the lower limit of the Ca content is preferably 0.0005%. However, when the Ca content exceeds 0.01%, a coarse oxide is generated, which may cause a decrease in hot workability. For this reason, the upper limit of Ca content in the case of making it contain shall be 0.01%.
  • Mg 0.01% or less Mg, like Ca, is an element that has an effect of improving hot workability, and may be contained if necessary.
  • the lower limit of the Mg content is preferably 0.0005%.
  • the upper limit of Mg content in the case of making it contain shall be 0.01%.
  • REM 0.2% or less REM is an element having an effect of improving the hot workability as in the case of Ca and Mg, and may be contained as necessary.
  • the lower limit of the REM content is preferably 0.001%.
  • the upper limit of REM content in the case of making it contain shall be 0.2%.
  • REM means 17 elements in which Y and Sc are added to 15 elements of lanthanoid.
  • duplex stainless steel having the above components can be made into a steel pipe by a known method.
  • the obtained material was subjected to a solution heat treatment at 1070 ° C. for 5 minutes, and then a test piece (diameter 15 mm, thickness 2 mm) for corrosion resistance evaluation was produced by machining.
  • the pitting potential was measured in 90 ° C. and 20% NaCl.
  • the experimental conditions and procedures other than the test temperature and NaCl concentration were measured according to JIS G0577 (2005).
  • Table 1 also shows the measurement results of the pitting corrosion potential Vc′100 of each steel. From Table 1, steel No. as an example of the present invention. Steel Nos. 11 to 25 are comparative examples that do not contain any of Re, Ga, and Ge. No. 1 to 5, and any of C, Ni, Cr, Mo, N is out of the scope of the present invention. It can be seen that the pitting corrosion potential Vc′100 is higher than 6 to 10 and has excellent pitting corrosion resistance. If the pitting potential Vc′100 is high, the crevice corrosion resistance is also excellent. Note that “-” in the table indicates that the content is below the measurement limit.
  • the duplex stainless steel of the present invention has excellent resistance to local corrosion such as pitting corrosion and crevice corrosion. Therefore, it can be suitably used as a material for marine structures such as heat exchanger pipes, oil well pipes for oil wells or gas wells, or line pipes where corrosion is a problem in harsh environments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 このステンレス鋼は、質量%で、C:0.005~0.03%、Si:0.05~1.0%、Mn:0.1~4.0%、Ni:3~8%、Cr:20~35%、Mo:0.01~4.0%、Al:0.001~0.30%、N:0.05~0.60%を含有し、Re:2.0%以下、Ga:2.0%以下およびGe:2.0%以下から選択される1種以上を含有し、残部がFeおよび不純物からなる。

Description

2相ステンレス鋼
 本発明は、2相ステンレス鋼に係り、特に、孔食、すき間腐食等に対して優れた、耐局部腐食性を有する2相ステンレス鋼に関する。
 本願は、2012年06月22日に、日本に出願された特願2012-140365号に基づき優先権を主張し、その内容をここに援用する。
 2相ステンレス鋼は、耐食性、特に耐海水性に優れていることから、熱交換器管、油井またはガス井用途の油井管、ラインパイプ等の海洋構造物の材料として広く用いられている。
 腐食環境の中でも、上述の海洋構造物が用いられる環境である海水環境等の塩化物イオンを含有する環境では、孔食、すき間腐食等の局部腐食に注意する必要がある。孔食およびすき間腐食は、材料の腐食減肉を局所的に発生させて貫通孔に至る可能性があること、更には孔食及びすき間腐食の発生過程では、これらが起点となって応力腐食割れに進展する可能性があることが重要な問題となっている。
 上記の問題を背景として、これまでに耐局部腐食性を向上させた様々な2相ステンレス鋼が提案されている。例えば、特許文献1には、γ(オーステナイト)相のN含有量とNi含有量とに応じてBを適量含有させた耐応力腐食割れ性に優れた2相ステンレス鋼が開示されている。
 特許文献2には、Wの積極的な添加を図ることによって、高強度と高耐食性とを有し、熱的組織安定性に優れ、通常の溶接施工または応力除去処理でも鋭敏化されたり、脆化されたりすることのない応力除去耐食性に優れた高強度2相ステンレス鋼が開示されている。
 特許文献3には、オーステナイト相中のCr、Mo、N含有量を調整した耐孔食性に優れた2相ステンレス鋼が開示されている。さらに、特許文献4には、フェライト、オーステナイト両相の組成および元素の配分を調整した、高い耐食性と優れた機械的性質とを兼備した2相ステンレス鋼が開示されている。
日本国特開2004-360035号公報 日本国特開平5-132741号公報 日本国特開平11-80901号公報 日本国特表2005-501969号公報
 前述の特許文献1~4で開示された2相ステンレス鋼は、高い耐食性を有する。しかしながら、近年、より過酷な腐食環境に耐え得る製品への要求が高まっており、さらなる耐食性の改善が望まれている。
 本発明は、上記現状に鑑みてなされたものである。本発明は、孔食、すき間腐食等に対して優れた耐局部腐食性を有する2相ステンレス鋼を提供することを目的とする。
 本発明者らは、2相ステンレス鋼の耐局部腐食性を向上させる方法について鋭意研究を行った。その結果、本発明者らは、Re、GaまたはGeを2相ステンレス鋼に含有させることによって、孔食が発生する臨界電位(孔食電位)が上昇し、耐孔食性及び耐すき間腐食性が著しく改善されることを明らかにした。本発明はこのような知見に基づいて完成されたものであり、下記の(1)または(2)に示す2相ステンレス鋼を要旨とする。
 (1)すなわち、本発明の一態様に係る2相ステンレス鋼は、質量%で、C:0.005~0.03%、Si:0.05~1.0%、Mn:0.1~4.0%、Ni:3~8%、Cr:20~35%、Mo:0.01~4.0%、Al:0.001~0.30%、N:0.05~0.60%を含有し、Re:2.0%以下、Ga:2.0%以下およびGe:2.0%以下から選択される1種以上をさらに含有し、残部がFeおよび不純物からなることを特徴とする2相ステンレス鋼。
 (2)上記(1)に記載の2相ステンレス鋼は、前記Feの一部に代えて、質量%で、さらに下記の第1グループおよび第2グループから選択される1種以上の元素を含有してもよい。
 第1グループ:W:6.0%以下、およびCu:4.0%以下
 第2グループ:Ca:0.01%以下、Mg:0.01%以下、およびREM:0.2%以下
 本発明の2相ステンレス鋼は、孔食、すき間腐食等の局部腐食に対して優れた耐性(耐局部腐食性)を有する。このため、過酷な環境下において腐食が問題となる、熱交換器管、油井もしくはガス井用途の油井管、またはラインパイプ等の海洋構造物の材料として好適に用いることができる。
 以下に、本発明の一実施形態に係る2相ステンレス鋼について説明する。
 1.化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において、各元素の含有量の「%」は、「質量%」を意味する。
 C:0.005~0.03%
 C含有量が0.03%を超えると、結晶粒界にCr炭化物が形成され、粒界での腐食感受性が増大する。このため、C含有量の上限は0.03%とする。C含有量の上限は0.02%が好ましい。一方、鋼の強度を確保するために、C含有量の下限を0.005%とすることが好ましい。
 Si:0.05~1.0%
 Siは、合金の脱酸剤として有効な元素である。その効果を得るためには、Si含有量の下限を0.05%とすることが好ましい。しかしながら、その含有量が1.0%を超えると熱間加工性が低下する。そのため、Si含有量の上限は1.0%とする。Si含有量の上限は0.5%が好ましい。
 Mn:0.1~4.0%
 Mnは、上記のSiと同様に、合金の脱酸剤として有効な元素である。その効果を得るためには、Mn含有量の下限は0.1%であることが好ましく、0.3%であることがより好ましい。しかしながら、その含有量が4.0%を超えると熱間加工性が低下する。このため、Mn含有量の上限は4.0%とする。Mn含有量の上限は2.0%であることが好ましく、1.2%であることがより好ましい。
 Ni:3~8%
 Niは、オーステナイト安定化元素であり、2相ステンレス鋼に必須の元素である。しかしながら、Ni含有量が3%未満では十分な効果が得られない。一方、Ni含有量が8%を超えると、適正なフェライト・オーステナイト相バランスが得られなくなる。したがって、Ni含有量は3~8%とする。Ni含有量の下限は3.5%であることが好ましい。
 Cr:20~35%
 Crは、2相ステンレス鋼のフェライト組織を得るために必要な元素であるとともに、2相ステンレス鋼の耐孔食性を向上させるために必須の元素である。良好な耐孔食性を得るためには、Cr含有量の下限を20%とする必要がある。一方、Cr含有量が35%を超えると熱間加工性が低下する。したがって、Cr含有量は20~35%とする。Cr含有量は21~28%であることが好ましい。
 Mo:0.01~4.0%
 MoはCrと同様、耐孔食性を高める作用を有する元素であり、Mo含有量の下限を0.01%とする必要がある。一方、Mo含有量が4.0%を超えると、製造時の材料の加工性が劣化する。したがって、Mo含有量は0.01~4.0%とする。Mo含有量は1.0~3.5%であることが好ましい。
 Al:0.001~0.30%
 Alは、脱酸剤として有効な元素である。また、Alは、酸素を固定し、熱間加工性に有害なSiまたはMnの酸化物の生成を抑制する作用を有する。上記の効果を得るためには、Al含有量の下限は0.001%であることが好ましく、0.01%であることがより好ましい。しかしながら、Al含有量が0.30%を超えると熱間加工性が低下する。したがって、Al含有量の上限は0.30%とする。Al含有量の上限は0.20%であることが好ましく、0.10%であることがより好ましい。
 N:0.05~0.60%
 Nは、オーステナイトの安定性を高めるとともに、2相ステンレス鋼の耐孔食性および耐すき間腐食性を高める元素である。また、Nは、Cと同様にオーステナイト相を安定させて強度を向上させる効果を有する。しかしながら、その含有量が0.05%未満では十分な効果が得られない。一方、N含有量が0.60%を超えると靭性および熱間加工性を劣化させる。したがって、N含有量は0.05~0.60%とする。より高強度を得るためには、N含有量の下限を0.17%超とすることが好ましく、0.20%とすることがより好ましい。また、N含有量の上限は0.35%であることが好ましく、0.30%であることがより好ましい。
 Re:2.0%以下、Ga:2.0%以下およびGe:2.0%以下から選択される1種以上
 Re、GaおよびGeは、耐孔食性及び耐すき間腐食性を著しく向上させる元素である。しかしながら、上記の各元素を2.0%を超えて含有させても、耐食性向上効果は飽和する。また、上記各元素を2.0%を超えて含有させると、熱間加工性が低下する。したがって、Re、GaおよびGeの含有量はそれぞれ2.0%以下とする。各元素の含有量はそれぞれ1.0%以下であることが好ましい。耐食性向上効果を得るためには、Re、GaまたはGeの含有量は0.01%以上であるのが好ましく、0.03%以上であるのがより好ましく、0.05%以上であるのがさらに好ましい。なお、上記のRe、GaおよびGeはいずれか1種のみ、または、2種以上を複合で含有させることができる。これらの元素を複合して含有させる場合の合計量は、4%以下であるのが好ましい。
 Re、Ga、Geを2相ステンレス鋼へ含有させることにより耐孔食性が向上する。その理由として、Re、GaおよびGeが腐食環境中で形成される不働態皮膜をより強固にすることで、孔食の発生から進展へと至る過程において、孔食の進展が抑制され、不動態化が促進されているためと推察される。なお、Re、Ga、Geのいずれの元素においても同様の効果が得られるが、特にReにおいて効果が大きい。
 本実施形態に係る2相ステンレス鋼は、上記の各元素を含有し、残部がFeおよび不純物からなる。なお、「不純物」とは、ステンレス鋼を工業的に製造する際に、原料としての鉱石およびスクラップ、または製造環境等から混入するものを指す。不純物元素については特に規定はしないが、PおよびSは、下記に示す含有量以下に制限するのが好ましい。以下に、その理由を説明する。
 P:0.040%以下
 Pは、鋼中に不可避的に混入する不純物元素である。P含有量は少ないほど好ましいが、P含有量が0.040%を超えると耐食性、靱性の劣化が著しくなるおそれがある。したがって、P含有量は0.040%以下であることが好ましい。
 S:0.020%以下
 SもPと同様に、鋼中に不可避的に混入する不純物元素である。S含有量は少ないほど好ましいが、S含有量が0.020%を超えると熱間加工性が著しく低下するおそれがある。したがって、S含有量は0.020%以下であることが好ましい。
 本実施形態に係る2相ステンレス鋼は、強度、耐食性、熱間加工性をより向上させることを目的として、Feの一部に代えて、さらに、下記の第1グループおよび第2グループから選択される1種以上の元素を含有させても良い。
 第1グループ:W:6.0%以下、Cu:4.0%以下
 第2グループ:Ca:0.01%以下、Mg:0.01%以下、およびREM:0.2%以下
 W:6.0%以下
 Wは、Moと同様に耐孔食性および耐すき間腐食性を向上させる元素である。また、Wは、固溶強化により強度を向上させる元素である。そのため、これらの効果を得るために、必要に応じて含有させても良い。上記の効果を得たい場合には、W含有量の下限は0.5%であることが好ましい。より高強度の2相ステンレス鋼を得たい場合は、W含有量の下限は1.5%であることがより好ましい。一方で、Wを過剰に含有させるとσ相が析出しやすくなり靭性が劣化するおそれがある。そのため、含有させる場合のW含有量の上限は6.0%とする。
 Cu:4.0%以下
 Cuは、耐食性および粒界腐食抵抗を改善する元素である。そのため、必要に応じて含有させても良い。上記の効果を得たい場合には、Cu含有量の下限は0.1%であることが好ましく、0.3%であることがより好ましい。しかしながら、Cu含有量が4.0%を超えるとその効果は飽和するとともに、逆に熱間加工性および靭性が低下するおそれがある。このため、含有させる場合のCu含有量の上限は4.0%とする。Cu含有量の上限は3.0%であることがより好ましく、2.0%であることがさらに好ましい。
 Ca:0.01%以下
 Caは、熱間加工性を向上させる効果を有する元素である。その効果を得るために、必要に応じて含有させても良い。上記の効果を得たい場合には、Ca含有量の下限は0.0005%であることが好ましい。しかしながら、Ca含有量が0.01%を超えると、粗大な酸化物が生成し、かえって熱間加工性の低下を招くおそれがある。このため、含有させる場合のCa含有量の上限は0.01%とする。
 Mg:0.01%以下
 MgはCaと同様に、熱間加工性を向上させる効果を有する元素であり、必要に応じて含有させても良い。上記の効果を得たい場合には、Mg含有量の下限は0.0005%であることが好ましい。しかしながら、Mg含有量が0.01%を超えると、粗大な酸化物が生成し、かえって熱間加工性の低下を招くおそれがある。このため、含有させる場合のMg含有量の上限は0.01%とする。
 REM:0.2%以下
 REMも上記のCaおよびMgと同様に、熱間加工性を向上させる効果を有する元素であり、必要に応じて含有させても良い。上記の効果を得たい場合には、REM含有量の下限は0.001%であることが好ましい。しかしながら、REM含有量が0.2%を超えると、粗大な酸化物が生成し、かえって熱間加工性の低下を招くおそれがある。このため、含有させる場合のREM含有量の上限は0.2%とする。なお、REMとは、ランタノイドの15元素にYおよびScを合わせた17元素を意味する。
 上記の成分を有する2相ステンレス鋼は、公知の方法によって鋼管にすることができる。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。
 表1に示す化学組成を有する鋼No.1~25のそれぞれを、50kgの真空溶解炉で溶製し、得られたインゴットを1200℃で加熱し、鍛造、熱延を実施して、厚さ5mmの素材に加工した。
Figure JPOXMLDOC01-appb-T000001
 次に、得られた素材に対して1070℃で5分間の溶体化熱処理を実施した後、耐食性評価のための試験片(直径15mm、厚さ2mm)を機械加工により作製した。
 上記で得られた試験片を用いて、90℃、20%NaCl中で孔食電位を測定した。試験温度、NaCl濃度以外の実験条件および手順については、JIS G0577(2005)に準じて測定を行った。
 表1に、それぞれの鋼の孔食電位Vc’100の測定結果を併せて示す。表1から、本発明例である鋼No.11~25は、Re、Ga、Geのいずれも含まない比較例である鋼No.1~5、及びC、Ni、Cr、Mo、Nのいずれかが本発明範囲を外れた鋼No.6~10に対して、孔食電位Vc’100が高く、優れた耐孔食性を有することが分かる。なお、孔食電位Vc’100が高いと、耐すき間腐食性にも優れる。
 なお、表中の「‐」は、含有量が測定限界以下であることを示している。
 本発明の2相ステンレス鋼は、孔食、すき間腐食等の局部腐食に対して優れた耐性を有する。そのため、過酷な環境下において腐食が問題となる、熱交換器管、油井もしくはガス井用途の油井管、またはラインパイプ等の海洋構造物の材料として好適に用いることができる。

Claims (2)

  1.  質量%で、
     C:0.005~0.03%、
     Si:0.05~1.0%、
     Mn:0.1~4.0%、
     Ni:3~8%、
     Cr:20~35%、
     Mo:0.01~4.0%、
     Al:0.001~0.30%、
     N:0.05~0.60%を含有し、
     Re:2.0%以下、Ga:2.0%以下およびGe:2.0%以下から選択される1種以上をさらに含有し、
     残部がFeおよび不純物からなる
    ことを特徴とする2相ステンレス鋼。
  2.  前記Feの一部に代えて、質量%で、さらに下記の第1グループおよび第2グループから選択される1種以上の元素を含有することを特徴とする請求項1に記載の2相ステンレス鋼。
     第1グループ:W:6.0%以下、およびCu:4.0%以下
     第2グループ:Ca:0.01%以下、Mg:0.01%以下、およびREM:0.2%以下
PCT/JP2013/066844 2012-06-22 2013-06-19 2相ステンレス鋼 WO2013191208A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13806836.6A EP2865776B1 (en) 2012-06-22 2013-06-19 Duplex stainless steel
US14/406,978 US10202675B2 (en) 2012-06-22 2013-06-19 Duplex stainless steel
IN10355DEN2014 IN2014DN10355A (ja) 2012-06-22 2013-06-19
CA2875644A CA2875644C (en) 2012-06-22 2013-06-19 Duplex stainless steel
CN201380031907.8A CN104411850B (zh) 2012-06-22 2013-06-19 双相不锈钢
ES13806836.6T ES2688150T3 (es) 2012-06-22 2013-06-19 Acero inoxidable dúplex
JP2013533030A JP5403192B1 (ja) 2012-06-22 2013-06-19 2相ステンレス鋼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-140365 2012-06-22
JP2012140365 2012-06-22

Publications (1)

Publication Number Publication Date
WO2013191208A1 true WO2013191208A1 (ja) 2013-12-27

Family

ID=49768802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066844 WO2013191208A1 (ja) 2012-06-22 2013-06-19 2相ステンレス鋼

Country Status (8)

Country Link
US (1) US10202675B2 (ja)
EP (1) EP2865776B1 (ja)
JP (1) JP5403192B1 (ja)
CN (1) CN104411850B (ja)
CA (1) CA2875644C (ja)
ES (1) ES2688150T3 (ja)
IN (1) IN2014DN10355A (ja)
WO (1) WO2013191208A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112445A1 (ja) * 2013-01-15 2014-07-24 株式会社神戸製鋼所 二相ステンレス鋼材および二相ステンレス鋼管
CN106191693A (zh) * 2015-02-17 2016-12-07 陈瑞凯 含锗肥粒铁不锈钢
WO2019098233A1 (ja) 2017-11-15 2019-05-23 日本製鉄株式会社 2相ステンレス鋼及び2相ステンレス鋼の製造方法
WO2020034050A1 (zh) * 2018-08-14 2020-02-20 杰森能源技术有限公司 一种高频感应焊高合金耐腐蚀连续油管及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478524B (zh) * 2016-01-06 2017-07-28 河北华通线缆集团股份有限公司 一种双相不锈钢连续油管的制造方法
TWI655303B (zh) * 2016-10-19 2019-04-01 國立清華大學 含鍺不銹鋼
US11306378B2 (en) 2018-02-15 2022-04-19 Sandvik Intellectual Property Ab Duplex stainless steel
CN108942102B (zh) * 2018-08-01 2020-05-12 河北华通线缆集团股份有限公司 一种超级双相不锈钢连续油管的制造方法
CN109112261B (zh) * 2018-09-11 2020-04-14 中国科学院金属研究所 一种强耐微生物腐蚀的双相不锈钢
CN109852885B (zh) * 2019-03-08 2020-08-21 河南科技大学 一种双相不锈钢及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132741A (ja) 1991-11-11 1993-05-28 Sumitomo Metal Ind Ltd 耐食性に優れた高強度二相ステンレス鋼
JPH106079A (ja) * 1996-06-20 1998-01-13 Mitsubishi Heavy Ind Ltd フェライト系耐熱鋼用溶接材料
JPH1180901A (ja) 1986-04-28 1999-03-26 Nkk Corp 耐孔食性に優れた2相ステンレス鋼
JP2001262287A (ja) * 2000-03-22 2001-09-26 Nippon Steel Corp 表面品質に優れたオーステナイト系ステンレス鋼
JP2002146470A (ja) * 2000-11-13 2002-05-22 Nippon Steel Corp 靱性に優れた低焼入れまたは焼ならし型低合金ボイラ鋼管用鋼板およびそれを用いた鋼管の製造方法
JP2004360035A (ja) 2003-06-06 2004-12-24 Sanyo Special Steel Co Ltd 耐応力腐食割れ性に優れた二相系ステンレス鋼
JP2005501969A (ja) 2001-09-02 2005-01-20 サンドビック アクティエボラーグ 2相鋼
JP2012082488A (ja) * 2010-10-13 2012-04-26 Sumitomo Metal Ind Ltd 皮膜に対する密着性に優れたオーステナイト系ステンレス鋼

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7705578L (sv) 1976-05-15 1977-11-16 Nippon Steel Corp Tvafasigt rostfritt stal
SE453838B (sv) 1985-09-05 1988-03-07 Santrade Ltd Hogkvevehaltigt ferrit-austenitiskt rostfritt stal
JP3227734B2 (ja) * 1991-09-30 2001-11-12 住友金属工業株式会社 高耐食二相ステンレス鋼とその製造方法
SE0000678L (sv) * 2000-03-02 2001-04-30 Sandvik Ab Duplext rostfritt stål
CN1187467C (zh) 2002-11-08 2005-02-02 陈才金 一种双相不锈钢
CN101429629A (zh) 2007-11-10 2009-05-13 顾贤良 一种双相不锈钢
FI121340B (fi) 2008-12-19 2010-10-15 Outokumpu Oy Dupleksinen ruostumaton teräs
JP5398574B2 (ja) 2010-02-18 2014-01-29 新日鐵住金ステンレス株式会社 真空容器用二相ステンレス鋼材とその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180901A (ja) 1986-04-28 1999-03-26 Nkk Corp 耐孔食性に優れた2相ステンレス鋼
JPH05132741A (ja) 1991-11-11 1993-05-28 Sumitomo Metal Ind Ltd 耐食性に優れた高強度二相ステンレス鋼
JPH106079A (ja) * 1996-06-20 1998-01-13 Mitsubishi Heavy Ind Ltd フェライト系耐熱鋼用溶接材料
JP2001262287A (ja) * 2000-03-22 2001-09-26 Nippon Steel Corp 表面品質に優れたオーステナイト系ステンレス鋼
JP2002146470A (ja) * 2000-11-13 2002-05-22 Nippon Steel Corp 靱性に優れた低焼入れまたは焼ならし型低合金ボイラ鋼管用鋼板およびそれを用いた鋼管の製造方法
JP2005501969A (ja) 2001-09-02 2005-01-20 サンドビック アクティエボラーグ 2相鋼
JP2004360035A (ja) 2003-06-06 2004-12-24 Sanyo Special Steel Co Ltd 耐応力腐食割れ性に優れた二相系ステンレス鋼
JP2012082488A (ja) * 2010-10-13 2012-04-26 Sumitomo Metal Ind Ltd 皮膜に対する密着性に優れたオーステナイト系ステンレス鋼

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112445A1 (ja) * 2013-01-15 2014-07-24 株式会社神戸製鋼所 二相ステンレス鋼材および二相ステンレス鋼管
CN106191693A (zh) * 2015-02-17 2016-12-07 陈瑞凯 含锗肥粒铁不锈钢
CN106191693B (zh) * 2015-02-17 2018-09-04 陈瑞凯 含锗肥粒铁不锈钢
WO2019098233A1 (ja) 2017-11-15 2019-05-23 日本製鉄株式会社 2相ステンレス鋼及び2相ステンレス鋼の製造方法
KR20200080312A (ko) 2017-11-15 2020-07-06 닛폰세이테츠 가부시키가이샤 2상 스테인리스강 및 2상 스테인리스강의 제조 방법
WO2020034050A1 (zh) * 2018-08-14 2020-02-20 杰森能源技术有限公司 一种高频感应焊高合金耐腐蚀连续油管及其制备方法

Also Published As

Publication number Publication date
IN2014DN10355A (ja) 2015-08-07
JPWO2013191208A1 (ja) 2016-05-26
US10202675B2 (en) 2019-02-12
JP5403192B1 (ja) 2014-01-29
CN104411850B (zh) 2017-10-03
EP2865776A1 (en) 2015-04-29
CA2875644A1 (en) 2013-12-27
EP2865776B1 (en) 2018-08-08
ES2688150T3 (es) 2018-10-31
CA2875644C (en) 2017-06-06
US20150152530A1 (en) 2015-06-04
EP2865776A4 (en) 2016-03-02
CN104411850A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5403192B1 (ja) 2相ステンレス鋼
JP6369632B2 (ja) 高Cr系オーステナイトステンレス鋼
WO2019035329A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2017138050A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JPWO2006106944A1 (ja) オーステナイト系ステンレス鋼
JP2008030076A (ja) オーステナイト系ステンレス鋼溶接継手及びオーステナイト系ステンレス鋼溶接材料
JP2010242163A (ja) 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
JPWO2009119630A1 (ja) Ni基合金
WO2016079920A1 (ja) 油井用高強度ステンレス継目無鋼管
JP6513495B2 (ja) 二相ステンレス鋼材および二相ステンレス鋼管
WO2012121232A1 (ja) 二相ステンレス鋼
WO2014069467A1 (ja) オーステナイト系ステンレス鋼
JP5726537B2 (ja) 靭性に優れた二相系ステンレス鋼
JP2010280950A (ja) 排気バルブ用耐熱鋼及びその製造方法
JP4502131B2 (ja) 熱間加工性に優れた二相ステンレス鋼
WO2019069998A1 (ja) オーステナイト系ステンレス鋼
JP5857914B2 (ja) 二相ステンレス鋼用溶接材料
JP3752857B2 (ja) 油井用Cr含有継目無鋼管
WO2017171049A1 (ja) 溶接構造部材
JP6747207B2 (ja) Ni基耐熱合金部材
JP2012211385A (ja) 析出強化型耐熱鋼
JP6736964B2 (ja) オーステナイト系耐熱合金部材
JP6201731B2 (ja) オーステナイト系耐熱鋳造合金
JP6825514B2 (ja) オーステナイト系耐熱合金部材
JP5365499B2 (ja) 尿素製造プラント用二相ステンレス鋼および尿素製造プラント

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013533030

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2875644

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013806836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14406978

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE