WO2013190930A1 - 電池システム、電池システムの製造方法、電池の制御装置 - Google Patents

電池システム、電池システムの製造方法、電池の制御装置 Download PDF

Info

Publication number
WO2013190930A1
WO2013190930A1 PCT/JP2013/063437 JP2013063437W WO2013190930A1 WO 2013190930 A1 WO2013190930 A1 WO 2013190930A1 JP 2013063437 W JP2013063437 W JP 2013063437W WO 2013190930 A1 WO2013190930 A1 WO 2013190930A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode active
active material
solid electrolyte
negative electrode
battery
Prior art date
Application number
PCT/JP2013/063437
Other languages
English (en)
French (fr)
Inventor
崇督 大友
浩二 川本
祐樹 加藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CA2876563A priority Critical patent/CA2876563C/en
Priority to KR1020147033864A priority patent/KR101587375B1/ko
Priority to EP13806770.7A priority patent/EP2866291B8/en
Priority to IN10363DEN2014 priority patent/IN2014DN10363A/en
Priority to US14/409,224 priority patent/US9484596B2/en
Priority to BR112014031295-8A priority patent/BR112014031295B1/pt
Priority to CN201380029261.XA priority patent/CN104364956B/zh
Publication of WO2013190930A1 publication Critical patent/WO2013190930A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3963Sealing means between the solid electrolyte and holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system that suppresses reductive decomposition of a Ge-containing solid electrolyte material.
  • An electrolyte material having ion conductivity is usually used for a battery typified by a lithium battery.
  • the solid electrolyte material has an advantage that the safety device can be simplified because there is no fear of liquid leakage or the like as compared with the liquid electrolyte material (electrolytic solution).
  • a solid electrolyte material a Ge-containing solid electrolyte material containing a Ge element is known.
  • Ge-containing solid electrolyte materials materials that exhibit relatively high ionic conductivity are known, but Ge-containing solid electrolyte materials have a high reduction potential and are easily reductively decomposed (non-patent literature). 1).
  • Patent Document 1 since the potential at which Ge reduction reaction occurs is about 0.3 V with respect to lithium, a solid electrolyte containing Ge is used as a negative electrode active material such as metallic lithium (the potential is based on lithium). The problem that it cannot be used in combination with a negative electrode active material of about 0.3 V or less is described. In order to solve this problem, Patent Document 1 discloses a battery using a solid electrolyte that does not contain Ge for the second solid electrolyte contained in the negative electrode and the fourth solid electrolyte contained in the separator in contact with the negative electrode. Has proposed.
  • the Ge-containing solid electrolyte material is easily reduced and decomposed, and it has been difficult to use at a potential lower than the reduction potential.
  • the present invention has been made in view of the above circumstances, and has as its main object to provide a battery system in which reductive decomposition of a Ge-containing solid electrolyte material is suppressed.
  • the present inventors have conducted extensive research. As a result, when the Ge-containing solid electrolyte material is combined with the Si-containing negative electrode active material, the Ge-containing solid electrolyte material is at a potential lower than the reduction potential. As a result, the present inventors have found that the battery characteristics are not deteriorated exceptionally even when used in the above, and have completed the present invention.
  • a battery system including a battery and a control device, wherein the battery includes a positive electrode active material layer containing a positive electrode active material, and a negative electrode active material layer containing a Si-containing negative electrode active material. And an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, and at least one of the negative electrode active material layer and the electrolyte layer contains a Ge-containing solid electrolyte material, and the control device Provides a battery system characterized in that it is a device for controlling the potential of the Si-containing negative electrode active material to be equal to or lower than the reduction potential of the Ge-containing solid electrolyte material.
  • control device includes a switch unit that cuts off the current of the battery, and when charging is started when the potential of the Si-containing negative electrode active material is higher than the reduction potential of the Ge-containing solid electrolyte material, It is preferable to control the switch unit so that charging is continued until the potential of the Si-containing negative electrode active material becomes smaller than the reduction potential of the Ge-containing solid electrolyte material.
  • the Ge-containing solid electrolyte material preferably further contains an S element.
  • the Ge-containing solid electrolyte material further contains a Li element.
  • the Ge-containing solid electrolyte material preferably further contains a P element.
  • the Ge-containing solid electrolyte material contains an M 1 element, an M 2 element, and an S element, and the M 1 is selected from the group consisting of Li, Na, K, Mg, Ca, and Zn.
  • the Ge-containing solid electrolyte material includes an octahedron O composed of an M 1 element and an S element, a tetrahedron T 1 composed of an M 2a element and an S element, an M 2b element and an S element.
  • the M 1 is at least one selected from the group consisting of Li, Na, K, Mg, Ca, Zn, and the M 2a and M 2b are each independently P, Sb, Si, Ge, It is at least one selected from the group consisting of Sn, B, Al, Ga, In, Ti, Zr, V, and Nb, and at least one of the M 2a and the M 2b preferably contains Ge.
  • control device is preferably a device that controls the potential of the Si-containing negative electrode active material to be 0.25 V (vs. Li / Li + ) or less.
  • the Si-containing negative electrode active material is preferably Si.
  • the Ge-containing solid electrolyte material contained in the solid electrolyte layer is preferably in contact with the Si-containing negative electrode active material contained in the negative electrode active material layer.
  • a battery system manufacturing method including a battery and a control device, a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a Si-containing negative electrode active material, An electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, and assembling the battery containing a Ge-containing solid electrolyte material in at least one of the negative electrode active material layer and the electrolyte layer
  • a battery comprising: a battery assembly step; and a control device installation step of installing the control device for controlling the potential of the Si-containing negative electrode active material to be equal to or lower than the reduction potential of the Ge-containing solid electrolyte material.
  • a battery system in which reductive decomposition of a Ge-containing solid electrolyte material is suppressed by installing a control device that performs the above control on a battery in which a Si-containing negative electrode active material is combined with a Ge-containing solid electrolyte material. Can be obtained.
  • the positive electrode active material layer containing the positive electrode active material the negative electrode active material layer containing the Si-containing negative electrode active material, and formed between the positive electrode active material layer and the negative electrode active material layer.
  • a control device for a battery is provided which is controlled to be equal to or lower than the reduction potential of the battery.
  • reductive decomposition of the Ge-containing solid electrolyte material can be suppressed by performing the above control on the battery in which the Ge-containing solid electrolyte material is combined with the Si-containing negative electrode active material.
  • the battery system of the present invention has an effect that the reductive decomposition of the Ge-containing solid electrolyte material can be suppressed.
  • FIG. 2 is a charge / discharge curve of an evaluation battery obtained in Example 1.
  • FIG. 3 is a charge / discharge curve of an evaluation battery obtained in Example 2.
  • FIG. 2 is a charge / discharge curve of an evaluation battery obtained in Comparative Example 1.
  • FIG. 5 is a charge / discharge curve of an evaluation battery obtained in Comparative Example 2.
  • FIG. It is a result of the charging / discharging efficiency of the battery for evaluation obtained in Examples 1, 2 and Comparative Examples 1, 2.
  • 2 is a charging curve of an evaluation battery obtained in Comparative Example 1.
  • the battery system of the present invention is a battery system including a battery and a control device, wherein the battery includes a positive electrode active material layer containing a positive electrode active material and a negative electrode active material containing a Si-containing negative electrode active material. And an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, containing a Ge-containing solid electrolyte material in at least one of the negative electrode active material layer and the electrolyte layer,
  • the control device is a device that controls the potential of the Si-containing negative electrode active material to be equal to or lower than the reduction potential of the Ge-containing solid electrolyte material.
  • FIG. 1 is a schematic diagram for explaining a battery system of the present invention
  • FIG. 2 is a schematic cross-sectional view showing an example of a battery according to the present invention
  • the battery system 30 of the present invention includes a battery 10 and a control device 20.
  • the battery 10 includes a positive electrode active material layer 1 containing a positive electrode active material, a negative electrode active material layer 2 containing a Si-containing negative electrode active material, a positive electrode active material layer 1 and a negative electrode active material.
  • Electrolyte layer 3 formed between layers 2, positive electrode current collector 4 for collecting current of positive electrode active material layer 1, negative electrode current collector 5 for collecting current of negative electrode active material layer 2, and these members And a battery case 6 for storing the battery.
  • the battery 10 contains a Ge-containing solid electrolyte material in at least one of the negative electrode active material layer 2 and the electrolyte layer 3.
  • the negative electrode active material layer 2 may contain a Ge-containing solid electrolyte material 11 and a Si-containing negative electrode active material 12, as shown in FIG. 3 (b).
  • the solid electrolyte layer 3 may contain the Ge-containing solid electrolyte material 11, and the negative electrode active material layer 2 may contain the Si-containing negative electrode active material 12.
  • the negative electrode active material layer 2 and the solid electrolyte layer 3 may contain a Ge-containing solid electrolyte material 11.
  • the control device 20 in FIG. 1 includes, for example, a measurement unit that measures the potential of the Si-containing negative electrode active material and a switch unit that cuts off the battery current according to the potential of the Si-containing negative electrode active material.
  • the control apparatus 20 is an apparatus which controls so that the electric potential of Si containing negative electrode active material may be below the reduction potential of Ge containing solid electrolyte material.
  • the control device 20 causes the potential of the Si-containing negative electrode active material to be smaller than the reduction potential of the Ge-containing solid electrolyte material. It is preferable that the device controls the switch unit so that the charging is continued until it becomes.
  • a battery in which reductive decomposition of a Ge-containing solid electrolyte material is suppressed even when a control device that performs the above control is provided by combining a Ge-containing solid electrolyte material with a Si-containing negative electrode active material. It can be a system. Normally, the potential of the negative electrode active material is lowered by charging, but when the operating potential of the negative electrode active material (potential that functions as an active material) is lower than the reduction potential of the Ge-containing solid electrolyte material, Ge There is a problem that reductive decomposition of the contained solid electrolyte material occurs, and battery characteristics such as charge / discharge characteristics are significantly lowered.
  • the reductive decomposition of Ge containing solid electrolyte material can be suppressed unexpectedly by combining Si containing negative electrode active material with Ge containing solid electrolyte material.
  • the Si-containing negative electrode active material has a property that the operating potential at the time of charging (during metal ion storage) is low, but has a very large capacity compared to a general carbon-based negative electrode active material.
  • a Si-containing negative electrode active material since a Si-containing negative electrode active material is used, a high capacity battery system can be obtained.
  • Ge-containing solid electrolyte materials have, for example, high Li ion conductivity (10 ⁇ 3 S / cm or more at 25 ° C.). In this invention, it can be set as a high output battery system by using such Ge containing solid electrolyte material.
  • the mechanism that can suppress the reductive decomposition of the Ge-containing solid electrolyte material is not necessarily clear, but since reductive decomposition is electrolysis, it is possible to supply electrons to the Ge-containing solid electrolyte material at the reduction potential. It is presumed to be the cause of reductive decomposition of the solid electrolyte material.
  • the Si-containing negative electrode active material having low electron conductivity is used, there is a possibility that reductive decomposition of the Ge-containing solid electrolyte material could be suppressed.
  • the reductive decomposition product of the Ge-containing solid electrolyte material reacts with the Si-containing negative electrode active material, and a film that suppresses the reductive decomposition of the Ge-containing solid electrolyte material is formed at the interface between them.
  • the contact in the present invention is the case in which both are in direct contact with each other through the film. It is a concept that encompasses both cases.
  • the presence of the coating may be confirmed by, for example, a transmission electron microscope (TEM) or a field emission scanning electron microscope.
  • TEM transmission electron microscope
  • the battery system of the present invention will be described for each configuration.
  • Battery The battery in the present invention has at least a positive electrode active material layer, a negative electrode active material layer, and an electrolyte layer. First, the negative electrode active material layer in the present invention will be described.
