WO2013190930A1 - 電池システム、電池システムの製造方法、電池の制御装置 - Google Patents
電池システム、電池システムの製造方法、電池の制御装置 Download PDFInfo
- Publication number
- WO2013190930A1 WO2013190930A1 PCT/JP2013/063437 JP2013063437W WO2013190930A1 WO 2013190930 A1 WO2013190930 A1 WO 2013190930A1 JP 2013063437 W JP2013063437 W JP 2013063437W WO 2013190930 A1 WO2013190930 A1 WO 2013190930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode active
- active material
- solid electrolyte
- negative electrode
- battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/14—Sulfur, selenium, or tellurium compounds of phosphorus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
- H01M10/3963—Sealing means between the solid electrolyte and holders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/664—Ceramic materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a battery system that suppresses reductive decomposition of a Ge-containing solid electrolyte material.
- An electrolyte material having ion conductivity is usually used for a battery typified by a lithium battery.
- the solid electrolyte material has an advantage that the safety device can be simplified because there is no fear of liquid leakage or the like as compared with the liquid electrolyte material (electrolytic solution).
- a solid electrolyte material a Ge-containing solid electrolyte material containing a Ge element is known.
- Ge-containing solid electrolyte materials materials that exhibit relatively high ionic conductivity are known, but Ge-containing solid electrolyte materials have a high reduction potential and are easily reductively decomposed (non-patent literature). 1).
- Patent Document 1 since the potential at which Ge reduction reaction occurs is about 0.3 V with respect to lithium, a solid electrolyte containing Ge is used as a negative electrode active material such as metallic lithium (the potential is based on lithium). The problem that it cannot be used in combination with a negative electrode active material of about 0.3 V or less is described. In order to solve this problem, Patent Document 1 discloses a battery using a solid electrolyte that does not contain Ge for the second solid electrolyte contained in the negative electrode and the fourth solid electrolyte contained in the separator in contact with the negative electrode. Has proposed.
- the Ge-containing solid electrolyte material is easily reduced and decomposed, and it has been difficult to use at a potential lower than the reduction potential.
- the present invention has been made in view of the above circumstances, and has as its main object to provide a battery system in which reductive decomposition of a Ge-containing solid electrolyte material is suppressed.
- the present inventors have conducted extensive research. As a result, when the Ge-containing solid electrolyte material is combined with the Si-containing negative electrode active material, the Ge-containing solid electrolyte material is at a potential lower than the reduction potential. As a result, the present inventors have found that the battery characteristics are not deteriorated exceptionally even when used in the above, and have completed the present invention.
- a battery system including a battery and a control device, wherein the battery includes a positive electrode active material layer containing a positive electrode active material, and a negative electrode active material layer containing a Si-containing negative electrode active material. And an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, and at least one of the negative electrode active material layer and the electrolyte layer contains a Ge-containing solid electrolyte material, and the control device Provides a battery system characterized in that it is a device for controlling the potential of the Si-containing negative electrode active material to be equal to or lower than the reduction potential of the Ge-containing solid electrolyte material.
- control device includes a switch unit that cuts off the current of the battery, and when charging is started when the potential of the Si-containing negative electrode active material is higher than the reduction potential of the Ge-containing solid electrolyte material, It is preferable to control the switch unit so that charging is continued until the potential of the Si-containing negative electrode active material becomes smaller than the reduction potential of the Ge-containing solid electrolyte material.
- the Ge-containing solid electrolyte material preferably further contains an S element.
- the Ge-containing solid electrolyte material further contains a Li element.
- the Ge-containing solid electrolyte material preferably further contains a P element.
- the Ge-containing solid electrolyte material contains an M 1 element, an M 2 element, and an S element, and the M 1 is selected from the group consisting of Li, Na, K, Mg, Ca, and Zn.
- the Ge-containing solid electrolyte material includes an octahedron O composed of an M 1 element and an S element, a tetrahedron T 1 composed of an M 2a element and an S element, an M 2b element and an S element.
- the M 1 is at least one selected from the group consisting of Li, Na, K, Mg, Ca, Zn, and the M 2a and M 2b are each independently P, Sb, Si, Ge, It is at least one selected from the group consisting of Sn, B, Al, Ga, In, Ti, Zr, V, and Nb, and at least one of the M 2a and the M 2b preferably contains Ge.
- control device is preferably a device that controls the potential of the Si-containing negative electrode active material to be 0.25 V (vs. Li / Li + ) or less.
- the Si-containing negative electrode active material is preferably Si.
- the Ge-containing solid electrolyte material contained in the solid electrolyte layer is preferably in contact with the Si-containing negative electrode active material contained in the negative electrode active material layer.
- a battery system manufacturing method including a battery and a control device, a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a Si-containing negative electrode active material, An electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, and assembling the battery containing a Ge-containing solid electrolyte material in at least one of the negative electrode active material layer and the electrolyte layer
- a battery comprising: a battery assembly step; and a control device installation step of installing the control device for controlling the potential of the Si-containing negative electrode active material to be equal to or lower than the reduction potential of the Ge-containing solid electrolyte material.
- a battery system in which reductive decomposition of a Ge-containing solid electrolyte material is suppressed by installing a control device that performs the above control on a battery in which a Si-containing negative electrode active material is combined with a Ge-containing solid electrolyte material. Can be obtained.
- the positive electrode active material layer containing the positive electrode active material the negative electrode active material layer containing the Si-containing negative electrode active material, and formed between the positive electrode active material layer and the negative electrode active material layer.
- a control device for a battery is provided which is controlled to be equal to or lower than the reduction potential of the battery.
- reductive decomposition of the Ge-containing solid electrolyte material can be suppressed by performing the above control on the battery in which the Ge-containing solid electrolyte material is combined with the Si-containing negative electrode active material.
- the battery system of the present invention has an effect that the reductive decomposition of the Ge-containing solid electrolyte material can be suppressed.
- FIG. 2 is a charge / discharge curve of an evaluation battery obtained in Example 1.
- FIG. 3 is a charge / discharge curve of an evaluation battery obtained in Example 2.
- FIG. 2 is a charge / discharge curve of an evaluation battery obtained in Comparative Example 1.
- FIG. 5 is a charge / discharge curve of an evaluation battery obtained in Comparative Example 2.
- FIG. It is a result of the charging / discharging efficiency of the battery for evaluation obtained in Examples 1, 2 and Comparative Examples 1, 2.
- 2 is a charging curve of an evaluation battery obtained in Comparative Example 1.
- the battery system of the present invention is a battery system including a battery and a control device, wherein the battery includes a positive electrode active material layer containing a positive electrode active material and a negative electrode active material containing a Si-containing negative electrode active material. And an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, containing a Ge-containing solid electrolyte material in at least one of the negative electrode active material layer and the electrolyte layer,
- the control device is a device that controls the potential of the Si-containing negative electrode active material to be equal to or lower than the reduction potential of the Ge-containing solid electrolyte material.
- FIG. 1 is a schematic diagram for explaining a battery system of the present invention
- FIG. 2 is a schematic cross-sectional view showing an example of a battery according to the present invention
- the battery system 30 of the present invention includes a battery 10 and a control device 20.
- the battery 10 includes a positive electrode active material layer 1 containing a positive electrode active material, a negative electrode active material layer 2 containing a Si-containing negative electrode active material, a positive electrode active material layer 1 and a negative electrode active material.
- Electrolyte layer 3 formed between layers 2, positive electrode current collector 4 for collecting current of positive electrode active material layer 1, negative electrode current collector 5 for collecting current of negative electrode active material layer 2, and these members And a battery case 6 for storing the battery.
- the battery 10 contains a Ge-containing solid electrolyte material in at least one of the negative electrode active material layer 2 and the electrolyte layer 3.
- the negative electrode active material layer 2 may contain a Ge-containing solid electrolyte material 11 and a Si-containing negative electrode active material 12, as shown in FIG. 3 (b).
- the solid electrolyte layer 3 may contain the Ge-containing solid electrolyte material 11, and the negative electrode active material layer 2 may contain the Si-containing negative electrode active material 12.
- the negative electrode active material layer 2 and the solid electrolyte layer 3 may contain a Ge-containing solid electrolyte material 11.
