WO2013185400A1 - 一种用乙炔和二氯乙烷制备氯乙烯的方法 - Google Patents

一种用乙炔和二氯乙烷制备氯乙烯的方法 Download PDF

Info

Publication number
WO2013185400A1
WO2013185400A1 PCT/CN2012/078540 CN2012078540W WO2013185400A1 WO 2013185400 A1 WO2013185400 A1 WO 2013185400A1 CN 2012078540 W CN2012078540 W CN 2012078540W WO 2013185400 A1 WO2013185400 A1 WO 2013185400A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
dichloroethane
reaction
gas
cold
Prior art date
Application number
PCT/CN2012/078540
Other languages
English (en)
French (fr)
Inventor
姜标
钟劲光
Original Assignee
上海中科高等研究院
中科易工(厦门)化学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海中科高等研究院, 中科易工(厦门)化学科技有限公司 filed Critical 上海中科高等研究院
Priority to IN10674DEN2014 priority Critical patent/IN2014DN10674A/en
Priority to US14/406,931 priority patent/US9371259B2/en
Priority to JP2015515365A priority patent/JP5974169B2/ja
Publication of WO2013185400A1 publication Critical patent/WO2013185400A1/zh
Priority to ZA2014/09015A priority patent/ZA201409015B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/08Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a process for producing vinyl chloride, and more particularly to a process for producing vinyl chloride from ethyl bromide and dichloroethane.
  • Polyvinyl chloride is one of the five general-purpose plastics, and its output is second only to polyethylene (PE), ranking second in the world in plastics production, with an annual output of more than 40 million tons.
  • the earliest synthetic method of polyvinyl chloride is the block method, that is, under the catalysis of mercuric chloride, ethylene and hydrogen chloride are added to synthesize vinyl chloride, and vinyl chloride is polymerized to obtain polyvinyl chloride.
  • This method has serious mercury contamination problems due to the use of mercury chloride as a catalyst.
  • the ethylene process was changed to vinyl chloride, and in the 1980s, the process of ethylene glycol was basically eliminated. Due to the tight ethylene resources in China and the abundant resources of calcium carbide, PVC production is still dominated by the B block method. However, with the continuous expansion of the production capacity of the block method, it faces enormous environmental pollution pressure. Domestic counterparts have been working on mercury-free catalysts in recent years and have made certain achievements.
  • the addition reaction of ethylbenzene and hydrogen chloride is an exothermic reaction, while the dehydrochlorination of dichloroethane is an endothermic reaction, and two reactions are coupled together.
  • the micro-exothermic reaction is formed, and the thermal effect of the reaction is not large. Therefore, the reactor can adopt an adiabatic reactor, and the reaction temperature is controlled within an appropriate range by means of intermediate cold stimulation, so that the reactor structure is greatly simplified.
  • a part of hydrogen chloride is produced as a by-product.
  • the method for preparing vinyl chloride from ethyl dichloroethane of the present invention comprises the following steps:
  • step 4) After cooling the mixture produced in the reaction of step 3) to 30 to 50 ° C, pressurize to 0.4 to 1.0 MPa, then cool to room temperature, and then further freeze to _25 to 15 ° C for liquefaction separation, not liquefied. Gas recycling and recycling;
  • the liquid obtained by liquefying in the step 4) is sent to a rectification column for rectification to obtain a vinyl chloride monomer which meets the polymerization requirements, that is, the vinyl chloride of the present invention is obtained.
  • the molar ratio of the block, the dichloroethane and the hydrogen chloride is 1: (0.3 ⁇ 0.6): (0 ⁇ 05 ⁇ 0 ⁇ 20).
  • the preheating temperature is 150 to 230 °C.
  • the catalyst adopts an activated carbon supported ruthenium salt catalyst; preferably, the activated carbon supported ruthenium salt catalyst generally uses activated carbon supported ruthenium chloride; the activated carbon supported ruthenium chloride catalyst of the invention
  • the preparation method can be referred to the Chinese patent application No. 201110330158.1: a catalyst for preparing vinyl chloride, a preparation method thereof and use thereof.
  • the reactor adopts a multi-stage cold-excited fixed-bed reactor; preferably, the multi-stage cold-excited fixed-bed reactor adopts a reaction bed of 2 to 5 stages, and the intermediate is alternated. 1 ⁇ 4 times of cold shock is used, and 1 cold shock is used between the two stages of reaction; optimally, the multistage cold-excited fixed bed reactor adopts a reaction bed of 3 ⁇ 4 stages for reaction, and alternately adopts 2 ⁇ Three times of cold shock, and one cold shock was used between the two reactions.
  • the cold shock uses a cold raw material gas as a cold shock medium, or is directly sprayed into liquid dichloroethane for cold shock; It is best to use direct injection of liquid dichloroethane for cold shock to reduce the temperature of the reaction gas to meet the inlet temperature requirements.
  • the above-mentioned cold shock medium uses a cold raw material gas which is a mixture of one or more of cold block, dichloroethane and hydrogen chloride.
  • the reaction bed inlet temperature of the multi-stage cold-excited fixed-bed reactor is 150 to 230 ° C
  • the reaction bed outlet temperature of the multi-stage cold-excited fixed-bed reactor is 220 to 280 ° C
  • the conversion rate of raw materials can reach 70% or more, even up to 80%.
  • the inlet temperature of the reaction bed of the above various stages may be any value of 150 ⁇ 230 ° C
  • the outlet temperature of the reaction bed of each stage may also be any value of 220 to 280 ° C
  • the inlet temperature of the reaction bed of each stage may be different.
  • the outlet temperature can also be different and can be adjusted according to actual needs.
  • the feed rate of the raw material mixture gas is controlled to be 10 to 100 cubic meters of raw material mixture per cubic meter of catalyst per hour;
  • the pressure of the reaction may be 0 to 0.12 MPa (gauge pressure), the pressure The number displayed for the gauge pressure, and 0 MPa means no pressure, it is normal pressure.