  • Negative electrode active material layer is a layer containing at least a Si-containing negative electrode active material. If necessary, at least one of a solid electrolyte material, a conductive material and a binder is used. You may contain.
  • the negative electrode active material layer preferably contains a solid electrolyte material. This is because a negative electrode active material layer having high ion conductivity can be obtained.
  • the negative electrode active material layer preferably contains a Ge-containing solid electrolyte material.
  • Si-containing negative electrode active material in the present invention is not particularly limited as long as it is an active material containing at least a Si element.
  • the Si-containing negative electrode active material include Si, Si alloy, Si oxide, Si nitride, and Si sulfide.
  • Si alloys include Si—Al alloys, Si—Sn alloys, Si—In alloys, Si—Ag alloys, Si—Pb alloys, Si—Sb alloys, Si—Bi alloys, Si— Mg-based alloys, Si—Ca based alloys, Si—Ge based alloys, Si—Pb based alloys and the like can be mentioned.
  • the Si—Al-based alloy means an alloy containing at least Si and Al, and may be an alloy composed only of Si and Al, or may be an alloy containing another element. .
  • the Si alloy may be a binary alloy or a multi-component alloy of three or more components.
  • SiO etc. can be mentioned as Si oxide.
  • the Si-containing negative electrode active material may be in the form of a film or powder.
  • the content of the Si-containing negative electrode active material in the negative electrode active material layer is not particularly limited, but is preferably, for example, 50% by weight or more, and more preferably in the range of 60% by weight to 99% by weight. Preferably, it is more preferably in the range of 70% to 95% by weight.
  • the Ge-containing solid electrolyte material in the present invention is not particularly limited as long as it is a solid electrolyte material containing at least a Ge element.
  • the Ge-containing solid electrolyte material further contains an S element, that is, a sulfide solid electrolyte material. This is because ionic conductivity is high.
  • the Ge-containing solid electrolyte material preferably further contains Li element, that is, a Li ion conductive solid electrolyte material. This is because a useful lithium battery can be obtained.
  • the Ge-containing solid electrolyte material preferably further contains a P element. This is because chemical stability can be improved.
  • the Ge-containing solid electrolyte material may be an amorphous body (glass), a crystalline body, or glass ceramics obtained by heat-treating glass.
  • the Ge-containing solid electrolyte material may be an oxide solid electrolyte material or a sulfide solid electrolyte material.
  • oxide solid electrolyte material having Li ion conductivity a solid electrolyte material having a NASICON type structure can be mentioned, and specifically, a Li—Al—Ge—PO solid electrolyte material can be mentioned. be able to.
  • an oxide solid electrolyte material having Li ion conductivity is a solid electrolyte material represented by the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 2) ( LAGP) is preferred.
  • a Li—Ge—S solid electrolyte material having Li ion conductivity
  • a Li—Ge—S solid electrolyte material can be given.
  • the Li—Ge—S based solid electrolyte material may be composed only of Li, Ge and S, or may further contain one or more other elements. Examples of other elements include P, Sb, Si, Sn, B, Al, Ga, In, Ti, Zr, V, and Nb. Among these, P is preferable.
  • the sulfide solid electrolyte material may be a so-called thio-LISICON type solid electrolyte material.
  • the sulfide solid electrolyte material (particularly a glassy sulfide solid electrolyte material) may contain a halide such as LiI or may contain a lithium orthooxo acid salt such as Li 3 PO 4. .
  • the Ge-containing solid electrolyte material contains an M 1 element, an M 2 element, and an S element, and the above M 1 is selected from the group consisting of Li, Na, K, Mg, Ca, and Zn.
  • this Ge-containing solid electrolyte material contains an M 1
  • FIG. 4 is an X-ray diffraction pattern for explaining the difference between the sulfide solid electrolyte material X having high ion conductivity and the sulfide solid electrolyte material Y having low ion conductivity.
  • the two sulfide solid electrolyte materials in FIG. 4 both have a composition of Li 3.25 Ge 0.25 P 0.75 S 4 .
  • the sulfide solid electrolyte material Y has a similar peak.
  • Crystal phases A and B are both crystalline phases exhibiting ionic conductivity, but there are differences in ionic conductivity.
  • the crystal phase A is considered to have significantly higher ionic conductivity than the crystal phase B.
  • the proportion of the crystal phase B having low ion conductivity cannot be reduced, and the ion conductivity cannot be sufficiently increased.
  • the crystal phase A having high ion conductivity can be positively precipitated by the method described in Production Example 1 described later, the sulfide solid electrolyte material having high ion conductivity. X can be obtained.
  • I B / I sulfide solid electrolyte material X value is less than 0.50 A, the conventional synthetic methods would not be able to obtain.
  • the ratio of the crystal phase A having high ion conductivity is high.
  • the peak of the crystal phase B is defined as a peak at a position of 27.33 ° ⁇ 0.50 °.
  • the sulfide solid electrolyte material X contains an M 1 element, an M 2 element, and an S element.
  • M 1 is preferably a monovalent or divalent element.
  • M 1 include at least one selected from the group consisting of Li, Na, K, Mg, Ca, and Zn. Among them, the M 1 preferably contains at least Li. Further, the M 1 may be Li alone or a combination of Li and another element.
  • the M 1 is a monovalent element (for example, Li, Na, K), and a part thereof may be substituted with a divalent or higher element (for example, Mg, Ca, Zn). Thereby, a monovalent element becomes easy to move and ion conductivity improves.
  • the M 2 contains at least Ge.
  • the M 2 is preferably a trivalent, tetravalent or pentavalent element.
  • Examples of M 2 include one selected from the group consisting of P, Sb, Si, Ge, Sn, B, Al, Ga, In, Ti, Zr, V, and Nb. Among these, in the present invention, it is preferable that the M 2 includes at least P and Ge.
  • the sulfide solid electrolyte material X preferably contains a Li element, a Ge element, a P element, and an S element.
  • the composition of the LiGePS-based sulfide solid electrolyte material is preferably a composition of Li (4-x) Ge (1-x) P x S 4 (x satisfies 0 ⁇ x ⁇ 1). This is because a sulfide solid electrolyte material having high ion conductivity can be obtained.
  • the composition of Li (4-x) Ge (1-x) P x S 4 corresponds to the composition of the solid solution of Li 3 PS 4 and Li 4 GeS 4 . That is, this composition corresponds to the composition on the tie line of Li 3 PS 4 and Li 4 GeS 4 .
  • both Li 3 PS 4 and Li 4 GeS 4 correspond to the ortho composition and have an advantage of high chemical stability.
  • x in Li (4-x) Ge ( 1-x) P x S 4 is not particularly limited as long as the value can be obtained the value of a given I B / I A, e.g. 0.4 ⁇ x is preferable, 0.5 ⁇ x is more preferable, and 0.6 ⁇ x is more preferable.
  • the x preferably satisfies x ⁇ 0.8, and more preferably satisfies x ⁇ 0.75. This is because the value of I B / I A can be further reduced by setting the range of such x.
  • the Ge-containing solid electrolyte material includes octahedron O composed of M 1 element and S element, tetrahedron T 1 composed of M 2a element and S element, M 2b element and S
  • the tetrahedron T 2 composed of elements, the tetrahedron T 1 and the octahedron O share a ridge, and the tetrahedron T 2 and the octahedron O mainly have a crystal structure sharing a vertex.
  • M 1 is at least one selected from the group consisting of Li, Na, K, Mg, Ca, Zn, and M 2a and M 2b are each independently P, Sb, Si, Ge , Sn, B, Al, Ga, In, Ti, Zr, V, and Nb. At least one of the M 2a and the M 2b preferably contains Ge.
  • this Ge-containing solid electrolyte material is referred to as a sulfide solid electrolyte material Z.
  • FIG. 5 is a perspective view for explaining an example of the crystal structure of the sulfide solid electrolyte material Z.
  • the octahedron O has M 1 as a central element, has six S at the apex of the octahedron, and is typically a LiS 6 octahedron.
  • the tetrahedron T 1 has M 2a as a central element, has four S at the apex of the tetrahedron, and is typically both a GeS 4 tetrahedron and a PS 4 tetrahedron.
  • Tetrahedron T 2 are, has M 2b as the central element, has four S to the apex of the tetrahedron, typically PS 4 tetrahedron. Furthermore, the tetrahedron T 1 and the octahedron O share a ridge, and the tetrahedron T 2 and the octahedron O share a vertex.
  • the sulfide solid electrolyte material Z is characterized mainly by containing the above crystal structure as a main component.
  • the ratio of the crystal structure in the entire crystal structure of the sulfide solid electrolyte material is not particularly limited, but is preferably higher. This is because a sulfide solid electrolyte material having high ion conductivity can be obtained.
  • the proportion of the crystal structure is preferably 70% by weight or more, and more preferably 90% by weight or more.
  • the ratio of the said crystal structure can be measured by synchrotron radiation XRD, for example.
  • the sulfide solid electrolyte material Z is preferably a single-phase material having the above crystal structure. This is because the ion conductivity can be made extremely high.
  • M 1 element, M 2 element (M 2a element, M 2b element) and other matters in the sulfide solid electrolyte material Z are the same as the contents described in the sulfide solid electrolyte material X described above, The description here is omitted.
  • the shape of the Ge-containing solid electrolyte material in the present invention is not particularly limited, and examples thereof include powder. Furthermore, the average particle diameter of the powdered Ge-containing solid electrolyte material is preferably in the range of 0.1 ⁇ m to 50 ⁇ m, for example. Further, the content of the Ge-containing solid electrolyte material in the negative electrode active material layer is not particularly limited, but is preferably in the range of 0.1 wt% to 80 wt%, for example, and 1 wt% to 60 wt%. More preferably, it is in the range of wt%, more preferably in the range of 10 wt% to 50 wt%.
  • the negative electrode active material layer in the present invention may further contain a conductive material.
  • a conductive material By adding a conductive material, the conductivity of the negative electrode active material layer can be improved.
  • the conductive material include acetylene black, ketjen black, and carbon fiber.
  • the negative electrode active material layer may contain a binder. Examples of the type of binder include fluorine-containing binders such as polytetrafluoroethylene (PTFE).
  • the thickness of the negative electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the electrolyte layer in this invention is a layer formed between a positive electrode active material layer and a negative electrode active material layer.
  • the electrolyte layer is not particularly limited as long as it is a layer capable of conducting ions, but is preferably a solid electrolyte layer made of a solid electrolyte material. This is because a battery with higher safety can be obtained as compared with a battery using an electrolytic solution.
  • a solid electrolyte layer contains the Ge containing solid electrolyte material mentioned above.
  • the proportion of the Ge-containing solid electrolyte material contained in the solid electrolyte layer is preferably, for example, in the range of 10 wt% to 100 wt%, and more preferably in the range of 50 wt% to 100 wt%.
  • the solid electrolyte layer may be composed of only a Ge-containing solid electrolyte material.
  • the thickness of the solid electrolyte layer is, for example, preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the electrolyte layer in the present invention may be a layer composed of an electrolytic solution.
  • the electrolytic solution it is necessary to further consider safety compared to the case where the solid electrolyte layer is used, but a battery with higher output can be obtained.
  • the negative electrode active material layer usually contains the Ge-containing solid electrolyte material described above.
  • the electrolytic solution used for the lithium battery usually contains a lithium salt and an organic solvent (nonaqueous solvent).
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC An organic lithium salt such as (CF 3 SO 2 ) 3 can be used.
  • organic solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate (BC), and the like.
  • the positive electrode active material layer in the present invention is a layer containing at least a positive electrode active material, and contains at least one of a solid electrolyte material, a conductive material and a binder as necessary. May be.
  • the positive electrode active material layer preferably contains a solid electrolyte material. This is because a positive electrode active material layer having high ion conductivity can be obtained.
  • the positive electrode active material layer preferably contains the Ge-containing solid electrolyte material described above.
  • the cathode active material is not particularly limited, for example LiCoO 2, LiMnO 2, Li 2 NiMn 3 O 8, LiVO 2, LiCrO 2, LiFePO 4, LiCoPO 4, LiNiO 2, LiNi 1/3 Examples thereof include Co 1/3 Mn 1/3 O 2 .
  • the conductive material and the binder used for the positive electrode active material layer are the same as those in the negative electrode active material layer described above.
  • the thickness of the positive electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the battery of the present invention has at least a negative electrode active material layer, an electrolyte layer, and a positive electrode active material layer. Furthermore, it usually has a positive electrode current collector for collecting current of the positive electrode active material layer and a negative electrode current collector for collecting current of the negative electrode active material layer.
  • the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon.
  • examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon.
  • the thickness, shape, and the like of the positive electrode current collector and the negative electrode current collector are preferably appropriately selected according to the use of the battery.
  • the battery case of a general battery can be used for a battery case. Examples of the battery case include a SUS battery case.
  • the battery of the present invention may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because it can be repeatedly charged and discharged and is useful, for example, as an in-vehicle battery.
  • Examples of the shape of the battery include a coin shape, a laminate shape, a cylindrical shape, and a square shape.
  • the control device in the present invention is a device that controls the potential of the Si-containing negative electrode active material to be equal to or lower than the reduction potential of the Ge-containing solid electrolyte material.