- the control device 20 in FIG. 1 includes, for example, a measurement unit that measures the potential of the Si-containing negative electrode active material and a switch unit that cuts off the battery current according to the potential of the Si-containing negative electrode active material.
- the control apparatus 20 is an apparatus which controls so that the electric potential of Si containing negative electrode active material may be below the reduction potential of Ge containing solid electrolyte material.
- the control device 20 causes the potential of the Si-containing negative electrode active material to be smaller than the reduction potential of the Ge-containing solid electrolyte material. It is preferable that the device controls the switch unit so that the charging is continued until it becomes.
- a battery in which reductive decomposition of a Ge-containing solid electrolyte material is suppressed even when a control device that performs the above control is provided by combining a Ge-containing solid electrolyte material with a Si-containing negative electrode active material. It can be a system. Normally, the potential of the negative electrode active material is lowered by charging, but when the operating potential of the negative electrode active material (potential that functions as an active material) is lower than the reduction potential of the Ge-containing solid electrolyte material, Ge There is a problem that reductive decomposition of the contained solid electrolyte material occurs, and battery characteristics such as charge / discharge characteristics are significantly lowered.
- the reductive decomposition of Ge containing solid electrolyte material can be suppressed unexpectedly by combining Si containing negative electrode active material with Ge containing solid electrolyte material.
- the Si-containing negative electrode active material has a property that the operating potential at the time of charging (during metal ion storage) is low, but has a very large capacity compared to a general carbon-based negative electrode active material.
- a Si-containing negative electrode active material since a Si-containing negative electrode active material is used, a high capacity battery system can be obtained.
- Ge-containing solid electrolyte materials have, for example, high Li ion conductivity (10 ⁇ 3 S / cm or more at 25 ° C.). In this invention, it can be set as a high output battery system by using such Ge containing solid electrolyte material.
- the mechanism that can suppress the reductive decomposition of the Ge-containing solid electrolyte material is not necessarily clear, but since reductive decomposition is electrolysis, it is possible to supply electrons to the Ge-containing solid electrolyte material at the reduction potential. It is presumed to be the cause of reductive decomposition of the solid electrolyte material.
- the Si-containing negative electrode active material having low electron conductivity is used, there is a possibility that reductive decomposition of the Ge-containing solid electrolyte material could be suppressed.
- the reductive decomposition product of the Ge-containing solid electrolyte material reacts with the Si-containing negative electrode active material, and a film that suppresses the reductive decomposition of the Ge-containing solid electrolyte material is formed at the interface between them.
- the contact in the present invention is the case in which both are in direct contact with each other through the film. It is a concept that encompasses both cases.
- the presence of the coating may be confirmed by, for example, a transmission electron microscope (TEM) or a field emission scanning electron microscope.
- TEM transmission electron microscope
- the battery system of the present invention will be described for each configuration.
- Battery The battery in the present invention has at least a positive electrode active material layer, a negative electrode active material layer, and an electrolyte layer. First, the negative electrode active material layer in the present invention will be described.
- Negative electrode active material layer is a layer containing at least a Si-containing negative electrode active material. If necessary, at least one of a solid electrolyte material, a conductive material and a binder is used. You may contain.
- the negative electrode active material layer preferably contains a solid electrolyte material. This is because a negative electrode active material layer having high ion conductivity can be obtained.
- the negative electrode active material layer preferably contains a Ge-containing solid electrolyte material.
- Si-containing negative electrode active material in the present invention is not particularly limited as long as it is an active material containing at least a Si element.
- the Si-containing negative electrode active material include Si, Si alloy, Si oxide, Si nitride, and Si sulfide.
- Si alloys include Si—Al alloys, Si—Sn alloys, Si—In alloys, Si—Ag alloys, Si—Pb alloys, Si—Sb alloys, Si—Bi alloys, Si— Mg-based alloys, Si—Ca based alloys, Si—Ge based alloys, Si—Pb based alloys and the like can be mentioned.
- the Si—Al-based alloy means an alloy containing at least Si and Al, and may be an alloy composed only of Si and Al, or may be an alloy containing another element. .
- the Si alloy may be a binary alloy or a multi-component alloy of three or more components.
- SiO etc. can be mentioned as Si oxide.
- the Si-containing negative electrode active material may be in the form of a film or powder.
- the content of the Si-containing negative electrode active material in the negative electrode active material layer is not particularly limited, but is preferably, for example, 50% by weight or more, and more preferably in the range of 60% by weight to 99% by weight. Preferably, it is more preferably in the range of 70% to 95% by weight.
- the Ge-containing solid electrolyte material in the present invention is not particularly limited as long as it is a solid electrolyte material containing at least a Ge element.
- the Ge-containing solid electrolyte material further contains an S element, that is, a sulfide solid electrolyte material. This is because ionic conductivity is high.
- the Ge-containing solid electrolyte material preferably further contains Li element, that is, a Li ion conductive solid electrolyte material. This is because a useful lithium battery can be obtained.
- the Ge-containing solid electrolyte material preferably further contains a P element. This is because chemical stability can be improved.
- the Ge-containing solid electrolyte material may be an amorphous body (glass), a crystalline body, or glass ceramics obtained by heat-treating glass.
- the Ge-containing solid electrolyte material may be an oxide solid electrolyte material or a sulfide solid electrolyte material.
- oxide solid electrolyte material having Li ion conductivity a solid electrolyte material having a NASICON type structure can be mentioned, and specifically, a Li—Al—Ge—PO solid electrolyte material can be mentioned. be able to.
- an oxide solid electrolyte material having Li ion conductivity is a solid electrolyte material represented by the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 2) ( LAGP) is preferred.
- a Li—Ge—S solid electrolyte material having Li ion conductivity
- a Li—Ge—S solid electrolyte material can be given.
- the Li—Ge—S based solid electrolyte material may be composed only of Li, Ge and S, or may further contain one or more other elements. Examples of other elements include P, Sb, Si, Sn, B, Al, Ga, In, Ti, Zr, V, and Nb. Among these, P is preferable.
- the sulfide solid electrolyte material may be a so-called thio-LISICON type solid electrolyte material.
- the sulfide solid electrolyte material (particularly a glassy sulfide solid electrolyte material) may contain a halide such as LiI or may contain a lithium orthooxo acid salt such as Li 3 PO 4. .
- the Ge-containing solid electrolyte material contains an M 1 element, an M 2 element, and an S element, and the above M 1 is selected from the group consisting of Li, Na, K, Mg, Ca, and Zn.
- this Ge-containing solid electrolyte material contains an M 1
- FIG. 4 is an X-ray diffraction pattern for explaining the difference between the sulfide solid electrolyte material X having high ion conductivity and the sulfide solid electrolyte material Y having low ion conductivity.
- the two sulfide solid electrolyte materials in FIG. 4 both have a composition of Li 3.25 Ge 0.25 P 0.75 S 4 .
- the sulfide solid electrolyte material Y has a similar peak.
- Crystal phases A and B are both crystalline phases exhibiting ionic conductivity, but there are differences in ionic conductivity.
- the crystal phase A is considered to have significantly higher ionic conductivity than the crystal phase B.
- the proportion of the crystal phase B having low ion conductivity cannot be reduced, and the ion conductivity cannot be sufficiently increased.
- the crystal phase A having high ion conductivity can be positively precipitated by the method described in Production Example 1 described later, the sulfide solid electrolyte material having high ion conductivity. X can be obtained.
- I B / I sulfide solid electrolyte material X value is less than 0.50 A, the conventional synthetic methods would not be able to obtain.
- the ratio of the crystal phase A having high ion conductivity is high.
- the peak of the crystal phase B is defined as a peak at a position of 27.33 ° ⁇ 0.50 °.
- the sulfide solid electrolyte material X contains an M 1 element, an M 2 element, and an S element.
- M 1 is preferably a monovalent or divalent element.
- M 1 include at least one selected from the group consisting of Li, Na, K, Mg, Ca, and Zn. Among them, the M 1 preferably contains at least Li. Further, the M 1 may be Li alone or a combination of Li and another element.
- the M 1 is a monovalent element (for example, Li, Na, K), and a part thereof may be substituted with a divalent or higher element (for example, Mg, Ca, Zn). Thereby, a monovalent element becomes easy to move and ion conductivity improves.
