WO2013186898A1 - 燃料噴射装置 - Google Patents

燃料噴射装置 Download PDF

Info

Publication number
WO2013186898A1
WO2013186898A1 PCT/JP2012/065248 JP2012065248W WO2013186898A1 WO 2013186898 A1 WO2013186898 A1 WO 2013186898A1 JP 2012065248 W JP2012065248 W JP 2012065248W WO 2013186898 A1 WO2013186898 A1 WO 2013186898A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
engine
fuel
temperature
stopped
Prior art date
Application number
PCT/JP2012/065248
Other languages
English (en)
French (fr)
Inventor
池本雅里
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014521061A priority Critical patent/JP5874826B2/ja
Priority to CN201280073909.9A priority patent/CN104471222B/zh
Priority to EP12878918.7A priority patent/EP2863035B1/en
Priority to US14/407,659 priority patent/US9528459B2/en
Priority to PCT/JP2012/065248 priority patent/WO2013186898A1/ja
Publication of WO2013186898A1 publication Critical patent/WO2013186898A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/05Fuel-injection apparatus having means for preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/06Fuel-injection apparatus having means for preventing coking, e.g. of fuel injector discharge orifices or valve needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1813Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other

Definitions

  • the present invention relates to a fuel injection device.
  • the fuel injection device disclosed in the present specification reduces the number of fuel injections when the engine is stopped and the fuel injection amount within a range in which the adhesion of condensed water around the injection hole of the fuel injection valve can be suppressed.
  • the task is to do.
  • a fuel injection device disclosed in the present specification provides an injection instruction that instructs fuel injection while the engine is stopped to a plurality of fuel injection valves that respectively inject fuel into a plurality of cylinders included in the engine. And the injection instruction unit stops the engine for the plurality of fuel injection valves based on at least one of the amount of heat received and the amount of heat released from the combustion gas for at least one of the plurality of fuel injection valves. The middle fuel injection is instructed.
  • the tip temperature of the fuel injector increases as the amount of heat received from the combustion gas of the fuel injector increases.
  • the tip temperature of the fuel injection valve becomes high, condensed water is generated at a location other than the tip of the fuel injection valve and at a low temperature.
  • the tip portion temperature of the fuel injection valve becomes lower as the heat radiation amount of the fuel injection valve increases.
  • the injection command unit instructs the fuel injection valve that injects fuel to the cylinder to inject fuel while the engine is stopped, based on at least one of the amount of heat received from the combustion gas and the amount of heat released from at least one fuel injection valve.
  • the necessity of fuel injection may be determined by taking into account the determination of the fuel injection valve, which is representatively determined as to whether or not the fuel injection is required while the engine is stopped.
  • the necessity of fuel injection may be determined separately in the same manner. That is, when determining whether fuel injection is performed while the engine is stopped for each fuel injection valve, the determination method may differ depending on the fuel injection valve to be determined.
  • the injection instructing unit may refer to an EGR rate before the engine is stopped, and suppress fuel injection while the engine is stopped as the EGR rate is lower.
  • the water and strong acid of the condensed water that corrodes the periphery of the nozzle hole provided in the fuel injection valve are considered to be caused by the introduction of EGR (Exhaust Gas Recirculation). For this reason, it is considered that when the EGR rate increases, corrosion around the nozzle hole due to condensed water easily proceeds. On the other hand, if the EGR rate is low, it is considered that corrosion around the nozzle hole due to condensed water is unlikely to occur, and the demand for fuel injection as a countermeasure against corrosion becomes weak. Therefore, if the EGR rate is lower, if control is performed to suppress fuel injection while the engine is stopped, useless fuel injection can be avoided, and deterioration of fuel consumption and exhaust emission can be suppressed.
  • EGR exhaust Gas Recirculation
  • the injection instruction unit estimates a tip end temperature of the fuel injection valve from the amount of heat received from the combustion gas and a heat release amount, and instructs the fuel injection during engine stop to the plurality of fuel injection valves based on the tip end temperature. May be performed.
  • the amount of heat received and the amount of heat released are factors that affect the temperature at the tip of the fuel injection valve. Therefore, it is possible to determine whether or not to perform fuel injection while the engine is stopped based on the threshold values for the heat receiving amount and the heat radiation amount, respectively. For example, it is possible to determine whether or not to perform fuel injection while the engine is stopped with reference to only the threshold value for the amount of heat received. It is also possible to determine whether or not to perform fuel injection while the engine is stopped with reference to only the threshold value for the heat dissipation amount.
  • the tip temperature of the fuel injection valve is estimated from the amount of heat received from the combustion gas and the amount of heat released, a threshold is set for the tip temperature, and whether or not fuel injection is performed while the engine is stopped is determined based on this threshold. You may make it judge. Thereby, it is possible to more appropriately determine whether or not fuel injection is required while the engine is stopped. As a result, useless fuel injection can be avoided, and deterioration of fuel consumption and exhaust emission can be suppressed.
  • the injection instruction unit may instruct fuel injection during engine stop to the plurality of fuel injection valves based on the tip end temperature and the EGR rate.
  • the EGR gas contains moisture and strong acid of condensed water that corrodes the periphery of the injection hole provided in the fuel injection valve. Therefore, it is possible to accurately determine the necessity of fuel injection while the engine is stopped by taking into account the tip end temperature of the fuel injection valve and the EGR rate.
  • the injection instructing unit injects fuel into a cylinder located at an end of the row among the plurality of cylinders arranged in a row when estimating the tip end temperature of each fuel injection valve.
  • the estimated value of the tip end temperature of the injection valve is lower than the estimated value of the tip end temperature of the fuel injector that injects fuel into a cylinder located near the center of the row among the plurality of cylinders.
  • the estimated value of the tip temperature of the injection valve is corrected.
  • the cylinders are arranged in a row.
  • four cylinders # 1 to # 4 are arranged linearly.
  • the # 1 cylinder and the # 4 cylinder located at the end are not opened on one side and are opened.