  • the control device includes, for example, a measurement unit that measures the potential of the Si-containing negative electrode active material and a switch unit that cuts off the battery current according to the potential of the Si-containing negative electrode active material.
  • the reduction potential of the Ge-containing solid electrolyte material can generally be obtained by cyclic voltammetry.
  • the reduction potential of the Ge-containing solid electrolyte material may be determined in detail according to the following (a) and (b). Even if the Ge-containing solid electrolyte material is a solid electrolyte material that does not contain Li, the reduction potential of the Ge-containing solid electrolyte material can be obtained by the same method.
  • (A) reduction potential evaluation cell prepared first, and 0.382771g the Li 2 S, a mixture of a P 2 S 5 0.617229g in an agate mortar, ZrO 2 balls (.phi.10 mm 10 pieces ⁇ ) with ZrO 2 pots ( 45 cc), and processed with a ball mill apparatus manufactured by Fritsch under the conditions of a rotation speed of 370 rpm and 40 hours to obtain a sulfide solid electrolyte material (75Li 2 S ⁇ 25P 2 S 5 ). Next, 100 mg of the obtained sulfide solid electrolyte material is taken, put in a ⁇ 11.3 mm Macor cylinder, and pressed at 1 ton / cm 2 to form a solid electrolyte layer.
  • the sulfide solid electrolyte material to be measured (Ge-containing solid electrolyte material) and stainless steel particles are mixed so that the volume ratio is 1: 1, 15 mg of the powder is taken, and one of the solid electrolyte layers is mixed. And press at 4 ton / cm 2 . Further, four In foils punched to ⁇ 10 mm and one Li foil punched to ⁇ 6 mm are arranged on the other surface of the solid electrolyte layer and pressed at 1 ton / cm 2 to obtain a power generation element. Stainless steel (current collector) is arranged on both sides of the obtained power generation element, and is screwed and restrained with a torque of 6 Ncm.
  • the potential is differentiated by the capacity, the horizontal axis is the potential, and the vertical axis is a graph of dV / dQ.
  • control is performed so that the potential of the Si-containing negative electrode active material is equal to or lower than the reduction potential of the Ge-containing solid electrolyte material. Especially, it is preferable to control so that the electric potential of Si containing negative electrode active material may become below the operating electric potential at the time of metal ion occlusion.
  • the operating potential of the Si-containing negative electrode active material can be obtained from, for example, a battery for evaluation as described in Examples described later, conducting a charge / discharge test, and the potential of the plateau portion of the obtained curve.
  • the operating potential of the Si-containing negative electrode active material may be determined in detail by the following (c) and (d).
  • the operating potential of the Si-containing negative electrode active material in the case where metal ions other than Li ions are used can be obtained by the same method.
  • (C) working potential evaluation cell prepared first, and 0.382771g the Li 2 S, a mixture of a P 2 S 5 0.617229g in an agate mortar, ZrO 2 balls (.phi.10 mm 10 pieces ⁇ ) with ZrO 2 pots ( 45 cc), and processed with a ball mill apparatus manufactured by Fritsch under the conditions of a rotation speed of 370 rpm and 40 hours to obtain a sulfide solid electrolyte material (75Li 2 S ⁇ 25P 2 S 5 ). Next, 100 mg of the obtained sulfide solid electrolyte material is taken, put in a ⁇ 11.3 mm Macor cylinder, and pressed at 1 ton / cm 2 to form a solid electrolyte layer.
  • the obtained sulfide solid electrolyte material and the Si-containing negative electrode active material are mixed so as to have a volume ratio of 1: 1, and 15 mg of the powder is taken and placed on one surface of the solid electrolyte layer, 4 ton / Press at cm 2 . Further, four In foils punched to ⁇ 10 mm and one Li foil punched to ⁇ 6 mm are arranged on the other surface of the solid electrolyte layer and pressed at 1 ton / cm 2 to obtain a power generation element. Stainless steel (current collector) is arranged on both sides of the obtained power generation element, and is screwed and restrained with a torque of 6 Ncm.
  • the potential is differentiated by the capacity, the horizontal axis is the potential, and the vertical axis is a graph of dV / dQ.
  • the potential of the Si-containing negative electrode active material is preferably controlled to be 0.25 V (vs. Li / Li + ) or less, and the potential of the Si-containing negative electrode active material is 0.15 V (vs. Li / Li + ) or less is more preferable, and it is more preferable to control the potential of the Si-containing negative electrode active material to be 0.05 V (vs. Li / Li + ) or less.
  • the battery system manufacturing method of the present invention is a battery system manufacturing method including a battery and a control device, and includes a positive electrode active material layer containing a positive electrode active material and a negative electrode active material containing a Si-containing negative electrode active material. And an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, and the Ge-containing solid electrolyte material is contained in at least one of the negative electrode active material layer and the electrolyte layer.
  • a battery assembly process for assembling a battery, and a control device installation step for installing the control device for controlling the potential of the Si-containing negative electrode active material to be equal to or lower than the reduction potential of the Ge-containing solid electrolyte material. It is what.
  • FIG. 6 is a schematic sectional view showing an example of the battery assembly process. Specifically, it is a schematic cross-sectional view showing an example of a method for producing a solid battery including a solid electrolyte layer.
  • the solid electrolyte layer 3 is formed by pressing the solid electrolyte material (FIG. 6A).
  • the positive electrode mixture is added to one surface of the solid electrolyte layer 3 and pressed to form the positive electrode active material layer 1.
  • the negative electrode mixture is added to the other surface of the solid electrolyte layer 3.
  • the negative electrode active material layer 2 is formed by pressing (FIG. 6B).
  • the positive electrode current collector 4 is disposed on the surface of the positive electrode active material layer 1, and the negative electrode current collector 5 is disposed on the surface of the negative electrode active material layer 2 (FIG. 6C). Finally, this member is accommodated in the battery case 6 and sealed to obtain the battery 10 (FIG. 6D).
  • a battery system is obtained by installing a control device that controls the obtained battery 10 such that the potential of the Si-containing negative electrode active material is equal to or lower than the reduction potential of the Ge-containing solid electrolyte material.
  • a battery system in which reductive decomposition of a Ge-containing solid electrolyte material is suppressed by installing a control device that performs the above control on a battery in which a Si-containing negative electrode active material is combined with a Ge-containing solid electrolyte material. Can be obtained.
  • the manufacturing method of the battery system of this invention is demonstrated for every process.
  • the battery assembly process in the present invention is a process for assembling the battery described above.
  • the battery assembly method is not particularly limited, and is the same as a general method.
  • the battery assembly process shown in FIG. 6 is merely an example, and the order and the like can be arbitrarily changed.
  • the control device installation step in the present invention is a step of installing the control device described above.
  • the timing for installing the control device is not particularly limited as long as a desired battery system can be manufactured.
  • the control device may be installed after the battery assembly process, or the control device may be installed during the battery assembly process.
  • the battery control device of the present invention is formed between a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a Si-containing negative electrode active material, and the positive electrode active material layer and the negative electrode active material layer.
  • the potential of the Si-containing negative electrode active material is higher than that of the Ge-containing solid with respect to the battery including a Ge-containing solid electrolyte material in at least one of the negative electrode active material layer and the electrolyte layer. It is characterized by controlling so as to be equal to or lower than the reduction potential of the electrolyte material.
  • reductive decomposition of the Ge-containing solid electrolyte material can be suppressed by performing the above control on the battery in which the Ge-containing solid electrolyte material is combined with the Si-containing negative electrode active material.
  • the battery control apparatus of the present invention is the same as the contents described in the above “A. Battery system”, and therefore, the description thereof is omitted here.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • This pot was attached to a planetary ball mill (P7 made by Fritsch), and mechanical milling was performed at a base plate rotation speed of 370 rpm for 40 hours.
  • a planetary ball mill P7 made by Fritsch
  • mechanical milling was performed at a base plate rotation speed of 370 rpm for 40 hours.
  • an amorphized ion conductive material having a composition of Li 3.33 Ge 0.33 P 0.67 S 4 was obtained.
  • the obtained ion conductive material was put in a carbon-coated quartz tube and vacuum-sealed.
  • the pressure of the vacuum sealed quartz tube was about 30 Pa.
  • the quartz tube was placed in a firing furnace, heated from room temperature to 550 ° C. over 6 hours, maintained at 550 ° C. for 8 hours, and then gradually cooled to room temperature.
  • a crystalline Ge-containing solid electrolyte material electrolyte powder having a composition of Li 3.33 Ge 0.33 P 0.67 S 4 was obtained.
  • the crystal structure of the obtained Ge-containing solid electrolyte material was identified by X-ray structural analysis. Based on the diffraction pattern obtained by XRD, a crystal system and a crystal group were determined by a direct method, and then a crystal structure was identified by a real space method. As a result, it was confirmed that the crystal structure as shown in FIG.
  • tetrahedron T 1 (GeS 4 tetrahedron and PS 4 tetrahedron) and octahedron O (LiS 6 octahedron) share a ridge
  • tetrahedron T 2 (PS 4 tetrahedron) and octahedron O (LiS 6 octahedron) was a crystal structure sharing a vertex. This crystal structure is considered to contribute to high Li conduction.
  • the quartz tube was placed in a firing furnace, heated from room temperature to 700 ° C. over 6 hours, maintained at 700 ° C. for 8 hours, and then gradually cooled to room temperature.
  • a crystalline Ge-containing solid electrolyte material electrolyte powder having a composition of Li 3.25 Ge 0.25 P 0.75 S 4 was obtained.
  • X-ray diffraction (XRD) measurement was performed using the obtained Ge-containing solid electrolyte material. As a result, both the peak of the crystal phase A with high ion conductivity and the peak of the crystal phase B with low ion conductivity were confirmed. The value of I B / I A was 0.50.
  • Si powder manufactured by High Purity Chemical Laboratories
  • the Li 3 PS 4 sulfide glass 80 mg was added to Macor cylinder was pressed at 1 ton / cm 2, to form a solid electrolyte layer.
  • 2 mg of the negative electrode mixture was added to one surface of the solid electrolyte layer and pressed at 4 ton / cm 2 to form a negative electrode active material layer on the solid electrolyte layer.
  • a LiIn foil was placed on the other surface of the solid electrolyte layer and pressed at 1 ton / cm 2 to obtain a power generation element.
  • the power generation element was restrained at 6 Ncm to obtain an evaluation battery.
  • Example 2 An evaluation battery was obtained in the same manner as in Example 1, except that the electrolyte powder obtained in Production Example 2 was used instead of the electrolyte powder obtained in Production Example 1.
  • Carbon powder (graphite) was used as the negative electrode active material.
  • An evaluation battery was obtained in the same manner as in Example 1 except that 1.5 mg of this negative electrode mixture was used.
  • the evaluation battery obtained in Comparative Example 2 was subjected to a constant current charge / discharge test of 2 mA in a range of ⁇ 0.62 V to 1 V (a range of 0.00 V to 1.62 V on the basis of lithium). .
  • the ratio of discharge capacity to charge capacity was defined as charge / discharge efficiency (Coulomb efficiency).
  • charge / discharge efficiency Coulomb efficiency
  • FIGS. 10 to 13 are charging / discharging curves of the evaluation batteries obtained in Examples 1 and 2 and Comparative Examples 1 and 2, respectively, and FIG. 14 is obtained in Examples 1 and 2 and Comparative Examples 1 and 2, respectively. It is a result of charging / discharging efficiency of the obtained evaluation battery. As shown in FIGS. 10 and 11, in Examples 1 and 2, a plateau portion was observed in the vicinity of 0.232 V (vs Li / Li + ), which is an alloying potential (operating potential) of Li and Si, during charging. A plateau was observed near 0.501 V (vs Li / Li + ) during discharge.
  • Examples 1 and 2 Si having a theoretical capacity of 4200 mAh / g was used, but it was confirmed that a very large capacity of 3000 mAh or more could actually be used reversibly. Further, as shown in FIG. 14, the charge and discharge efficiencies of Examples 1 and 2 were both higher than 90%. In this way, by combining the Si-containing negative electrode active material with the Ge-containing solid electrolyte material, even if the potential of the Si-containing negative electrode active material is lowered below the reduction potential of the Ge-containing solid electrolyte material, the battery operates normally. It was confirmed.
  • the battery may not operate normally. confirmed.
  • FIG. 15 is an enlarged view of the y-axis of FIG. 12 and is a charging curve of the evaluation battery obtained in Comparative Example 1. In addition, the theoretical charge curve of carbon is shown superimposed.
  • the Ge-containing solid electrolyte material obtained in Production Example 1 is considered to cause a side reaction that consumes electricity at a potential of 0.25 V (vs Li / Li + ) or less. That is, it is considered that the Ge-containing solid electrolyte material consumed electricity and the electrochemical reaction between carbon and Li ions did not proceed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、Ge含有固体電解質材料の還元分解を抑制した電池システムを提供することを課題とする。 本発明は、電池と、制御装置とを備える電池システムであって、上記電池は、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有し、上記負極活物質層および上記電解質層の少なくとも一方にGe含有固体電解質材料を含有し、上記制御装置は、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御する装置であることを特徴とする電池システムを提供することにより、上記課題を解決する。

Description

電池システム、電池システムの製造方法、電池の制御装置
 本発明は、Ge含有固体電解質材料の還元分解を抑制した電池システムに関する。
 近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。
 リチウム電池に代表される電池には、通常、イオン伝導性を有する電解質材料が用いられる。中でも、固体電解質材料は、液体電解質材料(電解液)に比べて液漏れ等の心配がないため、安全装置の簡略化が図れるという利点がある。また、固体電解質材料として、Ge元素を含有するGe含有固体電解質材料が知られている。Ge含有固体電解質材料の中には、比較的高いイオン伝導性を発揮する材料が知られているが、Ge含有固体電解質材料は還元電位が高く、還元分解されやすいという性質がある(非特許文献1)。
 また、例えば特許文献1には、Geの還元反応が起こる電位がリチウム基準で約0.3Vであることから、Geを含有する固体電解質を、金属リチウム等の負極活物質(電位がリチウム基準で約0.3V以下の負極活物質)と組み合わせて用いることができないという問題が記載されている。この問題を解決するために、特許文献1では、負極に含まれる第二の固体電解質と、負極に接する隔離体に含まれる第四の固体電解質とに、Geを含まない固体電解質を用いた電池を提案している。
特開2003-217663号公報
S. Kondo et al., "New lithium ion conductors based on Li2S-SiS2 system", Solid State Ionics, Volumes 53-56, Part 2, July-August 1992, Pages 1183-1186
 このように、Ge含有固体電解質材料は還元分解されやすく、還元電位以下の電位で使用することは困難であるとされていた。
 本発明は、上記実情に鑑みてなされたものであり、Ge含有固体電解質材料の還元分解を抑制した電池システムを提供することを主目的とする。
 上記課題を解決するために、本発明者等が鋭意研究を重ねた結果、Ge含有固体電解質材料を、Si含有負極活物質と組み合わせた場合には、Ge含有固体電解質材料を還元電位以下の電位で使用しても、例外的に電池特性が劣化しないことを見出し、本発明を完成させるに至った。
 すなわち、本発明においては、電池と、制御装置とを備える電池システムであって、上記電池は、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有し、上記負極活物質層および上記電解質層の少なくとも一方にGe含有固体電解質材料を含有し、上記制御装置は、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御する装置であることを特徴とする電池システムを提供する。
 本発明によれば、Ge含有固体電解質材料に、Si含有負極活物質を組み合わせることで、上記制御を行う制御装置を設けた場合であっても、Ge含有固体電解質材料の還元分解を抑制した電池システムとすることができる。
 上記発明において、上記制御装置は、上記電池の電流を遮断するスイッチ部を備え、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位より大きい時に充電が開始された場合に、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位より小さくなるまで充電を継続するよう、上記スイッチ部を制御することが好ましい。
 上記発明においては、上記Ge含有固体電解質材料が、S元素をさらに含有することが好ましい。
 上記発明においては、上記Ge含有固体電解質材料が、Li元素をさらに含有することが好ましい。
 上記発明においては、上記Ge含有固体電解質材料が、P元素をさらに含有することが好ましい。
 上記発明においては、上記Ge含有固体電解質材料が、M元素、M元素およびS元素を含有し、上記Mは、Li、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種であり、上記Mは、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、かつ、少なくともGeを含み、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、上記2θ=29.58°±0.50°のピークの回折強度をIとし、2θ=27.33°±0.50°のピークの回折強度をIとした場合に、I/Iの値が0.50未満であることが好ましい。
 上記発明においては、上記Ge含有固体電解質材料が、M元素およびS元素から構成される八面体Oと、M2a元素およびS元素から構成される四面体Tと、M2b元素およびS元素から構成される四面体Tとを有し、上記四面体Tおよび上記八面体Oは稜を共有し、上記四面体Tおよび上記八面体Oは頂点を共有する結晶構造を主体として含有し、上記Mは、Li、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種であり、上記M2aおよびM2bは、それぞれ独立に、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、上記M2aおよび上記M2bの少なくとも一方はGeを含むことが好ましい。
 上記発明において、上記制御装置は、上記Si含有負極活物質の電位が0.25V(vs. Li/Li)以下となるように制御する装置であることが好ましい。
 上記発明においては、上記Si含有負極活物質が、Siであることが好ましい。
 上記発明においては、上記固体電解質層に含まれる上記Ge含有固体電解質材料と、上記負極活物質層に含まれる上記Si含有負極活物質とが接触していることが好ましい。
 また、本発明においては、電池と、制御装置とを備える電池システムの製造方法であって、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有し、上記負極活物質層および上記電解質層の少なくとも一方に、Ge含有固体電解質材料を含有する上記電池を組み立てる電池組立工程と、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御する上記制御装置を設置する制御装置設置工程と、を有することを特徴とする電池システムの製造方法を提供する。
 本発明によれば、Ge含有固体電解質材料にSi含有負極活物質を組み合わせた電池に対して、上記制御を行う制御装置を設置することで、Ge含有固体電解質材料の還元分解を抑制した電池システムを得ることができる。
 また、本発明においては、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有し、上記負極活物質層および上記電解質層の少なくとも一方に、Ge含有固体電解質材料を含有する上記電池に対して、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御することを特徴とする電池の制御装置を提供する。
 本発明によれば、Ge含有固体電解質材料にSi含有負極活物質を組み合わせた電池に対して、上記制御を行うことで、Ge含有固体電解質材料の還元分解を抑制することができる。
 本発明の電池システムは、Ge含有固体電解質材料の還元分解を抑制できるという効果を奏する。
本発明の電池システムを説明する模式図である。 本発明における電池の一例を示す概略断面図である。 本発明における電池を説明する概略断面図である。 本発明におけるGe含有固体電解質材料を説明するX線回折パターンである。 本発明におけるGe含有固体電解質材料の結晶構造の一例を説明する斜視図である。 本発明の電池システムの製造方法における、電池組立工程の一例を示す概略断面図である。 製造例1で得られたGe含有固体電解質材料のX線回折パターンである。 製造例1で得られたGe含有固体電解質材料の還元電位を測定した結果である。 負極活物質であるSiおよびCの作動電位を測定した結果である。 実施例1で得られた評価用電池の充放電曲線である。 実施例2で得られた評価用電池の充放電曲線である。 比較例1で得られた評価用電池の充放電曲線である。 比較例2で得られた評価用電池の充放電曲線である。 実施例1、2および比較例1、2で得られた評価用電池の充放電効率の結果である。 比較例1で得られた評価用電池の充電曲線である。
 以下、本発明の電池システム、電池システムの製造方法、電池の制御装置について、詳細に説明する。
A.電池システム
 本発明の電池システムは、電池と、制御装置とを備える電池システムであって、上記電池は、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有し、上記負極活物質層および上記電解質層の少なくとも一方にGe含有固体電解質材料を含有し、上記制御装置は、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御する装置であることを特徴とするものである。
 図1は本発明の電池システムを説明する模式図であり、図2は本発明における電池の一例を示す概略断面図である。図1に示すように、本発明の電池システム30は、電池10と、制御装置20とを備える。また、図2に示すように、電池10は、正極活物質を含有する正極活物質層1と、Si含有負極活物質を含有する負極活物質層2と、正極活物質層1および負極活物質層2の間に形成された電解質層3と、正極活物質層1の集電を行う正極集電体4と、負極活物質層2の集電を行う負極集電体5と、これらの部材を収納する電池ケース6とを有する。
 また、電池10は、負極活物質層2および電解質層3の少なくとも一方に、Ge含有固体電解質材料を含有する。具体的には、図3(a)に示すように、負極活物質層2がGe含有固体電解質材料11およびSi含有負極活物質12を含有していても良く、図3(b)に示すように、固体電解質層3がGe含有固体電解質材料11を含有し、負極活物質層2がSi含有負極活物質12を含有していても良い。なお、図示しないが、負極活物質層2および固体電解質層3が、Ge含有固体電解質材料11を含有していても良い。
 一方、図1における制御装置20は、例えば、Si含有負極活物質の電位を測定する測定部と、Si含有負極活物質の電位に応じて電池の電流を遮断するスイッチ部とを有する。また、制御装置20は、Si含有負極活物質の電位がGe含有固体電解質材料の還元電位以下となるように制御する装置である。制御装置20は、Si含有負極活物質の電位がGe含有固体電解質材料の還元電位より大きい時に充電が開始された場合に、Si含有負極活物質の電位がGe含有固体電解質材料の還元電位より小さくなるまで充電を継続するよう、スイッチ部を制御する装置であることが好ましい。
 本発明によれば、Ge含有固体電解質材料に、Si含有負極活物質を組み合わせることで、上記制御を行う制御装置を設けた場合であっても、Ge含有固体電解質材料の還元分解を抑制した電池システムとすることができる。通常、負極活物質の電位は充電により低くなるが、負極活物質の作動電位(活物質として機能する電位)が、Ge含有固体電解質材料の還元電位よりも低い場合、充電反応よりも先にGe含有固体電解質材料の還元分解が生じ、充放電特性等の電池特性が大幅に低下するという問題がある。一方、負極活物質の電位を、Ge含有固体電解質材料の還元電位よりも高く維持すると、充電反応が十分に進行しないという問題がある。そのため、還元電位が高いGe含有固体電解質材料と、作動電位が低い負極活物質とを組み合わせることは通常行われてこなかった。
 これに対して、本発明においては、Ge含有固体電解質材料にSi含有負極活物質を組み合わせることにより、意外にも、Ge含有固体電解質材料の還元分解を抑制できることを確認した。これにより、Ge含有固体電解質材料の還元分解を抑制しつつ、Si含有負極活物質のポテンシャルを十分に引き出すことが可能となった。Si含有負極活物質は、充電時(金属イオン吸蔵時)の作動電位が低いという性質を有するが、一般的なカーボン系負極活物質に比べて非常に大きな容量を有する。本発明においては、Si含有負極活物質を用いているため、高容量な電池システムとすることができる。また、Ge含有固体電解質材料の中には、例えば、高いLiイオン伝導度(25℃で10-3S/cm以上)を有するものがある。本発明においては、このようなGe含有固体電解質材料を用いることで、高出力な電池システムとすることができる。
 また、Ge含有固体電解質材料の還元分解を抑制できるメカニズムは必ずしも明らかではないが、還元分解は電気分解であることから、還元電位でGe含有固体電解質材料に電子が供給されることが、Ge含有固体電解質材料の還元分解の原因であると推測される。本発明においては、電子伝導性が低いSi含有負極活物質を用いたため、Ge含有固体電解質材料の還元分解を抑制できた可能性がある。また、別の推定メカニズムとしては、Ge含有固体電解質材料の還元分解生成物が、Si含有負極活物質と反応し、両者の界面に、Ge含有固体電解質材料の還元分解を抑制する被膜が形成された可能性が考えられる。なお、上述した図3では、Ge含有固体電解質材料11およびSi含有負極活物質12が接触しているが、本発明における接触は、両者が直接接触している場合と、被膜を介して接触している場合との両方を包含する概念である。被膜の存在は、例えば、透過型電子顕微鏡(TEM)、電界放出型走査電子顕微鏡により確認できる可能性がある。
 以下、本発明の電池システムについて、構成ごとに説明する。
1.電池
 本発明における電池は、正極活物質層と、負極活物質層と、電解質層とを少なくとも有する。まず、本発明における負極活物質層について説明する。
(1)負極活物質層
 本発明における負極活物質層は、少なくともSi含有負極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、負極活物質層が固体電解質材料を含有することが好ましい。イオン伝導性の高い負極活物質層を得ることができるからである。さらに、本発明においては、負極活物質層がGe含有固体電解質材料を含有することが好ましい。
(i)Si含有負極活物質
 本発明におけるSi含有負極活物質は、少なくともSi元素を含有する活物質であれば特に限定されるものではない。Si含有負極活物質としては、例えば、Si、Si合金、Si酸化物、Si窒化物、Si硫化物等を挙げることができる。Si合金としては、例えばSi-Al系合金、Si-Sn系合金、Si-In系合金、Si-Ag系合金、Si-Pb系合金、Si-Sb系合金、Si-Bi系合金、Si-Mg系合金、Si-Ca系合金、Si-Ge系合金、Si-Pb系合金等を挙げることができる。なお、例えばSi-Al系合金とは、少なくともSiおよびAlを含む合金を意味し、SiおよびAlのみから構成される合金であっても良く、さらに別の元素を含有する合金であっても良い。Si-Al系合金以外に例示した上記合金についても同様である。Si合金は、2成分系合金であっても良く、3成分系以上の多成分系合金であっても良い。また、Si酸化物としては、SiO等を挙げることができる。また、Si含有負極活物質は、膜状であっても良く、粉末状であっても良い。
 負極活物質層におけるSi含有負極活物質の含有量は、特に限定されるものではないが、例えば50重量%以上であることが好ましく、60重量%~99重量%の範囲内であることがより好ましく、70重量%~95重量%の範囲内であることがさらに好ましい。
(ii)Ge含有固体電解質材料
 本発明におけるGe含有固体電解質材料は、少なくともGe元素を含有する固体電解質材料であれば特に限定されるものではない。中でも、Ge含有固体電解質材料は、S元素をさらに含有すること、すなわち、硫化物固体電解質材料であること好ましい。イオン伝導性が高いからである。また、Ge含有固体電解質材料は、Li元素をさらに含有すること、すなわち、Liイオン伝導性固体電解質材料であることが好ましい。有用なリチウム電池を得ることができるからである。また、Ge含有固体電解質材料は、P元素をさらに含有することが好ましい。化学的安定性を向上させることができるからである。
 Ge含有固体電解質材料は、非晶質体(ガラス)であっても良く、結晶質体であっても良く、ガラスを熱処理したガラスセラミックスであっても良い。また、Ge含有固体電解質材料は、酸化物固体電解質材料であっても良く、硫化物固体電解質材料であっても良い。例えばLiイオン伝導性を有する酸化物固体電解質材料としては、NASICON型構造を有する固体電解質材料を挙げることができ、具体的には、Li-Al-Ge-P-O系の固体電解質材料を挙げることができる。特に、本発明においては、Liイオン伝導性を有する酸化物固体電解質材料が、一般式Li1+xAlGe2-x(PO(0≦x≦2)で表される固体電解質材料(LAGP)であることが好ましい。
 また、例えばLiイオン伝導性を有する硫化物固体電解質材料としては、Li-Ge-S系の固体電解質材料を挙げることができる。Li-Ge-S系の固体電解質材料は、Li、GeおよびSのみから構成されるものであっても良く、一種または二種以上の他の元素をさらに含有するものであっても良い。他の元素としては、例えば、P、Sb、Si、Sn、B、Al、Ga、In、Ti、Zr、V、Nb等を挙げることができ、中でもPが好ましい。また、硫化物固体電解質材料は、いわゆるthio-LISICON型の固体電解質材料であっても良い。さらに、硫化物固体電解質材料(特にガラス状の硫化物固体電解質材料)は、LiI等のハロゲン化物を含有していても良く、LiPO等のオルトオキソ酸リチウム塩を含有していても良い。
 特に、本発明においては、Ge含有固体電解質材料が、M元素、M元素およびS元素を含有し、上記Mは、Li、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種であり、上記Mは、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、かつ、少なくともGeを含み、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、上記2θ=29.58°±0.50°のピークの回折強度をIとし、2θ=27.33°±0.50°のピークの回折強度をIとした場合に、I/Iの値が0.50未満であることが好ましい。イオン伝導性が高いからである。以下、このGe含有固体電解質材料を硫化物固体電解質材料Xとする。
 図4は、イオン伝導性の高い硫化物固体電解質材料Xと、イオン伝導性の低い硫化物固体電解質材料Yとの違いを説明するX線回折パターンである。なお、図4における2つの硫化物固体電解質材料は、ともにLi3.25Ge0.250.75の組成を有する。硫化物固体電解質材料Xは、2θ=29.58°±0.50°の位置、および、2θ=27.33°±0.50°の位置にピークを有する。硫化物固体電解質材料Yも同様のピークを有する。ここで、2θ=29.58°付近のピークを有する結晶相と、2θ=27.33°付近のピークを有する結晶相とは、互いに異なる結晶相であると考えられる。なお、本発明においては、2θ=29.58°付近のピークを有する結晶相を「結晶相A」と称し、2θ=27.33°付近のピークを有する結晶相を「結晶相B」と称する場合がある。
 結晶相A、Bは、ともにイオン伝導性を示す結晶相であるが、そのイオン伝導性には違いがある。結晶相Aは、結晶相Bに比べて、イオン伝導性が顕著に高いと考えられる。従来の合成方法(例えば固相法)では、イオン伝導性の低い結晶相Bの割合を少なくすることができず、イオン伝導性を十分に高くすることができなかった。これに対して、本発明では、後述する製造例1に記載した方法等により、イオン伝導性の高い結晶相Aを積極的に析出させることができるため、イオン伝導性の高い硫化物固体電解質材料Xを得ることができる。
 また、本発明においては、硫化物固体電解質材料Xおよび硫化物固体電解質材料Yを区別するため、2θ=29.58°付近のピークの回折強度をIとし、2θ=27.33°付近のピークの回折強度をIとし、I/Iの値を0.50未満に規定している。なお、I/Iの値が0.50未満の硫化物固体電解質材料Xは、従来の合成方法では得ることができないと考えられる。また、イオン伝導性の観点からは、イオン伝導性の高い結晶相Aの割合が高いことが好ましい。そのため、I/Iの値はより小さいことが好ましく、具体的には0.45以下であることが好ましく、0.25以下であることがより好ましく、0.15以下であることがさらに好ましく、0.07以下であることが特に好ましい。また、I/Iの値は0であることが好ましい。言い換えると、硫化物固体電解質材料Xは、結晶相Bのピークである2θ=27.33°付近のピークを有しないことが好ましい。
 硫化物固体電解質材料Xは、2θ=29.58°付近にピークを有する。このピークは、上述したように、イオン伝導性の高い結晶相Aのピークの一つである。ここで、2θ=29.58°は、後述する製造例1で得られた実測値であり、材料組成等によって結晶格子が若干変化し、ピークの位置が2θ=29.58°から多少前後する場合がある。そのため、本発明においては、結晶相Aの上記ピークを、29.58°±0.50°の位置のピークとして定義する。結晶相Aは、通常、2θ=17.38°、20.18°、20.44°、23.56°、23.96°、24.93°、26.96°、29.07°、29.58°、31.71°、32.66°、33.39°のピークを有すると考えられる。なお、これらのピーク位置も、±0.50°の範囲で前後する場合がある。
 一方、2θ=27.33°付近のピークは、上述したように、イオン伝導性の低い結晶相Bのピークの一つである。ここで、2θ=27.33°は、後述する製造例2で得られた実測値であり、材料組成等によって結晶格子が若干変化し、ピークの位置が2θ=27.33°から多少前後する場合がある。そのため、本発明においては、結晶相Bの上記ピークを、27.33°±0.50°の位置のピークとして定義する。結晶相Bは、通常、2θ=17.46°、18.12°、19.99°、22.73°、25.72°、27.33°、29.16°、29.78°のピークを有すると考えられる。なお、これらのピーク位置も、±0.50°の範囲で前後する場合がある。
 また、硫化物固体電解質材料Xは、M元素、M元素およびS元素を含有するものである。上記Mは、一価または二価の元素であることが好ましい。上記Mとしては、例えばLi、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種を挙げることができる。中でも、上記Mは、少なくともLiを含むことが好ましい。また、上記Mは、Liのみであっても良く、Liと、他の元素との組み合わせであっても良い。また、上記Mは、一価の元素(例えばLi、Na、K)であり、その一部が二価以上の元素(例えばMg、Ca、Zn)で置換されたものであっても良い。これにより、一価の元素が移動しやすくなりイオン伝導性が向上する。
 一方、上記Mは、少なくともGeを含む。また、上記Mは、三価、四価または五価の元素であることが好ましい。上記Mとしては、例えば、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される一種を挙げることができる。中でも、本発明においては、上記Mが、PおよびGeを少なくとも含むことが好ましい。
 また、硫化物固体電解質材料Xは、Li元素、Ge元素、P元素およびS元素を含有することが好ましい。さらに、LiGePS系の硫化物固体電解質材料の組成は、Li(4-x)Ge(1-x)(xは、0<x<1を満たす)の組成であることが好ましい。イオン伝導性の高い硫化物固体電解質材料とすることができるからである。ここで、Li(4-x)Ge(1-x)の組成は、LiPSおよびLiGeSの固溶体の組成に該当する。すなわち、この組成は、LiPSおよびLiGeSのタイライン上の組成に該当する。なお、LiPSおよびLiGeSは、いずれもオルト組成に該当し、化学的安定性が高いという利点を有する。
 また、Li(4-x)Ge(1-x)におけるxは、所定のI/Iの値を得ることができる値であれば特に限定されるものではないが、例えば、0.4≦xを満たすことが好ましく、0.5≦xを満たすことがより好ましく、0.6≦xを満たすことがさらに好ましい。一方、上記xは、x≦0.8を満たすことが好ましく、x≦0.75を満たすことがより好ましい。このようなxの範囲とすることにより、I/Iの値をより小さくできるからである。
 また、本発明においては、Ge含有固体電解質材料が、M元素およびS元素から構成される八面体Oと、M2a元素およびS元素から構成される四面体Tと、M2b元素およびS元素から構成される四面体Tとを有し、上記四面体Tおよび上記八面体Oは稜を共有し、上記四面体Tおよび上記八面体Oは頂点を共有する結晶構造を主体として含有し、上記Mは、Li、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種であり、上記M2aおよびM2bは、それぞれ独立に、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、上記M2aおよび上記M2bの少なくとも一方はGeを含むことが好ましい。以下、このGe含有固体電解質材料を硫化物固体電解質材料Zとする。
 図5は、硫化物固体電解質材料Zの結晶構造の一例を説明する斜視図である。図5に示す結晶構造において、八面体Oは、中心元素としてMを有し、八面体の頂点に6個のSを有しており、典型的にはLiS八面体である。四面体Tは、中心元素としてM2aを有し、四面体の頂点に4個のSを有しており、典型的にはGeS四面体およびPS四面体の両方である。四面体Tは、中心元素としてM2bを有し、四面体の頂点に4個のSを有しており、典型的にはPS四面体である。さらに、四面体Tおよび八面体Oは稜を共有し、四面体Tおよび八面体Oは頂点を共有している。
 硫化物固体電解質材料Zは、上記結晶構造を主体として含有することを大きな特徴とする。硫化物固体電解質材料の全結晶構造における上記結晶構造の割合は特に限定されるものではないが、より高いことが好ましい。イオン伝導性の高い硫化物固体電解質材料とすることができるからである。上記結晶構造の割合は、具体的には、70重量%以上であることが好ましく、90重量%以上であることがより好ましい。なお、上記結晶構造の割合は、例えば、放射光XRDにより測定することができる。特に、硫化物固体電解質材料Zは、上記結晶構造の単相材料であることが好ましい。イオン伝導性を極めて高くすることができるからである。
 なお、硫化物固体電解質材料ZにおけるM元素、M元素(M2a元素、M2b元素)およびその他の事項については、上述した硫化物固体電解質材料Xに記載した内容と同様であるので、ここでの記載は省略する。
 本発明におけるGe含有固体電解質材料の形状は特に限定されるものではないが、例えば粉末状を挙げることができる。さらに、粉末状のGe含有固体電解質材料の平均粒径は、例えば0.1μm~50μmの範囲内であることが好ましい。また、負極活物質層におけるGe含有固体電解質材料の含有量は、特に限定されるものではないが、例えば0.1重量%~80重量%の範囲内であることが好ましく、1重量%~60重量%の範囲内であることがより好ましく、10重量%~50重量%の範囲内であることがさらに好ましい。
(iii)負極活物質層
 本発明における負極活物質層は、さらに導電化材を含有していても良い。導電化材の添加により、負極活物質層の導電性を向上させることができる。導電化材としては、例えばアセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。また、負極活物質層は、結着材を含有していても良い。結着材の種類としては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素含有結着材等を挙げることができる。また、負極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
(2)電解質層
 本発明における電解質層は、正極活物質層および負極活物質層の間に形成される層である。電解質層は、イオンの伝導を行うことができる層であれば特に限定されるものではないが、固体電解質材料から構成される固体電解質層であることが好ましい。電解液を用いる電池に比べて、安全性の高い電池を得ることができるからである。さらに、本発明においては、固体電解質層が、上述したGe含有固体電解質材料を含有することが好ましい。固体電解質層に含まれるGe含有固体電解質材料の割合は、例えば10重量%~100重量%の範囲内であることが好ましく、50重量%~100重量%の範囲内であることがより好ましい。本発明においては、固体電解質層がGe含有固体電解質材料のみから構成されていても良い。また、本発明においては、固体電解質層に含まれるGe含有固体電解質材料と、負極活物質層に含まれるSi含有負極活物質とが接触していることが好ましい。固体電解質層の厚さは、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。
 また、本発明における電解質層は、電解液から構成される層であっても良い。電解液を用いる場合、固体電解質層を用いる場合に比べて安全性をさらに配慮する必要があるが、より高出力な電池を得ることができる。また、この場合は、通常、負極活物質層が上述したGe含有固体電解質材料を含有することになる。リチウム電池に用いられる電解液は、通常、リチウム塩および有機溶媒(非水溶媒)を含有する。リチウム塩としては、例えばLiPF、LiBF、LiClO、LiAsF等の無機リチウム塩、およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。上記有機溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート(BC)等を挙げることができる。
(3)正極活物質層
 本発明における正極活物質層は、少なくとも正極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、正極活物質層が固体電解質材料を含有することが好ましい。イオン伝導性の高い正極活物質層を得ることができるからである。さらに、本発明においては、正極活物質層が上述したGe含有固体電解質材料を含有することが好ましい。また、正極活物質としては、特に限定されるものではないが、例えばLiCoO、LiMnO、LiNiMn、LiVO、LiCrO、LiFePO、LiCoPO、LiNiO、LiNi1/3Co1/3Mn1/3等を挙げることができる。なお、正極活物質層に用いられる導電化材および結着材については、上述した負極活物質層における場合と同様である。また、正極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
(4)その他の構成
 本発明の電池は、負極活物質層、電解質層および正極活物質層を少なくとも有するものである。さらに通常は、正極活物質層の集電を行う正極集電体、および負極活物質層の集電を行う負極集電体を有する。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができる。一方、負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができる。正極集電体および負極集電体の厚さや形状等については、電池の用途等に応じて適宜選択することが好ましい。また、電池ケースには、一般的な電池の電池ケースを用いることができる。電池ケースとしては、例えばSUS製電池ケース等を挙げることができる。
(5)電池
 本発明の電池は、一次電池であっても良く、二次電池であっても良いが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。
2.制御装置
 本発明における制御装置は、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御する装置である。制御装置は、例えば、Si含有負極活物質の電位を測定する測定部と、Si含有負極活物質の電位に応じて電池の電流を遮断するスイッチ部とを有するものである。
 Ge含有固体電解質材料の還元電位は、一般的には、サイクリックボルタンメトリにより求めることができる。一方、Ge含有固体電解質材料がLiを含有する硫化物固体電解質材料である場合、Ge含有固体電解質材料の還元電位を、以下の(a)、(b)により詳細に求めても良い。なお、Ge含有固体電解質材料がLiを含有しない固体電解質材料であっても、同様の方法で、Ge含有固体電解質材料の還元電位を求めることができる。
(a)還元電位評価用電池の作製
 まず、LiSを0.382771gと、P0.617229gとをメノウ乳鉢で混合し、ZrOボール(φ10mm×10個)とともにZrOポット(45cc)に入れ、フリッチュ製のボールミル装置で回転数370rpm、40時間の条件で処理し、硫化物固体電解質材料(75LiS・25P)を得る。次に、得られた硫化物固体電解質材料を100mg取り、φ11.3mmのマコール製シリンダに入れ1ton/cmでプレスし、固体電解質層を形成する。次に、測定対象である硫化物固体電解質材料(Ge含有固体電解質材料)、および、ステンレス鋼粒子を体積比で1:1となるように混合し、その粉末を15mg取り、固体電解質層の一方の表面に入れ、4ton/cmでプレスする。さらに、φ10mmに打ち抜いたIn箔を4枚とφ6mmで打ち抜いたLi箔1枚とを固体電解質層の他方の表面に配置し、1ton/cmでプレスし、発電要素を得る。得られた発電要素の両面にステンレス鋼(集電体)を配置し、6Ncmのトルクでねじ締結して拘束する。この状態で、LiおよびInの合金化を促進するため10時間静置し、還元電位評価用電池を得る。なお、上記作業はすべてAr雰囲気下で行う。
(b)還元電位の測定
 得られた還元電位評価用電池を用い、LiIn合金を参照極とし、測定対象を含有する層を作用極として、0.1mA/cmの電流密度で-0.62Vまで定電流充電を行う。これにより、横軸を容量とし、縦軸を作用極の電位(vs. LiIn)とした充電曲線を得る。得られた充電曲線の電位に0.62Vを足し、電位基準をLiInからLi/Liに変更する。変更した充電曲線において、電位を容量で微分し、横軸を電位とし、縦軸をdV/dQのグラフを作成する。dV/dQの値が-0.01~0.01の範囲内にある直線部Aと、傾きを有する直線部Bとの交点を還元電位と考え、一義的に定義するために、直線部Aであり、かつ、dV/dQ=0となる最大の電位、を還元電位と定義する。
 また、本発明においては、Si含有負極活物質の電位がGe含有固体電解質材料の還元電位以下となるように制御する。中でも、Si含有負極活物質の電位が、金属イオン吸蔵時の作動電位以下となるように制御することが好ましい。Si含有負極活物質の作動電位は、例えば、後述する実施例に記載するような評価用電池を作製し、充放電試験を行い、得られた曲線のプラトー部の電位から求めることができる。一方、Si含有負極活物質の作動電位を、以下の(c)、(d)により詳細に求めても良い。なお、Liイオン以外の金属イオンを用いた場合におけるSi含有負極活物質の作動電位も、同様の方法で求めることができる。
(c)作動電位評価用電池の作製
 まず、LiSを0.382771gと、P0.617229gとをメノウ乳鉢で混合し、ZrOボール(φ10mm×10個)とともにZrOポット(45cc)に入れ、フリッチュ製のボールミル装置で回転数370rpm、40時間の条件で処理し、硫化物固体電解質材料(75LiS・25P)を得る。次に、得られた硫化物固体電解質材料を100mg取り、φ11.3mmのマコール製シリンダに入れ1ton/cmでプレスし、固体電解質層を形成する。次に、得られた硫化物固体電解質材料、およびSi含有負極活物質を体積比で1:1となるように混合し、その粉末を15mg取り、固体電解質層の一方の表面に入れ、4ton/cmでプレスする。さらに、φ10mmに打ち抜いたIn箔を4枚とφ6mmで打ち抜いたLi箔1枚とを固体電解質層の他方の表面に配置し、1ton/cmでプレスし、発電要素を得る。得られた発電要素の両面にステンレス鋼(集電体)を配置し、6Ncmのトルクでねじ締結して拘束する。この状態で、LiおよびInの合金化を促進するため10時間静置し、作動電位評価用電池を得る。なお、上記作業はすべてAr雰囲気下で行う。
(d)作動電位の測定
 得られた作動電位評価用電池を用い、LiIn合金を参照極とし、Si含有負極活物質を含有する層を作用極として、0.1mA/cmの電流密度で-0.62Vまで定電流充電を行う。これにより、横軸を容量とし、縦軸を作用極の電位(vs. LiIn)とした充電曲線を得る。得られた充電曲線の電位に0.62Vを足し、電位基準をLiInからLi/Liに変更する。変更した充電曲線において、電位を容量で微分し、横軸を電位とし、縦軸をdV/dQのグラフを作成する。dV/dQの値が-0.01~0.01の範囲内にある直線部Aと、傾きを有する直線部Bとの交点を作動電位と考え、一義的に定義するために、直線部Aであり、かつ、dV/dQ=0となる最大の電位、を作動電位と定義する。
 本発明においては、例えば、Si含有負極活物質の電位が0.25V(vs. Li/Li)以下となるように制御することが好ましく、Si含有負極活物質の電位が0.15V(vs. Li/Li)以下となるように制御することがより好ましく、Si含有負極活物質の電位が0.05V(vs. Li/Li)以下となるように制御することがさらに好ましい。
B.電池システムの製造方法
 次に、本発明の電池システムの製造方法について説明する。本発明の電池システムの製造方法は、電池と、制御装置とを備える電池システムの製造方法であって、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有し、上記負極活物質層および上記電解質層の少なくとも一方に、Ge含有固体電解質材料を含有する上記電池を組み立てる電池組立工程と、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御する上記制御装置を設置する制御装置設置工程と、を有することを特徴とするものである。
 図6は電池組立工程の一例を示す概略断面図である。具体的には、固体電解質層を備える固体電池の製造方法の一例を示す概略断面図である。図6においては、まず、固体電解質材料をプレスすることにより、固体電解質層3を形成する(図6(a))。次に、固体電解質層3の一方の表面上に正極合材を添加し、プレスすることにより正極活物質層1を形成し、その後、固体電解質層3の他方の表面に負極合材を添加し、プレスすることにより負極活物質層2を形成する(図6(b))。次に、正極活物質層1の表面上に正極集電体4を配置し、負極活物質層2の表面上に負極集電体5を配置する(図6(c))。最後に、この部材を、電池ケース6の内部に収納し、密閉することにより、電池10が得られる(図6(d))。図示しないが、この得られた電池10に、Si含有負極活物質の電位がGe含有固体電解質材料の還元電位以下となるように制御する制御装置を設置することで、電池システムが得られる。
 本発明によれば、Ge含有固体電解質材料にSi含有負極活物質を組み合わせた電池に対して、上記制御を行う制御装置を設置することで、Ge含有固体電解質材料の還元分解を抑制した電池システムを得ることができる。
 以下、本発明の電池システムの製造方法について、工程毎に説明する。
1.電池組立工程
 本発明における電池組立工程は、上述した電池を組み立てる工程である。電池の組み立て方法は、特に限定されるものではなく、一般的な方法と同様である。また、図6に示した電池組立工程は一例に過ぎず、順番等は任意に変更することができる。
2.制御装置設置工程
 本発明における制御装置設置工程は、上述した制御装置を設置する工程である。制御装置を設置するタイミングは、所望の電池システムを作製できれば特に限定されるものではない。例えば、電池組立工程後に制御装置を設置しても良く、電池組立工程中に制御装置を設置しても良い。
C.電池の制御装置
 次に、本発明の電池の制御装置について説明する。本発明の電池の制御装置は、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有し、上記負極活物質層および上記電解質層の少なくとも一方に、Ge含有固体電解質材料を含有する上記電池に対して、上記Si含有負極活物質の電位が上記Ge含有固体電解質材料の還元電位以下となるように制御することを特徴とするものである。
 本発明によれば、Ge含有固体電解質材料にSi含有負極活物質を組み合わせた電池に対して、上記制御を行うことで、Ge含有固体電解質材料の還元分解を抑制することができる。本発明の電池の制御装置については、上記「A.電池システム」に記載した内容と同様であるので、ここでの記載は省略する。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[製造例1]
(Ge含有固体電解質材料の合成)
 出発原料として、硫化リチウム(LiS)と、五硫化二リン(P)と、硫化ゲルマニウム(GeS)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、LiSを0.39019g、Pを0.377515g、GeSを0.232295gの割合で混合し、原料組成物を得た。次に、原料組成物1gを、ジルコニアボール(10mmφ、10個)とともに、ジルコニア製のポット(45ml)に入れ、ポットを完全に密閉した(アルゴン雰囲気)。このポットを遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数370rpmで、40時間メカニカルミリングを行った。これにより、Li3.33Ge0.330.67の組成を有する、非晶質化したイオン伝導性材料を得た。
 次に、得られたイオン伝導性材料を、カーボンコートした石英管に入れ真空封入した。真空封入した石英管の圧力は、約30Paであった。次に、石英管を焼成炉に設置し、6時間かけて室温から550℃まで昇温し、550℃を8時間維持し、その後室温まで徐冷した。これにより、Li3.33Ge0.330.67の組成を有する結晶質のGe含有固体電解質材料(電解質粉末)を得た。なお、上記組成は、Li(4-x)Ge(1-x)におけるx=0.67の組成に該当するものである。
 得られたGe含有固体電解質材料を用いて、X線回折(XRD)測定を行った。XRD測定は、粉末試料に対して、不活性雰囲気下、CuKα線使用の条件で行った。その結果を図7に示す。図7に示されるように、単相のGe含有固体電解質材料が得られた。ピークの位置は、2θ=17.38°、20.18°、20.44°、23.56°、23.96°、24.93°、26.96°、29.07°、29.58°、31.71°、32.66°、33.39°であった。すなわち、これらのピークが、イオン伝導性の高い結晶相Aのピークであると考えられる。なお、イオン伝導性の低い結晶相Bのピークである2θ=27.33°±0.50°のピークは確認されなかった。
 また、得られたGe含有固体電解質材料の結晶構造をX線構造解析により同定した。XRDで得られた回折図形を基に直接法で晶系・結晶群を決定し、その後、実空間法により結晶構造を同定した。その結果、上述した図5のような結晶構造を有することが確認された。すなわち、四面体T(GeS四面体およびPS四面体)と、八面体O(LiS八面体)とは稜を共有し、四面体T(PS四面体)と、八面体O(LiS八面体)とは頂点を共有している結晶構造であった。この結晶構造が高Li伝導に寄与すると考えられる。
[製造例2]
(Ge含有固体電解質材料の合成)
 出発原料として、硫化リチウム(LiS)と、五硫化二リン(P)と、硫化ゲルマニウム(GeS)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、LiSを0.3878g、Pを0.4818g、GeSを0.1304gの割合で混合し、原料組成物を得た。次に、原料組成物1gを、メノウ乳鉢で混合した。次に、得られた混合物を、カーボンコートした石英管に入れ真空封入した。真空封入した石英管の圧力は、約30Paであった。次に、石英管を焼成炉に設置し、6時間かけて室温から700℃まで昇温し、700℃を8時間維持し、その後室温まで徐冷した。これにより、Li3.25Ge0.250.75の組成を有する結晶質のGe含有固体電解質材料(電解質粉末)を得た。なお、上記組成は、Li(4-x)Ge(1-x)におけるx=0.75の組成に該当するものである。
 得られたGe含有固体電解質材料を用いて、X線回折(XRD)測定を行った。その結果、イオン伝導性の高い結晶相Aのピーク、およびイオン伝導性の低い結晶相Bのピークの両方が確認された。I/Iの値は0.50であった。
[実施例1]
 製造例1で得られた電解質粉末を用いて、評価用電池を作製した。まず、正極活物質層として、In箔(ニラコ社製φ10mm、厚さ0.1mm)にLi箔(本庄ケミカル社製)を貼付したもの(LiIn箔)を用意した。次に、負極活物質であるSi粉末(高純度化学研究所製)と、製造例1で得られた電解質粉末と、導電化材(デンカブラック、電気化学工業社製)とを、重量比でSi粉末:電解質粉末:導電化材=78:17:5となるように秤量し、メノウ乳鉢で混合した。これにより、負極合材を得た。
 次に、LiPS硫化物ガラス80mgを、マコール製のシリンダに添加し、1ton/cmでプレスし、固体電解質層を形成した。次に、固体電解質層の一方の表面に、負極合材2mgを添加し、4ton/cmでプレスし、固体電解質層上に負極活物質層を形成した。次に、固体電解質層の他方の表面に、LiIn箔を配置し、1ton/cmでプレスし、発電要素を得た。その発電要素を6Ncmで拘束し、評価用電池を得た。
[実施例2]
 製造例1で得られた電解質粉末の代わりに、製造例2で得られた電解質粉末を用いたこと以外は、実施例1と同様にして評価用電池を得た。
[比較例1]
 負極活物質としてカーボン粉末(グラファイト)を用いた。このカーボン粉末と、製造例1で得られた電解質粉末とを、重量比でカーボン粉末:電解質粉末=50:50となるように秤量し、メノウ乳鉢で混合した。これにより、負極合材を得た。この負極合材を1.5mg用いたこと以外は、実施例1と同様にして評価用電池を得た。
[比較例2]
 負極活物質としてSn粉末(高純度化学研究所製)を用いた。このSn粉末と、製造例1で得られた電解質粉末とを、重量比でSn粉末:電解質粉末=90:10となるように秤量し、メノウ乳鉢で混合した。これにより、負極合材を得た。この負極合材を20mg用いたこと以外は、実施例1と同様にして評価用電池を得た。
[評価]
(1)還元電位および作動電位の測定
 製造例1で得られたGe含有固体電解質材料の還元電位を、上述した(a)、(b)の手法により求めた。その結果を図8に示す。図8に示すように、Ge含有固体電解質材料の還元電位は0.251V(vs Li/Li)であった。一方、実施例1で使用したSi粉末、および、比較例1で使用したカーボン粉末の作動電位を、上述した(c)、(d)の手法により求めた。その結果を図9に示す。図9(a)に示すように、Si粉末の作動電位は0.232V(vs Li/Li)であり、図9(b)に示すように、カーボン粉末の作動電位は0.198V(vs Li/Li)であった。
(2)定電流充放電試験
 実施例1および実施例2で得られた評価用電池に対して、-0.60V~1Vの範囲(リチウム基準では、0.02V~1.62Vの範囲)で0.3mAの定電流-定電圧充放電試験を行った。なお、定電圧値は、放電時に0.02V(vs Li/Li)とし、放電時に1.62V(vs Li/Li)とした。また、比較例1で得られた評価用電池に対して、-0.62V~1Vの範囲(リチウム基準では、0.00V~1.62Vの範囲)で0.15mAの定電流充放電試験を行った。また、比較例2で得られた評価用電池に対して、-0.62V~1Vの範囲(リチウム基準では、0.00V~1.62Vの範囲)で2mAの定電流充放電試験を行った。充電容量に対する放電容量の比(放電容量/充電容量)を充放電効率(クーロン効率)とした。また、参照極を正極として、負極側の充放電挙動を確認した。その結果を図10~図13に示す。
 図10~図13は、それぞれ実施例1、2および比較例1、2で得られた評価用電池の充放電曲線であり、図14は、実施例1、2および比較例1、2で得られた評価用電池の充放電効率の結果である。図10、図11に示すように、実施例1、2では、充電時に、LiおよびSiの合金化電位(作動電位)である0.232V(vs Li/Li)付近にプラトー部を観測し、放電時に0.501V(vs Li/Li)付近にプラトー部を観測した。さらに、実施例1、2では、4200mAh/gの理論容量を有するSiを用いているが、実際に3000mAh以上の非常に大きな容量を可逆に利用できることが確認できた。また、図14に示すように、実施例1、2の充放電効率は、いずれも90%を超える高い結果となった。このように、Ge含有固体電解質材料にSi含有負極活物質を組み合せることで、Si含有負極活物質の電位を、Ge含有固体電解質材料の還元電位以下まで下げても、正常に電池として作動することが確認された。また、実施例1、2では、Si含有負極活物質の電位を、約0V(vs Li/Li)まで下げているため、Ge含有固体電解質材料の還元分解は生じていると推測される。しかしながら、実施例1、2では、良好な可逆性を示したため、還元分解は抑制されていると考えられる。
 一方、図12に示すように、比較例1では、充電時にプラトー部が確認されず、0.25V(vs Li/Li)付近から直線的に電位が低下した。さらに、カーボンに見られる段階的な電位変化は観測されなかった。また、充電容量は1000mAh/gであり、カーボンの理論容量である370mAh/gを大きく超過した。さらに、放電時にも、プラトー部が確認されなかった。また、図14に示すように、比較例1の充放電効率は20%と著しく低かった。このように、Ge含有固体電解質材料とカーボン系負極活物質とを組み合せて用い、カーボン系負極活物質の電位をGe含有固体電解質材料の還元電位以下まで下げると、正常に電池として作動しないことが確認された。
 図15は、図12のy軸拡大図であり、比較例1で得られた評価用電池の充電曲線である。なお、カーボンの理論充電曲線を重ねて示している。図15に示すように、製造例1で得られたGe含有固体電解質材料は、0.25V(vs Li/Li)以下の電位で、電気量を消費する副反応が生じると考えられる。すなわち、Ge含有固体電解質材料に電気量を消費され、カーボンとLiイオンとの電気化学反応は進行しなかったと考えられる。
 また、図13に示すように、比較例2では、充電時に、LiおよびSnの合金化電位(作動電位)である0.354V(vs Li/Li)付近にプラトー部を観測し、放電時に0.614V(vs Li/Li)付近にプラトー部を観測した。また、図14に示すように、比較例2の充放電効率は41%と低かった。
 1 … 正極活物質層
 2 … 負極活物質層
 3 … 電解質層
 4 … 正極集電体
 5 … 負極集電体
 6 … 電池ケース
 10 … 電池
 11 … Ge含有固体電解質材料
 12 … Si含有負極活物質
 20 … 制御装置
 30 … 電池システム

Claims (12)

  1.  電池と、制御装置とを備える電池システムであって、
     前記電池は、正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを有し、前記負極活物質層および前記電解質層の少なくとも一方にGe含有固体電解質材料を含有し、
     前記制御装置は、前記Si含有負極活物質の電位が前記Ge含有固体電解質材料の還元電位以下となるように制御する装置であることを特徴とする電池システム。
  2.  前記制御装置は、
     前記電池の電流を遮断するスイッチ部を備え、
     前記Si含有負極活物質の電位が前記Ge含有固体電解質材料の還元電位より大きい時に充電が開始された場合に、前記Si含有負極活物質の電位が前記Ge含有固体電解質材料の還元電位より小さくなるまで充電を継続するよう、前記スイッチ部を制御することを特徴とする請求項1に記載の電池システム。
  3.  前記Ge含有固体電解質材料が、S元素をさらに含有することを特徴とする請求項1または請求項2に記載の電池システム。
  4.  前記Ge含有固体電解質材料が、Li元素をさらに含有することを特徴とする請求項3に記載の電池システム。
  5.  前記Ge含有固体電解質材料が、P元素をさらに含有することを特徴とする請求項4に記載の電池システム。
  6.  前記Ge含有固体電解質材料が、M元素、M元素およびS元素を含有し、前記Mは、Li、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種であり、前記Mは、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、かつ、少なくともGeを含み、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、前記2θ=29.58°±0.50°のピークの回折強度をIとし、2θ=27.33°±0.50°のピークの回折強度をIとした場合に、I/Iの値が0.50未満であることを特徴とする請求項1から請求項5までのいずれかの請求項に記載の電池システム。
  7.  前記Ge含有固体電解質材料が、M元素およびS元素から構成される八面体Oと、M2a元素およびS元素から構成される四面体Tと、M2b元素およびS元素から構成される四面体Tとを有し、前記四面体Tおよび前記八面体Oは稜を共有し、前記四面体Tおよび前記八面体Oは頂点を共有する結晶構造を主体として含有し、前記Mは、Li、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種であり、前記M2aおよびM2bは、それぞれ独立に、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、前記M2aおよび前記M2bの少なくとも一方はGeを含むことを特徴とする請求項1から請求項5までのいずれかの請求項に記載の電池システム。
  8.  前記制御装置は、前記Si含有負極活物質の電位が0.25V(vs. Li/Li)以下となるように制御する装置であることを特徴とする請求項1から請求項7までのいずれかの請求項に記載の電池システム。
  9.  前記Si含有負極活物質が、Siであることを特徴とする請求項1から請求項8までのいずれかの請求項に記載の電池システム。
  10.  前記固体電解質層に含まれる前記Ge含有固体電解質材料と、前記負極活物質層に含まれる前記Si含有負極活物質とが接触していることを特徴とする請求項1から請求項9までのいずれかの請求項に記載の電池システム。
  11.  電池と、制御装置とを備える電池システムの製造方法であって、
     正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを有し、前記負極活物質層および前記電解質層の少なくとも一方に、Ge含有固体電解質材料を含有する前記電池を組み立てる電池組立工程と、
     前記Si含有負極活物質の電位が前記Ge含有固体電解質材料の還元電位以下となるように制御する前記制御装置を設置する制御装置設置工程と、
     を有することを特徴とする電池システムの製造方法。
  12.  正極活物質を含有する正極活物質層と、Si含有負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを有し、前記負極活物質層および前記電解質層の少なくとも一方に、Ge含有固体電解質材料を含有する前記電池に対して、前記Si含有負極活物質の電位が前記Ge含有固体電解質材料の還元電位以下となるように制御することを特徴とする電池の制御装置。
PCT/JP2013/063437 2012-06-20 2013-05-14 電池システム、電池システムの製造方法、電池の制御装置 WO2013190930A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2876563A CA2876563C (en) 2012-06-20 2013-05-14 Battery system, method for producing battery system, and battery control apparatus
KR1020147033864A KR101587375B1 (ko) 2012-06-20 2013-05-14 전지 시스템, 전지 시스템의 제조 방법, 전지의 제어 장치
EP13806770.7A EP2866291B8 (en) 2012-06-20 2013-05-14 Battery system and method for manufacturing battery system
IN10363DEN2014 IN2014DN10363A (ja) 2012-06-20 2013-05-14
US14/409,224 US9484596B2 (en) 2012-06-20 2013-05-14 Battery system, method for producing battery system, and battery control apparatus
BR112014031295-8A BR112014031295B1 (pt) 2012-06-20 2013-05-14 Sistema de bateria, método para produzir um sistema de bateria
CN201380029261.XA CN104364956B (zh) 2012-06-20 2013-05-14 电池系统、电池系统的制造方法、电池的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012138815A JP5817657B2 (ja) 2012-06-20 2012-06-20 電池システム、電池システムの製造方法、電池の制御装置
JP2012-138815 2012-06-20

Publications (1)

Publication Number Publication Date
WO2013190930A1 true WO2013190930A1 (ja) 2013-12-27

Family

ID=49768536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063437 WO2013190930A1 (ja) 2012-06-20 2013-05-14 電池システム、電池システムの製造方法、電池の制御装置

Country Status (9)

Country Link
US (1) US9484596B2 (ja)
EP (1) EP2866291B8 (ja)
JP (1) JP5817657B2 (ja)
KR (1) KR101587375B1 (ja)
BR (1) BR112014031295B1 (ja)
CA (1) CA2876563C (ja)
IN (1) IN2014DN10363A (ja)
TW (1) TWI509860B (ja)
WO (1) WO2013190930A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288716B2 (ja) 2014-06-25 2018-03-07 国立大学法人東京工業大学 硫化物固体電解質材料の製造方法
US10326164B2 (en) * 2015-03-03 2019-06-18 Ut-Battelle, Llc High-conduction GE substituted LiAsS4 solid electrolyte
JP6877084B2 (ja) 2015-07-31 2021-05-26 国立大学法人東京工業大学 α−リチウム固体電解質
KR101897859B1 (ko) * 2015-08-24 2018-09-12 주식회사 엘지화학 리튬 석출 탐지 방법, 이를 이용한 이차전지 충전 방법과 장치 및 이차전지 시스템
JPWO2017154922A1 (ja) * 2016-03-08 2018-11-22 株式会社村田製作所 固体電解質、全固体電池、固体電解質の製造方法及び全固体電池の製造方法
JP6593381B2 (ja) * 2017-04-18 2019-10-23 トヨタ自動車株式会社 全固体リチウムイオン二次電池用の負極合材、当該負極合材を含む負極、及び当該負極を備える全固体リチウムイオン二次電池
JP6693473B2 (ja) 2017-05-23 2020-05-13 トヨタ自動車株式会社 フッ化物イオン電池
JP6784235B2 (ja) 2017-07-06 2020-11-11 トヨタ自動車株式会社 全固体リチウムイオン二次電池
JP6859234B2 (ja) * 2017-09-05 2021-04-14 国立研究開発法人物質・材料研究機構 全固体電池の製造方法
KR102516362B1 (ko) * 2017-12-19 2023-03-31 삼성전자주식회사 배터리 충전 방법 및 장치
WO2019146294A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 電池
CN113659196A (zh) * 2021-07-22 2021-11-16 河北光兴半导体技术有限公司 一种硫化物固态电解质及其制备方法和全固态锂电池
WO2023171646A1 (ja) * 2022-03-10 2023-09-14 三井金属鉱業株式会社 電極部材及びその製造方法、電池部材及びその製造方法、並びに電池の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217663A (ja) 2002-01-16 2003-07-31 Japan Storage Battery Co Ltd 非水電解質電池
WO2009101506A1 (en) * 2008-02-14 2009-08-20 Toyota Jidosha Kabushiki Kaisha Totally-solid lithium secondary battery
WO2011065388A1 (ja) * 2009-11-27 2011-06-03 株式会社 村田製作所 固体電池
WO2011118801A1 (ja) * 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2012060349A1 (ja) * 2010-11-02 2012-05-10 株式会社 村田製作所 全固体電池
WO2013084944A1 (ja) * 2011-12-08 2013-06-13 トヨタ自動車株式会社 電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090317664A1 (en) * 2006-08-22 2009-12-24 Koninklijke Philips Electronics N.V. Electrochemical energy source, and method for manufacturing of such an electrochemical energy source
JP4948510B2 (ja) 2008-12-02 2012-06-06 トヨタ自動車株式会社 全固体電池
KR101758138B1 (ko) * 2009-06-17 2017-07-14 소니 주식회사 비수 전해질 전지, 비전해질 전지용 정극, 비수 전해질 전지용 부극, 비전해질 전지용 세퍼레이터, 비수 전해질용 전해질 및 비전해질 전지용 세퍼레이터의 제조 방법
JP5045849B2 (ja) 2009-09-02 2012-10-10 トヨタ自動車株式会社 硫化物系全固体リチウム二次電池システム
CN102844929A (zh) * 2010-07-12 2012-12-26 株式会社村田制作所 全固态电池
JP2012085487A (ja) 2010-10-14 2012-04-26 Sony Corp 二次電池の充電制御方法および電池パック
JP5002824B1 (ja) 2011-03-02 2012-08-15 独立行政法人産業技術総合研究所 リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217663A (ja) 2002-01-16 2003-07-31 Japan Storage Battery Co Ltd 非水電解質電池
WO2009101506A1 (en) * 2008-02-14 2009-08-20 Toyota Jidosha Kabushiki Kaisha Totally-solid lithium secondary battery
WO2011065388A1 (ja) * 2009-11-27 2011-06-03 株式会社 村田製作所 固体電池
WO2011118801A1 (ja) * 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2012060349A1 (ja) * 2010-11-02 2012-05-10 株式会社 村田製作所 全固体電池
WO2013084944A1 (ja) * 2011-12-08 2013-06-13 トヨタ自動車株式会社 電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. KONDO ET AL.: "New lithium ion conductors based on Li S-SiS system", SOLID STATE IONICS, vol. 53-56, July 1992 (1992-07-01), pages 1183 - 1186
See also references of EP2866291A4 *

Also Published As

Publication number Publication date
CN104364956A (zh) 2015-02-18
US20150147597A1 (en) 2015-05-28
CA2876563C (en) 2017-04-18
JP5817657B2 (ja) 2015-11-18
TWI509860B (zh) 2015-11-21
BR112014031295B1 (pt) 2020-07-14
CA2876563A1 (en) 2013-12-27
JP2014002966A (ja) 2014-01-09
EP2866291B1 (en) 2018-11-21
EP2866291A4 (en) 2015-07-15
EP2866291B8 (en) 2019-01-23
TW201405911A (zh) 2014-02-01
KR20150013223A (ko) 2015-02-04
IN2014DN10363A (ja) 2015-08-07
BR112014031295A2 (pt) 2017-06-27
US9484596B2 (en) 2016-11-01
KR101587375B1 (ko) 2016-01-20
EP2866291A1 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5817657B2 (ja) 電池システム、電池システムの製造方法、電池の制御装置
JP6288716B2 (ja) 硫化物固体電解質材料の製造方法
JP6222134B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
CA2922382C (en) Solid-state battery in which lithium ions are responsible for electrical conduction
JP5720753B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5975071B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6315617B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5561383B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US11349123B2 (en) Amorphous oxide-based positive electrode active material, method for producing same and use of same
JP2015220015A (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2015220013A (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2014171483A1 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2013084944A1 (ja) 電池
JP5895917B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2015032550A (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6285317B2 (ja) 全固体電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147033864

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2876563

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013806770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14409224

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014031295

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014031295

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141212