  • the reaction pressure in the reactors of the above stages may be any one of 0 to 0.12 MPa, and the reaction pressures in the reactors of the respective stages may be different, and may be adjusted according to actual needs.
  • the present invention Compared with the existing one-block process, the present invention has the following outstanding advantages:
  • VCM vinyl chloride
  • FIG. 1 is a schematic view showing the structure of a multi-stage cold-excited fixed bed reactor of a secondary cold shock three-stage reaction according to an embodiment of the present invention.
  • each mark is: 1 primary reactor;
  • FIG. 2 is a schematic view showing the structure of a multi-stage cold-excited fixed-bed reactor in which multi-stage reactions are integrated according to an embodiment of the present invention.
  • each mark is: 13 raw material gas inlet;
  • the preheated raw material mixture is passed to a reactor equipped with a catalyst, and the catalyst used is activated carbon supported ruthenium chloride.
  • the reactor uses a multi-stage cold-excited fixed-bed reactor with a two-stage reaction with a single cold shock.
  • the cold shock is carried out by spraying liquid dichloroethane to lower the temperature of the reaction gas to meet the inlet temperature requirements.
  • the reaction bed inlet temperature was controlled at 150 ° C, and the outlet temperature was 280 ° C, so that the conversion rate of raw materials (in terms of E) reached 80%.
  • the feed gas velocity of the raw material mixture is controlled to treat 100 cubic meters of the raw material mixture per cubic catalyst per hour, and the reaction pressure is controlled at 0.12 MPa (gauge pressure).
  • step 4) Cool the mixture produced in step 3) to 50 ° C, pressurize to 1.0 MPa, cool to room temperature, and then further freeze to 15 ° C for liquefaction separation, unliquefied gas recovery and recycling;
  • the preheated raw material mixture is passed to a reactor equipped with a catalyst, and the catalyst used is activated carbon supported ruthenium chloride.
  • the reactor uses a multi-stage cold-excited fixed-bed reactor with a 5-stage reaction and 4 cold-excitations in the middle.
  • the cold shock medium uses a cold raw material gas to lower the temperature of the reaction gas to meet the inlet temperature requirements.
  • the reaction bed inlet temperature was controlled at 230 ° C, and the outlet temperature was 270 ° C, so that the conversion rate of raw materials (in terms of E) reached 85%.
  • the feed gas mixture is controlled to have an intake gas velocity of 50 cubic meters of raw material per cubic meter per hour, and the reaction pressure is controlled at O.10 MPa (gauge pressure).
  • step 4) Cool the mixture produced in the reaction of step 3) to 30 ° C, pressurize to 0.4 MPa, cool to room temperature, and then further freeze to -25. C is liquefied and separated, and the unliquefied gas is recycled and recycled;
  • the preheated raw material mixture is passed to a reactor equipped with a catalyst, and the catalyst used is activated carbon supported ruthenium chloride.
  • the reactor uses a multi-stage cold-excited fixed-bed reactor with a 3-stage reaction and 2 times of cold stimulation (see the second shown in Figure 1).
  • the multi-stage cold-excited fixed-bed reactor of the cold-shock three-stage reaction can also integrate the multi-stage reaction together, as shown in Fig. 2, the multi-stage cold-excited fixed-bed reactor in which the multi-stage reaction is integrated.
  • the cold shock is carried out by spraying liquid dichloroethane to lower the temperature of the reaction gas to meet the inlet temperature requirements.
  • the reaction bed inlet temperature was controlled at 160 ° C, and the outlet temperature was 250 ° C, so that the conversion rate of raw materials (in terms of E) reached 70%.
  • the feed gas velocity of the raw material mixture is controlled to treat 70 cubic meters of the raw material mixture per cubic catalyst per hour, and the reaction pressure is controlled at 0.08 MPa (gauge pressure).
  • step 4) Cool the mixture produced in step 3) to 40 ° C, pressurize to 0.6 MPa, cool to room temperature, and then further freeze to 0 ° C for liquefaction separation, unliquefied gas recovery and recycling;
  • step 5 The liquid obtained by liquefying in step 4) is sent to the rectification column for rectification, and a vinyl chloride monomer meeting the polymerization requirements can be obtained.
  • the above-mentioned secondary cold shock three-stage reaction multi-stage cold-excited fixed-bed reactor (shown in FIG. 1) comprises a first-stage reactor 1, a first-stage chiller 2, a second-stage reactor 3, two a stage chiller 4 and a third stage reactor 5, the top of the first stage reactor 1 is provided with a feed gas inlet 7, and the top of the first stage chiller 2 is provided with a cold shock medium inlet 8, a secondary chiller 4
  • the top of the first stage is provided with a cold shock medium inlet 9, the bottom of the first stage reactor 1 and the bottom of the first stage chiller 2 are connected by a pipe, and the top of the primary chiller 2 is also connected to the top of the secondary reactor 3 via a pipe.
  • the bottom of the secondary reactor 3 and the bottom of the secondary chiller 4 are connected by a pipe, and the top of the secondary chiller 4 is also connected to the top of the tertiary reactor 5 via a pipe, and the bottom of the tertiary reactor 5 is provided.
  • the multi-stage cold-excited fixed-bed reactor (shown in FIG. 2) in which the above-mentioned multi-stage reaction is integrated, the multi-stage cold-excited fixed-bed reactor is provided with a raw material gas inlet 13 at the top and a product gas outlet 17 at the bottom.
  • the multistage cold shock fixed bed reactor in which the plurality of stages of reaction are integrated includes a first reaction stage 18 (or a first stage reactor 18) in order from top to bottom, and a first communication stage 18 a chiller 19, a second reaction section 20 (also referred to as a second stage reactor 20) in communication with the first chiller 19, a second chiller 21 in communication with the second reaction section 20, and a second a third reaction section 22 (also referred to as a third stage reactor 22) in which the chiller 21 is in communication, and the first reaction section 18, the second reaction section 20, and the third reaction section 22 are filled with a catalyst 14, first One side of the chiller 19 is provided with a cold shock medium inlet 15, and one side of the second chiller 21 is provided with a cold shock medium inlet 16.
