WO2013190987A1 - 高周波電力供給装置、及び反射波電力制御方法 - Google Patents

高周波電力供給装置、及び反射波電力制御方法 Download PDF

Info

Publication number
WO2013190987A1
WO2013190987A1 PCT/JP2013/065339 JP2013065339W WO2013190987A1 WO 2013190987 A1 WO2013190987 A1 WO 2013190987A1 JP 2013065339 W JP2013065339 W JP 2013065339W WO 2013190987 A1 WO2013190987 A1 WO 2013190987A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflected wave
wave power
power
value
power supply
Prior art date
Application number
PCT/JP2013/065339
Other languages
English (en)
French (fr)
Inventor
譲原 逸男
諭 相川
博史 國玉
Original Assignee
株式会社京三製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京三製作所 filed Critical 株式会社京三製作所
Priority to CN201380028359.3A priority Critical patent/CN104322154B/zh
Priority to IN2415KON2014 priority patent/IN2014KN02415A/en
Priority to KR1020147034773A priority patent/KR101523484B1/ko
Priority to DE13807713.6T priority patent/DE13807713T1/de
Priority to EP13807713.6A priority patent/EP2833703B1/en
Priority to US14/394,341 priority patent/US9070537B2/en
Publication of WO2013190987A1 publication Critical patent/WO2013190987A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32944Arc detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/26Matching networks