- the M 2 contains at least Ge.
- the M 2 is preferably a trivalent, tetravalent or pentavalent element.
- Examples of M 2 include one selected from the group consisting of P, Sb, Si, Ge, Sn, B, Al, Ga, In, Ti, Zr, V, and Nb. Among these, in the present invention, it is preferable that the M 2 includes at least P and Ge.
- the sulfide solid electrolyte material X preferably contains a Li element, a Ge element, a P element, and an S element.
- the composition of the LiGePS-based sulfide solid electrolyte material is preferably a composition of Li (4-x) Ge (1-x) P x S 4 (x satisfies 0 ⁇ x ⁇ 1). This is because a sulfide solid electrolyte material having high ion conductivity can be obtained.
- the composition of Li (4-x) Ge (1-x) P x S 4 corresponds to the composition of the solid solution of Li 3 PS 4 and Li 4 GeS 4 . That is, this composition corresponds to the composition on the tie line of Li 3 PS 4 and Li 4 GeS 4 .
- both Li 3 PS 4 and Li 4 GeS 4 correspond to the ortho composition and have an advantage of high chemical stability.
- x in Li (4-x) Ge ( 1-x) P x S 4 is not particularly limited as long as the value can be obtained the value of a given I B / I A, e.g. 0.4 ⁇ x is preferable, 0.5 ⁇ x is more preferable, and 0.6 ⁇ x is more preferable.
- the x preferably satisfies x ⁇ 0.8, and more preferably satisfies x ⁇ 0.75. This is because the value of I B / I A can be further reduced by setting the range of such x.
- the Ge-containing solid electrolyte material includes octahedron O composed of M 1 element and S element, tetrahedron T 1 composed of M 2a element and S element, M 2b element and S
- the tetrahedron T 2 composed of elements, the tetrahedron T 1 and the octahedron O share a ridge, and the tetrahedron T 2 and the octahedron O mainly have a crystal structure sharing a vertex.
- M 1 is at least one selected from the group consisting of Li, Na, K, Mg, Ca, Zn, and M 2a and M 2b are each independently P, Sb, Si, Ge , Sn, B, Al, Ga, In, Ti, Zr, V, and Nb. At least one of the M 2a and the M 2b preferably contains Ge.
- this Ge-containing solid electrolyte material is referred to as a sulfide solid electrolyte material Z.
- FIG. 5 is a perspective view for explaining an example of the crystal structure of the sulfide solid electrolyte material Z.
- the octahedron O has M 1 as a central element, has six S at the apex of the octahedron, and is typically a LiS 6 octahedron.
- the tetrahedron T 1 has M 2a as a central element, has four S at the apex of the tetrahedron, and is typically both a GeS 4 tetrahedron and a PS 4 tetrahedron.
- Tetrahedron T 2 are, has M 2b as the central element, has four S to the apex of the tetrahedron, typically PS 4 tetrahedron. Furthermore, the tetrahedron T 1 and the octahedron O share a ridge, and the tetrahedron T 2 and the octahedron O share a vertex.
- the sulfide solid electrolyte material Z is characterized mainly by containing the above crystal structure as a main component.
- the ratio of the crystal structure in the entire crystal structure of the sulfide solid electrolyte material is not particularly limited, but is preferably higher. This is because a sulfide solid electrolyte material having high ion conductivity can be obtained.
- the proportion of the crystal structure is preferably 70% by weight or more, and more preferably 90% by weight or more.
- the ratio of the said crystal structure can be measured by synchrotron radiation XRD, for example.
- the sulfide solid electrolyte material Z is preferably a single-phase material having the above crystal structure. This is because the ion conductivity can be made extremely high.
- M 1 element, M 2 element (M 2a element, M 2b element) and other matters in the sulfide solid electrolyte material Z are the same as the contents described in the sulfide solid electrolyte material X described above, The description here is omitted.
- the shape of the Ge-containing solid electrolyte material in the present invention is not particularly limited, and examples thereof include powder. Furthermore, the average particle diameter of the powdered Ge-containing solid electrolyte material is preferably in the range of 0.1 ⁇ m to 50 ⁇ m, for example. Further, the content of the Ge-containing solid electrolyte material in the negative electrode active material layer is not particularly limited, but is preferably in the range of 0.1 wt% to 80 wt%, for example, and 1 wt% to 60 wt%. More preferably, it is in the range of wt%, more preferably in the range of 10 wt% to 50 wt%.
- the negative electrode active material layer in the present invention may further contain a conductive material.
- a conductive material By adding a conductive material, the conductivity of the negative electrode active material layer can be improved.
- the conductive material include acetylene black, ketjen black, and carbon fiber.
- the negative electrode active material layer may contain a binder. Examples of the type of binder include fluorine-containing binders such as polytetrafluoroethylene (PTFE).
- the thickness of the negative electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
- the electrolyte layer in this invention is a layer formed between a positive electrode active material layer and a negative electrode active material layer.
- the electrolyte layer is not particularly limited as long as it is a layer capable of conducting ions, but is preferably a solid electrolyte layer made of a solid electrolyte material. This is because a battery with higher safety can be obtained as compared with a battery using an electrolytic solution.
- a solid electrolyte layer contains the Ge containing solid electrolyte material mentioned above.
- the proportion of the Ge-containing solid electrolyte material contained in the solid electrolyte layer is preferably, for example, in the range of 10 wt% to 100 wt%, and more preferably in the range of 50 wt% to 100 wt%.
- the solid electrolyte layer may be composed of only a Ge-containing solid electrolyte material.
- the thickness of the solid electrolyte layer is, for example, preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
- the electrolyte layer in the present invention may be a layer composed of an electrolytic solution.
- the electrolytic solution it is necessary to further consider safety compared to the case where the solid electrolyte layer is used, but a battery with higher output can be obtained.
- the negative electrode active material layer usually contains the Ge-containing solid electrolyte material described above.
- the electrolytic solution used for the lithium battery usually contains a lithium salt and an organic solvent (nonaqueous solvent).
- lithium salt examples include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC An organic lithium salt such as (CF 3 SO 2 ) 3 can be used.
- organic solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate (BC), and the like.
- the positive electrode active material layer in the present invention is a layer containing at least a positive electrode active material, and contains at least one of a solid electrolyte material, a conductive material and a binder as necessary. May be.
- the positive electrode active material layer preferably contains a solid electrolyte material. This is because a positive electrode active material layer having high ion conductivity can be obtained.
- the positive electrode active material layer preferably contains the Ge-containing solid electrolyte material described above.
- the cathode active material is not particularly limited, for example LiCoO 2, LiMnO 2, Li 2 NiMn 3 O 8, LiVO 2, LiCrO 2, LiFePO 4, LiCoPO 4, LiNiO 2, LiNi 1/3 Examples thereof include Co 1/3 Mn 1/3 O 2 .
- the conductive material and the binder used for the positive electrode active material layer are the same as those in the negative electrode active material layer described above.
- the thickness of the positive electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
- the battery of the present invention has at least a negative electrode active material layer, an electrolyte layer, and a positive electrode active material layer. Furthermore, it usually has a positive electrode current collector for collecting current of the positive electrode active material layer and a negative electrode current collector for collecting current of the negative electrode active material layer.
- the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon.
- examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon.
- the thickness, shape, and the like of the positive electrode current collector and the negative electrode current collector are preferably appropriately selected according to the use of the battery.
- the battery case of a general battery can be used for a battery case. Examples of the battery case include a SUS battery case.
- the battery of the present invention may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because it can be repeatedly charged and discharged and is useful, for example, as an in-vehicle battery.
- Examples of the shape of the battery include a coin shape, a laminate shape, a cylindrical shape, and a square shape.
- the control device in the present invention is a device that controls the potential of the Si-containing negative electrode active material to be equal to or lower than the reduction potential of the Ge-containing solid electrolyte material.
- the control device includes, for example, a measurement unit that measures the potential of the Si-containing negative electrode active material and a switch unit that cuts off the battery current according to the potential of the Si-containing negative electrode active material.
- the reduction potential of the Ge-containing solid electrolyte material can generally be obtained by cyclic voltammetry.