  • the reactor uses a multi-stage cold-excited fixed bed reactor, generally using a three-stage reaction with two cold shocks in the middle.
  • the cold shock is carried out by spraying liquid dichloroethane to lower the temperature of the reaction gas to meet the inlet temperature requirements.
  • the reaction bed inlet temperature was controlled at 170 °C and the outlet temperature was 240 °C, so that the conversion rate of raw materials (in terms of E) reached 75%.
  • the feed gas velocity of the raw material mixture is controlled to treat 40 cubic meters of the raw material mixture per cubic catalyst per hour, and the reaction pressure is controlled at 0.05 MPa (gauge pressure).
  • step 4) The mixture gas produced in the reaction of step 3) is cooled to 35 ° C, pressurized to 0.7 MPa, cooled to normal temperature, and then further chilled to 5 ° C for liquefaction separation, and the liquefied gas is recycled and recycled;
  • Example 5 The liquid obtained by liquefying in step 4) is sent to the rectification column for rectification, and a vinyl chloride monomer meeting the polymerization requirements can be obtained.
  • Example 5 The liquid obtained by liquefying in step 4) is sent to the rectification column for rectification, and a vinyl chloride monomer meeting the polymerization requirements can be obtained.
  • the preheated raw material mixture is passed to a reactor equipped with a catalyst, and the catalyst used is activated carbon supported ruthenium chloride.
  • the reactor was a multi-stage cold-excited fixed-bed reactor with a 4-stage reaction and three cold-radical reactions.
  • the cold shock is carried out by spraying liquid dichloroethane to lower the temperature of the reaction gas to meet the inlet temperature requirements.
  • the reaction bed inlet temperature was controlled at 180 ° C, and the outlet temperature was 230 ° C, so that the conversion rate of raw materials (in terms of E) reached 70%.
  • the feed rate of the raw material mixture is controlled to treat 40 cubic meters of the raw material mixture per cubic meter per hour, and the reaction pressure is controlled at 0.02 MPa (gauge pressure).
  • step 4) Cooling the mixture produced in the reaction of step 3) to 50 ° C, pressurizing to 0.6 MPa, cooling to normal temperature, and then further freezing to 10 ° C for liquefaction separation, recycling of unliquefied gas;
  • the preheated raw material mixture is passed to a reactor equipped with a catalyst, and the catalyst used is activated carbon supported ruthenium chloride.
  • the reactor was a multi-stage cold-excited fixed-bed reactor with a 3-stage reaction and 2 cold-radicals in the middle.
  • the cold shock is carried out by spraying liquid dichloroethane to lower the temperature of the reaction gas to meet the inlet temperature requirements.
  • the reaction bed inlet temperature was controlled at 165 ° C, and the outlet temperature was 220 ° C, so that the conversion rate of raw materials (in terms of E) reached 75%.
  • the feed gas velocity of the raw material mixture is controlled to treat 10 cubic meters of the raw material mixture per cubic catalyst per hour, and the reaction pressure is normal pressure.
  • step 4) The mixture gas produced in the reaction of step 3) is cooled to 30 ° C, pressurized to 0.6 MPa, cooled to normal temperature, and further chilled to -5 ° C for liquefaction separation, and the liquefied gas is recycled and recycled;
  • the preheated raw material mixture is passed to a reactor equipped with a catalyst, and the catalyst used is activated carbon supported ruthenium chloride.
  • the reactor uses a multi-stage cold-excited fixed-bed reactor with a 5-stage reaction and 4 cold-excitations in the middle.
  • the cold shock is carried out by spraying liquid dichloroethane to lower the temperature of the reaction gas to meet the inlet temperature requirements.
  • the reaction bed inlet temperature was controlled at 230 ° C, and the outlet temperature was 270 ° C, so that the conversion rate of raw materials (in terms of E) reached 85%.
  • the feed rate of the raw material mixture is controlled to 50 cubic meters of raw material mixture per hour of the catalyst, and the reaction pressure is controlled at O.10 MPa (gauge pressure).
  • step 4) Cool the mixture produced in the reaction of step 3) to 30 ° C, pressurize to 0.4 MPa, cool to room temperature, and then further freeze to -25. C is liquefied and separated, and the unliquefied gas is recycled and recycled;
  • the preheated raw material mixture is passed to a reactor equipped with a catalyst, and the catalyst used is activated carbon supported ruthenium chloride.
  • the reactor was a multi-stage cold-excited fixed-bed reactor with a 4-stage reaction and 3 cold-radicals in the middle. Cold shock medium using cold original
  • the feed gas reduces the temperature of the reaction gas to meet the inlet temperature requirements.
  • the reaction bed inlet temperature was controlled at 180 ° C, and the outlet temperature was 230 ° C, so that the conversion rate of raw materials (in terms of E) reached 80%.
  • the feed gas velocity of the raw material mixture is controlled to treat 40 cubic meters of the raw material mixture per cubic catalyst per hour, and the reaction pressure is controlled at 0.02 MPa (gauge pressure).
  • step 4) Cooling the mixture produced in the reaction of step 3) to 50 ° C, pressurizing to 0.6 MPa, cooling to normal temperature, and then further freezing to 10 ° C for liquefaction separation, recycling of unliquefied gas;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种用乙炔和二氯乙烷制备氯乙烯的方法。本发明为可进行大规模工业化生产的用乙炔和二氯乙烷制备氯乙烯的方法。将摩尔比为1∶(0.3~1.0)∶(0~0.20)的乙炔、二氯乙烷蒸汽、氯化氢气体混合;将原料混合气预热;预热后的原料混合气通入装有催化剂的反应器反应;将反应产生的混合气冷却至30~50℃后,并加压到0.4~1.0MPa,然后冷却至常温,再进一步冷冻到−25~15℃进行液化分离,未液化气体回收循环再利用;将液化得到的液体送去精馏塔精馏,获得符合聚合要求的氯乙烯单体。本发明彻底消除了汞污染,反应器结构大为简化,回收氯化氢和乙炔,减少了水洗工艺,避免产生大量废酸,提高了氯的利用率。