  • the temperature of the # 1 cylinder and the # 4 cylinder is lower than that of the # 2 cylinder and the # 3 cylinder in which cylinders exist on both sides. Therefore, when estimating the tip temperature of each fuel injection valve, the estimation accuracy can be improved by taking into account the arrangement of the cylinders that affect the tip temperature.
  • the row of cylinders may be considered for each bank.
  • the injection instruction unit may take into account the in-cylinder gas temperature of the cylinder into which fuel is injected by the fuel injection valve as a value representing the amount of heat received from the combustion gas. Moreover, the said injection instruction
  • indication part may consider water temperature as a value showing the said thermal radiation amount.
  • the number of fuel injections when the engine is stopped is reduced and the fuel injection amount is reduced within a range in which adhesion of condensed water around the injection hole of the fuel injection valve can be suppressed. can do.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an engine in which the fuel injection device of the embodiment is incorporated.
  • FIG. 2 is an explanatory view showing a schematic configuration of a tip portion of the fuel injection valve.
  • FIG. 3 is a flowchart showing an example of control of the fuel injection device.
  • FIG. 4 is an example of a map for calculating the EGR rate.
  • FIG. 5 is an example of a graph showing the relationship between the water temperature and in-cylinder gas temperature and the tip temperature of the fuel injection valve.
  • FIG. 6 is an example of a map that determines whether or not fuel injection can be performed while the engine is stopped based on the relationship between the tip end temperature of the fuel injection valve and the EGR rate.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an engine in which the fuel injection device of the embodiment is incorporated.
  • FIG. 2 is an explanatory view showing a schematic configuration of a tip portion of the fuel injection valve.
  • FIG. 3 is a flowchart showing
  • FIG. 7 is an example of a graph showing the difference between the cylinders at the tip end temperature of the fuel injection valve.
  • FIG. 8 is an example of a graph showing an execution region of fuel injection while the engine is stopped, which is defined by the threshold value of the water temperature and the threshold value of the in-cylinder gas temperature.
  • FIG. 9 is an example of a graph showing an execution region of fuel injection during engine stop when the threshold value of the water temperature and the threshold value of the in-cylinder gas temperature are changed.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an engine 100 in which the fuel injection device 1 of the embodiment is incorporated.
  • FIG. 2 is an explanatory diagram showing a schematic configuration of the tip portion of the fuel injection valve 107.
  • the engine 100 is an engine that performs in-cylinder injection, more specifically, a diesel engine.
  • the engine 100 has four cylinders.
  • the engine 100 includes an engine body 101, and the engine body 101 includes # 1 cylinder to # 4 cylinder.
  • the fuel injection device 1 is incorporated in the engine 100.
  • the fuel injection device 1 includes # 1 fuel injection valves 107-1 to # 4 fuel injection valves 107-4 corresponding to # 1 cylinder to # 4 cylinder.
  • # 1 fuel injection valve 107-1 is mounted on the # 1 cylinder
  • # 2 fuel injection valve 107-2 is mounted on the # 2 cylinder.
  • the # 3 cylinder is equipped with a # 3 fuel injection valve 107-3
  • the # 4 cylinder is equipped with a # 4 fuel injection valve 107-4.
  • the engine 100 includes an intake manifold 102 and an exhaust manifold 103 attached to the engine main body 101.
  • An intake pipe 104 is connected to the intake manifold 102.
  • An exhaust pipe 105 is connected to the exhaust manifold 103 and one end of an EGR passage 108 is connected. The other end of the EGR passage 108 is connected to the intake pipe 104.
  • An EGR cooler 109 is provided in the EGR passage 108.
  • the EGR passage 108 is provided with an EGR valve 110 that controls the flow state of the exhaust gas.
  • An air flow meter 106 is connected to the intake pipe 104.
  • the air flow meter 106 is electrically connected to the ECU 111.
  • the ECU 111 is electrically connected to a fuel injection valve 107-i (i indicates a cylinder number), specifically, # 1 fuel injection valve 107-1 to # 4 fuel injection valve 107-4.
  • the ECU 111 functions as an injection instructing unit for separately instructing fuel injection when the engine is stopped to the # 1 fuel injection valves 107-1 to # 4.
  • the ECU 111 is electrically connected to an NE sensor 112 that measures the engine speed, a water temperature sensor 113 that measures the coolant temperature, and a fuel temperature sensor 114 that measures the temperature of the fuel.
  • the ECU 111 not only functions as an injection instruction unit, but also performs various controls around the engine.
  • the fuel injection valve 107 includes a nozzle body 107a in which a needle valve 107b is slidably accommodated.
  • a nozzle hole 107a1 is provided at the tip of the nozzle body 107a.
  • a sack chamber 107a2 is provided inside the tip of the nozzle body 107a. Corrosion may occur when condensed water adheres to the tip of the nozzle body 107a. When the periphery of the injection hole 107a1 corrodes, the injection hole diameter of the injection hole 107a1 may change. If the nozzle hole diameter changes, the fuel injection amount will be affected.
  • the ECU 111 mainly controls the fuel injection device 1.
  • step S1 it is confirmed that the ignition of the engine 100 is turned off.
  • step S2 performed subsequent to step S1, the tip temperature Tnzl-i of the fuel injection valve is estimated.
  • the subscript i in the tip temperature Tnzl-i indicates the cylinder number. That is, the tip portion temperature Tnzl is calculated as Tnzl-1 to Tnzl-4, which are estimated values for each cylinder.
  • the tip temperature Tnzl-i is calculated as a value obtained by subtracting the amount of heat released from the amount of heat received at the tip of the fuel injection valve 107-i.
  • the tip end temperature Tnzl-i is calculated by the following formula 1.
  • Tnzl-i Ki ⁇ (a ⁇ NE + b ⁇ IT + c ⁇ TQ + d ⁇ Tw + e ⁇ Tf + g) Equation 1
  • NE engine speed IT: injection timing
  • TQ torque
  • Tf water temperature
  • Tf fuel temperature ki: inter-cylinder correction coefficients a, b, c, d ( ⁇ 0), e ( ⁇ 0), g: compliance coefficient
  • the inter-cylinder coefficient ki is used to correct the temperature variation between the # 1 cylinder and the # 4 cylinder arranged in series and accurately estimate the tip temperatures of the fuel injection valves 107-1 to 107-4. Is.
  • the estimated values of the tip end temperatures of the # 1 fuel injection valve 107-1 and the # 4 fuel injection valve 107-4 located at the end portions are # 2 fuel injection valves 107 located closer to the center. -2 and # 3 are lower than the estimated values of the tip temperature of the fuel injection valve 107-3.
  • k1 0.95.
  • k2 1.1.
  • the engine speed NE in Equation 1 is acquired by the NE sensor 112.
  • the water temperature Tw is acquired by the water temperature sensor 113.
  • the fuel temperature Tf is acquired by the fuel temperature sensor 114.
  • Equation 1 (a ⁇ NE + b ⁇ IT + c ⁇ TQ) calculates the in-cylinder gas temperature as a value indicating the amount of heat received. Further, d ⁇ Tw is a value for calculating the cooling water temperature as a value indicating the heat radiation amount. Further, e ⁇ Tf is used to calculate the fuel temperature as a value indicating the amount of heat release.
