WO2013187197A1 - アーク溶接構造部材の製造法 - Google Patents

アーク溶接構造部材の製造法 Download PDF

Info

Publication number
WO2013187197A1
WO2013187197A1 PCT/JP2013/064196 JP2013064196W WO2013187197A1 WO 2013187197 A1 WO2013187197 A1 WO 2013187197A1 JP 2013064196 W JP2013064196 W JP 2013064196W WO 2013187197 A1 WO2013187197 A1 WO 2013187197A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
welding
arc
plating layer
plated steel
Prior art date
Application number
PCT/JP2013/064196
Other languages
English (en)
French (fr)
Inventor
和昭 細見
延時 智和
朝田 博
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112014029946-3A priority Critical patent/BR112014029946B1/pt
Priority to RU2015100899A priority patent/RU2635581C2/ru
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to AU2013275476A priority patent/AU2013275476B2/en
Priority to RS20171171A priority patent/RS56575B1/sr
Priority to US14/406,569 priority patent/US20150136741A1/en
Priority to KR20147027115A priority patent/KR20150024302A/ko
Priority to MX2014010630A priority patent/MX362408B/es
Priority to NZ629861A priority patent/NZ629861A/en
Priority to EP13803668.6A priority patent/EP2862662B1/en
Priority to SG11201406046YA priority patent/SG11201406046YA/en
Priority to CN201380022431.1A priority patent/CN104334308B/zh
Priority to MYPI2014703682A priority patent/MY181348A/en
Priority to CA2874217A priority patent/CA2874217A1/en
Publication of WO2013187197A1 publication Critical patent/WO2013187197A1/ja
Priority to PH12014502019A priority patent/PH12014502019A1/en
Priority to AU2017204060A priority patent/AU2017204060B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment

Definitions

  • the present invention relates to a method for manufacturing an arc welded structure member having excellent resistance to molten metal embrittlement cracking formed by using a molten Zn—Al—Mg plated steel sheet member for one or both members to be joined.
  • Hot-dip galvanized steel sheets have good corrosion resistance and are used in a wide range of applications including building and automobile parts. Among them, the hot-dip Zn—Al—Mg-based steel sheet maintains excellent corrosion resistance for a long period of time, and therefore the demand is increasing as a substitute for the conventional hot-dip galvanized steel sheet.
  • the plated layer of the hot-dip Zn—Al—Mg-based plated steel sheet has a primary Al phase or a primary Al phase in a Zn / Al / Zn 2 Mg ternary eutectic matrix. It has a metal structure in which a Zn single phase is dispersed, and the corrosion resistance is improved by Al and Mg. Since a dense and stable corrosion product containing Mg in particular is uniformly formed on the surface of the plated layer, the corrosion resistance of the plated layer is remarkably improved as compared with the hot dip galvanized steel sheet.
  • the metal in the plating layer melts on the surface of the surrounding base material (plating original sheet) through which the arc has passed.
  • the alloy of the plating layer has a liquidus temperature lower than the melting point of Zn (about 420 ° C.) and maintains a molten state for a relatively long time.
  • the solidification end temperature is about 335 ° C.
  • Molten metal derived from the Zn-Al-Mg plating layer melted on the surface of the base metal reduces the Al concentration as the Al component reacts with the underlying Fe at an early stage and is consumed as an Fe-Al alloy layer.
  • the composition close to that of the Zn—Mg binary system is obtained, but even with a Zn-3 mass% Mg alloy, the solidification end temperature is 360 ° C., which is lower than the melting point of Zn, 420 ° C. Therefore, in the case of a Zn—Al—Mg plated steel sheet, the time during which the metal of the plated layer melted during arc welding stays on the surface of the base material while maintaining the liquid phase is longer than that of the galvanized steel sheet.
  • Patent Document 4 discloses a technique of imparting resistance to molten metal embrittlement cracking by applying a steel plate whose ferrite crystal grain boundary is reinforced by addition of B to a plating original plate.
  • Patent Document 5 discloses a technique of suppressing molten metal embrittlement cracking by filling Zn, Al, and Mg during arc welding by filling a flux added with TiO 2 and FeO into the outer sheath of a welding wire. .
  • the method of cutting and removing the plating layer and the method of using a special welding wire are accompanied by a great increase in cost.
  • the technique of using B-added steel for the plating base plate reduces the degree of freedom in selecting the steel type.
  • molten metal embrittlement cracking may not be sufficiently prevented, and a drastic arc welding structure using a Zn-Al-Mg based steel sheet is essential. It is not a measure to prevent molten metal embrittlement cracking.
  • the present invention is excellent in resistance to molten metal embrittlement in an arc welded structure member using a Zn—Al—Mg plated steel plate member without being restricted by the steel type of the plating base plate and a significant increase in cost. It aims at providing what has fracturing ability.
  • the plating layer disappears once by evaporation in the vicinity of the weld bead during gas shielded arc welding, but after the arc passes, the plating layer metal is in a molten state at a position slightly away from the bead. It has been confirmed that the phenomenon of immediately spreading to the above disappeared portion occurs. If this wetting spread is suppressed and cooling is completed while maintaining the state of evaporative disappearance, the penetration of the plating layer component into the base metal is avoided at a position close to the welding beat, and the molten metal embrittlement crack is It can be effectively prevented.
  • the above-described wetting and spreading in the Zn—Al—Mg-based plated steel sheet member is remarkably reduced by reducing the concentration of CO 2 that is usually mixed in the shielding gas by about 20% by volume. It was found to be suppressed.
  • the allowable upper limit of the CO 2 concentration can be managed as a function of welding heat input. Furthermore, it has been found that when the plate thickness of the Zn—Al—Mg-based plated steel plate member used is thin, the tolerance of the upper limit of CO 2 concentration increases. The present invention has been completed based on such findings.
  • the above object is to manufacture a welded structural member by joining steel materials by gas shielded arc welding, and at least one member to be joined is a molten Zn—Al—Mg based plated steel plate member, and Ar gas is used as a shielding gas.
  • Arc welding using a gas satisfying the following formula (2) in relation to the welding heat input Q (J / cm), in which the CO 2 concentration is represented by the following formula (1), based on He gas or Ar + He mixed gas This is achieved by a method for manufacturing a structural member.
  • the “hot-dipped Zn—Al—Mg-based plated steel sheet member” is a member made of a molten Zn—Al—Mg-based plated steel sheet, or a member formed by using it as a raw material.
  • the welding heat input Q can be, for example, in the range of 2000 to 12000 J / cm.
  • the molten Zn—Al—Mg-based plated steel sheet member uses a plating original sheet having a thickness of 2.6 mm or less (for example, 1.0 to 2.6 mm)
  • the following formula (2) is used instead.
  • Equation (3) can be applied. 0 ⁇ C CO2 ⁇ 205Q ⁇ 0.32 (3)
  • the welding heat input Q is more preferably in the range of 2000 to 4500 J / cm, for example.
  • the molten Zn—Al—Mg based steel sheet is, for example, mass%, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, B: Those having a plating layer of 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.5%, the balance Zn and unavoidable impurities are suitable targets.
  • the plating adhesion amount per one side is, for example, 20 to 250 g / m 2 .
  • an arc welded structure using a molten Zn—Al—Mg-based plated steel sheet member that is inherently susceptible to molten metal embrittlement cracking has excellent resistance to molten metal embrittlement cracking. It became possible to realize stably without increasing the cost. Since the allowable upper limit of the CO 2 concentration in the shielding gas has been clarified according to the welding heat input, the benefits of blending CO 2 (such as the suppression of oxidation around the weld bead using the reducing action of CO generated by the arc) ) To the maximum.
  • the steel type of the plating base plate there is no particular restriction on the steel type of the plating base plate, and it is not necessary to adopt a steel type to which a special element is added as a measure against molten metal embrittlement cracking. Even when a high-strength steel plate is applied, excellent melt metal embrittlement cracking resistance can be obtained. In addition, the degree of freedom for the part shape is great. Therefore, the present invention is widely used in the widespread use of Zn-Al-Mg-plated steel sheet arc welded structural members, including automotive arc welded structural members using high-tensile steel sheets, which are expected to increase in the future. It contributes.
  • FIG. 1 schematically shows a cross section of a torch and a base material during gas shielded arc welding.
  • the welding torch 31 advances in the direction of the arrow while forming an arc 35 on the surface of the base material 1.
  • a shield gas 34 is blown out from the periphery of the electrode 33 and the welding wire 32 positioned at the center of the welding torch 31 to protect the arc 35 and the surface of the base material 1 exposed to high temperatures from the atmosphere.
  • a part of the base material 1 melted by the heat input from the arc 35 is rapidly solidified after the welding torch 31 passes and forms a weld bead 2 made of weld metal.
  • the shield gas 34 needs to be a non-oxidizing gas.
  • an inert gas such as Ar which Ar + CO 2 mixed gas of CO 2 were mixed for about 20 vol% is employed.
  • a part of CO 2 in the shielding gas 34 is considered to be separated into CO and O 2 by the plasma arc 35, and the CO exerts a reducing action to suppress oxidation of the weld bead and its surroundings. Thereby, it is thought that the corrosion-resistant fall in a welding part is reduced.
  • FIG. 2 schematically illustrates the cross-sectional structure of the welded portion of the lap fillet welded joint.
  • This type of welded joint by arc welding is frequently used for automobile chassis.
  • a base material 1 and a base material 1 ′ which are steel plate members, are arranged so as to overlap each other, a weld bead 2 is formed on the surface of the base material 1 and an end surface of the base material 1 ′, and both members are joined.
  • the broken lines in the figure represent the surface position of the base material 1 and the end face position of the base material 1 'before welding.
  • the intersection of the base metal surface and the weld bead is called the “bead toe”.
  • the bead toe portion of the base material 1 is indicated by reference numeral 3.
  • FIG. 3 to 5 schematically show an enlarged cross-sectional structure of a portion corresponding to the vicinity of the bead toe 3 shown in FIG.
  • FIG. 3 schematically shows a cross-sectional state in the vicinity of a high-temperature weld immediately after the arc passes during gas shielded arc welding of a Zn—Al—Mg-based steel sheet.
  • the surface of the base material 1 was covered with the uniform plating layer 7 through the Fe—Al-based alloy layer 6 at the stage before welding, but the metal of the plating layer was near the bead toe 3 due to the passage of the arc. Evaporates and disappears (plating layer evaporation region 9).
  • the original plating layer 7 is melted to become the Zn—Al—Mg based molten metal 8, but has not disappeared due to evaporation.
  • the original plating layer 7 exists without melting.
  • the thicknesses of the Zn—Al—Mg molten metal 8 and the plating layer 7 are exaggerated.
  • FIG. 4 schematically shows a cross-sectional structure of a conventional Zn—Al—Mg-based plated steel sheet arc welded structural member obtained by cooling from the state of FIG.
  • the Zn—Al—Mg based molten metal reference numeral 8 in FIG. 3 wets and spreads in the “plating layer evaporation region” (reference numeral 9 in FIG. 3) formed once the plating layer disappears during welding, and the base material 1
  • the entire surface up to the bead toe 3 is covered with the Zn—Al—Mg alloy layer 5.
  • the portion of the Zn—Al—Mg based alloy layer 5 formed by solidification of the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 3) is referred to as a molten solidified region 10, and the original plating layer 7 remains and is formed.
  • the portion of the Zn—Al—Mg-based alloy layer 5 is referred to as a plating layer unmelted region 11.
  • the bead toe 3 is usually a melt-solidified region 10 as shown in FIG.
  • the liquidus temperature of the Zn—Al—Mg based molten metal 8 is low as described above, the surface portion of the base material 1 that becomes the molten and solidified region 10 after cooling becomes Zn—Al in the cooling process after welding. -The contact time with the Mg-based molten metal is relatively long. Since tensile stress is generated in the portion of the base material 1 near the bead toe due to cooling after welding, the Zn—Al—Mg based molten metal component tends to enter the crystal grain boundary. The said component which penetrate
  • FIG. 5 schematically shows a cross-sectional structure of a Zn—Al—Mg-based plated steel sheet arc welded structural member according to the present invention obtained by cooling from the state of FIG.
  • a gas having a reduced CO 2 concentration or a CO 2 -free gas is used as the shielding gas.
  • the surface of the base material 1 in the “plating layer evaporation region” (reference numeral 9 in FIG. 3) where the plating layer disappeared during welding is oxidized due to a weak reduction action by the shielding gas, and is quickly covered with a thin oxide film. Conceivable.
  • this oxide film inhibits the wetting with the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 3), thereby suppressing the wetting and spreading of the Zn—Al—Mg based molten metal.
  • the plating layer evaporation region 9 remains after cooling. That is, the surface of the base material 1 near the bead toe 3 is finished to cool without coming into contact with the Zn—Al—Mg-based molten metal, and intrusion of the molten metal component into the base material 1 at that portion is avoided. Is done. Therefore, excellent molten metal embrittlement cracking resistance is imparted without depending on the steel type of the base material 1.
  • a gas having a reduced CO 2 concentration or a gas not containing CO 2 is used as the shielding gas, so that the weld bead and its surroundings are more easily oxidized than in the prior art.
  • a molten Zn—Al—Mg-based plated steel sheet member as a member to be joined, not only the plating layer surface but also the corrosion resistance of the exposed part of the steel substrate in the vicinity of the welded part is improved. That is, in addition to the anticorrosive effect by Zn, the corrosion product derived from the Zn—Al—Mg based metal exhibits excellent protective properties, so that the long-term corrosion resistance is improved, and the gas or CO2 with reduced CO 2 concentration 2. Corrosion resistance degradation due to the use of an additive-free gas does not become apparent during normal use.
  • plating layer evaporation region length The length from the bead toe 3 of the plating layer evaporation region 9 remaining after cooling is referred to as “plating layer evaporation region length” in this specification, and is indicated by the symbol L in FIG.
  • plating layer evaporation region length Most of the molten metal embrittlement cracks that are a problem with Zn-Al-Mg-plated steel sheet arc welded structural members are very close to the bead toe 3, specifically less than 0.3 mm from the bead toe. It has been confirmed that As a result of various studies, if the plating layer evaporation region length is 0.3 mm or more, the molten metal embrittlement cracking resistance is greatly improved, and if it is 0.4 mm or more, it is more preferable.