Description

一种用乙炔和二氯乙垸制备氯乙烯的方法
技术领域 本发明涉及一种氯乙烯的制备方法, 特别是涉及一种用乙块和二氯乙烷制备氯乙烯的方 法。
背景技术 聚氯乙烯 (PVC) 是五大通用塑料之一, 其产量仅次于聚乙烯 (PE), 位居世界塑料产 量的第二位, 年产量超过 4000万吨。
聚氯乙烯最早的合成方法是乙块法, 即在氯化汞催化作用下, 乙块与氯化氢加成合成氯 乙烯, 氯乙烯聚合得聚氯乙烯。 此法由于使用氯化汞作催化剂, 存在严重的汞污染问题。 石 油裂解制乙烯工艺成熟后, 国外改用乙烯法制氯乙烯, 并在上世纪 80 年代基本淘汰了乙块 法制氯乙烯的工艺。 我国由于乙烯资源紧张而电石资源丰富, PVC 生产仍以乙块法为主。 但随着乙块法产能的不断扩大, 面临巨大的环境污染压力。 国内同行近年来一直致力于无汞 触媒的研究, 取得了一定的成就。
在申请号为 201010149180.1的中国专利申请中, 提供一种新的氯乙烯制备方法, 该法以 氯化钡为催化剂, 将乙块二氯乙烷催化重整制备氯乙烯, 为无汞催化开辟了新的途径。
在申请号为 201110330158.1 的中国专利申请 (国际专利申请号 PCT/CN2011/081317 ) 中, 提供一种乙块二氯乙烷制备氯乙烯的催化剂的制备方法, 采用该法制备的催化剂性能大 为改善, 已基本能满足工业化生产的要求。
在乙块二氯乙烷催化重整制备氯乙烯的过程中, 由于乙块与氯化氢的加成反应是放热反 应, 而二氯乙烷脱氯化氢是一个吸热反应, 2个反应耦合在一起, 形成微放热反应, 反应的 热效应不大, 因此反应器可采用绝热式反应器, 通过中间冷激的方式, 使反应温度控制在合 适的范围内, 使反应器结构大为简化。 同时, 在乙块二氯乙烷催化重整制氯乙烯的过程中, 会副产一部分氯化氢。 由于氯化氢 能降低乙块二氯乙烷催化重整反应的起点温度, 加快反应速度, 又能抑制反应体系中氯化氢 浓度的进一步提高, 因此将副产的氯化氢分离回收后与乙块二氯乙烷一起进料, 可大幅度降 低进料温度, 并有利于延长催化剂的寿命。 另外, 由于受化学平衡的制约, 乙块二氯乙烷催 化重整制氯乙烯反应不能一次性彻底完成, 一般转化率只有 80%左右, 因此必须对反应物进 行分离和回收。
发明内容
鉴于上述现有技术的缺点, 本发明的目的在于提供一种可进行大规模工业化生产的用乙 块和二氯乙烷制备氯乙烯的方法。 为实现上述目的及其他相关目的, 本发明采用如下的技术方案:
本发明的用乙块二氯乙烷制备氯乙烯的方法, 包括以下步骤:
1 ) 将乙块、 二氯乙烷蒸汽和氯化氢气体相混合, 并调节乙块、 二氯乙烷、 氯化氢三者 的摩尔比为 1 : (0.3〜1.0) : (0〜0.20), 获得原料混合气;
2) 将原料混合气预热;
3) 将预热后的原料混合气通入装有催化剂的反应器进行反应;
4) 将步骤 3) 反应产生的混合气冷却至 30〜50°C后, 加压到 0.4〜1.0MPa, 然后冷却至 常温后, 再进一步冷冻到 _25〜15°C进行液化分离, 未液化的气体回收循环利用;
5 ) 将步骤 4) 中液化得到的液体送去精馏塔进行精馏, 获得符合聚合要求的氯乙烯单 体, 即获得本发明所述的氯乙烯。
较佳的, 步骤 1 ) 中, 所述乙块、 二氯乙烷、 氯化氢三者的摩尔比为 1 : (0.3〜0.6) : (0·05〜0·20)。
较佳的, 步骤 2) 中, 所述预热的温度为 150〜230°C。
较佳的, 步骤 3) 中, 所述催化剂采用活性碳载钡盐催化剂; 优选的, 所述活性碳载钡 盐催化剂通常使用活性碳载氯化钡; 本发明的活性碳载氯化钡催化剂的制备方法可参考申请 号为 201110330158.1 的中国专利申请: 一种用于制备氯乙烯的催化剂及其制备方法及其用 途。
较佳的, 步骤 3) 中, 所述反应器采用多级冷激式固定床反应器; 优选的, 所述多级冷 激式固定床反应器采用 2〜5段反应床进行反应, 中间交替采用 1〜4次冷激, 且两段反应之 间采用 1 次冷激; 最优的, 所述多级冷激式固定床反应器采用 3〜4段反应床进行反应, 中 间交替采用 2〜3次冷激, 且两段反应之间采用 1次冷激。
较佳的, 所述冷激采用冷的原料气作冷激介质, 或者直接喷入液体二氯乙烷进行冷激; 最好采用直接喷入液体二氯乙烷进行冷激, 使反应气体的温度下降到符合进口温度要求。 上述冷激介质采用冷的原料气, 该冷的原料气为冷的乙块、 二氯乙烷和氯化氢中的一种 或多种的混合气。
较佳的, 所述多级冷激式固定床反应器的反应床进口温度均为 150〜230°C, 所述多级 冷激式固定床反应器的反应床出口温度均为 220〜280°C, 可使原料转化率 (以乙块计) 达 到 70%以上, 甚至高达 80%以上。 上述各级反应床进口温度可为 150〜230°C中的任一值, 各级反应床出口温度也可为 220〜280°C中的任一值, 各级反应床的进口温度可不同, 出口 温度也可不同, 可根据实际需要进行调整。
较佳的, 所述原料混合气的进气速度可控制在每立方米催化剂每小时处理 10〜100立方 米原料混合气; 所述反应的压力可为 0〜0.12MPa (表压), 该压力为表压显示的数字, 且 0 MPa代表没有加压, 是常压。 上述各级反应器中的反应压力可为 0〜0.12MPa中的任一值, 各级反应器中的反应压力可以不同, 可根据实际需要进行调整。
与现有的乙块法工艺相比, 本发明具有以下突出优点:
1 ) 采用活性碳载钡盐催化剂, 彻底消除了汞污染。
2) 采用多级冷激式反应器, 取代固定床列管式反应器, 一方面使反应热得到有效利 用, 另一方面使反应器的结构大为简化, 为装备大型化提供了有利条件。
3) 采用压縮冷冻方法分离 VCM (氯乙烯), 回收氯化氢和乙块, 减少了水洗工艺, 避 免产生大量的废酸, 并提高了氯的利用率, 降低了环境污染。
附图说明