  • the fitness coefficients d and e are both smaller than 0 ( ⁇ 0) and act in the direction of decreasing the tip temperature Tnzl-i. Note that the e ⁇ Tf term may be omitted by finding a correlation between the fuel temperature and the water temperature and setting the adaptation coefficient d including the change in the fuel temperature Tf.
  • the fitness coefficients a, b, c, d, e, and g are appropriately determined in consideration of the specifications of the engine 100 and individual differences and reflecting experimental results and simulations.
  • the threshold C ° C. of the tip temperature of the fuel injection valve is defined with the water temperature on the vertical axis and the in-cylinder gas temperature on the horizontal axis.
  • the fuel injection valve tip temperature threshold C ° C. is a value obtained by subtracting the water temperature from the in-cylinder gas temperature. For this reason, for example, even if the water temperature (heat radiation amount) is the same, if the in-cylinder gas temperature (heat reception amount) is high, the condensed water avoidance region can be entered, and fuel injection can be avoided while the engine is stopped.
  • the tip temperature Tnzl-i of the fuel injection valve is calculated by the sum of the amount of heat received and the amount of heat released. That is, whether or not condensed water is generated is not determined by the AND condition between the amount of heat received and the amount of heat released. As a result, the necessity of fuel injection while the engine is stopped is determined with higher accuracy.
  • Tnzl-1 to Tnzl-4 are all calculated by applying Equation 1.
  • the tip end temperature of one representative fuel injection valve may be calculated by Equation 1
  • the tip end temperature Tnzl-n of another fuel injection valve may be estimated based on this estimated value.
  • the tip end temperature Tnzl-1 for the # 1 fuel injection valve 17-1 is estimated, and based on the correlation between the estimated value and the tip end part temperature Tnzl-i of other fuel injection valves that has been grasped in advance.
  • the tip temperature Tnzl-i may be calculated.
  • step S3 performed subsequent to step S2, an EGR rate ⁇ EGR before the engine 100 stops is acquired.
  • the EGR rate ⁇ EGR is determined by a map shown as an example in FIG.
  • the ECU 111 holds the value of the EGR rate ⁇ EGR immediately before the engine is stopped in order to determine the EGR rate ⁇ EGR by itself.
  • step S4 which is performed subsequent to step S3, nozzle hole corrosion determination is performed.
  • the injection hole corrosion determination is performed based on the tip temperature Tnzl-i and the EGR rate ⁇ EGR .
  • FIG. 6 is an example of a map for determining whether or not to execute fuel injection while the engine is stopped based on the relationship between the tip portion temperature of the fuel injection valve 107-i and the EGR rate. Referring to FIG. 6, the ECU 111 performs control to suppress fuel injection while the engine is stopped as the EGR rate ⁇ EGR is lower. This is because if the EGR rate ⁇ EGR is low, corrosion around the nozzle hole hardly occurs.
  • the injection hole corrosion determination is performed based on the tip portion temperature Tnzl-i and the EGR rate ⁇ EGR , so that the accuracy is improved. As a result, the necessity of fuel injection while the engine is stopped is accurately determined. Is done. As a result, useless fuel injection can be avoided, and deterioration of fuel consumption and exhaust emission can be suppressed.
  • the injection hole corrosion determination is also made for each fuel injection valve.
  • step S5 performed subsequent to step S4, it is determined whether or not the condition for occurrence of corrosion is satisfied based on the calculation result in step S4.
  • the process of step S5 is performed for each fuel injection valve 107-i. For the fuel injection valve 107-i determined to be No in step S5, the process ends (end). On the other hand, for the fuel injection valve 107-i determined to be Yes in step S5, the process proceeds to step S6 to execute fuel injection while the engine is stopped.
  • FIG. 7 is an example of a graph showing the difference between the cylinders of the tip temperature Tnzl-i of the fuel injection valve.
  • FIG. 7 shows the tip temperature Tnzl-i under two different conditions. Under either condition, the temperatures of the # 2 cylinder and # 3 cylinder located closer to the center are higher than those of the # 1 cylinder and # 4 cylinder located at the end. In the condition indicated by the solid line, the tip end temperature Tnzl-i is in the condensed water generation region indicated by hatching in any cylinder, and thus fuel injection is executed for all cylinders while the engine is stopped. .
  • the tip temperatures of the # 2 and # 3 cylinders are located in the condensed water avoidance region, and the tip temperatures of the # 1 and # 4 cylinders generate condensed water. Located in the area. For this reason, only the # 1 fuel injection valve 107-1 and the # 4 fuel injection valve 107-4 perform fuel injection while the engine is stopped.
  • the fuel injection device 1 of the present embodiment it is accurately determined whether or not condensed water adheres to the tip of the fuel injection valve, in other words, whether or not fuel injection is necessary while the engine is stopped.
  • the number of fuel injections when the engine is stopped can be reduced and the fuel injection amount can be reduced within a range in which the adhesion of condensed water around the injection hole of the fuel injection valve 107-i can be suppressed.
  • fuel injection while the engine is stopped may cause oil dilution and combustion chamber damage depending on the piston position when the engine is stopped.
  • the frequency of fuel injection while the engine is stopped is reduced. can do.
  • a ° C. is set as a threshold value for water temperature (heat radiation amount), and B ° C. is set as a threshold value for in-cylinder gas temperature (heat reception amount). These threshold values can be used alone, or both can be used as AND conditions.
  • water temperature threshold A ° C. when the water temperature is A ° C. or lower, fuel injection is performed while the engine is stopped regardless of how many degrees the in-cylinder gas temperature is.
  • in-cylinder gas temperature threshold B ° C is used, fuel injection is performed while the engine is stopped, regardless of how much the water temperature is when the in-cylinder gas temperature is equal to or lower than B ° C.
  • the water temperature threshold A ° C is set to a ° C (a ° C ⁇ A ° C), and the in-cylinder gas temperature threshold B ° C is set to b ° C.
  • An example of setting (b ° C ⁇ B ° C) is shown. According to this example, it is possible to reduce the region where fuel injection is performed while the engine is stopped, but on the other hand, there is a region where fuel injection is avoided while the engine is stopped despite the region where the condensed water is generated. End up. In this region, condensed water may adhere and corrosion may occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 燃料噴射装置は、エンジンが備える複数の気筒へそれぞれ燃料を噴射する複数の燃料噴射弁に対し、エンジン停止中燃料噴射を指示する噴射指示部を備える。前記噴射指示部は、前記複数の燃料噴射弁のうち、少なくとも一の燃料噴射弁に対する燃焼ガスからの受熱量と放熱量の少なくとも一方に基づいて前記複数の燃料噴射弁に対するエンジン停止中燃料噴射の指示を行う。前記噴射指示部は、エンジン停止前のEGR率を参照し、前記EGR率が低いほど、エンジン停止中燃料噴射を抑制する。また、前記噴射指示部は、前記燃焼ガスからの受熱量及び放熱量から前記燃料噴射弁の先端部温度を推定し、前記先端部温度に基づいて前記複数の燃料噴射弁に対するエンジン停止中燃料噴射の指示を行う。

Description

燃料噴射装置
 本発明は、燃料噴射装置に関する。
 従来、エンジン停止中に燃料噴射を行い、噴孔周辺に燃料を付着させることが知られている。エンジン停止中の燃料噴射は、噴孔周辺に凝縮水が付着することに起因する噴孔周辺での凝縮水の氷結や、腐食の発生を回避する目的で行われる。このように噴孔周辺に燃料を付着させる提案は、例えば、特許文献1に開示されている。具体的に、外気温とエンジンの始動から停止までの運転時間とに基づいて燃料噴射弁先端の噴孔部が氷結するか否かを予想し、その結果に基づいてエンジン停止中の燃料噴射を行うか否かの判断が行われる。これにより、噴孔への凝縮水の付着を抑制することができる。
特開平9-32616号公報
 しかしながら、エンジン停止中に燃料噴射を行うと、次回のエンジン始動時に噴孔周辺に付着させた燃料が異常燃焼の原因になったり、白煙発生の原因になったりすることが考えられる。また、エンジン停止中に噴射された燃料は燃焼することなく排出される。従って、その噴射量が多くなるほど、燃費や排気エミッションは悪下する。このため、エンジン停止中の燃料噴射は、凝縮水の噴孔周辺への付着を回避できる範囲内で、できるだけ回数を少なくし、燃料噴射量も低減されることが求められる。この観点より、上記特許文献1に開示された提案は、改良の余地があった。
 そこで、本明細書開示の燃料噴射装置は、燃料噴射弁の噴孔周辺への凝縮水の付着を抑制することができる範囲内でエンジン停止時燃料噴射の回数を低減し、燃料噴射量を低減することを課題とする。
 かかる課題を解決するために、本明細書に開示された燃料噴射装置は、エンジンが備える複数の気筒へそれぞれ燃料を噴射する複数の燃料噴射弁に対し、エンジン停止中燃料噴射を指示する噴射指示部を備え、前記噴射指示部は、前記複数の燃料噴射弁のうち、少なくとも一の燃料噴射弁に対する燃焼ガスからの受熱量と放熱量の少なくとも一方に基づいて前記複数の燃料噴射弁に対するエンジン停止中燃料噴射の指示を行う。
 燃料噴射弁の先端部への凝縮水の付着に着目した場合、燃料噴射弁の燃焼ガスからの受熱量が多いほど、燃料噴射弁の先端部温度は高くなると考えられる。燃料噴射弁の先端部温度が高くなると、燃料噴射弁の先端部以外の箇所であって温度が低い箇所で凝縮水が発生する。一方、燃料噴射弁の放熱量が多いほど、燃料噴射弁の先端部温度は低くなると考えられる。燃料噴射弁の先端部温度が低くなると、燃料噴射弁で凝縮水が発生し、その凝縮水が噴孔周辺に付着する可能性が高くなる。そこで、燃焼ガスからの受熱量と放熱量の少なくとも一方に基づいてエンジン停止中燃料噴射を行うか否かを判断する。これにより、燃料噴射弁の先端部において凝縮水が付着しない状態での燃料噴射を抑制することができる。すなわち、燃料噴射が必要であるか否かを精度良く判断し、無駄な燃料噴射を回避して、燃料噴射の回数を低減し、燃料噴射量を適切な量とすることができる。この結果、燃費や排気エミッションの悪化を抑制することができる。
 噴射指令部は、少なくとも一の燃料噴射弁に対する燃焼ガスからの受熱量と放熱量の少なくとも一方に基づいて、その気筒に燃料を噴射する燃料噴射弁にエンジン停止中燃料噴射の指示を行う。そして、他の燃料噴射弁については、代表してエンジン停止中燃料噴射の実行の要否が判断された燃料噴射弁に対する判断を参酌して燃料噴射の要否を判断してもよい。また、他の燃料噴射弁についても、それぞれ、同様の要領で別個に燃料噴射の要否を判断するようにしてもよい。すなわち、エンジン停止中燃料噴射が行われるか否かの判断を燃料噴射弁毎に行うときに、その判定方法は、判定対象となる燃料噴射弁によって異なっていてもよい。
 エンジンが複数の気筒を備えている場合、それぞれの気筒に燃料を噴射する燃料噴射弁の先端部温度には、バラツキが観られる。この結果、エンジンの状態によっては、エンジン停止中燃料噴射が必要である燃料噴射弁と不要である燃料噴射弁とが混在した状態となることがある。このような状態においても燃料噴射弁毎にエンジン停止中燃料噴射の要否を判断することにより、装置全体としてエンジン停止中燃料噴射の回数を低減することができる。
 前記噴射指示部は、エンジン停止前のEGR率を参照し、前記EGR率が低いほど、エンジン停止中燃料噴射を抑制するようにしてもよい。
 燃料噴射弁が備える噴孔周辺を腐食させる凝縮水の水分や強酸は、EGR(Exhaust Gas Recirculation)の導入に起因すると考えられる。このため、EGR率が高くなると凝縮水による噴孔周辺の腐食が進行し易くなると考えられる。一方、EGR率が低ければ凝縮水による噴孔周辺の腐食は生じにくい状態にあると考えられ、腐食対策としての燃料噴射の要求は弱くなる。そこで、EGR率が低いほど、エンジン停止中燃料噴射を抑制するように制御すれば、無駄な燃料噴射を回避することでき、燃費や排気エミッションの悪化を抑制することができる。
 前記噴射指示部は、前記燃焼ガスからの受熱量及び放熱量から前記燃料噴射弁の先端部温度を推定し、前記先端部温度に基づいて前記複数の燃料噴射弁に対するエンジン停止中燃料噴射の指示を行うようにしてもよい。
 上述のように受熱量や放熱量は、燃料噴射弁の先端部温度に影響を与える要素となる。そのため、受熱量や放熱量にそれぞれ閾値を設け、その閾値に基づいてエンジン停止中燃料噴射を行うか否かを判断することができる。例えば、受熱量に対する閾値のみを参照してエンジン停止中燃料噴射を行うか否かを判断することができる。また、放熱量に対する閾値のみを参照してエンジン停止中燃料噴射を行うか否かを判断することもできる。さらに、受熱量に対する閾値と放熱量に対する閾値とを組み合わせ、双方の閾値によって定められる領域(アンド条件)に入っているか否かに基づいてエンジン停止中燃料噴射を行うか否かを判断することもできる。さらに、燃焼ガスからの受熱量及び放熱量から燃料噴射弁の先端部温度を推定し、この先端部温度に対して閾値を設け、この閾値に基づいてエンジン停止中燃料噴射を行うか否かを判断するようにしてもよい。これにより、より適切にエンジン停止中燃料噴射の要否を判断することができる。この結果、無駄な燃料噴射を回避することができ、燃費や排気エミッションの悪化を抑制することができる。
 前記噴射指示部は、前記先端部温度とEGR率とに基づいて、前記複数の燃料噴射弁に対するエンジン停止中燃料噴射の指示を行うようにしてもよい。上述のようにEGRガスは燃料噴射弁が備える噴孔周辺を腐食させる凝縮水の水分や強酸を含む。そこで、燃料噴射弁の先端部温度とEGR率とを考慮することにより、エンジン停止中燃料噴射の要否を精度良く判断することができる。
 前記噴射指示部は、各燃料噴射弁の前記先端部温度を推定する際に、列をなして配置された前記複数の気筒のうち、前記列の端部に位置する気筒へ燃料を噴射する燃料噴射弁の先端部温度の推定値が、前記複数の気筒のうち、前記列の中央寄りに位置する気筒へ燃料を噴射する燃料噴射弁の先端部温度の推定値よりも低くなるように、燃料噴射弁の先端部温度の推定値を補正する。
 一般的に複数の気筒を有するエンジンでは、その気筒は列をなして配置されている。例えば、直列4気筒エンジンであれば、♯1気筒~♯4気筒の4つの気筒が直線的に配置されている。この場合、端部に位置する♯1気筒や♯4気筒は、片側に気筒が存在せず、開放された状態となる。このため、♯1気筒や♯4気筒は、両側に気筒が存在する♯2気筒や♯3気筒と比較して温度が低めとなる。そこで、各燃料噴射弁の先端部温度を推定するときは、先端部温度に影響を与える気筒の配列を考慮することにより、推定精度を向上させることができる。なお、エンジンがいわゆるV型エンジンであったり、水平対向型のエンジンであったりする場合には、片バンク毎に気筒の列を考慮すればよい。