  • the plating layer evaporation region length can be controlled in the range of 0.3 to 2.0 mm by adjusting the shield gas composition as described later.
  • the surface of the base material in which the plating layer in the vicinity of the welded portion has evaporated and disappeared is prevented from being excessively activated.
  • Zn—Al—Mg based molten metal present in the bead is prevented from spreading to the bead toes.
  • the above-mentioned which has a wider allowable upper limit, instead of the above formula (2) Even if the expression (3) is applied, the length of the plating layer evaporation region can be controlled in the range of 0.3 to 2.0 mm.
  • the thickness of at least one member to be joined is a plate thickness.
  • CO in the shielding gas according to the welding heat input Q (J / cm) represented by the above formula (1) CO 2 concentration adjusting method of shielding gas to adjust 2 concentration so as to satisfy the following formula (3) are disclosed. 0 ⁇ C CO2 ⁇ 205Q ⁇ 0.32 (3)
  • C CO2 is CO 2 concentration of the shielding gas (vol%).
  • the CO 2 concentration in the shielding gas may be adjusted within the range satisfying the above equation (2) and the above equation (3) depending on the plate thickness conditions, but from the viewpoint of stabilizing the arc, the CO 2 concentration of 5% by volume or more. Is more effective. Stabilization of the arc is advantageous in increasing the penetration depth. That is, the following formula (2) ′ can be applied instead of the above formula (2), and the following formula (3) ′ can be applied instead of the above formula (3).
  • the base gas of the shielding gas can be Ar gas as in the conventional case. He gas or Ar + He mixed gas may be used. The purity of those base gases may be set to the same level as before.
  • ⁇ ⁇ Welding heat input may be set to an optimum value according to the plate thickness. If the welding heat input is too low, the welding may be insufficient and the weld bead may be discontinuous. Conversely, if the welding heat input is excessive, spatter is likely to occur.
  • an appropriate value of welding heat input can be found in the range of 2000 to 12000 J / cm.
  • the welding heat input is set in the range of 2000 to 4500 J / cm. More preferably.
  • the shield gas flow rate may be adjusted in the range of 10 to 30 L / min. Conventional welding devices can be used.
  • Example 1 The molten Zn—Al—Mg-based plated steel sheet shown in Table 1 was placed horizontally, and a weld bead was formed on the steel sheet surface by an arc generated from a horizontally moving welding torch (bead on plate). The welding conditions are listed in Table 1. The cross section perpendicular to the bead direction including the weld bead and the base material in the vicinity thereof is mirror-polished and etched with a nitric acid solution with a nitric acid concentration of 0.2% by volume. By observing the vicinity, the plating layer evaporation region length indicated by the symbol L in FIG. 5 was measured.
  • FIG. 6 the case where the plating layer evaporation region length is 0.3 mm or more is plotted with a circle mark, and the case where it is less than 0.3 mm is plotted with a cross mark.
  • the CO 2 concentration in the shielding gas is more preferably 5.0% by volume or more, but even in that case, the welding heat input Q is, for example, 2000 to 11500 J / cm. Can be set in a wide range, and can correspond to various plate thicknesses.
  • Example 2 A hot-dip Zn—Al—Mg-based plated steel sheet (thickness of the plating original sheet 2.6 mm) shown in Table 1-2 was placed horizontally, and a weld bead was formed on the steel sheet surface by an arc generated from a horizontally moving welding torch ( Bead on plate). The welding conditions are listed in Table 1-2. By observing the vicinity of the bead toe in the same manner as in Experimental Example 1 described above, the plating layer evaporation region length indicated by the symbol L in FIG.
  • FIG. 8 shows the result.
  • the case where the plating layer evaporation region length is 0.3 mm or more is plotted with a circle mark, and the case where it is less than 0.3 mm is plotted with a mark x.
  • the allowable upper limit is greatly relaxed. As the plate thickness decreases, the cooling rate after welding increases, so that the metal of the plated layer that has become molten after passing through the arc tends to solidify before spreading into the plated layer evaporation region.
  • the allowable upper limit of the CO 2 concentration when the plating layer evaporation region length is 0.3 mm is considered to vary greatly.
  • a molten Zn—Al—Mg based plated steel sheet member is applied to at least one of both members joined by arc welding.
  • Various steel types can be adopted as the plating base plate of the molten Zn—Al—Mg based steel plate member depending on the application. High tensile steel plates can also be used.
  • the thickness of the plating original plate may be 1.0 to 6.0 mm, and may be controlled in the range of 2.0 to 5.0 mm. If the plate thickness of the plating original plate is 2.6 mm or less (for example, 1.0 to 2.6 mm), equation (3) can be applied instead of equation (2).
  • the composition of the molten Zn—Al—Mg based plating layer is, by mass, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10. %, B: 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.5%, the balance Zn and inevitable impurities.
  • the plating layer composition substantially reflects the hot-dip plating bath composition.
  • the method of hot dipping is not particularly limited, it is generally advantageous in terms of cost to use an in-line annealing type hot dipping equipment.
  • the component elements of the plating layer will be described. “%” Of the plating layer component element means “mass%” unless otherwise specified.
  • Al is effective in improving the corrosion resistance of the plated steel sheet and suppresses the generation of Mg oxide dross in the plating bath. In order to fully exhibit these actions, it is necessary to secure an Al content of 1.0% or more, and it is more preferable to secure an Al content of 4.0% or more. On the other hand, when the Al content increases, a brittle Fe—Al alloy layer is likely to grow on the base of the plating layer, and excessive growth of the Fe—Al alloy layer causes a decrease in plating adhesion. As a result of various studies, the Al content is more preferably 22.0% or less, and may be controlled to 15.0% or less, or even 10.0% or less.
  • Mg exhibits the effect of significantly increasing the corrosion resistance of the plated steel sheet by generating a uniform corrosion product on the surface of the plated layer.
  • the Mg content is more preferably 0.05% or more, and more preferably 1.0% or more.
  • Mg oxide-based dross is likely to occur, which causes a reduction in the quality of the plating layer.
  • the Mg content is desirably in the range of 10.0% or less.
  • Ti and B are contained in the hot dipping bath, there are advantages such as an increase in the degree of freedom of manufacturing conditions during hot dipping. For this reason, 1 type or 2 types of Ti and B can be added as needed. It is more effective to add 0.0005% or more in the case of Ti and 0.0001% or more in the case of B. However, when the content of Ti or B in the plating layer is excessive, it causes a poor appearance of the plating layer surface due to the formation of precipitates. When these elements are added, it is desirable that Ti: 0.10% or less and B: 0.05% or less.
  • Si When Si is contained in the hot dipping bath, excessive growth of the Fe—Al alloy layer formed at the interface between the plating original plate surface and the plating layer is suppressed, and the workability of the hot-dip Zn—Al—Mg plated steel sheet is improved. This is advantageous. Therefore, Si can be contained as necessary. In that case, it is more effective to set the Si content to 0.005% or more. However, since excessive Si content causes an increase in the dross amount in the hot dipping bath, the Si content is preferably 2.0% or less.
  • the Fe content in the Zn—Al—Mg plating layer is preferably 2.5% or less.
  • the coating amount of the molten Zn—Al—Mg based steel sheet member is small, it is disadvantageous for maintaining the corrosion resistance and sacrificial anticorrosive action of the plated surface over a long period of time.
  • the Zn—Al—Mg-based plating adhesion amount per side should be 20 g / m 2 or more. It is effective.
  • the plating adhesion amount increases, blow holes are likely to occur during welding. When blow holes occur, the welding strength decreases. For this reason, it is desirable that the amount of plating deposited on one side be 250 g / m 2 or less.
  • the mating member to be joined to the above molten Zn—Al—Mg plated steel sheet member by arc welding may be the same molten Zn—Al—Mg plated steel sheet member as described above, or other steel materials. It doesn't matter.
  • Example 1 A cold-rolled steel strip having a thickness of 3.2 mm and a width of 1000 mm having the composition shown in Table 2 is used as a plating base plate, and this is passed through a hot dipping line to obtain a molten Zn—Al—Mg system having various plating layer compositions. A plated steel sheet was produced. Each shielded Zn—Al—Mg plated steel sheet was subjected to gas shield arc welding by the following test method, and the influence of the shielding gas composition on the resistance to molten metal embrittlement cracking was investigated. The plating layer composition, the plating adhesion amount, and the shielding gas composition are shown in Table 4 below.
  • the composition of the shielding gas applied to the examples of the present invention is composed of at least one of CO 2 : 0 to 16% by volume and the balance: Ar and He (the same applies to Examples 2 and 3 described later).
  • a steel bar boss (protrusion) 15 having a diameter of 20 mm and a length of 25 mm is vertically set up at the center of a 100 mm ⁇ 75 mm test piece 14 (a molten Zn—Al—Mg based plated steel plate member).
  • the test piece 14 and the boss 15 were joined by gas shield arc welding under the welding conditions shown in FIG. Specifically, the boss 15 is rotated once around the boss 15 clockwise from the welding start point S, and after the welding start point S is passed, welding is further performed by overlapping the beads, and an overlapping portion 17 of the weld bead 16 is generated. Welding was performed up to a later welding end point E. During welding, the test piece 14 was held on a flat plate. This test was conducted in a situation where welding cracks are likely to occur experimentally.
  • molten metal embrittlement cracking was observed in the comparative example in which the CO 2 concentration in the shielding gas exceeded the definition of the present invention.
  • the plating layer evaporation region length L (see FIG. 3) in the test piece 14 is less than 0.3 mm, and the deepest molten metal embrittlement crack has a distance from the toe portion of most samples of about 0.3 mm. It occurred at a site within 3 mm.
  • no molten metal embrittlement cracking was observed in the examples of the present invention in which the CO 2 concentration in the shielding gas was limited within the range satisfying the above expression (2).
  • the plating layer evaporation region length L in the examples of the present invention was 0.3 mm or more.
  • Example 2 A cold-rolled steel strip with a thickness of 4.5 mm having the composition shown in Table 2 is used as a plating base plate, and this is passed through a hot dipping line to produce hot-dip Zn—Al—Mg-based plated steel plates having various plating layer compositions. did. Using each molten Zn—Al—Mg plated steel sheet, the influence of the shielding gas composition on the resistance to molten metal embrittlement cracking was investigated by the same evaluation method as in Example 1. The results are shown in Table 5. The plating layer composition, plating adhesion amount, and shielding gas composition are shown in Table 5.
  • the composition of the shielding gas applied to the examples of the present invention consists of one or more of CO 2 : 0 to 7% by volume and the balance: Ar and He.
  • Example 3 A cold-rolled steel strip with a thickness of 6.0 mm having the composition shown in Table 2 is used as a plating base plate, and this is passed through a hot dipping line to produce hot-dip Zn-Al-Mg plated steel plates having various plating layer compositions. did.
  • the influence of the shielding gas composition on the resistance to molten metal embrittlement cracking was investigated by the same evaluation method as in Example 1. The results are shown in Table 6.
  • the plating layer composition, plating adhesion amount, and shielding gas composition are shown in Table 6.
  • the composition of the shielding gas applied to the examples of the present invention is composed of one or more of CO 2 : 0 to 6% by volume and the balance: Ar and He.
  • Example 4 A cold-rolled steel strip with a thickness of 2.6 mm having the composition shown in Table 2 is used as a plating original plate, and this is passed through a hot dipping line to produce hot-dip Zn-Al-Mg plated steel plates having various plating layer compositions. did. Using each molten Zn—Al—Mg plated steel sheet, the influence of the shielding gas composition on the resistance to molten metal embrittlement cracking was investigated by the same evaluation method as in Example 1. The results are shown in Table 7. The plating layer composition, plating adhesion amount, and shielding gas composition are shown in Table 7.
  • the composition of the shielding gas applied to the example of the present invention is composed of one or more of CO 2 : 0 to 17% by volume and the balance: Ar and He.
  • Example 5 A cold rolled steel strip with a thickness of 1.6 mm having the composition shown in Table 2 is used as a plating base plate, and this is passed through a hot dipping line to produce hot-dip Zn-Al-Mg plated steel plates having various plating layer compositions. did. Using each molten Zn—Al—Mg plated steel sheet, the influence of the shielding gas composition on the resistance to molten metal embrittlement cracking was investigated by the same evaluation method as in Example 1. The results are shown in Table 8. The plating layer composition, plating adhesion amount, and shielding gas composition are shown in Table 8.
  • the composition of the shielding gas applied to the example of the present invention is composed of one or more of CO 2 : 0 to 17% by volume and the balance: Ar and He.

Abstract

【課題】めっき原板の鋼種による制約や、大幅なコスト増を伴うことなく、Zn-Al-Mg系めっき鋼板部材を用いたアーク溶接構造部材において優れた耐溶融金属脆化割れ性を有するものを提供する。 【解決手段】ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、少なくとも接合する一方の部材を溶融Zn-Al-Mg系めっき鋼板部材とし、シールドガスとして、Arガス、HeガスまたはAr+He混合ガスをベースとし、CO2濃度CCO2(体積%)が溶接入熱Q(J/cm)に応じて下記(2)式を満たすように調整されているガスを使用する。 0≦CCO2≦2900Q-0.68 …(2)

Description

アーク溶接構造部材の製造法
 本発明は、接合する一方または双方の部材に溶融Zn-Al-Mg系めっき鋼板部材を用いて構成した耐溶融金属脆化割れ性に優れるアーク溶接構造部材の製造法に関する。
 溶融亜鉛系めっき鋼板は耐食性が良好であるため建築部材や自動車部材をはじめとする広範な用途に使用されている。なかでも溶融Zn-Al-Mg系めっき鋼板は長期間にわたり優れた耐食性を維持することから、従来の溶融亜鉛めっき鋼板に代わる材料として需要が増加している。
 溶融Zn-Al-Mg系めっき鋼板のめっき層は特許文献1、2に記載されるように、Zn/Al/ZnMg三元共晶のマトリクス中に初晶Al相または初晶Al相とZn単相が分散した金属組織を有しており、AlおよびMgにより耐食性が向上している。そのめっき層の表面には、特にMgを含む緻密で安定な腐食生成物が均一に生成するため、溶融亜鉛めっき鋼板に比べてめっき層の耐食性が格段に向上している。
 溶融Zn-Al-Mg系めっき鋼板を用いて建築部材、自動車部材等を組み立てる場合、ガスシールドアーク溶接法が適用されることが多い。溶融Zn-Al-Mg系めっき鋼板にアーク溶接を施すと溶融亜鉛めっき鋼板と比べ溶融金属脆化割れが生じやすいという問題がある。これはMgの含有によってめっき層の液相線温度が低下していることが原因であるとされている(特許文献3、4)。
 めっき鋼板にアーク溶接を施すと、めっき層の金属はアークが通過した周囲の母材(めっき原板)表面上で溶融する。Zn-Al-Mg系めっき鋼板の場合、当該めっき層の合金はZnの融点(約420℃)に比較して液相線温度が低く、比較的長時間にわたって溶融状態を維持する。Zn-6質量%Al-3質量%Mg合金の例では凝固終了温度が約335℃である。母材表面上で溶融したZn-Al-Mg系めっき層由来の溶融金属は、Al成分が下地のFeと早期に反応してFe-Al合金層となって消費されるに伴いAl濃度を減じていき、最終的にZn-Mg二元系に近い組成となるが、Zn-3質量%Mg合金でも凝固終了温度は360℃とZnの融点420℃より低い。したがって、Zn-Al-Mg系めっき鋼板の場合、亜鉛めっき鋼板と比べ、アーク溶接時に溶融しためっき層の金属が液相状態を維持したまま母材表面上に滞留する時間が長くなる。
 アーク溶接直後の冷却時に引張応力状態となっている母材の表面が、溶融しためっき金属に長時間曝されると、その溶融金属は母材の結晶粒界に侵入し溶融金属脆化割れを引き起こす要因となる。溶融金属脆化割れが発生すると、それが腐食の基点となり耐食性が低下する。また強度や疲労特性が低下して問題となることもある。
 アーク溶接時の溶融Zn-Al-Mg系めっき鋼板の溶融金属脆化割れを抑制する方法としては、例えばアーク溶接前にめっき層を切削除去する手法が提案されている。また、特許文献4にはB添加によりフェライト結晶粒界を強化した鋼板をめっき原板に適用することで耐溶融金属脆化割れ性を付与する手法が開示されている。特許文献5には溶接ワイヤの外皮中にTiOおよびFeOを添加したフラックスを充填してアーク溶接時にZn、Al、Mgを酸化させることで溶融金属脆化割れを抑制する手法が開示されている。
特許第3149129号公報 特許第3179401号公報 特許第4475787号公報 特許第3715220号公報 特開2005-230912号公報
 上記のめっき層を切削除去する手法や特殊な溶接ワイヤーを使用する手法は多大なコスト増を伴う。めっき原板にB添加鋼を用いる手法は鋼種選択の自由度を狭める。また、これらの手法を採用しても部品形状や溶接条件によっては溶融金属脆化割れを十分に防止できない場合があり、Zn-Al-Mg系めっき鋼板を用いたアーク溶接構造物の抜本的な溶融金属脆化割れ防止対策とはなっていない。
 一方、近年自動車の軽量化のために引張強さ590MPa以上の高張力鋼板がめっき原板に用いられるようになってきた。このような高張力鋼板を用いた溶融Zn-Al-Mg系めっき鋼板では溶接熱影響部の引張応力が増大するので溶融金属脆化割れが起こりやすくなり、適用可能な部品形状や用途が限定される。
 本発明はこのような現状に鑑み、めっき原板の鋼種による制約や、大幅なコスト増を伴うことなく、Zn-Al-Mg系めっき鋼板部材を用いたアーク溶接構造部材において優れた耐溶融金属脆化割れ性を有するものを提供することを目的とする。
 発明者らの検討によれば、ガスシールドアーク溶接時に溶接ビード近傍ではめっき層が蒸発により一旦消失するが、アークが通り過ぎた後、ビードから少し離れた位置で溶融状態となっているめっき層金属が直ちに上記の消失した箇所に濡れ拡がるという現象が起きることが確かめられている。この濡れ拡がりを抑制して、上記の蒸発消失した状態を維持したまま冷却が完了すれば、溶接ビートに近い位置で母材中へのめっき層成分の侵入が回避され、溶融金属脆化割れは効果的に防止できると考えられる。発明者らの詳細な研究の結果、シールドガス中に通常20体積%程度配合されているCOの濃度を低減することにより、Zn-Al-Mg系めっき鋼板部材における上記の濡れ拡がりが顕著に抑制されることがわかった。そのCO濃度の許容上限は溶接入熱の関数として管理することができる。さらに、使用するZn-Al-Mg系めっき鋼板部材の板厚が薄い場合には、CO濃度上限の許容度が拡大することがわかった。本発明はこのような知見に基づいて完成したものである。
 すなわち上記目的は、ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、少なくとも接合する一方の部材を溶融Zn-Al-Mg系めっき鋼板部材とし、シールドガスとして、Arガス、HeガスまたはAr+He混合ガスをベースとし、CO濃度が下記(1)式で表される溶接入熱Q(J/cm)との関係において下記(2)式を満たすガスを使用するアーク溶接構造部材の製造法によって達成される。
 Q=(I×V)/v …(1)
 0≦CCO2≦2900Q-0.68 …(2)
 ただし、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)、CCO2はシールドガス中のCO濃度(体積%)である。
 ここで、「溶融Zn-Al-Mg系めっき鋼板部材」は、溶融Zn-Al-Mg系めっき鋼板からなる部材、またはそれを素材として成形加工した部材である。前記溶接入熱Qは例えば2000~12000J/cmの範囲とすることができる。
 また、前記溶融Zn-Al-Mg系めっき鋼板部材が板厚2.6mm以下(例えば1.0~2.6mm)のめっき原板を用いたものである場合は上記(2)式に代えて下記(3)式を適用することができる。
 0≦CCO2≦205Q-0.32 …(3)
 また、このように板厚が薄い場合には、前記溶接入熱Qは例えば2000~4500J/cmの範囲とすることがより好ましい。
 前記溶融Zn-Al-Mg系めっき鋼板は、例えば質量%で、Al:1.0~22.0%、Mg:0.05~10.0%、Ti:0~0.10%、B:0~0.05%、Si:0~2.0%、Fe:0~2.5%、残部Znおよび不可避的不純物からなるめっき層を有するものが好適な対象となる。その片面当たりのめっき付着量は例えば20~250g/mである。
 本発明によれば、本来的に溶融金属脆化割れが生じやすい溶融Zn-Al-Mg系めっき鋼板部材を用いたアーク溶接構造物において、優れた耐溶融金属脆化割れ性を呈するものを特段のコスト増を伴うことなく安定して実現することが可能となった。溶接入熱に応じてシールドガス中のCO濃度の許容上限が明確化されたので、COを配合することによるメリット(アークにより生成するCOの還元作用を利用した溶接ビード周辺の酸化抑制など)を最大限に活かすことができる。めっき原板の鋼種にも特に制約はなく、溶融金属脆化割れ対策として特殊な元素を添加した鋼種を採用する必要はない。高張力鋼板を適用しても優れた耐溶融金属脆化割れ性が得られる。また、部品形状に対する自由度も大きい。したがって本発明は、今後ニーズの増大が予想される高張力鋼板を用いた自動車用アーク溶接構造部材をはじめ、種々の広範な用途において、Zn-Al-Mg系めっき鋼板アーク溶接構造部材の普及に寄与するものである。
ガスシールドアーク溶接中のトーチおよび母材の断面を模式的に示した図。 重ねすみ肉溶接継手の溶接部断面構造を模式的示した図。 溶融Zn-Al-Mg系めっき鋼板のアーク溶接時において、アークが通り過ぎた直後の高温の溶接部近傍の断面状態を模式的に示した図。 図3の状態から冷却された従来のZn-Al-Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示した図。 図3の状態から冷却されて得られた本発明に従うZn-Al-Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示した図。 Zn-Al-Mg系めっき鋼板を用いたアーク溶接構造部材のめっき層蒸発領域長さに及ぼす溶接入熱およびシールドガス中CO濃度の影響を示したグラフ。 耐溶融金属脆化割れ性を調べるための溶接実験方法を示した図。 Zn-Al-Mg系めっき鋼板を用いたアーク溶接構造部材のめっき層蒸発領域長さに及ぼす溶接入熱およびシールドガス中CO濃度の影響を示したグラフ(板厚が薄い場合)。
 図1に、ガスシールドアーク溶接中のトーチおよび母材の断面を模式的に示す。溶接トーチ31は母材1の表面上にアーク35を形成しながら矢印の方向に進行している。溶接トーチ31の中心部に位置する電極33と溶接ワイヤ32の周囲からシールドガス34が吹き出し、アーク35および高温に曝される母材1の表面を大気から保護している。アーク35からの入熱により溶融した母材1の一部は溶接トーチ31が通り過ぎたのち急速に凝固して、溶接金属からなる溶接ビード2を形成する。シールドガス34は、非酸化性のガスであることが必要である。一般的にはArなどの不活性ガスをベースガスとして、これにCOを20体積%程度混合したAr+CO混合ガスが採用される。シールドガス34中のCOはプラズマ状態のアーク35によって一部がCOとOに乖離すると考えられており、そのCOが還元作用を発揮して溶接ビードおよびその周辺の酸化が抑制される。それにより溶接部での耐食性低下が軽減されると考えられる。
 図2に、重ねすみ肉溶接継手の溶接部断面構造を模式的に例示する。自動車シャシなどにはアーク溶接によるこの種の溶接継手が多用されている。鋼板部材である母材1、母材1’が重ねられて配置され、母材1の表面と母材1’の端面に溶接ビード2が形成され、両部材が接合されている。図中の破線は溶接前の母材1の表面位置および母材1’の端面位置を表している。母材表面と溶接ビードの交点を「ビード止端部」と呼ぶ。図中には母材1についてのビード止端部を符号3で示してある。
 図3~図5は、図2に示したビード止端部3の近傍に相当する部位の断面構造を拡大して模式的に示したものである。
 図3に、Zn-Al-Mg系めっき鋼板のガスシールドアーク溶接時において、アークが通り過ぎた直後の高温の溶接部近傍の断面状態を模式的に示す。母材1の表面は、溶接前の段階でFe-Al系合金層6を介して均一なめっき層7に覆われていたが、アークの通過によってビード止端部3の近くではめっき層の金属が蒸発して消失している(めっき層蒸発領域9)。それよりビード止端部3からの距離が大きい部分では、元のめっき層7が溶融してZn-Al-Mg系溶融金属8となるが、蒸発による消失には至っていない。ビード止端部3からの距離がさらに大きくなると、元のめっき層7が溶融せずに存在している。なお、図3中、Zn-Al-Mg系溶融金属8およびめっき層7の厚さは誇張して描いてある。
 図4に、図3の状態から冷却されて得られた従来のZn-Al-Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示す。この場合、溶接時にめっき層が一旦消失して形成した「めっき層蒸発領域」(図3の符号9)にZn-Al-Mg系溶融金属(図3の符号8)が濡れ拡がり、母材1の表面はビード止端部3までの全体がZn-Al-Mg系合金層5に覆われる。Zn-Al-Mg系溶融金属(図3の符号8)が凝固して形成したZn-Al-Mg系合金層5の部分を溶融凝固領域10と呼び、元のめっき層7が残存して形成したZn-Al-Mg系合金層5の部分をめっき層未溶融領域11と呼ぶ。従来のZn-Al-Mg系めっき鋼板アーク溶接構造部材では通常この図のように、ビード止端部3直近は溶融凝固領域10となる。この場合、前述のようにZn-Al-Mg系溶融金属8は液相線温度が低いために、冷却後に溶融凝固領域10となる母材1の表面部分は溶接後の冷却過程でZn-Al-Mg系溶融金属と接触する時間が比較的長くなる。母材1のビード止端部に近い部分には溶接後の冷却で引張応力が生じているので、その結晶粒界中にZn-Al-Mg系溶融金属の成分が侵入しやすい。粒界に侵入した当該成分が溶融金属脆化割れを引き起こす要因となる。
 図5に、図3の状態から冷却されて得られた本発明に従うZn-Al-Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示す。本発明では、シールドガスとしてCO濃度を減じたガスまたはCO無添加のガスを使用する。このため溶接時にめっき層が消失した「めっき層蒸発領域」(図3の符号9)の母材1表面は、シールドガスによる還元作用が弱いために酸化され、迅速に薄い酸化皮膜に覆われると考えられる。この酸化皮膜がZn-Al-Mg系溶融金属(図3の符号8)との濡れを阻害することにより、当該Zn-Al-Mg系溶融金属の濡れ拡がりが抑止されるものと推察される。その結果、冷却後にはめっき層蒸発領域9が残存する。すなわち、ビード止端部3近傍の母材1表面はZn-Al-Mg系溶融金属と接触することなく冷却を終えることとなり、その部分での母材1中への溶融金属成分の侵入が回避される。そのため母材1の鋼種に依存することなく、優れた耐溶融金属脆化割れ性が付与される。なお、Zn-Al-Mg系溶融金属(図3の符号8)の高さ位置がビード止端部3より上方となるような溶接姿勢においても、上記の濡れ阻害作用によって当該Zn-Al-Mg系溶融金属の濡れ拡がりは顕著に抑制される。
 本発明ではシールドガスとしてCO濃度を減じたガスまたはCO無添加のガスを使用するため、溶接ビードおよびその周辺は従来より酸化されやすい雰囲気となる。しかし、接合する部材として溶融Zn-Al-Mg系めっき鋼板部材を適用することにより、めっき層表面だけでなく溶接部近傍で鋼素地が露出した部分の耐食性も改善される。すなわち、Znによる防食効果に加え、Zn-Al-Mg系めっき金属に由来する腐食生成物が優れた保護性を発揮することにより長期間の耐食性は改善され、CO濃度を減じたガスまたはCO無添加のガスを使用することによる耐食性低下は通常の使用において顕在化しない。
 冷却後に残っためっき層蒸発領域9のビード止端部3からの長さを、本明細書では「めっき層蒸発領域長さ」と呼び、図5中に符号Lで表示した。Zn-Al-Mg系めっき鋼板アーク溶接構造部材で問題となる溶融金属脆化割れは、そのほとんどがビード止端部3のごく近傍、具体的にはビード止端部から0.3mm未満の範囲で発生することが確認されている。種々検討の結果、上述のめっき層蒸発領域長さが0.3mm以上であれば耐溶融金属脆化割れ性は大幅に向上し、0.4mm以上であればさらに好ましい。このめっき層蒸発領域長さがあまり長くなると、めっき層が存在しないことによる耐食性低下が問題となるが、発明者らの検討によると、めっき層蒸発領域長さが2.0mm以下であれば周囲のZn-Al-Mg系めっき層による犠牲防食作用が十分に得られ、この部分での耐食性低下は問題とならないレベルとなることがわかった。シールドガス組成を後述のように調整することによってめっき層蒸発領域長さを0.3~2.0mmの範囲にコントロールすることができる。
〔ガスシールドアーク溶接条件〕
 本発明に従うアーク溶接においては、シールドガスのCO濃度を溶接入熱に応じて制限することが重要である。シールドガス中に混合されるCOは前述のようにプラズマアークに触れて一部がCOとOに乖離し、そのCOの還元作用によって溶接ビード近傍の母材表面が活性化される。従来一般的なガスシールドアーク溶接では溶接ビード部およびその周辺の酸化を抑制する等の理由からCOを20体積%程度混合したシールドガスを使用するのが通常である。しかし、本発明ではその還元作用を抑制させるか、あるいは全く利用しないことにより、溶接部近傍のめっき層が蒸発消失した母材表面が過度に活性化されることを防止し、周囲の母材表面に存在するZn-Al-Mg系溶融金属がビード止端部に濡れ拡がることを抑止する。詳細な検討の結果、上記の(2)式を満たすようにシールドガス中のCO濃度を制限したとき、濡れ拡がりの抑止効果が現れ、上述のめっき層蒸発領域長さを0.3~2.0mmの範囲にコントロールすることが可能となる。
 すなわち本明細書では、Arガス、HeガスまたはAr+He混合ガスをベースとするシールドガスを用いたガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、少なくとも接合する一方の部材を溶融Zn-Al-Mg系めっき鋼板部材とし、下記(1)式で表される溶接入熱Q(J/cm)に応じてシールドガス中のCO濃度を下記(2)式を満たすように調整するシールドガス中のCO濃度調整方法を開示する。
 Q=(I×V)/v …(1)
 0≦CCO2≦2900Q-0.68 …(2)
 ただし、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)、CCO2はシールドガス中のCO濃度(体積%)である。
 接合する部材の少なくとも一方に板厚2.6mm以下のめっき原板を用いた溶融Zn-Al-Mg系めっき鋼板部材を適用する場合は、上記(2)式に代えて、より許容上限の広い上記(3)式を適用しても、上述のめっき層蒸発領域長さを0.3~2.0mmの範囲にコントロールすることができる。
 この場合、Arガス、HeガスまたはAr+He混合ガスをベースとするシールドガスを用いたガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、少なくとも接合する一方の部材に板厚2.6mm以下のめっき原板を用いた溶融Zn-Al-Mg系めっき鋼板部材を適用し、前記(1)式で表される溶接入熱Q(J/cm)に応じてシールドガス中のCO濃度を下記(3)式を満たすように調整するシールドガス中のCO濃度調整方法を開示する。
 0≦CCO2≦205Q-0.32 …(3)
 ただし、CCO2はシールドガス中のCO濃度(体積%)である。
 シールドガス中のCO濃度は上記(2)式、板厚条件によっては上記(3)式を満たす範囲で調整すればよいが、アークを安定化させる観点からは5体積%以上のCO濃度を確保することがより効果的である。アークが安定化すると溶け込み深さを増大させる上で有利となる。すなわち、上記(2)式に代えて下記(2)’式を、また上記(3)式に代えて下記(3)’式を適用することができる。
 5.0≦CCO2≦2900Q-0.68 …(2)’
 5.0≦CCO2≦205Q-0.32 …(3)’
 また特に、接合する一方の部材に板厚2.6mm以下のめっき原板を用いた溶融Zn-Al-Mg系めっき鋼板部材を適用する場合には、前記(1)式で表される溶接入熱Q(J/cm)に応じてシールドガス中のCO濃度を下記(4)式を満たすように調整するシールドガス中のCO濃度調整方法に従うと、COによるアークの安定化効果を最大限に発揮させながらZn-Al-Mg系溶融金属のビード止端部への濡れ拡り防止を図ることができる。
 2900Q-0.68<CCO2≦205Q-0.32 …(4)
 シールドガスのベースガスは、従来と同様にArガスとすることができる。Heガスや、Ar+He混合ガスとしてもよい。それらのベースガスの純度は従来と同等レベルとすればよい。
 溶接入熱は板厚等に応じて最適な値に設定すればよい。溶接入熱が過小であると溶け込みが不十分となって溶接ビードが不連続となる場合がある。逆に溶接入熱が過大であるとスパッタが発生しやすくなる。通常2000~12000J/cmの範囲で溶接入熱の適正値を見出すことができる。ただし、接合する部材の少なくとも一方に板厚2.6mm以下のめっき原板を用いた溶融Zn-Al-Mg系めっき鋼板部材を適用する場合は、溶接入熱を2000~4500J/cmの範囲で設定することがより好ましい。その他の溶接条件については、例えばシールドガス流量は10~30L/minの範囲で調整すればよい。溶接装置は従来一般的なものを使用することができる。
 溶接入熱およびシールドガス中のCO濃度と、めっき層蒸発領域長さの関係を調べた実験例を紹介する。
〔実験例1〕
 表1に示す溶融Zn-Al-Mg系めっき鋼板を水平に置き、水平移動する溶接トーチから発生するアークにより鋼板表面に溶接ビードを形成させた(ビードオンプレート)。溶接条件は表1中に記載してある。溶接ビードおよびその近傍の母材を含むビード方向に垂直な断面について、鏡面研磨および硝酸濃度0.2体積%ナイタール液でのエッチングを施したのち、走査型電子顕微鏡観察を行い、ビード止端部近傍を観察することにより図5に符号Lで示しためっき層蒸発領域長さを測定した。
Figure JPOXMLDOC01-appb-T000001
 図6にその結果を示す。図6中にはめっき層蒸発領域長さが0.3mm以上となる場合を○印、0.3mm未満となる場合を×印でそれぞれプロットしてある。溶接入熱Q(J/cm)とシールドガス中のCO濃度CCO2(体積%)の関係がCCO2=2900Q-0.68となる曲線を境に、めっき層蒸発領域長さが0.3mm以上となるかどうかが明確に分かれている。上述のようにZn-Al-Mg系めっき鋼板を用いたアーク溶接構造部材で問題となる溶融金属脆化割れは、そのほとんどがビード止端部から0.3mm未満の領域で発生することから、この曲線の境界を越えないように、溶接入熱に応じてシールドガス中のCO濃度をコントロールすることにより、耐溶融金属脆化割れ性を大幅に向上させることができる。なお、上述のようにアークを安定化させる観点からはシールドガス中のCO濃度を5.0体積%以上とすることがより好ましいが、その場合でも溶接入熱Qは例えば2000~11500J/cmといった広い範囲で設定可能であり、種々の板厚に対応することができる。
〔実験例2〕
 表1-2に示す溶融Zn-Al-Mg系めっき鋼板(めっき原板の板厚2.6mm)を水平に置き、水平移動する溶接トーチから発生するアークにより鋼板表面に溶接ビードを形成させた(ビードオンプレート)。溶接条件は表1-2中に記載してある。上述の実験例1と同様の手法でビード止端部近傍を観察することにより図5に符号Lで示しためっき層蒸発領域長さを測定した。
Figure JPOXMLDOC01-appb-T000002
 図8にその結果を示す。図8中にはめっき層蒸発領域長さが0.3mm以上となる場合を○印、0.3mm未満となる場合を×印でそれぞれプロットしてある。溶接入熱Q(J/cm)とシールドガス中のCO濃度CCO2(体積%)の関係がCCO2=205Q-0.32となる曲線を境に、めっき層蒸発領域長さが0.3mm以上となるかどうかが明確に分かれている。すなわち、めっき原板の板厚が2.6mm以下であるZn-Al-Mg系めっき鋼板を適用する場合は、板厚3.2mmの例である図6の場合よりもシールドガス中のCO濃度の許容上限が大幅に緩和される。板厚が薄くなると溶接後の冷却速度が速くなるため、アーク通過後に溶融状態となっためっき層の金属がめっき層蒸発領域へと濡れ拡がる前に凝固しやすくなるが、めっき原板(図5の母材1に相当)の板厚が3mm前後のときに、めっき層蒸発領域長さ0.3mmを基準とした場合のCO濃度の許容上限は大きく変動するものと考えられる。
〔溶融Zn-Al-Mg系めっき鋼板部材〕
 本発明では、アーク溶接で接合する双方の部材のうち、少なくとも一方に溶融Zn-Al-Mg系めっき鋼板部材を適用する。
 その溶融Zn-Al-Mg系めっき鋼板部材のめっき原板としては、用途に応じて種々の鋼種が採用できる。高張力鋼板を使用することもできる。前記(2)式を適用する場合、めっき原板の板厚は1.0~6.0mmとすることができ、2.0~5.0mmの範囲に管理してもよい。なお、めっき原板の板厚が2.6mm以下(例えば1.0~2.6mm)であれば前記(2)式に代えて(3)式を適用することができる。
 具体的な溶融Zn-Al-Mg系めっき層の組成としては、質量%で、Al:1.0~22.0%、Mg:0.05~10.0%、Ti:0~0.10%、B:0~0.05%、Si:0~2.0%、Fe:0~2.5%、残部Znおよび不可避的不純物からなるものを挙げることができる。めっき層組成は溶融めっき浴組成をほぼ反映したものとなる。溶融めっきの方法は特に限定されないが、一般的にはインライン焼鈍型の溶融めっき設備を使用することがコスト的に有利となる。以下、めっき層の成分元素について説明する。めっき層成分元素の「%」は特に断らない限り「質量%」を意味する。
 Alは、めっき鋼板の耐食性向上に有効であり、また、めっき浴においてMg酸化物系ドロスの発生を抑制する。これらの作用を十分に発揮させるためには1.0%以上のAl含有量を確保する必要があり、4.0%以上のAl含有量を確保することがより好ましい。一方、Al含有量が多くなるとめっき層の下地に脆いFe-Al合金層が成長しやすくなり、Fe-Al合金層の過剰な成長はめっき密着性の低下を招く要因となる。種々検討の結果、Al含有量は22.0%以下とすることがより好ましく、15.0%以下、あるいはさらに10.0%以下に管理しても構わない。
 Mgは、めっき層表面に均一な腐食生成物を生成させてめっき鋼板の耐食性を著しく高める作用を呈する。Mg含有量は0.05%以上とすることがより効果的であり、1.0%以上とすることがさらに好ましい。一方、めっき浴中のMg含有量が多くなるとMg酸化物系ドロスが発生し易くなり、めっき層の品質低下を招く要因となる。Mg含有量は10.0%以下の範囲とすることが望ましい。
 溶融めっき浴中にTi、Bを含有させると、溶融めっき時における製造条件の自由度が拡大する等のメリットがある。このため、必要に応じてTi、Bの1種または2種を添加することができる。その添加量はTiの場合0.0005%以上、Bの場合0.0001%以上とすることがより効果的である。ただし、めっき層中のTiやBの含有量が過剰になると析出物の生成に起因しためっき層表面の外観不良を引き起こす要因となる。これらの元素を添加する場合は、Ti:0.10%以下、B:0.05%以下の範囲とすることが望ましい。
 溶融めっき浴中にSiを含有させると、めっき原板表面とめっき層の界面に生成するFe-Al合金層の過剰な成長が抑制され、溶融Zn-Al-Mg系めっき鋼板の加工性を向上させる上で有利となる。したがって、必要に応じてSiを含有させることができる。その場合、Si含有量を0.005%以上とすることがより効果的である。ただし、過剰のSi含有は溶融めっき浴中のドロス量を増大させる要因となるので、Si含有量は2.0%以下とすることが望ましい。
 溶融めっき浴中には、鋼板を浸漬・通過させる関係上、Feが混入しやすい。Zn-Al-Mg系めっき層中のFe含有量は2.5%以下とすることが好ましい。
 溶融Zn-Al-Mg系めっき鋼板部材のめっき付着量が少ないと、めっき面の耐食性および犠牲防食作用を長期にわたって維持するうえで不利となる。種々検討の結果、本発明に従ってビード止端部近傍に生じた「めっき層蒸発領域」を残存させる場合、片面当たりのZn-Al-Mg系めっき付着量は20g/m以上とすることがより効果的である。一方、めっき付着量が多くなると溶接時にブローホールが発生しやすくなる。ブローホールが発生すると溶接強度が低下する。このため片面当たりのめっき付着量は250g/m以下とすることが望ましい。
〔溶接相手部材〕
 上記の溶融Zn-Al-Mg系めっき鋼板部材とアーク溶接により接合する相手部材は、上記と同様の溶融Zn-Al-Mg系めっき鋼板部材であっても構わないし、それ以外の鋼材であっても構わない。
《実施例1》
 表2に示す組成を有する板厚3.2mm、板幅1000mmの冷延鋼帯をめっき原板とし、これを溶融めっきラインに通板して種々のめっき層組成を有する溶融Zn-Al-Mg系めっき鋼板を製造した。各溶融Zn-Al-Mg系めっき鋼板を用いて、以下に示す試験方法によりガスシールドアーク溶接を行い、耐溶融金属脆化割れ性に及ぼすシールドガス組成の影響を調査した。めっき層組成、めっき付着量、シールドガス組成は後述表4中に示してある。本発明例に適用したシールドガスの組成は、CO:0~16体積%、残部:Ar、Heの1種以上からなる(後述実施例2、3において同じ)。
Figure JPOXMLDOC01-appb-T000003
〔耐溶融金属脆化割れ性の試験方法〕
 図7に示すように、100mm×75mmの試験片14(溶融Zn-Al-Mg系めっき鋼板部材)の中央部に直径20mm、長さ25mmの棒鋼のボス(突起)15を垂直に立て、表3に示す溶接条件でガスシールドアーク溶接を行って試験片14とボス15を接合した。具体的には溶接開始点Sから時計回りにボス15の周囲を1周して、溶接開始点Sを過ぎた後もさらにビードを重ねて溶接を進め、溶接ビード16の重なり部分17が生成した後の溶接終了点Eまで溶接を行った。溶接中、試験片14は平板上に拘束された状態とした。この試験は実験的に溶接割れが生じやすい状況としたものである。
Figure JPOXMLDOC01-appb-T000004
 溶接後、ボス15の中心軸を通り、且つビード重なり部分17を通る切断面20について、ビード重なり部分17近傍の試験片14部分を走査型電子顕微鏡で観察することにより、試験片14に観測される最も深い割れの深さ(最大割れ深さ)を測定した。この割れは「溶融金属脆化割れ」であると判断される。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 表4に示されるように、シールドガス中のCO濃度が本発明の規定を超える比較例のものにおいて、溶融金属脆化割れが観測された。これらはいずれも試験片14におけるめっき層蒸発領域長さL(前述図3参照)が0.3mm未満であり、最も深い溶融金属脆化割れはほとんどの試料において止端部からの距離が0.3mm以内の部位に生じていた。これに対し、シールドガス中のCO濃度を前記(2)式を満たす範囲で制限した本発明例のものには溶融金属脆化割れは観測されなかった。本発明例のものにおけるめっき層蒸発領域長さLは、いずれも0.3mm以上であった。
《実施例2》
 表2に示す組成を有する板厚4.5mmの冷延鋼帯をめっき原板とし、これを溶融めっきラインに通板して種々のめっき層組成を有する溶融Zn-Al-Mg系めっき鋼板を製造した。各溶融Zn-Al-Mg系めっき鋼板を用いて、実施例1と同様の評価手法で耐溶融金属脆化割れ性に及ぼすシールドガス組成の影響を調査した。その結果を表5に示す。めっき層組成、めっき付着量、シールドガス組成は表5中に示してある。本発明例に適用したシールドガスの組成は、CO:0~7体積%、残部:Ar、Heの1種以上からなる。
Figure JPOXMLDOC01-appb-T000006
 4.5mmのめっき原板を用いた溶融Zn-Al-Mg系めっき鋼板においても、シールドガス中のCO濃度を前記(2)式を満たす範囲に制限することによって溶融金属脆化割れを防止することができた。
《実施例3》
 表2に示す組成を有する板厚6.0mmの冷延鋼帯をめっき原板とし、これを溶融めっきラインに通板して種々のめっき層組成を有する溶融Zn-Al-Mg系めっき鋼板を製造した。各溶融Zn-Al-Mg系めっき鋼板を用いて、実施例1と同様の評価手法で耐溶融金属脆化割れ性に及ぼすシールドガス組成の影響を調査した。その結果を表6に示す。めっき層組成、めっき付着量、シールドガス組成は表6中に示してある。本発明例に適用したシールドガスの組成は、CO:0~6体積%、残部:Ar、Heの1種以上からなる。
Figure JPOXMLDOC01-appb-T000007
 6.0mmのめっき原板を用いた溶融Zn-Al-Mg系めっき鋼板においても、シールドガス中のCO濃度を前記(2)式を満たす範囲に制限することによって溶融金属脆化割れを防止することができた。
《実施例4》
 表2に示す組成を有する板厚2.6mmの冷延鋼帯をめっき原板とし、これを溶融めっきラインに通板して種々のめっき層組成を有する溶融Zn-Al-Mg系めっき鋼板を製造した。各溶融Zn-Al-Mg系めっき鋼板を用いて、実施例1と同様の評価手法で耐溶融金属脆化割れ性に及ぼすシールドガス組成の影響を調査した。その結果を表7に示す。めっき層組成、めっき付着量、シールドガス組成は表7中に示してある。本発明例に適用したシールドガスの組成は、CO:0~17体積%、残部:Ar、Heの1種以上からなる。
Figure JPOXMLDOC01-appb-T000008
 めっき原板の板厚が2.6mmの溶融Zn-Al-Mg系めっき鋼板を用いた場合には、許容上限が前記(2)式よりも広い前記(3)式を満たす範囲において溶融金属脆化割れを防止可能であることが確認された。
《実施例5》
 表2に示す組成を有する板厚1.6mmの冷延鋼帯をめっき原板とし、これを溶融めっきラインに通板して種々のめっき層組成を有する溶融Zn-Al-Mg系めっき鋼板を製造した。各溶融Zn-Al-Mg系めっき鋼板を用いて、実施例1と同様の評価手法で耐溶融金属脆化割れ性に及ぼすシールドガス組成の影響を調査した。その結果を表8に示す。めっき層組成、めっき付着量、シールドガス組成は表8中に示してある。本発明例に適用したシールドガスの組成は、CO:0~17体積%、残部:Ar、Heの1種以上からなる。
Figure JPOXMLDOC01-appb-T000009
 めっき原板の板厚が1.6mmの溶融Zn-Al-Mg系めっき鋼板を用いた場合も、前記(3)式を満たす範囲において溶融金属脆化割れを防止可能であることが確認された。
 1、1’ 母材
 2  溶接ビード
 3  ビード止端部
 5  Zn-Al-Mg系合金層
 6  Fe-Al系合金層
 7  めっき層
 8  Zn-Al-Mg系溶融金属
 9  めっき層蒸発領域
 10  溶融凝固領域
 11  めっき層未溶融領域
 14  試験片
 15  ボス
 16  溶接ビード
 17  ビード重なり部分
 31  溶接トーチ
 32  溶接ワイヤ
 33  電極
 34  シールドガス
 35  アーク

Claims (6)

  1.  ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、少なくとも接合する一方の部材を溶融Zn-Al-Mg系めっき鋼板部材とし、シールドガスとして、Arガス、HeガスまたはAr+He混合ガスをベースとし、CO濃度が下記(1)式で表される溶接入熱Q(J/cm)との関係において下記(2)式を満たすガスを使用するアーク溶接構造部材の製造法。
     Q=(I×V)/v …(1)
     0≦CCO2≦2900Q-0.68 …(2)
     ただし、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)、CCO2はシールドガス中のCO濃度(体積%)である。
  2.  前記溶接入熱Qを2000~12000J/cmの範囲とする請求項1に記載のアーク溶接構造部材の製造法。
  3.  ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、少なくとも接合する一方の部材に板厚2.6mm以下のめっき原板を用いた溶融Zn-Al-Mg系めっき鋼板部材を適用し、シールドガスとして、Arガス、HeガスまたはAr+He混合ガスをベースとし、CO濃度が下記(1)式で表される溶接入熱Q(J/cm)との関係において下記(3)式を満たすガスを使用するアーク溶接構造部材の製造法。
     Q=(I×V)/v …(1)
     0≦CCO2≦205Q-0.32 …(3)
     ただし、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)、CCO2はシールドガス中のCO濃度(体積%)である。
  4.  前記溶接入熱Qを2000~4500J/cmの範囲とする請求項3に記載のアーク溶接構造部材の製造法。
  5.  前記溶融Zn-Al-Mg系めっき鋼板は、質量%で、Al:1.0~22.0%、Mg:0.05~10.0%、Ti:0~0.10%、B:0~0.05%、Si:0~2.0%、Fe:0~2.5%、残部Znおよび不可避的不純物からなるめっき層を有するものである請求項1~4のいずれかに記載のアーク溶接構造部材の製造法。
  6.  前記溶融Zn-Al-Mg系めっき鋼板は、片面当たりのめっき付着量が20~250g/mである請求項1~5のいずれかに記載のアーク溶接構造部材の製造法。
PCT/JP2013/064196 2012-06-14 2013-05-22 アーク溶接構造部材の製造法 WO2013187197A1 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
EP13803668.6A EP2862662B1 (en) 2012-06-14 2013-05-22 Process for producing arc-welded structural member
NZ629861A NZ629861A (en) 2012-06-14 2013-05-22 Method for producing arc-welded structural member
AU2013275476A AU2013275476B2 (en) 2012-06-14 2013-05-22 Method for Producing Arc-Welded Structural Member
RU2015100899A RU2635581C2 (ru) 2012-06-14 2013-05-22 Способ для производства сваренного дуговой сваркой конструктивного элемента
US14/406,569 US20150136741A1 (en) 2012-06-14 2013-05-22 Method for producing arc-welded structural member
KR20147027115A KR20150024302A (ko) 2012-06-14 2013-05-22 아크 용접 구조 부재의 제조법
SG11201406046YA SG11201406046YA (en) 2012-06-14 2013-05-22 Process for producing arc-welded structural member
BR112014029946-3A BR112014029946B1 (pt) 2012-06-14 2013-05-22 Método para produzir elemento estrutural de arco soldado
RS20171171A RS56575B1 (sr) 2012-06-14 2013-05-22 Postupak proizvodnje elektrolučno zavarenog strukturnog elementa
MX2014010630A MX362408B (es) 2012-06-14 2013-05-22 Metodo para producir miembro estructural soldado por arco.
CN201380022431.1A CN104334308B (zh) 2012-06-14 2013-05-22 电弧焊接结构构件的制造方法
MYPI2014703682A MY181348A (en) 2012-06-14 2013-05-22 Process for producing arc-welded structural member
CA2874217A CA2874217A1 (en) 2012-06-14 2013-05-22 Method for producing arc-welded structural member
PH12014502019A PH12014502019A1 (en) 2012-06-14 2014-09-10 Method for producing arc-welded structural member
AU2017204060A AU2017204060B2 (en) 2012-06-14 2017-06-15 Method for producing arc-welded structural member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-134657 2012-06-14
JP2012134657A JP5372217B2 (ja) 2012-02-24 2012-06-14 アーク溶接構造部材の製造法

Publications (1)

Publication Number Publication Date
WO2013187197A1 true WO2013187197A1 (ja) 2013-12-19

Family

ID=49758561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064196 WO2013187197A1 (ja) 2012-06-14 2013-05-22 アーク溶接構造部材の製造法

Country Status (18)

Country Link
US (1) US20150136741A1 (ja)
EP (1) EP2862662B1 (ja)
JP (1) JP5372217B2 (ja)
KR (1) KR20150024302A (ja)
CN (1) CN104334308B (ja)
AU (2) AU2013275476B2 (ja)
BR (1) BR112014029946B1 (ja)
CA (1) CA2874217A1 (ja)
HU (1) HUE034970T2 (ja)
MX (1) MX362408B (ja)
MY (1) MY181348A (ja)
NZ (1) NZ629861A (ja)
PH (1) PH12014502019A1 (ja)
PT (1) PT2862662T (ja)
RS (1) RS56575B1 (ja)
RU (1) RU2635581C2 (ja)
SG (2) SG11201406046YA (ja)
WO (1) WO2013187197A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023156B2 (ja) * 2014-11-27 2016-11-09 日新製鋼株式会社 Zn系めっき鋼板のアーク溶接方法
WO2016194400A1 (ja) * 2015-05-29 2016-12-08 日新製鋼株式会社 溶接部外観と溶接強度に優れた溶融Zn系めっき鋼板のアーク溶接方法、溶接部材の製造方法および溶接部材
JP6114785B2 (ja) * 2015-05-29 2017-04-12 日新製鋼株式会社 溶接部外観と溶接強度に優れた溶融Zn系めっき鋼板のアーク溶接方法、および溶接部材の製造方法
CA3033387A1 (en) 2016-08-08 2018-02-15 John Speer Modified hot-dip galvanize coatings with low liquidus temperature, methods of making and using the same
JP6385411B2 (ja) * 2016-10-28 2018-09-05 日新製鋼株式会社 溶接部材およびその製造方法
JP6984646B2 (ja) 2017-02-22 2021-12-22 日本製鉄株式会社 レーザろう付け方法および重ね継手部材の製造方法
WO2018155508A1 (ja) 2017-02-22 2018-08-30 日新製鋼株式会社 Migろう付け方法、重ね継手部材の製造方法、および重ね継手部材
JP2021042419A (ja) * 2019-09-10 2021-03-18 日本電産株式会社 亜鉛合金及びその製造方法
CN111545871B (zh) * 2020-04-27 2021-07-13 招商局重工(江苏)有限公司 一种薄板分段大组缝焊接工艺
CN113751840A (zh) * 2021-09-02 2021-12-07 唐山钢铁集团有限责任公司 改善锌铝镁镀层板熔化极气体保护焊焊缝质量的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149129B2 (ja) 1997-03-04 2001-03-26 日新製鋼株式会社 耐食性および表面外観の良好な溶融Zn−Al−Mg系めっき鋼板およびその製造法
JP3179401B2 (ja) 1996-12-13 2001-06-25 日新製鋼株式会社 耐食性および表面外観の良好な溶融Zn−Al−Mgめっき鋼板およびその製造法
JP2004090017A (ja) * 2002-08-30 2004-03-25 Nisshin Steel Co Ltd Zn系めっき鋼板のアーク溶接方法
JP2004344904A (ja) * 2003-05-21 2004-12-09 Nisshin Steel Co Ltd Zn系めっき鋼板の溶融溶接方法
JP2004344905A (ja) * 2003-05-21 2004-12-09 Nisshin Steel Co Ltd Zn系めっき鋼板の溶融溶接方法
JP2005000986A (ja) * 2003-05-21 2005-01-06 Nisshin Steel Co Ltd Zn系めっき鋼板の溶融溶接方法
JP2005230912A (ja) 2004-01-22 2005-09-02 Nippon Steel Corp 耐液体金属脆化割れ性に優れたアーク溶接用フラックス入りワイヤおよびアーク溶接方法
JP3715220B2 (ja) 2001-06-22 2005-11-09 日新製鋼株式会社 耐食性に優れたZn−Al−Mg系溶融めっき鋼材
JP2009012027A (ja) * 2007-07-03 2009-01-22 Taiyo Nippon Sanso Corp 亜鉛めっき鋼板のmag溶接用シールドガスおよびこのシールドガスを使用した溶接方法
JP4475787B2 (ja) 2000-10-06 2010-06-09 日新製鋼株式会社 Zn−Al−Mg合金めっき鋼管及びその製造方法
JP2010221247A (ja) * 2009-03-23 2010-10-07 Nippon Steel Corp 接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合継手
JP2011208264A (ja) * 2010-03-30 2011-10-20 Nisshin Steel Co Ltd 耐食性に優れる自動車シャシ部材およびその製造法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE366929B (ja) * 1969-06-10 1974-05-13 Kobe Steel Ltd
CA2076201C (en) * 1992-08-14 2000-05-16 Grant Harvey Shielding gases for arc welding
JP2001096368A (ja) * 1999-09-27 2001-04-10 Nippon Steel Corp 高強度鋼板のアーク溶接方法
US20090014419A1 (en) * 2001-03-29 2009-01-15 Global Steel, Llc Modular steel concrete reinforcement system
RU2233466C2 (ru) * 2001-06-22 2004-07-27 Новиков Олег Михайлович Регулятор подачи жидкостей и газов
FR2898529B1 (fr) * 2006-03-15 2008-04-25 Air Liquide Soudo-brasage de pieces en acier avec fil en cuivre et melange gazeux oxydant
FR2903623B1 (fr) * 2006-07-12 2008-09-19 L'air Liquide Procede de soudage hybride laser-arc de pieces metalliques aluminiees
JP2010046708A (ja) * 2008-08-25 2010-03-04 Taiyo Nippon Sanso Corp ミグ溶接用シールドガスおよびインバーのミグ溶接方法
CN102369303A (zh) * 2009-03-10 2012-03-07 日新制钢株式会社 耐熔融金属脆化裂纹性优异的锌系合金镀敷钢材
JP2011043334A (ja) * 2009-08-19 2011-03-03 Tabuchi Electric Co Ltd Ac入力監視回路および電源装置
KR102099588B1 (ko) * 2011-02-28 2020-04-10 닛테츠 닛신 세이코 가부시키가이샤 용융 Zn-Al-Mg계 도금 강판 및 제조방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3179401B2 (ja) 1996-12-13 2001-06-25 日新製鋼株式会社 耐食性および表面外観の良好な溶融Zn−Al−Mgめっき鋼板およびその製造法
JP3149129B2 (ja) 1997-03-04 2001-03-26 日新製鋼株式会社 耐食性および表面外観の良好な溶融Zn−Al−Mg系めっき鋼板およびその製造法
JP4475787B2 (ja) 2000-10-06 2010-06-09 日新製鋼株式会社 Zn−Al−Mg合金めっき鋼管及びその製造方法
JP3715220B2 (ja) 2001-06-22 2005-11-09 日新製鋼株式会社 耐食性に優れたZn−Al−Mg系溶融めっき鋼材
JP2004090017A (ja) * 2002-08-30 2004-03-25 Nisshin Steel Co Ltd Zn系めっき鋼板のアーク溶接方法
JP2004344904A (ja) * 2003-05-21 2004-12-09 Nisshin Steel Co Ltd Zn系めっき鋼板の溶融溶接方法
JP2004344905A (ja) * 2003-05-21 2004-12-09 Nisshin Steel Co Ltd Zn系めっき鋼板の溶融溶接方法
JP2005000986A (ja) * 2003-05-21 2005-01-06 Nisshin Steel Co Ltd Zn系めっき鋼板の溶融溶接方法
JP2005230912A (ja) 2004-01-22 2005-09-02 Nippon Steel Corp 耐液体金属脆化割れ性に優れたアーク溶接用フラックス入りワイヤおよびアーク溶接方法
JP2009012027A (ja) * 2007-07-03 2009-01-22 Taiyo Nippon Sanso Corp 亜鉛めっき鋼板のmag溶接用シールドガスおよびこのシールドガスを使用した溶接方法
JP2010221247A (ja) * 2009-03-23 2010-10-07 Nippon Steel Corp 接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合継手
JP2011208264A (ja) * 2010-03-30 2011-10-20 Nisshin Steel Co Ltd 耐食性に優れる自動車シャシ部材およびその製造法

Also Published As

Publication number Publication date
AU2017204060A1 (en) 2017-07-06
JP2013198935A (ja) 2013-10-03
US20150136741A1 (en) 2015-05-21
BR112014029946A2 (pt) 2017-06-27
CN104334308B (zh) 2016-11-09
EP2862662A1 (en) 2015-04-22
CN104334308A (zh) 2015-02-04
MX362408B (es) 2019-01-16
JP5372217B2 (ja) 2013-12-18
PH12014502019A1 (en) 2014-11-24
HUE034970T2 (en) 2018-05-02
AU2013275476B2 (en) 2017-07-06
KR20150024302A (ko) 2015-03-06
MX2014010630A (es) 2014-12-05
SG10201610463TA (en) 2017-02-27
EP2862662A4 (en) 2016-04-20
PT2862662T (pt) 2017-10-25
NZ629861A (en) 2016-08-26
MY181348A (en) 2020-12-21
AU2017204060B2 (en) 2018-07-05
SG11201406046YA (en) 2014-11-27
RU2635581C2 (ru) 2017-11-14
BR112014029946B1 (pt) 2019-04-09
AU2013275476A1 (en) 2014-09-25
RU2015100899A (ru) 2016-08-10
EP2862662B1 (en) 2017-09-20
RS56575B1 (sr) 2018-02-28
CA2874217A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5372217B2 (ja) アーク溶接構造部材の製造法
JP5098217B2 (ja) 溶接部の耐食性および耐亜鉛脆化割れ性に優れた亜鉛めっき鋼板の溶接継手並びにその製造方法
JP6080391B2 (ja) Zn−Al−Mg系めっき鋼板アーク溶接構造部材の製造法
KR101764519B1 (ko) 가스 실드 아크 용접용 솔리드 와이어, 가스 실드 아크 용접 금속, 용접 조인트, 용접 부재, 용접 방법 및 용접 조인트의 제조 방법
JP5194586B2 (ja) 亜鉛めっき鋼板溶接用ステンレス鋼フラックス入り溶接ワイヤ
JP5980128B2 (ja) アーク溶接構造部材の製造法
JP2014133259A (ja) アーク溶接構造部材の製造法
JP4303655B2 (ja) 溶接部の耐食性および耐亜鉛脆化割れ性に優れた亜鉛めっき鋼板の溶接方法
JP2012081514A (ja) 亜鉛めっき鋼板の隅肉アーク溶接方法
JP6694961B2 (ja) めっき性及び溶接性に優れたオーステナイト系溶融アルミニウムめっき鋼板及びその製造方法
US20150231726A1 (en) METHOD FOR PRODUCING ARC-WELDED Zn-Al-Mg ALLOY COATED STEEL PLATE STRUCTURAL MEMBER
US20240042541A1 (en) Welded structural member having excellent crack resistance and manfuacturing method thereof
JP4766958B2 (ja) Zn系めっき鋼板用溶接ワイヤー及びZn系めっき鋼板の溶接方法
WO2015198627A1 (ja) 溶融Zn-Al-Mg系めっき鋼板のアーク溶接方法および溶接部材
JP5337665B2 (ja) Mag溶接用ソリッドワイヤ
JPH06210490A (ja) 亜鉛系めっき鋼板の溶接ワイヤおよび溶接方法
KR102305743B1 (ko) 내균열성이 우수한 용접 구조 부재 및 이의 제조방법
JP2004136342A (ja) ガスシールドアーク溶接用鋼ワイヤ
JP2004209513A (ja) 亜鉛系合金めっき鋼板のアーク溶接方法
JPH05305477A (ja) アーク溶接性に優れた亜鉛めっき鋼板用ワイヤー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/010630

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2874217

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013803668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013803668

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013275476

Country of ref document: AU

Date of ref document: 20130522

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147027115

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201406179

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14406569

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015100899

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014029946

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014029946

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141128