- the reduction potential of the Ge-containing solid electrolyte material may be determined in detail according to the following (a) and (b). Even if the Ge-containing solid electrolyte material is a solid electrolyte material that does not contain Li, the reduction potential of the Ge-containing solid electrolyte material can be obtained by the same method.
- (A) reduction potential evaluation cell prepared first, and 0.382771g the Li 2 S, a mixture of a P 2 S 5 0.617229g in an agate mortar, ZrO 2 balls (.phi.10 mm 10 pieces ⁇ ) with ZrO 2 pots ( 45 cc), and processed with a ball mill apparatus manufactured by Fritsch under the conditions of a rotation speed of 370 rpm and 40 hours to obtain a sulfide solid electrolyte material (75Li 2 S ⁇ 25P 2 S 5 ). Next, 100 mg of the obtained sulfide solid electrolyte material is taken, put in a ⁇ 11.3 mm Macor cylinder, and pressed at 1 ton / cm 2 to form a solid electrolyte layer.
- the sulfide solid electrolyte material to be measured (Ge-containing solid electrolyte material) and stainless steel particles are mixed so that the volume ratio is 1: 1, 15 mg of the powder is taken, and one of the solid electrolyte layers is mixed. And press at 4 ton / cm 2 . Further, four In foils punched to ⁇ 10 mm and one Li foil punched to ⁇ 6 mm are arranged on the other surface of the solid electrolyte layer and pressed at 1 ton / cm 2 to obtain a power generation element. Stainless steel (current collector) is arranged on both sides of the obtained power generation element, and is screwed and restrained with a torque of 6 Ncm.
- the potential is differentiated by the capacity, the horizontal axis is the potential, and the vertical axis is a graph of dV / dQ.
- control is performed so that the potential of the Si-containing negative electrode active material is equal to or lower than the reduction potential of the Ge-containing solid electrolyte material. Especially, it is preferable to control so that the electric potential of Si containing negative electrode active material may become below the operating electric potential at the time of metal ion occlusion.
- the operating potential of the Si-containing negative electrode active material can be obtained from, for example, a battery for evaluation as described in Examples described later, conducting a charge / discharge test, and the potential of the plateau portion of the obtained curve.
- the operating potential of the Si-containing negative electrode active material may be determined in detail by the following (c) and (d).
- the operating potential of the Si-containing negative electrode active material in the case where metal ions other than Li ions are used can be obtained by the same method.
- (C) working potential evaluation cell prepared first, and 0.382771g the Li 2 S, a mixture of a P 2 S 5 0.617229g in an agate mortar, ZrO 2 balls (.phi.10 mm 10 pieces ⁇ ) with ZrO 2 pots ( 45 cc), and processed with a ball mill apparatus manufactured by Fritsch under the conditions of a rotation speed of 370 rpm and 40 hours to obtain a sulfide solid electrolyte material (75Li 2 S ⁇ 25P 2 S 5 ). Next, 100 mg of the obtained sulfide solid electrolyte material is taken, put in a ⁇ 11.3 mm Macor cylinder, and pressed at 1 ton / cm 2 to form a solid electrolyte layer.
- the obtained sulfide solid electrolyte material and the Si-containing negative electrode active material are mixed so as to have a volume ratio of 1: 1, and 15 mg of the powder is taken and placed on one surface of the solid electrolyte layer, 4 ton / Press at cm 2 . Further, four In foils punched to ⁇ 10 mm and one Li foil punched to ⁇ 6 mm are arranged on the other surface of the solid electrolyte layer and pressed at 1 ton / cm 2 to obtain a power generation element. Stainless steel (current collector) is arranged on both sides of the obtained power generation element, and is screwed and restrained with a torque of 6 Ncm.
- the potential is differentiated by the capacity, the horizontal axis is the potential, and the vertical axis is a graph of dV / dQ.
- the potential of the Si-containing negative electrode active material is preferably controlled to be 0.25 V (vs. Li / Li + ) or less, and the potential of the Si-containing negative electrode active material is 0.15 V (vs. Li / Li + ) or less is more preferable, and it is more preferable to control the potential of the Si-containing negative electrode active material to be 0.05 V (vs. Li / Li + ) or less.
- the battery system manufacturing method of the present invention is a battery system manufacturing method including a battery and a control device, and includes a positive electrode active material layer containing a positive electrode active material and a negative electrode active material containing a Si-containing negative electrode active material. And an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, and the Ge-containing solid electrolyte material is contained in at least one of the negative electrode active material layer and the electrolyte layer.
- a battery assembly process for assembling a battery, and a control device installation step for installing the control device for controlling the potential of the Si-containing negative electrode active material to be equal to or lower than the reduction potential of the Ge-containing solid electrolyte material. It is what.
- FIG. 6 is a schematic sectional view showing an example of the battery assembly process. Specifically, it is a schematic cross-sectional view showing an example of a method for producing a solid battery including a solid electrolyte layer.
- the solid electrolyte layer 3 is formed by pressing the solid electrolyte material (FIG. 6A).
- the positive electrode mixture is added to one surface of the solid electrolyte layer 3 and pressed to form the positive electrode active material layer 1.
- the negative electrode mixture is added to the other surface of the solid electrolyte layer 3.
- the negative electrode active material layer 2 is formed by pressing (FIG. 6B).
- the positive electrode current collector 4 is disposed on the surface of the positive electrode active material layer 1, and the negative electrode current collector 5 is disposed on the surface of the negative electrode active material layer 2 (FIG. 6C). Finally, this member is accommodated in the battery case 6 and sealed to obtain the battery 10 (FIG. 6D).
- a battery system is obtained by installing a control device that controls the obtained battery 10 such that the potential of the Si-containing negative electrode active material is equal to or lower than the reduction potential of the Ge-containing solid electrolyte material.
- a battery system in which reductive decomposition of a Ge-containing solid electrolyte material is suppressed by installing a control device that performs the above control on a battery in which a Si-containing negative electrode active material is combined with a Ge-containing solid electrolyte material. Can be obtained.
- the manufacturing method of the battery system of this invention is demonstrated for every process.
- the battery assembly process in the present invention is a process for assembling the battery described above.
- the battery assembly method is not particularly limited, and is the same as a general method.
- the battery assembly process shown in FIG. 6 is merely an example, and the order and the like can be arbitrarily changed.
- the control device installation step in the present invention is a step of installing the control device described above.
- the timing for installing the control device is not particularly limited as long as a desired battery system can be manufactured.
- the control device may be installed after the battery assembly process, or the control device may be installed during the battery assembly process.
- the battery control device of the present invention is formed between a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a Si-containing negative electrode active material, and the positive electrode active material layer and the negative electrode active material layer.
- the potential of the Si-containing negative electrode active material is higher than that of the Ge-containing solid with respect to the battery including a Ge-containing solid electrolyte material in at least one of the negative electrode active material layer and the electrolyte layer. It is characterized by controlling so as to be equal to or lower than the reduction potential of the electrolyte material.
- reductive decomposition of the Ge-containing solid electrolyte material can be suppressed by performing the above control on the battery in which the Ge-containing solid electrolyte material is combined with the Si-containing negative electrode active material.
- the battery control apparatus of the present invention is the same as the contents described in the above “A. Battery system”, and therefore, the description thereof is omitted here.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
- This pot was attached to a planetary ball mill (P7 made by Fritsch), and mechanical milling was performed at a base plate rotation speed of 370 rpm for 40 hours.
- a planetary ball mill P7 made by Fritsch
- mechanical milling was performed at a base plate rotation speed of 370 rpm for 40 hours.
- an amorphized ion conductive material having a composition of Li 3.33 Ge 0.33 P 0.67 S 4 was obtained.
- the obtained ion conductive material was put in a carbon-coated quartz tube and vacuum-sealed.
- the pressure of the vacuum sealed quartz tube was about 30 Pa.
- the quartz tube was placed in a firing furnace, heated from room temperature to 550 ° C. over 6 hours, maintained at 550 ° C. for 8 hours, and then gradually cooled to room temperature.
- a crystalline Ge-containing solid electrolyte material electrolyte powder having a composition of Li 3.33 Ge 0.33 P 0.67 S 4 was obtained.
- the crystal structure of the obtained Ge-containing solid electrolyte material was identified by X-ray structural analysis. Based on the diffraction pattern obtained by XRD, a crystal system and a crystal group were determined by a direct method, and then a crystal structure was identified by a real space method. As a result, it was confirmed that the crystal structure as shown in FIG.