图 1为本发明实施例的二次冷激三段反应的多级冷激式固定床反应器结构示意图。
图 1中, 各标记为: 1 一级反应器;
2 一级冷激器;
3 二级反应器;
4 二级冷激器;
5 三级反应器;
6 催化剂;
7 原料气进口; 8 冷激介质进口;
9 冷激介质进口;
10 催化剂;
11 催化剂;
12产品气出口。
图 2为本发明实施例的多段反应整合在一起的多级冷激式固定床反应器结构示意图。
图 2中, 各标记为: 13 原料气进口;
14催化剂;
15 冷激介质进口;
16 冷激介质进口;
17 产品气出口;
18第一反应段;
19第一冷激器;
20第二反应段;
21第二冷激器;
22第三反应段。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式, 本领域技术人员可由本说明书所揭露 的内容轻易地了解本发明的其他优点与功效。 本发明还可以通过另外不同的具体实施方式加 以实施或应用, 本说明书中的各项细节也可以基于不同观点与应用, 在没有背离本发明的精 神下进行各种修饰或改变。 实施例 1
1 ) 将乙块、 二氯乙烷蒸汽和氯化氢气体相混合, 并调节乙块、 二氯乙烷、 氯化氢三者 之摩尔比为 1: 0.3: 0.2, 得原料混合气;
2) 将原料混合气预热到 15CTC ;
3 ) 将预热后的原料混合气通入装有催化剂的反应器, 所用催化剂为活性碳载氯化钡。 反应器采用多级冷激式固定床反应器, 采用 2段反应, 中间 1次冷激。 用喷液体二氯乙烷的 方式进行冷激, 使反应气体温度下降到符合进口温度要求。 控制反应床进口温度 150°C, 出 口温度 280°C, 使原料转化率 (以乙块计) 达到 80%。 原料混合气的进气速度控制在每立方 催化剂每小时处理 100立方原料混合气, 反应压力控制在 0.12MPa (表压)。
4) 将步骤 3) 反应产生的混合气冷却至 50°C, 加压到 l.OMPa, 冷却至常温后, 再进一 步冷冻到 15°C进行液化分离, 未液化气体回收循环利用;
5 ) 将步骤 4) 中液化得到的液体送去精馏塔精馏, 可得到符合聚合要求的氯乙烯单 体。 实施例 2
1 ) 将乙块、 二氯乙烷蒸汽相混合, 调节乙块、 二氯乙烷两者之摩尔比为 1: 1, 得原料 混合气;
2) 将原料混合气预热到 23CTC ;
3 ) 将预热后的原料混合气通入装有催化剂的反应器, 所用催化剂为活性碳载氯化钡。 反应器采用多级冷激式固定床反应器, 采用 5段反应, 中间 4次冷激。 冷激介质采用冷的原 料气, 使反应气体温度下降到符合进口温度要求。 控制反应床进口温度 230°C, 出口温度 270°C, 使原料转化率 (以乙块计) 达到 85%。 原料混合气的进气速度控制在每立方催化剂 每小时处理 50立方原料混合气, 反应压力控制在 O.lOMPa (表压)。
4) 将步骤 3) 反应产生的混合气冷却至 30°C, 加压到 0.4MPa, 冷却至常温后, 再进一 步冷冻到 -25。C进行液化分离, 未液化气体回收循环利用;
5 ) 将步骤 4) 中液化得到的液体送去精馏塔精馏, 可得到符合聚合要求的氯乙烯单 体。 实施例 3
1 ) 将乙块、 二氯乙烷蒸汽和氯化氢气体相混合, 调节乙块、 二氯乙烷、 氯化氢三者之 摩尔比为 1: 0.5: 0.1, 得原料混合气;
2) 将原料混合气预热到 16CTC ;
3 ) 将预热后的原料混合气通入装有催化剂的反应器, 所用催化剂为活性碳载氯化钡。 反应器采用多级冷激式固定床反应器, 采用 3段反应, 中间 2次冷激 (参见图 1所示的二次 冷激三段反应的多级冷激式固定床反应器, 也可将多段反应整合在一起, 如图 2所示的多段 反应整合在一起的多级冷激式固定床反应器)。 采用喷液体二氯乙烷的方式进行冷激, 使反 应气体温度下降到符合进口温度要求。 控制反应床进口温度 160°C, 出口温度 250°C, 使原 料转化率 (以乙块计) 达到 70%。 原料混合气的进气速度控制在每立方催化剂每小时处理 70立方原料混合气, 反应压力控制在 0.08MPa (表压)。
4) 将步骤 3) 反应产生的混合气冷却至 40°C, 加压到 0.6MPa, 冷却至常温后, 再进一 步冷冻到 0°C进行液化分离, 未液化气体回收循环利用;
5 ) 将步骤 4) 中液化得到的液体送去精馏塔精馏, 可得到符合聚合要求的氯乙烯单 体。
上述二次冷激三段反应的多级冷激式固定床反应器 (如图 1 所示), 包括依次连接的一 级反应器 1、 一级冷激器 2、 二级反应器 3、 二级冷激器 4和三级反应器 5, 所述一级反应器 1 的顶部设有原料气进口 7, 一级冷激器 2的顶部设有冷激介质进口 8, 二级冷激器 4的顶 部设有冷激介质进口 9, 一级反应器 1的底部和一级冷激器 2的底部经管道连接, 一级冷激 器 2的顶部还和二级反应器 3的顶部经管道连接, 二级反应器 3的底部和二级冷激器 4的底 部经管道连接, 二级冷激器 4的顶部还和三级反应器 5的顶部经管道连接, 三级反应器 5的 底部设有产品气出口 12, 一级反应器 1 内装填催化剂 6、 二级反应器 3 内装填催化剂 11、 三级反应器 5内装填催化剂 10。
上述多段反应整合在一起的多级冷激式固定床反应器 (如图 2所示), 该多级冷激式固 定床反应器的顶部设有原料气进口 13, 底部设有产品气出口 17, 所述多段反应整合在一起 的多级冷激式固定床反应器自上而下依次包括第一反应段 18 (或称为第一段反应器 18), 与 第一反应段 18相通的第一冷激器 19、 与第一冷激器 19相通的第二反应段 20 (或称为第二 段反应器 20)、 与第二反应段 20相通的第二冷激器 21和与第二冷激器 21相通的第三反应 段 22 (或称为第三段反应器 22), 所述第一反应段 18、 第二反应段 20和第三反应段 22内 均装填催化剂 14, 第一冷激器 19的一侧设有冷激介质进口 15, 第二冷激器 21 的一侧设有 冷激介质进口 16。 实施例 4
1 ) 将乙块、 二氯乙烷蒸汽和氯化氢气体相混合, 调节乙块、 二氯乙烷、 氯化氢三者之 摩尔比为 1: 0.6: 0.05, 得原料混合气;
2) 将原料混合气预热到 17CTC ; 3 ) 将预热后的原料混合气通入装有催化剂的反应器, 所用催化剂为活性碳载氯化钡。 反应器采用多级冷激式固定床反应器, 一般采用 3段反应, 中间 2次冷激。 采用喷液体二氯 乙烷的方式进行冷激, 使反应气体温度下降到符合进口温度要求。 控制反应床进口温度 170 °C , 出口温度 240°C, 使原料转化率 (以乙块计) 达到 75%。 原料混合气的进气速度控 制在每立方催化剂每小时处理 40立方原料混合气, 反应压力控制在 0.05MPa (表压)。
4) 将步骤 3) 反应产生的混合气冷却至 35°C, 加压到 0.7MPa, 冷却至常温后, 再进一 步冷冻到 5°C进行液化分离, 未液化气体回收循环利用;
5 ) 将步骤 4) 中液化得到的液体送去精馏塔精馏, 可得到符合聚合要求的氯乙烯单 体。 实施例 5
1 ) 将乙块、 二氯乙烷蒸汽和氯化氢气体相混合, 调节乙块、 二氯乙烷、 氯化氢三者之 摩尔比为 1: 0.4: 0.12, 得原料混合气;
2) 将原料混合气预热到 18CTC ;
3 ) 将预热后的原料混合气通入装有催化剂的反应器, 所用催化剂为活性碳载氯化钡。 反应器采用多级冷激式固定床反应器, 采用 4段反应, 中间 3次冷激。 采用喷液体二氯乙烷 的方式进行冷激, 使反应气体温度下降到符合进口温度要求。 控制反应床进口温度 180°C, 出口温度 230°C, 使原料转化率 (以乙块计) 达到 70%。 原料混合气的进气速度控制在每立 方催化剂每小时处理 40立方原料混合气, 反应压力控制在 0.02MPa (表压)。
4) 将步骤 3) 反应产生的混合气冷却至 50°C, 加压到 0.6MPa, 冷却至常温后, 再进一 步冷冻到 10°C进行液化分离, 未液化气体回收循环利用;
5 ) 将步骤 4) 中液化得到的液体送去精馏塔精馏, 可得到符合聚合要求的氯乙烯单 体。 实施例 6
1 ) 将乙块、 二氯乙烷蒸汽和氯化氢气体相混合, 调节乙块、 二氯乙烷、 氯化氢三者之 摩尔比为 1: 0.3: 0.15, 得原料混合气;
2) 将原料混合气预热到 165°C ;
3 ) 将预热后的原料混合气通入装有催化剂的反应器, 所用催化剂为活性碳载氯化钡。 反应器采用多级冷激式固定床反应器, 采用 3段反应, 中间 2次冷激。 采用喷液体二氯乙烷 的方式进行冷激, 使反应气体温度下降到符合进口温度要求。 控制反应床进口温度 165°C, 出口温度 220°C, 使原料转化率 (以乙块计) 达到 75%。 原料混合气的进气速度控制在每立 方催化剂每小时处理 10立方原料混合气, 反应压力为常压。
4) 将步骤 3) 反应产生的混合气冷却至 30°C, 加压到 0.6MPa, 冷却至常温后, 再进一 步冷冻到 -5°C进行液化分离, 未液化气体回收循环利用;
5 ) 将步骤 4) 中液化得到的液体送去精馏塔精馏, 可得到符合聚合要求的氯乙烯单 体。 实施例 7
1 ) 将乙块、 二氯乙烷蒸汽相混合, 调节乙块、 二氯乙烷两者之摩尔比为 1 : 0.3, 得原 料混合气;
2) 将原料混合气预热到 23CTC ;
3 ) 将预热后的原料混合气通入装有催化剂的反应器, 所用催化剂为活性碳载氯化钡。 反应器采用多级冷激式固定床反应器, 采用 5段反应, 中间 4次冷激。 采用喷液体二氯乙烷 的方式进行冷激, 使反应气体温度下降到符合进口温度要求。 控制反应床进口温度 230°C, 出口温度 270°C, 使原料转化率 (以乙块计) 达到 85%。 原料混合气的进气速度控制在每立 方催化剂每小时处理 50立方原料混合气, 反应压力控制在 O.lOMPa (表压)。
4) 将步骤 3) 反应产生的混合气冷却至 30°C, 加压到 0.4MPa, 冷却至常温后, 再进一 步冷冻到 -25。C进行液化分离, 未液化气体回收循环利用;
5 ) 将步骤 4) 中液化得到的液体送去精馏塔精馏, 可得到符合聚合要求的氯乙烯单 体。 实施例 8
1 ) 将乙块、 二氯乙烷蒸汽和氯化氢气体相混合, 调节乙块、 二氯乙烷、 氯化氢三者之 摩尔比为 1: 1.0: 0.12, 得原料混合气;
2) 将原料混合气预热到 18CTC ;
3 ) 将预热后的原料混合气通入装有催化剂的反应器, 所用催化剂为活性碳载氯化钡。 反应器采用多级冷激式固定床反应器, 采用 4段反应, 中间 3次冷激。 冷激介质采用冷的原 料气, 使反应气体温度下降到符合进口温度要求。 控制反应床进口温度 180°C, 出口温度 230°C, 使原料转化率 (以乙块计) 达到 80%。 原料混合气的进气速度控制在每立方催化剂 每小时处理 40立方原料混合气, 反应压力控制在 0.02MPa (表压)。
4) 将步骤 3) 反应产生的混合气冷却至 50°C, 加压到 0.6MPa, 冷却至常温后, 再进一 步冷冻到 10°C进行液化分离, 未液化气体回收循环利用;
5 ) 将步骤 4) 中液化得到的液体送去精馏塔精馏, 可得到符合聚合要求的氯乙烯单 体。 以上所述, 仅为本发明的较佳实施例, 并非对本发明任何形式上和实质上的限制, 应当 指出, 对于本技术领域的普通技术人员, 在不脱离本发明方法的前提下, 还将可以做出若干 改进和补充, 这些改进和补充也应视为本发明的保护范围。 凡熟悉本专业的技术人员, 在不 脱离本发明的精神和范围的情况下, 当可利用以上所揭示的技术内容而做出的些许更动、 修 饰与演变的等同变化, 均为本发明的等效实施例; 同时, 凡依据本发明的实质技术对上述实 施例所作的任何等同变化的更动、 修饰与演变, 均仍属于本发明的技术方案的范围内。

Claims

权利要求书 、 一种用乙块和二氯乙烷制备氯乙烯的方法, 其特征在于, 包括以下步骤:
1 ) 将乙块、 二氯乙烷蒸汽和氯化氢气体相混合, 并调节乙块、 二氯乙烷、 氯化氢三者 的摩尔比为 1 : ( 0.3〜1.0) : ( 0〜0.20), 获得原料混合气;
2) 将原料混合气预热;
3 ) 将预热后的原料混合气通入装有催化剂的反应器进行反应;
4) 将步骤 3 ) 反应产生的混合气冷却至 30〜50°C后, 加压到 0.4〜1.0MPa, 然后冷却至 常温后, 再进一步冷冻到 _25〜15°C进行液化分离, 未液化的气体回收循环再利用;
5 ) 将步骤 4) 中液化得到的液体送去精馏塔进行精馏, 获得符合聚合要求的氯乙烯单 体, 即获得所述氯乙烯。 、 如权利要求 1 所述的用乙块和二氯乙烷制备氯乙烯的方法, 其特征在于, 步骤 2) 中, 所述预热的温度为 150〜230°C。 、 如权利要求 1 所述的用乙块和二氯乙烷制备氯乙烯的方法, 其特征在于, 步骤 3 ) 中, 所述催化剂采用活性碳载钡盐催化剂。 、 如权利要求 3 所述的用乙块和二氯乙烷制备氯乙烯的方法, 其特征在于, 所述活性碳载 钡盐催化剂为活性碳载氯化钡。 、 如权利要求 1 所述的用乙块和二氯乙烷制备氯乙烯的方法, 其特征在于, 步骤 3 ) 中, 所述反应器采用多级冷激式固定床反应器。 、 如权利要求 5 所述的用乙块和二氯乙烷制备氯乙烯的方法, 其特征在于, 所述多级冷激 式固定床反应器采用 2〜5段反应床进行反应, 且两段反应之间采用 1次冷激。 、 如权利要求 6 所述的用乙块和二氯乙烷制备氯乙烯的方法, 其特征在于, 所述冷激采用 冷激介质, 或者直接喷入液体二氯乙烷进行冷激。 、 如权利要求 Ί 所述的用乙块和二氯乙烷制备氯乙烯的方法, 其特征在于, 所述冷激介质 采用冷的原料气。 、 如权利要求 5或 6所述的用乙块和二氯乙烷制备氯乙烯的方法, 其特征在于, 所述多级 冷激式固定床反应器的反应床进口温度为 150〜230°C, 反应床出口温度为 220〜280°C。 、 如权利要求 8所述的用乙炔和二氯乙垸制备氯乙烯的方法, 其特征在于, 所述原料混合 气的进气速度控制在每立方米催化剂每小时处理 10〜100立方米原料混合气, 所述各段 反应的压力为 0〜0.12MPa。
PCT/CN2012/078540 2012-06-11 2012-07-12 一种用乙炔和二氯乙烷制备氯乙烯的方法 WO2013185400A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
IN10674DEN2014 IN2014DN10674A (zh) 2012-06-11 2012-07-12
US14/406,931 US9371259B2 (en) 2012-06-11 2012-07-12 Method for preparing vinyl chloride from acetylene and dichlorethane
JP2015515365A JP5974169B2 (ja) 2012-06-11 2012-07-12 アセチレン及びジクロロエタンを用いて塩化ビニルを生成する方法
ZA2014/09015A ZA201409015B (en) 2012-06-11 2014-12-09 Method for preparing vinyl chloride with acetylene and dichlorethane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210191433.0 2012-06-11
CN201210191433.0A CN102675035B (zh) 2012-06-11 2012-06-11 一种用乙炔和二氯乙烷制备氯乙烯的方法

Publications (1)

Publication Number Publication Date
WO2013185400A1 true WO2013185400A1 (zh) 2013-12-19

Family

ID=46807662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078540 WO2013185400A1 (zh) 2012-06-11 2012-07-12 一种用乙炔和二氯乙烷制备氯乙烯的方法

Country Status (6)

Country Link
US (1) US9371259B2 (zh)
JP (1) JP5974169B2 (zh)
CN (1) CN102675035B (zh)
IN (1) IN2014DN10674A (zh)
WO (1) WO2013185400A1 (zh)
ZA (1) ZA201409015B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130204052A1 (en) * 2011-10-26 2013-08-08 Zhongke Yigong (Xiamen) Chemical Technology Co. Ltd. Catalyst for preparing vinyl chloride, methods of preparation and application thereof
US9371259B2 (en) 2012-06-11 2016-06-21 Shanghai Advanced Research Institute, Chinese Academy Of Sciences Method for preparing vinyl chloride from acetylene and dichlorethane
CN112844460A (zh) * 2019-11-27 2021-05-28 中国科学院大连化学物理研究所 乙炔与二氯乙烷耦合反应制备氯乙烯的催化剂及其应用
CN113426490A (zh) * 2021-06-24 2021-09-24 宁夏新龙蓝天科技股份有限公司 一种添加二氯乙烷制作无汞触媒的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911007B (zh) * 2012-11-09 2015-04-01 中科易工(上海)化学科技有限公司 一种氯乙烯的无汞合成方法
CN103408392A (zh) * 2013-07-17 2013-11-27 北京化工大学 聚氯乙烯环形路线生产方法
CN104326865B (zh) * 2014-10-11 2016-03-23 中国科学院上海高等研究院 一种催化乙炔二氯乙烷制备氯乙烯的方法
CN104326867B (zh) * 2014-10-16 2016-03-16 中科易工(上海)化学科技有限公司 一种乙炔和二氯乙烷无汞催化合成氯乙烯工艺尾气中氯乙烯的分离回收方法
CN104326866B (zh) * 2014-10-16 2016-03-16 中科易工(上海)化学科技有限公司 一种乙炔和二氯乙烷催化重整生产氯乙烯工艺
CN104437564A (zh) * 2014-11-03 2015-03-25 扬州大学 一种绿色催化生产氯乙烯的催化剂及其生产氯乙烯的方法
CN104437565A (zh) * 2014-11-03 2015-03-25 扬州大学 一种氯仿和乙炔反应生产氯乙烯的方法及其所用催化剂
CN106391078B (zh) * 2015-07-31 2019-06-28 天津大学 一种用于二氯乙烷和乙炔一步法制备氯乙烯的催化剂及制备方法及用途
CN105419731A (zh) * 2015-12-24 2016-03-23 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种反应器循环换热剂
CN107129423A (zh) * 2017-04-26 2017-09-05 安徽华塑股份有限公司 一种纯化氯乙烯气体的方法
CN109293469B (zh) * 2018-10-10 2021-06-08 青岛科技大学 一种甲苯二异氰酸酯副产氯化氢气体与乙炔气体混合冷冻脱水的方法
CN110052222A (zh) * 2019-05-20 2019-07-26 陕西金泰氯碱化工有限公司 一种冷激式无汞催化氯乙烯合成的工艺方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817723A (zh) * 2010-04-12 2010-09-01 中科易工(厦门)化学科技有限公司 一种催化重整制备氯乙烯的方法
CN102441407A (zh) * 2011-10-26 2012-05-09 上海中科高等研究院 一种用于制备氯乙烯的催化剂及其制备方法及其用途