 前記噴射指示部は、前記燃焼ガスからの受熱量を表す値として、前記燃料噴射弁によって燃料が噴射される気筒の筒内ガス温度を参酌してもよい。また、前記噴射指示部は、前記放熱量を表す値として、水温を参酌してもよい。
 本明細書開示の燃料噴射装置によれば、燃料噴射弁の噴孔周辺への凝縮水の付着を抑制することができる範囲内でエンジン停止時燃料噴射の回数を低減し、燃料噴射量を低減することができる。
図1は実施形態の燃料噴射装置が組み込まれたエンジンの概略構成を示す説明図である。 図2は燃料噴射弁の先端部の概略構成を示す説明図である。 図3は燃料噴射装置の制御の一例を示すフロー図である。 図4はEGR率を算出するマップの一例である。 図5は水温及び筒内ガス温度と燃料噴射弁の先端部温度との関係示すグラフの一例である。 図6は燃料噴射弁の先端部温度とEGR率との関係に基づき、エンジン停止中燃料噴射の実行可否を決定するマップの一例である。 図7は燃料噴射弁の先端部温度の気筒間での相違を示すグラフの一例である。 図8は水温の閾値と筒内ガス温度の閾値とにより規定されるエンジン停止中燃料噴射の実行領域を示すグラフの一例である。 図9は水温の閾値と筒内ガス温度の閾値とを変更したときのエンジン停止中燃料噴射の実行領域を示すグラフの一例である。
 以下、本発明の実施形態について、添付図面を参照しつつ説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。また、図面によっては細部が省略されて描かれている場合もある。
(実施形態)
 図1は実施形態の燃料噴射装置1が組み込まれたエンジン100の概略構成を示す説明図である。図2は燃料噴射弁107の先端部の概略構成を示す説明図である。
 エンジン100は、筒内噴射を行うエンジン、より具体的にはディーゼルエンジンである。エンジン100は4気筒である。エンジン100は、エンジン本体101を備え、そのエンジン本体101に♯1気筒~♯4気筒を備える。燃料噴射装置1は、このエンジン100に組み込まれている。燃料噴射装置1は、♯1気筒~♯4気筒に対応して、♯1燃料噴射弁107-1~♯4燃料噴射弁107-4を備える。具体的に、♯1気筒には、♯1燃料噴射弁107-1が装着され、♯2気筒には♯2燃料噴射弁107-2が装着されている。♯3気筒には♯3燃料噴射弁107-3が装着され、♯4気筒には♯4燃料噴射弁107-4が装着されている。
 エンジン100は、エンジン本体101に取り付けられたインテークマニホールド102、エキゾーストマニホールド103を備える。インテークマニホールド102には、吸気管104が接続されている。エキゾーストマニホールド103には排気管105が接続されると共に、EGR通路108の一端が接続されている。EGR通路108の他端は、吸気管104に接続されている。EGR通路108には、EGRクーラ109が設けられている。また、EGR通路108には、排気ガスの流通状態を制御するEGRバルブ110が設けられている。吸気管104には、エアフロメータ106が接続されている。エアフロメータ106は、ECU111に電気的に接続されている。ECU111には、燃料噴射弁107-i(iは気筒番号を示す)、具体的に、♯1燃料噴射弁107-1~♯4燃料噴射弁107-4が電気的に接続されている。ECU111は、♯1燃料噴射弁107-1~♯4燃料噴射弁107-4に対し、別個にエンジン停止時燃料噴射を指示する噴射指示部として機能する。
 ECU111には、エンジンの回転数を測定するNEセンサ112、冷却水の水温を測定する水温センサ113及び燃料の温度を測定する燃温センサ114が電気的に接続されている。ECU111は、噴射指示部として機能するだけでなく、エンジン周辺の種々の制御を行う。
 図2を参照すると、燃料噴射弁107は、内部にニードル弁107bを摺動自在に収納したノズルボディ107aを備えている。ノズルボディ107aの先端部には、噴孔107a1が設けられている。ノズルボディ107aの先端部内側には、サック室107a2が設けられている。このようなノズルボディ107aの先端部に凝縮水が付着すると腐食が発生する可能性がある。噴孔107a1の周辺が腐食すると、噴孔107a1の噴孔径が変化する可能性がある。噴孔径が変化すると、燃料噴射量に影響を与えることになる。そこで、エンジン停止中燃料噴射を行い、サック室107a2内へ燃料を充填したり、燃料噴射弁107の先端部に付着しているデポジット107cを燃料によって湿らせたりする。これにより、凝縮水の付着を抑制し、ひいては、腐食を抑制する。
 以下、このような目的で行われる燃料噴射装置1の制御の一例について、図3に示すフロー図を参照しつつ説明する。燃料噴射装置1の制御は、ECU111が主体的に行う。
 まず、ステップS1では、エンジン100のイグニションがOFFとされたことを確認する。ステップS1に引き続いて行われるステップS2では、燃料噴射弁の先端部温度Tnzl-iを推定する。ここで、先端部温度Tnzl-iにおける添字iは気筒番号を示している。すなわち、先端部温度Tnzlは、気筒毎の推定値であるTnzl-1~Tnzl-4として算出される。
 具体的に、先端部温度Tnzl-iは、燃料噴射弁107-iの先端部の受熱量から放熱量を引いた値として算出される。先端部温度Tnzl-iは、その一例として、以下の式1により算出される。
Tnzl-i
=ki×(a・NE+b・IT+c・TQ+d・Tw+e・Tf+g)  式1
NE:エンジン回転数  IT:噴射時期  TQ:トルク
Tw:水温       Tf:燃温
ki:気筒間補正係数
a、b、c、d(<0)、e(<0)、g:適合係数
 ここで、気筒間係数kiは、直列に配置された♯1気筒~♯4気筒間の温度のバラツキを補正し、燃料噴射弁107-1~107-4の先端温度を精度良く推定するためのものである。気筒間係数kiの導入により、端部に位置する♯1燃料噴射弁107-1と♯4燃料噴射弁107-4の先端部温度の推定値が、中央寄りに位置する♯2燃料噴射弁107-2と♯3燃料噴射弁107-3の先端部温度の推定値より低くなる。具体的に、♯1燃料噴射弁107-1の先端部温度を推定する際に、k1=0.95とする。♯2燃料噴射弁107-2の先端部温度を推定する際に、k2=1.1とする。♯3燃料噴射弁107-3の先端部温度を推定する際に、k3=1.1とする。♯4燃料噴射弁107-4の先端部温度を推定する際に、k4=0.9とする。このように、kiを設定することにより、端部に位置する気筒の先端部温度の推定値が中央寄りに位置する気筒の先端部温度の推定値よりも低くなるように補正され、実際の温度状態を反映した精度良い推定値を得ることができる。
 式1中のエンジン回転数NEはNEセンサ112により取得する。水温Twは水温センサ113により取得する。燃温Tfは燃温センサ114により取得する。
 式1中、(a・NE+b・IT+c・TQ)は、受熱量を示す値として筒内ガス温度を算出するものである。また、d・Twは放熱量を示す値として冷却水温を算出するものである。さらに、e・Tfは放熱量を示す値として燃温を算出するものである。ここで、適合係数d及びeはいずれも0よりも小さく(<0)、先端部温度Tnzl-iを低下させる方向に作用する。なお、燃温と水温との間に相関性を見いだし、燃温Tfの変化分を含めた適合係数dを設定することにより、e・Tfの項を省略してもよい。適合係数a、b、c、d、e、gは、エンジン100の仕様や個体差を考慮し、実験結果やシミュレーション等を反映させて適宜決定される。
 ここで、図5を参照すると、縦軸に水温、横軸に筒内ガス温度として、燃料噴射弁の先端部温度の閾値C℃が規定されている。燃料噴射弁の先端部温度の閾値C℃は、筒内ガス温度から水温を減算することによって求められる値である。このため、例えば、同じ水温(放熱量)であっても、筒内ガス温度(受熱量)が高ければ、凝縮水回避領域に入ることができ、エンジン停止中燃料噴射を回避することができる。これとは逆に、同じ筒内ガス温度(受熱量)であっても、水温(放熱量)が高ければ、凝縮水回避領域に入ることができ、エンジン停止中燃料噴射を回避することができる。このように、燃料噴射弁の先端部温度Tnzl-iは、受熱量と放熱量との合計によって算出される。すなわち、凝縮水が発生するか否かは、受熱量と放熱量とのアンド条件によっては判断されない。この結果、エンジン停止中燃料噴射の要否がより精度良く判断されることになる。
 Tnzl-1~Tnzl-4は、いずれも式1に当てはめて算出される。なお、例えば、代表する一の燃料噴射弁の先端部温度を式1によって算出し、この推定値に基づいて、他の燃料噴射弁の先端部温度Tnzl-nを推定してもよい。例えば、♯1燃料噴射弁17-1についての先端部温度Tnzl-1を推定し、予め把握された、この推定値と他の燃料噴射弁の先端部温度Tnzl-iとの相関関係に基づいて先端部温度Tnzl-iを算出するようにしてもよい。
 ステップS2に引き続き行われるステップS3では、エンジン100が停止する前のEGR率γEGRを取得する。EGR率γEGRは図4に一例を示すマップにより決定される。ECU111は、自らEGR率γEGRを決定するため、エンジン停止直前のEGR率γEGRの値を保持している。
 ステップS3に引き続き行われるステップS4では、噴孔腐食判定を行う。噴孔腐食判定は、先端部温度Tnzl-iとEGR率γEGRとに基づいて行われる。図6は、燃料噴射弁107-iの先端部温度とEGR率との関係に基づき、エンジン停止中燃料噴射の実行可否を決定するマップの一例である。図6を参照すると、ECU111は、EGR率γEGRが低いほど、エンジン停止中燃料噴射を抑制する制御を行う。EGR率γEGRが低ければ、噴孔周辺での腐食が発生しにくいことを考慮したものである。具体的に先端部温度Tnzl-iが同じであっても、EGR率γEGRが低いほど、凝縮水回避領域に入り易くなっている。この結果、エンジン停止中燃料噴射が回避され易くなり、エンジン停止中燃料噴射の頻度が低下する。このように、噴孔腐食判定が、先端部温度Tnzl-iとEGR率γEGRとに基づいて行われることにより、その精度が向上し、ひいては、エンジン停止中燃料噴射の要否が精度良く判断される。この結果、無駄な燃料噴射を回避することができ、燃費や排気エミッションの悪化を抑制することができる。なお、噴孔腐食判定も、燃料噴射弁毎に行われる。
 ステップS4に引き続き行われるステップS5では、ステップS4における演算結果に基づいて、腐食発生の条件が満たされているか否かを判断する。このステップS5の処理は、燃料噴射弁107-i毎に行われる。ステップS5でNoと判断した燃料噴射弁107-iについては、処理は終了となる(エンド)。一方、ステップS5でYesと判断した燃料噴射弁107-iについては、ステップS6へ進んでエンジン停止中燃料噴射を実行する。
 図7は燃料噴射弁の先端部温度Tnzl-iの気筒間での相違を示すグラフの一例である。図7には、異なる二通りの条件下での先端部温度Tnzl-iが示されている。いずれの条件下にあっても、端部に位置する♯1気筒と♯4気筒に比較して中央部寄りに位置する♯2気筒と♯3気筒の温度が高くなっている。実線で示した条件の場合には、いずれの気筒においても先端部温度Tnzl-iはハッチングで示した凝縮水発生領域に入っているため全ての気筒に対してエンジン停止中燃料噴射が実行される。これに対して、鎖線で示した条件の場合には、♯2気筒及び♯3気筒の先端部温度が凝縮水回避領域に位置し、♯1気筒及び♯4気筒の先端部温度が凝縮水発生領域に位置している。このため、♯1燃料噴射弁107-1及び♯4燃料噴射弁107-4のみ、エンジン停止中燃料噴射が実行される。
 このようにエンジン停止中燃料噴射が実行されることにより、凝縮水の付着が判定された燃料噴射弁107-iの先端部、特に噴孔周辺への凝縮水の付着が抑制され、腐食が回避される。
 本実施形態の燃料噴射装置1によれば、燃料噴射弁の先端部に凝縮水が付着するか否か、換言すれば、エンジン停止中燃料噴射の要否が精度良く判断される。この結果、燃料噴射弁107-iの噴孔周辺への凝縮水の付着を抑制することができる範囲内でエンジン停止時燃料噴射の回数を低減し、燃料噴射量を低減することができる。これにより、異常燃焼、白煙排出、燃費や排気エミッションの悪化を抑制することができる。また、エンジン停止中燃料噴射は、エンジン停止中のピストン位置によっては、オイル希釈や燃焼室損傷の可能性があるが、エンジン停止中燃料噴射の頻度が低減されるため、これらの可能性を低減することができる。
 ここで、図8を参照して、エンジン停止中燃料噴射の要否を判断する他の例について説明する。図8を参照すると、水温(放熱量)の閾値としてA℃が設定され、筒内ガス温度(受熱量)の閾値としてB℃が設定されている。これらの閾値は、単独で用いることもできるし、双方をアンド条件として用いることもできる。水温の閾値A℃のみを用いる場合は、水温がA℃以下であるときに筒内ガス温度が何℃であるかにかかわらずエンジン停止中燃料噴射を行う。また、筒内ガス温度の閾値B℃のみを用いる場合は、筒内ガス温度がB℃以下であるときに水温が何℃であるかにかかわらずエンジン停止中燃料噴射を行う。
 水温の閾値A℃と筒内ガス温度の閾値B℃をアンド条件で用いる場合、図8においてハッチングを施して示された領域に入った場合にエンジン停止中燃料噴射が実行される。このように、水温の閾値A℃と筒内ガス温度の閾値B℃をアンド条件で用いても、凝縮水の発生を精度良く推定する上で一定の効果を得ることができる。ここで、エンジン停止中燃料噴射が実行される領域を図5に示したグラフと図8で示したグラフとで比較すると、図5に示したグラフの領域の方が狭い。すなわち、図5に示したグラフの方がよりエンジン停止中燃料噴射の頻度を低減することができる。図9を参照すると、エンジン停止中燃料噴射の頻度を低減するために、水温の閾値A℃をa℃に設定(a℃<A℃)し、筒内ガス温度の閾値B℃をb℃に設定(b℃<B℃)した例が示されている。この例によれば、エンジン停止中燃料噴射を実行する領域を低減することができるが、その反面、凝縮水発生領域であるにもかかわらず、エンジン停止中燃料噴射が回避される領域が生じてしまう。この領域では、凝縮水が付着し、腐食が生じる可能性がある。
 これらを考慮すると、燃料噴射弁107-iに対する受熱量と放熱量とを考慮して算出される先端部温度Tnzl-iに基づいてエンジン停止中燃料噴射の要否を判断することがより効果的である。
 上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。
 1 燃料噴射装置
 100 エンジン
 101 エンジン本体
 102 インテークマニホールド
 103 エキゾーストマニホールド
 104 吸気管
 105 排気管
 107-1~107-4 燃料噴射弁