- tetrahedron T 1 (GeS 4 tetrahedron and PS 4 tetrahedron) and octahedron O (LiS 6 octahedron) share a ridge
- tetrahedron T 2 (PS 4 tetrahedron) and octahedron O (LiS 6 octahedron) was a crystal structure sharing a vertex. This crystal structure is considered to contribute to high Li conduction.
- the quartz tube was placed in a firing furnace, heated from room temperature to 700 ° C. over 6 hours, maintained at 700 ° C. for 8 hours, and then gradually cooled to room temperature.
- a crystalline Ge-containing solid electrolyte material electrolyte powder having a composition of Li 3.25 Ge 0.25 P 0.75 S 4 was obtained.
- X-ray diffraction (XRD) measurement was performed using the obtained Ge-containing solid electrolyte material. As a result, both the peak of the crystal phase A with high ion conductivity and the peak of the crystal phase B with low ion conductivity were confirmed. The value of I B / I A was 0.50.
- Si powder manufactured by High Purity Chemical Laboratories
- the Li 3 PS 4 sulfide glass 80 mg was added to Macor cylinder was pressed at 1 ton / cm 2, to form a solid electrolyte layer.
- 2 mg of the negative electrode mixture was added to one surface of the solid electrolyte layer and pressed at 4 ton / cm 2 to form a negative electrode active material layer on the solid electrolyte layer.
- a LiIn foil was placed on the other surface of the solid electrolyte layer and pressed at 1 ton / cm 2 to obtain a power generation element.
- the power generation element was restrained at 6 Ncm to obtain an evaluation battery.
- Example 2 An evaluation battery was obtained in the same manner as in Example 1, except that the electrolyte powder obtained in Production Example 2 was used instead of the electrolyte powder obtained in Production Example 1.
- Carbon powder (graphite) was used as the negative electrode active material.
- An evaluation battery was obtained in the same manner as in Example 1 except that 1.5 mg of this negative electrode mixture was used.
- the evaluation battery obtained in Comparative Example 2 was subjected to a constant current charge / discharge test of 2 mA in a range of ⁇ 0.62 V to 1 V (a range of 0.00 V to 1.62 V on the basis of lithium). .
- the ratio of discharge capacity to charge capacity was defined as charge / discharge efficiency (Coulomb efficiency).
- charge / discharge efficiency Coulomb efficiency
- FIGS. 10 to 13 are charging / discharging curves of the evaluation batteries obtained in Examples 1 and 2 and Comparative Examples 1 and 2, respectively, and FIG. 14 is obtained in Examples 1 and 2 and Comparative Examples 1 and 2, respectively. It is a result of charging / discharging efficiency of the obtained evaluation battery. As shown in FIGS. 10 and 11, in Examples 1 and 2, a plateau portion was observed in the vicinity of 0.232 V (vs Li / Li + ), which is an alloying potential (operating potential) of Li and Si, during charging. A plateau was observed near 0.501 V (vs Li / Li + ) during discharge.
- Examples 1 and 2 Si having a theoretical capacity of 4200 mAh / g was used, but it was confirmed that a very large capacity of 3000 mAh or more could actually be used reversibly. Further, as shown in FIG. 14, the charge and discharge efficiencies of Examples 1 and 2 were both higher than 90%. In this way, by combining the Si-containing negative electrode active material with the Ge-containing solid electrolyte material, even if the potential of the Si-containing negative electrode active material is lowered below the reduction potential of the Ge-containing solid electrolyte material, the battery operates normally. It was confirmed.
- the battery may not operate normally. confirmed.
- FIG. 15 is an enlarged view of the y-axis of FIG. 12 and is a charging curve of the evaluation battery obtained in Comparative Example 1. In addition, the theoretical charge curve of carbon is shown superimposed.
- the Ge-containing solid electrolyte material obtained in Production Example 1 is considered to cause a side reaction that consumes electricity at a potential of 0.25 V (vs Li / Li + ) or less. That is, it is considered that the Ge-containing solid electrolyte material consumed electricity and the electrochemical reaction between carbon and Li ions did not proceed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明の電池システムは、電池と、制御装置とを備える電池システムであって、上記電池は、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有し、上記負極活物質層および上記電解質層の少なくとも一方にGe含有固体電解質材料を含有し、上記制御装置は、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御する装置であることを特徴とするものである。
以下、本発明の電池システムについて、構成ごとに説明する。
本発明における電池は、正極活物質層と、負極活物質層と、電解質層とを少なくとも有する。まず、本発明における負極活物質層について説明する。
本発明における負極活物質層は、少なくともSi含有負極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、負極活物質層が固体電解質材料を含有することが好ましい。イオン伝導性の高い負極活物質層を得ることができるからである。さらに、本発明においては、負極活物質層がGe含有固体電解質材料を含有することが好ましい。
本発明におけるSi含有負極活物質は、少なくともSi元素を含有する活物質であれば特に限定されるものではない。Si含有負極活物質としては、例えば、Si、Si合金、Si酸化物、Si窒化物、Si硫化物等を挙げることができる。Si合金としては、例えばSi-Al系合金、Si-Sn系合金、Si-In系合金、Si-Ag系合金、Si-Pb系合金、Si-Sb系合金、Si-Bi系合金、Si-Mg系合金、Si-Ca系合金、Si-Ge系合金、Si-Pb系合金等を挙げることができる。なお、例えばSi-Al系合金とは、少なくともSiおよびAlを含む合金を意味し、SiおよびAlのみから構成される合金であっても良く、さらに別の元素を含有する合金であっても良い。Si-Al系合金以外に例示した上記合金についても同様である。Si合金は、2成分系合金であっても良く、3成分系以上の多成分系合金であっても良い。また、Si酸化物としては、SiO等を挙げることができる。また、Si含有負極活物質は、膜状であっても良く、粉末状であっても良い。
本発明におけるGe含有固体電解質材料は、少なくともGe元素を含有する固体電解質材料であれば特に限定されるものではない。中でも、Ge含有固体電解質材料は、S元素をさらに含有すること、すなわち、硫化物固体電解質材料であること好ましい。イオン伝導性が高いからである。また、Ge含有固体電解質材料は、Li元素をさらに含有すること、すなわち、Liイオン伝導性固体電解質材料であることが好ましい。有用なリチウム電池を得ることができるからである。また、Ge含有固体電解質材料は、P元素をさらに含有することが好ましい。化学的安定性を向上させることができるからである。
本発明における負極活物質層は、さらに導電化材を含有していても良い。導電化材の添加により、負極活物質層の導電性を向上させることができる。導電化材としては、例えばアセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。また、負極活物質層は、結着材を含有していても良い。結着材の種類としては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素含有結着材等を挙げることができる。また、負極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
本発明における電解質層は、正極活物質層および負極活物質層の間に形成される層である。電解質層は、イオンの伝導を行うことができる層であれば特に限定されるものではないが、固体電解質材料から構成される固体電解質層であることが好ましい。電解液を用いる電池に比べて、安全性の高い電池を得ることができるからである。さらに、本発明においては、固体電解質層が、上述したGe含有固体電解質材料を含有することが好ましい。固体電解質層に含まれるGe含有固体電解質材料の割合は、例えば10重量%~100重量%の範囲内であることが好ましく、50重量%~100重量%の範囲内であることがより好ましい。本発明においては、固体電解質層がGe含有固体電解質材料のみから構成されていても良い。また、本発明においては、固体電解質層に含まれるGe含有固体電解質材料と、負極活物質層に含まれるSi含有負極活物質とが接触していることが好ましい。固体電解質層の厚さは、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。
本発明における正極活物質層は、少なくとも正極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、正極活物質層が固体電解質材料を含有することが好ましい。イオン伝導性の高い正極活物質層を得ることができるからである。さらに、本発明においては、正極活物質層が上述したGe含有固体電解質材料を含有することが好ましい。また、正極活物質としては、特に限定されるものではないが、例えばLiCoO2、LiMnO2、Li2NiMn3O8、LiVO2、LiCrO2、LiFePO4、LiCoPO4、LiNiO2、LiNi1/3Co1/3Mn1/3O2等を挙げることができる。なお、正極活物質層に用いられる導電化材および結着材については、上述した負極活物質層における場合と同様である。また、正極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
本発明の電池は、負極活物質層、電解質層および正極活物質層を少なくとも有するものである。さらに通常は、正極活物質層の集電を行う正極集電体、および負極活物質層の集電を行う負極集電体を有する。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができる。一方、負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができる。正極集電体および負極集電体の厚さや形状等については、電池の用途等に応じて適宜選択することが好ましい。また、電池ケースには、一般的な電池の電池ケースを用いることができる。電池ケースとしては、例えばSUS製電池ケース等を挙げることができる。
本発明の電池は、一次電池であっても良く、二次電池であっても良いが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。
本発明における制御装置は、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御する装置である。制御装置は、例えば、Si含有負極活物質の電位を測定する測定部と、Si含有負極活物質の電位に応じて電池の電流を遮断するスイッチ部とを有するものである。
まず、Li2Sを0.382771gと、P2S50.617229gとをメノウ乳鉢で混合し、ZrO2ボール(φ10mm×10個)とともにZrO2ポット(45cc)に入れ、フリッチュ製のボールミル装置で回転数370rpm、40時間の条件で処理し、硫化物固体電解質材料(75Li2S・25P2S5)を得る。次に、得られた硫化物固体電解質材料を100mg取り、φ11.3mmのマコール製シリンダに入れ1ton/cm2でプレスし、固体電解質層を形成する。次に、測定対象である硫化物固体電解質材料(Ge含有固体電解質材料)、および、ステンレス鋼粒子を体積比で1:1となるように混合し、その粉末を15mg取り、固体電解質層の一方の表面に入れ、4ton/cm2でプレスする。さらに、φ10mmに打ち抜いたIn箔を4枚とφ6mmで打ち抜いたLi箔1枚とを固体電解質層の他方の表面に配置し、1ton/cm2でプレスし、発電要素を得る。得られた発電要素の両面にステンレス鋼(集電体)を配置し、6Ncmのトルクでねじ締結して拘束する。この状態で、LiおよびInの合金化を促進するため10時間静置し、還元電位評価用電池を得る。なお、上記作業はすべてAr雰囲気下で行う。
(b)還元電位の測定
得られた還元電位評価用電池を用い、LiIn合金を参照極とし、測定対象を含有する層を作用極として、0.1mA/cm2の電流密度で-0.62Vまで定電流充電を行う。これにより、横軸を容量とし、縦軸を作用極の電位(vs. LiIn)とした充電曲線を得る。得られた充電曲線の電位に0.62Vを足し、電位基準をLiInからLi/Li+に変更する。変更した充電曲線において、電位を容量で微分し、横軸を電位とし、縦軸をdV/dQのグラフを作成する。dV/dQの値が-0.01~0.01の範囲内にある直線部Aと、傾きを有する直線部Bとの交点を還元電位と考え、一義的に定義するために、直線部Aであり、かつ、dV/dQ=0となる最大の電位、を還元電位と定義する。
まず、Li2Sを0.382771gと、P2S50.617229gとをメノウ乳鉢で混合し、ZrO2ボール(φ10mm×10個)とともにZrO2ポット(45cc)に入れ、フリッチュ製のボールミル装置で回転数370rpm、40時間の条件で処理し、硫化物固体電解質材料(75Li2S・25P2S5)を得る。次に、得られた硫化物固体電解質材料を100mg取り、φ11.3mmのマコール製シリンダに入れ1ton/cm2でプレスし、固体電解質層を形成する。次に、得られた硫化物固体電解質材料、およびSi含有負極活物質を体積比で1:1となるように混合し、その粉末を15mg取り、固体電解質層の一方の表面に入れ、4ton/cm2でプレスする。さらに、φ10mmに打ち抜いたIn箔を4枚とφ6mmで打ち抜いたLi箔1枚とを固体電解質層の他方の表面に配置し、1ton/cm2でプレスし、発電要素を得る。得られた発電要素の両面にステンレス鋼(集電体)を配置し、6Ncmのトルクでねじ締結して拘束する。この状態で、LiおよびInの合金化を促進するため10時間静置し、作動電位評価用電池を得る。なお、上記作業はすべてAr雰囲気下で行う。
(d)作動電位の測定
得られた作動電位評価用電池を用い、LiIn合金を参照極とし、Si含有負極活物質を含有する層を作用極として、0.1mA/cm2の電流密度で-0.62Vまで定電流充電を行う。これにより、横軸を容量とし、縦軸を作用極の電位(vs. LiIn)とした充電曲線を得る。得られた充電曲線の電位に0.62Vを足し、電位基準をLiInからLi/Li+に変更する。変更した充電曲線において、電位を容量で微分し、横軸を電位とし、縦軸をdV/dQのグラフを作成する。dV/dQの値が-0.01~0.01の範囲内にある直線部Aと、傾きを有する直線部Bとの交点を作動電位と考え、一義的に定義するために、直線部Aであり、かつ、dV/dQ=0となる最大の電位、を作動電位と定義する。
次に、本発明の電池システムの製造方法について説明する。本発明の電池システムの製造方法は、電池と、制御装置とを備える電池システムの製造方法であって、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有し、上記負極活物質層および上記電解質層の少なくとも一方に、Ge含有固体電解質材料を含有する上記電池を組み立てる電池組立工程と、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御する上記制御装置を設置する制御装置設置工程と、を有することを特徴とするものである。
以下、本発明の電池システムの製造方法について、工程毎に説明する。
本発明における電池組立工程は、上述した電池を組み立てる工程である。電池の組み立て方法は、特に限定されるものではなく、一般的な方法と同様である。また、図6に示した電池組立工程は一例に過ぎず、順番等は任意に変更することができる。
本発明における制御装置設置工程は、上述した制御装置を設置する工程である。制御装置を設置するタイミングは、所望の電池システムを作製できれば特に限定されるものではない。例えば、電池組立工程後に制御装置を設置しても良く、電池組立工程中に制御装置を設置しても良い。
次に、本発明の電池の制御装置について説明する。本発明の電池の制御装置は、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有し、上記負極活物質層および上記電解質層の少なくとも一方に、Ge含有固体電解質材料を含有する上記電池に対して、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御することを特徴とするものである。
(Ge含有固体電解質材料の合成)
出発原料として、硫化リチウム(Li2S)と、五硫化二リン(P2S5)と、硫化ゲルマニウム(GeS2)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、Li2Sを0.39019g、P2S5を0.377515g、GeS2を0.232295gの割合で混合し、原料組成物を得た。次に、原料組成物1gを、ジルコニアボール(10mmφ、10個)とともに、ジルコニア製のポット(45ml)に入れ、ポットを完全に密閉した(アルゴン雰囲気)。このポットを遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数370rpmで、40時間メカニカルミリングを行った。これにより、Li3.33Ge0.33P0.67S4の組成を有する、非晶質化したイオン伝導性材料を得た。
(Ge含有固体電解質材料の合成)
出発原料として、硫化リチウム(Li2S)と、五硫化二リン(P2S5)と、硫化ゲルマニウム(GeS2)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、Li2Sを0.3878g、P2S5を0.4818g、GeS2を0.1304gの割合で混合し、原料組成物を得た。次に、原料組成物1gを、メノウ乳鉢で混合した。次に、得られた混合物を、カーボンコートした石英管に入れ真空封入した。真空封入した石英管の圧力は、約30Paであった。次に、石英管を焼成炉に設置し、6時間かけて室温から700℃まで昇温し、700℃を8時間維持し、その後室温まで徐冷した。これにより、Li3.25Ge0.25P0.75S4の組成を有する結晶質のGe含有固体電解質材料(電解質粉末)を得た。なお、上記組成は、Li(4-x)Ge(1-x)PxS4におけるx=0.75の組成に該当するものである。
製造例1で得られた電解質粉末を用いて、評価用電池を作製した。まず、正極活物質層として、In箔(ニラコ社製φ10mm、厚さ0.1mm)にLi箔(本庄ケミカル社製)を貼付したもの(LiIn箔)を用意した。次に、負極活物質であるSi粉末(高純度化学研究所製)と、製造例1で得られた電解質粉末と、導電化材(デンカブラック、電気化学工業社製)とを、重量比でSi粉末:電解質粉末:導電化材=78:17:5となるように秤量し、メノウ乳鉢で混合した。これにより、負極合材を得た。
製造例1で得られた電解質粉末の代わりに、製造例2で得られた電解質粉末を用いたこと以外は、実施例1と同様にして評価用電池を得た。
負極活物質としてカーボン粉末(グラファイト)を用いた。このカーボン粉末と、製造例1で得られた電解質粉末とを、重量比でカーボン粉末:電解質粉末=50:50となるように秤量し、メノウ乳鉢で混合した。これにより、負極合材を得た。この負極合材を1.5mg用いたこと以外は、実施例1と同様にして評価用電池を得た。
負極活物質としてSn粉末(高純度化学研究所製)を用いた。このSn粉末と、製造例1で得られた電解質粉末とを、重量比でSn粉末:電解質粉末=90:10となるように秤量し、メノウ乳鉢で混合した。これにより、負極合材を得た。この負極合材を20mg用いたこと以外は、実施例1と同様にして評価用電池を得た。
(1)還元電位および作動電位の測定
製造例1で得られたGe含有固体電解質材料の還元電位を、上述した(a)、(b)の手法により求めた。その結果を図8に示す。図8に示すように、Ge含有固体電解質材料の還元電位は0.251V(vs Li/Li+)であった。一方、実施例1で使用したSi粉末、および、比較例1で使用したカーボン粉末の作動電位を、上述した(c)、(d)の手法により求めた。その結果を図9に示す。図9(a)に示すように、Si粉末の作動電位は0.232V(vs Li/Li+)であり、図9(b)に示すように、カーボン粉末の作動電位は0.198V(vs Li/Li+)であった。
実施例1および実施例2で得られた評価用電池に対して、-0.60V~1Vの範囲(リチウム基準では、0.02V~1.62Vの範囲)で0.3mAの定電流-定電圧充放電試験を行った。なお、定電圧値は、放電時に0.02V(vs Li/Li+)とし、放電時に1.62V(vs Li/Li+)とした。また、比較例1で得られた評価用電池に対して、-0.62V~1Vの範囲(リチウム基準では、0.00V~1.62Vの範囲)で0.15mAの定電流充放電試験を行った。また、比較例2で得られた評価用電池に対して、-0.62V~1Vの範囲(リチウム基準では、0.00V~1.62Vの範囲)で2mAの定電流充放電試験を行った。充電容量に対する放電容量の比(放電容量/充電容量)を充放電効率(クーロン効率)とした。また、参照極を正極として、負極側の充放電挙動を確認した。その結果を図10~図13に示す。
2 … 負極活物質層
3 … 電解質層
4 … 正極集電体
5 … 負極集電体
6 … 電池ケース
10 … 電池
11 … Ge含有固体電解質材料
12 … Si含有負極活物質
20 … 制御装置
30 … 電池システム
Claims (12)
- 電池と、制御装置とを備える電池システムであって、
前記電池は、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを有し、前記負極活物質層および前記電解質層の少なくとも一方にGe含有固体電解質材料を含有し、
前記制御装置は、前記Si含有負極活物質の電位が前記Ge含有固体電解質材料の還元電位以下となるように制御する装置であることを特徴とする電池システム。 - 前記制御装置は、
前記電池の電流を遮断するスイッチ部を備え、
前記Si含有負極活物質の電位が前記Ge含有固体電解質材料の還元電位より大きい時に充電が開始された場合に、前記Si含有負極活物質の電位が前記Ge含有固体電解質材料の還元電位より小さくなるまで充電を継続するよう、前記スイッチ部を制御することを特徴とする請求項1に記載の電池システム。 - 前記Ge含有固体電解質材料が、S元素をさらに含有することを特徴とする請求項1または請求項2に記載の電池システム。
- 前記Ge含有固体電解質材料が、Li元素をさらに含有することを特徴とする請求項3に記載の電池システム。
- 前記Ge含有固体電解質材料が、P元素をさらに含有することを特徴とする請求項4に記載の電池システム。
- 前記Ge含有固体電解質材料が、M1元素、M2元素およびS元素を含有し、前記M1は、Li、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種であり、前記M2は、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、かつ、少なくともGeを含み、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、前記2θ=29.58°±0.50°のピークの回折強度をIAとし、2θ=27.33°±0.50°のピークの回折強度をIBとした場合に、IB/IAの値が0.50未満であることを特徴とする請求項1から請求項5までのいずれかの請求項に記載の電池システム。
- 前記Ge含有固体電解質材料が、M1元素およびS元素から構成される八面体Oと、M2a元素およびS元素から構成される四面体T1と、M2b元素およびS元素から構成される四面体T2とを有し、前記四面体T1および前記八面体Oは稜を共有し、前記四面体T2および前記八面体Oは頂点を共有する結晶構造を主体として含有し、前記M1は、Li、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種であり、前記M2aおよびM2bは、それぞれ独立に、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、前記M2aおよび前記M2bの少なくとも一方はGeを含むことを特徴とする請求項1から請求項5までのいずれかの請求項に記載の電池システム。
- 前記制御装置は、前記Si含有負極活物質の電位が0.25V(vs. Li/Li+)以下となるように制御する装置であることを特徴とする請求項1から請求項7までのいずれかの請求項に記載の電池システム。
- 前記Si含有負極活物質が、Siであることを特徴とする請求項1から請求項8までのいずれかの請求項に記載の電池システム。
- 前記固体電解質層に含まれる前記Ge含有固体電解質材料と、前記負極活物質層に含まれる前記Si含有負極活物質とが接触していることを特徴とする請求項1から請求項9までのいずれかの請求項に記載の電池システム。
- 電池と、制御装置とを備える電池システムの製造方法であって、
正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを有し、前記負極活物質層および前記電解質層の少なくとも一方に、Ge含有固体電解質材料を含有する前記電池を組み立てる電池組立工程と、
前記Si含有負極活物質の電位が前記Ge含有固体電解質材料の還元電位以下となるように制御する前記制御装置を設置する制御装置設置工程と、
を有することを特徴とする電池システムの製造方法。 - 正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを有し、前記負極活物質層および前記電解質層の少なくとも一方に、Ge含有固体電解質材料を含有する前記電池に対して、前記Si含有負極活物質の電位が前記Ge含有固体電解質材料の還元電位以下となるように制御することを特徴とする電池の制御装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2876563A CA2876563C (en) | 2012-06-20 | 2013-05-14 | Battery system, method for producing battery system, and battery control apparatus |
KR1020147033864A KR101587375B1 (ko) | 2012-06-20 | 2013-05-14 | 전지 시스템, 전지 시스템의 제조 방법, 전지의 제어 장치 |
EP13806770.7A EP2866291B8 (en) | 2012-06-20 | 2013-05-14 | Battery system and method for manufacturing battery system |
IN10363DEN2014 IN2014DN10363A (ja) | 2012-06-20 | 2013-05-14 | |
US14/409,224 US9484596B2 (en) | 2012-06-20 | 2013-05-14 | Battery system, method for producing battery system, and battery control apparatus |
BR112014031295-8A BR112014031295B1 (pt) | 2012-06-20 | 2013-05-14 | Sistema de bateria, método para produzir um sistema de bateria |
CN201380029261.XA CN104364956B (zh) | 2012-06-20 | 2013-05-14 | 电池系统、电池系统的制造方法、电池的控制装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012138815A JP5817657B2 (ja) | 2012-06-20 | 2012-06-20 | 電池システム、電池システムの製造方法、電池の制御装置 |
JP2012-138815 | 2012-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013190930A1 true WO2013190930A1 (ja) | 2013-12-27 |
Family
ID=49768536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/063437 WO2013190930A1 (ja) | 2012-06-20 | 2013-05-14 | 電池システム、電池システムの製造方法、電池の制御装置 |
Country Status (9)
Country | Link |
---|---|
US (1) | US9484596B2 (ja) |
EP (1) | EP2866291B8 (ja) |
JP (1) | JP5817657B2 (ja) |
KR (1) | KR101587375B1 (ja) |
BR (1) | BR112014031295B1 (ja) |
CA (1) | CA2876563C (ja) |
IN (1) | IN2014DN10363A (ja) |
TW (1) | TWI509860B (ja) |
WO (1) | WO2013190930A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6288716B2 (ja) | 2014-06-25 | 2018-03-07 | 国立大学法人東京工業大学 | 硫化物固体電解質材料の製造方法 |
US10326164B2 (en) * | 2015-03-03 | 2019-06-18 | Ut-Battelle, Llc | High-conduction GE substituted LiAsS4 solid electrolyte |
JP6877084B2 (ja) | 2015-07-31 | 2021-05-26 | 国立大学法人東京工業大学 | α−リチウム固体電解質 |
KR101897859B1 (ko) * | 2015-08-24 | 2018-09-12 | 주식회사 엘지화학 | 리튬 석출 탐지 방법, 이를 이용한 이차전지 충전 방법과 장치 및 이차전지 시스템 |
JPWO2017154922A1 (ja) * | 2016-03-08 | 2018-11-22 | 株式会社村田製作所 | 固体電解質、全固体電池、固体電解質の製造方法及び全固体電池の製造方法 |
JP6593381B2 (ja) * | 2017-04-18 | 2019-10-23 | トヨタ自動車株式会社 | 全固体リチウムイオン二次電池用の負極合材、当該負極合材を含む負極、及び当該負極を備える全固体リチウムイオン二次電池 |
JP6693473B2 (ja) | 2017-05-23 | 2020-05-13 | トヨタ自動車株式会社 | フッ化物イオン電池 |
JP6784235B2 (ja) | 2017-07-06 | 2020-11-11 | トヨタ自動車株式会社 | 全固体リチウムイオン二次電池 |
JP6859234B2 (ja) * | 2017-09-05 | 2021-04-14 | 国立研究開発法人物質・材料研究機構 | 全固体電池の製造方法 |
KR102516362B1 (ko) * | 2017-12-19 | 2023-03-31 | 삼성전자주식회사 | 배터리 충전 방법 및 장치 |
WO2019146294A1 (ja) * | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 電池 |
CN113659196A (zh) * | 2021-07-22 | 2021-11-16 | 河北光兴半导体技术有限公司 | 一种硫化物固态电解质及其制备方法和全固态锂电池 |
WO2023171646A1 (ja) * | 2022-03-10 | 2023-09-14 | 三井金属鉱業株式会社 | 電極部材及びその製造方法、電池部材及びその製造方法、並びに電池の製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003217663A (ja) | 2002-01-16 | 2003-07-31 | Japan Storage Battery Co Ltd | 非水電解質電池 |
WO2009101506A1 (en) * | 2008-02-14 | 2009-08-20 | Toyota Jidosha Kabushiki Kaisha | Totally-solid lithium secondary battery |
WO2011065388A1 (ja) * | 2009-11-27 | 2011-06-03 | 株式会社 村田製作所 | 固体電池 |
WO2011118801A1 (ja) * | 2010-03-26 | 2011-09-29 | 国立大学法人東京工業大学 | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 |
WO2012060349A1 (ja) * | 2010-11-02 | 2012-05-10 | 株式会社 村田製作所 | 全固体電池 |
WO2013084944A1 (ja) * | 2011-12-08 | 2013-06-13 | トヨタ自動車株式会社 | 電池 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090317664A1 (en) * | 2006-08-22 | 2009-12-24 | Koninklijke Philips Electronics N.V. | Electrochemical energy source, and method for manufacturing of such an electrochemical energy source |
JP4948510B2 (ja) | 2008-12-02 | 2012-06-06 | トヨタ自動車株式会社 | 全固体電池 |
KR101758138B1 (ko) * | 2009-06-17 | 2017-07-14 | 소니 주식회사 | 비수 전해질 전지, 비전해질 전지용 정극, 비수 전해질 전지용 부극, 비전해질 전지용 세퍼레이터, 비수 전해질용 전해질 및 비전해질 전지용 세퍼레이터의 제조 방법 |
JP5045849B2 (ja) | 2009-09-02 | 2012-10-10 | トヨタ自動車株式会社 | 硫化物系全固体リチウム二次電池システム |
CN102844929A (zh) * | 2010-07-12 | 2012-12-26 | 株式会社村田制作所 | 全固态电池 |
JP2012085487A (ja) | 2010-10-14 | 2012-04-26 | Sony Corp | 二次電池の充電制御方法および電池パック |
JP5002824B1 (ja) | 2011-03-02 | 2012-08-15 | 独立行政法人産業技術総合研究所 | リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池 |
-
2012
- 2012-06-20 JP JP2012138815A patent/JP5817657B2/ja active Active
-
2013
- 2013-05-14 CA CA2876563A patent/CA2876563C/en active Active
- 2013-05-14 KR KR1020147033864A patent/KR101587375B1/ko active IP Right Grant
- 2013-05-14 IN IN10363DEN2014 patent/IN2014DN10363A/en unknown
- 2013-05-14 WO PCT/JP2013/063437 patent/WO2013190930A1/ja active Application Filing
- 2013-05-14 BR BR112014031295-8A patent/BR112014031295B1/pt active IP Right Grant
- 2013-05-14 US US14/409,224 patent/US9484596B2/en active Active
- 2013-05-14 EP EP13806770.7A patent/EP2866291B8/en active Active
- 2013-06-04 TW TW102119768A patent/TWI509860B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003217663A (ja) | 2002-01-16 | 2003-07-31 | Japan Storage Battery Co Ltd | 非水電解質電池 |
WO2009101506A1 (en) * | 2008-02-14 | 2009-08-20 | Toyota Jidosha Kabushiki Kaisha | Totally-solid lithium secondary battery |
WO2011065388A1 (ja) * | 2009-11-27 | 2011-06-03 | 株式会社 村田製作所 | 固体電池 |
WO2011118801A1 (ja) * | 2010-03-26 | 2011-09-29 | 国立大学法人東京工業大学 | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 |
WO2012060349A1 (ja) * | 2010-11-02 | 2012-05-10 | 株式会社 村田製作所 | 全固体電池 |
WO2013084944A1 (ja) * | 2011-12-08 | 2013-06-13 | トヨタ自動車株式会社 | 電池 |
Non-Patent Citations (2)
Title |
---|
S. KONDO ET AL.: "New lithium ion conductors based on Li S-SiS system", SOLID STATE IONICS, vol. 53-56, July 1992 (1992-07-01), pages 1183 - 1186 |
See also references of EP2866291A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN104364956A (zh) | 2015-02-18 |
US20150147597A1 (en) | 2015-05-28 |
CA2876563C (en) | 2017-04-18 |
JP5817657B2 (ja) | 2015-11-18 |
TWI509860B (zh) | 2015-11-21 |
BR112014031295B1 (pt) | 2020-07-14 |
CA2876563A1 (en) | 2013-12-27 |
JP2014002966A (ja) | 2014-01-09 |
EP2866291B1 (en) | 2018-11-21 |
EP2866291A4 (en) | 2015-07-15 |
EP2866291B8 (en) | 2019-01-23 |
TW201405911A (zh) | 2014-02-01 |
KR20150013223A (ko) | 2015-02-04 |
IN2014DN10363A (ja) | 2015-08-07 |
BR112014031295A2 (pt) | 2017-06-27 |
US9484596B2 (en) | 2016-11-01 |
KR101587375B1 (ko) | 2016-01-20 |
EP2866291A1 (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5817657B2 (ja) | 電池システム、電池システムの製造方法、電池の制御装置 | |
JP6288716B2 (ja) | 硫化物固体電解質材料の製造方法 | |
JP6222134B2 (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
CA2922382C (en) | Solid-state battery in which lithium ions are responsible for electrical conduction | |
JP5720753B2 (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
JP5975071B2 (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
JP6315617B2 (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
JP5561383B2 (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
US11349123B2 (en) | Amorphous oxide-based positive electrode active material, method for producing same and use of same | |
JP2015220015A (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
JP2015220013A (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
WO2014171483A1 (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
WO2013084944A1 (ja) | 電池 | |
JP5895917B2 (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
JP2015032550A (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
JP6285317B2 (ja) | 全固体電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13806770 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147033864 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2876563 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013806770 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14409224 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014031295 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014031295 Country of ref document: BR Kind code of ref document: A2 Effective date: 20141212 |