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681372A (en) 1951-01-16 1954-06-15 Ethyl Corp Manufacture of ethyl chloride and vinyl chloride
US2750410A (en) 1952-11-22 1956-06-12 Union Carbide & Carbon Corp Catalyst and process for making vinyl esters
BE524000A (zh) 1953-11-03
US2830102A (en) 1954-01-18 1958-04-08 Kenneth A Kobe Production of vinyl chloride from cracked hydrocarbon gases containing acetylene
GB857087A (en) * 1956-08-30 1960-12-29 Hoechst Ag Process for the manufacture of vinyl chloride
CN100537497C (zh) * 2006-07-07 2009-09-09 清华大学 氯化氢与乙炔反应制备氯乙烯的流化床反应器及方法
CN102151578B (zh) 2011-01-21 2012-12-19 李伟 一种用于乙炔氢氯化法生产氯乙烯的磷化镍催化剂及其制备方法
CN102151581B (zh) 2011-02-18 2013-01-23 李伟 一种用于生产氯乙烯的磷化钼催化剂及其制备方法
WO2013005998A2 (ko) 2011-07-05 2013-01-10 Bae Su Won 컵라면 뚜껑의 고정장치
WO2013059998A1 (zh) 2011-10-26 2013-05-02 上海中科高等研究院 一种用于制备氯乙烯的催化剂及其制备方法及其用途
CN102675035B (zh) 2012-06-11 2014-04-09 中国科学院上海高等研究院 一种用乙炔和二氯乙烷制备氯乙烯的方法
CN102911007B (zh) 2012-11-09 2015-04-01 中科易工(上海)化学科技有限公司 一种氯乙烯的无汞合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817723A (zh) * 2010-04-12 2010-09-01 中科易工(厦门)化学科技有限公司 一种催化重整制备氯乙烯的方法
CN102441407A (zh) * 2011-10-26 2012-05-09 上海中科高等研究院 一种用于制备氯乙烯的催化剂及其制备方法及其用途

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130204052A1 (en) * 2011-10-26 2013-08-08 Zhongke Yigong (Xiamen) Chemical Technology Co. Ltd. Catalyst for preparing vinyl chloride, methods of preparation and application thereof
US9056305B2 (en) * 2011-10-26 2015-06-16 Shanghai Cas Advanced Research Institute Catalyst for preparing vinyl chloride, methods of preparation and application thereof
US9371259B2 (en) 2012-06-11 2016-06-21 Shanghai Advanced Research Institute, Chinese Academy Of Sciences Method for preparing vinyl chloride from acetylene and dichlorethane
CN112844460A (zh) * 2019-11-27 2021-05-28 中国科学院大连化学物理研究所 乙炔与二氯乙烷耦合反应制备氯乙烯的催化剂及其应用
CN112844460B (zh) * 2019-11-27 2022-06-03 中国科学院大连化学物理研究所 乙炔与二氯乙烷耦合反应制备氯乙烯的催化剂及其应用
CN113426490A (zh) * 2021-06-24 2021-09-24 宁夏新龙蓝天科技股份有限公司 一种添加二氯乙烷制作无汞触媒的方法

Also Published As

Publication number Publication date
JP5974169B2 (ja) 2016-08-23
US9371259B2 (en) 2016-06-21
CN102675035A (zh) 2012-09-19
ZA201409015B (en) 2017-06-28
IN2014DN10674A (zh) 2015-08-28
JP2015522555A (ja) 2015-08-06
CN102675035B (zh) 2014-04-09
US20150141713A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
WO2013185400A1 (zh) 一种用乙炔和二氯乙烷制备氯乙烯的方法
JPH042577B2 (zh)
CN103420750A (zh) 低碳烷烃制烯烃的方法
CN102815722B (zh) 铁催化剂串钌催化剂氨合成工艺
CN104926581B (zh) 一种干法分离丙烯和氯化氢的工艺流程
CN102068945B (zh) 用于甲缩醛分离提纯的反应精馏装置和方法
CN103319303B (zh) 一种同时制备1,1,1,2-四氟乙烷和二氟甲烷的方法
CN103787824A (zh) 一种联产制备全氟-2-甲基-2-戊烯和全氟-4-甲基-2-戊烯的方法
CN101117305B (zh) 1,1,1,2-四氟乙烷的制备方法
CN107285978A (zh) 正丁烷的制备方法
CN109438171B (zh) 一种气相连续合成2,3,3,3-四氟丙烯的方法
CN103524291B (zh) 一种氯代烷烃的连续合成方法
CN106883095A (zh) 一种生产反式‑1,3,3,3‑四氟丙烯的工艺
CN210214799U (zh) 一种氯气尾气中氯气回收装置
CN103755740B (zh) 一种连续化加压法生产2-氯乙基膦酸的工艺
CN104744382B (zh) 一种高哌嗪的制备方法
CN109847555B (zh) 一种基于水合物法回收催化干气中多种气体的装置及方法
CN103012204A (zh) 苯甲腈的制造方法
CN103922888A (zh) 1,2-二氯乙烷氯化生产四/五氯乙烷的反应精馏集成工艺
CN201793508U (zh) 生产三氯乙烷的装置
CN115430365B (zh) 一种利用近等温反应装置制备2,2’-联吡啶的方法
CN113277924B (zh) 一种用于丙烯制备的热交换系统
CN102649734A (zh) 通过一氧化碳气体催化偶联反应制草酸酯的方法
CN106831316A (zh) 一种生产反式‑1,3,3,3‑四氟丙烯的方法
CN109232173B (zh) 一种1,1,1,2,3-五氯丙烷的连续制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515365

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14406931

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878785

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 17/02/2015)