Definitions

  • the present invention relates to a reflected wave power control method and a high frequency power supply device for controlling reflected wave power from a load side to a power source side when supplying high frequency power from a high frequency power source to a load.
  • a high-frequency power source that converts DC of a DC power source into high-frequency AC by switching operation is known.
  • a class D high-frequency power source based on a class D amplifier circuit (Class D: IEC international standard IEC60268-3 4 class of operation) is known.
  • the class D high frequency power supply converts the DC power supply DC to high frequency AC by switching the RF power amplifying element with an RF gate signal of a certain duty, and loads the obtained high frequency AC as high frequency traveling wave power. To supply.
  • the class D high frequency power supply adjusts the output by pulse operation.
  • the pulse operation is a driving mode in which the RF power amplifying element is switched by the RF gate signal to alternately output the RF output and the OFF period in which the RF output is not output without performing the switching operation.
  • the output power of the RF output is adjusted by changing the duty which is the time ratio between the ON section and the OFF section.
  • the duty of the ON section and the OFF section can be controlled by the duty (Duty) of the ON section and the OFF section of the pulse control signal.
  • RF means high frequency.
  • the load impedance When supplying high-frequency power from a high-frequency power source to a load, when the high-frequency power is supplied to a load such as a plasma processing apparatus, the load impedance varies depending on the state of plasma discharge. When the load impedance varies, the reflected wave power returning from the load side to the power source side varies.
  • Reflected wave power may affect the Class D high frequency power supply.
  • an RF power amplifying element constituting a class D high-frequency power source may be thermally damaged due to heat generated by internal loss due to reflected wave power, or may be damaged due to a surge voltage of reflected wave power.
  • the DC power supply that constitutes the class D high frequency power supply may be damaged.
  • the D-class high-frequency power supply supplies high-frequency power to the plasma load by pulse operation
  • all the traveling wave power returns to the power source side as reflected wave power in an unignited state until the plasma is ignited. Therefore, the class D high frequency power source is required to withstand the total reflected wave power.
  • the reflected wave power when all of the traveling wave power returns to the power supply side is referred to as total reflected wave power
  • the response to withstand the total reflected wave power in the high frequency power supply is referred to as total reflected wave compatibility.
  • the total reflected wave correspondence not only prevents the RF power amplifying element from being damaged by the total reflected wave power but also determines that the ignition has failed after starting the ignition operation and supplies high frequency power. Until the interruption, it is assumed that the electric power supply is continuously performed without interrupting the supply of the high-frequency electric power and the plasma ignition operation is continued.
  • Patent Document 1 describes that in order to suppress accumulated carriers in the body diode of the RF power amplifying element, the load impedance viewed from the RF power amplifying element is used in a delayed state, thereby reducing the switching loss of the circuit. Has been. In order to support total reflected waves, the ignition time required for the ignition operation during plasma ignition is limited in advance, thereby limiting the reflected wave power within this ignition time to be the same as the rated power of the traveling wave power. It is required to do.
  • class C high frequency power supplies are known as commonly used high frequency power supplies.
  • a normally used high frequency power supply device such as a class C high frequency power supply
  • the traveling wave power on the supply side is suppressed so as to suppress the supply of the reflected wave power below the rated output, thereby the high frequency power supply side
  • Patent Documents 2 to 7 A technique for preventing damage to the element is known.
  • Patent Documents 2 and 3 disclose techniques for stopping power supply
  • Patent Documents 4 to 7 disclose techniques for suppressing traveling wave power.
  • Patent Document 2 describes a shutdown method for controlling the traveling wave power value of a high-frequency plasma power source so that the reflected wave power value is 10 to 20% or less of the rated output.
  • Patent Document 3 describes the reflected wave power. Using the signal output from the detector, the difference between the magnitude of the signal corresponding to the reflected microwave power and the charge / discharge reference value is integrated over time, and the magnitude of the integral signal having the magnitude corresponding to the integral value. Describes a microwave power supply system that cuts off the power supply when the value exceeds an allowable reference value.
  • Patent Document 4 describes that the output power is reduced by a mixer when the reflected wave power exceeds a limit value
  • Patent Document 5 describes a power suppression signal output from the reflected wave power detection signal and It is described that the power control signal is generated by the traveling wave power
  • Patent Document 6 obtains a difference between the reflected wave power detected and returned and the set reflected wave power, and the traveling wave power is drooped based on the difference.
  • Patent Document 7 calculates a reflected wave coefficient based on the reflected wave power, corrects the magnitude of the attenuator gain according to the calculated reflected wave coefficient, and calculates the power required for the load. Supplying is described.
  • Patent Document 8 describes that the sensor output for measuring the reflected wave power is differentiated and the occurrence of abnormal discharge is determined based on the degree of temporal fluctuation of the reflected wave power of the high-frequency power due to the differential output. ing.
  • Japanese Patent No. 3641785 (paragraph [0046], paragraph [0047]) Japanese Patent Publication No. 7-32078 (paragraph [0003], paragraph [0005]) JP 2004-71269 (paragraph [0017], paragraph [0018]) JP-A-10-257774 (paragraph [0028] to paragraph [0031]) Japanese Patent No. 3998986 (paragraph [0028]) JP 2004-8893 (paragraph [0019]) JP 2005-136933 (paragraph [0013]) Japanese Patent No. 3893276 ([0008], [0025])
  • the D-class high-frequency power supply supplies high-frequency power to the plasma load by pulse operation, all the traveling wave power returns to the power source side as reflected wave power in the unignited state until the plasma is ignited. It is required to supply a large load end power to the load and improve the plasma ignition performance during the pulse operation without damaging the RF power amplification element due to the total reflected wave power during the pulse operation.
  • Patent Documents 2 and 3 stop the power supply, Patent Document 2 controls the reflected wave power value to be 10 to 20% or less of the rated output, and Patent Document 3 describes the charge / discharge circuit. Since the cutoff control is performed by the output, the supply of the high frequency power cannot be maintained in a state where it can withstand the total reflected wave power, and it is not possible to cope with the total reflected wave correspondence.
  • a high frequency power supply when the direct current of the direct current power supply is converted into a high frequency alternating current by switching operation and the high frequency power traveling wave power is supplied to the plasma load, the matching between the high frequency power supply and the plasma load is normally matched. Even when the plasma starts up, the load impedance of the plasma load greatly fluctuates, and the reflected wave power that returns from the plasma load side to the power source side is generated by this load impedance fluctuation. The reflected wave power generated when this plasma rises fluctuates greatly in a short time.
  • Patent Documents 4 to 7 Since the power control in Patent Documents 4 to 7 performs power suppression based on the instantaneous value of the reflected wave power, if the peak value at which the reflected wave power sharply rises at the time of plasma rise exceeds the set value Power suppression by power control starts. If the power supplied to the plasma load is limited by the power control, the supply power will be reduced before the plasma ignites, resulting in unsuccessful ignition. There is a problem that it is difficult to maintain and normal plasma generation is difficult.
  • the present invention is a high frequency power source that supplies high frequency power to a plasma load by pulse operation, and in a non-ignition state until plasma is ignited, all traveling wave power returns to the power source side as reflected wave power.
  • the class D high-frequency power supply solves the above-mentioned conventional problems in the total reflection wave resistance that can withstand the above-mentioned, and the non-ignition state until the plasma is ignited
  • the total reflected wave power that can withstand the total reflected wave power that returns to the power supply side as all the traveling wave power is reflected to prevent damage to the RF power amplifying element due to the total reflected wave power during pulse operation.
  • the plasma ignition operation is continued by continuously supplying power without shutting off the high-frequency power supply, and the It aims to improve the ignition performance of Ma.
  • the present invention relates to a reflected wave power control for detecting a reflected wave power of a high frequency power source and controlling the high frequency power source using the detected reflected wave power in a high frequency power supply for supplying a high frequency power to a plasma load.
  • the reflected wave power is controlled based on fluctuations in the peak value of the reflected wave power detection value.
  • the reflected wave power detection value is smoothed. The reflected wave power is controlled based on the fluctuation of the smooth value obtained in this way.
  • the present invention provides a reflected wave power control loop system, a reflected wave power peak value drooping loop system and an arc interruption system that perform control based on peak fluctuations in reflected wave power, and control based on the power smoothing amount of reflected wave power. And a reflected wave power amount drooping loop system.
  • the reflected wave power peak value drooping loop system of the present invention controls the DC voltage of the DC power source of the high frequency power supply unit based on the peak value of the reflected wave power, and controls the peak value of the reflected wave power by voltage control of the DC power source.
  • the reflected wave power peak value drooping loop system is a control system that droops (decreases) the reflected wave power peak value when the peak value of the reflected wave power exceeds the set value (reflected wave power peak limit value). By dropping (decreasing) the amplitude of the peak value of the wave power, the RF power amplifying element is prevented from being destroyed by an overload or surge voltage.
  • the reflected wave power peak value drooping loop system is configured to control the DC voltage of the DC power supply of the high frequency power supply unit, and the DC voltage is drooped by feedback controlling the peak value of the reflected wave power to the DC power supply, The drooping operation of the peak value of the reflected wave power can be performed at high speed.
  • the arc interruption system of the present invention controls the presence / absence of power supply to the plasma load by controlling the presence / absence of the output of the RF amplifying unit of the high frequency power supply unit based on the peak value of the reflected wave power. Control the shut-off.
  • the arc interruption system is a control system that stops power supply when the peak value of the reflected wave power exceeds a set value (arc limit value). When the arc interruption level for stopping the arc of the plasma load is exceeded, the power supply is stopped and the arc in the plasma load is extinguished.
  • the ignition may be re-ignited by an ignition retry function that performs the ignition operation again after a predetermined time has elapsed.
  • the reflected wave power peak value drooping loop system and the arc breaking system of the present invention are controls that droop the peak value of the reflected wave power when the peak value of the reflected wave power exceeds the set value set in each control system, Or control which stops electric power supply is performed.
  • At least one of the reflected wave power peak value drooping loop system and the arc breaking system according to the present invention can include a steep fluctuation removing unit that removes a steep fluctuation from the detected value of the reflected wave power.
  • the steep fluctuation removing unit removes a steep fluctuation part due to a steep fluctuation from the detected value of the reflected wave power, and feeds back a signal of a peak value of the reflected wave power in a period longer than the steep fluctuation that does not depend on the steep fluctuation.
  • the steep fluctuation removing unit can be configured by a first-order lag circuit such as a low-pass filter.
  • the reflected wave power amount drooping loop system of the present invention controls the power supply amount to the plasma load by controlling the amplification of the RF amplification unit of the high frequency power supply unit based on the power smoothing amount of the reflected wave power. Controls the amount of power smoothing drooping. In the reflected wave power droop loop system, the amount of reflected wave power when the smoothed smooth value such as the average value or effective value of the reflected wave power exceeds the set value (reflected wave power smoothing limit value).
  • the control system of the reflected wave power peak value drooping loop system, the arc breaking system, and the reflected wave power amount drooping loop system of the present invention can be controlled independently.
  • the set values used for each control system are the reflected wave power peak limit value, the arc limit value, and the reflected wave power smooth limit value.
  • the arc limit value, the reflected wave power peak limit value, and the reflected wave power smooth limit are in descending order. Value is set.
  • the reflected wave power peak limit value is an index of the influence on the RF power amplifier due to an increase in the reflected wave power peak value such as overload or surge voltage.
  • the reflected wave power peak value exceeds the set value.
  • the RF power amplifying element is overloaded or surge voltage controlled by dropping the peak value of the reflected wave power and controlling the peak value of the reflected wave power not to exceed the set value. Protect from destruction by.
  • the arc limit value is a threshold value for detecting an increase in reflected wave power due to ignition failure in the plasma load, and is set as a level for interrupting the arc. When the peak value of the reflected wave power exceeds the arc interruption level, it is determined that the ignition has failed, and the arc interruption operation is started.
  • the reflected wave power smoothing limit value is a set value that serves as an index of the thermal effect on the RF power amplifier due to an increase in the amount of reflected wave power, and the smoothed amount such as the average value or effective value of the reflected wave power
  • the set value is exceeded, by controlling the duty of the pulse control signal to control the droop (decrease) in the amount of reflected wave power, thermal damage to the RF power amplifying element is prevented.
  • the reflected wave power is reduced by reducing the ratio of the ON section in the time ratio of the ON section and the OFF section of the pulse control signal.
  • the reflected wave power control system of the present invention uses the above-described reflected wave power peak value drooping loop system, arc interruption system, and reflected wave power amount drooping loop system, so that an unignited state until plasma is ignited. ,
  • the traveling wave power returns to the power supply side as all reflected wave power.
  • damage to the RF power amplifying element due to the total reflected wave power is prevented, and ignition is unsuccessful.
  • high-frequency power is not cut off and power is continuously supplied to continue the plasma ignition operation. Plasma ignition performance during pulse operation To improve.
  • the present invention can be in the form of a high-frequency power supply device and a reflected wave power control method.
  • the high-frequency power supply device of the present invention is a high-frequency power supply device that supplies high-frequency power to a plasma load.
  • the high-frequency power supply device that converts high-frequency alternating current from direct-current power to high-frequency alternating current by switching operation, And a plurality of feedback systems that perform feedback control by feeding back the detected value of the high-frequency output.
  • the feedback system is a traveling wave power control loop system that controls the traveling wave power by feeding back the detected value of the traveling wave power from the high frequency power supply to the plasma load, and the detected value of the reflected wave power from the plasma load to the high frequency power supply. And a plurality of reflected wave power control loop systems for controlling the reflected wave power by feedback.
  • the arc interruption system does not form a control loop, but after the traveling wave power is interrupted by the interruption process, the plasma ignition operation is performed by the re-ignition operation, so that a kind of loop system is formed here. As described above, it is included in one control loop system of the reflected wave power control loop system.
  • the reflected wave power peak value drooping loop system and the arc breaking system of the present invention have a steep fluctuation excluding a steep variation from the detected value of the reflected wave power detected at the output terminal of the high frequency power supply unit.
  • a fluctuation removing unit is provided.
  • the steep fluctuation removing unit can be configured by a first-order lag circuit, and a steep fluctuation included in the detected value is removed by delaying the detected value of the reflected wave power by the first-order lag.
  • the first-order lag circuit reduces the abrupt fluctuation included in the reflected wave power generated at the plasma rising by delaying the detection value of the reflected wave power to the first order, and does not depend on the fluctuation of the plasma load. It is possible to prevent erroneous determinations due to fluctuations and to prevent malfunctions such as reducing the supply of high-frequency power.
  • the steep fluctuation removing unit is not limited to the configuration of the first-order lag circuit, and may be configured to detect a point in time when the detection value of the reflected wave power fluctuates sharply and exclude the detection value at this point.
  • the reflected wave power amount drooping loop system included in the reflected wave power control loop system of the present invention includes a power smoothing unit that outputs an average value or an effective value of a detected value of reflected wave power as a configuration for obtaining a smoothed value of the reflected wave power. .
  • the reflected wave power smoothing limit value that determines whether or not to control the amount of high frequency power drooping and the amount of drooping in drooping control is provided with the reflected wave power average limit value or the reflected wave power effective limit value.
  • the amount of error between the obtained smooth value and the reflected wave power smoothing limit value (reflected wave power average limit value or reflected wave power effective limit value) is obtained, and the droop control of the reflected wave power amount is performed based on the obtained error amount. I do.
  • the reflected wave power peak value drooping loop system the arc interruption system, and the reflected wave power amount drooping loop system will be described.
  • the reflected wave power control loop system of the present invention includes a reflected wave power peak value drooping loop system that droops (decreases) the peak value of the reflected wave power.
  • the reflected wave power peak value drooping loop system has a reflected wave power peak limit value as a threshold value that determines whether or not to perform control to droop the reflected wave power peak value.
  • the reflected wave power peak value drooping loop system of the present invention feeds back the difference between the reflected wave power peak value and the reflected wave power peak limit value to the traveling wave power control loop system as a feedback signal.
  • the output voltage is controlled by controlling the pulse width of the PWM signal that drives the DC / DC converter included in the high frequency power supply unit based on the feedback signal fed back from the reflected wave power peak value drooping loop system. .
  • the detected value of the reflected wave power may include a peak caused by a steep fluctuation at the rising edge of the plasma. Since this peak is not associated with plasma anomaly, when the control to drop the reflected wave power peak value based on this peak value is performed, the control is erroneously performed as a plasma anomaly even though the plasma is in a normal state. become.
  • a steep fluctuation removing unit In order to avoid such erroneous determination, a steep fluctuation removing unit can be provided.
  • the steep fluctuation removing unit outputs a signal excluding the steep fluctuation included in the detected value of the reflected wave power as a peak value of the reflected wave power.
  • the reflected wave power control loop system of the present invention is equipped with an arc interruption system that prevents damage due to excessive reflected wave power, and stops power supply to the plasma load when ignition fails and excessive reflected wave power is generated. To interrupt the arc during plasma loading.
  • the arc interruption system has an arc limit value as a threshold value that determines whether or not to stop the output of high-frequency power.
  • the arc interruption system of the present invention controls a pulse control signal that generates an RF gate signal for driving an RF amplification unit included in a high-frequency power supply unit based on a comparison between a peak value of reflected wave power and an arc limit value, The presence or absence of high frequency power output from the RF amplifier is controlled.
  • the RF amplifying unit converts a DC voltage into AC high frequency power by using, for example, a full bridge inverter. In DC-to-AC conversion, amplification conversion is performed in synchronization with the RF gate signal that switches the switching element of the inverter, and the output of high-frequency power is controlled by controlling the pulse control signal that generates the RF gate signal of the RF amplification unit can do.
  • a peak due to a steep fluctuation at the time of rising of the plasma included in the detected value of the reflected wave power may be erroneously determined as a plasma abnormality.
  • a steep fluctuation removing unit can be provided, and cut-off control is performed based on a comparison between the peak value of the reflected wave power obtained by removing the steep fluctuation by the steep fluctuation removing unit and the arc limit value.
  • the fluctuation component is removed from the reflected wave power by the steep fluctuation removing unit, thereby preventing the peak value generated when the plasma starts up from being erroneously determined as a plasma abnormality.
  • the reflected wave power control loop system of the present invention includes a reflected wave power amount drooping loop system that droops (decreases) the amount of reflected wave power.
  • the reflected wave power amount drooping loop system of the present invention is based on the comparison between the power smoothing amount obtained by the power smoothing unit and the reflected wave power smoothing limit value.
  • the duty (Duty) of the pulse control signal that determines the time ratio between the section and the OFF section is determined, and the drooping (decrease) in the amount of high frequency power of the RF amplifier is controlled.
  • the power smoothing unit may be an average value circuit that calculates an average value of power or an effective value circuit that calculates an effective value of power.
  • the reflected wave power droop loop system is based on the comparison between the average value of power and the average limit value of reflected wave power, or the comparison between the effective value of power and the effective limit value of reflected wave power. Controls the drooping (decrease) in the amount of power.
  • the average value drooping operation or the effective value drooping operation by the reflected wave power amount drooping loop system is performed by reducing the duty (Duty) of the pulse control signal that determines the time ratio between the ON period and the OFF period of the RF gate signal.
  • the amount of reflected wave power can be suppressed without reducing the amplitude of the high-frequency voltage, thereby reducing the thermal loss of the RF power amplifying element and preventing its destruction.
  • a high ignition voltage can be maintained by not reducing the amplitude of the high frequency voltage of the RF amplifier.
  • FIG. 1 is a diagram for explaining a schematic configuration of a high-frequency power supply device according to the present invention.
  • a high frequency power supply device 1 converts a direct current voltage of a direct current power source with a DC / DC converter 12 and amplifies and converts the direct current from a direct current to an alternating current with an RF amplifier 13.
  • a high-frequency power supply unit 10 that supplies the load 103 is provided.
  • the high frequency power supply unit 10 includes a traveling wave power control loop system 20 that performs feedback control based on a traveling wave power feedback value PF detected by the RF sensor 16 at the output end, and a reflected wave power feedback detected by the RF sensor 16 at the output end.
  • a reflected wave power control loop system 100 (30, 40, 50) that performs feedback control based on the value PR is provided.
  • the reflected wave power control loop system 100 includes a reflected wave power peak value drooping loop system 30, an arc breaking system 40, and a reflected wave power amount drooping loop system 50.
  • the reflected wave power peak value drooping loop system 30 performs control to droop (decrease) the peak value of the reflected wave power
  • the arc interruption system 40 performs control to interrupt the arc in the plasma load, and the reflected wave power amount drooping loop system. 50 controls the amount of reflected wave power to drop (decrease).
  • the reflected wave power peak value drooping loop system 30 and the arc breaking system 40 are obtained by removing the abrupt fluctuation portion of the detected reflected wave power feedback value PR by the steep fluctuation removing unit 31. Control is performed based on the peak value signal.
  • the reflected wave power amount drooping loop system 50 in the reflected wave power control loop system 100 performs control based on the smoothed power amount obtained by smoothing the detected reflected wave power feedback value PR by the power smoothing unit 51. .
  • the steep fluctuation removing unit 31 prevents the steep fluctuation from being erroneously determined as a plasma abnormality by removing the steep fluctuation, which is a peak value generated when the plasma rises, from the reflected wave power feedback value PR.
  • the output of the steep fluctuation removing unit 31 is used to control the reflected wave power peak value drooping loop system 30 and the arc breaking system 40.
  • the steep fluctuation removing unit 31 can be a first-order lag circuit composed of an LPF (low-pass filter).
  • the power smoothing unit 51 outputs a value corresponding to the power value smoothed by the average value or the effective value of the reflected wave power feedback value PR.
  • the reflected wave power amount drooping loop system 50 obtains the duty of the pulse control signal that controls the RF amplification unit based on the output of the power smoothing unit 51.
  • the reflected wave power control method of the present invention in high-frequency power supply for supplying high-frequency power to a plasma load, feedback control is performed by feeding back a detected value of an output of a high-frequency power supply unit that converts DC of a DC power supply into high-frequency AC by a switching operation.
  • the detected value of the traveling wave power is fed back to the traveling wave power control loop system, and the detected value of the reflected wave power is returned to the reflected wave power control loop system 100 having a plurality of loop systems. To return.
  • the reflected wave power peak value drooping loop system and the arc breaking system control the output voltage to droop the reflected wave power peak value or interrupt the arc.
  • the steep fluctuation removing unit removes the steep fluctuations included in the detected value of the reflected wave power, so that the peak value generated when the plasma starts up is erroneously determined as plasma abnormality, and drooping or It is possible to prevent a malfunction of interruption.
  • the reflected wave power amount drooping loop system smoothes the detected value of the reflected wave power by the power smoothing unit and feeds back a signal corresponding to the smoothed power amount.
  • the drooping control of the amount of reflected wave power is performed.
  • the reflected wave power control loop system includes a reflected wave power peak value drooping loop system.
  • the reflected wave power peak value drooping loop system has a reflected wave power peak limit value as a threshold value for determining whether or not to control to drop the reflected wave power peak value.
  • the difference from the peak limit value is fed back to the traveling wave power control loop system, and the output voltage is controlled by controlling the pulse width of the PWM signal that drives the DC / DC converter provided in the high frequency power supply unit.
  • the reflected wave power control loop system includes an arc interruption system.
  • the arc interruption system has an arc limit value as a threshold value for determining whether or not to perform control to output high-frequency power, and the high-frequency power supply unit is provided based on a comparison between the detected value of reflected wave power and the arc limit value.
  • the RF gate signal of the RF amplifying unit is controlled to cut off the high frequency power output of the RF amplifying unit.
  • the detected value of reflected wave power is passed through the steep fluctuation removal unit to remove the steep fluctuations that occur at the rise of the plasma contained in the detected value and prevent malfunction. be able to.
  • the reflected wave power control loop system includes a reflected wave power amount drooping loop system.
  • the reflected wave power droop loop system is used to compare the smoothed value obtained by smoothing the detected value of the reflected wave power with the reflected wave power smoothing limit value that determines whether or not the droop control of the high frequency power is drooped and the droop amount. Based on this, the duty of the pulse control signal that determines the time ratio between the ON section and the OFF section of the RF gate signal of the RF amplification section provided in the high frequency power supply section is determined, and droop control of the amount of high frequency power of the RF amplification section is performed Do.
  • the smooth value can be an average value or an effective value of the detected value of the reflected wave power, and has a reflected wave power average limit value or a reflected wave power effective limit value as the reflected wave power smoothing limit value, respectively.
  • FIG. 2 is an explanatory diagram for explaining an outline of power control in the present invention.
  • the reflected wave power control of the high frequency power supply of the present invention the reflected wave power from the load side to the power source side is detected by the RF sensor 16 provided at the output end of the high frequency power supply unit 10 (S1).
  • Reflected wave power peak value drooping control controls the output voltage by driving the DC / DC converter 12 of the high frequency power supply unit 10 by a PWM control signal based on the peak value of the reflected wave power.
  • the arc interruption control (S4) performs plasma ignition determination based on the peak value of the reflected wave power. If a large reflected wave power is generated due to failure of ignition (S7), the RF gate signal is stopped and RF amplification is performed. The output from the unit is stopped and the traveling wave power is cut off (S8). After the traveling wave power is cut off, the plasma ignition operation is repeated again by the re-ignition operation (S9).
  • the re-ignition operation can be performed by an ignition retry function that attempts to ignite after a predetermined pause time has elapsed after determining an ignition failure.
  • this retry function it is possible to set the number of retries for repeating the ignition operation and the duration of the pause time.
  • the retry operation may be stopped, or the retry operation may be returned after being stopped for a certain time.
  • the smooth value of the detected value of the reflected wave power is obtained from the average value or the effective value (S5). Based on the obtained smooth value, the reflected wave power amount drooping control is performed.
  • the duty (Duty) of the pulse control signal is set based on the smooth value of the reflected wave power, and the RF amplification unit is drooped based on this duty (Duty) (S6).
  • the reflected wave power peak value drooping control (S3), arc interruption control (S4), and reflected wave energy drooping control (S6) set the threshold values for starting these controls individually and independently. And can be controlled.
  • the traveling wave power from the power source side to the load side is detected by the RF sensor 16 (S101), and the high frequency power source is detected by the PWM control signal based on the detected traveling wave power amount.
  • the DC / DC converter 12 of the unit 10 is driven to control the output voltage (S102).
  • FIG. 3 is a diagram for explaining the relationship between the reflected wave power feedback, each limit value, and the arc cutoff level.
  • FIG. 3A shows the traveling wave power feedback value PF.
  • the first-order lag output 202 of the reflected wave power indicates an output obtained by first-order lagging the reflected wave power feedback value PR
  • the smooth value 203 indicates the average value or effective value of the reflected wave power feedback value PR.
  • Show. 3B shows limit values (reflected wave power smoothing limit value 301, reflected wave power peak limit value 302) and an arc limit value 303 which is an arc interruption level.
  • the traveling wave power feedback value 200 and the reflected wave power feedback value 201 are indicated by envelopes.
  • the output of the RF sensor 16 is not limited to a DC voltage output, but may be a high-frequency AC voltage output. it can.
  • the first-order lag output 202 of the reflected wave power provides a signal in which the steep fluctuation that occurs at the time of plasma rising is suppressed by first-order delaying the reflected wave power feedback value PR.
  • the reflected wave power primary delay output 202 is compared with the reflected wave power peak limit value 302, and when the reflected wave power primary delay output 202 reaches the reflected wave power peak limit value 302, the reflected wave power peak value drooping control is performed. To reduce the peak value of the reflected wave power.
  • the smoothed value (average value or effective value) 203 reaches the reflected wave power smoothing limit value (reflected wave power average limit value or reflected wave power effective limit value) 301, the reflected wave power amount drooping operation is performed.
  • the output power amount is limited without reducing the amplitude of the output voltage of the high frequency power supply unit, thereby reducing the thermal loss of the RF power amplifying element.
  • traveling wave power feedback value and the reflected wave power feedback value shown in FIG. 3 are examples schematically shown for explanation, and do not necessarily show actual examples. Further, neither the limit value nor the arc interruption level shows an actual example.
  • the present invention in the high-frequency power source that supplies high-frequency power to the plasma load by pulse operation, in the unignited state until the plasma is ignited, all traveling wave power is reflected as reflected wave power. It is possible to realize total reflected wave support that can withstand the total reflected wave power returning to step (b).
  • the high-frequency power supply device 1 of the present invention includes a high-frequency power supply unit 10 that supplies high-frequency power to a load 103, and a power output terminal 101 of the high-frequency power supply unit 10 and the load 103 are connected by, for example, a coaxial cable 102.
  • the coaxial cable 102 is an example and is not an essential configuration, and power may be sent by other transmission lines.
  • the high-frequency power supply unit 10 is controlled by feedback control using a feedback system including a traveling wave power control loop system 20, a reflected wave power amount drooping loop system 50, a reflected wave power peak value drooping loop system 30, and an arc breaking system 40. .
  • the high frequency power supply unit 10 includes a DC power supply 11, a DC / DC converter 12, an RF amplification unit 13, a combiner 14, and a low-pass filter 15, and an RF sensor 16 between the low-pass filter 15 and the power output terminal 101.
  • the DC power supply 11 is an input supply source for the DC / DC converter 12. Instead of the DC power source 11, a DC voltage obtained by rectifying and smoothing an AC voltage may be used.
  • the DC / DC converter 12 is a device that converts the voltage Edc of the DC power supply 11 into a variable DC voltage Vdc.
  • the converter may be configured by an inverter circuit or a chopper circuit.
  • the DC / DC converter 12 changes the conduction rate of the semiconductor element according to the pulse width of the PWM signal supplied from the drive circuit 25 of the traveling wave power control loop system 20, thereby making the output DC voltage Vdc variable.
  • the DC voltage Vdc output from the DC / DC converter 12 is input to the RF amplifier 13.
  • the RF amplifier 13 is a device that converts a DC voltage into an AC voltage, and a class D RF amplifier circuit can be used.
  • the class D RF amplifier circuit is a high frequency amplifier circuit that converts the direct current of the direct current power source into a high frequency alternating current through a switching operation.
  • the switching element in the output stage is turned on / off based on the RF gate signal to increase the output current from 0 to the maximum.
  • Amplification is performed by performing DC / AC conversion by increasing or decreasing the value. Since the D-class RF amplifier circuit has a small resistance when the switching element is on, the heat loss is small and conversion can be performed with high efficiency.
  • the RF amplifier 13 using the class D RF amplifier circuit can be configured by a full bridge inverter, and converts the DC voltage Vdc input from the DC / DC converter 12 into AC RF output power.
  • the voltage amplitude of the RF output power of the RF amplification unit 13 is proportional to the input DC voltage Vdc.
  • the conversion from direct current to alternating current of the RF amplifier 13 is amplified and converted in synchronization with the RF gate signal supplied by the gate signal generator 18.
  • FIG. 5 shows an example of the configuration of the RF amplification unit provided in the high-frequency power supply
  • FIG. 6 is for explaining the RF gate signal for driving and controlling the RF amplification unit, the RF output, and the traveling wave power and the reflected wave power in the plasma load.
  • the RF amplifying unit 120 shown in FIG. 5 includes MOSFETs 120a to 120d configured as a bridge, and a connection point between the MOSFET 120a and the MOSFET 120b connected in series and a connection point between the MOSFET 120c and the MOSFET 120d connected in series are connected by a main transformer 120e.
  • the output of the main transformer 120e obtained in this way is the RF output.
  • the MOSFETs 120a to 120d are driven and controlled by RF gate signals A, A * , B, and B * (FIGS. 5A and 5B).
  • the RF gate signals A and A * are signals for driving and controlling the series circuit of the MOSFET 120a and the MOSFET 120b, and are in opposite phases to each other.
  • RF gate signals B and B * are signals that drive and control the series circuit of the MOSFET 120c and the MOSFET 120d, and are in opposite phases to each other.
  • the RF gate signal A and the RF gate signal B are in opposite phases.
  • the RF gate signals A, A * , B, B * are controlled by the pulse control signal (FIG. 6C), and the RF gate signals A, A * , B, B * are controlled . Is output during a period in which the pulse control signal is on, and the RF output (FIG. 6D) is output within this period.
  • FIGS. 6E and 6F show traveling wave power and reflected wave power in the plasma load.
  • the plasma load with a matching device generates reflected wave power in a transient phenomenon when the RF gate signal (FIGS. 6 (a) and 6 (b)) rises, and attenuates after the settling time. (FIG. 6 (f)).
  • RF output power can be obtained by connecting a plurality of RF amplifying units in parallel.
  • the phase of each RF amplifying unit is synchronized for amplification conversion to match the phase of the AC power at the power output terminal 101 of the high-frequency power source unit 10.
  • the synthesizer 14 is a device that combines the RF output powers output from the plurality of RF amplification units 13 into one, and can be omitted when the number of the RF amplification units 13 is single.
  • the RF output power output from the RF amplifying unit 13 and the RF output power output as a single unit by the combiner 14 contain a lot of harmonic components.
  • the low-pass filter 15 shapes the RF output power to remove harmonic components contained in the high-frequency power, and sends the RF output power with less harmonic components to the RF sensor 16.
  • the RF sensor 16 detects traveling wave power and reflected wave power included in the RF output power separately and outputs them as a traveling wave power feedback value PF and a reflected wave power feedback value PR.
  • the RF output power that has passed through the RF sensor 16 is transmitted to the power output terminal 101.
  • the power output terminal 101 connects the coaxial cable 102 and the high frequency power supply unit 10. By making the characteristic impedance of the power output terminal 101 coincide with the characteristic impedance of the coaxial cable 102, generation of unnecessary reflected wave power is suppressed.
  • the coaxial cable 102 supplies the RF output power input from the power output terminal 101 to the load 103.
  • the load 103 can match the impedance viewed from the high frequency power supply side with the characteristic impedance of the power output terminal 101 and the characteristic impedance of the coaxial cable 102 through a matching box (matching unit).
  • the characteristic impedance and the matching impedance can be set to 50 [ohm], for example.
  • the traveling wave power control loop system 20 feeds back the traveling wave power feedback value PF detected by the RF sensor 16 to the DC / DC converter 12, so that the traveling wave power of the high frequency power supply unit 10 becomes the magnitude of the traveling wave power command value.
  • the feedback system is controlled so that the hold circuit 22, the traveling wave power error amplifier 23, the PWM signal generation circuit 24, and the drive circuit 25 are connected in series from the RF sensor 16 to the DC / DC converter 12. Composed.
  • the traveling wave power command value 21 is a reference value for controlling the magnitude of the traveling wave power feedback value PF detected by the RF sensor 16 when traveling wave power control is performed.
  • a PWM signal having a pulse width in which the peak value of the power feedback value PF is the same as the traveling wave power command value 21 is generated, and the DC / DC converter 12 is pulse-controlled by this PWM signal.
  • the traveling wave power feedback value PF output from the RF sensor 16 includes a value in the Ton section and a value in the Toff section, and the value in the Ton section represents the magnitude of the traveling wave power. On the other hand, the value of the Toff section does not represent the magnitude of traveling wave power.
  • the hold circuit 22 takes out the magnitude of the traveling wave power by holding only the value in the Ton interval except the value in the Toff interval of the traveling wave power feedback value PF.
  • the hold circuit 22 keeps the previous state by cutting the switch ON and interlocking with the Ton interval of the traveling wave power feedback value PF, and disconnecting the switch OFF and interlocking with the Toff interval, thereby maintaining the amplitude of the traveling wave power feedback value. Hold.
  • the amplitude of the held traveling wave power feedback value PF is sent to the traveling wave power error amplifier 23.
  • FIG. 7 is a circuit diagram for explaining a configuration example of the hold circuit 22.
  • the hold circuit 61 is constituted by a switch circuit 65, and a traveling wave power command value 21 and a traveling wave power feedback value are connected by connecting a resistor 63 and a resistor 64 to the input terminal of the switch circuit 65. Enter the PF.
  • the switch circuit 65 performs switching in synchronization with ON / OFF of the traveling wave power feedback value PF, and an error in which the traveling wave power feedback value PF and the traveling wave power command value in the Ton period are connected to the output terminal of the switch circuit 65. Input to the amplifier circuit 62.
  • the error amplification circuit 62 is composed of an operation amplifier 66, and amplifies the difference between the traveling wave power feedback value PF and the traveling wave power command value.
  • an example in which the error amplification function is configured by hardware by the error amplification circuit 62 provided with the operation amplifier 66 is shown.
  • the configuration is not limited to the hardware configuration but is configured by software, and the CPU is driven by a program. An error amplification calculation process may be performed.
  • the hold circuit 71 includes a switch circuit 75 and a capacitor, and a traveling wave power feedback value PF is input to the input terminal of the switch circuit 75.
  • the switch circuit 75 performs switching in synchronization with ON / OFF of the traveling wave power feedback value PF, and holds the traveling wave power feedback value PF in the Ton section in the capacitor.
  • the traveling wave power feedback value PF is input to the error amplification circuit 72 via the buffer circuit 77 and the resistor 74.
  • the traveling wave power command value 21 is input to the error amplification circuit 72 via the resistor 73.
  • the error amplifying circuit 72 includes an operation amplifier 76 and amplifies the difference between the traveling wave power feedback value PF and the traveling wave power command value.
  • the traveling wave power error amplifying device 23 amplifies the error between the traveling wave power command value and the traveling wave power feedback value PF with a predetermined gain and outputs the amplified amount as a control amount.
  • the PWM signal generation circuit 24 compares the control amount output from the traveling wave power error amplifier 23 or the reflected wave power peak value power error amplifier 34, and generates a PWM signal according to the larger control amount.
  • the control amount output from the reflected wave power peak value power error amplifier 34 is a control amount for performing reflected wave power peak value drooping control
  • the control amount of the traveling wave power error amplifier 23 is the control amount of the reflected wave power peak value power error amplifier 34.
  • the traveling wave power control is performed according to the control amount of the traveling wave power error amplifying device 23.
  • the control amount of the reflected wave power peak value power error amplifier 34 is the traveling wave power error amplifying device 23.
  • the reflected wave power peak value drooping control is performed according to the control amount of the reflected wave power peak value power error amplifier 34, and the excessive peak value of the reflected wave power is drooped and suppressed.
  • the drive circuit 25 Based on the PWM signal generated by the PWM signal generation circuit 24, the drive circuit 25 generates a drive signal that amplifies the power to drive a semiconductor element in the DC / DC converter 12, and the generated drive signal is DC A DC voltage Edc of the DC power supply 11 is converted into an output voltage Vdc by switching to the semiconductor element gate of the DC / DC converter 12 for switching.
  • the drive circuit 25 insulates the reference potential between the PWM signal generation circuit 24 and the DC / DC converter 12, and when the potential of the PWM signal and the potential of the DC / DC converter 12 are different, the DC / DC converter 12.
  • the PWM signal generation circuit 24 is prevented from being damaged or malfunctioning due to the current from the current to the PWM signal generation circuit 24 side.
  • the reflected wave power peak value drooping loop system 30 feeds back the reflected wave power feedback value PR detected by the RF sensor 16 to the DC / DC converter 12 via the traveling wave power control loop system 20, whereby the high frequency power supply unit 10.
  • This is a feedback system that controls to drop the peak value of the reflected wave power, and includes a steep fluctuation removing unit 31, a reflected wave power peak limit value 32, a hold circuit 33, and a reflected wave power peak value power error amplifier 34.
  • the output of the peak value power error amplifier 34 is sent to the PWM signal generation circuit 24 of the traveling wave power control loop system 20, and the peak value of the reflected wave power is controlled by controlling the pulse width of the PWM signal that drives the DC / DC converter 12. Control by drooping.
  • the steep fluctuation removing unit 31 is a circuit that removes a steep fluctuation generated when the plasma rises.
  • peak reflected wave power is always generated when the plasma rises.
  • this increase in reflected wave power may be erroneously determined as an increase in reflected wave power due to an abnormal plasma load. If the drooping control of the reflected wave power peak is performed based on this erroneous determination, there arises a problem that the ignited plasma becomes unstable.
  • the steep fluctuation removing unit 31 eliminates a steep fluctuation included in the detected reflected wave power feedback value PR, and prevents erroneous determination due to the reflected wave power generated at the time of plasma rising.
  • the steep fluctuation removing unit 31 can be composed of a first-order lag circuit composed of a resistor and a capacitor.
  • FIG. 8 is a diagram for explaining a configuration example of the steep fluctuation removing unit 31.
  • FIG. 8A shows a circuit example when the steep fluctuation removing unit 31 is configured by a first-order lag circuit 80, and can be configured by a low-pass filter (LPF) including a resistor 81 and a capacitor 82.
  • LPF low-pass filter
  • FIG. 8B shows another configuration example of the steep fluctuation removing unit 31.
  • the steep fluctuation removing unit 31 can be configured by a filter circuit 90 that removes high-frequency components.
  • the switching circuit 95 switches the output of the detection signal of the reflected wave power and outputs only the signal excluding the steep fluctuation included in the detection signal. Detection of the steep fluctuation is performed by the differentiation circuit 91, the comparison circuit 92, and the limit value 93.
  • the differentiation circuit 91 detects a variation in the detection signal, and compares the detected differential value with the limit value 93 to detect a steep variation.
  • the switching circuit 95 stops output of the detection signal with the steep fluctuation amount being in the OFF state, and outputs the detection signal with the signal portion not including the steep fluctuation amount being in the ON state.
  • the delay circuit 94 delays the detection signal by the time required for the processing of the differentiation circuit 91 and the comparison circuit 92 to match the switching timing in the switching circuit 95.
  • the reflected wave power peak limit value 32 is a reference value to be compared with the output of the steep fluctuation removing unit 31 when the reflected wave power peak value drooping operation is performed, and is a value set in advance. During the operation of dropping the reflected wave power peak value, the peak value of the reflected wave power feedback is limited to be equal to or less than the reflected wave power peak limit value 32.
  • the hold circuit 33 can have the same configuration as the hold circuit 22 included in the traveling wave power control loop system 20, and the switch is turned on in conjunction with the Ton section of the reflected wave power feedback value PR and in conjunction with the Toff section. By separating the switch by turning it off, the previous state is maintained and the amplitude of the reflected wave power feedback value is held. The amplitude of the held reflected wave power feedback value PR is sent to the reflected wave power peak value power error amplifier 34.
  • the reflected wave power peak value power error amplifier 34 amplifies the difference between the reflected wave power peak limit value 32 and the output of the steep fluctuation removing unit 31 with a preset gain and outputs it as a control amount.
  • the control amount output by the reflected wave power peak value power error amplifier 34 is a control amount for performing reflected wave power peak value droop control, and the PWM signal generation circuit 24 outputs the output of the reflected wave power peak value power error amplifier 34 and the traveling wave power.
  • the output of the error amplifier 23 is input and the control amount of the reflected wave power peak value power error amplifier 34 is larger than the control amount of the traveling wave power error amplifier 23, the reflected wave power peak value power error amplifier 34.
  • the reflected wave power peak value drooping control is performed according to the control amount, and an excessive peak value of the reflected wave power is drooped.
  • the arc interruption system 40 is a feedback system that controls the interruption of the arc by stopping the power supplied to the plasma load by feeding back the reflected wave power feedback value PR detected by the RF sensor 16 to the RF amplification unit 13.
  • the reflected wave power peak value drooping loop system 30 includes a steep fluctuation removing unit 31, an arc limit value 41, a comparator 42, and a gate cutoff signal generator 43.
  • the output of the gate cutoff signal generator 43 is a gate signal.
  • the arc is interrupted by controlling the duty (Duty) of the pulse control signal that is sent to the generator 18 to control ON / OFF of the RF gate signal that drives the RF amplifier 13.
  • the steep fluctuation removing unit 31 is configured to be used as the steep fluctuation removing unit 31 provided in the reflected wave power peak value drooping loop system 30 as well as provided separately in the arc interrupt system 40 or the steep fluctuation removing unit is used as the reflected wave power.
  • the detection value of the reflected wave power which is provided independently from the peak value drooping loop system 30 and the arc breaking system 40 and from which the steep movement is removed, is used as both the reflected wave power peak value drooping loop system 30 and the arc breaking system 40. It is good also as a structure which inputs into a feedback system.
  • the arc limit value 41 is a level value for determining whether the ignition of the plasma load has succeeded or failed, and a detection value obtained by removing a steep fluctuation from the reflected wave power feedback value PR is the arc limit value 41.
  • the success / failure of the ignition of the plasma load is determined depending on whether or not it has been reached. Since the reflected wave power feedback value PR increases when the ignition of the plasma load fails, the ignition of the plasma load fails by detecting that the output of the steep fluctuation removing unit 31 has reached the arc limit value 41. Can be detected.
  • the comparator 42 is a comparator that compares the arc limit value 41 with the output of the steep fluctuation removing unit 31 to determine the ignition state of the plasma load.
  • the comparator 42 determines that the ignition is successful if the output of the steep fluctuation removing unit 31 is less than or equal to the arc limit value 41, and determines that the ignition is failed if the output of the steep fluctuation removing unit 31 exceeds the arc limit value 41. .
  • the comparator 42 determines that the ignition has succeeded if the output of the steep fluctuation removing unit 31 is less than the arc limit value 41, and determines that the ignition has failed if the output of the steep fluctuation removing unit 31 is greater than or equal to the arc limit value 41. To do.
  • the gate cutoff signal generator 43 sends a gate cutoff signal to the gate signal generator 18 in accordance with the ignition determination signal output from the comparator 42.
  • the gate cutoff signal is not sent, and the gate signal generator 18 is allowed to output an RF gate signal.
  • a gate cut-off signal is transmitted to prohibit the gate signal generator 18 from outputting an RF gate signal.
  • the gate signal generator 18 is a circuit that supplies an RF gate signal for controlling the high-frequency gate power necessary for driving the RF power amplification element of the RF amplification unit 13, and the generated RF gate signal is shown in FIG.
  • An RF output is generated by applying to the bridge-structured MOSFET 120 included in the RF amplification unit 13 and alternately switching the MOSFET 120 ON and OFF.
  • the pulse control signal is a control signal for controlling the output of the RF gate signal, and outputs the RF gate signal in the ON section and stops the RF gate signal in the OFF section.
  • the RF amplifier 13 is driven at the same duty (Duty) as the duty of the pulse control signal preset in the gate signal generator 18 and outputs RF power.
  • the gate signal generator 18 stops the output of the pulse control signal or reduces the duty (Duty), and the RF power output from the RF amplifier 13. Or reduce RF power.
  • the branching unit 17 is a circuit that branches and supplies the pulse control signal output from the gate signal generator 18 to each RF amplification unit when there are a plurality of RF amplification units 13. When there is a single RF amplification unit, the branching device 17 is not necessary.
  • the reflected wave power drooping loop system 50 controls the droop of the reflected wave power of the high frequency power supply unit 10 by feeding back the reflected wave power feedback value PR detected by the RF sensor 16 to the RF amplifier unit 13.
  • the feedback system includes a power smoothing unit 51 as a smoothing unit that smoothes the power of the reflected wave power feedback value, and also includes a reflected wave power smoothing limit value 52 used as a threshold value of the smoothed reflected wave power smoothed value, reflection
  • the reflected wave power smoothed value power error amplifying device 53 that performs power amplification based on the difference between the wave power smoothed value and the reflected wave power smoothed limit value, and the pulse control signal based on the output of the reflected wave power smoothed value power error amplifying device 53
  • a duty droop signal generator 54 for determining the duty of the output signal, and the output of the duty droop signal generator 54 is a gate signal generator. Send to 18.
  • the reflected wave power droop loop system 50 controls the duty of the pulse control signal to droop and suppress the reflected wave power.
  • the reflected wave power amount drooping loop system 50 is an electric power for obtaining an average value and an effective value as means for smoothing the reflected wave power feedback value PR from the necessity of controlling the power amount without changing the voltage amplitude of the reflected wave power.
  • a smoothing unit 51 is provided, and the obtained control amount is fed back to the RF amplification unit 13 to control the amount of power.
  • the reflected wave power amount drooping loop system 50 uses an average value or effective value of the reflected wave power as a reflected wave power smooth value, and performs an operation of drooping the reflected wave power so that the reflected wave power smooth value is equal to or less than a reference value.
  • the drooping operation performed based on the average value of the reflected wave power is referred to as the reflected wave power average value drooping operation
  • the drooping operation performed based on the effective value of the reflected wave power is referred to as the reflected wave power effective value drooping operation.
  • the power smoothing unit 51 is a circuit that smoothes the reflected wave power feedback value PR and outputs a reflected wave power smoothed value, and can be configured by an average value circuit or an effective value circuit.
  • the average value circuit and the effective value circuit are circuits for obtaining an average value and an effective value of the reflected wave power feedback value PR at the time of pulse operation of the high frequency power supply unit 10. Can be configured.
  • the average value circuit when configured by hardware, it may be configured by a first-order lag circuit including a resistor and a capacitor.
  • the reflected wave power smoothing limit value (reflected wave power average limit value, reflected wave power effective limit value) is used when the reflected wave power smooth value drooping operation (reflected wave power average value drooping operation, reflected wave power effective value drooping operation) is performed.
  • the smoothed value (average value, effective value) of the reflected wave power feedback value PR is the reflected wave power smoothing limit.
  • the duty (Duty) of the pulse control signal is adjusted to be less than the values (reflected wave power average limit value, reflected wave power effective limit value), and the ON section of the RF gate signal generated by the gate signal generator 18 is limited.
  • the amount of reflected wave power is drooped (decreased).
  • the reflected wave power smooth value power error amplifier (reflected wave power average value power error amplifier, reflected wave power effective value power error amplifier) 53 is a reflected wave power smooth limit value (reflected wave power average limit value, reflected wave power effective value).
  • An error which is the difference between the limit value 52 and the output of the power smoothing unit 51 (average value circuit, effective value circuit) 51, is amplified with a predetermined gain and output as a control amount.
  • the duty droop signal generator 54 is used in the pulse operation according to the control amount output by the reflected wave power smoothed value power error amplifier (reflected wave power average value power error amplifying device, reflected wave power effective value power error amplifying device) 53. This is a circuit for determining the duty of the ON section and the OFF section.
  • the gate signal generator 18 receives the pulse control signal from the duty droop signal generator 54, and the RF gate signals in the ON interval and the OFF interval based on the duty (Duty) of the pulse control signal. Is generated.
  • the gate signal generator 18 receives a gate cutoff signal from the gate cutoff signal generator 43 of the arc cutoff system 40, and this gate cutoff signal stops the RF gate signal in preference to the duty signal. Perform the action.
  • the duty droop signal generator 54 does not generate a duty droop signal, and is set to a preset fixed value. Generate a gate signal with a duty pulse control signal and perform pulse operation.
  • traveling wave power control is performed by the traveling wave power control loop system 20 (shown by a thick arrow) in FIG.
  • the output Vdc of the DC / DC converter 12 is made variable so that the peak value of the traveling wave power command value 21 and the traveling wave power feedback value PF always coincide with each other, and the amplitude of the RF output power is controlled. .
  • the control loop is a traveling wave power control loop system.
  • the reflected wave power control loop system 100 (the reflected wave power peak value drooping loop system 30, the arc breaking system 40, the reflected wave power amount drooping loop system 50) that performs the drooping operation or blocking operation from 20 is shifted to.
  • the smoothed value 203 of the reflected wave power of the power smoothing unit (average value circuit, effective value circuit) 51 is the reflected wave power smoothed value limit value (reflected wave power average limit value).
  • the operation proceeds to a reflected wave power amount drooping operation.
  • the above-described drooping operation and blocking operation operate independently of each other.
  • FIG. 10 shows a loop system of the reflected wave power peak value drooping control.
  • reflected wave power is generated.
  • the output for example, first-order lag output
  • the reflected wave power peak value drooping operation is performed by the reflected wave power peak value drooping loop system 30 (shown by a thick arrow) shown in FIG.
  • the amplitude of the RF output power is limited so as not to be output above a certain value.
  • the RF power amplifying element when the reflected wave power is generated is protected from overload and surge voltage and is not destroyed.
  • the reflected wave power is detected by the RF sensor 16 (S11), and the detected reflected wave power is input to the steep fluctuation removing unit 31 to remove the steep fluctuation (for example, first-order lag output). (S12).
  • the output from which the sharp fluctuation of the reflected wave power is removed exceeds the reflected wave power peak limit value 32 that is the detection level of the reflected wave power peak value (S13)
  • the reflected wave power The difference between the output from which the steep fluctuation is removed (for example, the first-order lag output) and the reflected wave power peak limit value 32 is obtained (S14), and the control value is obtained based on the difference (S15).
  • the PWM signal generation circuit 24 generates a PWM signal (S17). The generation of the difference and the control value can be performed by the reflected wave power peak value power error amplifier 34.
  • the preset pulse width (S16) is set. Based on this, the PWM signal generation circuit 24 generates a PWM signal (S17). The DC / DC converter 12 is driven by the generated PWM signal to control the output voltage value (S18).
  • FIG. 12 is a diagram for explaining the traveling wave power control and the reflected wave power peak value drooping operation.
  • the horizontal axis of FIG. 12 indicates time, and the vertical axis indicates reflected wave power.
  • a DC / DC converter is driven by a PWM signal having a predetermined pulse width. This driving increases the traveling wave power (not shown) and the reflected wave power.
  • the reflected wave power peak value drooping operation starts.
  • the reflected wave power peak value drooping operation suppresses the peak value of the reflected wave power from exceeding the reflected wave power peak limit value by narrowing the pulse width of the PWM signal.
  • FIG. 13 schematically shows the reflected wave power peak value drooping operation when the plasma ignition succeeds and fails. Note that the waveforms shown in FIG. 13 are simplified for the sake of explanation, and do not show actual waveforms.
  • 13A shows the traveling wave power feedback value
  • the dark solid line in FIGS. 13B and 13E shows the reflected wave power feedback value PR
  • the thin solid line shows the first-order lag output of the reflected wave power feedback value.
  • the alternate long and short dash line indicates the peak droop detection level.
  • FIGS. 13A to 13D show waveforms when ignition is successful
  • FIGS. 13E to 13G show waveforms when ignition fails.
  • the reflected wave power increases at T1 when the plasma rises and at T2 when the plasma falls.
  • the reflected wave power peak value drooping operation is performed based on the reflected wave power feedback value PR (indicated by a dark solid line)
  • it is erroneously determined as an abnormal state even in a normal ignition operation, and traveling wave power As a result, the plasma is difficult to maintain.
  • the output (for example, the first-order lag output) from which the steep fluctuation of the reflected wave power feedback value is removed (indicated by a thin solid line) does not reach the peak droop detection level, so the reflected wave power peak value drooping operation is performed.
  • the traveling wave power control is maintained without changing the PWM signal (FIG. 13D).
  • the output from which the steep fluctuation of the reflected wave power feedback value is removed (for example, the first-order lag output) (indicated by a thin solid line) is the peak droop detection level at T3, which is delayed from time T1 to ignition failure.
  • the reflected wave power peak value drooping operation is started.
  • the pulse width of the PWM signal is generated based on the difference between the primary delay output of the reflected wave power and the peak droop detection level (FIG. 13F) (FIG. 13G), and the reflected wave power peak droops. Is called.
  • the reflected wave power peak value drooping operation ends, and the reflected wave power peak value drooping control starts from the traveling wave. Return to power control.
  • FIG. 14 shows a loop system for arc interruption control.
  • the arc interruption system 40 shown in FIG. 14 (indicated by a thick arrow in FIG. 14) Performs arc breaking operation.
  • the gate cut signal generator 43 sends a cut signal, stops the operation of the RF amplification unit 13, and the arc. Shut off.
  • the RF output power pulse width during the arc interrupting operation is much shorter than the preset duty during normal pulse operation, and the RF power amplifying element does not break.
  • the reflected wave power is detected by the RF sensor 16 (S21), and the detected reflected wave power is input to the steep fluctuation removing unit 31 to remove the steep fluctuation.
  • the steep fluctuation removing unit outputs a first-order lag
  • the steep fluctuation is removed by the first-order lag output of the reflected wave power (S22), and when the obtained first-order lag output exceeds the arc limit value 41 that is the detection level of arc interruption (S23), the gate interruption signal Is generated (S24).
  • the gate signal generator 18 stops the output of the RF gate signal in response to the gate cutoff signal (S25), and stops the output of the RF amplification unit (S26).
  • the gate signal generator 18 generates an RF gate signal based on a predetermined duty (Duty) of the pulse control signal to generate RF.
  • the output of the amplifying unit is maintained or resumed when the output of the RF amplifying unit is stopped (S27).
  • reignition operation can be performed by the ignition retry function.
  • ignition is attempted after a predetermined pause time has elapsed since determination of ignition failure.
  • this retry function it is possible to set the number of retries for repeating the ignition operation and the duration of the pause time. If ignition within the set number of retries does not succeed, the retry operation may be stopped, or the retry operation may be returned after being stopped for a certain period of time.
  • FIG. 16 schematically shows the arc breaking operation when the plasma ignition is successful and when it fails. Note that the waveforms shown in FIG. 16 are simplified for explanation, and do not show actual waveforms. 16A and 16D show traveling wave power feedback values. In FIGS. 16B and 16E, the dark solid line shows the reflected wave power feedback value PR, and the thin solid line shows the reflected wave power feedback value. The first order lag output is shown, and the one-dot chain line shows the arc limit value.
  • FIGS. 16A to 16C show waveforms when ignition is successful, and FIGS. 16D to 16F show waveforms when ignition fails.
  • the reflected wave power increases at the rising edge t1 of the plasma and at the falling edge t2 of the plasma (FIG. 16 (b)).
  • the arc breaking operation is performed based on the reflected wave power feedback value PR (indicated by a dark solid line), it is erroneously determined as an abnormal state such as an arc occurrence even in a normal ignition operation, and the arc breaking operation To extinguish the plasma.
  • the output obtained by removing the steep fluctuation from the reflected wave power feedback value does not reach the arc limit value that is the arc cutoff level, so the arc cutoff operation is not performed.
  • the gate cutoff signal is not output (FIG. 16C), and traveling wave power control is maintained.
  • the output obtained by removing the steep fluctuation from the reflected wave power feedback value is the arc interruption detection level arc at t3, which is delayed from time t1 to ignition failure.
  • the limit value is reached (FIG. 16 (e)), a gate interruption signal is generated (FIG. 16 (f)), and the arc interruption operation is started.
  • the traveling wave power feedback value PF and the reflected wave power feedback value PR are reduced (FIGS. 16D and 16E), and the primary delay output of the reflected wave power is the primary delay. It attenuates according to the time constant of the circuit (FIG. 16 (e)).
  • FIG. 17 schematically shows the reflected wave power amount drooping operation.
  • the reflected wave power smoothing value obtained by smoothing the reflected wave power feedback value PR obtained by detecting the reflected wave power exceeds the reflected wave power smoothing limit value 52, the reflection shown in FIG.
  • the reflected wave power amount drooping operation is performed by the wave power amount drooping loop system 50 (indicated by a thick arrow).
  • the reflected wave power smoothing value can be an average value or an effective value of the reflected wave power.
  • the duty (Duty) of the pulse control signal is controlled so that the output of the power smoothing unit 51 does not exceed the reflected wave power smoothing limit value 52, and the RF gate signal is turned on.
  • the amount of RF output power is limited so as not to be output beyond a certain value.
  • the output power is reduced without reducing the amplitude of the RF output voltage by reducing the duty of the pulse control signal, thereby reducing the thermal loss of the RF power amplification element and preventing its destruction. Can do.
  • the reflected wave power is detected by the RF sensor 16 (S31), the detected reflected wave power is input to the power smoothing unit 51 to obtain a smoothed reflected wave power value (S32), and the reflection
  • the difference between the reflected wave power smoothing value and the reflected wave power smoothing limit value 52 is calculated.
  • Determination (S34) a control value is determined based on this difference (S35), and the duty (Duty) of the pulse control signal corresponding to the control value is determined by duty conversion.
  • a relationship between a control value and a duty (Duty) corresponding to the control value is determined in advance, and the duty (Duty) can be obtained from the control value based on the correspondence relationship.
  • the duty droop signal generator 54 Based on the obtained duty, the duty droop signal generator 54 generates a duty droop signal.
  • the gate signal generator 18 generates an RF gate signal whose ON section is narrowed based on the duty droop signal.
  • the duty droop signal is a pulse control signal that determines the duty (duty) of the ON section and the OFF section of the RF gate signal, and the amount of traveling wave power is suppressed by narrowing the ON section, thereby reflecting the reflected wave power. Is reduced (S38).
  • the duty droop signal generator 54 does not generate a duty droop signal, and the gate signal generator 18 is predetermined.
  • a pulse control signal is generated based on the set duty (Duty) (S37) (S38), an RF gate signal is generated based on the pulse control signal (S39), and the RF amplification unit 13 is driven by the generated RF gate signal.
  • the output power is controlled (S40).
  • FIG. 19 is a diagram for explaining the traveling wave power control and the reflected wave power amount drooping operation.
  • 19A and 19B the horizontal axis indicates time, the vertical axis in FIG. 19A indicates the reflected wave power, and the vertical axis in FIG. 19B indicates the load voltage.
  • the RF amplifying unit 13 is driven by an RF gate signal having a predetermined duty (Duty) ON section and OFF section. This driving increases the power of traveling wave power (not shown) and increases the amount of reflected wave power.
  • the reflected wave power smoothed value average value or effective value obtained by smoothing the reflected wave power reaches the reflected wave power smoothing limit value, the reflected wave power amount drooping operation is started.
  • the duty of the pulse control signal is reduced, and the width of the ON section that outputs the RF gate signal is reduced to reduce the reflected wave power energy to the reflected wave power smoothing limit value. Suppress not to exceed.
  • FIG. 19A shows an example in which an average value is used as a smooth value.
  • the upper limit of the reflected wave power average value can be suppressed to the reflected wave power average limit value.
  • FIG. 19B shows the load voltage, in which the voltage applied to the load is kept constant during the reflected wave power average value drooping operation, and the number of cycles of the high-frequency voltage applied within one cycle of the pulse operation is reduced. The power supply is suppressed.
  • FIG. 20 schematically shows the reflected wave power amount drooping operation. Note that the waveforms shown in FIG. 20 are simplified for the sake of explanation, and do not represent actual waveforms.
  • FIGS. 20 (a) to 20 (c) show cases where the reflected wave power smoothing value exceeds the reflected wave power smoothing limit value
  • FIGS. 20 (d) to 20 (f) show states after the reflected wave power amount drooping operation.
  • 20A and 20D show the reflected wave power and the reflected wave power smooth value
  • FIGS. 20B and 20E show the pulse control signal
  • FIGS. 20C and 20F show the RF gate.
  • the signal is shown.
  • the pulse control signal in the figure represents an ON section in which the gate signal is output and an OFF section in which the gate signal is not output.
  • Each signal waveform is schematically shown for explanation, and does not represent an actual signal waveform.
  • an RF gate signal (FIG. 20 (c)) is generated based on a pulse control signal (FIG. 20 (b)) determined by a preset duty (Duty), and this RF
  • a pulse control signal (FIG. 20 (b)) determined by a preset duty (Duty)
  • the smoothing value average value or smoothing value
  • the reflected wave power exceeding the reflected wave power smoothing limit value
  • the duty of the pulse control signal is reduced based on the difference between the smoothing powers of the signal and the reflected wave power is drooped.
  • FIGS. 20D to 20F show states after the reflected wave power amount drooping operation.
  • the output power is controlled by reducing the duty (Duty) of the pulse control signal and outputting a pulse control signal (FIG. 20 (e)) determined by this duty (Duty).
  • An RF gate signal is generated based on this pulse control signal (FIG. 20 (f)), and the reflected wave power amount is drooped.
  • the high-frequency power supply device and the reflected wave power control method of the present invention can be applied to a power source that supplies power to the plasma generator.

Abstract

プラズマ負荷に高周波電力を供給する高周波電力供給において、高周波電源の反射波電力を検出し、検出した反射波電力を用いて高周波電源を制御する反射波電力制御であり、反射波電力の短時間変動に対して反射波電力の検出値のピーク値変動に基づいて制御し、反射波電力の長時間変動に対して反射波電力の検出値を平滑して得られる平滑値の変動に基づいて制御する。反射波電力制御ループ系として、反射波電力のピーク変動に基づいて制御を行う反射波電力ピーク量垂下ループ系およびアーク遮断系と、反射波電力の電力平滑量に基づいて制御を行う反射波電力量垂下ループ系とを備える。高周波電源はプラズマが着火するまでの未着火状態において、進行波電力が全て反射波電力として電源側に戻る全反射波電力に対して耐え得る全反射波対応化を行う。

Description

高周波電力供給装置、及び反射波電力制御方法
 本発明は、高周波電源から負荷に高周波電力を供給する際に、負荷側から電源側に向かう反射波電力を制御する反射波電力制御方法、および高周波電力供給装置に関する。
 スイッチング動作によって直流電源の直流を高周波交流に変換する高周波電源が知られている。この高周波電源として、D級増幅回路(Class D:IEC国際基準IEC60268-3 4 classes of operation)によるD級高周波電源が知られている。
 D級高周波電源は、RF電力増幅素子を一定のデューティー(Duty)のRFゲート信号でスイッチング動作することによって直流電源の直流を高周波交流に変換し、得られた高周波交流を高周波進行波電力として負荷に供給する。D級高周波電源は、パルス運転によって出力調整を行う。パルス運転は、RFゲート信号によってRF電力増幅素子をスイッチング動作させ、RF出力を出力するON区間と、スイッチング動作を行わずにRF出力を出力しないOFF区間の両区間を交互に有する駆動態様であり、ON区間とOFF区間の時間比率であるデューティー(Duty)を変えることによって、RF出力の出力電力を調整する。ON区間とOFF区間のデューティーは、パルス制御信号のON区間とOFF区間のデューティー(Duty)によって制御することができる。なお、RFは高周波を意味している。
 高周波電源から負荷への高周波電力の供給において、プラズマ処理装置等の負荷に高周波電力を供給する場合には、プラズマ放電の状態によって負荷インピーダンスが変動する。負荷インピーダンスが変動すると、負荷側から電源側に戻る反射波電力が変動する。
 反射波電力は、D級高周波電源に影響を与える場合がある。例えば、D級高周波電源を構成するRF電力増幅素子は、反射波電力による内部損失で発生した発熱によって熱的破損が生じたり、反射波電力のサージ電圧によって絶縁破損が生じる。反射波電力の大きさが更に大きい場合には、D級高周波電源を構成する直流電源が破損する場合がある。
 特に、D級高周波電源がパルス運転によって高周波電力をプラズマ負荷に電力供給する場合、プラズマが着火するまでの未着火状態では、進行波電力は全て反射波電力として電源側に戻る。そのため、D級高周波電源は全反射波電力に耐え得ることが求められる。以下、このような進行波電力が全て電源側に戻る際の反射波電力を全反射波電力と云い、高周波の電力供給において全反射波電力に耐える対応を全反射波対応化と云う。
 なお、ここでは、全反射波対応化は、全反射波電力によるRF電力増幅素子の損傷を防ぐだけでなく、着火動作を開始した後において、着火が失敗したと判定して高周波電力の供給を遮断するまでの間は、高周波電力の供給を遮断することなく継続して電力供給を行い、プラズマの着火動作を継続することを含むものとする。
 従来、このような全反射波対応化を目的として、本出願人はプラズマ発生用電源を提案している(特許文献1参照)。特許文献1には、RF電力増幅素子のボディダイオードの蓄積キャリアを抑制するために、RF電力増幅素子から見た負荷インピーダンスを遅れ状態で使用し、これによって回路のスイッチング損失を減少させることが記載されている。全反射波対応化を行うには、さらに、プラズマ着火時のイグニッション動作に必要な着火時間を予め制限し、これによって、この着火時間内の反射波電力を進行波電力の定格電力と同じに制限することが求められる。
 D級高周波電源の他、通常使用される高周波電源としてC級高周波電源が知られている。C級高周波電源等の通常使用される高周波電源装置では、反射波電力が発生した場合に反射波電力の供給を定格出力以下に抑えるように供給側の進行波電力を抑え、これによって高周波電源側の素子の損傷を防ぐ技術が知られている(特許文献2~特許文献7)。
 特許文献2,3には電源供給を停止する技術が開示され、特許文献4~7には進行波電力を抑制する技術が開示さている。
 特許文献2には、反射波電力値が定格出力の10~20%以下になるように、高周波プラズマ電源の進行波電力値を制御するシャットダウン方法が記載され、特許文献3には、反射波電力検出器から出力される信号を用いて、反射マイクロ波電力に相当する信号の大きさと充放電基準値との差を時間的に積算し、積分値に相当する大きさを有する積分信号の大きさが許容基準値を超えた場合に、電源供給を遮断するマイクロ波電力供給システムが記載されている。
 また、特許文献4には、反射波電力が限界値を超えたときに、ミキサによって出力電力を削減することが記載され、特許文献5には、反射波電力検出信号から出力した電力抑制信号と進行波電力とによって電力制御信号を生成することが記載され、特許文献6には、検出され帰還される反射波電力と設定反射波電力との差分を求め、差分に基づいて進行波電力を垂下させることが記載され、特許文献7には、反射波電力に基づいて反射波係数を演算し、演算した反射波係数に応じてアッテネータの利得の大きさを補正し、負荷に要求される電力を供給することが記載されている。
 また、特許文献8には、反射波電力の測定するセンサ出力を微分し、微分出力による高周波電力の反射波電力の時間的な変動の程度に基づいて異常放電の発生を判別することが記載されている。
特許第3641785号(段落[0046],段落[0047]) 特公平7-32078号(段落[0003],段落[0005]) 特開2004-71269(段落[0017],段落[0018]) 特開平10-257774(段落[0028]~段落[0031]) 特許第3998986号(段落[0028]) 特開2004-8893(段落[0019]) 特開2005-136933号(段落[0013]) 特許3893276号段落([0008],段落[0025])
 D級高周波電源がパルス運転によって高周波電力をプラズマ負荷に電力供給する場合、プラズマが着火するまでの未着火状態において、進行波電力が全て反射波電力として電源側に戻る全反射波電力に対して、パルス運転時における全反射波電力によってRF電力増幅素子が破損することなく、負荷に対して大きな負荷端電力を供給し、パルス運転時におけるプラズマの着火性能を向上させることが求められる。
 特許文献1の負荷インピーダンスを遅れ状態で使用することによって回路のスイッチング損失を減少させる場合、全反射波対応化のためにプラズマの着火時間を制限すると、プラズマ着火に至るまでに長い時間を要する場合に未着火のままとなるおそれがある。
 また、特許文献2,3は電源供給を停止するものであり、特許文献2は反射波電力値が定格出力の10~20%以下になるように制御し、また特許文献3は充放電回路の出力によって遮断制御を行うものであるため、全反射波電力に耐えた状態で高周波電力の供給を維持することができず、全反射波対応化に対応することができない。
 高周波電源において、スイッチング動作によって直流電源の直流を高周波交流に変換し、高周波電力進行波電力をプラズマ負荷に供給する際、高周波電源とプラズマ負荷との間のマッチングが正常に整合されている場合であっても、プラズマが立ち上がる時にはプラズマ負荷の負荷インピーダンスが大きく変動し、この負荷インピーダンス変動によってプラズマ負荷側から電源側に戻る反射波電力が発生する。このプラズマ立ち上がり時に生じる反射波電力は短期間に大きく変動する。
 特許文献4~特許文献7の電力制御は反射波電力の瞬時値に基づいて電力抑制を行うものであるため、プラズマ立ち上がり時において反射波電力が先鋭的に上昇するピーク値が設定値を超えると電力制御による電力抑制が開始することになる。電力制御によってプラズマ負荷に供給される電力が制限されると、プラズマが着火に至る前に供給電力が絞られ着火が不成功となる他、着火した場合であっても供給電力の抑制によってプラズマの維持が困難となり、正常なプラズマ生成が困難であるという問題がある。
 つまり、従来の電力制御は反射波電力の瞬時値に基づいて電力抑制を行うものであるため、プラズマ立ち上がり時の反射波電力のピークを、より長い期間にわたるプラズマ状態変動による反射波電力の増加として誤って判定してしまう。この誤判定によって電力供給を遮断したり抑制すると、プラズマ着火やプラズマ維持が困難となる。
 そこで、本発明は、パルス運転によって高周波電力をプラズマ負荷に電力供給する高周波電源において、プラズマが着火するまでの未着火状態において、進行波電力が全て反射波電力として電源側に戻る全反射波電力に対して耐え得る全反射波対応化において、前記した従来の問題点を解決し、D級高周波電源がパルス運転によって高周波電力をプラズマ負荷に電力供給する場合、プラズマが着火するまでの未着火状態において、進行波電力が全て反射波電力として電源側に戻る全反射波電力に対して耐え得る全反射波対応化を行い、パルス運転時における全反射波電力によるRF電力増幅素子の破損を防ぐと共に、高周波電力の供給を遮断することなく電力供給を継続して行ってプラズマの着火動作を継続し、パルス運転時におけるプラズマの着火性能を向上させることを目的とする。
 本発明は、プラズマ負荷に高周波電力を供給する高周波電力供給において、高周波電源の反射波電力を検出し、検出した反射波電力を用いて高周波電源を制御する反射波電力制御に関し、反射波電力の短時間変動に対しては、反射波電力の検出値のピーク値の変動に基づいて反射波電力を制御し、反射波電力の長時間変動に対しては、反射波電力の検出値を平滑して得られる平滑値の変動に基づいて反射波電力を制御する。
 本発明は、反射波電力制御ループ系として、反射波電力のピーク変動に基づいて制御を行う反射波電力ピーク値垂下ループ系およびアーク遮断系と、反射波電力の電力平滑量に基づいて制御を行う反射波電力量垂下ループ系とを備える。
 本発明の反射波電力ピーク値垂下ループ系は、反射波電力のピーク値に基づいて高周波電源部の直流電源の直流電圧を制御し、直流電源の電圧制御によって反射波電力のピーク値を垂下制御する。反射波電力ピーク値垂下ループ系は、反射波電力のピーク値が設定値(反射波電力ピークリミット値)を越えたときに反射波電力のピーク値を垂下(低下)する制御系であり、反射波電力のピーク値の振幅を垂下(低下)させることによって、過負荷やサージ電圧によってRF電力増幅素子が破壊されることを防ぐ。
 また、反射波電力ピーク値垂下ループ系は、高周波電源部の直流電源の直流電圧を制御する構成とし、この直流電源に反射波電力のピーク値を帰還制御して直流電圧を垂下させることによって、反射波電力のピーク値の垂下動作を高速で行うことができる。
 本発明のアーク遮断系は、反射波電力のピーク値に基づいて高周波電源部のRF増幅部の出力の有無を制御することによって、プラズマ負荷への電力供給の有無を制御してプラズマ負荷におけるアークの遮断を制御する。アーク遮断系は、反射波電力のピーク値が設定値(アークリミット値)を越えたときに電力供給を停止する制御系であり、着火が失敗して大きな反射波電力が生じ、反射波電力がプラズマ負荷のアークを止めるアーク遮断レベルを超えた場合に、電力供給を停止してプラズマ負荷内のアークを消弧する。なお、アークを遮断した場合には、一定時間が経過した後に再度着火動作を行う着火リトライ機能によって再着火を行う構成としてもよい。
 本発明の反射波電力ピーク値垂下ループ系とアーク遮断系は、反射波電力のピーク値が各制御系に設定された設定値を越えたときに、反射波電力のピーク値を垂下する制御、あるいは電力供給を停止する制御を行う。
 本発明の反射波電力ピーク値垂下ループ系またはアーク遮断系の少なくとも何れかの系は、反射波電力の検出値から急峻変動分を除去する急峻変動除去部を備えることができる。急峻変動除去部は、反射波電力の検出値から急峻な変動による急峻変動部分を除去し、急峻変動によらない、急峻な変動よりも長い期間における反射波電力のピーク値の信号を帰還する。急峻変動部分を除去したピーク値を用いることによって、プラズマ立ち上がりに生じる急峻な変動によるピーク値によるフィードバック制御によって生じる誤判定を防ぐ。急峻変動除去部は、ローパスフィルタ等の一次遅れ回路で構成することができる。
 本発明の反射波電力量垂下ループ系は、反射波電力の電力平滑量に基づいて高周波電源部のRF増幅部の増幅を制御することによって、プラズマ負荷への電力供給量を制御して反射波電力の電力平滑量を垂下制御する。反射波電力量垂下ループ系は、反射波電力の電力量の平均値や実効値等の平滑化した平滑値が設定値(反射波電力平滑リミット値)を越えたときに反射波電力の電力量を垂下(低下)する制御系であり、出力電圧の振幅を維持した状態で反射波電力の電力量を垂下(低下)させることによって、RF電力増幅素子の熱的な破損を防ぐ。
 本発明の反射波電力ピーク値垂下ループ系、アーク遮断系、および反射波電力量垂下ループ系の各制御系はそれぞれ独立して制御することができる。各制御系に用いられる設定値は、反射波電力ピークリミット値、アークリミット値、および反射波電力平滑リミット値であり、大きな順に、アークリミット値、反射波電力ピークリミット値、反射波電力平滑リミット値が設定される。
 反射波電力ピークリミット値は、過負荷やサージ電圧等の反射波電力のピーク値の増加によるRF電力増幅素子に対する影響の指標となるものであり、反射波電力のピーク値がこの設定値を超えたときに反射波電力のピーク値を垂下させて、反射波電力のピーク値が設定値以上とならないように制御を行うことによって、反射波電力発生時においてRF電力増幅素子を過負荷やサージ電圧による破壊から保護する。
 アークリミット値は、プラズマ負荷において着火の失敗による反射波電力の増加を検出するしきい値であり、アークを遮断するレベルとして設定される。反射波電力のピーク値がこのアーク遮断レベルを越えたときには着火が失敗したと判定し、アーク遮断動作を開始する。
 反射波電力平滑リミット値は、反射波電力の電力量の増加によるRF電力増幅素子への熱的影響の指標となる設定値であり、反射波電力の平均値や実効値等の平滑量がこの設定値を超えたときに、パルス制御信号のデューティーを制御することによって反射波電力の電力量を垂下(低下)する制御を行うことでRF電力増幅素子の熱的な破損を防ぐ。デューティーによる垂下制御では、パルス制御信号のON区間とOFF区間の時間比率において、ON区間の比率を低下させることによって、反射波電力を低下させる。
 本発明の反射波電力制御系は、上記した反射波電力ピーク値垂下ループ系、アーク遮断系、および反射波電力量垂下ループ系の各系を用いることにより、プラズマが着火するまでの未着火状態において、進行波電力が全て反射波電力として電源側に戻る全反射波電力に耐える全反射波対応化によって、全反射波電力によるRF電力増幅素子の損傷を防ぐと共に、着火が失敗して大きな反射波電力が発生し遮断せざるを得ない状態となるまでは、高周波電力の供給を遮断することなく電力供給を継続して行ってプラズマの着火動作を継続し、パルス運転時におけるプラズマの着火性能を向上させる。
 本発明は高周波電力供給装置の形態と、反射波電力制御方法の形態とすることができる。
[高周波電力供給装置の形態]
 本発明の高周波電力供給装置は、プラズマ負荷に高周波電力を供給する高周波電力供給装置において、スイッチング動作によって直流電源の直流を高周波交流に変換し高周波電力を出力する高周波電源部と、高周波電源部の高周波出力の検出値を帰還してフィードバック制御を行う複数の帰還系とを備える。帰還系は、高周波電源部からプラズマ負荷に向かう進行波電力の検出値を帰還して進行波電力を制御する進行波電力制御ループ系と、プラズマ負荷から高周波電源部に向かう反射波電力の検出値を帰還して反射波電力を制御する複数の反射波電力制御ループ系とを備える。
 なお、アーク遮断系は制御ループを形成していないが、遮断処理によって進行波電力を遮断した後において、再着火動作によるプラズマの着火動作を行うことから、ここでは一種のループ系を形成するものとして、反射波電力制御ループ系の一制御ループ系に含まれるものとする。
 反射波電力制御ループ系の帰還系において、プラズマの立ち上がり時に生じるピーク値をプラズマ負荷の異常による反射波電力の上昇として誤判定した場合には、フィードバック制御は誤動作することになる。
 このピーク値による誤動作を抑制するために、本発明の反射波電力ピーク値垂下ループ系およびアーク遮断系は、高周波電源部の出力端で検出した反射波電力の検出値から急峻変動分を除く急峻変動除去部を備える。
 急峻変動除去部は一次遅れ回路によって構成することができ、反射波電力の検出値を一次遅れさせることによって検出値に含まれる急峻変動分を除去する。一次遅れ回路は、反射波電力の検出値を一次遅れさせることによって、プラズマ立ち上がりに生じる反射波電力に含まれる急激な変動分を低減させ、プラズマ負荷の変動によらない、プラズマ立ち上がり時の急峻な変動による誤判定を防ぎ、高周波電力の供給を低減させるという誤動作を防ぐことができる。
 また、急峻変動除去部は、一次遅れ回路の構成に限らず、反射波電力の検出値が急峻に変動する時点を検出し、この時点における検出値を除く構成としてもよい。
 本発明の反射波電力制御ループ系が備える反射波電力量垂下ループ系は、反射波電力の平滑値を求める構成として反射波電力の検出値の平均値又は実効値を出力する電力平滑部を備える。高周波電力の電力量を垂下する制御を行うか否かおよび垂下制御における垂下量を定める反射波電力平滑リミット値として、反射波電力平均リミット値又は反射波電力実効リミット値を備え、電力平滑部で得られる平滑値とこれらの反射波電力平滑リミット値(反射波電力平均リミット値又は反射波電力実効リミット値)との誤差量を求め、得られた誤差量に基づいて反射波電力量の垂下制御を行う。
 以下、反射波電力ピーク値垂下ループ系、アーク遮断系、および反射波電力量垂下ループ系について説明する。
 (反射波電力ピーク値垂下ループ系)
 本発明の反射波電力制御ループ系は、反射波電力のピーク値を垂下(低下)させる反射波電力ピーク値垂下ループ系を備える。反射波電力ピーク値垂下ループ系は、反射波電力ピーク値を垂下する制御を行うか否かを定めるしきい値として反射波電力ピークリミット値を有する。
 本発明の反射波電力ピーク値垂下ループ系は、反射波電力のピーク値と反射波電力ピークリミット値との差分をフィードバック信号として進行波電力制御ループ系に帰還する。進行波電力制御ループ系では、反射波電力ピーク値垂下ループ系から帰還したフィードバック信号に基づいて、高周波電源部が備えるDC/DCコンバータを駆動するPWM信号のパルス幅を制御し出力電圧を制御する。
 反射波電力の検出値には、プラズマの立ち上がり時点における急峻変動によって生じるピークが含まれる場合がある。このピークはプラズマ異常に伴うものでないため、このピーク値に基づいて反射波電力ピーク値を垂下する制御を行うと、プラズマが正常状態であるにも係わらず、プラズマ異常として誤った制御を行うことになる。
 このような誤判定を避けるために急峻変動除去部を設けることができる。急峻変動除去部は、反射波電力の検出値に含まれる急峻変動分を除いた信号を反射波電力のピーク値として出力する。急峻変動分を除いたピーク値と反射波電力ピークリミット値との差分をフィードバック信号として進行波電力制御ループ系に帰還することによって、急峻変動による誤動作を避けることができる。
 (アーク遮断系)
 本発明の反射波電力制御ループ系は、過大な反射波電力による損傷を防ぐアーク遮断系を備え、着火が失敗して過大な反射波電力が発生した際にプラズマ負荷への電力供給を停止してプラズマ負荷中のアークを遮断する。アーク遮断系は、高周波電力の出力を停止するか否かを定めるしきい値としてアークリミット値を有する。
 本発明のアーク遮断系は、反射波電力のピーク値とアークリミット値との比較に基づいて高周波電源部が備えるRF増幅部を駆動するためのRFゲート信号を生成するパルス制御信号を制御し、RF増幅部の高周波電力の出力の有無を制御する。RF増幅部は、例えばフルブリッジインバータにより直流電圧を交流の高周波電力に変換する。直流から交流への変換において、インバータのスイッチ素子を切り替えるRFゲート信号に同期して増幅変換を行い、RF増幅部のRFゲート信号を生成するパルス制御信号を制御することで高周波電力の出力を制御することができる。
 アーク遮断系においても、反射波電力の検出値に含まれるプラズマの立ち上がり時の急峻変動によるピークをプラズマ異常として誤判定する場合がある。このような誤判定を避けるために急峻変動除去部を設けることができ、急峻変動除去部によって急峻変動分を除去した反射波電力のピーク値とアークリミット値との比較に基づいて遮断制御を行うことによって急峻変動による誤動作を避けることができる。
 反射波電力ピーク値垂下ループ系およびアーク遮断系において、急峻変動除去部によって反射波電力から変動分を除去することによって、プラズマが立ち上がる際に発生するピーク値をプラズマ異常として誤判定することを防ぐ。
 (反射波電力量垂下ループ系)
 本発明の反射波電力制御ループ系は、反射波電力の電力量を垂下(低下)させる反射波電力量垂下ループ系を備える。
 本発明の反射波電力量垂下ループ系は、電力平滑部で得られた電力平滑量と反射波電力平滑リミット値との比較に基づいて、高周波電源部が備えるRF増幅部のRFゲート信号のON区間とOFF区間の時間比率を定めるパルス制御信号のデューティー(Duty)を定め、RF増幅部の高周波電力の電力量の垂下(低下)を制御する。電力平滑部は、電力の平均値を求める平均値回路あるいは電力の実効値を求める実効値回路とすることができる。反射波電力量垂下ループ系は、電力の平均値と反射波電力平均リミット値との比較、又は、電力の実効値と反射波電力実効リミット値との比較に基づいて、RF増幅部の高周波電力の電力量の垂下(低下)を制御する。
 この反射波電力量垂下ループ系による平均値垂下動作又は実効値垂下動作は、RFゲート信号のON区間とOFF区間の時間比率を定めるパルス制御信号のデューティー(Duty)を下げることによって、RF増幅部の高周波電圧の振幅を低減することなく反射波電力量を抑制して、RF電力増幅素子の熱的損失を減らし破壊を防ぐことができる。RF増幅部の高周波電圧の振幅を低減させないことによって、高い着火電圧を維持することができる。
 (高周波電力供給装置の構成)
 図1は、本発明の高周波電力供給装置の概略構成を説明するための図である。図1において、高周波電力供給装置1は、直流電源の直流電圧をDC/DCコンバータ12で電圧変換し、RF増幅部13で直流から交流に増幅変換し、得られた高周波電力をプラズマ負荷等の負荷103に供給する高周波電源部10を備える。
 高周波電源部10は、出力端のRFセンサ16で検出した進行波電力フィードバック値PFに基づいてフィードバック制御を行う進行波電力制御ループ系20と、出力端のRFセンサ16で検出した反射波電力フィードバック値PRに基づいてフィードバック制御を行う反射波電力制御ループ系100(30,40,50)を備える。反射波電力制御ループ系100は、反射波電力ピーク値垂下ループ系30とアーク遮断系40と反射波電力量垂下ループ系50とを備える。
 反射波電力ピーク値垂下ループ系30は反射波電力のピーク値を垂下(低下)させる制御を行い、アーク遮断系40はプラズマ負荷中のアークを遮断する制御を行い、反射波電力量垂下ループ系50は反射波電力の電力量を垂下(低下)させる制御を行う。
 反射波電力制御ループ系100の内、反射波電力ピーク値垂下ループ系30とアーク遮断系40は、検出した反射波電力フィードバック値PRを急峻変動除去部31で急峻変動分を除去して得られたピーク値の信号に基づいて制御を行う。また、反射波電力制御ループ系100の内、反射波電力量垂下ループ系50は、検出した反射波電力フィードバック値PRを電力平滑部51で平滑化して得られる平滑電力量に基づいて制御を行う。
 急峻変動除去部31は、反射波電力フィードバック値PRからプラズマが立ち上がる際に発生するピーク値である急峻変動分を除去することによって、この急峻変動分をプラズマ異常として誤判定することを防ぐ。急峻変動除去部31の出力は、反射波電力ピーク値垂下ループ系30およびアーク遮断系40の制御に用いる。急峻変動除去部31は、LPF(ローパスフィルタ)で構成される一次遅れ回路とすることができる。
 電力平滑部51は、反射波電力フィードバック値PRの平均値又は実効値によって平滑化した電力値に相当する値を出力する。反射波電力量垂下ループ系50は、電力平滑部51の出力に基づいてRF増幅部を制御するパルス制御信号のデューティー(Duty)を求める。
 [反射波電力制御方法]
 本発明の反射波電力制御方法は、プラズマ負荷に高周波電力を供給する高周波電力供給において、スイッチング動作によって直流電源の直流を高周波交流に変換する高周波電源部の出力の検出値を帰還してフィードバック制御を行う帰還系を構成し、この帰還系において、進行波電力制御ループ系に進行波電力の検出値を帰還し、複数のループ系を備える反射波電力制御ループ系100に反射波電力の検出値を帰還する。
 反射波電力制御ループ系100が備える系の内、反射波電力ピーク値垂下ループ系およびアーク遮断系は出力電圧を制御して反射波電力のピーク値を垂下あるいはアークを遮断する。この垂下制御あるいは遮断制御において、急峻変動除去部によって反射波電力の検出値に含まれる急峻な変動分を除去することによって、プラズマが立ち上がる際に生じるピーク値をプラズマ異常と誤判定し、垂下あるいは遮断の誤動作を防ぐことができる。
 また、反射波電力制御ループ系100が備える系の内、反射波電力量垂下ループ系は、電力平滑部によって反射波電力の検出値を平滑化し、平滑化した電力量に相当する信号を帰還することによって、反射波電力の電力量の垂下制御を行う。
 (反射波電力ピーク値垂下制御)
 反射波電力制御ループ系は反射波電力ピーク値垂下ループ系を備える。反射波電力ピーク値垂下ループ系は、反射波電力ピーク値を垂下する制御を行うか否かを定めるしきい値として反射波電力ピークリミット値を有し、反射波電力の検出値と反射波電力ピークリミット値との差分を進行波電力制御ループ系に帰還し、高周波電源部が備えるDC/DCコンバータを駆動するPWM信号のパルス幅を制御して出力電圧を制御する。
 (アーク遮断制御)
 反射波電力制御ループ系はアーク遮断系を備える。アーク遮断系は、高周波電力を出力する制御を行うか否かを定めるしきい値としてアークリミット値を有し、反射波電力の検出値とアークリミット値との比較に基づいて高周波電源部が備えるRF増幅部のRFゲート信号を制御し、RF増幅部の高周波電力の出力の遮断制御を行う。
 反射波電力ピーク値垂下制御およびアーク遮断制御において、反射波電力の検出値を急峻変動除去部に通すことによって、検出値に含まれるプラズマの立ち上がり時に生じる急峻な変動分を除去し、誤動作を防ぐことができる。
 (反射波電力量垂下制御)
 反射波電力制御ループ系は反射波電力量垂下ループ系を備える。反射波電力量垂下ループ系は、反射波電力の検出値を平滑して得られる平滑値と、高周波電力の電力量の垂下制御の有無および垂下量を定める反射波電力平滑リミット値との比較に基づいて、高周波電源部が備えるRF増幅部のRFゲート信号のON区間とOFF区間の時間比率を定めるパルス制御信号のデューティー(Duty)を定め、RF増幅部の高周波電力の電力量の垂下制御を行う。平滑値は反射波電力の検出値の平均値又は実効値とすることができ、反射波電力平滑リミット値としてそれぞれ反射波電力平均リミット値又は反射波電力実効リミット値を有している。
 図2は、本発明における電力制御の概略を説明するための説明図である。
 本発明の高周波電力供給の反射波電力制御は、高周波電源部10の出力端に設けたRFセンサ16で負荷側から電源側に向かう反射波電力を検出する(S1)。
 検出した反射波電力の検出値から急峻変動分を除去し(S2)、得られた反射波電力のピーク値に基づいて、反射波電力ピーク値垂下制御(S3)およびアーク遮断制御(S4)を行う。なお、急峻変動分の除去は、反射波電力の検出値を一次遅れさせることで行うことができる。
 反射波電力ピーク値垂下制御(S3)は、反射波電力のピーク値に基づくPWM制御信号によって高周波電源部10のDC/DCコンバータ12を駆動して出力電圧を制御する。アーク遮断制御(S4)は、反射波電力のピーク値に基づいてプラズマの着火判定を行い、着火失敗による大きな反射波電力が発生した場合(S7)には、RFゲート信号を停止してRF増幅部からの出力を停止して進行波電力の電力を遮断する(S8)。進行波電力を遮断した後は、再着火動作によってプラズマの着火動作を再度繰り返す(S9)。
 再着火動作は、着火失敗を判定してから所定の休止時間が経過した後、着火を試みる着火リトライ機能によって行うことができる。このリトライ機能では、着火動作を繰り返すリトライ回数や休止時間の時間幅を設定することができる。また、設定されたリトライ回数内の着火で成功しない場合には、リトライ動作を停止させたり、あるいは一定時間停止させた後にリトライ動作を復帰させるように設定してもよい。
 また、反射波電力の検出値の平滑値は、平均値又は実効値によって求める(S5)。求めた平滑値に基づいて反射波電力量垂下制御を行う。反射波電力量垂下制御は、反射波電力の平滑値に基づいてパルス制御信号のデューティー(Duty)を設定し、このデューティー(Duty)に基づいてRF増幅部を垂下制御する(S6)。
 反射波電力ピーク値垂下制御(S3)、アーク遮断制御(S4)、および反射波電力量垂下制御(S6)は、これらの制御を開始するしきい値を個々に独立して設定し、それぞれ独立して制御動作させることができる。
 一方、本発明の高周波電力供給の進行波電力制御は、RFセンサ16によって電源側から負荷側に向かう進行波電力を検出し(S101)、検出した進行波電力量に基づくPWM制御信号によって高周波電源部10のDC/DCコンバータ12を駆動して出力電圧を制御する(S102)。
 図3は、反射波電力フィードバックと各リミット値およびアーク遮断レベルとの関係を説明するための図である。
 図3(a)は進行波電力フィードバック値PFを示している。図3(b)において、反射波電力の一次遅れ出力202は反射波電力フィードバック値PRを一次遅れさせて得られる出力を示し、平滑値203は反射波電力フィードバック値PRの平均値あるいは実効値を示している。また、図3(b)中には、リミット値(反射波電力平滑リミット値301、反射波電力ピークリミット値302)とアーク遮断レベルであるアークリミット値303を示している。なお、図3では、進行波電力フィードバック値200および反射波電力フィードバック値201を包絡線で示しているが、RFセンサ16の出力は直流電圧出力に限らず、高周波の交流電圧出力とすることができる。
 反射波電力の一次遅れ出力202は、反射波電力フィードバック値PRを一次遅れさせることによって、プラズマ立ち上がり時に発生する急峻に変動する急峻変動分を抑制した信号が得られる。この反射波電力の一次遅れ出力202を反射波電力ピークリミット値302と比較し、反射波電力の一次遅れ出力202が反射波電力ピークリミット値302に達した際に、反射波電力ピーク値垂下制御を行うことによって反射波電力のピーク値を低減させる。
 さらに、反射波電力の一次遅れ出力202が増加してアーク遮断レベルのアークリミット値303に達した際には、プラズマの着火が失敗したと判定してアーク遮断制御を行う。これにより、プラズマ負荷に供給する電力を停止してプラズマ負荷のアークを遮断する。
 また、平滑値(平均値又は実効値)203が、反射波電力平滑リミット値(反射波電力平均リミット値又は反射波電力実効リミット値)301に達した際には、反射波電力量垂下動作を行って、高周波電源部の出力電圧の振幅を絞ることなく出力電力量を制限し、これによってRF電力増幅素子の熱的損失を低減する。
 なお、図3に示した進行波電力フィードバック値および反射波電力フィードバック値は説明のために模式的に示した一例であって、必ずしも実例を示すものではない。また、リミット値、およびアーク遮断レベルも実例を示すものではない。
 以上説明したように、本発明によれば、パルス運転によって高周波電力をプラズマ負荷に電力供給する高周波電源において、プラズマが着火するまでの未着火状態において、進行波電力が全て反射波電力として電源側に戻る全反射波電力に対して耐え得る全反射波対応化を行うことができる。
 また、プラズマの立ち上がり時に生じる反射波電力のピークによる誤判定を防ぎ、プラズマ負荷のより長い期間におけるプラズマ状態の変動による反射波電力の変動に基づいて電力制御を行い、全反射波電力によるRF電力増幅素子の損傷を防ぐと共に、高周波電力の供給を遮断することなく継続してプラズマを着火させプラズマ状態を維持することができる。
本発明の高周波電力供給装置の概略構成を説明するための図である。 本発明の反射波電力制御方法の概略を説明するための説明図である。 反射波電力フィードバック値と各リミット値およびアーク遮断レベルとの関係を説明するための図である。 本発明の高周波電力供給装置の構成例を説明するための図である。 RF増幅部の動作例を説明するための図である。 RF増幅部の動作例を説明するための図である。 本発明の高周波電力供給装置の一部回路構成を説明するための図である。 本発明の高周波電力供給装置の一部回路構成を説明するための図である。 本発明の高周波電力供給装置の進行波電力制御ループ系の動作を説明するための図である。 本発明の高周波電力供給装置の反射波電力ピーク値垂下ループ系の動作を説明するための図である。 本発明の高周波電力供給装置の反射波電力ピーク値垂下ループ系の動作を説明するためのフローチャートである。 進行波電力制御と反射波電力ピーク値垂下動作を説明するための図である。 プラズマ着火が成功した場合と失敗した場合の反射波電力ピーク値垂下動作を模式的に示す図である。 本発明のアーク遮断系の動作を説明するための図である。 本発明アーク遮断系の動作を説明するためのフローチャートである。 プラズマの着火が成功した場合と失敗した場合のアーク遮断動作を模式的に示す図である。 本発明の反射波電力量垂下ループ系の動作を模式的に示す図である。 本発明の反射波電力量垂下ループ系の動作を説明するためのフローチャートである。 進行波電力制御と反射波電力量垂下動作を説明するための図である。 本発明の反射波電力量垂下動作を説明するための図である。
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。以下では、本発明の高周波電力供給装置および反射波電力制御方法について、図4を用いて高周波電力供給装置の構成例を説明し、図5,6を用いてRF増幅部の動作例を説明し、図7,8を用いて高周波電力供給装置の一部回路構成について説明する。また、高周波電力供給装置の進行波電力制御ループ系の動作を図9を用いて説明し、高周波電力供給装置の反射波電力ピーク値垂下ループ系の動作を図10~図13を用いて説明し、高周波電力供給装置のアーク遮断系の動作を図14~図16を用いて説明し、高周波電力供給装置の反射波電力量垂下ループ系の動作を図17~図20を用いて説明する。
 [高周波電力供給装置の構成例]
 はじめに、本発明の高周波電力供給装置の構成例について図4を用いて説明する。
 図4において、本発明の高周波電力供給装置1は高周波電力を負荷103に供給する高周波電源部10を備え、高周波電源部10の電源出力端101と負荷103との間を例えば同軸ケーブル102によって接続する。なお、同軸ケーブル102は一例であって必須の構成ではなくその他の伝送線路によって電力を送っても良い。
 高周波電源部10の制御は、進行波電力制御ループ系20、反射波電力量垂下ループ系50、反射波電力ピーク値垂下ループ系30、およびアーク遮断系40の各帰還系によってフィードバック制御が行われる。
 (高周波電源部)
 高周波電源部10は、直流電源11、DC/DCコンバータ12、RF増幅部13、合成器14、ローパスフィルタ15を備え、ローパスフィルタ15と電源出力端101との間にRFセンサ16を備える。
 直流電源11は、DC/DCコンバータ12の入力供給源である。なお、直流電源11に代えて交流電圧を整流して平滑化した直流電圧を用いても良い。
 DC/DCコンバータ12は、直流電源11の電圧Edcを可変可能な直流電圧Vdcに変換する装置であり、コンバータはインバータ回路で構成する他、チョッパ回路で構成しても良い。DC/DCコンバータ12は、進行波電力制御ループ系20のドライブ回路25から供給されるPWM信号のパルス幅によって半導体素子の通流率を変え、これによって出力の直流電圧Vdcを可変とする。DC/DCコンバータ12の出力の直流電圧VdcはRF増幅部13に入力される。
 RF増幅部13は直流電圧を交流電圧に変換する装置であり、D級RF増幅回路を用いることができる。D級RF増幅回路は、スイッチング動作によって直流電源の直流を高周波交流に変換する高周波増幅回路であり、出力段のスイッチング素子をRFゲート信号に基づいてオン/オフ動作させて出力電流を0から最大値まで増減させることによって直流/交流変換を行って増幅動作を行う。D級RF増幅回路は、スイッチング素子のオン時の抵抗が小さいため熱損失が小さく、高効率の変換を行うことができる。
 D級RF増幅回路を用いたRF増幅部13はフルブリッジインバータによって構成することができ、DC/DCコンバータ12から入力した直流電圧Vdcを交流のRF出力電力に変換する。RF増幅部13のRF出力電力の電圧振幅は、入力した直流電圧Vdcに比例する。RF増幅部13の直流から交流への変換は、ゲート信号生成器18により供給されるRFゲート信号に同期して増幅変換される。
 図5は、高周波電源が備えるRF増幅部の一構成例を示し、図6はRF増幅部を駆動制御するRFゲート信号、RF出力、およびプラズマ負荷における進行波電力と反射波電力を説明するための図である。
 図5に示すRF増幅部120は、MOSFET120a~120dをブリッジ構成し、直列接続したMOSFET120aとMOSFET120bの接続点と、直列接続したMOSFET120cとMOSFET120dの接続点をメイントランス120eで接続し、フィルタ120fを介して得られるメイントランス120eの出力をRF出力としている。MOSFET120a~120dはRFゲート信号A,A,B,B(図5(a),(b))によって駆動制御される。
 RFゲート信号A,A(図5ではAに上部にインバース“-”の記号を付して示している)は、MOSFET120aとMOSFET120bの直列回路を駆動制御する信号であり、互いに逆相である。RFゲート信号B,B(図5ではBに上部にインバース“-”の記号を付して示している)は、MOSFET120cとMOSFET120dの直列回路を駆動制御する信号であり、互いに逆相である。また、RFゲート信号AとRFゲート信号Bとは逆相である。
 RFゲート信号A,A,B,B(図6(a),(b))はパルス制御信号(図6(c))によって制御され、RFゲート信号A,A,B,Bはパルス制御信号がオン状態の期間で出力され、この期間内においてRF出力(図6(d))が出力される。
 図6(e),(f)は、プラズマ負荷における進行波電力と反射波電力を示している。図6(f)において、整合器を取り付けたプラズマ負荷は、RFゲート信号(図6(a),(b))の立ち上がり時の過渡現象において反射波電力が発生し、整定時間の後に減衰する(図6(f))。
 複数のRF増幅部を並列接続することによって、大きなRF出力電力を得ることができる。複数のRF増幅部を並列接続する構成では、各RF増幅部の位相を同期して増幅変換を行うことによって、高周波電源部10の電源出力端101における交流電力の位相を合わせる。
 合成器14は、複数のRF増幅部13から出力される各RF出力電力を一つにまとめる装置であり、RF増幅部13が単数の場合には省略することができる。
 RF増幅部13から出力されRF出力電力、および合成器14により一つにまとめられて出力されるRF出力電力には高調波成分が多く含まれている。ローパスフィルタ15はRF出力電力を波形成形して高周波電力に含まれる高調波成分を除き、高調波成分の少ないRF出力電力をRFセンサ16に送る。
 RFセンサ16は、RF出力電力に含まれる進行波電力と反射波電力とを分離して検出し、進行波電力フィードバック値PF、および反射波電力フィードバック値PRとして出力する。RFセンサ16を通過したRF出力電力は、電源出力端101まで伝送される。電源出力端101は同軸ケーブル102と高周波電源部10を接続する。電源出力端101の特性インピーダンスを同軸ケーブル102の特性インピーダンスと一致させることによって不要な反射波電力の発生を抑える。
 同軸ケーブル102は、電源出力端101から入力されたRF出力電力を負荷103に供給する。
 負荷103は、マッチングボックス(整合器)を介することによって、高周波電源側から見たインピーダンスを電源出力端101の特性インピーダンスおよび同軸ケーブル102の特性インピーダンスに整合することができる。特性インピーダンスおよび整合インピーダンスは例えば50[ohm]とすることができる。
 (進行波電力制御ループ系の構成)
 進行波電力制御ループ系20は、RFセンサ16で検出した進行波電力フィードバック値PFをDC/DCコンバータ12にフィードバックさせることによって、高周波電源部10の進行波電力が進行波電力指令値の大きさとなるように制御する帰還系であり、RFセンサ16からDC/DCコンバータ12に向かって、ホールド回路22,進行波電力誤差増幅装置23,PWM信号生成回路24,およびドライブ回路25を直列接続して構成される。
 進行波電力指令値21は、進行波電力制御を行う場合に、RFセンサ16で検出した進行波電力フィードバック値PFの大きさを制御するための基準値であり、進行波電力制御は、進行波電力フィードバック値PFのピーク値が進行波電力指令値21と同じ大きさとするパルス幅のPWM信号を生成し、このPWM信号によってDC/DCコンバータ12をパルス制御する。
 RFセンサ16が出力する進行波電力フィードバック値PFはTon区間の値とToff区間の値とを含み、Ton区間の値が進行波電力の大きさを表している。一方、Toff区間の値は進行波電力の大きさを表していない。ホールド回路22は、進行波電力フィードバック値PFのToff区間の値を除いてTon区間の値のみ保持することによって、進行波電力の大きさを取り出す。
 ホールド回路22は、進行波電力フィードバック値PFのTon区間に連動してスイッチをONとしToff区間に連動してスイッチをOFFとして切り離すことによって、直前の状態を維持して進行波電力フィードバック値の振幅をホールドする。ホールドした進行波電力フィードバック値PFの振幅を進行波電力誤差増幅装置23に送る。
 図7はホールド回路22の構成例を説明するための回路図である。図7(a)に示す回路60において、ホールド回路61はスイッチ回路65で構成され、スイッチ回路65の入力端に抵抗63および抵抗64を接続して進行波電力指令値21および進行波電力フィードバック値PFを入力する。スイッチ回路65は、進行波電力フィードバック値PFのON/OFFに同期してスイッチングを行い、Ton区間の進行波電力フィードバック値PFおよび進行波電力指令値を、スイッチ回路65の出力端に接続した誤差増幅回路62に入力する。
 誤差増幅回路62はオペレーションアンプ66で構成され、進行波電力フィードバック値PFと進行波電力指令値との差分を増幅する。ここでは、誤差増幅の機能を、オペレーションアンプ66を備えた誤差増幅回路62によるハードウエアによって構成する例を示しているが、ハードウエア構成に限らずソフトウエアによる構成とし、CPUをプログラム駆動して誤差増幅の演算処理を行う構成としてもよい。
 図7(b)に示す回路70において、ホールド回路71はスイッチ回路75およびコンデンサで構成され、スイッチ回路75の入力端に進行波電力フィードバック値PFを入力する。スイッチ回路75は、進行波電力フィードバック値PFのON/OFFに同期してスイッチングを行い、Ton区間の進行波電力フィードバック値PFをコンデンサに保持する。
 コンデンサに保持された電圧値は、バッファ回路77および抵抗74を介して進行波電力フィードバック値PFを誤差増幅回路72に入力する。誤差増幅回路72には抵抗73を介して進行波電力指令値21が入力される。誤差増幅回路72はオペレーションアンプ76で構成され、進行波電力フィードバック値PFと進行波電力指令値との差分を増幅する。
 進行波電力誤差増幅装置23は、進行波電力指令値と進行波電力フィードバック値PFとの誤差分を、予め定めておいたゲインで増幅して制御量として出力する。
 PWM信号生成回路24は、進行波電力誤差増幅装置23又は反射波電力ピーク値電力誤差増幅器34が出力した制御量の大きさを比較し、大きいほうの制御量に従ってPWM信号を生成する。
 反射波電力ピーク値電力誤差増幅器34が出力する制御量は反射波電力ピーク値垂下制御を行う制御量であり、進行波電力誤差増幅装置23の制御量が反射波電力ピーク値電力誤差増幅器34の制御量よりも大きい場合には、進行波電力誤差増幅装置23の制御量に従って進行波電力制御を行い、逆に、反射波電力ピーク値電力誤差増幅器34の制御量が進行波電力誤差増幅装置23の制御量よりも大きい場合には、反射波電力ピーク値電力誤差増幅器34の制御量に従って反射波電力ピーク値垂下制御を行って、反射波電力の過大なピーク値を垂下させて抑制する。
 ドライブ回路25は、PWM信号生成回路24で生成したPWM信号に基づいて、DC/DCコンバータ12内の半導体素子を駆動するに十分なパワーに増幅する駆動信号を生成し、生成した駆動信号をDC/DCコンバータ12の半導体素子のゲートに入力してスイッチングさせ、直流電源11の直流電圧Edcを出力電圧Vdcに変換する。また、ドライブ回路25は、PWM信号生成回路24とDC/DCコンバータ12との基準電位間を絶縁し、PWM信号の電位とDC/DCコンバータ12の電位が相違した場合に、DC/DCコンバータ12からPWM信号生成回路24側への電流によるPWM信号生成回路24の破損や誤動作を防ぐ。
 (反射波電力ピーク値垂下ループ系の構成)
 反射波電力ピーク値垂下ループ系30は、RFセンサ16で検出した反射波電力フィードバック値PRを進行波電力制御ループ系20を介してDC/DCコンバータ12にフィードバックさせることによって、高周波電源部10の反射波電力のピーク値を垂下する制御を行う帰還系であり、急峻変動除去部31,反射波電力ピークリミット値32,ホールド回路33,反射波電力ピーク値電力誤差増幅器34を備え、反射波電力ピーク値電力誤差増幅器34の出力を進行波電力制御ループ系20のPWM信号生成回路24に送り、DC/DCコンバータ12を駆動するPWM信号のパルス幅を制御することによって反射波電力のピーク値を垂下させて抑制する。
 急峻変動除去部31は、プラズマの立ち上がり時に生じる急峻な変動分を除去する回路である。プラズマ負荷において、着火成功時であっても、プラズマの立ち上り時には必ずピーク状の反射波電力が発生する。このプラズマ立ち上がり時に発生する反射波電力が設定値(反射波電力ピークリミット値)に達すると、この反射波電力の上昇をプラズマ負荷の異常による反射波電力の上昇として誤判定する場合がある。この誤判定に基づいて反射波電力ピークの垂下制御を行うと、着火したプラズマが不安定となるという問題が生じる。
 急峻変動除去部31は検出した反射波電力フィードバック値PRに含まれる急峻な変動分を除き、プラズマ立ち上がり時に発生する反射波電力による誤判定を防ぐ。急峻変動除去部31は抵抗とコンデンサで構成される一次遅れ回路で構成することができる。
 図8は、急峻変動除去部31の構成例を説明するための図である。図8(a)は急峻変動除去部31を一次遅れ回路80で構成した場合の回路例であり、抵抗81とコンデンサ82によるローパスフィルタ(LPF)で構成することができる。
 図8(b)は急峻変動除去部31の別の構成例を示している。急峻変動除去部31は高周波成分を除去するフィルタ回路90で構成することができる。スイッチング回路95は、反射波電力の検出信号の出力を切り替え、検出信号に含まれる急峻な変動分を除いた信号のみを出力する。急峻な変動分の検出は、微分回路91と比較回路92およびリミット値93によって行う。微分回路91によって検出信号の変動を検出し、検出した微分値とリミット値93とを比較することで急峻な変動分を検出する。スイッチング回路95は、比較回路92の出力に基づいて急峻な変動分はOFF状態として検出信号の出力を停止し、急峻な変動分を含まない信号分はON状態として検出信号を出力する。遅延回路94は、微分回路91と比較回路92の処理に要する時間だけ検出信号を遅延させて、スイッチング回路95における切り替えタイミングを合わせる。
 図4において、反射波電力ピークリミット値32は、反射波電力ピーク値垂下動作を行う場合に、急峻変動除去部31の出力と比較する基準値であり、予め設定しておく値である。反射波電力ピーク値垂下の動作中は、反射波電力フィードバックのピーク値を反射波電力ピークリミット値32以下となるように制限する。
 ホールド回路33は、進行波電力制御ループ系20が備えるホールド回路22と同様の構成とすることができ、反射波電力フィードバック値PRのTon区間に連動してスイッチをONとしToff区間に連動してスイッチをOFFとして切り離することによって、直前の状態を維持して反射波電力フィードバック値の振幅をホールドする。ホールドした反射波電力フィードバック値PRの振幅を反射波電力ピーク値電力誤差増幅器34に送る。
 反射波電力ピーク値電力誤差増幅器34は、反射波電力ピークリミット値32と急峻変動除去部31の出力の差分を、予め設定したゲインで増幅し制御量として出力する。
 反射波電力ピーク値電力誤差増幅器34が出力する制御量は反射波電力ピーク値垂下制御を行う制御量であり、PWM信号生成回路24は反射波電力ピーク値電力誤差増幅器34の出力と進行波電力誤差増幅装置23の出力とを入力し、反射波電力ピーク値電力誤差増幅器34の制御量が進行波電力誤差増幅装置23の制御量よりも大きい場合には、反射波電力ピーク値電力誤差増幅器34の制御量に従って反射波電力ピーク値垂下制御を行い、反射波電力の過大なピーク値を垂下させる。
 (アーク遮断系の構成)
 アーク遮断系40は、RFセンサ16で検出した反射波電力フィードバック値PRをRF増幅部13にフィードバックさせることによって、プラズマ負荷に供給する電力を停止してアークを遮断する制御を行う帰還系であり、反射波電力ピーク値垂下ループ系30が備える急峻変動除去部31を備える他、アークリミット値41,比較器42,ゲート遮断信号生成器43を備え、ゲート遮断信号生成器43の出力をゲート信号生成器18に送り、RF増幅部13を駆動するRFゲート信号のON/OFFを制御するパルス制御信号のデューティー(Duty)を制御することによってアークを遮断する。
 急峻変動除去部31は、反射波電力ピーク値垂下ループ系30が備える急峻変動除去部31を兼用する構成の他、アーク遮断系40に個別に設ける構成、あるいは、急峻変動除去部を反射波電力ピーク値垂下ループ系30およびアーク遮断系40から独立して設けておき、急峻な動除分を除去した反射波電力の検出値を反射波電力ピーク値垂下ループ系30とアーク遮断系40の両帰還系に入力する構成としても良い。
 アークリミット値41は、プラズマ負荷の着火が成功したかあるいは失敗したかを判定するためのレベル値であり、反射波電力フィードバック値PRから急峻な変動分を除去した検出値がアークリミット値41に達したか否かによって、プラズマ負荷の着火の成功/失敗の判定を行う。プラズマ負荷の着火が失敗した場合には反射波電力フィードバック値PRが増加するため、急峻変動除去部31の出力がアークリミット値41に達したことを検出することによって、プラズマ負荷の着火が失敗したことを検出することができる。
 比較器42は、アークリミット値41と急峻変動除去部31の出力とを比較してプラズマ負荷の着火状況を判定するコンパレータである。比較器42は、急峻変動除去部31の出力がアークリミット値41以下であれば着火成功と判定し、急峻変動除去部31の出力がアークリミット値41を越えた場合には着火失敗と判定する。あるいは、比較器42は、急峻変動除去部31の出力がアークリミット値41未満であれば着火成功と判定し、急峻変動除去部31の出力がアークリミット値41以上の場合には着火失敗と判定する。
 ゲート遮断信号生成器43は、比較器42が出力する着火判定信号に従ってゲート遮断信号をゲート信号生成器18に送出する。着火成功時には、ゲート遮断信号の送出を行なわず、ゲート信号生成器18に対してRFゲート信号の出力を許可する。着火失敗時は、ゲート遮断信号の送出を行って、ゲート信号生成器18に対してRFゲート信号の出力を禁止する。
 ゲート信号生成器18は、RF増幅部13のRF電力増幅素子を駆動するために必要な高周波のゲートパワーを制御するRFゲート信号を供給する回路であり、生成したRFゲート信号を図5に示すRF増幅部13が備えるブリッジ構成のMOSFET120に印加して、MOSFET120のONおよびOFFを交互に切り替えることによって、RF出力を生成する。
 パルス制御信号は、RFゲート信号の出力を制御する制御信号であり、ON区間ではRFゲート信号を出力させ、OFF区間ではRFゲート信号を停止する。ON区間とOFF区間の時間幅の比で定まるデューティー(Duty)(=ON区間/(ON区間+OFF区間))を制御することによって、RF増幅部13が出力する電力量を制御する。
 RF増幅部13は、通常のパルス運転時には、ゲート信号生成器18に予め設定されているパルス制御信号のデューティー(Duty)と同じデューティー(Duty)で駆動してRF電力を出力する。
 ゲート信号生成器18は、ゲート遮断信号生成器43からゲート遮断信号を入力した場合には、パルス制御信号の出力を停止あるいはデューティー(Duty)を小さくして、RF増幅部13が出力するRF電力を低減したり、あるいRF電力を停止する。
 分岐器17は、RF増幅部13が複数ある場合にゲート信号生成器18の出力したパルス制御信号を各々のRF増幅部に分岐して供給する回路である。RF増幅部が単数である場合には分岐器17は不要である。
 (反射波電力量垂下ループ系の構成)
 反射波電力量垂下ループ系50は、RFセンサ16で検出した反射波電力フィードバック値PRをRF増幅部13にフィードバックさせることによって、高周波電源部10の反射波電力の電力量を垂下する制御を行う帰還系であり、反射波電力フィードバック値の電力を平滑化する平滑部として電力平滑部51を備える他、平滑化した反射波電力平滑値のしきい値として用いる反射波電力平滑リミット値52,反射波電力平滑値と反射波電力平滑リミット値との差分に基づいて電力増幅を行う反射波電力平滑値電力誤差増幅装置53,反射波電力平滑値電力誤差増幅装置53の出力に基づいてパルス制御信号のデューティー(Duty)を定めるデューティー垂下信号生成器54を備え、デューティー垂下信号生成器54の出力をゲート信号生成器18に送る。反射波電力量垂下ループ系50は、パルス制御信号のデューティー(Duty)を制御することによって反射波電力の電力量を垂下させて抑制する。
 反射波電力量垂下ループ系50は、反射波電力の電圧振幅を変化させることなく電力量を制御する必要性から、反射波電力フィードバック値PRを平滑化する手段として平均値や実効値を求める電力平滑部51を備え、得られた制御量をRF増幅部13に帰還して電力量を制御する。
 反射波電力量垂下ループ系50は、反射波電力の平均値あるいは実効値を反射波電力平滑値とし、この反射波電力平滑値が基準値以下となるように反射波電力を垂下させる動作を行う。以下、反射波電力の平均値に基づいて行う垂下動作を反射波電力平均値垂下動作とし、反射波電力の実効値に基づいて行う垂下動作を反射波電力実効値垂下動作とする。
 電力平滑部51は、反射波電力フィードバック値PRを平滑化して反射波電力平滑値を出力する回路であり、平均値回路あるいは実効値回路で構成することができる。平均値回路および実効値回路は、高周波電源部10のパルス運転時における反射波電力フィードバック値PRの平均値、実効値を求める回路であり、ハードウエア回路で構成する他に、ソフトウエアによる演算処理で構成することができる。また、平均値回路をハードウエアで構成する場合には、抵抗とコンデンサによる一次遅れ回路によって構成しても良い。
 反射波電力フィードバック値PRから平滑化した反射波電力平滑値を求めることによって、RF出力電力の振幅を絞ること無く、パルス制御信号のデューティー(Duty)を絞ることでRF電力増幅素子の熱的損失を減らし、破壊を防ぐことができる。
 反射波電力平滑リミット値(反射波電力平均リミット値、反射波電力実効リミット値)は、反射波電力平滑値垂下動作(反射波電力平均値垂下動作、反射波電力実効値垂下動作)を行う場合に、電力平滑部(平均値回路、実効値回路)51の出力と比較する基準値である。反射波電力平滑値垂下動作(反射波電力平均値垂下動作、反射波電力実効値垂下動作)動作中は、反射波電力フィードバック値PRの平滑値(平均値、実効値)が反射波電力平滑リミット値(反射波電力平均リミット値、反射波電力実効リミット値)以下となるようにパルス制御信号のデューティー(Duty)を調整し、ゲート信号生成器18が生成するRFゲート信号のON区間を制限し、反射波電力の電力量を垂下(低下)させる。
 反射波電力平滑値電力誤差増幅器(反射波電力平均値電力誤差増幅装置、反射波電力実効値電力誤差増幅装置)53は、反射波電力平滑リミット値(反射波電力平均リミット値、反射波電力実効リミット値)52と電力平滑部(平均値回路、実効値回路)51の出力との差分である誤差分を予め定めておいたゲインで増幅し、制御量として出力する。
 デューティー垂下信号生成器54は、反射波電力平滑値電力誤差増幅器(反射波電力平均値電力誤差増幅装置、反射波電力実効値電力誤差増幅装置)53が出力する制御量に応じてパルス運転時のON区間とOFF区間のデューティー(Duty)を決定する回路である。
 反射波電力平滑値垂下動作中において、ゲート信号生成器18はデューティー垂下信号生成器54からパルス制御信号を受け取って、パルス制御信号のデューティー(Duty)に基づいたON区間およびOFF区間のRFゲート信号を生成する。なお、ゲート信号生成器18にはアーク遮断系40のゲート遮断信号生成器43からゲート遮断信号が入力されており、このゲート遮断信号はデューティー(Duty)信号に優先してRFゲート信号を停止する動作を行う。
 また、反射波電力平均値垂下動作に移行せずに通常の進行波電力制御を行う場合は、デューティー垂下信号生成器54はデューティー(Duty)垂下信号の生成を行なわず、予め設定された固定のデューティー(Duty)のパルス制御信号でゲート信号を生成してパルス運転を行う。
 以下、本発明の高周波電力供給装置の制御例について説明する。
[高周波電力供給装置の制御例]
 (進行波電力制御)
 はじめに、進行波電力制御ループ系による進行波電力制御について図9を用いて説明する。
 負荷103が50[ohm]にマッチングされており反射波電力がない場合には、図9中の進行波電力制御ループ系20(太い矢印で示している)によって進行波電力制御が行われる。
 進行波電力制御中は、絶えず進行波電力指令値21と進行波電力フィードバック値PFのピーク値が一致するようにDC/DCコンバータ12の出力Vdcを可変とし、RF出力電力の振幅が制御される。
 (切り替え制御)
 進行波電力制御中に、負荷103のマッチングが50[ohm]から逸脱し、下記の各条件(1),(2),(3)を満たした場合は、制御ループは進行波電力制御ループ系20から垂下動作又は遮断動作を行う反射波電力制御ループ系100(反射波電力ピーク値垂下ループ系30,アーク遮断系40,反射波電力量垂下ループ系50)に移行する。
 (1)図3(b)に示すように、反射波電力の急峻変動分を除去した一次遅れ出力202が反射波電力ピークリミット値302に到達した場合は、反射波電力ピーク値垂下ループ系30によって反射波電力ピーク値垂下動作に移行する。
 (2)図3(b)に示すように、反射波電力の急峻変動分を除去した一次遅れ出力202がアークリミット値303に到達した場合は、アーク遮断系40によってアーク遮断動作に移行する。
 (3)図3(b)に示すように、電力平滑部(平均値回路、実効値回路)51の反射波電力の平滑値203が、反射波電力平滑値リミット値(反射波電力平均リミット値、反射波電力実効値リミット値)301に到達した場合は、反射波電力量垂下動作に移行する。上記した垂下動作と遮断動作はそれぞれ独立して動作する。
(反射波電力ピーク値垂下制御)
 次に、反射波電力ピーク値の垂下制御について、図10~図13を用いて説明する。図10は反射波電力ピーク値垂下制御のループ系を示している。
 負荷のマッチングが50[ohm]から逸脱してインピーダンス整合がとれなくなると、反射波電力が発生する。この反射波電力を検出して得られた反射波電力フィードバック値PRの反射波電力の急峻変動分を除去した出力(例えば、一次遅れ出力)が反射波電力ピークリミット値32を超えた場合には、図10中において示す反射波電力ピーク値垂下ループ系30(太い矢印で示している)によって反射波電力ピーク値垂下動作が行われる。
 急峻変動除去部31の出力が反射波電力ピークリミット値32を超えないようにDC/DCコンバータ12を制御することによって、RF出力電力の振幅は一定値以上出力されない様に制限される。この反射波電力ピーク値垂下動作により、反射波電力発生時におけるRF電力増幅素子は過負荷やサージ電圧から保護されて破壊には至らなくなる。
 反射波電力が下がり、急峻変動除去部31の出力が反射波電力ピークリミット値32を下回った場合には、進行波電力制御に再度戻る。
 図11に示すフローチャートにおいて、RFセンサ16によって反射波電力を検出し(S11)、検出した反射波電力を急峻変動除去部31に入力して急峻変動分を除去した出力(例えば、一次遅れ出力)を得る(S12)。反射波電力の急峻変動分を除去した出力(例えば、一次遅れ出力)が、反射波電力ピーク値の検出レベルである反射波電力ピークリミット値32を超えた場合には(S13)、反射波電力の急峻変動分を除去した出力(例えば、一次遅れ出力)と反射波電力ピークリミット値32との差分を求め(S14)、この差分に基づいて制御値を求め(S15)、制御値に基づいてPWM信号生成回路24においてPWM信号を生成する(S17)。差分および制御値の生成は、反射波電力ピーク値電力誤差増幅器34で行うことができる。
 一方、反射波電力の急峻変動分を除去した出力(例えば、一次遅れ出力)が反射波電力ピークリミット値32を超えない場合には(S13)、予め定めておいた設定パルス幅(S16)に基づいてPWM信号生成回路24においてPWM信号を生成する(S17)。生成したPWM信号によりDC/DCコンバータ12を駆動して出力電圧値を制御する(S18)。
 図12は進行波電力制御と反射波電力ピーク値垂下動作を説明するための図である。図12の横軸は時間を示し、縦軸は反射波電力を示している。
 進行波電力制御において、予め定められたパルス幅のPWM信号によってDC/DCコンバータを駆動する。この駆動によって進行波電力が増加する(図示していない)と共に、反射波電力が増加する。反射波電力のピーク値が反射波電力ピークリミット値に達すると、反射波電力ピーク値垂下動作が開始する。反射波電力ピーク値垂下動作は、PWM信号のパルス幅を狭めることによって反射波電力のピーク値が反射波電力ピークリミット値を超えないように抑制する。
 図13は、プラズマの着火が成功した場合と失敗した場合の反射波電力ピーク値垂下動作を模式的に示している。なお、図13に示す波形は説明のために簡略化して示しており、実際の波形を示すものではない。図13(a)は進行波電力フィードバック値を示し、図13(b),(e)中の濃い実線は反射波電力フィードバック値PRを示し、薄い実線は反射波電力フィードバック値の一次遅れ出力を示し、一点鎖線はピーク垂下検出レベルを示している。
 図13(a)~(d)は着火が成功した場合の波形を示し、図13(e)~(g)は着火が失敗した場合の波形を示している。
 着火が成功した場合には、プラズマの立ち上がり時T1およびプラズマの立ち下がり時T2に反射波電力が増加する。このとき、反射波電力フィードバック値PR(濃い実線で示す)に基づいて反射波電力ピーク値垂下動作を行うと、正常な着火動作である場合であっても異常状態と誤判定され、進行波電力の振幅が抑制されてプラズマの維持が困難となる。
 これに対して、反射波電力フィードバック値の急峻変動分を除去した出力(例えば、一次遅れ出力)(薄い実線で示す)は、ピーク垂下検出レベルに達しないため反射波電力ピーク値垂下動作は行われず、PWM信号は変化することなく(図13(d))進行波電力制御が維持される。
 また、着火が失敗した場合、反射波電力フィードバック値の急峻変動分を除去した出力(例えば、一次遅れ出力)(薄い実線で示す)は、着火失敗に時点T1から遅れたT3においてピーク垂下検出レベルに達し、反射波電力ピーク値垂下動作が開始される。PWM信号のパルス幅は、反射波電力の一次遅れ出力とピーク垂下検出レベルとの差分(図13(f))に基づいて生成され(図13(g))、反射波電力ピークの垂下が行われる。
 反射波電力の急峻変動分を除去した出力(例えば、一次遅れ出力)が低下しピーク垂下検出レベルを下回ると、反射波電力ピーク値垂下動作は終了し、反射波電力ピーク値垂下制御から進行波電力制御に戻る。
 (アーク遮断制御)
 次に、アーク遮断制御について、図14~図16を用いて説明する。図14はアーク遮断制御のループ系を示している。
 プラズマ負荷の着火に失敗して反射波電力が増加し、反射波電力フィードバック値PRがアーク遮断レベルを超える場合には、図14に示すアーク遮断系40(図14中の太い矢印で示す)でアーク遮断動作を行う。
 急峻変動除去部31で急峻変動分が除去されたピーク値がアークリミット値41に達した段階で、ゲート遮断信号生成器43は遮断信号を送出し、RF増幅部13の動作を停止させてアークを遮断する。
 アーク遮断動作中のRF出力電力パルス幅は、予め設定しておいた通常のパルス運転時におけるデューティー(Duty)よりも非常に短くなりRF電力増幅素子は破壊に至らない。
 着火失敗時には、アーク遮断直前に大きな電力が供給されるが、この間に大きな電圧を負荷に印加することができるので保護と着火のリトライを同時に行うことができる。また、着火成功時は、急峻変動分を除去することにより正常なパルス立ち上がり時の反射波電力を抑制することができるため着火判定の誤検知を防止することができ、パルス運転を中断すること無く続行することができる。
 図15に示すフローチャートにおいて、RFセンサ16によって反射波電力を検出し(S21)、検出した反射波電力を急峻変動除去部31に入力して急峻変動分を除去する。以下では、急峻変動除去部は一次遅れを出力する例について説明する。
 反射波電力の一次遅れ出力によって急峻な変動分を除去し(S22)、得られた一次遅れ出力がアーク遮断の検出レベルであるアークリミット値41を超えた場合には(S23)、ゲート遮断信号を生成する(S24)。
 ゲート信号生成器18は、ゲート遮断信号を受けてRFゲート信号の出力を停止し(S25)、RF増幅部の出力を停止する(S26)。
 一方、一次遅れ出力がアークリミット値41を超えない場合には(S23)、ゲート信号生成器18は予め定めておいたパルス制御信号のデューティー(Duty)に基づいてRFゲート信号を生成してRF増幅部の出力を維持、あるいはRF増幅部の出力が停止していた場合には再開する(S27)。
 着火が失敗した際、着火リトライ機能によって再着火動作を行うことができる。再着火動作は、着火失敗を判定してから所定の休止時間が経過した後、着火を試みる。このリトライ機能では、着火動作を繰り返すリトライ回数や休止時間の時間幅を設定することができる。また、設定されたリトライ回数内の着火が成功しない場合には、リトライ動作を停止させたり、あるいは一定時間停止させた後にリトライ動作を復帰させるように設定してもよい。
 図16は、プラズマの着火が成功した場合と失敗した場合のアーク遮断動作を模式的に示している。なお、図16に示す波形は説明のために簡略化して示しており、実際の波形を示すものではない。図16(a),(d)は進行波電力フィードバック値を示し、図16(b),(e)において、濃い実線は反射波電力フィードバック値PRを示し、薄い実線は反射波電力フィードバック値の一次遅れ出力を示し、一点鎖線はアークリミット値を示している。
 図16(a)~(c)は着火が成功した場合の波形を示し、図16(d)~(f)は着火が失敗した場合の波形を示している。
 着火が成功した場合には、プラズマの立ち上がり時t1およびプラズマの立ち下がり時t2に反射波電力が増加する(図16(b))。このとき、反射波電力フィードバック値PR(濃い実線で示す)に基づいてアーク遮断動作を行うと、正常な着火動作である場合であってもアーク発生等の異常状態と誤判定され、アーク遮断動作によってプラズマが消弧される。
 これに対して、反射波電力フィードバック値から急峻変動分を除去した出力(一次遅れ出力(薄い実線で示す))は、アーク遮断レベルであるアークリミット値に達しないためアーク遮断動作は行われず、ゲート遮断信号は出力されず(図16(c))進行波電力制御が維持される。
 また、着火が失敗した場合、反射波電力フィードバック値から急峻変動分を除去した出力(一次遅れ出力(薄い実線で示す))は、着火失敗に時点t1から遅れたt3においてアーク遮断検出レベルのアークリミット値に達し(図16(e))、ゲート遮断信号が生成され(図16(f))、アーク遮断動作が開始される。
 アーク遮断動作の開始によってアークが消弧すると、進行波電力フィードバック値PFおよび反射波電力フィードバック値PRが低下し(図16(d),(e))、反射波電力の一次遅れ出力は一次遅れ回路の時定数に従って減衰する(図16(e))。
 (反射波電力量垂下制御)
 次に、反射波電力量垂下制御について、図17~図20を用いて説明する。図17は反射波電力量垂下動作を模式的に示している。
 負荷のマッチングが50[ohm]から逸脱してインピーダンス整合がとれなくなると、反射波電力が発生する。この反射波電力を検出して得られた反射波電力フィードバック値PRを平滑化して得られた反射波電力平滑値が反射波電力平滑リミット値52を超えた場合には、図17中で示す反射波電力量垂下ループ系50(太い矢印で示している)によって反射波電力量垂下動作が行われる。反射波電力平滑値は、反射波電力の平均値あるいは実効値とすることができる。
 反射波電力量垂下制御による反射波電力垂下動作では、電力平滑部51の出力が反射波電力平滑リミット値52を超えないようにパルス制御信号のデューティー(Duty)を制御し、RFゲート信号のON区間の幅を制限することによって、RF出力電力の電力量が一定値以上出力されない様に制限する。反射波電力量垂下動作は、パルス制御信号のデューティー(Duty)を絞ることによって、RF出力の電圧の振幅を絞ることなく出力電力を絞り、RF電力増幅素子の熱的損失を減らし破壊を防ぐことができる。
 反射波電力量垂下動作によって反射波電力が下がり、電力平滑部51の出力が反射波電力平滑リミット値52を下回った場合には、進行波電力制御に再度戻る。
 図18に示すフローチャートにおいて、RFセンサ16によって反射波電力を検出し(S31)、検出した反射波電力を電力平滑部51に入力して平滑化した反射波電力平滑値を求め(S32)、反射波電力平滑化値が、反射波電力の検出レベルである反射波電力平滑リミット値52を超えた場合には(S33)、反射波電力平滑化値と反射波電力平滑リミット値52との差分を求め(S34)、この差分に基づいて制御値を求め(S35)、デューティー変換によって制御値に対応するパルス制御信号のデューティー(Duty)を求める。なお、デューティー変換は、制御値とこの制御値に対応するデューティー(Duty)の関係を予め定めておき、この対応関係に基づいて制御値からデューティー(Duty)を求めることができる。
 得られたデューティー(Duty)に基づいてデューティー垂下信号生成器54においてデューティー垂下信号を生成する。ゲート信号生成器18は、デューティー垂下信号に基づいて、ON区間が絞られたRFゲート信号を生成する。ここで、デューティー垂下信号はRFゲート信号のON区間とOFF区間のデューティー(Duty)を定めるパルス制御信号であり、ON区間を絞ることによって進行波電力の電力量を抑制し、これによって反射波電力の電力量を低減する(S38)。
 一方、反射波電力平滑値が反射波電力平滑リミット値52を超えない場合には(S33)、デューティー垂下信号生成器54はデューティー垂下信号を生成せず、ゲート信号生成器18は予め定めておいた設定デューティー(Duty)(S37)に基づいてパルス制御信号を生成し(S38)、パルス制御信号に基づいてRFゲート信号を生成し(S39)、生成したRFゲート信号によりRF増幅部13を駆動して出力電力を制御する(S40)。
 図19は進行波電力制御と反射波電力量垂下動作を説明するための図である。図19(a),(b)の横軸は時間を示し、図19(a)の縦軸は反射波電力、図19(b)の縦軸は負荷電圧を示している。
 進行波電力制御において、予め定められたデューティー(Duty)のON区間およびOFF区間を有するRFゲート信号によってRF増幅部13を駆動する。この駆動によって進行波電力の電力が増加する(図示していない)と共に、反射波電力の電力量が増加する。反射波電力を平滑化して得られる反射波電力平滑値(平均値あるいは実効値)が反射波電力平滑リミット値に達すると、反射波電力量垂下動作が開始する。
 反射波電力量垂下動作は、パルス制御信号のデューティー(Duty)を小さくして、RFゲート信号を出力するON区間の幅を縮小することによって反射波電力の電力量が反射波電力平滑リミット値を超えないように抑制する。
 図19(a)は平滑値として平均値を用いた例であり、反射波電力平均値垂下動作において、反射波電力平均値の上限を反射波電力平均リミット値に抑えることができる。
 図19(b)は負荷電圧を示し、反射波電力平均値垂下動作中に負荷に印加される電圧を一定に保持され、パルス運転の一周期内で印加される高周波電圧のサイクル数を狭めることで供給電力を抑制している。
 図20は、反射波電力量垂下動作を模式的に示している。なお、図20に示す波形は説明のために簡略化して示しており、実際の波形を示すものではない。
 図20(a)~(c)は、反射波電力平滑値が反射波電力平滑リミット値を超えた場合を示し、図20(d)~(f)は、反射波電力量垂下動作後の状態を示している。図20(a),(d)は反射波電力および反射波電力平滑値を示し、図20(b),(e)はパルス制御信号を示し、図20(c),(f)はRFゲート信号を示している。図中のパルス制御信号は、ゲート信号を出力するON区間とゲート信号を出力しないOFF区間を表している。なお、各信号波形は説明のために模式的に示すものであって、実際の信号波形を表すものではない。
 図20(a)~(c)において、予め設定されたデューティー(Duty)で定まるパルス制御信号(図20(b))に基づいてRFゲート信号(図20(c))が生成され、このRFゲート信号によるパルス駆動で発生する反射波電力の平滑値(平均値あるいは平滑値)が平滑リミット値を超えた(図20(a))場合には、反射波電力平滑リミット値を超える反射波電力の平滑値電力の差分に基づいてパルス制御信号のデューティー(Duty)を低下させ反射波電力量を垂下させる。
 図20(d)~(f)は反射波電力量垂下動作後の状態を示している。パルス制御信号のデューティー(Duty)を低下させ、このデューティー(Duty)で定まるパルス制御信号(図20(e))を出力することによって出力電力が制御される。このパルス制御信号に基づいてRFゲート信号が生成され(図20(f))、反射波電力量が垂下される。
 以下に本発明の反射波電力制御が含む反射波電力ピーク値垂下制御、アーク遮断制御、および反射波電力量垂下制御の関係を表に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、上記実施の形態及び変形例における記述は、本発明に係る高周波電力供給装置および反射波電力制御方法の一例であり、本発明は各実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。
 本発明の高周波電力供給装置および反射波電力制御方法は、プラズマ発生装置に電力を供給する電力源に適用することができる。
 1  高周波電力供給装置
 10  高周波電源部
 11  直流電源
 12  コンバータ
 13  増幅部
 14  合成器
 15  ローパスフィルタ
 16  センサ
 17  分岐器
 18  ゲート信号生成器
 20  進行波電力制御ループ系
 21  進行波電力指令値
 22  ホールド回路
 23  進行波電力誤差増幅装置
 24  PWM信号生成回路
 25  ドライブ回路
 30  反射波電力ピーク値垂下ループ系
 31  急峻変動除去部
 32  反射波電力ピークリミット値
 33  ホールド回路
 34  反射波電力ピーク値電力誤差増幅器
 40  アーク遮断系
 41  アークリミット値
 42  比較器
 43  ゲート遮断信号生成器
 50  反射波電力量垂下ループ系
 51  電力平滑部
 52  反射波電力平滑リミット値
 53  反射波電力平滑値電力誤差増幅装置
 54  デューティー垂下信号生成器
 60  回路
 61  ホールド回路
 62  誤差増幅回路
 63  抵抗
 64  抵抗
 65  スイッチ回路
 66  オペレーションアンプ
 70  回路
 71  ホールド回路
 72  誤差増幅回路
 73  抵抗
 74  抵抗
 75  スイッチ回路
 76  オペレーションアンプ
 77  バッファ回路
 80  一次遅延回路
 81  抵抗
 82  コンデンサ
 90  フィルタ回路
 91  微分回路
 92  比較回路
 93  リミット値
 94  遅延回路
 95  スイッチング回路
 100 反射波電力制御ループ系
 101  電源出力端
 102  同軸ケーブル
 103  負荷
 120  増幅部
 120a~120d MOSFET
 120e  メイントランス
 120f  フィルタ
 202  一次遅延出力
 203  平滑値
 301  リミット値
 302  反射波電力ピークリミット値
 303  アークリミット値
 Edc  直流電圧
 PF  進行波電力フィードバック値
 PR  反射波電力フィードバック値
 Vdc  直流電圧

Claims (12)

  1.  プラズマ負荷に高周波電力を供給する高周波電力供給装置において、
     スイッチング動作によって直流電源の直流を高周波交流に変換し高周波電力を出力する高周波電源部と、
     前記高周波電源部の高周波出力の検出値を帰還してフィードバック制御を行う帰還系とを備え、
     前記帰還系は、
     前記高周波電源部からプラズマ負荷に向かう進行波電力の検出値を帰還して進行波電力を制御する進行波電力制御ループ系と
     前記プラズマ負荷から前記高周波電源部に向かう反射波電力の検出値を帰還して反射波電力を制御する複数の反射波電力制御ループ系とを備え、
     前記反射波電力制御ループ系は、
     反射波電力のピーク変動を制御する反射波電力ピーク値垂下ループ系およびアーク遮断系と、反射波電力の電力平滑量を制御する反射波電力量垂下ループ系とを備え、
     前記反射波電力ピーク値垂下ループ系は、反射波電力のピーク値に基づいて前記高周波電源部の直流電源の直流電圧を制御し、当該直流電源の電圧制御によって反射波電力のピーク値を垂下制御し、
     前記アーク遮断系は、反射波電力のピーク値に基づいて前記高周波電源部のRF増幅部の出力の有無を制御することによって、プラズマ負荷への電力供給の有無を制御してプラズマ負荷におけるアークの遮断を制御し、
     前記反射波電力量垂下ループ系は、反射波電力の電力平滑量に基づいて前記高周波電源部のRF増幅部のON区間とOFF区間のデューティー(時間比率)を制御することによって、プラズマ負荷への電力供給量を制御して反射波電力の電力量を垂下制御することを特徴とする、高周波電力供給装置。
  2.  前記反射波電力ピーク値垂下ループ系は、
     反射波電力のピーク値の垂下制御を行うか否かを定めるしきい値として反射波電力ピークリミット値を有し、
     反射波電力の検出値と反射波電力ピークリミット値との差分を前記進行波電力制御ループ系に帰還し、前記高周波電源部が備えるDC/DCコンバータを駆動するPWM信号のパルス幅を制御して直流電源の直流電圧を制御することを特徴とする、請求項1に記載の高周波電力供給装置。
  3.  前記アーク遮断系は、
     高周波電力を出力するか否かを定めるしきい値としてアークリミット値を有し、
     反射波電力の検出値と前記アークリミット値との比較に基づいて前記高周波電源部が備えるRF増幅部を制御するRFゲート信号を制御し、RF増幅部の高周波電力を出力するか否かを制御することを特徴とする、請求項1又は2に記載の高周波電力供給装置。
  4.  前記反射波電力量垂下ループ系は、
     前記反射波電力の検出値の平均値又は実効値を出力する電力平滑部と、
     高周波電力の電力量の垂下制御の有無および垂下量を定める反射波電力垂下リミット値として反射波電力平均リミット値又は反射波電力実効リミット値と備え、
     前記電力平滑部の平均値の出力と前記反射波電力平均リミット値との比較、又は前記電力平滑部の実効値の出力と前記反射波電力実効リミット値との比較に基づいて、前記高周波電源部が備えるRF増幅部を制御するパルス制御信号のデューティー(RF増幅部のON区間とOFF区間の時間比率)を定め、RF増幅部の高周波電力の電力量の垂下を制御することを特徴とする、請求項1から3の何れかに記載の高周波電力供給装置。
  5.  前記前記反射波電力ピーク値垂下ループ系または前記アーク遮断系の少なくとも何れか一方の系は、前記反射波電力の検出値から急峻変動分を除去する急峻変動除去部を備え、
     前記急峻変動除去部は、反射波電力の検出値から急峻な変動による急峻変動分を除去し、急峻変動によらない反射波電力のピーク値に相当する信号を帰還することを特徴とする、請求項1から3の何れかに記載の高周波電力供給装置。
  6.  前記急峻変動除去部は、反射波電力の検出値を一次遅れさせる一次遅れ回路であることを特徴とする、請求項5に記載の高周波電力供給装置。
  7.  反射波電力制御方法であって、プラズマ負荷に高周波電力を供給する高周波電力供給において、
     スイッチング動作によって直流電源の直流を高周波交流に変換し高周波電力を出力する高周波電源部と、
     前記高周波電源部の高周波出力の検出値を帰還してフィードバック制御を行う帰還系とを備え、
     前記帰還系は、
     前記高周波電源部からプラズマ負荷に向かう進行波電力の検出値を帰還して進行波電力を制御する進行波電力制御ループ系と
     前記プラズマ負荷から前記高周波電源部に向かう反射波電力の検出値を帰還して反射波電力を制御する複数の反射波電力制御ループ系とを備え、
     前記反射波電力制御ループ系は、
     反射波電力のピーク変動を制御する反射波電力ピーク値垂下ループ系およびアーク遮断系と、反射波電力の電力平滑量を制御する反射波電力量垂下ループ系とを備え、
     前記反射波電力ピーク値垂下ループ系は、反射波電力のピーク値に基づいて前記高周波電源部の直流電源の直流電圧を制御し、当該直流電源の電圧制御によって反射波電力のピーク値を垂下制御し、
     前記アーク遮断系は、反射波電力のピーク値に基づいて前記高周波電源部のRF増幅部の出力の有無を制御することによって、プラズマ負荷への電力供給の有無を制御してプラズマ負荷におけるアークの遮断を制御し、
     前記反射波電力量垂下ループ系は、反射波電力の電力平滑量に基づいて前記高周波電源部のRF増幅部のON区間とOFF区間のデューティー(時間比率)を制御することによって、プラズマ負荷への電力供給量を制御して反射波電力の電力量を垂下制御することを特徴とする、反射波電力制御方法。
  8.  前記反射波電力ピーク値垂下ループ系は、
     反射波電力のピーク値の垂下制御を行うか否かを定めるしきい値として反射波電力ピークリミット値を有し、
     反射波電力の検出値と反射波電力ピークリミット値との差分を前記進行波電力制御ループ系に帰還し、前記高周波電源部が備えるDC/DCコンバータを駆動するPWM信号のパルス幅を制御して直流電源の直流電圧を制御することを特徴とする、請求項7に記載の反射波電力制御方法。
  9.  前記アーク遮断系は、
     高周波電力を出力するか否かを定めるしきい値としてアークリミット値を有し、
     反射波電力の検出値と前記アークリミット値との比較に基づいて前記高周波電源部が備えるRF増幅部を制御するRFゲート信号を制御し、RF増幅部の高周波電力を出力するか否かを制御することを特徴とする、請求項7又は8に記載の反射波電力制御方法。
  10.  前記反射波電力量垂下ループ系は、
     前記反射波電力の検出値の平均値又は実効値を出力する電力平滑部と、高周波電力の電力量の垂下制御の有無および垂下量を定める反射波電力垂下リミット値として反射波電力平均リミット値又は反射波電力実効リミット値と備え、
     前記電力平滑部の平均値の出力と前記反射波電力平均リミット値との比較、又は前記電力平滑部の実効値の出力と前記反射波電力実効リミット値との比較に基づいて、前記高周波電源部が備えるRF増幅部を制御するパルス制御信号のデューティー(RF増幅部のON区間とOFF区間の時間比率)を定め、RF増幅部の高周波電力の電力量の垂下を制御することを特徴とする、請求項7から9の何れかに記載の反射波電力制御方法。
  11.  前記反射波電力ピーク値垂下ループ系または前記アーク遮断系の少なくとも何れか一方の系は、前記反射波電力の検出値から急峻変動分を除去する急峻変動除去部を備え、
     前記急峻変動除去部は、反射波電力の検出値から急峻な変動による急峻変動分を除去し、急峻変動によらない反射波電力のピーク値に相当する信号を帰還することを特徴とする、請求項7から9の何れかに記載の反射波電力制御方法。
  12.  前記急峻変動除去部は、反射波電力の検出値を一次遅れさせることによって、反射波電力の検出値から急峻な変動による急峻変動分を除去することを特徴とする、請求項11に記載の反射波電力制御方法。
PCT/JP2013/065339 2012-06-18 2013-06-03 高周波電力供給装置、及び反射波電力制御方法 WO2013190987A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380028359.3A CN104322154B (zh) 2012-06-18 2013-06-03 高频电力供给装置以及反射波电力控制方法
IN2415KON2014 IN2014KN02415A (ja) 2012-06-18 2013-06-03
KR1020147034773A KR101523484B1 (ko) 2012-06-18 2013-06-03 고주파 전력 공급 장치, 및 반사파 전력 제어방법
DE13807713.6T DE13807713T1 (de) 2012-06-18 2013-06-03 Hochfrequenz-Stromversorgungsvorrichtung sowie Verfahren zur Stromsteuerung reflektierter Wellen
EP13807713.6A EP2833703B1 (en) 2012-06-18 2013-06-03 High-frequency power supply device and reflected wave power control method
US14/394,341 US9070537B2 (en) 2012-06-18 2013-06-03 High-frequency power supply device and reflected wave power control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-136942 2012-06-18
JP2012136942A JP5534365B2 (ja) 2012-06-18 2012-06-18 高周波電力供給装置、及び反射波電力制御方法

Publications (1)

Publication Number Publication Date
WO2013190987A1 true WO2013190987A1 (ja) 2013-12-27

Family

ID=49768589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065339 WO2013190987A1 (ja) 2012-06-18 2013-06-03 高周波電力供給装置、及び反射波電力制御方法

Country Status (10)

Country Link
US (1) US9070537B2 (ja)
EP (1) EP2833703B1 (ja)
JP (1) JP5534365B2 (ja)
KR (1) KR101523484B1 (ja)
CN (1) CN104322154B (ja)
DE (1) DE13807713T1 (ja)
IN (1) IN2014KN02415A (ja)
PL (1) PL2833703T3 (ja)
TW (1) TWI472270B (ja)
WO (1) WO2013190987A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704772B1 (ja) * 2014-02-04 2015-04-22 株式会社京三製作所 高周波電源装置およびプラズマ着火方法
EP3197013A4 (en) * 2014-08-25 2018-03-21 Kyosan Electric Mfg. Co., Ltd. Regeneration circulator, high-frequency power supply device, and high-frequency power regeneration method
US10622191B2 (en) 2018-02-09 2020-04-14 Asm Ip Holding B.V. Substrate processing method

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9714960B2 (en) * 2009-10-09 2017-07-25 Dh Technologies Development Pte. Ltd. Apparatus for measuring RF voltage from a quadrupole in a mass spectrometer
EP2936542B1 (de) * 2012-12-18 2018-02-28 TRUMPF Hüttinger GmbH + Co. KG Arclöschverfahren und leistungsversorgungssystem mit einem leistungswandler
DE102013205936B4 (de) * 2013-04-04 2016-07-14 TRUMPF Hüttinger GmbH + Co. KG Verfahren zur Regelung einer Regelstrecke mit normierter Auswahlgröße
DE102013110883B3 (de) 2013-10-01 2015-01-15 TRUMPF Hüttinger GmbH + Co. KG Vorrichtung und Verfahren zur Überwachung einer Entladung in einem Plasmaprozess
US10020800B2 (en) 2013-11-14 2018-07-10 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
US10892140B2 (en) 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US9960763B2 (en) 2013-11-14 2018-05-01 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser
US11539352B2 (en) 2013-11-14 2022-12-27 Eagle Harbor Technologies, Inc. Transformer resonant converter
US10978955B2 (en) 2014-02-28 2021-04-13 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
EP2905801B1 (en) * 2014-02-07 2019-05-22 TRUMPF Huettinger Sp. Z o. o. Method of monitoring the discharge in a plasma process and monitoring device for monitoring the discharge in a plasma
US10483089B2 (en) * 2014-02-28 2019-11-19 Eagle Harbor Technologies, Inc. High voltage resistive output stage circuit
WO2015131199A1 (en) 2014-02-28 2015-09-03 Eagle Harbor Technologies, Inc. Galvanically isolated output variable pulse generator disclosure
JP6362931B2 (ja) * 2014-06-19 2018-07-25 株式会社ダイヘン 高周波電源
JP6474985B2 (ja) * 2014-09-30 2019-02-27 株式会社ダイヘン 高周波電源
JP6524753B2 (ja) * 2015-03-30 2019-06-05 東京エレクトロン株式会社 プラズマ処理装置、プラズマ処理方法及び記憶媒体
US9577516B1 (en) * 2016-02-18 2017-02-21 Advanced Energy Industries, Inc. Apparatus for controlled overshoot in a RF generator
US11004660B2 (en) 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
US10903047B2 (en) 2018-07-27 2021-01-26 Eagle Harbor Technologies, Inc. Precise plasma control system
US11430635B2 (en) 2018-07-27 2022-08-30 Eagle Harbor Technologies, Inc. Precise plasma control system
US10026592B2 (en) * 2016-07-01 2018-07-17 Lam Research Corporation Systems and methods for tailoring ion energy distribution function by odd harmonic mixing
JP6157036B1 (ja) * 2016-07-08 2017-07-05 株式会社京三製作所 高周波電源装置、及び高周波電源装置の制御方法
EP4266579A3 (en) 2017-02-07 2023-12-27 Eagle Harbor Technologies, Inc. Transformer resonant converter
CN117200759A (zh) * 2017-03-31 2023-12-08 鹰港科技有限公司 高压电阻性输出级电路
US11094505B2 (en) 2017-07-07 2021-08-17 Asm Ip Holding B.V. Substrate processing apparatus, storage medium and substrate processing method
JP7027720B2 (ja) * 2017-08-07 2022-03-02 富士電機株式会社 電力変換装置
KR102208429B1 (ko) 2017-08-25 2021-01-29 이글 하버 테크놀로지스, 인코포레이티드 나노초 펄스를 이용한 임의의 파형 발생
US10510575B2 (en) 2017-09-20 2019-12-17 Applied Materials, Inc. Substrate support with multiple embedded electrodes
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
CN110504149B (zh) * 2018-05-17 2022-04-22 北京北方华创微电子装备有限公司 射频电源的脉冲调制系统及方法
US10607814B2 (en) 2018-08-10 2020-03-31 Eagle Harbor Technologies, Inc. High voltage switch with isolated power
US11532457B2 (en) 2018-07-27 2022-12-20 Eagle Harbor Technologies, Inc. Precise plasma control system
US11222767B2 (en) 2018-07-27 2022-01-11 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US11302518B2 (en) 2018-07-27 2022-04-12 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
JP7038901B2 (ja) 2018-08-10 2022-03-18 イーグル ハーバー テクノロジーズ,インク. Rfプラズマリアクタ用プラズマシース制御
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
WO2020146436A1 (en) 2019-01-08 2020-07-16 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
JP7451540B2 (ja) 2019-01-22 2024-03-18 アプライド マテリアルズ インコーポレイテッド パルス状電圧波形を制御するためのフィードバックループ
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
CN111725091A (zh) * 2019-03-22 2020-09-29 北京北方华创微电子装备有限公司 优化工艺流程的方法及装置、存储介质和半导体处理设备
TWI778449B (zh) 2019-11-15 2022-09-21 美商鷹港科技股份有限公司 高電壓脈衝電路
CN114930488A (zh) 2019-12-24 2022-08-19 鹰港科技有限公司 用于等离子体系统的纳秒脉冲发生器rf隔离
US11670488B2 (en) * 2020-01-10 2023-06-06 COMET Technologies USA, Inc. Fast arc detecting match network
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
CN112034377A (zh) * 2020-08-27 2020-12-04 国家电网有限公司 一种用于高频电源的反射波电力的检测装置及其使用方法
CN114446752B (zh) * 2020-11-04 2024-04-05 中微半导体设备(上海)股份有限公司 一种等离子体处理腔内的电弧的检测方法及检测装置
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11587765B2 (en) * 2020-11-22 2023-02-21 Applied Materials, Inc. Plasma ignition optimization in semiconductor processing chambers
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
WO2023210399A1 (ja) * 2022-04-25 2023-11-02 東京エレクトロン株式会社 プラズマ処理装置、電源システム及びプラズマ処理方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732078B2 (ja) 1993-01-14 1995-04-10 株式会社アドテック 高周波プラズマ用電源及びインピーダンス整合装置
JPH10257774A (ja) 1997-03-07 1998-09-25 Horiba Ltd 高周波電源装置
JP2003218655A (ja) * 2002-01-22 2003-07-31 Daihen Corp 高周波電源の進行波電力制御方法及び高周波電源装置
JP2004008893A (ja) 2002-06-05 2004-01-15 Pearl Kogyo Kk 排ガス分解処理用プラズマ発生装置
JP2004071269A (ja) 2002-08-05 2004-03-04 Daihen Corp マイクロ波電力供給システム
JP3641785B2 (ja) 2002-08-09 2005-04-27 株式会社京三製作所 プラズマ発生用電源装置
JP2005136933A (ja) 2003-10-31 2005-05-26 Hitachi Hybrid Network Co Ltd 自動利得制御装置
JP2005204405A (ja) * 2004-01-15 2005-07-28 Daihen Corp 高周波電源装置
JP3893276B2 (ja) 2001-12-04 2007-03-14 株式会社日立ハイテクノロジーズ プラズマ処理装置
WO2009118920A1 (ja) * 2008-03-26 2009-10-01 株式会社京三製作所 真空装置用異常放電抑制装置
WO2011016266A1 (ja) * 2009-08-07 2011-02-10 株式会社京三製作所 パルス変調高周波電力制御方法およびパルス変調高周波電源装置
WO2011125733A1 (ja) * 2010-04-02 2011-10-13 株式会社アルバック 成膜装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195045A (en) * 1991-02-27 1993-03-16 Astec America, Inc. Automatic impedance matching apparatus and method
JP4772232B2 (ja) * 2001-08-29 2011-09-14 アジレント・テクノロジーズ・インク 高周波増幅回路及び高周波増幅回路の駆動方法
JP2003143861A (ja) * 2001-10-31 2003-05-16 Daihen Corp 高周波電源装置
JP2004205328A (ja) * 2002-12-25 2004-07-22 Daihen Corp 高周波電源装置
US7115185B1 (en) * 2003-09-16 2006-10-03 Advanced Energy Industries, Inc. Pulsed excitation of inductively coupled plasma sources
KR100710509B1 (ko) * 2006-04-11 2007-04-25 남상욱 펄스면적변조를 이용한 고효율 선형 전력증폭기 시스템
KR101124419B1 (ko) * 2009-02-18 2012-03-20 포항공과대학교 산학협력단 마이크로파 플라즈마 생성을 위한 휴대용 전력 공급 장치

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732078B2 (ja) 1993-01-14 1995-04-10 株式会社アドテック 高周波プラズマ用電源及びインピーダンス整合装置
JPH10257774A (ja) 1997-03-07 1998-09-25 Horiba Ltd 高周波電源装置
JP3893276B2 (ja) 2001-12-04 2007-03-14 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP2003218655A (ja) * 2002-01-22 2003-07-31 Daihen Corp 高周波電源の進行波電力制御方法及び高周波電源装置
JP3998986B2 (ja) 2002-01-22 2007-10-31 株式会社ダイヘン 高周波電源の進行波電力制御方法及び高周波電源装置
JP2004008893A (ja) 2002-06-05 2004-01-15 Pearl Kogyo Kk 排ガス分解処理用プラズマ発生装置
JP2004071269A (ja) 2002-08-05 2004-03-04 Daihen Corp マイクロ波電力供給システム
JP3641785B2 (ja) 2002-08-09 2005-04-27 株式会社京三製作所 プラズマ発生用電源装置
JP2005136933A (ja) 2003-10-31 2005-05-26 Hitachi Hybrid Network Co Ltd 自動利得制御装置
JP2005204405A (ja) * 2004-01-15 2005-07-28 Daihen Corp 高周波電源装置
WO2009118920A1 (ja) * 2008-03-26 2009-10-01 株式会社京三製作所 真空装置用異常放電抑制装置
WO2011016266A1 (ja) * 2009-08-07 2011-02-10 株式会社京三製作所 パルス変調高周波電力制御方法およびパルス変調高周波電源装置
WO2011125733A1 (ja) * 2010-04-02 2011-10-13 株式会社アルバック 成膜装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833703A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704772B1 (ja) * 2014-02-04 2015-04-22 株式会社京三製作所 高周波電源装置およびプラズマ着火方法
WO2015118696A1 (ja) * 2014-02-04 2015-08-13 株式会社京三製作所 高周波電源装置およびプラズマ着火方法
US9451687B2 (en) 2014-02-04 2016-09-20 Kyosan Electric Mfg. Co., Ltd. High-frequency power supply device, and plasma ignition method
EP3197013A4 (en) * 2014-08-25 2018-03-21 Kyosan Electric Mfg. Co., Ltd. Regeneration circulator, high-frequency power supply device, and high-frequency power regeneration method
US10355607B2 (en) 2014-08-25 2019-07-16 Kyosan Electric Mfg. Co., Ltd. Regeneration circulator, high-frequency power supply device, and high-frequency power regeneration method
US10622191B2 (en) 2018-02-09 2020-04-14 Asm Ip Holding B.V. Substrate processing method

Also Published As

Publication number Publication date
JP2014002898A (ja) 2014-01-09
DE13807713T1 (de) 2015-05-21
CN104322154A (zh) 2015-01-28
US9070537B2 (en) 2015-06-30
PL2833703T3 (pl) 2017-09-29
JP5534365B2 (ja) 2014-06-25
KR101523484B1 (ko) 2015-05-27
CN104322154B (zh) 2015-11-25
US20150084509A1 (en) 2015-03-26
IN2014KN02415A (ja) 2015-05-01
TWI472270B (zh) 2015-02-01
TW201401937A (zh) 2014-01-01
EP2833703A4 (en) 2015-09-23
EP2833703A1 (en) 2015-02-04
EP2833703B1 (en) 2017-04-19
KR20140147158A (ko) 2014-12-29

Similar Documents

Publication Publication Date Title
JP5534365B2 (ja) 高周波電力供給装置、及び反射波電力制御方法
JPWO2014038013A1 (ja) 直流電源装置、直流電源装置の制御方法
US20120212193A1 (en) Power supply circuitry and adaptive transient control
WO2015118696A1 (ja) 高周波電源装置およびプラズマ着火方法
JP6031266B2 (ja) 単独運転検出方法および単独運転検出装置
JP5134691B2 (ja) 自励式無効電力補償装置
JP4257770B2 (ja) アーク遮断回路、スパッタ用電源及びスパッタ装置
JP2012161163A (ja) 直流送電システム
JP5338353B2 (ja) 並列型瞬低補償装置の電圧制御方法及び並列型瞬低補償装置
JP5783694B2 (ja) 単独運転検出装置および単独運転検出方法
JP6498112B2 (ja) 電力変換装置および電力連系システム
JP2010115094A (ja) インバータの単独運転検出装置および単独運転検出方法
JP2011188690A (ja) インバータの単独運転検出装置および単独運転検出方法
JP7078463B2 (ja) 電力系統安定化システム
US20230073768A1 (en) Method for controlling high-frequency power supply device, and high-frequency power supply device
JP5629639B2 (ja) 無停電電源システム
JP4364195B2 (ja) 交流電源装置およびその装置におけるアーク防止方法
TWI713275B (zh) 雷射裝置及其電源裝置
JP2011233659A (ja) レーザ発振装置およびレーザ加工機
JP5332229B2 (ja) 瞬低補償装置
JP2001197683A (ja) 無停電電源装置
JP5233450B2 (ja) 瞬低補償装置
JP2011129670A (ja) レーザ発振装置およびレーザ加工装置
JP6071062B2 (ja) 電源装置
JP2006166674A (ja) 電圧形インバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14394341

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013807713

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013807713

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147034773

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE