WO2019098233A1 - 2相ステンレス鋼及び2相ステンレス鋼の製造方法 - Google Patents

2相ステンレス鋼及び2相ステンレス鋼の製造方法 Download PDF

Info

Publication number
WO2019098233A1
WO2019098233A1 PCT/JP2018/042114 JP2018042114W WO2019098233A1 WO 2019098233 A1 WO2019098233 A1 WO 2019098233A1 JP 2018042114 W JP2018042114 W JP 2018042114W WO 2019098233 A1 WO2019098233 A1 WO 2019098233A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
less
content
duplex stainless
test
Prior art date
Application number
PCT/JP2018/042114
Other languages
English (en)
French (fr)
Inventor
雅之 相良
悠索 富尾
孝裕 小薄
裕介 鵜川
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP18879992.8A priority Critical patent/EP3712289A4/en
Priority to CA3080706A priority patent/CA3080706A1/en
Priority to KR1020207016636A priority patent/KR20200080312A/ko
Priority to BR112020009434-0A priority patent/BR112020009434A2/pt
Priority to US16/759,798 priority patent/US20200332378A1/en
Priority to JP2019554253A priority patent/JPWO2019098233A1/ja
Priority to CN201880073296.6A priority patent/CN111344426A/zh
Publication of WO2019098233A1 publication Critical patent/WO2019098233A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to duplex stainless steel and a method of manufacturing duplex stainless steel.
  • duplex stainless steel having a duplex phase structure of a ferrite phase and an austenite phase has excellent corrosion resistance.
  • the duplex stainless steel is particularly excellent in corrosion resistance against pitting corrosion and / or crevice corrosion (hereinafter referred to as "pitting corrosion resistance") which is a problem in an aqueous solution containing chloride. Therefore, duplex stainless steel is widely used in a wet environment containing chloride such as seawater. In wet environments containing chloride, duplex stainless steels are used, for example, in flow line pipes, umbilical tubes, heat exchangers, and the like.
  • duplex stainless steel In recent years, the corrosion conditions in the use environment of duplex stainless steel are becoming increasingly severe. Therefore, more excellent pitting corrosion resistance is required for duplex stainless steel. Various techniques have been proposed to further improve the pitting resistance of duplex stainless steel.
  • WO 2013/191208 contains, in mass%, Ni: 3 to 8%, Cr: 20 to 35%, Mo: 0.01 to 4.0%, N: 0.05 to 0 .60% are contained, and Re: 2.0% or less, Ga: 2.0% or less, and Ge: 2.0% or less selected from two or more types further characterized by Disclosed is stainless steel.
  • Patent Document 1 by containing Re, Ga, or Ge in a two-phase stainless steel, the critical potential (pitting potential) at which pitting occurs is raised to enhance the pitting corrosion resistance and the crevice corrosion resistance. There is.
  • WO 2010/082395 (patent document 2) contains, in mass%, Cr: 20 to 35%, Ni: 3 to 10%, Mo: 0 to 6%, W: 0 to 6%, Cu: 0 to After preparing a tube for cold working by hot working or further solution heat treatment of a duplex stainless steel material containing 3% and N: 0.15 to 0.60%, cold rolling 2 Disclosed is a method of manufacturing a duplex stainless steel pipe.
  • Patent Document 2 describes, for example, that a two-phase stainless steel pipe that can be used for oil wells and gas wells and that exhibits excellent corrosion resistance in carbon dioxide corrosion environments and stress corrosion environments and that also has high strength can be obtained. ing.
  • Patent Document 3 contains, in mass%, Cr: 20 to 30%, Ni: 1 to 11%, Cu: 0.05 to 3.0%, Nd: 0.005 to 0 Disclosed is a duplex stainless steel containing 5%, N: 0.1 to 0.5%, and one or both of Mo: 0.5 to 6 and W: 1 to 10.
  • the hot workability of duplex stainless steel is improved by containing Nd.
  • Patent Document 4 contains, in% by weight, Cr: 21.0% to 38.0%, Ni: 3.0% to 12.0%, Mo: 1.5% to 6 .5%, W: 0 to 6.5%, N: 0.2% to 0.7%, Ba: 0.0001 to 0.6%, and pitting resistance equivalent index PREW is 40 ⁇ PREW ⁇ Disclosed is a super duplex stainless steel satisfying No. 67. Thereby, super duplex stainless steel excellent in corrosion resistance, embrittlement resistance, castability and hot workability, in which the formation of intermetallic phases such as brittle sigma ( ⁇ ) phase and chi ( ⁇ ) phase is suppressed. It is described in US Pat.
  • duplex stainless steel exhibiting excellent pitting corrosion resistance may be obtained by means other than the techniques described in Patent Documents 1 to 4.
  • An object of the present disclosure is to provide a duplex stainless steel having excellent pitting resistance and a method of manufacturing the duplex stainless steel.
  • the duplex stainless steel according to the present disclosure is, by mass%, Cr: more than 27.00% to 29.00%, Mo: 2.50 to 3.50%, Ni: 5.00 to 8.00%, W: 4.00 to 6.00%, Cu: 0.01 to less than 0.10%, N: more than 0.400% to 0.600%, C: not more than 0.030%, Si: not more than 1.00%, Mn: 1.00% or less, sol.
  • the area ratio of Cu precipitated in the ferrite phase is 0.5% or less.
  • the content (mass%) of each element is substituted into each element symbol in the formula (1).
  • the method for producing a duplex stainless steel according to the present disclosure comprises a preparation step, a hot working step, a cooling step, and a solution heat treatment step.
  • a preparation step a material having the above-described chemical composition is prepared.
  • the hot working process the material is hot worked at 850 ° C. or higher.
  • the cooling step the material after hot working is cooled at 5 ° C./second or more.
  • the solution heat treatment step the cooled material is subjected to solution heat treatment at 1070 ° C. or higher.
  • the duplex stainless steel according to the present disclosure has excellent pitting resistance.
  • the method of producing duplex stainless steel according to the present disclosure can produce the above-described duplex stainless steel.
  • the present inventors investigated and examined methods for enhancing the pitting resistance of duplex stainless steel. As a result, the following findings were obtained.
  • Cr, Mo and Cu are known to be effective in improving the pitting resistance of duplex stainless steel.
  • the mechanism by which Cr and Mo among Cr, Mo and Cu improve the pitting resistance of duplex stainless steel is considered as follows.
  • Cr is a main component of the passive film on the surface of the duplex stainless steel as an oxide.
  • the passive film prevents contact of the corrosion factor with the surface of the duplex stainless steel.
  • the two-phase stainless steel having a passivation film formed on the surface has an increased resistance to pitting corrosion.
  • Mo is contained in the passivation film to further enhance the pitting resistance of the passivation film.
  • the mechanism by which Cu improves the pitting resistance of duplex stainless steel is considered as follows. The following two steps are considered to be present before pitting occurs. The first step is the occurrence of pitting (initial stage). The next step is the development of pitting (progressive phase).
  • Cu has been considered to be effective in suppressing the development of pitting corrosion.
  • active sites having a high dissolution rate are formed on the surface of duplex stainless steel.
  • Cu coats its active sites to inhibit the dissolution of duplex stainless steel. Thus, it has been considered that Cu suppresses the progress of pitting corrosion of duplex stainless steel.
  • Table 1 is a table showing the chemical compositions of the test pieces of Test Nos. 2 and 5 and the pitting potential, which is an indicator of pitting resistance, in Examples described later.
  • the chemical compositions in Table 1 are extracted from the chemical compositions of steel types B and E corresponding to the test numbers 2 and 5 from Table 3 described later and described in two stages.
  • the chemical compositions in Table 1 are listed in mass%, the balance being Fe and impurities.
  • the pitting potential of Table 1 is obtained by extracting the pitting potential of the corresponding test number from Table 4 described later.
  • the Cu content of the test piece of Test No. 2 was higher compared to the Cu content of the test piece of Test No. 5. Furthermore, the Cr and Mo content of the test piece of test number 2 was higher compared to the Cr and Mo content of the test piece of test number 5. Therefore, based on the conventional findings, it can be expected that the test piece of Test No. 2 having a high content of Cr, Mo and Cu has better pitting corrosion resistance than the test piece of Test No. 5.
  • the pitting potential which is an indicator of the pitting resistance of the test piece of test No. 2, is 71 mV vs.
  • the pitting potential of the test piece of test No. 5 is 346 mV vs. SCE. It was lower than SCE.
  • test piece of Test No. 2 expected to have pitting corrosion resistance superior to the test piece of Test No. 5 has a lower pitting resistance than the test No. 5 test piece from the conventional findings. It was Therefore, the inventors focused on the microstructures of the test pieces of Test Nos. 2 and 5 and investigated in more detail. As a result, it was revealed that in the test piece of Test No. 2, the area ratio of Cu deposited in the ferrite phase (referred to as the Cu area ratio in ferrite phase) is higher than that of the test No. 5 test piece.
  • Table 2 is a table showing the chemical compositions of the test pieces of Test Nos. 3 and 6, the Cu area ratio in the ferrite phase, and the pitting potential as an indicator of pitting resistance in Examples described later.
  • the chemical composition of Table 2 is extracted from the chemical composition of steel type C corresponding to the test numbers 3 and 6 from Table 3 to be described later and described in two stages.
  • the chemical compositions in Table 2 are listed in mass%, the balance being Fe and impurities.
  • the Cu area ratio in the ferrite phase of Table 2 extracts and describes the Cu area ratio in the ferrite phase of the corresponding test number from Table 4 described later.
  • the pitting potential of Table 2 is obtained by extracting the pitting potential of the corresponding test number from Table 4 described later.
  • the chemical compositions of the test piece of Test No. 3 and the test piece of Test No. 6 were identical.
  • the Cu area ratio in the ferrite phase was lower than the Cu area ratio in the ferrite phase of the test No. 3 test piece.
  • the pitting potential of the test piece of test No. 6 was 204 mV vs.
  • the pitting potential of the test piece of test No. 3 is -12 mV vs. SCE. It was higher than SCE. That is, in the test piece of Test No. 6, as a result of the reduction of the deposition of Cu in the ferrite phase, it had pitting corrosion resistance superior to that of the test No. 3 test piece.
  • the pitting resistance is enhanced.
  • the present inventors have found for the first time that Cu among Cr, Mo and Cu may rather decrease pitting resistance.
  • the inventors of the present invention have further obtained knowledge that the pitting resistance can be enhanced by reducing the deposition amount of Cu in the ferrite phase, which has not been known at all.
  • Cu deposited in the ferrite phase reduces the pitting resistance of duplex stainless steel is not clear.
  • the present inventors think as follows. Cu deposited in the ferrite phase may inhibit the uniform formation of the passive film. Therefore, when the amount of Cu deposited in the ferrite phase is large, the effect of the passive film on suppressing the contact between the corrosion factor and the surface of the duplex stainless steel may be reduced. As a result, it is believed that pitting corrosion occurs on the surface of the duplex stainless steel.
  • the duplex stainless steel according to the present embodiment which is completed based on the above findings, contains, in mass%, Cr: more than 27.00% to 29.00%, Mo: 2.50 to 3.50%, Ni: 5.00 ⁇ 8.00%, W: 4.00 to 6.00%, Cu: 0.01 to less than 0.10%, N: more than 0.400% to 0.600%, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, sol.
  • the area ratio of Cu precipitated in the ferrite phase is 0.5% or less.
  • the content (mass%) of each element is substituted into each element symbol in the formula (1).
  • the duplex stainless steel according to the present embodiment has the above-described chemical composition and the above-described microstructure, and further, the area ratio of Cu in the ferrite phase is 0.5% or less. As a result, the duplex stainless steel according to the present embodiment has excellent pitting resistance.
  • the chemical composition is selected from the group consisting of Ca: 0.0001 to 0.0040%, Mg: 0.0001 to 0.0040%, and B: 0.0001 to 0.0040% by mass. Contains one or more of the following.
  • the hot workability of the duplex stainless steel according to the present embodiment is enhanced.
  • the method of manufacturing a duplex stainless steel according to the present embodiment includes a preparation step, a hot working step, a cooling step, and a solution heat treatment step.
  • a preparation step a material having the above-described chemical composition is prepared.
  • the hot working process the material is hot worked at 850 ° C. or higher.
  • the cooling step the material after hot working is cooled at 5 ° C./second or more.
  • the solution heat treatment step the cooled material is subjected to solution heat treatment at 1070 ° C. or higher.
  • the duplex stainless steel manufactured by the manufacturing method according to the present embodiment has the above-described chemical composition and the above-described microstructure, and the area ratio of Cu in the ferrite phase is 0.5% or less. As a result, the duplex stainless steel manufactured by the manufacturing method according to the present embodiment has excellent pitting resistance.
  • duplex stainless steel according to the present embodiment will be described in detail.
  • the chemical composition of the duplex stainless steel according to the present embodiment contains the following elements. In addition, unless otherwise indicated,% with respect to an element means mass%.
  • the chemical composition of the duplex stainless steel according to the present embodiment essentially contains the following elements.
  • Chromium (Cr) forms a passive film on the surface of duplex stainless steel as an oxide.
  • the passive film prevents contact of the corrosion factor with the surface of the duplex stainless steel.
  • Cr is also an element necessary to obtain a ferrite structure of duplex stainless steel. By obtaining a sufficient ferrite structure, stable pitting corrosion resistance can be obtained. If the Cr content is too low, these effects can not be obtained. On the other hand, if the Cr content is too high, the hot workability of the duplex stainless steel is reduced. Therefore, the Cr content is more than 27.00% to 29.00%.
  • the preferable lower limit of the Cr content is 27.50%, more preferably 28.00%.
  • the preferred upper limit of the Cr content is 28.50%.
  • Mo 2.50 to 3.50% Molybdenum (Mo) is contained in the passive film to further enhance the corrosion resistance of the passive film. As a result, the pitting resistance of duplex stainless steel is enhanced. If the Mo content is too low, this effect can not be obtained. On the other hand, if the Mo content is too high, the processability in the case of assembling a steel pipe made of duplex stainless steel is lowered. Therefore, the Mo content is 2.50 to 3.50%.
  • the preferable lower limit of the Mo content is 2.80%, more preferably 3.00%.
  • the preferred upper limit of the Mo content is 3.30%.
  • Nickel (Ni) is an austenite stabilizing element, and is an element necessary to obtain a two-phase structure of ferrite and austenite. If the Ni content is too low, this effect can not be obtained. On the other hand, if the Ni content is too high, the balance between the ferrite phase and the austenite phase can not be obtained. In this case, two-phase stainless steel can not be obtained stably. Therefore, the Ni content is 5.00 to 8.00%.
  • the preferable lower limit of the Ni content is 5.50%, more preferably 6.00%.
  • the preferred upper limit of the Ni content is 7.50%.
  • W 4.00 to 6.00% Tungsten (W), like Mo, is included in the passivation film to further enhance the corrosion resistance of the passivation film. As a result, the occurrence of pitting corrosion of duplex stainless steel is suppressed. If the W content is too low, this effect can not be obtained. On the other hand, if the W content is too high, the ⁇ phase is likely to precipitate and the toughness is reduced. Therefore, the W content is 4.00 to 6.00%. The preferable lower limit of the W content is 4.50%. The preferred upper limit of the W content is 5.50%.
  • Cu 0.01 to less than 0.10% Copper (Cu) is an element effective in suppressing the progress of pitting (progressing stage). If the Cu content is too low, this effect can not be obtained. On the other hand, among Cr, Mo and Cu, Cu lowers the pitting resistance at the occurrence of pitting (initial stage). Therefore, the two-phase stainless steel of the present embodiment reduces the Cu content more than the conventional two-phase stainless steel. As a result, the precipitation of Cu in the ferrite phase is suppressed, and the occurrence of pitting (initial stage) of the duplex stainless steel is suppressed. If the Cu content is too high, the Cu area ratio in the ferrite phase becomes too high. In this case, the pitting resistance of duplex stainless steel is reduced. Therefore, the Cu content is 0.01 to less than 0.10%. The preferred upper limit of the Cu content is 0.07%, more preferably 0.05%.
  • N more than 0.400% to 0.600%
  • Nitrogen (N) is an austenite stabilizing element, and is an element necessary to obtain a two-phase structure of ferrite and austenite. N further enhances the pitting resistance of duplex stainless steel. If the N content is too low, these effects can not be obtained. On the other hand, if the N content is too high, the toughness and the hot workability of the duplex stainless steel are reduced. Therefore, the N content is more than 0.400% to 0.600%. The preferable lower limit of the N content is 0.420%. The preferred upper limit of the N content is 0.500%.
  • C 0.030% or less Carbon (C) is inevitably contained. That is, the C content is more than 0%. C forms Cr carbides at grain boundaries and increases the corrosion sensitivity at the grain boundaries. Therefore, the C content is 0.030% or less.
  • the preferred upper limit of the C content is 0.025%, more preferably 0.020%. It is preferable that the C content be as low as possible. However, the extreme reduction of the C content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferable lower limit of the C content is 0.001%, more preferably 0.005%.
  • Si 1.00% or less Silicon (Si) deoxidizes steel.
  • Si silicon
  • the Si content is more than 0%.
  • the Si content is too high, the hot workability of the duplex stainless steel is reduced. Therefore, the Si content is 1.00% or less.
  • the preferred upper limit of the Si content is 0.80%, more preferably 0.70%.
  • the lower limit of the Si content is not particularly limited, and is, for example, 0.20%.
  • Mn 1.00% or less Manganese (Mn) deoxidizes steel.
  • Mn Manganese
  • the Mn content is more than 0%.
  • the Mn content is 1.00% or less.
  • the preferred upper limit of the Mn content is 0.80%, more preferably 0.70%.
  • the lower limit of the Mn content is not particularly limited, and is, for example, 0.20%.
  • Al aluminum
  • Al deoxidizes the steel.
  • Al aluminum
  • the Al content is more than 0%.
  • the Al content is 0.040% or less.
  • the preferred upper limit of the Al content is 0.030%, more preferably 0.025%.
  • the lower limit of the Al content is not particularly limited, and is, for example, 0.005%.
  • the Al content refers to the acid-soluble Al (sol. Al) content.
  • V Vanadium (V) is inevitably contained. That is, the V content is more than 0%. If the V content is too high, the ferrite phase may increase excessively, which may lead to a decrease in toughness and corrosion resistance of the duplex stainless steel. Therefore, the V content is 0.50% or less.
  • the upper limit of the V content is preferably 0.40%, more preferably 0.30%.
  • the lower limit of the V content is not particularly limited, and is, for example, 0.05%.
  • Oxygen (O) is an impurity. That is, the O content is more than 0%. O reduces the hot workability of duplex stainless steel. Therefore, the O content is 0.010% or less.
  • the preferred upper limit of the O content is 0.007%, more preferably 0.005%. It is preferable that the O content be as low as possible. However, the extreme reduction of the O content significantly increases the manufacturing costs. Therefore, when industrial production is considered, the preferable lower limit of O content is 0.0001%, and more preferably 0.0005%.
  • Phosphorus (P) is an impurity. That is, the P content is more than 0%. P reduces the pitting resistance and toughness of duplex stainless steel. Therefore, the P content is 0.030% or less.
  • the upper limit of the P content is preferably 0.025%, more preferably 0.020%.
  • the P content is preferably as low as possible. However, the extreme reduction of P content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferable lower limit of the P content is 0.001%, more preferably 0.005%.
  • S 0.020% or less Sulfur (S) is an impurity. That is, the S content is more than 0%. S reduces the hot workability of duplex stainless steel. Therefore, the S content is 0.020% or less.
  • the upper limit of the S content is preferably 0.010%, more preferably 0.005%, and still more preferably 0.003%.
  • the S content is preferably as low as possible. However, the extreme reduction of the S content significantly increases the manufacturing costs. Therefore, in consideration of industrial production, the preferable lower limit of the S content is 0.0001%, more preferably 0.0005%.
  • the balance of the chemical composition of the duplex stainless steel of the present embodiment consists of Fe and impurities.
  • the impurities in the chemical composition are those mixed from ore as a raw material, scrap, or manufacturing environment when industrially manufacturing duplex stainless steel, and the duplex stainless steel according to the present embodiment. It means what is acceptable as long as it does not adversely affect steel.
  • the chemical composition of the duplex stainless steel according to the present embodiment may optionally contain the following elements.
  • Ca 0 to 0.0040%
  • Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%. When included, Ca enhances the hot workability of the duplex stainless steel. If a small amount of Ca is contained, this effect can be obtained to some extent. On the other hand, if the Ca content is too high, coarse oxides are formed and the hot workability of the duplex stainless steel is reduced. Therefore, the Ca content is 0 to 0.0040%.
  • the preferable lower limit of the Ca content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%.
  • the preferred upper limit of the Ca content is 0.0030%.
  • Mg 0 to 0.0040%
  • Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%.
  • Mg like Ca
  • the Mg content is 0 to 0.0040%.
  • the preferable lower limit of the Mg content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%.
  • the upper limit of the Ca content is preferably 0.0030%.
  • B 0 to 0.0040% Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When included, B, like Ca and Mg, enhances the hot workability of duplex stainless steels. If even a small amount of B is contained, this effect can be obtained to some extent. On the other hand, if B content is too high, the toughness of duplex stainless steel will fall. Therefore, the B content is 0 to 0.0040%.
  • the preferable lower limit of the B content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%.
  • the upper limit of the Ca content is preferably 0.0030%.
  • F1 Cr + 4.0 ⁇ Mo + 2.0 ⁇ W + 20 ⁇ N-5 ⁇ ln (Cu).
  • F1 is an index showing pitting resistance. If F1 is less than 65.2, the pitting corrosion resistance of duplex stainless steel will fall. Therefore, F1 ⁇ 65.2.
  • the lower limit of F1 is preferably 68.0, more preferably 69.0, and still more preferably 70.0.
  • the upper limit of F1 is not particularly limited, and is, for example, 90.0.
  • the microstructure of the duplex stainless steel according to the present embodiment consists of ferrite and austenite. Specifically, in the microstructure of the duplex stainless steel according to the present embodiment, 35 to 65% by volume of a ferrite phase and the balance consist of an austenite phase. If the volume fraction of the ferrite phase (hereinafter, also referred to as ferrite fraction) is less than 35%, the possibility of stress corrosion cracking may increase depending on the use environment. On the other hand, when the volume fraction of the ferrite phase exceeds 65%, the possibility of decreasing the toughness of the duplex stainless steel is increased. Therefore, in the microstructure of the duplex stainless steel according to the present embodiment, 35 to 65% by volume of the ferrite phase and the balance are the austenite phase.
  • the ferrite fraction of the duplex stainless steel can be determined by the following method. First, a specimen for microstructure observation is taken from duplex stainless steel. If the duplex stainless steel is a steel plate, a cross section perpendicular to the width direction of the steel plate (hereinafter referred to as an observation surface) is polished. If the duplex stainless steel is a steel pipe, a cross section (observation surface) including the axial direction of the steel pipe and the thickness direction is polished. If the duplex stainless steel is a bar or wire, a cross section (viewing surface) including the axial direction of the bar or wire is polished. Next, the observation surface after polishing is etched using a mixed solution of aqua regia and glycerin.
  • the etched observation surface is observed for 10 fields of view with an optical microscope.
  • the visual field area is, for example, 2000 ⁇ m 2 (500 ⁇ magnification).
  • ferrite and other phases can be distinguished from contrast. Therefore, the ferrite in each observation is specified from the contrast.
  • the area ratio of the identified ferrite is measured by a point calculation method in accordance with JIS G0555 (2003).
  • the area fraction measured is defined as the ferrite fraction (volume%), assuming that it is equal to the volume fraction.
  • the area ratio of Cu precipitated in the ferrite phase of the duplex stainless steel according to the present embodiment is 0.5% or less.
  • Cu contained in duplex stainless steel is considered to suppress the development of pitting corrosion of duplex stainless steel. Therefore, in the duplex stainless steel according to the present embodiment, Cu is contained in an amount of 0.01 to less than 0.10%.
  • metal Cu may be precipitated in the ferrite phase. As described above, it has been revealed that Cu deposited in the ferrite phase reduces the effect of suppressing the occurrence of pitting corrosion by the passive film. That is, the metal Cu precipitated in the ferrite phase reduces the pitting resistance of the duplex stainless steel.
  • the duplex stainless steel according to the present embodiment reduces the Cu area ratio in the ferrite phase to 0.5% or less. Therefore, the occurrence of pitting corrosion of duplex stainless steel is suppressed.
  • the lower the Cu area ratio in the ferrite phase the better.
  • the upper limit of the Cu area ratio in the ferrite phase is preferably 0.3%, and more preferably 0.1%.
  • the lower limit of the Cu area ratio in the ferrite phase is 0.0%.
  • the Cu area ratio in the ferrite phase means the area ratio of Cu precipitated in the ferrite phase to the ferrite phase in the microstructure of the duplex stainless steel.
  • the Cu area ratio in the ferrite phase can be measured by the following method.
  • a thin film sample for observation of a transmission electron microscope (TEM) is prepared by FIB-microsampling method.
  • a focused ion beam processing apparatus (MI 4050, manufactured by Hitachi High-Tech Science Co., Ltd.) is used for producing a thin film sample.
  • a thin film sample for TEM observation is prepared from any part of the duplex stainless steel. In the preparation of a thin film sample, a mesh made of Mo and a carbon deposition film as a surface protective film are used.
  • TEM observation For TEM observation, an electrolytic emission type transmission electron microscope (JEM-2100F manufactured by Nippon Denshi Co., Ltd.) is used. TEM observation is performed with an observation magnification of 10000 times. The ferrite phase and the austenite phase in the field of view have different contrasts. Therefore, the grain boundaries are identified based on the contrast. The phase in the region surrounded by each grain boundary is identified by X-ray diffraction (XRD). The area of the region specified as the ferrite phase among the regions surrounded by each grain boundary is determined by image analysis.
  • XRD X-ray diffraction
  • Elemental analysis is performed on the observation field of view by energy dispersive X-ray spectrometry (EDS) to generate an elemental map. Furthermore, precipitates can be identified from the contrast. Therefore, it can be identified by EDS that the deposit identified based on the contrast in the ferrite phase identified by XRD is metallic Cu.
  • EDS energy dispersive X-ray spectrometry
  • the area of Cu precipitated in the identified ferrite phase is determined by image analysis.
  • the total area of Cu precipitated in the ferrite phase is divided by the total area of the ferrite phase.
  • the Cu area ratio (%) in the ferrite phase is measured.
  • the duplex stainless steel according to the present embodiment satisfies both of the chemical composition including the formula (1) described above and the microstructure including the area fraction of Cu in the ferrite phase. Therefore, the duplex stainless steel according to the present embodiment has excellent pitting resistance.
  • the yield strength of the duplex stainless steel according to the present embodiment is not particularly limited. However, if the yield strength is 750 MPa or less, cold working can be omitted in the manufacturing process. In this case, the manufacturing cost can be reduced. Therefore, the yield strength is preferably 750 MPa or less. More preferably, the yield strength is 720 MPa or less. The lower limit of the yield strength is not particularly limited, but is, for example, 300 MPa.
  • yield strength means 0.2% proof stress determined by the method according to JIS Z2241 (2011).
  • the shape of the duplex stainless steel according to the present embodiment is not particularly limited.
  • the duplex stainless steel may be, for example, a steel pipe, a steel plate, a steel bar, or a wire rod.
  • the duplex stainless steel of this embodiment can be manufactured, for example, by the following method.
  • the manufacturing method comprises a preparation step, a hot working step, a cooling step, and a solution heat treatment step.
  • a material having the above-described chemical composition is prepared.
  • the material may be a slab produced by a continuous casting method (including round CC) or a steel slab produced from a slab. Moreover, it may be a billet manufactured by hot working an ingot manufactured by the ingot method.
  • the prepared material is charged into a heating furnace or a soaking furnace and heated, for example, to 1150 to 1300.degree. Subsequently, the heated material is hot-worked.
  • the hot working may be hot forging, hot extrusion using, for example, the Eugene Sejourne method or Erhart push bench method, or hot rolling.
  • the hot working may be performed once or plural times.
  • the heated material is hot worked at 850 ° C. or higher. More specifically, the surface temperature of the steel material at the end of the hot working is 850 ° C. or higher.
  • the surface temperature of the steel material at the end of the hot working is less than 850 ° C., a large amount of Cu precipitates in the ferrite phase. As a result, the Cu area ratio in the ferrite phase may not be sufficiently reduced even by the solution treatment described later. In this case, the pitting resistance of duplex stainless steel is reduced. Therefore, the surface temperature of the steel material at the end of the hot working is 850 ° C. or more.
  • the surface temperature of the steel material at the end of the final hot working is at least 850 ° C.
  • the upper limit of the surface temperature of the steel material at the end of the hot working is not particularly limited, and is, for example, 1300 ° C.
  • finish time of hot processing means within 3 seconds after completion
  • the material after hot working is cooled at 5 ° C./sec or more.
  • Cu starts to precipitate in the ferrite phase. Therefore, if the cooling rate after hot working is too slow, a large amount of Cu precipitates in the ferrite phase. As a result, the Cu area ratio in the ferrite phase may not be sufficiently reduced even by the solution treatment described later. In this case, the pitting resistance of duplex stainless steel is reduced. Therefore, the cooling rate after hot working is 5 ° C./sec or more.
  • “after hot working” means after final hot working. That is, in the present embodiment, the final hot-worked material is cooled at 5 ° C./or higher.
  • the upper limit of the cooling rate is not particularly limited.
  • the cooling method is, for example, air cooling, water cooling, oil cooling or the like.
  • solution heat treatment process Subsequently, the cooled material is subjected to solution heat treatment at 1070 ° C. or higher.
  • solution heat treatment Cu precipitated in the ferrite phase is dissolved.
  • the Cu area ratio in the ferrite phase can be made 0.5% or less by performing solution heat treatment at 1070 ° C. or higher for a material in which Cu precipitation in the ferrite phase is sufficiently suppressed at the end of hot working and after cooling .
  • the upper limit of the solution heat treatment temperature is not particularly limited, and is, for example, 1150 ° C.
  • the treatment time of the solution heat treatment is not particularly limited. The treatment time of the solution heat treatment is, for example, 1 to 30 minutes.
  • the duplex stainless steel according to the present embodiment can be manufactured.
  • An alloy having the chemical composition shown in Table 3 was melted in a 50 kg vacuum melting furnace, and the obtained ingot was heated at 1200 ° C., subjected to hot forging and hot rolling, and processed into a steel plate having a thickness of 10 mm. .
  • the temperature at the end of rolling shown in Table 4 is the surface temperature of the steel plate at the end of the hot rolling.
  • the cooling rate after rolling shown in Table 4 is a cooling rate after hot rolling.
  • the steel sheet was subjected to solution treatment at a solution temperature (° C.) shown in Table 4 to obtain test pieces of each test number.
  • test pieces of Test Nos. 5 to 8 had appropriate chemical compositions and appropriate production conditions. Therefore, the test pieces of test Nos. 5 to 8 are duplex stainless steels having a ferrite fraction of 35 to 65% by volume and the balance being austenite phase, and further, the Cu area ratio in the ferrite phase is 0.5% It was below. As a result, the pitting potential (mV vs. SCE) of the steel plates of Test Nos. 5 to 8 was 100 or more, indicating excellent pitting resistance.
  • the Cu content was too high. Furthermore, in the test piece of test No. 1, F1 was 59.8 and did not satisfy the formula (1). Therefore, the Cu area ratio in the ferrite phase of the test piece of test No. 1 was 0.8%. As a result, the pitting potential (mV vs. SCE) of the test piece of test No. 1 was ⁇ 60, and it did not show excellent pitting resistance.
  • the Cu content was too high. Therefore, the Cu area ratio in the ferrite phase of the test piece of test No. 2 was 0.6%. As a result, the pitting potential (mV vs. SCE) of the test piece of Test No. 2 was 71 and did not exhibit excellent pitting resistance.
  • the solution temperature was 1050 ° C., which was too low. Therefore, the Cu area ratio in the ferrite phase of the test piece of test No. 3 was 0.7%. As a result, the pitting potential (mV vs. SCE) of the test piece of test No. 3 was -12 and did not show excellent pitting resistance.
  • the W content was too low.
  • the pitting potential (mV vs. SCE) of the test piece of test No. 9 was 70 and did not show excellent pitting resistance.
  • the Mo content was too low.
  • the pitting potential (mV vs. SCE) of the test piece of test No. 10 was 76 and did not show excellent pitting resistance.
  • the Cr content was too low.
  • the pitting potential (mV vs. SCE) of the test piece of test No. 11 was 81 and did not show excellent pitting resistance.
  • the temperature at the end of hot rolling was 840 ° C., which was too low. Therefore, the Cu area ratio in the ferrite phase of the test piece of test No. 12 was 1.1%. As a result, the pitting potential (mV vs. SCE) of the test piece of Test No. 12 was ⁇ 150, and did not exhibit excellent pitting resistance.
  • the test piece of test No. 13 had a cooling rate of 3 ° C./sec after hot rolling, which was too slow. Therefore, the Cu area ratio in the ferrite phase of the test piece of test No. 13 was 1.6%. As a result, the pitting potential (mV vs. SCE) of the test piece of test No. 13 was -71 and did not show excellent pitting resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

孔食の発生が抑制された2相ステンレス鋼を提供する。本開示による2相ステンレス鋼は、質量%で、Cr:27.00%超~29.00%、Mo:2.50~3.50%、Ni:5.00~8.00%、W:4.00~6.00%、Cu:0.01~0.10%未満、N:0.400%超~0.600%、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、sol.Al:0.040%以下、V:0.50%以下、O:0.010%以下、P:0.030%以下、S:0.020%以下、及び、残部はFe及び不純物からなり、式(1)を満たす化学組成と、35~65体積%のフェライト相及び残部はオーステナイト相からなるミクロ組織とを含有し、フェライト相内に析出したCuの面積率が、0.5%以下である。 Cr+4.0×Mo+2.0×W+20×N-5×ln(Cu)≧65.2・・・(1)

Description

2相ステンレス鋼及び2相ステンレス鋼の製造方法
 本発明は、2相ステンレス鋼及び2相ステンレス鋼の製造方法に関する。
 フェライト相及びオーステナイト相の2相組織を有する2相ステンレス鋼は、優れた耐食性を有することが知られている。2相ステンレス鋼は特に、塩化物を含有する水溶液中で問題となる、孔食及び/又はすきま腐食に対する耐食性(以下、「耐孔食性」という)が優れる。そのため2相ステンレス鋼は、海水等の塩化物を含む湿潤環境で広く用いられている。塩化物を含む湿潤環境では、2相ステンレス鋼はたとえば、フローラインパイプ、アンビリカルチューブ及び熱交換器等に用いられる。
 近年、2相ステンレス鋼の使用環境における腐食条件は、ますます厳しくなってきている。そのため、2相ステンレス鋼には、さらに優れた耐孔食性が求められている。2相ステンレス鋼の耐孔食性をさらに高めるために、様々な技術が提案されている。
 国際公開第2013/191208号(特許文献1)は、質量%で、Ni:3~8%、Cr:20~35%、Mo:0.01~4.0%、N:0.05~0.60%を含有し、Re:2.0%以下、Ga:2.0%以下、及び、Ge:2.0%以下から選択される1種以上をさらに含有することを特徴とする2相ステンレス鋼を開示する。特許文献1では、Re、Ga、又は、Geを2相ステンレス鋼に含有させることによって、孔食が発生する臨界電位(孔食電位)を上昇させ、耐孔食性及び耐すき間腐食性を高めている。
 国際公開第2010/082395号(特許文献2)は、質量%で、Cr:20~35%、Ni:3~10%、Mo:0~6%、W:0~6%、Cu:0~3%、N:0.15~0.60%を含有する2相ステンレス鋼材を、熱間加工によりあるいはさらに固溶化熱処理することにより冷間加工用素管を作製した後、冷間圧延によって2相ステンレス鋼管を製造する方法を開示する。特許文献2の2相ステンレス鋼管の製造方法は、最終の冷間圧延工程における断面減少率での加工度Rd(=exp[{In(MYS)-In(14.5×Cr+48.3×Mo+20.7×W+6.9×N)}/0.195])が10~80%の範囲内で冷間圧延し、758.3~965.2MPaの最低降伏強度を有する2相ステンレス鋼管の製造方法であることを特徴とする。これにより、例えば油井やガス井に使用できる、炭酸ガス腐食環境や応力腐食環境においても優れた耐食性を発揮するとともに高い強度をも兼ね備えた2相ステンレス鋼管が得られる、と特許文献2に記載されている。
 特開2007-84837号公報(特許文献3)は、質量%で、Cr:20~30%、Ni:1~11%、Cu:0.05~3.0%、Nd:0.005~0.5%、N:0.1~0.5%、ならびにMo:0.5~6およびW:1~10のうち一方または両方を含有する2相ステンレス鋼について開示する。特許文献3では、Ndを含有させることにより、2相ステンレス鋼の熱間加工性を高めている。
 特表2005-520934号公報(特許文献4)は、重量%で、Cr:21.0%~38.0%、Ni:3.0%~12.0%、Mo:1.5%~6.5%、W:0~6.5%、N:0.2%~0.7%、Ba:0.0001~0.6%を含有し、孔食抵抗当量指数PREWが40≦PREW≦67を満足する、スーパー2相ステンレス鋼について開示する。これにより、脆いシグマ(σ)相、カイ(χ)相などの金属間相の形成が抑制された、耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー2相ステンレス鋼が得られる、と特許文献4に記載されている。
国際公開第2013/191208号 国際公開第2010/082395号 特開2007-84837号公報 特表2005-520934号公報
 上述のとおり、近年、さらに優れた耐孔食性を有する2相ステンレス鋼が求められてきている。したがって、特許文献1~4に記載の技術以外の手段によって、優れた耐孔食性を示す2相ステンレス鋼が得られてもよい。
 本開示の目的は、優れた耐孔食性を有する2相ステンレス鋼、及び、その2相ステンレス鋼の製造方法を提供することである。
 本開示による2相ステンレス鋼は、質量%で、Cr:27.00%超~29.00%、Mo:2.50~3.50%、Ni:5.00~8.00%、W:4.00~6.00%、Cu:0.01~0.10%未満、N:0.400%超~0.600%、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、sol.Al:0.040%以下、V:0.50%以下、O:0.010%以下、P:0.030%以下、S:0.020%以下、Ca:0~0.0040%、Mg:0~0.0040%、B:0~0.0040%、及び、残部はFe及び不純物からなり、式(1)を満たす化学組成と、35~65体積%のフェライト相及び残部はオーステナイト相からなるミクロ組織とを含有する。本開示による2相ステンレス鋼は、フェライト相内に析出したCuの面積率が、0.5%以下である。
 Cr+4.0×Mo+2.0×W+20×N-5×ln(Cu)≧65.2・・・(1)
 ここで、式(1)中の各元素記号には、各元素の含有量(質量%)が代入される。
 本開示による2相ステンレス鋼の製造方法は、準備工程と、熱間加工工程と、冷却工程と、溶体化熱処理工程とを備える。準備工程では、上述の化学組成を有する素材を準備する。熱間加工工程では、素材を、850℃以上で熱間加工する。冷却工程では、熱間加工後の素材を5℃/秒以上で冷却する。溶体化熱処理工程では、冷却した素材を、1070℃以上で溶体化熱処理する。
 本開示による2相ステンレス鋼は、優れた耐孔食性を有する。本開示による2相ステンレス鋼の製造方法は、上述の2相ステンレス鋼を製造できる。
 本発明者らは、2相ステンレス鋼の耐孔食性を高める手法について調査及び検討を行った。その結果、以下の知見を得た。
 Cr、Mo及びCuは、2相ステンレス鋼の耐孔食性の向上に有効であることが知られている。Cr、Mo及びCuのうち、Cr及びMoが2相ステンレス鋼の耐孔食性を高めるメカニズムは、次のように考えられている。Crは、酸化物として2相ステンレス鋼の表面の不働態被膜の主成分となる。不働態被膜は、腐食因子と2相ステンレス鋼の表面との接触を妨害する。その結果、不働態被膜が表面に形成された2相ステンレス鋼は、耐孔食性が高まる。Moは、不働態被膜に含有され、不働態被膜の耐孔食性をさらに高める。
 一方、Cr、Mo及びCuのうち、Cuが2相ステンレス鋼の耐孔食性を高めるメカニズムは、次のように考えられている。孔食が生じるまでには、次の2つのステップが存在すると考えられている。最初のステップは、孔食の発生(初期段階)である。次のステップは、孔食の進展(進展段階)である。従来、Cuは、孔食の進展を抑制する効果があると考えられてきた。特に、酸性溶液中においては、2相ステンレス鋼の表面に溶解速度が速い活性サイトが形成される。Cuは、その活性サイトを被覆して、2相ステンレス鋼の溶解を抑制する。これにより、Cuは2相ステンレス鋼の孔食の進展を抑制すると考えられてきた。
 以上のメカニズムにより、2相ステンレス鋼において、Cr、Mo及びCuは、耐孔食性の向上に有効な元素であると考えられてきた。そのため、従来2相ステンレス鋼において、Cr、Mo及びCuは、耐孔食性を高める目的で積極的に含有されてきた。しかしながら、本発明者らの検討の結果、従来知られていなかった次の知見が得られた。具体的には、本発明者らは、Cr、Mo及びCuの中で、Cuは、孔食の発生(初期段階)においては、かえって耐孔食性を低下させる場合があることを知見した。
 表1は、後述する実施例における、試験番号2及び5の試験片の化学組成と、耐孔食性の指標である孔食電位とを示す表である。表1の化学組成は、後述する表3から、試験番号2及び5に対応する、鋼種B及びEの化学組成について抜粋し、2段に分けて記載したものである。表1の化学組成は質量%で記載されており、残部はFe及び不純物である。表1の孔食電位は、対応する試験番号の孔食電位を、後述する表4から抜粋して記載したものである。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、試験番号2の試験片のCu含有量は、試験番号5の試験片のCu含有量と比較して高かった。さらに、試験番号2の試験片のCr及びMo含有量は、試験番号5の試験片のCr及びMo含有量と比較して高かった。したがって、従来の知見に基づけば、Cr、Mo及びCuの含有量が高い試験番号2の試験片の方が、試験番号5の試験片よりも優れた耐孔食性を有することが予想できる。しかしながら、試験番号2の試験片の耐孔食性の指標である孔食電位は71mVvs.SCEであり、試験番号5の試験片の孔食電位346mVvs.SCEよりも低かった。
 すなわち、従来の知見から、試験番号5の試験片よりも優れた耐孔食性を有すると予想される試験番号2の試験片は、試験番号5の試験片よりも、かえって耐孔食性が低下していた。そこで本発明者らは、試験番号2及び5の試験片のミクロ組織に着目し、さらに詳細に調査した。その結果、試験番号2の試験片では、試験番号5の試験片よりも、フェライト相内に析出したCuの面積率(フェライト相内のCu面積率という)が高いことが明らかになった。
 そこで本発明者らはさらに、フェライト相内に析出したCuが2相ステンレス鋼の耐孔食性に与える影響について、詳細に調査及び検討した。表2は、後述する実施例における、試験番号3及び6の試験片の化学組成と、フェライト相内のCu面積率と、耐孔食性の指標である孔食電位とを示す表である。表2の化学組成は、後述する表3から、試験番号3及び6に対応する、鋼種Cの化学組成について抜粋し、2段に分けて記載したものである。表2の化学組成は質量%で記載されており、残部はFe及び不純物である。表2のフェライト相内のCu面積率は、対応する試験番号のフェライト相内のCu面積率を、後述する表4から抜粋して記載したものである。表2の孔食電位は、対応する試験番号の孔食電位を、後述する表4から抜粋して記載したものである。
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、試験番号3の試験片及び試験番号6の試験片の化学組成は同一であった。一方、試験番号6の試験片は、フェライト相内のCu面積率が、試験番号3の試験片のフェライト相内のCu面積率よりも、低かった。その結果、試験番号6の試験片の孔食電位は204mVvs.SCEであり、試験番号3の試験片の孔食電位-12mVvs.SCEと比較して高かった。すなわち、試験番号6の試験片では、フェライト相内のCuの析出が低減された結果、試験番号3の試験片よりも優れた耐孔食性を有していた。
 上述のとおり、従来、Cr、Mo及びCuの含有量を高めれば、耐孔食性が高まると考えられてきた。しかしながら、Cr、Mo及びCuの中でCuは、むしろ耐孔食性を低下させる可能性があることを本発明者らは初めて知見した。本発明者らはさらに、フェライト相内のCuの析出量を低減すれば、耐孔食性を高めることができるという、従来全く知られていない知見を得た。
 フェライト相内に析出したCuが、2相ステンレス鋼の耐孔食性を低下させる詳細な理由は明らかになっていない。しかしながら、本発明者らは、次のように考えている。フェライト相内に析出したCuは、不働態被膜の均一な形成を阻害している可能性がある。そのため、フェライト相内に析出したCu量が多い場合、不働態被膜による、腐食因子と2相ステンレス鋼の表面との接触を抑制する効果を低下させる可能性がある。その結果、2相ステンレス鋼の表面において、孔食が発生すると考えている。
 以上の知見に基づき完成した本実施形態による2相ステンレス鋼は、質量%で、Cr:27.00%超~29.00%、Mo:2.50~3.50%、Ni:5.00~8.00%、W:4.00~6.00%、Cu:0.01~0.10%未満、N:0.400%超~0.600%、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、sol.Al:0.040%以下、V:0.50%以下、O:0.010%以下、P:0.030%以下、S:0.020%以下、Ca:0~0.0040%、Mg:0~0.0040%、B:0~0.0040%、及び、残部はFe及び不純物からなり、式(1)を満たす化学組成と、35~65体積%のフェライト相及び残部はオーステナイト相からなるミクロ組織とを含有する。本実施形態による2相ステンレス鋼は、フェライト相内に析出したCuの面積率が、0.5%以下である。
 Cr+4.0×Mo+2.0×W+20×N-5×ln(Cu)≧65.2・・・(1)
 ここで、式(1)中の各元素記号には、各元素の含有量(質量%)が代入される。
 本実施形態による2相ステンレス鋼は、上述の化学組成と上述のミクロ組織とを有し、さらに、フェライト相内のCuの面積率が0.5%以下である。その結果、本実施形態による2相ステンレス鋼は、優れた耐孔食性を有する。
 好ましくは、上記化学組成は質量%で、Ca:0.0001~0.0040%、Mg:0.0001~0.0040%、及び、B:0.0001~0.0040%からなる群から選択される1種又は2種以上を含有する。
 この場合、本実施形態による2相ステンレス鋼の熱間加工性が高まる。
 本実施形態による2相ステンレス鋼の製造方法は、準備工程と、熱間加工工程と、冷却工程と、溶体化熱処理工程とを備える。準備工程では、上述の化学組成を有する素材を準備する。熱間加工工程では、素材を、850℃以上で熱間加工する。冷却工程では、熱間加工後の素材を5℃/秒以上で冷却する。溶体化熱処理工程では、冷却した素材を、1070℃以上で溶体化熱処理する。
 本実施形態による製造方法により製造された2相ステンレス鋼は、上述の化学組成と上述のミクロ組織とを有し、さらに、フェライト相内のCuの面積率が0.5%以下である。その結果、本実施形態による製造方法により製造された2相ステンレス鋼は、優れた耐孔食性を有する。
 以下、本実施形態による2相ステンレス鋼について詳述する。
 [化学組成]
 本実施形態による2相ステンレス鋼の化学組成は、次の元素を含有する。なお、特に断りが無い限り、元素に関する%は質量%を意味する。
 [必須元素について]
 本実施形態による2相ステンレス鋼の化学組成は、次の元素を必須に含有する。
 Cr:27.00%超~29.00%
 クロム(Cr)は、酸化物として2相ステンレス鋼の表面に不働態被膜を形成する。不働態被膜は、腐食因子と2相ステンレス鋼の表面との接触を妨害する。その結果、2相ステンレス鋼の孔食の発生が抑制される。Crはさらに、2相ステンレス鋼のフェライト組織を得るために必要な元素である。十分なフェライト組織を得ることで、安定した耐孔食性が得られる。Cr含有量が低すぎれば、これらの効果が得られない。一方、Cr含有量が高すぎれば、2相ステンレス鋼の熱間加工性が低下する。したがって、Cr含有量は27.00%超~29.00%である。Cr含有量の好ましい下限は27.50%であり、より好ましくは28.00%である。Cr含有量の好ましい上限は28.50%である。
 Mo:2.50~3.50%
 モリブデン(Mo)は、不働態被膜に含有され、不働態被膜の耐食性をさらに高める。その結果、2相ステンレス鋼の耐孔食性を高める。Mo含有量が低すぎれば、この効果が得られない。一方、Mo含有量が高すぎれば、2相ステンレス鋼からなる鋼管を組立等する場合の加工性が低下する。したがって、Mo含有量は2.50~3.50%である。Mo含有量の好ましい下限は2.80%であり、より好ましくは3.00%である。Mo含有量の好ましい上限は3.30%である。
 Ni:5.00~8.00%
 ニッケル(Ni)は、オーステナイト安定化元素であり、フェライト・オーステナイトの2相組織を得るために必要な元素である。Ni含有量が低すぎれば、この効果が得られない。一方、Ni含有量が高すぎれば、フェライト相とオーステナイト相とのバランスが得られない。この場合、安定して2相ステンレス鋼を得られない。したがって、Ni含有量は5.00~8.00%である。Ni含有量の好ましい下限は5.50%であり、より好ましくは6.00%である。Ni含有量の好ましい上限は7.50%である。
 W:4.00~6.00%
 タングステン(W)は、Moと同様に不働態被膜に含有され、不働態被膜の耐食性をさらに高める。その結果、2相ステンレス鋼の孔食の発生を抑制する。W含有量が低すぎれば、この効果が得られない。一方、W含有量が高すぎれば、σ相が析出し易くなり、靱性が低下する。したがって、W含有量は4.00~6.00%である。W含有量の好ましい下限は4.50%である。W含有量の好ましい上限は5.50%である。
 Cu:0.01~0.10%未満
 銅(Cu)は、孔食の進展(進展段階)を抑制するのに有効な元素である。Cu含有量が低すぎれば、この効果が得られない。一方、Cr、Mo及びCuの中で、Cuは、孔食の発生(初期段階)においては、耐孔食性を低下させる。したがって、本実施形態の2相ステンレス鋼は、従来の2相ステンレス鋼よりもCu含有量を低減する。その結果、フェライト相内のCuの析出を抑制し、2相ステンレス鋼の孔食の発生(初期段階)を抑制する。Cu含有量が高すぎれば、フェライト相内のCu面積率が高くなり過ぎる。この場合、2相ステンレス鋼の耐孔食性が低下する。したがって、Cu含有量は0.01~0.10%未満である。Cu含有量の好ましい上限は0.07%であり、より好ましくは0.05%である。
 N:0.400%超~0.600%
 窒素(N)は、オーステナイト安定化元素であり、フェライト・オーステナイトの2相組織を得るために必要な元素である。Nはさらに、2相ステンレス鋼の耐孔食性を高める。N含有量が低すぎれば、これらの効果が得られない。一方、N含有量が高すぎれば、2相ステンレス鋼の靱性及び熱間加工性が低下する。したがって、N含有量は0.400%超~0.600%である。N含有量の好ましい下限は0.420%である。N含有量の好ましい上限は0.500%である。
 C:0.030%以下
 炭素(C)は不可避に含有される。すなわち、C含有量は0%超である。Cは結晶粒界にCr炭化物を形成し、粒界での腐食感受性を増大させる。したがって、C含有量は0.030%以下である。C含有量の好ましい上限は0.025%であり、より好ましくは0.020%である。C含有量はなるべく低い方が好ましい。しかしながら、C含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、C含有量の好ましい下限は0.001%であり、より好ましくは0.005%である。
 Si:1.00%以下
 シリコン(Si)は鋼を脱酸する。Siを脱酸剤として用いる場合、Si含有量は0%超である。一方、Si含有量が高すぎれば、2相ステンレス鋼の熱間加工性が低下する。したがって、Si含有量は1.00%以下である。Si含有量の好ましい上限は0.80%であり、より好ましくは0.70%である。Si含有量の下限は特に限定されないが、たとえば0.20%である。
 Mn:1.00%以下
 マンガン(Mn)は鋼を脱酸する。Mnを脱酸剤として用いる場合、Mn含有量は0%超である。一方、Mn含有量が高すぎれば、2相ステンレス鋼の熱間加工性が低下する。したがって、Mn含有量は1.00%以下である。Mn含有量の好ましい上限は0.80%であり、より好ましくは0.70%である。Mn含有量の下限は特に限定されないが、たとえば0.20%である。
 sol.Al:0.040%以下
 アルミニウム(Al)は鋼を脱酸する。Alを脱酸剤として用いる場合、Al含有量は0%超である。一方、Al含有量が高すぎれば、2相ステンレス鋼の熱間加工性が低下する。したがって、Al含有量は0.040%以下である。Al含有量の好ましい上限は0.030%であり、より好ましくは0.025%である。Al含有量の下限は特に限定されないが、たとえば0.005%である。本実施形態において、Al含有量とは、酸可溶性Al(sol.Al)含有量を指す。
 V:0.50%以下
 バナジウム(V)は不可避に含有される。すなわち、V含有量は0%超である。V含有量が高すぎれば、フェライト相が過度に増加し、2相ステンレス鋼の靱性及び耐食性の低下が生じる場合がある。したがって、V含有量は0.50%以下である。V含有量の好ましい上限は0.40%であり、より好ましくは0.30%である。V含有量の下限は特に限定されないが、たとえば0.05%である。
 O:0.010%以下
 酸素(O)は不純物である。すなわち、O含有量は0%超である。Oは2相ステンレス鋼の熱間加工性を低下させる。したがって、O含有量は0.010%以下である。O含有量の好ましい上限は0.007%であり、より好ましくは0.005%である。O含有量はなるべく低いほうが好ましい。しかしながら、O含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、O含有量の好ましい下限は0.0001%であり、より好ましくは0.0005%である。
 P:0.030%以下
 燐(P)は不純物である。すなわち、P含有量は0%超である。Pは2相ステンレス鋼の耐孔食性及び靱性を低下させる。したがって、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%であり、より好ましくは0.020%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、より好ましくは0.005%である。
 S:0.020%以下
 硫黄(S)は不純物である。すなわち、S含有量は0%超である。Sは2相ステンレス鋼の熱間加工性を低下させる。したがって、S含有量は0.020%以下である。S含有量の好ましい上限は0.010%であり、より好ましくは0.005%であり、さらに好ましくは0.003%である。S含有量はなるべく低い方が好ましい。しかしながら、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、より好ましくは0.0005%である。
 本実施形態の2相ステンレス鋼の化学組成の残部は、Fe及び不純物からなる。ここで、化学組成における不純物とは、2相ステンレス鋼を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態による2相ステンレス鋼に悪影響を与えない範囲で許容されるものを意味する。
 [任意元素について]
 本実施形態による2相ステンレス鋼の化学組成は、次の元素を任意に含有してもよい。
 Ca:0~0.0040%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。すなわち、Ca含有量は0%であってもよい。含有される場合、Caは2相ステンレス鋼の熱間加工性を高める。Caがわずかでも含有されれば、この効果がある程度得られる。一方、Ca含有量が高すぎれば、粗大な酸化物が生成し、2相ステンレス鋼の熱間加工性が低下する。したがって、Ca含有量は0~0.0040%である。Ca含有量の好ましい下限は0.0001%であり、より好ましくは0.0005%であり、さらに好ましくは0.0010%である。Ca含有量の好ましい上限は0.0030%である。
 Mg:0~0.0040%
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。すなわち、Mg含有量は0%であってもよい。含有される場合、MgはCaと同様に、2相ステンレス鋼の熱間加工性を高める。Mgがわずかでも含有されれば、この効果がある程度得られる。一方、Mg含有量が高すぎれば、粗大な酸化物が生成し、2相ステンレス鋼の熱間加工性が低下する。したがって、Mg含有量は0~0.0040%である。Mg含有量の好ましい下限は0.0001%であり、より好ましくは0.0005%であり、さらに好ましくは0.0010%である。Ca含有量の上限は、好ましくは0.0030%である。
 B:0~0.0040%
 ボロン(B)は任意元素であり、含有されなくてもよい。すなわち、B含有量は0%であってもよい。含有される場合、BはCa及びMgと同様に、2相ステンレス鋼の熱間加工性を高める。Bがわずかでも含有されれば、この効果がある程度得られる。一方、B含有量が高すぎれば、2相ステンレス鋼の靱性が低下する。したがって、B含有量は0~0.0040%である。B含有量の好ましい下限は0.0001%であり、より好ましくは0.0005%であり、さらに好ましくは0.0010%である。Ca含有量の上限は、好ましくは0.0030%である。
 [式(1)について]
 本実施形態による2相ステンレス鋼の化学組成は、上記各元素の含有量を満たし、かつ、次の式(1)を満たす。
 Cr+4.0×Mo+2.0×W+20×N-5×ln(Cu)≧65.2・・・(1)
 ここで、式(1)中の各元素記号には、各元素の含有量(質量%)が代入される。
 F1=Cr+4.0×Mo+2.0×W+20×N-5×ln(Cu)と定義する。F1は、耐孔食性を示す指標である。F1が65.2未満であれば、2相ステンレス鋼の耐孔食性が低下する。したがって、F1≧65.2である。F1の下限は、好ましくは68.0であり、より好ましくは69.0であり、さらに好ましくは70.0である。F1の上限は特に限定されないが、たとえば90.0である。
 [ミクロ組織について]
 本実施形態による2相ステンレス鋼のミクロ組織は、フェライト及びオーステナイトからなる。具体的には、本実施形態による2相ステンレス鋼のミクロ組織は、35~65体積%のフェライト相及び残部はオーステナイト相からなる。フェライト相の体積率(以下、フェライト分率ともいう)が35%未満であれば、使用環境によっては応力腐食割れが起こる可能性が高まる。一方、フェライト相の体積率が65%を超える場合、2相ステンレス鋼の靱性が低下する可能性が高まる。そのため、本実施形態の2相ステンレス鋼のミクロ組織は、35~65体積%のフェライト相及び残部はオーステナイト相からなる。
 [フェライト分率の測定方法]
 本実施形態において、2相ステンレス鋼のフェライト分率は次の方法で求めることができる。はじめに、2相ステンレス鋼からミクロ組織観察用の試験片を採取する。2相ステンレス鋼が鋼板であれば、鋼板の板幅方向に垂直な断面(以下、観察面という)を研磨する。2相ステンレス鋼が鋼管であれば、鋼管の軸方向と肉厚方向とを含む断面(観察面)を研磨する。2相ステンレス鋼が棒鋼又は線材であれば、棒鋼又は線材の軸方向を含む断面(観察面)を研磨する。次に、王水とグリセリンとの混合液を用いて、研磨後の観察面をエッチングする。
 エッチングされた観察面を光学顕微鏡で10視野観察する。視野面積は、たとえば、2000μm2(倍率500倍)である。各観察視野において、フェライトと、その他の相とはコントラストから区別できる。そのため、コントラストから各観察におけるフェライトを特定する。特定されたフェライトの面積率を、JIS G0555(2003)に準拠した点算法で測定する。測定された面積率は、体積分率に等しいとして、これをフェライト分率(体積%)と定義する。
 [フェライト相内のCu面積率について]
 本実施形態による2相ステンレス鋼のフェライト相内に析出したCuの面積率は、0.5%以下である。上述のとおり、2相ステンレス鋼に含まれるCuは、2相ステンレス鋼の孔食の進展を抑制させると考えられている。そのため、本実施形態による2相ステンレス鋼では、Cuを0.01~0.10%未満含有させる。一方、Cuを0.01~0.10%未満含有する2相ステンレス鋼では、フェライト相内に金属Cuが析出する場合がある。上述のとおり、フェライト相内に析出したCuは、不働態被膜による孔食の発生を抑制する効果を、低下させることが明らかになった。すなわち、フェライト相内に析出した金属Cuは、2相ステンレス鋼の耐孔食性を低下させる。
 そこで、本実施形態による2相ステンレス鋼は、フェライト相内のCu面積率を0.5%以下に低下させる。そのため、2相ステンレス鋼の孔食の発生が抑制される。フェライト相内のCu面積率は低い程好ましい。フェライト相内のCu面積率の上限は、好ましくは0.3%であり、より好ましくは0.1%である。フェライト相内のCu面積率の下限は0.0%である。
 [フェライト相内のCu面積率の測定方法]
 本明細書において、フェライト相内のCu面積率とは、2相ステンレス鋼のミクロ組織のうち、フェライト相内に析出したCuの、フェライト相に対する面積率を意味する。本実施形態において、フェライト相内のCu面積率は次の方法で測定できる。FIB-マイクロサンプリング法にて透過電子顕微鏡(TEM:Transmission Electron Microscope)観察用の薄膜試料を作製する。薄膜試料の作製には、集束イオンビーム加工装置(株式会社日立ハイテクサイエンス製、MI4050)を用いる。2相ステンレス鋼の任意の部分から、TEM観察用の薄膜試料を作製する。薄膜試料の作製には、Mo製メッシュ、表面保護膜としてカーボンデポ膜を使用する。
 TEM観察には電解放出型透過電子顕微鏡(日本電子株式会社製のJEM-2100F)を用いる。観察倍率は10000倍としてTEM観察を行う。視野内のフェライト相及びオーステナイト相とは、コントラストが異なる。そこで、コントラストに基づいて、結晶粒界を特定する。各結晶粒界に囲まれた領域の相を、X線回折法(XRD:X‐Ray Diffraction)により特定する。各結晶粒界に囲まれた領域のうち、フェライト相と特定された領域の面積を、画像解析によって求める。
 観察視野に対して、エネルギー分散型X線分析法(EDS:Energy Dispersive X-ray Spectrometry)による元素分析を行い、元素マップを生成する。さらに、析出物は、コントラストから特定できる。したがって、XRDによって特定されたフェライト相内における、コントラストに基づいて特定した析出物が、金属Cuであることは、EDSによって特定することができる。
 特定されたフェライト相内に析出したCuの面積を、画像解析によって求める。フェライト相内に析出したCuの面積の合計を、フェライト相の面積の合計で除す。このようにして、フェライト相内のCu面積率(%)を測定する。
 本実施形態による2相ステンレス鋼は、上述した、式(1)を含む化学組成、及び、フェライト相内Cu面積率を含むミクロ組織のいずれも満たす。そのため、本実施形態による2相ステンレス鋼は、優れた耐孔食性を有する。
 [降伏強度]
 本実施形態による2相ステンレス鋼の降伏強度は特に限定されない。しかしながら、降伏強度が750MPa以下であれば、製造工程において冷間加工を省略できる。この場合、製造コストを低減することができる。したがって、降伏強度は750MPa以下が好ましい。より好ましくは、降伏強度は720MPa以下である。降伏強度の下限は特に限定されないが、たとえば300MPaである。
 [降伏強度の測定方法]
 本明細書において降伏強度とは、JIS Z2241(2011)に準拠した方法で求めた0.2%耐力を意味する。
 [2相ステンレス鋼の形状]
 本実施形態による2相ステンレス鋼の形状は、特に限定されない。2相ステンレス鋼はたとえば、鋼管であってもよいし、鋼板であってもよいし、棒鋼であってもよいし、線材であってもよい。
 [製造方法]
 本実施形態の2相ステンレス鋼は、たとえば次の方法で製造できる。製造方法は、準備工程と、熱間加工工程と、冷却工程と、溶体化熱処理工程とを備える。
 [準備工程]
 準備工程では、上述の化学組成を有する素材を準備する。素材は、連続鋳造法(ラウンドCCを含む)により製造された鋳片であってもよいし、鋳片から製造された鋼片でもよい。また、造塊法により製造されたインゴットを熱間加工して製造された鋼片でもよい。
 [熱間加工工程]
 準備された素材を加熱炉又は均熱炉に装入し、たとえば1150~1300℃に加熱する。続いて、加熱された素材を熱間加工する。熱間加工は、熱間鍛造でもよいし、たとえばユジーン・セジュルネ法又はエルハルトプッシュベンチ法を用いた熱間押出しでもよいし、熱間圧延でもよい。熱間加工は、1回実施してもよいし、複数回実施してもよい。
 加熱された素材を、850℃以上で熱間加工する。より具体的には、熱間加工終了時点の鋼材の表面温度が850℃以上である。熱間加工終了時点の鋼材の表面温度が850℃未満の場合、フェライト相内にCuが多量に析出する。その結果、後述する溶体化処理によってもフェライト相内のCu面積率を十分に低減できない場合がある。この場合、2相ステンレス鋼の耐孔食性が低下する。したがって、熱間加工終了時点の鋼材の表面温度は、850℃以上である。熱間加工を複数回実施する場合は、最終の熱間加工終了時点の鋼材の表面温度が850℃以上である。これにより、熱間加工終了時点において、フェライト相内にCuが析出するのを抑制できる。熱間加工終了時点の鋼材の表面温度の上限は特に限定されないが、たとえば1300℃である。なお、熱間加工終了時点とは、熱間加工終了後3秒以内をいう。
 [冷却工程]
 続いて、熱間加工後の素材を5℃/秒以上で冷却する。850℃付近において、フェライト相内にCuが析出し始める。そのため、熱間加工後の冷却速度が遅すぎれば、フェライト相内にCuが多量に析出する。その結果、後述する溶体化処理によってもフェライト相内のCu面積率を十分に低減できない場合がある。この場合、2相ステンレス鋼の耐孔食性が低下する。したがって、熱間加工後の冷却速度は、5℃/秒以上である。ここで、熱間加工を複数回実施する場合には、熱間加工後とは、最終の熱間加工後をいう。すなわち、本実施形態においては、最終の熱間加工後の素材を5℃/以上で冷却する。冷却速度の上限は特に限定されない。冷却方法はたとえば、空冷、水冷、油冷等である。
 [溶体化熱処理工程]
 続いて、冷却した素材を、1070℃以上で溶体化熱処理する。溶体化熱処理によって、フェライト相内に析出したCuを固溶させる。熱間加工終了時点及び冷却後におけるフェライト相内のCu析出が十分に抑制された素材を、1070℃以上で溶体化熱処理することで、フェライト相内のCu面積率を0.5%以下にできる。溶体化熱処理温度の上限は特に限定されないが、たとえば1150℃である。溶体化熱処理の処理時間は特に限定されない。溶体化熱処理の処理時間はたとえば、1~30分である。
 以上の工程により、本実施形態による2相ステンレス鋼が製造できる。なお、本実施形態においては、製造コストが高まることから、冷間加工は行わないことが好ましい。
 表3に示す化学組成を有する合金を50kgの真空溶解炉で溶製し、得られたインゴットを1200℃で加熱し、熱間鍛造及び熱間圧延を実施して厚さ10mmの鋼板に加工した。表4に示す、圧延終了時温度とは、熱間圧延終了時点の鋼板の表面温度である。表4に示す、圧延後冷却速度とは、熱間圧延後の冷却速度である。さらに、鋼板を表4に示す溶体化温度(℃)で溶体化処理して、各試験番号の試験片を得た。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 [フェライト分率測定試験]
 各試験番号の試験片に対して、上述の方法でフェライト分率(体積%)を測定した。結果を表4に示す。なお、各試験番号の試験片のミクロ組織の残部は、オーステナイト相であった。
 [フェライト相内のCu面積率測定試験]
 各試験番号の試験片に対して、上述の方法でフェライト相内のCu面積率(%)を測定した。結果を表4に示す。
 [孔食電位測定試験]
 溶体化処理後の各試験番号の試験片の孔食電位を測定した。初めに、試験片を機械加工して直径15mm、厚さ2mmの試験片とした。得られた試験片を用いて、80℃、25%NaClaq.中で孔食電位を測定した。試験温度及びNaCl濃度以外の条件は、JIS G0577(2014)に準じて行った。各試験番号の試験片の孔食電位Vc’100の測定結果を表4に示す。
 [引張試験]
 各試験番号の試験片に対して、JIS Z2241(2011)に準拠した方法で、0.2%耐力を求めた。結果を表4に示す。
 [評価結果]
 表3及び表4を参照して、試験番号5~8の試験片は、化学組成が適切であり、かつ、製造条件が適切であった。そのため、試験番号5~8の試験片は、フェライト分率が35~65体積%であり残部がオーステナイト相からなる2相ステンレス鋼であり、さらに、フェライト相内のCu面積率が0.5%以下であった。その結果、試験番号5~8の鋼板の孔食電位(mVvs.SCE)は100以上となり、優れた耐孔食性を示した。
 一方、試験番号1の試験片では、Cu含有量が高すぎた。試験番号1の試験片ではさらに、F1が59.8であり、式(1)を満たさなかった。そのため、試験番号1の試験片のフェライト相内のCu面積率は、0.8%であった。その結果、試験番号1の試験片の孔食電位(mVvs.SCE)は-60であり、優れた耐孔食性を示さなかった。
 試験番号2の試験片では、Cu含有量が高すぎた。そのため、試験番号2の試験片のフェライト相内のCu面積率は、0.6%であった。その結果、試験番号2の試験片の孔食電位(mVvs.SCE)は71であり、優れた耐孔食性を示さなかった。
 試験番号3の試験片では、溶体化温度が1050℃であり、低すぎた。そのため、試験番号3の試験片のフェライト相内のCu面積率は、0.7%であった。その結果、試験番号3の試験片の孔食電位(mVvs.SCE)は-12であり、優れた耐孔食性を示さなかった。
 試験番号4の試験片では、各元素の含有量は適切であったものの、F1が65.1であり、式(1)を満たさなかった。その結果、試験番号4の試験片の孔食電位(mVvs.SCE)は85であり、優れた耐孔食性を示さなかった。
 試験番号9の試験片では、W含有量が低すぎた。その結果、試験番号9の試験片の孔食電位(mVvs.SCE)は70であり、優れた耐孔食性を示さなかった。
 試験番号10の試験片では、Mo含有量が低すぎた。その結果、試験番号10の試験片の孔食電位(mVvs.SCE)は76であり、優れた耐孔食性を示さなかった。
 試験番号11の試験片では、Cr含有量が低すぎた。その結果、試験番号11の試験片の孔食電位(mVvs.SCE)は81であり、優れた耐孔食性を示さなかった。
 試験番号12の試験片では、熱間圧延終了時の温度が840℃であり、低すぎた。そのため、試験番号12の試験片のフェライト相内のCu面積率は、1.1%であった。その結果、試験番号12の試験片の孔食電位(mVvs.SCE)は-150であり、優れた耐孔食性を示さなかった。
 試験番号13の試験片は、熱間圧延終了後の冷却速度が3℃/秒であり、遅すぎた。そのため、試験番号13の試験片のフェライト相内のCu面積率は、1.6%であった。その結果、試験番号13の試験片の孔食電位(mVvs.SCE)は-71であり、優れた耐孔食性を示さなかった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 

Claims (3)

  1.  質量%で、
     Cr:27.00%超~29.00%、
     Mo:2.50~3.50%、
     Ni:5.00~8.00%、
     W:4.00~6.00%、
     Cu:0.01~0.10%未満、
     N:0.400%超~0.600%、
     C:0.030%以下、
     Si:1.00%以下、
     Mn:1.00%以下、
     sol.Al:0.040%以下、
     V:0.50%以下、
     O:0.010%以下、
     P:0.030%以下、
     S:0.020%以下、
     Ca:0~0.0040%、
     Mg:0~0.0040%、
     B:0~0.0040%、及び、
     残部はFe及び不純物からなり、式(1)を満たす化学組成と、
     35~65体積%のフェライト相及び残部はオーステナイト相からなるミクロ組織とを含有し、
     前記フェライト相内に析出したCuの面積率が、0.5%以下である、2相ステンレス鋼。
     Cr+4.0×Mo+2.0×W+20×N-5×ln(Cu)≧65.2・・・(1)
     ここで、式(1)中の各元素記号には、各元素の含有量(質量%)が代入される。
  2.  請求項1に記載の2相ステンレス鋼であって、前記化学組成は質量%で、
     Ca:0.0001~0.0040%、
     Mg:0.0001~0.0040%、及び、
     B:0.0001~0.0040%からなる群から選択される1種又は2種以上を含有する、2相ステンレス鋼。
  3.  質量%で、
     Cr:27.00%超~29.00%、
     Mo:2.50~3.50%、
     Ni:5.00~8.00%、
     W:4.00~6.00%、
     Cu:0.01~0.10%未満、
     N:0.400%超~0.600%、
     C:0.030%以下、
     Si:1.00%以下、
     Mn:1.00%以下、
     sol.Al:0.040%以下、
     V:0.50%以下、
     O:0.010%以下、
     P:0.030%以下、
     S:0.020%以下、
     Ca:0~0.0040%、
     Mg:0~0.0040%、
     B:0~0.0040%、及び、
     残部はFe及び不純物からなり、式(1)を満たす化学組成を有する素材を準備する工程と、
     前記素材を、850℃以上で熱間加工する工程と、
     前記熱間加工後の前記素材を5℃/秒以上で冷却する工程と、
     前記冷却した前記素材を、1070℃以上で溶体化熱処理する工程とを備える、2相ステンレス鋼の製造方法。
     Cr+4.0×Mo+2.0×W+20×N-5×ln(Cu)≧65.2・・・(1)
     ここで、式(1)中の各元素記号には、各元素の含有量(質量%)が代入される。
     
PCT/JP2018/042114 2017-11-15 2018-11-14 2相ステンレス鋼及び2相ステンレス鋼の製造方法 WO2019098233A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18879992.8A EP3712289A4 (en) 2017-11-15 2018-11-14 TWO-PHASE STAINLESS STEEL AND METHOD FOR MANUFACTURING TWO-PHASE STAINLESS STEEL
CA3080706A CA3080706A1 (en) 2017-11-15 2018-11-14 Duplex stainless steel and method for producing duplex stainless steel
KR1020207016636A KR20200080312A (ko) 2017-11-15 2018-11-14 2상 스테인리스강 및 2상 스테인리스강의 제조 방법
BR112020009434-0A BR112020009434A2 (pt) 2017-11-15 2018-11-14 aço inoxidável duplex e método para produção de aço inoxidável duplex
US16/759,798 US20200332378A1 (en) 2017-11-15 2018-11-14 Duplex stainless steel and method for producing duplex stainless steel
JP2019554253A JPWO2019098233A1 (ja) 2017-11-15 2018-11-14 2相ステンレス鋼及び2相ステンレス鋼の製造方法
CN201880073296.6A CN111344426A (zh) 2017-11-15 2018-11-14 双相不锈钢以及双相不锈钢的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017220172 2017-11-15
JP2017-220172 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019098233A1 true WO2019098233A1 (ja) 2019-05-23

Family

ID=66539626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042114 WO2019098233A1 (ja) 2017-11-15 2018-11-14 2相ステンレス鋼及び2相ステンレス鋼の製造方法

Country Status (8)

Country Link
US (1) US20200332378A1 (ja)
EP (1) EP3712289A4 (ja)
JP (1) JPWO2019098233A1 (ja)
KR (1) KR20200080312A (ja)
CN (1) CN111344426A (ja)
BR (1) BR112020009434A2 (ja)
CA (1) CA3080706A1 (ja)
WO (1) WO2019098233A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415029A (zh) * 2020-11-23 2021-02-26 中国华能集团有限公司 一种直接测试合金中析出相体积分数的方法
WO2023198720A1 (en) * 2022-04-12 2023-10-19 Alleima Tube Ab New duplex stainless steel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581062A (ja) * 1981-06-26 1983-01-06 Mitsubishi Heavy Ind Ltd 耐食耐摩耗鋳鋼
JPS61243117A (ja) * 1985-04-19 1986-10-29 Sumitomo Metal Ind Ltd 二相系ステンレス鋼の熱間加工方法
JP2005520934A (ja) 2002-03-25 2005-07-14 パク,ヨン−ソ 金属間相の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼
JP2007084837A (ja) 2005-09-20 2007-04-05 Sumitomo Metal Ind Ltd 熱間加工性に優れた二相ステンレス鋼
JP2008519165A (ja) * 2004-11-04 2008-06-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ 2相ステンレス鋼
WO2010082395A1 (ja) 2009-01-19 2010-07-22 住友金属工業株式会社 二相ステンレス鋼管の製造方法
JP2013253315A (ja) * 2012-05-07 2013-12-19 Kobe Steel Ltd 二相ステンレス鋼材および二相ステンレス鋼管
WO2013191208A1 (ja) 2012-06-22 2013-12-27 新日鐵住金株式会社 2相ステンレス鋼

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227734B2 (ja) * 1991-09-30 2001-11-12 住友金属工業株式会社 高耐食二相ステンレス鋼とその製造方法
SE513247C2 (sv) * 1999-06-29 2000-08-07 Sandvik Ab Ferrit-austenitisk stållegering
AR038192A1 (es) * 2002-02-05 2005-01-05 Toyo Engineering Corp Acero inoxidable duplex para plantas de produccion de urea, planta de produccion de urea y material de soldadura fabricado con dicho acero inoxidable duplex.
US7396421B2 (en) * 2003-08-07 2008-07-08 Sumitomo Metal Industries, Ltd. Duplex stainless steel and manufacturing method thereof
SE530711C2 (sv) * 2006-10-30 2008-08-19 Sandvik Intellectual Property Duplex rostfri stållegering samt användning av denna legering

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581062A (ja) * 1981-06-26 1983-01-06 Mitsubishi Heavy Ind Ltd 耐食耐摩耗鋳鋼
JPS61243117A (ja) * 1985-04-19 1986-10-29 Sumitomo Metal Ind Ltd 二相系ステンレス鋼の熱間加工方法
JP2005520934A (ja) 2002-03-25 2005-07-14 パク,ヨン−ソ 金属間相の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼
JP2008519165A (ja) * 2004-11-04 2008-06-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ 2相ステンレス鋼
JP2007084837A (ja) 2005-09-20 2007-04-05 Sumitomo Metal Ind Ltd 熱間加工性に優れた二相ステンレス鋼
WO2010082395A1 (ja) 2009-01-19 2010-07-22 住友金属工業株式会社 二相ステンレス鋼管の製造方法
JP2013253315A (ja) * 2012-05-07 2013-12-19 Kobe Steel Ltd 二相ステンレス鋼材および二相ステンレス鋼管
WO2013191208A1 (ja) 2012-06-22 2013-12-27 新日鐵住金株式会社 2相ステンレス鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712289A4 *

Also Published As

Publication number Publication date
CA3080706A1 (en) 2019-05-23
BR112020009434A2 (pt) 2020-11-03
EP3712289A1 (en) 2020-09-23
EP3712289A4 (en) 2021-03-10
KR20200080312A (ko) 2020-07-06
US20200332378A1 (en) 2020-10-22
CN111344426A (zh) 2020-06-26
JPWO2019098233A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
JP6787483B2 (ja) マルテンサイトステンレス鋼材
JP6226081B2 (ja) 高強度ステンレス継目無鋼管およびその製造方法
JP4911266B2 (ja) 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
US20190284666A1 (en) NiCrFe Alloy
WO2021033672A1 (ja) 二相ステンレス鋼材
JP6693561B2 (ja) 二相ステンレス鋼及び二相ステンレス鋼の製造方法
JP7518342B2 (ja) 二相ステンレス鋼材
WO2013190834A1 (ja) 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
JPWO2020067247A1 (ja) マルテンサイトステンレス鋼材
JPWO2017175739A1 (ja) オーステナイト系ステンレス鋼材
WO2019098233A1 (ja) 2相ステンレス鋼及び2相ステンレス鋼の製造方法
JP7518343B2 (ja) 二相ステンレス鋼材
JP7277731B2 (ja) 2相ステンレス鋼及び2相ステンレス鋼の製造方法
WO2021225103A1 (ja) 二相ステンレス継目無鋼管
JP7256435B1 (ja) 二相ステンレス鋼材
JP6627662B2 (ja) オーステナイト系ステンレス鋼
WO2024063108A1 (ja) マルテンサイト系ステンレス鋼材
JP7498420B1 (ja) 二相ステンレス鋼材
JP7248894B2 (ja) 2相ステンレス鋼
JP7248893B2 (ja) 2相ステンレス鋼
JP7231136B1 (ja) 締結部材の素材として用いられる鋼材、及び、締結部材
JP7135708B2 (ja) 鋼材
JP6575266B2 (ja) オーステナイト系ステンレス鋼
JP6575265B2 (ja) オーステナイト系ステンレス鋼
JP2022111733A (ja) 二相ステンレス鋼管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554253

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3080706

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207016636

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018879992

Country of ref document: EP

Effective date: 20200615

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009434

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009434

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200512