Claims (7)

  1.  エンジンが備える複数の気筒へそれぞれ燃料を噴射する複数の燃料噴射弁に対し、エンジン停止中燃料噴射を指示する噴射指示部を備え、
     前記噴射指示部は、前記複数の燃料噴射弁のうち、少なくとも一の燃料噴射弁に対する燃焼ガスからの受熱量と放熱量の少なくとも一方に基づいて前記複数の燃料噴射弁に対するエンジン停止中燃料噴射の指示を行う燃料噴射装置。
  2.  前記噴射指示部は、エンジン停止前のEGR率を参照し、前記EGR率が低いほど、エンジン停止中燃料噴射を抑制する請求項1に記載の燃料噴射装置。
  3.  前記噴射指示部は、前記燃焼ガスからの受熱量及び放熱量から前記燃料噴射弁の先端部温度を推定し、前記先端部温度に基づいて前記複数の燃料噴射弁に対するエンジン停止中燃料噴射の指示を行う請求項1又は2に記載の燃料噴射装置。
  4.  前記噴射指示部は、前記先端部温度とEGR率とに基づいて、前記複数の燃料噴射弁に対するエンジン停止中燃料噴射の指示を行う請求項3に記載の燃料噴射装置。
  5.  前記噴射指示部は、各燃料噴射弁の前記先端部温度を推定する際に、列をなして配置された前記複数の気筒のうち、前記列の端部に位置する気筒へ燃料を噴射する燃料噴射弁の先端部温度の推定値が、前記複数の気筒のうち、前記列の中央寄りに位置する気筒へ燃料を噴射する燃料噴射弁の先端部温度の推定値よりも低くなるように、燃料噴射弁の先端部温度の推定値を補正する請求項3又は5に記載の燃料噴射装置。
  6.  前記噴射指示部は、前記燃焼ガスからの受熱量を表す値として、前記燃料噴射弁によって燃料が噴射される気筒の筒内ガス温度を参酌する請求項1乃至5のいずれか一項に記載の燃料噴射装置。
  7.  前記噴射指示部は、前記放熱量を表す値として、水温を参酌する請求項1乃至5のいずれか一項に記載の燃料噴射装置。
PCT/JP2012/065248 2012-06-14 2012-06-14 燃料噴射装置 WO2013186898A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014521061A JP5874826B2 (ja) 2012-06-14 2012-06-14 燃料噴射装置
CN201280073909.9A CN104471222B (zh) 2012-06-14 2012-06-14 燃料喷射装置
EP12878918.7A EP2863035B1 (en) 2012-06-14 2012-06-14 Fuel injection device
US14/407,659 US9528459B2 (en) 2012-06-14 2012-06-14 Fuel injection device
PCT/JP2012/065248 WO2013186898A1 (ja) 2012-06-14 2012-06-14 燃料噴射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065248 WO2013186898A1 (ja) 2012-06-14 2012-06-14 燃料噴射装置

Publications (1)

Publication Number Publication Date
WO2013186898A1 true WO2013186898A1 (ja) 2013-12-19

Family

ID=49757760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065248 WO2013186898A1 (ja) 2012-06-14 2012-06-14 燃料噴射装置

Country Status (5)

Country Link
US (1) US9528459B2 (ja)
EP (1) EP2863035B1 (ja)
JP (1) JP5874826B2 (ja)
CN (1) CN104471222B (ja)
WO (1) WO2013186898A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139416A (ja) * 2013-01-21 2014-07-31 Toyota Motor Corp 内燃機関
JP2015232303A (ja) * 2014-06-10 2015-12-24 株式会社デンソー 燃料噴射弁
JP2018053858A (ja) * 2016-09-30 2018-04-05 株式会社ケーヒン 燃料供給異常判定装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704152B2 (ja) * 2012-11-28 2015-04-22 トヨタ自動車株式会社 燃料噴射装置
DE102015223862A1 (de) * 2015-12-01 2017-06-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs mit dualer Kraftstoffeinspritzung
JP6583339B2 (ja) * 2017-04-11 2019-10-02 トヨタ自動車株式会社 内燃機関の制御装置
GB2574041A (en) * 2018-05-24 2019-11-27 Ford Global Tech Llc Method of operating an internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932616A (ja) 1995-07-18 1997-02-04 Unisia Jecs Corp 燃料噴射弁の氷結防止装置
JPH09203363A (ja) * 1996-01-25 1997-08-05 Unisia Jecs Corp 燃料噴射弁の氷結防止装置
JP2000104610A (ja) * 1998-09-29 2000-04-11 Denso Corp 内燃機関の燃料噴射制御装置
JP2007321709A (ja) * 2006-06-02 2007-12-13 Honda Motor Co Ltd 多気筒エンジンのノッキング制御装置
JP2011001901A (ja) * 2009-06-19 2011-01-06 Denso Corp 内燃機関

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181877A (ja) 1993-12-22 1995-07-21 N T T Data Tsushin Kk ホログラムの記録制御方法及びその実現装置
US5487421A (en) 1994-06-22 1996-01-30 Inland Steel Company Strip casting apparatus with electromagnetic confining dam
JPH0988776A (ja) * 1995-09-21 1997-03-31 Fuji Heavy Ind Ltd 燃料噴射ノズルの凍結防止方法
JP4092521B2 (ja) * 1999-09-24 2008-05-28 株式会社デンソー 燃料噴射弁
US6994077B2 (en) * 2002-09-09 2006-02-07 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
JP4135642B2 (ja) * 2004-01-13 2008-08-20 トヨタ自動車株式会社 内燃機関の噴射制御装置
JP4172402B2 (ja) 2004-02-17 2008-10-29 トヨタ自動車株式会社 混合燃料直噴エンジンの燃料噴射制御方法
JP4506526B2 (ja) 2005-03-18 2010-07-21 トヨタ自動車株式会社 内燃機関の制御装置
JP2007132170A (ja) 2005-11-08 2007-05-31 Toshio Takahashi 道路交通表示物の車両線及び道路路側帯の表示物を道路舗装表層部に新たな交通表示舗装層と構築して埋設する交通表示舗装施工方法。
JP4449967B2 (ja) * 2006-10-06 2010-04-14 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP2009002229A (ja) 2007-06-21 2009-01-08 Toyota Motor Corp 内燃機関の制御装置
JP2010255462A (ja) * 2009-04-22 2010-11-11 Denso Corp 内燃機関
JP5064471B2 (ja) * 2009-11-19 2012-10-31 本田技研工業株式会社 内燃機関の冷却構造
JP2012021455A (ja) 2010-07-14 2012-02-02 Denso Corp 内燃機関の制御装置
JP2012124620A (ja) 2010-12-07 2012-06-28 Elmo Co Ltd 資料提示装置
JP2013073210A (ja) 2011-09-29 2013-04-22 Elmo Co Ltd 資料提示システム
JP2015094325A (ja) * 2013-11-13 2015-05-18 トヨタ自動車株式会社 内燃機関の制御装置
US9284920B2 (en) * 2014-06-19 2016-03-15 Ford Global Technologies, Llc Systems and methods for stopping and starting an engine with dedicated EGR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932616A (ja) 1995-07-18 1997-02-04 Unisia Jecs Corp 燃料噴射弁の氷結防止装置
JPH09203363A (ja) * 1996-01-25 1997-08-05 Unisia Jecs Corp 燃料噴射弁の氷結防止装置
JP2000104610A (ja) * 1998-09-29 2000-04-11 Denso Corp 内燃機関の燃料噴射制御装置
JP2007321709A (ja) * 2006-06-02 2007-12-13 Honda Motor Co Ltd 多気筒エンジンのノッキング制御装置
JP2011001901A (ja) * 2009-06-19 2011-01-06 Denso Corp 内燃機関

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139416A (ja) * 2013-01-21 2014-07-31 Toyota Motor Corp 内燃機関
JP2015232303A (ja) * 2014-06-10 2015-12-24 株式会社デンソー 燃料噴射弁
JP2018053858A (ja) * 2016-09-30 2018-04-05 株式会社ケーヒン 燃料供給異常判定装置

Also Published As

Publication number Publication date
CN104471222A (zh) 2015-03-25
JP5874826B2 (ja) 2016-03-02
US9528459B2 (en) 2016-12-27
EP2863035A4 (en) 2016-01-20
US20150136100A1 (en) 2015-05-21
EP2863035B1 (en) 2019-08-14
EP2863035A1 (en) 2015-04-22
JPWO2013186898A1 (ja) 2016-02-01
CN104471222B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5874826B2 (ja) 燃料噴射装置
US7788019B2 (en) Control device of internal combustion engine
US10400697B2 (en) Control apparatus of engine
JP5939031B2 (ja) 内燃機関の燃料噴射制御装置
JP7087609B2 (ja) エンジン制御装置
CN104937246A (zh) 内燃机
WO2014174645A1 (ja) 多気筒内燃機関
JP2012013054A (ja) 内燃機関の制御装置
JP5304581B2 (ja) 内燃機関燃料噴射制御装置
JP2011247150A (ja) 内燃機関の燃料噴射システム
JP6248408B2 (ja) 内燃機関の燃料噴射制御装置
US20120035829A1 (en) Control device for internal combustion engine
JP2009257121A (ja) 内燃機関の制御装置
JP2009185732A (ja) 内燃機関の制御装置
JP5924258B2 (ja) 燃料噴射装置の制御装置
JP2005180352A (ja) 燃料噴射弁の温度推定方法、及び同温度推定方法を用いた燃料噴射弁の噴射量補正方法
JP5741149B2 (ja) 内燃機関の制御装置
JP2005009477A (ja) 多気筒内燃機関の制御装置
JP5853935B2 (ja) 燃料噴射装置
WO2015072320A1 (ja) 内燃機関の制御装置
JP2018119422A (ja) 内燃機関の制御装置
JP2015090121A (ja) 内燃機関の制御装置
JP2010242745A (ja) 内燃機関の燃焼室の圧力推定方法及び装置
JP2011032973A (ja) 内燃機関の燃料噴射制御装置
JP2007321616A (ja) 筒内噴射型内燃機関の燃料噴射制御装置および燃料噴射制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521061

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012878918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14407659

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE