WO2017171049A1 - 溶接構造部材 - Google Patents
溶接構造部材 Download PDFInfo
- Publication number
- WO2017171049A1 WO2017171049A1 PCT/JP2017/013734 JP2017013734W WO2017171049A1 WO 2017171049 A1 WO2017171049 A1 WO 2017171049A1 JP 2017013734 W JP2017013734 W JP 2017013734W WO 2017171049 A1 WO2017171049 A1 WO 2017171049A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- content
- corrosion resistance
- corrosion
- weld metal
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/23—Arc welding or cutting taking account of the properties of the materials to be welded
- B23K9/232—Arc welding or cutting taking account of the properties of the materials to be welded of different metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/23—Arc welding or cutting taking account of the properties of the materials to be welded
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
- B23K2103/20—Ferrous alloys and aluminium or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
- B23K2103/22—Ferrous alloys and copper or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
- B23K2103/24—Ferrous alloys and titanium or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
- B23K2103/26—Alloys of Nickel and Cobalt and Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
- B23K35/304—Ni as the principal constituent with Cr as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
Definitions
- the present invention relates to a welded structural member.
- Fossil fuels such as oil and coal are used as fuel for boilers for thermal power generation and industrial use.
- fossil fuel contains sulfur (S)
- SOx sulfur oxide
- SOx sulfur oxide
- the temperature of the exhaust gas is lowered, SOx reacts with moisture in the gas to become sulfuric acid. Therefore, dew condensation occurs on the surface of the member below the dew point temperature, and corrosion (sulfuric acid dew point corrosion) occurs.
- sulfuric acid dew point corrosion occurs when the temperature decreases.
- the exhaust gas temperature has been maintained at 150 ° C. or higher.
- Patent Document 1 describes excellent corrosion resistance in an environment in which high-concentration sulfuric acid condenses (an environment in which 40-70% sulfuric acid is condensed at a temperature of 50 to 100 ° C.).
- austenitic stainless steel having good hot workability, in mass%, C: 0.05% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.04% or less, S: 0.01% or less, Ni: 12 to 27%, Cr: 15 to 26%, Cu: more than 3.0% to 8.0% or less, Mo: more than 2.0% to 5.0%
- Nb 1.0% or less
- W 5.0% or less
- Zr 1.0% or less
- Al 0.5% or less
- N less than 0.05%
- Ca 0.01% or less
- B 0.01% or less
- rare earth elements 0.01% or less in total, the balance being Fe and Austenitic stainless steels have been disclosed comprising a variable avoid impurities
- Patent Document 3 As an austenitic steel welded joint exhibiting good corrosion resistance in a sulfuric acid environment and having excellent weld crack resistance, mass%, C: 0.08% or less, Mn: 3% or less, P: 0.02% or less, Ni: 4 to 75%, Cr: 15 to 30%, Al: 0.5% or less, N: 0.1% or less, O (oxygen): 0.1 %, At least one of Nb, Ta, Ti and Zr is 0.1 to 5% in total, Mo or W or one or both is 0 to 20% in total, Co: 0 to 5% V: 0 to 0.25%, B: 0 to 0.01%, Ca: 0 to 0.01%, Mg: 0 to 0.01%, REM: 0 to 0.01%, further formula Si satisfying “Si ⁇ 0.15 (Nb + Ta + Ti + Zr) +0.25”, 0 to 8% or less, and formula Cu satisfying Cu ⁇ 1.5 (Nb + Ta + Ti + Z
- the austenitic stainless steel alone having the chemical composition described in Patent Documents 1 and 2 exhibits good corrosion resistance in a sulfuric acid environment.
- corrosion of different metals may occur, in which corrosion proceeds at the interface between the base material and the weld metal.
- An object of the present invention is to provide a welded structural member including an austenitic stainless steel joint that can suppress the corrosion of different metals generated between a base material and a weld metal.
- the present inventors obtained the following knowledge as a result of intensive studies to achieve the above-mentioned object.
- the passive film formed on the surface of the weld metal part contains an unstable oxide film of Mo, and also inhibits the concentration of Ni and Cu in the film, Corrosion resistance in a dissimilar metal contact corrosion environment where high concentration of sulfuric acid condenses deteriorates.
- the Mo content in the weld metal is 0.10% or less
- Ni or Cu is concentrated in the Cr-based passive film formed on the surface of the weld metal and exhibits excellent corrosion resistance. Is done. For this reason, it is important to control the Mo content in the base metal to more than 2.0% to 5.0% or less and to limit the Mo content in the weld metal to 0.10% or less.
- the present invention has been made on the basis of the above findings, and the gist of the present invention is as follows.
- a welded structural member comprising an austenitic stainless steel joint The chemical composition of the base material is C: 0.05% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.04% or less, S: 0.01% or less, Ni: 12.0-27.0%, Cr: 15.0% or more and less than 20.0%, Cu: more than 3.0% to 8.0% or less, Mo: more than 2.0% and 5.0% or less, Nb: 0 to 1.0%, Ti: 0 to 0.5%, Co: 0 to 0.5% Sn: 0 to 0.1%, W: 0 to 5.0% Zr: 0 to 1.0%, Al: 0 to 0.5%, N: less than 0.05%, Ca: 0 to 0.01%, B: 0 to 0.01% Rare earth elements: 0 to 0.01% in total The balance: Fe and inevitable impurities, The chemical composition of the weld metal is C: 0.10% or less, Si: 0.50% or less, Mn: 3.5% or less, P: 0.03% or less, S
- an austenitic stainless steel joint is, for example, an austenitic stainless steel pipe joint.
- % for the content means “% by mass”.
- C 0.05% or less C is an element effective for increasing the strength. However, C combines with Cr to form Cr carbide at the grain boundary, thereby reducing the intergranular corrosion resistance. For this reason, the content is made 0.05% or less.
- the lower limit may be 0%, but an excessive reduction leads to an increase in manufacturing cost, so a practical lower limit is 0.002%.
- the C content should be low, and is preferably 0.03% or less.
- Si 1.0% or less Si may not be added, but if added, it has a deoxidizing action. However, if its content exceeds 1.0%, it reduces the hot workability, and if it contains more than 3.0%, it becomes extremely difficult to process the product on an industrial scale. Therefore, the Si content is 1.0% or less. In order to acquire this effect reliably, it is preferable to make it contain 0.05% or more. For the purpose of improving hot workability, when the Al content is extremely low, it is preferable to contain 0.1% or more of Si to sufficiently perform the deoxidation action.
- Mn 2.0% or less Mn may not be added. However, if Mn is added, it has the effect of fixing S and improving hot workability and stabilizing the austenite phase. However, even if the content exceeds 2.0%, the effect is saturated and the cost is increased. Therefore, the Mn content is set to 2.0% or less. In order to reliably obtain the above effects, it is preferable that Mn has a content of 0.1% or more.
- P 0.04% or less Since P deteriorates hot workability and corrosion resistance, its content is preferably as low as possible. Particularly, when P exceeds 0.04%, corrosion resistance in an “environment where high concentration sulfuric acid condenses”. The deterioration of the Therefore, the content of P is set to 0.04% or less.
- the lower limit may be 0%, but an excessive reduction causes an increase in manufacturing cost, so a practical lower limit is 0.003%.
- S 0.01% or less
- S is an element that deteriorates hot workability, and its content is preferably as small as possible. In particular, if it exceeds 0.01%, the hot workability is significantly deteriorated. Therefore, the S content is set to 0.01% or less.
- the lower limit may be 0%, but an excessive reduction causes an increase in manufacturing cost, so a practical lower limit is 0.0001%.
- Ni 12.0-27.0%
- Ni has the effect of stabilizing the austenite phase, and also has the effect of enhancing the corrosion resistance in the “environment where high concentration of sulfuric acid condenses”.
- it is necessary to contain Ni in an amount of 12.0% or more.
- the effect is saturated even if it contains exceeding 27.0%.
- Ni is an expensive element, the cost is extremely high and it is not economical. Therefore, the Ni content is 12.0-27.0%.
- Cr 15.0% or more and less than 20.0% Cr is an element effective for ensuring the corrosion resistance of austenitic stainless steel.
- N is regulated to the content described later
- 15.0% or more of Cr, preferably 16.0% or more of Cr is contained together with the amounts of Cu and Mo described later, “high concentration” It is possible to ensure good corrosion resistance in an “environment in which sulfuric acid condenses”.
- Cr is contained in a large amount, the corrosion resistance in the environment deteriorates on the contrary, even in the case of an austenitic stainless steel in which the N content is reduced and Cu and Mo are added in combination. There is also a decline in sex.
- the Cr content exceeds 26.0%, the corrosion resistance of the austenitic stainless steel in the environment is significantly deteriorated. Also, in order to improve the hot workability of austenitic stainless steel combined with Cu and Mo and to facilitate product processing on an industrial scale, the Cr content should be less than 20.0%. Therefore, the Cr content is set to 15.0% or more and less than 20.0%.
- Cu more than 3.0% and not more than 8.0%
- Cu is an essential element for ensuring corrosion resistance in a sulfuric acid environment.
- the content of Cu is preferably more than 3.5%, more preferably more than 4.0%.
- a content exceeding 5.0% is more preferable.
- Mo more than 2.0% to 5.0% or less Mo is an element effective for ensuring the corrosion resistance of austenitic stainless steel.
- Mo is contained together with a predetermined amount of Cr and Cu
- a good corrosion resistance is imparted to an austenitic stainless steel containing a predetermined amount of N in an “environment where high concentration of sulfuric acid condenses”. can do.
- Mo is contained in a large amount, the hot workability is deteriorated.
- the Mo content exceeds 5.0%, the hot workability is significantly deteriorated even if N is a predetermined content. . Therefore, the Mo content is more than 2.0% and not more than 5.0%.
- Nb 0 to 1.0%
- Nb does not need to be added, but if added, it fixes C and enhances the corrosion resistance, especially intergranular corrosion resistance.
- the Nb content is set to 0 to 1.0%.
- Nb is preferably set to a content of 0.02% or more.
- Ti 0 to 0.5%
- Ti does not need to be added, but if added, it fixes C as in the case of Nb and has an effect of improving corrosion resistance, particularly intergranular corrosion resistance.
- the Ti content is set to 0 to 0.5%.
- Ti is preferably contained in a content of 0.01% or more.
- Co 0 to 0.5%
- Sn 0 to 0.1%
- Co and Sn are elements that can reduce the dissolution rate of Fe and Cr in such a dissimilar metal contact corrosion environment, and can drastically improve the corrosion resistance in the dissimilar metal contact corrosion environment. For this reason, it is good to contain 1 or more types of these elements.
- the above effect becomes remarkable when Co is 0.01% or more and Sn is 0.001% or more.
- the upper limit of Co is 0.5% and the upper limit of Sn is 0.1%.
- W 0-5.0% W does not need to be added, but if added, it has the effect of enhancing the corrosion resistance in the “environment where high concentration of sulfuric acid is condensed”. However, even if W is contained exceeding 5.0%, the effect is saturated and the cost is increased. Therefore, the W content is set to 0 to 5.0%. In order to surely obtain the above effect, W is preferably set to a content of 0.1% or more.
- Zr 0 to 1.0%
- Zr does not have to be added, but if added, it has the effect of enhancing the corrosion resistance in the “environment where high-concentration sulfuric acid is condensed”. However, even if it contains Zr exceeding 1.0%, the effect is saturated and the cost is increased. Therefore, the content of Zr is set to 0 to 1.0%. In order to surely obtain the above effect, the content of Zr is preferably set to 0.02% or more.
- Al 0 to 0.5%
- Al need not be added, but if added, it has a deoxidizing action.
- the Al content is set to 0 to 0.5%.
- the lower limit of the Al content may be in the range of inevitable impurities.
- Al has a deoxidizing action, when the Si content is extremely low, it is preferable to contain 0.02% or more so that the deoxidizing action is sufficiently performed. Even when 0.05% or more of Si is contained, the Al content is preferably set to 0.01% or more in order to sufficiently exhibit the deoxidizing action.
- N Less than 0.05% Conventionally, N has been actively added for the purpose of stabilizing the austenite structure and increasing the resistance to “local corrosion” such as pitting corrosion and crevice corrosion.
- “local corrosion” such as pitting corrosion and crevice corrosion.
- the corrosion resistance of the austenitic stainless steel containing 15.0 or more and less than 20.0% Cr is lowered.
- the hot workability decreases when the N content is 0.05% or more. .
- the N content is set to less than 0.05%.
- the lower the N content the better.
- the lower limit may be 0%, but an excessive reduction causes an increase in manufacturing cost, so a practical lower limit is 0.0005%.
- Ca 0 to 0.01% Ca does not need to be added, but if added, it combines with S and has an effect of suppressing a decrease in hot workability. However, if its content exceeds 0.01%, the cleanliness of the steel is lowered, which causes wrinkles during hot production. Therefore, the Ca content is set to 0 to 0.01%. In order to reliably obtain the above effects, Ca is preferably contained in a content of 0.0005% or more. A more preferable lower limit of the Ca content is 0.001%.
- B 0 to 0.01%
- B need not be added, but if added, it has the effect of improving hot workability.
- the addition of a large amount of B promotes the precipitation of Cr—B compounds at the grain boundaries, leading to deterioration of corrosion resistance.
- the content of B is set to 0 to 0.01%.
- B is preferably contained in an amount of 0.0005% or more.
- a more preferable lower limit of the B content is 0.001%.
- Rare earth elements 0-0.01% in total
- the rare earth element need not be added, but if added, it has the effect of improving hot workability. However, if the total content exceeds 0.01%, the cleanliness of the steel is lowered, which causes the generation of flaws during hot production. Therefore, the total rare earth element content is set to 0.01% or less. In order to reliably obtain the above effects, the total content of rare earth elements is preferably 0.0005% or more. It is a generic name for a total of 17 elements of Sc, Y and lanthanoid.
- the chemical composition of the base material contains each of the above elements within a specified range, and the balance is Fe and inevitable impurities.
- C 0.10% or less
- C is an element that stabilizes the austenite phase as a matrix.
- Cr carbonitride is produced by the welding heat cycle, which causes deterioration of corrosion resistance and causes strength reduction.
- C reacts with Si segregated at the grain boundaries and Fe in the matrix to form a low melting point compound, thereby increasing reheat cracking sensitivity.
- C content shall be 0.10% or less.
- a preferable upper limit is 0.03%. Although the C content is preferably as low as possible, extreme reduction leads to an increase in cost, so the lower limit may be 0.005%.
- Si 0.50% or less Si is added as a deoxidizer, but segregates at the grain boundaries during solidification of the weld metal, reacts with C and Fe of the matrix to form a low melting point compound, and during multi-layer welding Cause reheat cracking. For this reason, Si content shall be 0.50% or less. The lower the Si content, the better. When Al, Mn, etc. sufficient for deoxidation are included, it is not always necessary to add them. When it is necessary to obtain a deoxidizing effect, the content is preferably 0.02% or more.
- Mn 3.5% or less Mn is added as a deoxidizer to stabilize the austenite phase as a matrix.
- Mn content shall be 3.5% or less.
- a preferable upper limit is 2.0%. There is no need to set a lower limit. Further, when Mn is sufficiently deoxidized by other elements (Si, Al), its content may be 0%.
- P 0.03% or less
- P is an unavoidable impurity, and segregates in the final solidified part during solidification of the weld metal during welding, lowers the melting point of the residual liquid phase, and causes solidification cracks. For this reason, the P content is set to 0.03% or less.
- a preferable upper limit is 0.015%.
- the lower the P content the better as long as there is no problem in the manufacturing cost.
- the lower limit may be 0%, but an excessive reduction causes an increase in manufacturing cost, so a practical lower limit is 0.003%.
- S 0.03% or less S is an unavoidable impurity similar to P described above.
- a low melting point eutectic is formed during solidification of the weld metal, causing solidification cracks, and at the grain boundaries. Segregation reduces the adhesion of grain boundaries and causes reheat cracking. For this reason, S content is made into 0.03% or less.
- a preferable upper limit is 0.015%.
- the lower the S content the better as long as there is no problem in the manufacturing cost.
- the lower limit may be 0%, but an excessive reduction causes an increase in manufacturing cost, so a practical lower limit is 0.0001%.
- Cu 0.50% or less Cu is an element effective for improving the corrosion resistance in a high-concentration sulfuric acid environment. However, if the content exceeds 0.50%, the melting point of the liquid phase finally solidified is lowered and solidification cracks are generated. Further, Cu segregates at the crystal grain boundaries during solidification, lowers the adhesion of the grain boundaries, and causes reheat cracking during multilayer welding. For this reason, Cu content shall be 0.50% or less. The lower limit may be 0%, but an excessive reduction causes an increase in manufacturing cost, so a practical lower limit is 0.01%.
- Ni 51.0% or more and 80.0% or less
- Ni is an essential element for stabilizing the austenite phase as a matrix and ensuring corrosion resistance in an environment containing a high concentration of sulfuric acid.
- excessive addition increases weld cracking susceptibility and causes an increase in cost because Ni is an expensive element.
- Ni content shall be 51.0% or more and 80.0% or less.
- Cr 14.5-23.0% Cr is an element effective for securing oxidation resistance and corrosion resistance at high temperatures, and is an essential element for securing corrosion resistance in an environment containing a high concentration of sulfuric acid. In order to ensure sufficient oxidation resistance and corrosion resistance, 14.5% or more is necessary. However, excessive addition, on the contrary, deteriorates the corrosion resistance and remarkably deteriorates the workability. For this reason, the Cr content is 14.5 to 23.0%.
- Mo 0.10% or less Mo has been conventionally considered to be an element effective for improving the corrosion resistance in a high-concentration sulfuric acid environment if added, but a base material having the above chemical composition is used.
- Mo in the range of more than 0.10% and less than 6.0% is included in the weld metal, the passive film formed on the surface of the base metal and the passive film formed on the surface of the weld metal A potential difference occurs between the two and different metal corrosion easily proceeds. For this reason, the Mo content is set to 0.10% or less. The less Mo, the better, and it may be 0%. However, since excessive reduction leads to an increase in manufacturing cost, the practical lower limit is 0.01%.
- Al 0.40% or less Al is added as a deoxidizer, but if it is contained in a large amount, slag is generated during welding, causing deterioration of weld metal flow and weld bead uniformity. Is significantly reduced. Moreover, the welding condition area
- a preferable upper limit is 0.30%, and a more preferable upper limit is 0.20%. The less Al, the better, and it may be 0%. However, since excessive reduction leads to an increase in manufacturing cost, the practical lower limit is 0.001%.
- One or more selected from Nb, Ta, and Ti fix C in the weld metal as carbides, and form an oxide containing S
- carbides are crystallized to complicate the shape of the grain boundaries, and segregation of S and Cu grain boundaries is dispersed to prevent reheat cracking during multi-layer welding.
- the total content of one or more selected from Nb, Ta, and Ti exceeds 4.90%, the carbides become coarse, leading to deterioration of toughness and workability. For this reason, the total content of one or more selected from Nb, Ta and Ti is set to 4.90% or less.
- the lower limit of the total content is preferably 2.0%.
- Co 2.5% or less Co may not be added, but if added, it is an element effective for stabilizing the austenite phase and improving the corrosion resistance in a high-concentration sulfuric acid environment like Ni. It is. However, Co is an extremely expensive element compared to Ni, and adding a large amount causes an increase in cost. For this reason, the Co content is set to 2.5% or less. A preferable upper limit is 2.0%, and a more preferable upper limit is 1.5%. The above effect becomes remarkable at 0.5% or more.
- V 0.35% or less V does not need to be added, but if added, it is an element effective for improving the high-temperature strength. However, excessive addition causes a large amount of carbonitride to precipitate, leading to a decrease in toughness. For this reason, the V content is preferably 0.35% or less. The above effect becomes remarkable at 0.05% or more.
- W 4.5% or less W does not need to be added, but if added, it is an element effective for improving the corrosion resistance in a high-concentration sulfuric acid environment. However, if its content exceeds 4.5%, not only the effect is saturated, but also the formation of carbides and intermetallic compounds during use causes corrosion resistance and toughness deterioration.
- the W content is 4.5% or less. The above effect becomes significant at 1.0% or more.
- the chemical composition of the weld metal contains each of the above elements within a specified range, with the balance being Fe and inevitable impurities.
- a welding material for welding a base material having the above chemical composition to obtain a weld metal having the above chemical composition it is preferable to use a welding material having the following chemical composition.
- the welding material is C: 0.08% or less, Si: 2.0% or less, Mn: 3.1% or less, P: 0.02% or less, S: 0.02% or less, Ni: 4.0-80.0%, Cr: 15.0-30.0%, Al: 0.5% or less, One or more selected from Nb, Ta and Ti: a total of 4.90% or less, Mo: 0.10% or less W: 0 to 4.5% Co: 0 to 5.0%, Cu: 0 to 8.0%, V: 0 to 0.25%, B: 0 to 0.01% Ca: 0 to 0.01%, Mg: 0 to 0.01%, Rare earth elements: 0 to 0.01% in total The balance: it is preferable to use a material having a chemical composition which is Fe and inevitable impurities.
- the C content is preferably 0.08% or less in order to give sufficient performance to the weld metal.
- the lower limit may be 0%, but a preferable lower limit for obtaining the above effect is 0.002%.
- Si 2.0% or less
- the Si content in the weld metal is increased to cause reheat cracking. Since it increases sensitivity, it is preferably 2.0% or less.
- the lower limit may be 0%, but a preferable lower limit for obtaining the above effect is 0.02%.
- Mn 3.1% or less
- the lower limit may be 0%, but a preferable lower limit for obtaining the above effect is 0.01%.
- P 0.02% or less P is an inevitable impurity, and segregates in the final solidified portion during solidification of the weld metal during welding, lowers the melting point of the residual liquid phase, and causes solidification cracks. % Or less is preferable.
- the lower limit may be 0%, but an excessive reduction causes an increase in manufacturing cost, so a practical lower limit is 0.003%.
- S 0.02% or less S, when its content exceeds 0.02%, deteriorates the hot workability at the time of manufacturing the welding material and increases the S content in the weld metal to increase the solidification cracking susceptibility and In order to increase reheat cracking sensitivity, it is preferably 0.02% or less.
- the lower limit may be 0%, but an excessive reduction causes an increase in manufacturing cost, so a practical lower limit is 0.0001%.
- Ni 4.0-80.0%
- Ni is an essential element for stabilizing the austenite phase as a matrix and ensuring corrosion resistance in an environment containing a high concentration of sulfuric acid.
- the content is set to 4.0 to 80.0%.
- the Cr content is preferably 15.0 to 30.0% in order to give the weld metal sufficient reheat cracking resistance.
- Al 0.5% or less Al is added as a deoxidizer, but if it is contained in a large amount, slag is generated during welding, causing deterioration of the weld metal flow and weld bead uniformity. Is significantly reduced. For this reason, it is preferable that Al is 0.5% or less.
- the lower limit may be 0%, but a preferable lower limit for obtaining the above effect is 0.01%.
- One or more selected from Nb, Ta, and Ti fix C in the weld metal as carbides, and form an oxide containing S
- carbides are crystallized to complicate the shape of the grain boundaries, and segregation of S and Cu grain boundaries is dispersed to prevent reheat cracking during multi-layer welding.
- the total content of one or more selected from Nb, Ta, and Ti exceeds 4.90% in the weld metal, it leads to coarsening of carbides, resulting in deterioration of toughness and workability. Deteriorate. For this reason, it is also necessary to limit the total content of these in the welding material.
- the total content of one or more selected from Nb, Ta and Ti is 4.90% or less. Is good.
- the lower limit of the total content is preferably 2.0%.
- Mo 0.10% or less Mo has been conventionally considered to be an element effective for improving the corrosion resistance in a high-concentration sulfuric acid environment if added, but a base material having the above chemical composition is used.
- Mo in the range of more than 0.10% and less than 6.0% is included in the weld metal, the passive film formed on the surface of the base metal and the passive film formed on the surface of the weld metal A potential difference occurs between the two and different metal corrosion easily proceeds. For this reason, in order to make Mo content in a weld metal into 0.10% or less, it is necessary to reduce Mo content in welding material as much as possible. Therefore, the Mo content is preferably 0.10% or less. The less Mo, the better, and it may be 0%.
- W 0 to 4.5%
- W is an element effective for improving the corrosion resistance in a high-concentration sulfuric acid environment, so W may be contained in the welding material.
- the W content is preferably 0 to 4.5%. The above effect becomes significant at 1.0% or more.
- Co 0 to 5.0% Co may not be contained, but the content in the case of inclusion is preferably 5.0% or less in order to give the necessary performance to the weld metal.
- Cu 0 to 8.0% Cu may not be included, but if included, if its content exceeds 8.0%, the hot workability at the time of manufacturing the welding material is remarkably deteriorated, so the content when included is 8.0%. The following is preferable.
- V 0 to 0.25% V may not be contained, but the content when V is contained is preferably 0.25% or less in order to give the necessary performance to the weld metal.
- B 0 to 0.01% B may not be contained, but the content in the case of inclusion is preferably 0.01% or less in order to give the necessary performance to the weld metal.
- Mg 0 to 0.01%
- Rare earth elements 0-0.01% in total Ca, Mg and rare earth elements do not have to be included, but the content of each element when included is 0.01% or less in order to give the necessary performance to the weld metal. Is preferred.
- the above welded joint according to the present invention is manufactured by a welding method such as a gas shielded arc welding method, a covering arc welding method, a submerged arc welding method or the like typified by TIG method, MIG method, etc. Can do. Of these, the TIG method is preferably used.
- a 50 kg ingot having various chemical compositions shown in Table 1 was produced, and a steel plate having a thickness of 11 mm was obtained from the ingot by hot forging and hot rolling. This steel plate was subjected to solution heat treatment (1100 ° C. ⁇ 30 min) to obtain a plate material of 300 mmL ⁇ 50 mmW ⁇ 10 mmt.
- TIG welding was performed with the two plate materials butted together to obtain a welded joint.
- a welding material having a chemical composition shown in Table 2 was used.
- Table 3 shows the results of analyzing the chemical composition of the weld metal part by fluorescent X-ray analysis.
- a corrosion test piece (10 mmL ⁇ 70 mmW ⁇ 3 mmt) including a weld metal part in the center was sampled and a corrosion test was performed.
- the corrosion test piece was immersed in a 50% H 2 SO 4 solution maintained at 100 ° C. for 336 h, and the corrosion rate (corrosion rate of the entire test piece) was calculated from the mass reduction. Further, corrosion thinning (maximum value) at the interface between the base material and the weld metal part was measured. On the other hand, a test piece (7 mmL ⁇ 7 mmW ⁇ 2 mmt) was cut out from the base metal and the molten metal part of the above welded joint, and the corrosion potential was measured in 50% H 2 SO 4 liquid kept at 100 ° C. Corrosion potential of gold part-corrosion potential of base material) was calculated. These results are shown in Table 4.
- the present invention in austenitic stainless steel joints, it is possible to suppress the corrosion of different metals that occurs between the base metal and the weld metal. Excellent corrosion resistance in an environment where sulfuric acid with a concentration of 40 to 70% is condensed. Therefore, it is optimal as a welded structure member used in such an environment.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Arc Welding In General (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
母材の化学組成が、質量%で、
C:0.05%以下、
Si:1.0%以下、
Mn:2.0%以下、
P:0.04%以下、
S:0.01%以下、
Ni:12.0~27.0%、
Cr:15.0%以上20.0%未満、
Cu:3.0%を超えて8.0%以下、
Mo:2.0%を超えて5.0%以下、
Nb:0~1.0%、
Ti:0~0.5%、
Co:0~0.5%、
Sn:0~0.1%、
W:0~5.0%、
Zr:0~1.0%、
Al:0~0.5%、
N:0.05%未満、
Ca:0~0.01%、
B:0~0.01%、
希土類元素:合計で0~0.01%、
残部:Feおよび不可避不純物であり、
溶接金属の化学組成が、質量%で、
C:0.10%以下、
Si:0.50%以下、
Mn:3.5%以下、
P:0.03%以下、
S:0.03%以下、
Cu:0.50%以下、
Ni:51.0%以上80.0%以下、
Cr:14.5~23.0%、
Mo:0.10%以下、
Al:0.40%以下、
Nb、TaおよびTiから選択される1種以上:合計で4.90%以下、
Co:2.5%以下、
V:0.35%以下、
W:4.5%以下、
残部:Feおよび不可避不純物である、溶接構造部材。
以下、母材の化学組成について詳しく説明する。
Cは、強度を高めるのに有効な元素である。しかし、Cは、Crと結合して粒界にCr炭化物を形成し、耐粒界腐食性を低下させる。このため、その含有量は0.05%以下とする。下限は、0%でもよいが、過剰な低減は製造コストの上昇を招くので、実用的な下限は、0.002%である。強度を高める必要がある場合には、0.03%を超えて含有させるのがよい。しかし、耐食性の確保が優先される場合には、Cの含有量は低い方がよく、0.03%以下とすることが望ましい。
Siは、添加しなくてもよいが、添加すれば、脱酸作用を有する。しかし、その含有量が1.0%を超えると熱間加工性の低下を助長し、3.0%を超えるCuを含有する場合には工業的規模での製品への加工が極めて難しくなる。したがって、Si含有量は1.0%以下とする。この効果を確実に得るには、0.05%以上の含有させることが好ましい。なお、熱間加工性を高める目的からAl含有量を極めて低くした場合には、0.1%以上のSiを含有させて脱酸作用を充分に行わせることが好ましい。
Mnは、添加しなくてもよいが、添加すれば、Sを固定して熱間加工性を高めるとともに、オーステナイト相を安定化させる作用を有する。しかし、2.0%を超えて含有させてもその効果は飽和し、コストが嵩むばかりである。したがって、Mnの含有量を2.0%以下とした。上記の効果を確実に得るには、Mnは0.1%以上の含有量とすることが好ましい。
Pは、熱間加工性および耐食性を劣化させるので、その含有量は低いほどよく、特に、0.04%を超えると「高濃度の硫酸が凝結する環境」における耐食性の劣化が著しくなる。したがって、Pの含有量を0.04%以下とした。下限は、0%でもよいが、過剰な低減は製造コストの上昇を招くので、実用的な下限は、0.003%である。
Sは、熱間加工性を劣化させる元素であり、その含有量はできるだけ少ない方がよい。特に、0.01%を超えると熱間加工性の著しい劣化を招く。したがって、Sの含有量を0.01%以下とした。下限は、0%でもよいが、過剰な低減は製造コストの上昇を招くので、実用的な下限は、0.0001%である。
Niは、オーステナイト相を安定化させる作用を有するとともに、「高濃度の硫酸が凝結する環境」中での耐食性を高める作用もある。こうした効果を充分確保するためには、12.0%以上の量のNiを含有させることが必要である。しかし、27.0%を超えて含有させてもその効果は飽和する。更に、Niは高価な元素であるため、コストが極めて高くなって経済性に欠ける。したがって、Niの含有量を12.0~27.0%とした。なお、「高濃度の硫酸が凝結する環境」中で充分な耐食性を確保するためには15.0%を超える量のNiを含有させることが好ましく、20.0%を超える量のNiを含有させれば一層好ましい。
Crは、オーステナイト系ステンレス鋼の耐食性を確保するのに有効な元素である。特に、Nを後述の含有量に規制したオーステナイト系ステンレス鋼において、15.0%以上のCr、好ましくは16.0%以上のCrを後述する量のCuおよびMoとともに含有させると、「高濃度の硫酸が凝結する環境」で良好な耐食性を確保することができる。しかし、Crを多量に含有させると、N含有量を低くし、CuとMoとを複合添加したオーステナイト系ステンレス鋼の場合であっても、前記の環境中における耐食性が却って劣化し、また、加工性の低下も生ずる。特に、Cr含有量が26.0%を超えると前記環境中におけるオーステナイト系ステンレス鋼の耐食性劣化が著しくなる。また、CuとMoとを複合添加したオーステナイト系ステンレス鋼の熱間加工性を高めて、工業的規模での製品加工を容易にするには、Crの含有量を20.0%未満にすることが好ましいので、Crの含有量を15.0%以上20.0%未満とした。
Cuは、硫酸環境中での耐食性を確保するのに必須の元素である。3.0%を超えるCuを所定量のCrおよび後述する量のMoとともに含有させることで「高濃度の硫酸が凝結する環境」において、Nを後述の含有量にしたオーステナイト系ステンレス鋼に良好な耐食性を付与することができる。CuおよびMoと複合添加するCuの含有量が多いほど耐食性向上効果が大きいので、Cuは3.5%を超える含有量とすることが好ましく、4.0%を超える含有量とすることがより好ましく、5.0%を超える含有量とすれば一層好ましい。なお、Cuの含有量を増やすことにより前記環境中での耐食性は向上するが熱間加工性が低下し、特に、Cuの含有量が8.0%を超えると、Nを後述の含有量にしても熱間加工性の著しい劣化を生ずる。したがって、Cuの含有量は、3.0%を超えて8.0%以下とした。
Moは、オーステナイト系ステンレス鋼の耐食性を確保するのに有効な元素である。特に2.0%を超える量のMoを所定量のCrおよびCuとともに含有させると、「高濃度の硫酸が凝結する環境」において、所定量のNを含むオーステナイト系ステンレス鋼に良好な耐食性を付与することができる。しかし、Moを多量に含有させると熱間加工性が低下し、特に、Moの含有量が5.0%を超えると、Nを所定の含有量にしても熱間加工性の著しい劣化を生ずる。したがって、Moの含有量は、2.0%を超えて5.0%以下とした。なお、「高濃度の硫酸が凝結する環境」中で充分な耐食性を確保するためには3.0%を超える量のMoを含有させることが好ましい。
Nbは、添加しなくてもよいが、添加すれば、Cを固定して耐食性、なかでも耐粒界腐食性を高める作用を有する。しかし、その含有量が1.0%を超えると、Nを所定の含有量にした場合でも窒化物が生成して却って耐食性が低下し、また、熱間加工性の劣化も招く。したがって、Nbの含有量を0~1.0%とした。上記の効果を確実に得るには、Nbは、0.02%以上の含有量とすることが好ましい。
Tiは添加しなくてもよいが、添加すれば、Nbと同様にCを固定して耐食性、なかでも耐粒界腐食性を高める作用を有する。しかし、その含有量が0.5%を超えると、Nを所定の含有量にした場合でも窒化物が生成して却って耐食性が低下し、また、熱間加工性の劣化も招く。したがって、Tiの含有量は、0~0.5%とした。上記の効果を確実に得るには、Tiは、0.01%以上の含有量とすることが好ましい。
Sn:0~0.1%
前述のように、異種金属接触腐食は、通常の腐食とは異なり、卑な(電位の低い)金属の電位が高くなるため、FeおよびCrの溶解が加速される。CoおよびSnは、このような異種金属接触腐食環境において、FeおよびCrの溶解速度を低下させることができ、異種金属接触腐食環境における耐食性を飛躍的に改善することができる元素である。このため、これらの元素の一種以上を含有させるのがよい。上記の効果は、Coは0.01%以上、Snは0.001%以上で顕著となる。ただし、これらの元素の含有量が過剰な場合には、 製造性を低下させるので、Coの上限は0.5%、Snの上限は0.1%とした。
Wは、添加しなくてもよいが、添加すれば、「高濃度の硫酸が凝結する環境」における耐食性を高める作用がある。しかし、5.0%を超えてWを含有させてもその効果は飽和し、コストが嵩むばかりである。したがって、Wの含有量は、0~5.0%とした。上記の効果を確実に得るには、Wは、0.1%以上の含有量とすることが好ましい。
Zrは、添加しなくてもよいが、添加すれば、「高濃度の硫酸が凝結する環境」における耐食性を高める作用を有する。しかし、1.0%を超えてZrを含有させてもその効果は飽和し、コストが嵩むばかりである。したがって、Zrの含有量は、0~1.0%とした、上記の効果を確実に得るには、Zrは、0.02%以上の含有量とすることが好ましい。
Alは、添加しなくてもよいが、添加すれば、脱酸作用を有する。しかし、Alの含有量が0.5%を超えると、Nを所定の含有量にしたオーステナイト系ステンレス鋼であっても熱間加工性が低下してしまう。したがって、Al含有量を0~0.5%とした。Al含有量の下限は不可避不純物の範囲であってもよい。但し、Alは脱酸作用を有するため、前記したSiの含有量を極めて低く抑えた場合には、0.02%以上を含有させて脱酸作用を充分に行わせることが好ましい。なお、0.05%以上のSiを含有させた場合でも、脱酸作用を充分に発揮させるためには、Alの含有量を0.01%以上とすることが好ましい。
Nは、従来、オーステナイト組織の安定化、孔食や隙間腐食などの「局部腐食」に対する抵抗性を高める目的から積極的に添加されてきた。しかし、本発明が対象とする「高濃度の硫酸が凝結する環境」においては、Nの含有量が0.05%以上になると、3.0%を超えるCu、2.0%を超えるMoおよび15.0以上20.0%未満のCrを含有させたオーステナイト系ステンレス鋼の耐食性が却って低下してしまう。更に、CuとMoの含有量の上限をそれぞれ8.0%、5.0%にした場合であっても、Nの含有量が0.05%以上になると熱間加工性が低下してしまう。このため、「高濃度の硫酸が凝結する環境」における耐食性と熱間加工性とをオーステナイト系ステンレス鋼に付与させるために、Nの含有量を0.05%未満とした。なお、N含有量は低ければ低いほどよい。下限は、0%でもよいが、過剰な低減は製造コストの上昇を招くので、実用的な下限は、0.0005%である。
Caは、添加しなくてもよいが、添加すれば、Sと結合して熱間加工性の低下を抑える効果を有する。しかし、その含有量が0.01%を超えると鋼の清浄度が低下して、熱間での製造時に疵が発生する原因となる。したがって、Caの含有量は、0~0.01%とした。上記の効果を確実に得るには、Caは0.0005%以上の含有量とすることが好ましい。より好ましいCaの含有量の下限は0.001%である。
Bは、添加しなくてもよいが、添加すれば、熱間加工性を改善する効果を有する。しかし、Bの多量の添加は粒界へのCr-B化合物の析出を促し、耐食性の劣化を招く。特に、Bの含有量が0.01%を超えると著しい耐食性の劣化をきたす。したがって、Bの含有量は0~0.01%とした。上記の効果を確実に得るには、Bは0.0005%以上の含有量とすることが好ましい。より好ましいBの含有量の下限は0.001%である。
希土類元素は、添加しなくてもよいが、添加すれば、熱間加工性を高める作用を有する。しかし、その含有量が合計で0.01%を超えると鋼の清浄度が低下し、熱間での製造時に疵が発生する原因となる。したがって、希土類元素の含有量を合計で0.01%以下とした。上記の効果を確実に得るには、希土類元素の含有量を合計で0.0005%以上とすることが好ましい。なお、Sc、Yおよびランタノイドの合計17元素の総称である。
次に、溶接金属の化学組成について詳しく説明する。
Cは、マトリックスであるオーステナイト相を安定にする元素である。しかし、過剰に添加すると溶接熱サイクルによりCr炭窒化物を生成し、耐食性の劣化を招くとともに強度低下の原因になる。さらに、Cは粒界に偏析したSiおよびマトリックス中のFeと反応して低融点化合物を生成し、再熱割れ感受性を増大させる。このため、C含有量は0.10%以下とする。好ましい上限は0.03%である。なお、C含有量はできる限り低い方が好ましいが、極度の低減はコスト上昇を招くので、その下限は0.005%でもよい。
Siは、脱酸剤として添加されるが、溶接金属の凝固時に結晶粒界に偏析し、CおよびマトリックスのFeと反応して低融点化合物を生成し、多層溶接時の再熱割れの原因となる。このため、Si含有量は0.50%以下とする。なお、Si含有量は低ければ低いほどよく、脱酸に十分なAl、Mn等を含む場合には、必ずしも添加する必要はない。脱酸効果を得る必要がある場合には0.02%以上含有させるのがよい。
Mnは、脱酸剤として添加され、マトリックスであるオーステナイト相を安定にする。しかし、過剰に添加すると高温かつ長時間の使用中に金属間化合物の生成を促進し、脆化を招く。このため、Mn含有量は3.5%以下とする。好ましい上限は2.0%である。なお、下限は特に定める必要はない。また、Mnは、他の元素(Si、Al)によって脱酸が十分に行われる場合には、その含有量は0%でもよい。
Pは、不可避不純物であり、溶接の際、溶接金属の凝固時に最終凝固部に偏析し、残留液相の融点を低下させ、凝固割れを発生させる。このため、P含有量は0.03%以下とする。好ましい上限は0.015%である。なお、P含有量は製造コストに問題がない限り低ければ低いほどよい。下限は、0%でもよいが、過剰な低減は製造コストの上昇を招くので、実用的な下限は、0.003%である。
Sは、上記のPと同様の不可避不純物であり、溶接の際、溶接金属の凝固時に低融点の共晶物を形成し凝固割れを発生させるとともに、結晶粒界に偏析して粒界の固着力を低下させ、再熱割れ発生の原因となる。このため、S含有量は0.03%以下とする。好ましい上限は0.015%である。なお、S含有量は製造コストに問題がない限り低ければ低いほどよい。下限は、0%でもよいが、過剰な低減は製造コストの上昇を招くので、実用的な下限は、0.0001%である。
Cuは、高濃度の硫酸環境での耐食性を向上させるのに有効な元素である。しかし、0.50%を超えて含有させると、最終凝固する液相の融点を低下させ、凝固割れを発生させる。また、Cuは凝固時に結晶粒界に偏析して粒界の固着力を低下させ、多層溶接時の再熱割れを招く。このため、Cu含有量は、0.50%以下とする。下限は、0%でもよいが、過剰な低減は製造コストの上昇を招くので、実用的な下限は、 0.01%である。
Niは、マトリックスであるオーステナイト相を安定化させるとともに、高濃度の硫酸を含んだ環境中での耐食性を確保するために必須の元素である。しかし、過剰な添加は、溶接割れ感受性を高めるとともに、Niは高価な元素であるためにコスト上昇を招く。このため、Ni含有量は、51.0%以上80.0%以下とする。
Crは、高温での耐酸化性および耐食性の確保のために有効な元素であり、高濃度の硫酸を含んだ環境中での耐食性を確保するためには必須の元素である。十分な耐酸化性および耐食性を確保するためには、14.5%以上が必要である。しかし、過剰な添加はかえって耐食性を劣化させるとともに、加工性を著しく劣化させる。このため、Cr含有量は14.5~23.0%とする。
Moは、従来、添加すれば高濃度の硫酸環境での耐食性を向上させるのに有効な元素であると考えられてきたが、前記の化学組成を有する母材を用いた継手の場合、溶接金属中に0.10%を超え6.0%未満の範囲のMoが含まれると、母材表面に形成される不動態皮膜と溶接金属表面に形成される不動態皮膜との間で電位差が生じ、異種金属腐食が進行しやすくなる。このため、Moの含有量は、0.10%以下とした。Moは少ないほどよく、0%であってもよい。ただし、過剰な低減は製造コストの上昇を招くので、実用的な下限は、0.01%である。
Alは、脱酸剤として添加されるが、多量に含まれると溶接中にスラグを生成して溶接金属の湯流れおよび溶接ビードの均一性を劣化させ、溶接施工性を著しく低下させる。また、裏波形成する溶接条件領域を狭くする。このため、Al含有量は0.40%以下とする必要がある。好ましい上限は0.30%、より好ましい上限は0.20%である。Alは少ないほどよく、0%であってもよい。ただし、過剰な低減は製造コストの上昇を招くので、実用的な下限は、0.001%である。
Ti、NbおよびTaは、溶接金属中のCを炭化物として固定し、また、Sを含む酸化物を形成して結晶粒界の固着力を向上させるほか、炭化物を晶出して結晶粒界の形状を複雑にし、S、Cuの結晶粒界偏析を分散させて多層盛り溶接時の再熱割れを防止する。しかし、Nb、TaおよびTiから選択される1種以上の合計含有量が4.90%を超える場合には、炭化物の粗大化を招き、靱性の劣化を招くとともに、加工性を劣化させる。このため、Nb、TaおよびTiから選択される1種以上の合計含有量は、4.90%以下とする。この合計含有量の下限は2.0%とするのが好ましい。
Coは、添加しなくてもよいが、添加すれば、Niと同様にオーステナイト相を安定化させるとともに、高濃度の硫酸環境での耐食性を向上させるのに有効な元素である。しかし、Coは、Niに比べ非常に高価な元素で、多量添加はコスト上昇を招く。このため、Co含有量は2.5%以下とする。好ましい上限は2.0%、より好ましい上限は1.5%である。上記の効果は0.5%以上で顕著になる。
Vは、添加しなくてもよいが、添加すれば、高温強度を向上させるのに有効な元素である。しかし、過剰な添加は多量の炭窒化物を析出させ、靭性の低下を招く。このため、V含有量は0.35%以下とするのがよい。上記の効果は0.05%以上で顕著になる。
Wは、添加しなくてもよいが、添加すれば、高濃度の硫酸環境での耐食性を向上させるのに有効な元素である。しかし、その含有量が4.5%を超えると、その効果が飽和するばかりか、かえって使用中に炭化物や金属間化合物の生成を招き、耐食性および靱性劣化の原因となる。W含有量は、4.5%以下とする。上記の効果は、1.0%以上で顕著となる。
C:0.08%以下、
Si:2.0%以下、
Mn:3.1%以下、
P:0.02%以下、
S:0.02%以下、
Ni:4.0~80.0%、
Cr:15.0~30.0%、
Al:0.5%以下、
Nb、TaおよびTiから選択される1種以上:合計で4.90%以下、
Mo:0.10%以下
W:0~4.5%
Co:0~5.0%、
Cu:0~8.0%、
V:0~0.25%、
B:0~0.01%、
Ca:0~0.01%、
Mg:0~0.01%、
希土類元素:合計で0~0.01%、
残部:Feおよび不可避的不純物である化学組成を有するものを用いるのがよい。
C含有量は、溶接金属に十分な性能を与えるためには、0.08%以下であることが好ましい。下限は、0%でもよいが、上記の効果を得るための好ましい下限は、0.002%である。
Siは、その含有量が2.0%を超えると溶接材料製造時の熱間加工性を著しく劣化させるとともに、溶接金属中のSi含有量を増大させて再熱割れ感受性を増大させるので、2.0%以下であることが好ましい。下限は、0%でもよいが、上記の効果を得るための好ましい下限は、0.02%である。
Mnは、その含有量が3.1%を超えると、溶接材料製造時の熱間加工性を劣化させるとともに、溶接時に多量のヒュームの発生を招くので、3.1%以下であることが好ましい。下限は、0%でもよいが、上記の効果を得るための好ましい下限は、0.01%である。
Pは、不可避不純物であり、溶接の際、溶接金属の凝固時に最終凝固部に偏析し、残留液相の融点を低下させ、凝固割れを発生させるため、0.02%以下であることが好ましい。下限は、0%でもよいが、過剰な低減は製造コストの上昇を招くので、実用的な下限は、0.003%である。
Sは、その含有量が0.02%を超えると溶接材料製造時の熱間加工性を劣化させるとともに、溶接金属中のS含有量を増大させて凝固割れ感受性および再熱割れ感受性を増大させるので、0.02%以下であることが好ましい。下限は、0%でもよいが、過剰な低減は製造コストの上昇を招くので、実用的な下限は、0.0001%である。
Niは、マトリックスであるオーステナイト相を安定化させるとともに、高濃度の硫酸を含んだ環境中での耐食性を確保するために必須の元素である。しかし、過剰な添加は、溶接割れ感受性を高めるとともに、Niは高価な元素であるためにコスト上昇を招く。このため、4.0~80.0%とする。ただし、Ni+Co+2Cu≧25を満たす量であることが好ましい。
Cr含有量は、溶接金属に十分な耐再熱割れ性を与えるためには15.0~30.0%であることが好ましい。
Alは、脱酸剤として添加されるが、多量に含まれると溶接中にスラグを生成して溶接金属の湯流れおよび溶接ビードの均一性を劣化させ、溶接施工性を著しく低下させる。このため、Alは0.5%以下であることが好ましい。下限は、0%でもよいが、上記の効果を得るための好ましい下限は、0.01%である。
Ti、NbおよびTaは、溶接金属中のCを炭化物として固定し、また、Sを含む酸化物を形成して結晶粒界の固着力を向上させるほか、炭化物を晶出して結晶粒界の形状を複雑にし、S、Cuの結晶粒界偏析を分散させて多層盛り溶接時の再熱割れを防止する。しかし、溶接金属中において、Nb、TaおよびTiから選択される1種以上の合計含有量が4.90%を超える場合には、炭化物の粗大化を招き、靱性の劣化を招くとともに、加工性を劣化させる。このため、溶接材料中のこれらの合計含有量も制限する必要があり、具体的には、Nb、TaおよびTiから選択される1種以上の合計含有量は、4.90%以下とするのがよい。この合計含有量の下限は2.0%とするのが好ましい。
Moは、従来、添加すれば高濃度の硫酸環境での耐食性を向上させるのに有効な元素であると考えられてきたが、前記の化学組成を有する母材を用いた継手の場合、溶接金属中に0.10%を超え6.0%未満の範囲のMoが含まれると、母材表面に形成される不動態皮膜と溶接金属表面に形成される不動態皮膜との間で電位差が生じ、異種金属腐食が進行しやすくなる。このため、溶接金属中のMoの含有量を0.10%以下とするためには、溶接材料中のMo含有量を極力低減する必要がある。よって、Mo含有量は0.10%以下するのがよい。Moは少ないほどよく、0%であってもよい。
Wは、溶接金属中に含まれると、高濃度の硫酸環境での耐食性を向上させるのに有効な元素であるので、溶接材料に含有させてもよい。しかし、その含有量が4.5%を超えると、その効果が飽和するばかりか、かえって使用中に炭化物や金属間化合物の生成を招き、耐食性および靱性劣化の原因となる。よって、W含有量は、0~4.5%とするのがよい。上記の効果は、1.0%以上で顕著となる。
Coは、含まなくてもよいが、含む場合の含有量は、溶接金属に必要な性能を与えるためには、5.0%以下であることが好ましい。
Cuは、含まなくてもよいが、含む場合、その含有量が8.0%超であると溶接材料製造時の熱間加工性を著しく低下させるので、含む場合の含有量は8.0%以下であることが好ましい。
Vは、含まなくてもよいが、含む場合の含有量は、溶接金属に必要な性能を与えるためには、0.25%以下であることが好ましい。
Bは、含まなくてもよいが、含む場合の含有量は、溶接金属に必要な性能を与えるためには0.01%以下であることが好ましい。
Mg:0~0.01%
希土類元素:合計で0~0.01%
Ca、Mgおよび希土類元素は、いずれも含まなくてもよいが、含む場合の各元素の含有量は、溶接金属に必要な性能を与えるためにはいずれの元素も0.01%以下であることが好ましい。
本発明になる上記の溶接継手は、例えば、TIG法、MIG法などに代表されるガスシールドアーク溶接法、被覆アーク溶接法、潜弧溶接法などの溶接方法により製造することができる。なかでも、TIG法を用いるのがよい。
Claims (2)
- オーステナイト系ステンレス鋼材継手を備える溶接構造部材であって、
母材の化学組成が、質量%で、
C:0.05%以下、
Si:1.0%以下、
Mn:2.0%以下、
P:0.04%以下、
S:0.01%以下、
Ni:12.0~27.0%、
Cr:15.0%以上20.0%未満、
Cu:3.0%を超えて8.0%以下、
Mo:2.0%を超えて5.0%以下、
Nb:0~1.0%、
Ti:0~0.5%、
Co:0~0.5%、
Sn:0~0.1%、
W:0~5.0%、
Zr:0~1.0%、
Al:0~0.5%、
N:0.05%未満、
Ca:0~0.01%、
B:0~0.01%、
希土類元素:合計で0~0.01%、
残部:Feおよび不可避不純物であり、
溶接金属の化学組成が、質量%で、
C:0.10%以下、
Si:0.50%以下、
Mn:3.5%以下、
P:0.03%以下、
S:0.03%以下、
Cu:0.50%以下、
Ni:51.0%以上80.0%以下、
Cr:14.5~23.0%、
Mo:0.10%以下、
Al:0.40%以下、
Nb、TaおよびTiから選択される1種以上:合計で4.90%以下、
Co:2.5%以下、
V:0.35%以下、
W:4.5%以下、
残部:Feおよび不可避不純物である、溶接構造部材。 - 前記母材の化学組成が、質量%で、
Co:0.01~0.5%および/または
Sn:0.001~0.1%を含有する、
請求項1に記載の溶接構造部材。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780021708.7A CN109070281A (zh) | 2016-03-31 | 2017-03-31 | 焊接结构构件 |
ES17775580T ES2818655T3 (es) | 2016-03-31 | 2017-03-31 | Elemento estructural soldado |
CA3019554A CA3019554C (en) | 2016-03-31 | 2017-03-31 | Welding structure member |
EP17775580.8A EP3437790B1 (en) | 2016-03-31 | 2017-03-31 | Welded structural member |
KR1020187029217A KR20180122675A (ko) | 2016-03-31 | 2017-03-31 | 용접 구조 부재 |
US16/088,865 US20190105727A1 (en) | 2016-03-31 | 2017-03-31 | Welding Structure Member |
JP2018509683A JP6566125B2 (ja) | 2016-03-31 | 2017-03-31 | 溶接構造部材 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-072161 | 2016-03-31 | ||
JP2016072161 | 2016-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017171049A1 true WO2017171049A1 (ja) | 2017-10-05 |
Family
ID=59966037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013734 WO2017171049A1 (ja) | 2016-03-31 | 2017-03-31 | 溶接構造部材 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20190105727A1 (ja) |
EP (1) | EP3437790B1 (ja) |
JP (1) | JP6566125B2 (ja) |
KR (1) | KR20180122675A (ja) |
CN (1) | CN109070281A (ja) |
CA (1) | CA3019554C (ja) |
ES (1) | ES2818655T3 (ja) |
WO (1) | WO2017171049A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102065227B1 (ko) | 2017-12-24 | 2020-01-10 | 주식회사 포스코 | 스테인리스강용 용접재료 및 이를 이용하여 용접된 물품 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109894772B (zh) * | 2019-04-29 | 2021-03-19 | 重庆大学 | 一种用于拳头式仿生结构大型热锻模具皮肤层的药芯丝材及其制备方法 |
AU2021242774B2 (en) * | 2020-03-25 | 2024-02-01 | Nippon Steel Stainless Steel Corporation | Weld structure, stainless steel welded structure, stainless steel welded container and stainless steel |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999009231A1 (fr) * | 1997-08-13 | 1999-02-25 | Sumitomo Metal Industries, Ltd. | Acier inoxydable austenitique presentant une excellente resistance a la corrosion par l'acide sulfurique et une excellente aptitude au faconnage |
JPH11277293A (ja) * | 1998-03-26 | 1999-10-12 | Sumitomo Metal Ind Ltd | 耐再熱割れ性に優れる溶接材料および溶接継手 |
JP2001107196A (ja) * | 1999-10-07 | 2001-04-17 | Sumitomo Metal Ind Ltd | 耐溶接割れ性と耐硫酸腐食性に優れたオーステナイト鋼溶接継手およびその溶接材料 |
WO2009093676A1 (ja) * | 2008-01-25 | 2009-07-30 | Sumitomo Metal Industries, Ltd. | 溶接材料および溶接継手構造体 |
JP2011147947A (ja) * | 2010-01-19 | 2011-08-04 | Jfe Engineering Corp | 銅製部材及び銅製部材の防食方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002069591A (ja) * | 2000-09-01 | 2002-03-08 | Nkk Corp | 高耐食ステンレス鋼 |
KR100663720B1 (ko) * | 2003-06-10 | 2007-01-02 | 수미도모 메탈 인더스트리즈, 리미티드 | 오스테나이트계강 용접 조인트 |
JP4699162B2 (ja) * | 2005-04-15 | 2011-06-08 | 新日鐵住金ステンレス株式会社 | 低温靱性と耐海水腐食性に優れたオーステナイト系ステンレス鋼製溶接構造物 |
JP4946242B2 (ja) * | 2006-07-27 | 2012-06-06 | 住友金属工業株式会社 | オーステナイト系ステンレス鋼溶接継手及びオーステナイト系ステンレス鋼溶接材料 |
CN101318273A (zh) * | 2007-06-08 | 2008-12-10 | 江苏兴海特钢有限公司 | 奥氏体不锈钢用超低碳焊丝材料 |
US8865060B2 (en) * | 2007-10-04 | 2014-10-21 | Nippon Steel & Sumitomo Metal Corporation | Austenitic stainless steel |
WO2009044802A1 (ja) * | 2007-10-04 | 2009-04-09 | Sumitomo Metal Industries, Ltd. | オーステナイト系ステンレス鋼 |
ES2633019T3 (es) * | 2011-05-13 | 2017-09-18 | Nippon Steel & Sumitomo Metal Corporation | Material de soldadura y unión de soldadura |
CA2938190C (en) * | 2014-02-26 | 2018-08-21 | Nippon Steel & Sumitomo Metal Corporation | Welded joint |
-
2017
- 2017-03-31 WO PCT/JP2017/013734 patent/WO2017171049A1/ja active Application Filing
- 2017-03-31 CA CA3019554A patent/CA3019554C/en active Active
- 2017-03-31 KR KR1020187029217A patent/KR20180122675A/ko not_active Application Discontinuation
- 2017-03-31 ES ES17775580T patent/ES2818655T3/es active Active
- 2017-03-31 JP JP2018509683A patent/JP6566125B2/ja active Active
- 2017-03-31 CN CN201780021708.7A patent/CN109070281A/zh not_active Withdrawn
- 2017-03-31 EP EP17775580.8A patent/EP3437790B1/en active Active
- 2017-03-31 US US16/088,865 patent/US20190105727A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999009231A1 (fr) * | 1997-08-13 | 1999-02-25 | Sumitomo Metal Industries, Ltd. | Acier inoxydable austenitique presentant une excellente resistance a la corrosion par l'acide sulfurique et une excellente aptitude au faconnage |
JPH11277293A (ja) * | 1998-03-26 | 1999-10-12 | Sumitomo Metal Ind Ltd | 耐再熱割れ性に優れる溶接材料および溶接継手 |
JP2001107196A (ja) * | 1999-10-07 | 2001-04-17 | Sumitomo Metal Ind Ltd | 耐溶接割れ性と耐硫酸腐食性に優れたオーステナイト鋼溶接継手およびその溶接材料 |
WO2009093676A1 (ja) * | 2008-01-25 | 2009-07-30 | Sumitomo Metal Industries, Ltd. | 溶接材料および溶接継手構造体 |
JP2011147947A (ja) * | 2010-01-19 | 2011-08-04 | Jfe Engineering Corp | 銅製部材及び銅製部材の防食方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3437790A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102065227B1 (ko) | 2017-12-24 | 2020-01-10 | 주식회사 포스코 | 스테인리스강용 용접재료 및 이를 이용하여 용접된 물품 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017171049A1 (ja) | 2018-09-20 |
US20190105727A1 (en) | 2019-04-11 |
EP3437790A1 (en) | 2019-02-06 |
EP3437790B1 (en) | 2020-08-05 |
CA3019554C (en) | 2021-04-27 |
CN109070281A (zh) | 2018-12-21 |
KR20180122675A (ko) | 2018-11-13 |
CA3019554A1 (en) | 2017-10-05 |
ES2818655T3 (es) | 2021-04-13 |
EP3437790A4 (en) | 2019-08-21 |
JP6566125B2 (ja) | 2019-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6566126B2 (ja) | 溶接構造部材 | |
KR102466688B1 (ko) | 오스테나이트계 스테인리스강 용접 이음 | |
JP4803174B2 (ja) | オーステナイト系ステンレス鋼 | |
KR20100060026A (ko) | 오스테나이트계 스테인리스강 | |
WO2019070000A1 (ja) | オーステナイト系ステンレス鋼溶接金属および溶接構造物 | |
WO2011034100A1 (ja) | Ni基合金材 | |
WO2013035588A1 (ja) | 二相ステンレス鋼 | |
JP4784239B2 (ja) | ティグ溶接用フェライト系ステンレス鋼溶加棒 | |
JP4787007B2 (ja) | 尿素製造プラント用二相ステンレス鋼、溶接材料及び尿素製造プラント | |
JP6566125B2 (ja) | 溶接構造部材 | |
JPWO2019070001A1 (ja) | オーステナイト系ステンレス鋼溶接金属および溶接構造物 | |
JP6870748B2 (ja) | オーステナイト系ステンレス鋼 | |
JP6442852B2 (ja) | 二相ステンレス鋼溶接継手 | |
JP5857914B2 (ja) | 二相ステンレス鋼用溶接材料 | |
JP2009114471A (ja) | 高強度ステンレスパイプ | |
JP4241431B2 (ja) | フェライト系ステンレス鋼 | |
WO2018066573A1 (ja) | オーステナイト系耐熱合金およびそれを用いた溶接継手 | |
JP4998014B2 (ja) | オーステナイト系ステンレス鋼用溶接材料並びにそれを用いてなる溶接金属及び溶接継手 | |
JP6638551B2 (ja) | オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手 | |
JP7183808B2 (ja) | オーステナイト系耐熱鋼用溶接材料、溶接金属、溶接構造物、および溶接構造物の製造方法 | |
JP2004230410A (ja) | 溶接材料及び溶接金属 | |
JP2004230404A (ja) | 溶接材料及び溶接金属 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018509683 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3019554 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187029217 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017775580 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017775580 Country of ref document: EP Effective date: 20181031 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17775580 Country of ref document: EP Kind code of ref document: A1 |