WO2013183666A1 - ポリオレフィン系樹脂多孔性フィルム - Google Patents

ポリオレフィン系樹脂多孔性フィルム Download PDF

Info

Publication number
WO2013183666A1
WO2013183666A1 PCT/JP2013/065573 JP2013065573W WO2013183666A1 WO 2013183666 A1 WO2013183666 A1 WO 2013183666A1 JP 2013065573 W JP2013065573 W JP 2013065573W WO 2013183666 A1 WO2013183666 A1 WO 2013183666A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
stretching
polyolefin resin
flow direction
resin porous
Prior art date
Application number
PCT/JP2013/065573
Other languages
English (en)
French (fr)
Inventor
山田剛幹
宇佐見康
竹川浩司
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to KR1020147034056A priority Critical patent/KR102089256B1/ko
Priority to US14/406,011 priority patent/US20150125734A1/en
Priority to EP13801339.6A priority patent/EP2860216A4/en
Priority to CN201380029263.9A priority patent/CN104334619B/zh
Priority to JP2014520026A priority patent/JP6222087B2/ja
Publication of WO2013183666A1 publication Critical patent/WO2013183666A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin resin porous film, and can be used as a packaging, sanitary, livestock, agricultural, architectural, medical, separation membrane, light diffusion plate, battery separator, and in particular, a coating type lithium ion It can be suitably used as a battery separator.
  • lithium-ion secondary batteries are being expanded to large batteries related to environmental issues such as electric vehicles and emergency power applications. Yes.
  • Patent Document 1 proposes a separator coated with a heat resistant resin as a heat resistant porous layer.
  • Patent Document 2 proposes a separator in which a filler is provided as a heat-resistant layer on the surface of the separator has been proposed.
  • the heat-resistant layer is usually formed by applying a heat-resistant resin imparting heat resistance or a mixed solution containing a filler, a resin binder, and a solvent to the separator surface, and then removing the solvent through a drying process to form the heat-resistant layer.
  • the separator obtained by the manufacturing method described in Patent Document 3 has a high porosity, the separator is insufficient in rigidity. For example, there is a problem that wrinkles are more easily generated with a slight tension in the transport process. Therefore, when the heat resistant layer is provided by coating, it is difficult to form the heat resistant layer with a uniform thickness. Even when a heat resistant layer is not provided on the surface of the porous film as a coating, wrinkles are likely to occur when forming a raw roll product by winding a thin porous film with high porosity and pulling it. There is a problem that tends to decrease. In Patent Document 4, the elastic modulus (rigidity) at room temperature is improved.
  • the resin softens in a high-temperature atmosphere, the elastic modulus is lowered. Is easier, and problems arise when a coating layer is provided and in the process of winding on a roll. In addition, since the transverse draw ratio is reduced, it is difficult to increase the porosity, the transmission characteristics of the resulting porous film are lowered, and there is a problem that sufficient battery performance is difficult to be exhibited.
  • the present invention has been made in view of the above problems, and has a high shrinkage stress, so that it is difficult for wrinkles to occur in a transport process in a high-temperature environment, and a process of providing a heat-resistant layer with a coating on the surface of a porous film and / or a roll It is an object of the present invention to provide a polyolefin-based resin porous film that does not generate wrinkles in the winding process, has good air permeability and maintains air permeability, and can be suitably used particularly as a battery separator.
  • the present invention provides a polyolefin resin porous material characterized by having a 1% modulus in the flow direction at 90 ° C. of 4.5 MPa or more and an air permeability of 800 seconds / 100 ml or less.
  • a sex film We provide a sex film.
  • the shrinkage stress in the flow direction at 90 ° C. is preferably 1.5 MPa or more.
  • the polyolefin resin is preferably a polypropylene resin as a main component.
  • the present invention preferably has ⁇ crystal activity.
  • the present invention it is preferable to stretch in the flow direction after biaxial stretching. Specifically, longitudinal stretching is performed at a stretching temperature of 20 to 130 ° C. and a stretching ratio of 3.0 to 8.0 in the flow direction (longitudinal direction). Next, transverse stretching is performed at a stretching temperature of 100 to 160 ° C. and a stretching ratio of 1.1 to 6.0 times in a direction perpendicular to the flow direction (lateral direction). Next, a relaxation treatment of 1 to 20% is performed at 130 ° C. or higher in the direction perpendicular to the flow direction (lateral direction), Then, it is preferable to perform re-longitudinal stretching at a draw ratio of 1.1 times or more in the flow direction (longitudinal direction).
  • At least one surface is coated with a heat-resistant layer.
  • the polyolefin resin porous film according to the present invention has a 1% modulus in the flow direction at 90 ° C. of 4.5 MPa or more, wrinkles are hardly generated during transportation. Therefore, when applying a tension to the porous film and coating the surface with a heat-resistant layer, it can be applied with a uniform thickness, and when wound on a roll while applying tension to the porous film, It can wind up without generating and can raise the precision of a product. Furthermore, since the air permeability is 800 sec / 100 ml or less, the permeation characteristics are not deteriorated and sufficient battery performance can be exhibited.
  • the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified.
  • the content ratio of the components is not specified, but the main component includes 50% by mass or more, preferably 70% by mass or more, particularly preferably 90% by mass or more (including 100%) in the composition. It is.
  • “X to Y” (X and Y are arbitrary numbers) is described, it means “preferably greater than X” and “preferably smaller than Y” with the meaning of “X to Y” unless otherwise specified. Is included.
  • the flow direction of the membrane and porous film is “longitudinal direction”, the direction perpendicular to the flow direction is “lateral direction”, the stretching in the flow direction is “longitudinal stretching”, and the direction perpendicular to the flow direction is This stretching may be referred to as “lateral stretching”.
  • polyolefin resin Specific examples of the polyolefin resin include a polyethylene resin and a polypropylene resin. Among these, a polypropylene resin is preferable.
  • Polypropylene resins include homopropylene (propylene homopolymer), or propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, etc. Random copolymers or block copolymers with ⁇ -olefins may be mentioned. Among these, homopolypropylene is more preferably used from the viewpoint of maintaining the mechanical strength and heat resistance of the porous film.
  • the polypropylene resin preferably has an isotactic pentad fraction (mmmm fraction) exhibiting stereoregularity of 80 to 99%. More preferably 83 to 98%, and still more preferably 85 to 97%. If the isotactic pentad fraction is too low, the mechanical strength of the porous film may be reduced.
  • the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed in the industrial level in the future. is not.
  • the isotactic pentad fraction (mmmm fraction) is the same direction for all five methyl groups that are side chains with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. Means the three-dimensional structure located at or its proportion. Signal assignment of the methyl group region is as follows. According to Zambelli et al (Macromolecules 8,687, (1975)).
  • Mw / Mn which is a parameter indicating a molecular weight distribution
  • Mw / Mn is 2.0 to 10.0. More preferred is 2.0 to 8.0, and still more preferred is 2.0 to 6.0. This means that the smaller the Mw / Mn is, the narrower the molecular weight distribution is.
  • Mw / Mn is less than 2.0, problems such as a decrease in extrusion moldability occur, and it is difficult to produce industrially.
  • Mw / Mn exceeds 10.0, low molecular weight components increase, and the mechanical strength of the porous film tends to decrease.
  • Mw / Mn is obtained by GPC (gel permeation chromatography) method.
  • the melt flow rate (MFR) of the polypropylene resin is not particularly limited, but usually the MFR is preferably 0.5 to 15 g / 10 minutes, and 1.0 to 10 g / 10 minutes. It is more preferable. When the MFR is less than 0.5 g / 10 min, the resin has a high melt viscosity at the time of molding and the productivity is lowered. On the other hand, if it exceeds 15 g / 10 minutes, the mechanical strength of the resulting porous film is insufficient, and problems are likely to occur in practice. MFR is measured according to JIS K7210 under conditions of a temperature of 230 ° C. and a load of 2.16 kg.
  • polypropylene resins examples include trade names “Novatec PP” “WINTEC” (manufactured by Nippon Polypro), “Notio” “Toughmer XR” (manufactured by Mitsui Chemicals), “Zeras” “Thermolan” (manufactured by Mitsubishi Chemical) “Sumitomo Noblen” “Tufselen” (manufactured by Sumitomo Chemical Co., Ltd.), “Prime TPO” (manufactured by Prime Polymer Co., Ltd.), “Adflex” “Adsyl”, “HMS-PP (PF814)” (manufactured by Sun Allomer Co., Ltd.), “Versify” Commercially available products such as “Inspire” (manufactured by Dow Chemical Company) can be used.
  • the production method of the polypropylene-based resin is not particularly limited, and a known polymerization method using a known polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene-based catalyst. And a polymerization method using a single site catalyst.
  • a known polymerization method using a known polymerization catalyst for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene-based catalyst.
  • a polymerization method using a single site catalyst for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene-based catalyst.
  • the porous film of the present invention preferably has ⁇ crystal activity.
  • the ⁇ crystal activity can be regarded as an index indicating that the polypropylene resin produced ⁇ crystals in the film-like material before stretching. If the polypropylene resin in the film-like material before stretching produces ⁇ crystals, fine pores are formed by subsequent stretching, so that a porous film having air permeability can be obtained. Presence / absence of the “ ⁇ crystal activity” is determined by the case where the crystal melting peak temperature derived from the ⁇ crystal is detected by a differential scanning calorimeter described later and / or by measurement using an X-ray analyzer described later. When a diffraction peak derived from the ⁇ crystal is detected, it is judged to have “ ⁇ crystal activity”.
  • the porous film is heated from a temperature of 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min for 1 minute with a differential scanning calorimeter (DSC), and then cooled from 240 ° C. to 25 ° C. for 10 minutes.
  • the crystal melting peak temperature (Tm ⁇ ) derived from the ⁇ -crystal of the polypropylene-based resin is maintained when the temperature is lowered for 1 minute after the temperature is lowered for 1 minute, and further heated again from 25 ° C to 240 ° C at a heating rate of 10 ° C / minute. If detected, it is judged to have ⁇ crystal activity.
  • the ⁇ crystal activity of the porous film is calculated by the following formula using the heat of crystal melting derived from the ⁇ crystal of the polypropylene resin ( ⁇ Hm ⁇ ) and the heat of crystal melting derived from the ⁇ crystal ( ⁇ Hm ⁇ ).
  • ⁇ crystal activity (%) [ ⁇ Hm ⁇ / ( ⁇ Hm ⁇ + ⁇ Hm ⁇ )] ⁇ 100
  • the amount of heat of crystal melting derived from the ⁇ crystal ( ⁇ Hm ⁇ ) detected mainly in the range of 145 ° C. or higher and lower than 160 ° C., and mainly detected at 160 ° C. or higher and 170 ° C. or lower.
  • the amount of heat of crystal melting ( ⁇ Hm ⁇ ) derived from the ⁇ crystal detected mainly in the range of 120 ° C. or more and less than 140 ° C. It can be calculated from the crystal melting calorie ( ⁇ Hm ⁇ ) derived from the ⁇ crystal detected in the range of from 0 ° C. to 165 ° C.
  • the ⁇ film has a higher ⁇ crystal activity, and the ⁇ crystal activity is preferably 20% or more. More preferably, it is 40% or more, and particularly preferably 60% or more. If the porous film has a ⁇ crystal activity of 20% or more, it indicates that a large amount of ⁇ crystals of polypropylene resin can be produced even in a film-like material before stretching, and fine and uniform pores are formed by stretching. A porous film having a large number of formed and excellent permeation characteristics can be obtained.
  • the upper limit value of the ⁇ crystal activity is not particularly limited, but the higher the ⁇ crystal activity, the more effective the effect is obtained, so the closer it is to 100%, the better.
  • the ⁇ -crystal activity can be measured in the state of the entire porous film, regardless of whether the porous film of the present invention has a single layer structure or other porous layers are laminated. it can.
  • a method for obtaining the ⁇ crystal activity of the porous layer described above a method that does not add a substance that promotes the formation of ⁇ crystal of a polypropylene-based resin, or a peroxide radical is generated as described in Japanese Patent No. 3739481. Examples thereof include a method of adding a treated polypropylene resin and a method of adding a ⁇ crystal nucleating agent to the composition.
  • ⁇ crystal nucleating agent examples include those shown below, but are not particularly limited as long as they increase the formation and growth of ⁇ crystals of polypropylene resin, and two or more types are mixed. May be used.
  • examples of the ⁇ crystal nucleating agent include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc.
  • Alkali or alkaline earth metal salts of carboxylic acids represented by: aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate; di- or triesters of dibasic or tribasic carboxylic acids; phthalocyanine blue Phthalocyanine pigments typified by: a two-component compound comprising component A which is an organic dibasic acid and a component B which is an oxide, hydroxide or salt of a Group IIA metal of the periodic table; a cyclic phosphorus compound; Made of magnesium compound Such as the formation thereof.
  • specific types of nucleating agents are described in JP-A No. 2003-306585, JP-A No. 06-289656, and JP-A No. 09-194650.
  • ⁇ crystal nucleating agent Commercially available products of ⁇ crystal nucleating agent include ⁇ crystal nucleating agent “NJESTER NU-100” manufactured by Shin Nippon Rika Co., Ltd.
  • polypropylene resins to which ⁇ crystal nucleating agent is added include polypropylene manufactured by Aristech Examples include “Bepol® B-022SP”, polypropylene “Beta ( ⁇ ) -PP® BE60-7032” manufactured by Borealis, and polypropylene “BNX BETAPP-LN” manufactured by Mayzo.
  • the ⁇ crystal nucleating agent is preferably blended with a polypropylene resin.
  • the ratio of the ⁇ -crystal nucleating agent added to the polypropylene resin needs to be appropriately adjusted depending on the type of the ⁇ -crystal nucleating agent or the composition of the polypropylene-based resin. 0.0001 to 5.0 parts by mass of the agent is preferred. 0.001 to 3.0 parts by mass is more preferable, and 0.01 to 1.0 part by mass is still more preferable. If it is 0.0001 part by mass or more, ⁇ -crystals of polypropylene resin can be sufficiently produced and grown during production, and sufficient ⁇ -crystal activity can be secured even when used as a separator, and desired air permeability performance.
  • additives generally added to the resin composition can be added as appropriate within a range that does not significantly impair the effects of the present invention.
  • the additive include recycling resin, silica, talc, kaolin, calcium carbonate, and the like, which are added for the purpose of improving and adjusting molding processability, productivity, and various physical properties of the porous film.
  • Inorganic particles such as, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents, Examples thereof include additives such as antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, and coloring agents.
  • the porous film may be a single layer or a laminate.
  • the layer structure of the porous film is not particularly limited as long as at least one layer containing a polyolefin resin (hereinafter referred to as “A layer”) is present.
  • other layers hereinafter referred to as “B layer”.
  • a layer a polyolefin resin
  • B layer other layers
  • a low melting point resin layer that closes the hole in a high temperature atmosphere as described in JP-A No. 04-181651 and ensures the safety of the battery.
  • Specific examples include a two-layer structure in which an A layer / B layer is laminated, a three-layer structure in which an A layer / B layer / A layer, or a B layer / A layer / B layer are laminated.
  • the physical properties of the porous film of the present invention can be freely adjusted by the layer constitution, the lamination ratio, the composition of each layer, and the production method.
  • a coating layer (hereinafter abbreviated as a coating layer) may be laminated on at least one surface of the polyolefin resin porous film.
  • the coat layer is preferably a heat-resistant layer containing a filler and a resin binder.
  • the case where the polyolefin resin porous film of the present invention is not provided by coating the heat-resistant layer is included.
  • Filler examples of the filler that can be used in the present invention include an inorganic filler and an organic filler, but are not particularly limited.
  • inorganic fillers include carbonates such as calcium carbonate, magnesium carbonate and barium carbonate; sulfates such as calcium sulfate, magnesium sulfate and barium sulfate; chlorides such as sodium chloride, calcium chloride and magnesium chloride, aluminum oxide and oxidation
  • oxides such as calcium, magnesium oxide, zinc oxide, titanium oxide, and silica
  • silicates such as talc, clay, and mica can be used.
  • barium sulfate and aluminum oxide are preferable.
  • organic fillers include ultra high molecular weight polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polytetrafluoroethylene, polyimide, polyether.
  • examples thereof include thermoplastic resins such as imide, melamine, and benzoguanamine, and thermosetting resins. Among these, cross-linked polystyrene and the like are particularly preferable.
  • the average particle size of the filler is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more, and the upper limit is preferably 3.0 ⁇ m or less, more preferably 1.5 ⁇ m or less. It is. Sufficient heat resistance can be exhibited when the average particle diameter is within the specified range. Further, from the viewpoint of dispersibility of the filler in the coat layer, the average particle size is more preferably 1.5 ⁇ m or less.
  • the “average particle diameter of the filler” is a value measured according to a method using SEM.
  • the content of the filler is preferably 100% by mass or more, and more preferably 200% by mass or more with respect to 100% by mass of the resin binder.
  • about an upper limit 1500 mass% or less is more preferable, and 800 mass% or less is still more preferable. If the content of the filler is 100% by mass or more with respect to 100% by mass of the resin binder, it is preferable because a porous film having communication can be produced and excellent air permeability can be exhibited.
  • the content rate of the said filler is 1500 mass% or less, it is preferable from generation
  • the filler and the polyolefin-based resin porous film can be favorably bonded, are electrochemically stable, and the laminated porous film is non-aqueous electrolyte secondary.
  • the non-aqueous electrolyte there is no particular limitation as long as it is stable with respect to the non-aqueous electrolyte.
  • ethylene-acrylic acid copolymer such as ethylene-vinyl acetate copolymer (EVA, whose structural unit derived from vinyl acetate is 20 to 35 mol%), ethylene-ethyl acrylate copolymer, fluorine, etc.
  • Resins polyvinylidene fluoride, etc.
  • fluorinated rubber styrene-butadiene rubber (SBR), nitrile butadiene rubber (NBR), polybutadiene rubber (BR), polyacrylonitrile (PAN), polyacrylic acid (PAA), carboxymethyl cellulose (CMC) ), Hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), poly N-vinylacetamide, crosslinked acrylic resin, polyurethane, epoxy resin and the like.
  • organic binders may be used alone or in combination of two or more.
  • polyvinyl alcohol polyvinylidene fluoride, styrene-butadiene rubber, carboxymethyl cellulose, and polyacrylic acid are preferable, and polyvinyl alcohol is more preferable from the viewpoint of heat resistance and stretchability.
  • the coating layer is coated on the surface of the polyolefin resin porous film by applying a dispersion obtained by dissolving or dispersing the filler and the resin binder in a solvent to at least one surface of the polyolefin resin porous film. Can be produced.
  • the solvent it is preferable to use a solvent in which the filler and the resin binder can be dissolved or dispersed uniformly and stably.
  • a solvent include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, hot xylene, and hexane.
  • the dispersion may include a dispersant such as a surfactant, a thickener, a wetting agent, a disinfectant.
  • Various additives such as foaming agents, pH adjusting agents including acids and alkalis may be added.
  • the additive is preferably one that can be removed upon solvent removal or plasticizer extraction, but is electrochemically stable in the range of use of the nonaqueous electrolyte secondary battery, does not inhibit the battery reaction, and is about 200 ° C. If it is stable, it may remain in the battery (in the laminated porous film).
  • Examples of a method for dissolving or dispersing the filler and the resin binder in a solvent include, for example, a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid mill, an attritor, a roll mill, a high-speed impeller dispersion, a disperser, a homogenizer, and a high-speed Examples thereof include an impact mill, ultrasonic dispersion, a mechanical stirring method using stirring blades, and the like.
  • the dispersion may be applied to the surface of the polyolefin resin porous film after the extrusion molding, after the longitudinal stretching step, or after the transverse stretching step. May be.
  • the extrusion process or the longitudinal stretching process is preferable in that the drying process and the stretching process can be performed simultaneously.
  • the application method in the application step is not particularly limited as long as it can realize a required layer thickness and application area.
  • coating methods include gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod Examples include a coater method, a squeeze coater method, a cast coater method, a die coater method, a screen printing method, and a spray coating method.
  • the said dispersion liquid may be apply
  • the solvent is preferably a solvent that can be removed from the dispersion applied to the polyolefin resin porous film.
  • a method for removing the solvent any method that does not adversely affect the polyolefin resin porous film can be adopted without any particular limitation.
  • a method for removing the solvent for example, a method of drying at a temperature below the melting point while fixing the polyolefin resin porous film, a method of drying under reduced pressure at a low temperature, a resin binder immersed in a poor solvent for the resin binder And a method of extracting the solvent at the same time as coagulating.
  • the polyolefin resin porous film of the present invention it is important that the 1% modulus in the flow direction at 90 ° C., that is, the vertical direction, is 4.5 MPa or more. Furthermore, 5.5 MPa or more is preferable, 6.0 MPa or more is more preferable, and 7.0 MPa or more is particularly preferable. Normally, due to the rigidity of the resin, the polyolefin resin porous film has an antagonistic force against the tension due to conveyance, and is difficult to stretch.
  • the drying temperature is higher than that of the organic solvent, which is very severe from the viewpoint of the rigidity of the porous film. It will be exposed to. Therefore, in a high temperature environment, the polyolefin resin is softened and the antagonistic force is reduced.
  • the rigidity of the porous film is extended against the tension due to the conveyance, the shrinkage occurs in the direction perpendicular to the flow direction of the porous film, that is, in the lateral direction. At this time, if the shrinkage rate in the lateral direction is large, wrinkles appear. As a result, many wrinkles are generated in parallel with the vertical direction, resulting in poor coating.
  • the thickness of the coat layer is not uniform, and the heat resistance is lowered, which is not preferable.
  • the stretching ratio of longitudinal stretching or re-longitudinal stretching is increased, or the stretching ratio of transverse stretching is decreased. This can be achieved.
  • the shrinkage stress in the flow direction at 90 ° C. is preferably 1.5 MPa or more, more preferably 2.0 MPa or more, and further preferably 3.0 MPa or more.
  • the shrinkage stress in the flow direction at 90 ° C. is 1.5 MPa or more
  • the elastic modulus in the longitudinal direction is improved as an antagonistic force against the tension due to the conveyance.
  • the shrinkage stress acts in the longitudinal direction in the temperature range of the coating layer drying process, the elongation in the longitudinal direction is suppressed even in a high temperature environment, and wrinkles in the drying process of the coating layer are suppressed. Expression can be prevented.
  • the shrinkage stress is 1.5 MPa or more because the porous film is hardly stretched by the shrinkage stress even if the elastic modulus of the porous film in a high temperature environment is lowered.
  • the shrinkage stress is 10 MPa or less, the shrinkage in the flow direction at room temperature can be sufficiently suppressed.
  • the means for improving the shrinkage stress in the flow direction at 90 ° C. can be achieved by increasing the stretching ratio of longitudinal stretching or the stretching ratio of re-longitudinal stretching, or decreasing the stretching ratio of transverse stretching.
  • the air permeability of the polyolefin resin porous film of the present invention is 800 seconds / 100 ml or less. Further, 10 to 600 seconds / 100 ml is preferable, and 50 to 400 seconds / 100 ml is more preferable.
  • the air permeability represents the difficulty in passing through the air in the thickness direction of the porous film, and is specifically expressed in the number of seconds required for 100 ml of air to pass through the film. Therefore, it means that the smaller the numerical value is, the easier it is to pass through, and the higher numerical value is, the more difficult it is to pass. That is, the smaller the value means that the connectivity in the thickness direction of the porous film is better, and the larger the value means that the connectivity in the thickness direction of the film is worse.
  • the term “communication” refers to the degree of connection of pores in the thickness direction of the porous film. If the air permeability of the polyolefin resin porous film of the present invention is low, it can be used for various applications. For example, when used as a separator for a non-aqueous electrolyte secondary battery, a low air permeability means that lithium ions can be easily transferred, which is preferable because battery performance is excellent. If the air permeability is 800 seconds / 100 ml or less, it indicates that the porous film has communication properties, suggesting excellent air permeability. Means for improving the air permeability can be achieved by increasing the stretching ratio of transverse stretching or decreasing the stretching ratio of re-longitudinal stretching.
  • the method for producing the film-like material is not particularly limited, and a known method may be used. For example, a method of melting a thermoplastic resin composition using an extruder, extruding from a T die, and cooling and solidifying with a cast roll is mentioned. It is done. Moreover, the method of cutting open the film-like thing manufactured by the tubular method and making it planar is also applicable.
  • the stretching method of the film-like material there are methods such as a roll stretching method, a rolling method, a tenter stretching method, and a simultaneous biaxial stretching method, and these methods are used alone or in combination of two or more for uniaxial stretching or biaxial stretching. Do.
  • a mixed resin composition containing a polyolefin resin and, if necessary, a thermoplastic resin and additives is prepared.
  • polypropylene resin, ⁇ crystal nucleating agent, and additives, etc. if necessary, preferably using a Henschel mixer, super mixer, tumbler mixer, etc., or all components in a bag and mixing by hand blending
  • a kneader or the like preferably a twin-screw extruder
  • the pellets are put into an extruder and extruded from a T-die extrusion die to form a film.
  • the type of T die is not particularly limited.
  • the T die may be a multi-manifold type for two types and three layers or a feed block type for two types and three layers.
  • the gap of the T die to be used is determined based on the finally required porous film thickness, stretching conditions, draft rate, various conditions, etc., but is generally about 0.1 to 3.0 mm, preferably 0.5 to 1.0 mm. If it is less than 0.1 mm, it is not preferable from the viewpoint of production speed, and if it is more than 3.0 mm, it is not preferable from the viewpoint of production stability because the draft rate increases.
  • the extrusion temperature is appropriately adjusted depending on the flow characteristics and moldability of the resin composition, but is generally preferably 180 to 350 ° C, more preferably 200 to 330 ° C, and further preferably 220 to 300 ° C.
  • a temperature of 180 ° C. or higher is preferable because the viscosity of the molten resin is sufficiently low and the moldability is excellent and the productivity is improved.
  • the temperature is set to 350 ° C. or lower, it is possible to suppress the deterioration of the resin composition, and hence the mechanical strength of the resulting polyolefin resin porous film.
  • the cooling and solidifying temperature of the cast roll is preferably 80 to 150 ° C, more preferably 90 to 140 ° C, and still more preferably 100 to 130 ° C.
  • the temperature is preferable because troubles such as the extruded molten resin sticking to and wound around the cast roll hardly occur and the film can be efficiently formed into a film.
  • the ⁇ crystal ratio can be sufficiently increased and a sufficient porosity can be obtained.
  • the ⁇ crystal ratio of the polypropylene resin of the film-like material before stretching is adjusted to 30 to 100% by setting a cast roll in the temperature range. More preferably, it is 40 to 100%, more preferably 50 to 100%, and most preferably 60 to 100%.
  • a porous film having good air permeability can be obtained because it is easily made porous by a subsequent stretching operation.
  • the ⁇ crystal ratio of the film before stretching is detected when the film is heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter.
  • uniaxial stretching may be performed in the flow direction (longitudinal direction) or in the direction perpendicular to the flow direction (transverse direction), or biaxial or more stretching may be performed.
  • it is preferable to stretch in the flow direction after biaxial stretching hereinafter abbreviated as “re-longitudinal stretching”. It is more preferable to carry out re-longitudinal stretching after sequential biaxial stretching in the above order.
  • re-longitudinal stretching it is more preferable to carry out re-longitudinal stretching after sequential biaxial stretching in the above order.
  • molecules are oriented in the longitudinal direction by the first longitudinal stretching and the elastic modulus in the longitudinal direction is improved, but the molecular orientation in the longitudinal direction is reduced by the subsequent transverse stretching.
  • the molecular orientation in the longitudinal direction is improved again, the elastic modulus can be improved, and shrinkage stress can be expressed in a high temperature environment.
  • an antagonistic force against the tension due to the conveyance is obtained in the drying process of the coat layer, so that deformation of the porous film and expression of wrinkles can be suppressed, and coating defects are reduced.
  • the stretching temperature must be appropriately selected depending on the composition of the resin composition to be used, the crystal melting peak temperature of the thermoplastic resin, the crystallinity of the polyolefin resin, etc. It is preferable to select.
  • the stretching temperature for the first longitudinal stretching is preferably controlled at 20 to 130 ° C, more preferably 40 to 120 ° C, and even more preferably 60 to 110 ° C.
  • a stretching temperature in the longitudinal stretching of 20 ° C. or higher is preferable because breakage during the longitudinal stretching hardly occurs and a void starting point is formed.
  • the stretching temperature in the longitudinal stretching is 130 ° C. or lower, void formation occurs in the polyolefin-based resin, so that appropriate void formation can be performed.
  • the draw ratio of the first longitudinal stretching is preferably 3.0 to 8.0 times, and more preferably 4.0 to 7.0 times.
  • the stretching ratio of the longitudinal stretching By setting the stretching ratio of the longitudinal stretching to 3.0 times or more, sufficient pore starting points can be formed, and the molecular orientation in the longitudinal direction is increased, so that the elastic modulus in the longitudinal direction can be improved. . Moreover, the fracture frequency at the time of extending
  • the stretching temperature for transverse stretching is preferably 100 ° C. to 160 ° C., more preferably 110 ° C. to 150 ° C., and still more preferably 120 ° C. to 145 ° C. If the stretching temperature in the transverse stretching is within the above range, the fracture at the transverse stretching due to the softening of the polyolefin-based resin hardly occurs, and the void starting points formed by the longitudinal stretching are easily opened. As a result, a porous film having a high porosity can be obtained. Further, the draw ratio of the transverse drawing is preferably 1.1 to 6.0 times, more preferably 1.1 to 4.0 times, and still more preferably 1.1 to 2.0 times.
  • the pore starting point formed by the longitudinal drawing can be expanded to an appropriate size, and a biaxially stretched film having a dense porous structure can be obtained.
  • the breaking frequency during drawing can be reduced.
  • moderate pore expansion is performed while maintaining the molecular orientation generated by the longitudinal stretching, so that a separator having excellent transmission characteristics can be obtained.
  • the stretching speed of the transverse stretching is preferably 100 to 10,000% / min, more preferably 200 to 5000% / min, and further preferably 500 to 2000% / min. If it is the extending
  • stretching in the flow direction after biaxial stretching is preferred.
  • re-longitudinal stretching By performing re-longitudinal stretching, the expression of wrinkles can be sufficiently suppressed in the coating layer drying step.
  • 80 degreeC or more is preferable as a minimum, 90 degreeC or more is more preferable, and 100 degreeC or more is still more preferable.
  • 160 degrees C or less is preferable, 150 degrees C or less is more preferable, and 140 degrees C or less is still more preferable.
  • the stretching temperature of re-longitudinal stretching is in the above range, the desired porous film can be obtained because breakage during stretching is suppressed by softening the polypropylene resin and sufficient shrinkage stress is obtained in a high temperature environment. Can do.
  • 1.1 times or more is preferable as a minimum about the draw ratio of re-longitudinal stretching, and 1.2 times or more is more preferable.
  • the upper limit is preferably 3.0 times, more preferably 2.5 times or less, and still more preferably 2.0 times or less.
  • the porous film thus obtained is preferably subjected to heat treatment for the purpose of reducing thermal shrinkage.
  • heat processing temperature 130 degreeC or more is preferable, 135 degreeC or more is more preferable, and 140 degreeC or more is still more preferable.
  • the heat treatment temperature is 130 ° C. or higher, the crystallization of the polypropylene resin is promoted, and the residual strain of the porous film generated by stretching can be reduced. Therefore, heat treatment has an effect of reducing thermal shrinkage, and deterioration of air permeability in a high temperature environment can be suppressed.
  • the upper limit of the heat treatment temperature is preferably 160 ° C. or lower, and more preferably 155 ° C. or lower.
  • the heat treatment temperature is 160 ° C. or lower because the polypropylene resin does not melt or soften more than necessary and the porous structure of the porous film can be maintained.
  • a relaxation treatment of 1 to 20% may be performed as necessary, or the relaxation treatment may be performed after the heat treatment is performed in a restrained state to promote crystallization.
  • the porous film of the present invention can be obtained by uniformly cooling slowly.
  • the stretching and relaxation treatment are preferably performed under the following conditions.
  • the stretching temperature is preferably 20 to 130 ° C, more preferably 60 ° C to 110 ° C, still more preferably 100 to 110 ° C, and the stretching ratio is preferably 3.0 to 8.0 times.
  • longitudinal stretching is performed at 4.0 to 7.0 times, more preferably 4.5 to 6.0 times,
  • the stretching temperature is preferably 100 to 160 ° C., more preferably 110 to 150 ° C.
  • the stretching ratio is preferably 1.1 to 6.0 times, more preferably Perform transverse stretching at 1.1 to 4.0 times, Then, a relaxation treatment is preferably performed in a direction perpendicular to the flow direction (lateral direction), preferably 1 to 20% at 130 ° C. or more, more preferably 3 to 12% at 135 to 160 ° C., Thereafter, re-longitudinal stretching is performed at a draw ratio of preferably 1.1 times or more, more preferably 1.1 to 3.0 times in the flow direction.
  • a nonaqueous electrolyte battery (lithium ion battery) containing the polyolefin resin porous film of the present invention as a separator for a nonaqueous electrolyte secondary battery
  • Both electrodes of the positive electrode plate 21 and the negative electrode plate 22 are wound in a spiral shape so as to overlap each other via the battery separator 10, and the outside is stopped with a winding tape to form a wound body.
  • the battery separator 10 has a thickness of 5 to 40 ⁇ m, particularly preferably 5 to 30 ⁇ m. When the thickness is 5 ⁇ m or more, the battery separator is difficult to break, and when the thickness is 40 ⁇ m or less, the battery area can be increased when wound in a predetermined battery can and thus the battery capacity is increased. Can do.
  • the wound body integrally wound with the positive electrode plate 21, the battery separator 10 and the negative electrode plate 22 is accommodated in a bottomed cylindrical battery case and welded to the positive and negative electrode lead bodies 24 and 25.
  • the electrolyte is injected into the battery can, and after the electrolyte has sufficiently penetrated into the battery separator 10 or the like, the positive electrode lid 27 is sealed around the opening periphery of the battery can via the gasket 26, and precharging and aging are performed.
  • a cylindrical non-aqueous electrolyte battery is manufactured.
  • an electrolytic solution in which a lithium salt is used as an electrolytic solution and is dissolved in an organic solvent is used.
  • the organic solvent is not particularly limited.
  • esters such as propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate, methyl propionate or butyl acetate, and nitriles such as acetonitrile.
  • ethers such as tetrahydrofuran, 2-methyltetrahydrofuran or 4-methyl-1,3-dioxolane, or sulfolane.
  • LiPF 6 lithium hexafluorophosphate
  • an alkali metal or a compound containing an alkali metal integrated with a current collecting material such as a stainless steel net is used.
  • the alkali metal include lithium, sodium, and potassium.
  • the compound containing an alkali metal include an alloy of an alkali metal and aluminum, lead, indium, potassium, cadmium, tin or magnesium, a compound of an alkali metal and a carbon material, a low potential alkali metal and a metal oxide, and the like. Or a compound with a sulfide or the like.
  • the carbon material may be any material that can be doped and dedoped with lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, Mesocarbon microbeads, carbon fibers, activated carbon and the like can be used.
  • a carbon material having an average particle size of 10 ⁇ m is mixed with a solution in which vinylidene fluoride is dissolved in N-methylpyrrolidone to form a slurry, and this negative electrode mixture slurry is passed through a 70-mesh net. After removing the large particles, uniformly apply to both sides of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m and dry, and then compression-molded with a roll press machine, cut, and strip-shaped negative electrode plate What is used.
  • lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese dioxide, metal oxide such as vanadium pentoxide or chromium oxide, metal sulfide such as molybdenum disulfide, etc. are used as active materials.
  • These positive electrode active materials are combined with conductive additives and binders such as polytetrafluoroethylene as appropriate, and finished with a current collector material such as a stainless steel mesh as a core material. It is done.
  • a strip-like positive electrode plate produced as follows is used as the positive electrode. That is, lithium graphite oxide (LiCoO 2 ) is added with phosphorous graphite as a conductive additive at a mass ratio of 90: 5 (lithium cobalt oxide: phosphorous graphite) and mixed, and this mixture and polyvinylidene fluoride are mixed with N Mix with a solution in methylpyrrolidone to make a slurry.
  • the positive electrode mixture slurry is passed through a 70 mesh net to remove large particles, and then uniformly applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 20 ⁇ m and dried. After compression molding, it is cut into a strip-like positive electrode plate.
  • ⁇ crystal activity was evaluated as follows. (6) Differential scanning calorimetry (DSC) The polyolefin resin porous film was heated from 25 ° C. to 240 ° C. at a scanning speed of 10 ° C./min for 1 minute using a differential scanning calorimeter (DSC-7) manufactured by Perkin Elmer, and then held for 240 minutes. The temperature was lowered from 0 ° C. to 25 ° C. at a scanning rate of 10 ° C./min and held for 1 minute, and then heated again from 25 ° C. to 240 ° C. at a scanning rate of 10 ° C./min.
  • DSC-7 differential scanning calorimeter
  • the presence or absence of ⁇ -crystal activity was evaluated according to the following criteria depending on whether or not a peak was detected at 145 to 160 ° C., which is the crystal melting peak temperature (Tm ⁇ ) derived from ⁇ -crystal of the polypropylene resin at the time of re-heating. .
  • Tm ⁇ crystal melting peak temperature
  • When Tm ⁇ is detected within the range of 145 ° C to 160 ° C (with ⁇ crystal activity)
  • When Tm ⁇ was not detected within the range of 145 ° C. to 160 ° C. (no ⁇ crystal activity) Note that the ⁇ crystal activity was measured with a sample amount of 10 mg in a nitrogen atmosphere.
  • XRD Wide angle X-ray diffraction measurement
  • a polyolefin-based resin porous film was cut into a 60 mm length and a 60 mm square, and an aluminum plate (material: JIS A5052, size: It was sandwiched between two sheets (length 60 mm, width 60 mm, thickness 1 mm), and the periphery was fixed with clips as shown in FIG.
  • a sample in which the polyolefin resin porous film was constrained to two aluminum plates was placed in a constant temperature oven (Yamato Scientific Co., Ltd., model: DKN602) having a set temperature of 180 ° C. and a display temperature of 180 ° C. and held for 3 minutes.
  • the set temperature was changed to 100 ° C., and gradually cooled to 100 ° C. over 10 minutes or more.
  • the display temperature reached 100 ° C.
  • the sample was taken out and cooled in an atmosphere of 25 ° C. for 5 minutes while being restrained by two aluminum plates.
  • a wide-angle X-ray diffraction measurement was performed on a circular portion of 40 mm ⁇ .
  • -Wide-angle X-ray diffraction measurement device manufactured by Mac Science, model number: XMP18A X-ray source: CuK ⁇ ray, output: 40 kV, 200 mA Scanning method: 2 ⁇ / ⁇ scan, 2 ⁇ range: 5 ° to 25 °, scanning interval: 0.05 °, scanning speed: 5 ° / min
  • ⁇ -crystal of polypropylene resin 300
  • the presence or absence of ⁇ crystal activity was evaluated from the peak derived from the surface as follows.
  • a sample may be prepared by adjusting the porous film to be installed in a circular hole of 40 mm ⁇ in the center.
  • the molten resin sheet extruded from a T-die is shown in Table 1.
  • the film was taken up with a cast roll at a temperature and cooled and solidified to obtain a film-like product having a width of 300 mm and a thickness of 80 ⁇ m. At this time, the contact time between the molten resin sheet and the cast roll was 15 seconds.
  • the obtained film-like material was stretched in the machine direction between rolls at the stretching temperature and the stretching ratio shown in Table 1 using a roll longitudinal stretching machine.
  • the film was stretched in the transverse direction at the stretching temperature and stretch ratio shown in Table 1, and then sufficiently heat-set, and then in the transverse direction as shown in Table 1.
  • Thermal relaxation was performed at the relaxation temperature and relaxation rate to obtain a porous film.
  • the obtained porous film was stretched in the longitudinal direction at a stretching temperature and a stretching ratio between rolls using a roll longitudinal stretching machine, and then heated in a longitudinal direction of 3% at 120 ° C. with a heat treatment roll. Relaxing was performed to obtain the final porous film.
  • the obtained physical properties are shown in Table 1.
  • the polyolefin-based resin porous film subjected to re-longitudinal stretching as in Examples 1 to 3 has a 1% modulus in the flow direction at 90 ° C. of 4.5 MPa or more, and a shrinkage stress in the flow direction at 90 ° C. of 1.5 MPa or more. Therefore, it became the polyolefin resin porous film which was excellent in the conveyance property, ie, the wrinkle expression in the drying process of a coat layer.
  • the polyolefin resin porous film subjected to re-longitudinal stretching as in Comparative Example 1 does not satisfy the specified range of 1% modulus in the flow direction at 90 ° C. and the shrinkage stress in the flow direction at 90 ° C. Insufficient transportability, that is, a polyolefin-based resin porous film in which wrinkles are easily expressed in the coating layer drying process.
  • the porous film of the present invention has excellent air permeability and elastic modulus, it can be used as a porous film in various fields.
  • Nonaqueous Electrolyte Secondary Battery Separator 20
  • Nonaqueous Electrolyte Secondary Battery 21
  • Positive Electrode Plate 22
  • Negative Electrode Plate 31
  • Aluminum Plate 32
  • Porous Film 33 Clip 34 Film Vertical Direction 35 Film Horizontal Direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

 高い収縮応力を有することによって、高温環境下における搬送工程においてシワが入りにくく、コーティング適正が優れており、かつ連通性を維持し優れた透気特性を有するポリオレフィン系樹脂多孔性フィルムを提供することを目的とする。本発明は、90℃における流れ方向の1%モジュラスが4.5MPa以上であり、かつ、透気度が800秒/100ml以下であることを特徴とするポリオレフィン系樹脂多孔性フィルムである。

Description

ポリオレフィン系樹脂多孔性フィルム
 本発明は、ポリオレフィン系樹脂多孔性フィルムに関し、包装用、衛生用、畜産用、農業用、建築用、医療用、分離膜、光拡散板、電池用セパレータとして利用でき、特にコーティングタイプのリチウムイオン電池用セパレータとして好適に利用できるものである。
 リチウムイオン二次電池は従来のOA、FA、家庭用電器、通信機器等のポータブル機器用電池に加えて、電気自動車、非常電源用途などの環境問題に関連する大型電池への展開が進められている。
 これらの大型電池用途では、小型電池に比べ高い安全性や大容量、高出力、高電圧化が必要とされており、各電池部材からの改良が検討されている。近年注目されている電気自動車は過酷な環境下での電池が使用されるため、特に耐熱性が重視されており、耐熱性に優れたセパレータが検討されている。耐熱性を付与した従来例として、特開2002-151044(特許文献1)では、耐熱多孔質層として耐熱樹脂をコートしたセパレータが提案されており、特開2011-110704(特許文献2)では、セパレータの表面にフィラーを耐熱層として設けたセパレータなどが提案されている。
 前記耐熱層は通常、耐熱性を付与する耐熱樹脂、もしくはフィラー、樹脂バインダー、溶剤を含む混合溶液をセパレータ表面に塗布した後、乾燥工程を通じて溶剤を除去して、耐熱層が形成される。
 さて、電池部材の一つであるセパレータについて、従来ではセパレータには湿式二軸延伸法、乾式一軸延伸法が従来使用されてきたが、近年ではより高出力でコストパフォーマンスに優れた乾式二軸延伸が検討されている。国際公開2007/046226号(特許文献3)では、β晶を利用した多孔法であり、二軸延伸をするため、空孔率が高い多孔性フィルムとなる。更に、高い電池出力特性を発現することができるため、高出力を必要とする自動車用途のセパレータに適している。また、国際公開WO2010/147149(特許文献4)では、ハンドリング適正を向上させるため、縦延伸倍率を、横延伸倍率を低減させて弾性率を向上させる検討がなされている。
特開2002-151044号公報 特開2011-110704号公報 国際公開2007/046226号公報 国際公開2010/147149号公報
 しかしながら、特許文献1,2に記載の耐熱層をコーティングで設ける際、乾燥工程でセパレータの温度が上がるため、材料の軟質化によって弾性率が低下する。セパレータが搬送方向に伸ばされると、搬送方向と垂直方向に縮むためにシワが入ってしまい、コーティングが均一な厚さで塗布されず、所謂コーティング適正を満たさない問題が発生している。
 また、特許文献3に記載された製法で得られたセパレータは高空孔率ゆえに、剛性が不足しており、例えば搬送工程で、僅かな張力でシワがよりやすい問題がある。よって、耐熱層をコーティングで設ける場合に、耐熱層を均一な厚さで形成することは困難である。かつ、多孔性フィルムの表面に耐熱層をコーティングで設けない場合も、空孔率が高く薄い多孔性フィルムを引っ張りながら巻回して原反ロール製品を形成する際もシワが発生しやすく、製品精度が低下しやすい問題がある。
 また、特許文献4では、常温での弾性率(剛性)を改善しているが、高温雰囲気下では樹脂が軟質化するために弾性率が低下し、前記特許文献3と同様に搬送工程でシワがよりやすく、コーティング層を設ける場合およびロールに巻き取る工程で問題が生じる。かつ、横延伸倍率を低減させるため、空孔率を高めることが困難となり、得られる多孔性フィルムの透過特性が低下し、十分な電池性能を発現し難い問題もある。
 本発明は前記問題に鑑みてなされたもので、高い収縮応力を有することによって、高温環境下における搬送工程においてシワが入りにくく、多孔性フィルムの表面に耐熱層をコーティングで設ける工程および/又はロールに巻き取る工程でシワが発生せず、かつ連通性を維持し優れた透気特性を有し、特に電池用セパレータとして好適に使用できるポリオレフィン系樹脂多孔性フィルムを提供することを課題とする。
 前記課題を解決するため、本発明は、90℃における流れ方向の1%モジュラスが4.5MPa以上であり、かつ、透気度が800秒/100ml以下であることを特徴とするポリオレフィン系樹脂多孔性フィルムを提供している。
 また、前記本発明は、90℃における流れ方向の収縮応力が1.5MPa以上であることが好ましい。
 また、本発明は、前記ポリオレフィン系樹脂について、ポリプロピレン系樹脂が主成分であることが好ましい。
 また、本発明は、β晶活性を有することが好ましい。
 また、本発明は、二軸延伸の後に流れ方向に延伸することが好ましい。
 具体的には、流れ方向(縦方向)に延伸温度が20~130℃で、延伸倍率が3.0~8.0倍で縦延伸を行い、
 ついで、流れ方向に対して垂直方向(横方向)に延伸温度が100~160℃、延伸倍率が1.1~6.0倍で横延伸を行い、
 ついで、流れ方向に対して垂直方向(横方向)に130℃以上で1~20%の弛緩処理を行い、
 その後、流れ方向(縦方向)に延伸倍率が1.1倍以上で再縦延伸を行うことが好ましい。
 また、本発明は、少なくとも片面に耐熱層をコーティングして設けていることが好ましい。
 前記本発明に係わるポリオレフィン系樹脂多孔性フィルムは、90℃における流れ方向の1%モジュラスが4.5MPa以上とあるため、搬送時シワが発生しにくい。よって、多孔性フィルムに張力をかけて、表面に耐熱層をコーティングして設ける際に、均一な厚さで塗布でき、また、多孔性フィルムに張力をかけながらロールに巻き回する際に、シワを発生させずに巻き取ることができ、製品の精度を高めることができる。
 さらに、透気度が800秒/100ml以下としているため、透過特性が低下せず、十分な電池性能を発現できる。
本発明の多孔性フィルムを収容している電池の概略的断面図である。 広角X線回折測定における多孔性フィルムの固定方法を説明する図である。
 以下、本発明のポリオレフィン系樹脂多孔性フィルムの実施形態について詳細に説明する。
 なお、本発明において、「主成分」と表現した場合には、特に記載しない限り、当該主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含し、特に当該主成分の含有割合を特定するものではないが、主成分は組成物中の50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占める意を包含するものである。
 また、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含するものである。
 また、膜状物及び多孔性フィルムの流れ方向を「縦方向」、流れ方向に対して垂直方向を「横方向」、流れ方向への延伸を「縦延伸」、流れ方向に対して垂直方向への延伸を「横延伸」と称することもある。
 以下に、本発明のポリオレフィン系樹脂多孔性フィルムを構成する各成分について説明する。
(ポリオレフィン系樹脂)
 ポリオレフィン系樹脂として、具体的にはポリエチレン系樹脂、ポリプロピレン系樹脂などが挙げられる。中でも、ポリプロピレン系樹脂が好ましい。
(ポリプロピレン系樹脂)
 ポリプロピレン系樹脂としては、ホモプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネンもしくは1-デセンなどα-オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、多孔性フィルムの機械的強度、耐熱性などを維持する観点から、ホモポリプロピレンがより好適に使用される。
 また、ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が80~99%であることが好ましい。より好ましくは83~98%、更に好ましくは85~97%であるものを使用する。アイソタクチックペンタッド分率が低すぎると多孔性フィルムの機械的強度が低下するおそれがある。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。
 アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素-炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli et al(Macromolecules 8,687,(1975))に準拠した。
 また、ポリプロピレン系樹脂としては、分子量分布を示すパラメータであるMw/Mnが2.0~10.0であることが好ましい。より好ましくは2.0~8.0、更に好ましくは2.0~6.0であるものが使用される。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnが2.0未満であると押出成形性が低下する等の問題が生じるほか、工業的に生産することも困難である。一方、Mw/Mnが10.0を超えた場合は低分子量成分が多くなり、多孔性フィルムの機械的強度が低下しやすい。Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー)法によって得られる。
 また、ポリプロピレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常、MFRは0.5~15g/10分であることが好ましく、1.0~10g/10分であることがより好ましい。MFRが0.5g/10分未満では成形加工時の樹脂の溶融粘度が高く生産性が低下する。一方、15g/10分を超えると得られる多孔性フィルムの機械的強度が不足するため実用上問題が生じやすい。MFRはJIS K7210に従い、温度230℃、荷重2.16kgの条件で測定する。
 ポリプロピレン系樹脂としては、例えば、商品名「ノバテックPP」「WINTEC」(日本ポリプロ社製)、「ノティオ」「タフマーXR」(三井化学社製)、「ゼラス」「サーモラン」(三菱化学社製)、「住友ノーブレン」「タフセレン」(住友化学社製)、「プライム TPO」(プライムポリマー社製)、「Adflex」「Adsyl」、「HMS-PP(PF814)」(サンアロマー社製)、「バーシファイ」「インスパイア」(ダウ・ケミカル社製)など市販されている商品を使用できる。
 なお、ポリプロピレン系樹脂の製造方法は特に限定されるものではなく、公知の重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた重合方法等が挙げられる。
 本発明の多孔性フィルムは、β晶活性を有することが好ましい。
 β晶活性は、延伸前の膜状物においてポリプロピレン系樹脂がβ晶を生成していたことを示す一指標と捉えることができる。延伸前の膜状物中のポリプロピレン系樹脂がβ晶を生成していれば、その後延伸を施すことで微細孔が形成されるため、透気特性を有する多孔性フィルムを得ることができる。 
 前記の「β晶活性」の有無は、後述する示差走査型熱量計によりβ晶に由来する結晶融解ピーク温度が検出された場合か、及び/又は後述するX線解析装置を用いた測定により、β晶に由来する回析ピークが検出された場合、「β晶活性」を有すると判断している。
 具体的には、示差走査型熱量計(DSC)で多孔性フィルムを25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた際に、ポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)が検出された場合、β晶活性を有すると判断している。
 また、前記多孔性フィルムのβ晶活性度は、検出されるポリプロピレン系樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算している。
  β晶活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
 例えば、ポリプロピレン系樹脂がホモポリプロピレンの場合は、主に145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に160℃以上170℃以下に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。また、例えばエチレンが1~4モル%共重合されているランダムポリプロピレンの場合は、主に120℃以上140℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に140℃以上165℃以下の範囲に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。
 前記多孔性フィルムのβ晶活性度は大きい方が好ましく、β晶活性度は20%以上であることが好ましい。40%以上であることがさらに好ましく、60%以上であることが特に好ましい。多孔性フィルムが20%以上のβ晶活性度を有すれば、延伸前の膜状物中においてもポリプロピレン系樹脂のβ晶が多く生成することができることを示し、延伸により微細かつ均一な孔が多く形成され、透過特性に優れた多孔性フィルムとすることができる。
 β晶活性度の上限値は特に限定されないが、β晶活性度が高いほど前記効果がより有効に得られるので100%に近いほど好ましい。
 また、前記β晶活性の有無は、特定の熱処理を施した多孔性フィルムの広角X線回折測定により得られる回折プロファイルでも判断できる。
 詳細には、ポリプロピレン系樹脂(ホモプロピレン)の融点を超える温度である170℃~190℃の熱処理を施し、徐冷してβ晶を生成・成長させた多孔性フィルムについて広角X線回折測定を行い、ポリプロピレン系樹脂のβ晶の(300)面に由来する回折ピークが2θ=16.0°~16.5°の範囲に検出された場合、β晶活性が有ると判断している。
 ポリプロピレン系樹脂のβ晶構造と広角X線回折測定に関する詳細は、Macromol.Chem.187,643-652(1986)、Prog.Polym.Sci.Vol.16,361-404(1991)、Macromol.Symp.89,499-511(1995)、Macromol.Chem.75,134(1964)、及びこれらの文献中に挙げられた参考文献を参照することができる。広角X線回折測定を用いたβ晶活性の詳細な評価方法については、後述の実施例にて示す。
 前記β晶活性は、本発明の多孔性フィルムが単層構造である場合であっても、他の多孔性層が積層される場合のいずれにおいても多孔性フィルム全層の状態で測定することができる。
 前述した多孔性層のβ晶活性を得る方法としては、ポリプロピレン系樹脂のα晶の生成を促進させる物質を添加しない方法や、特許3739481号公報に記載されているように過酸化ラジカルを発生させる処理を施したポリプロピレン系樹脂を添加する方法、及び組成物にβ晶核剤を添加する方法などが挙げられる。
(β晶核剤)
 本発明で用いるβ晶核剤としては以下に示すものが挙げられるが、ポリプロピレン系樹脂のβ晶の生成・成長を増加させるものであれば特に限定される訳ではなく、また2種類以上を混合して用いても良い。
 β晶核剤としては、例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジもしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸である成分Aと周期律表第IIA族金属の酸化物、水酸化物もしくは塩である成分Bとからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられる。そのほか核剤の具体的な種類については、特開2003-306585号公報、特開平06-289566号公報、特開平09-194650号公報に記載されている。
 β晶核剤の市販品としては、新日本理化社製のβ晶核剤「エヌジェスターNU-100」、β晶核剤の添加されたポリプロピレン系樹脂の具体例としては、Aristech社製のポリプロピレン「Bepol B-022SP」、Borealis社製のポリプロピレン「Beta(β)-PP BE60-7032」、Mayzo社製ポリプロピレン「BNX BETAPP-LN」などが挙げられる。
 本発明において、β晶核剤は、ポリプロピレン系樹脂に配合していることが好ましい。前記ポリプロピレン系樹脂に添加するβ晶核剤の割合は、β晶核剤の種類またはポリプロピレン系樹脂の組成などにより適宜調整することが必要であるが、ポリプロピレン系樹脂100質量部に対しβ晶核剤0.0001~5.0質量部が好ましい。0.001~3.0質量部がより好ましく、0.01~1.0質量部が更に好ましい。0.0001質量部以上であれば、製造時において十分にポリプロピレン系樹脂のβ晶を生成・成長させることができ、セパレータとした際にも十分なβ晶活性が確保でき、所望の透気性能が得られる。また、5.0質量部以下の添加であれば、経済的にも有利になるほか、多孔性フィルム表面へのβ晶核剤のブリ-ドなどがなく好ましい。
 また、仮にポリプロピレン系樹脂からなる樹脂層以外に、ポリプロピレン系樹脂を含有する層などを積層させる場合には、各層のβ晶核剤の添加量は同じであっても、異なっていても良い。β晶核剤の添加量を変更することで各層の多孔構造を適宜調整することができる。
(他の成分)
 本発明においては、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般に樹脂組成物に配合される添加剤を適宜添加できる。前記添加剤としては、成形加工性、生産性および多孔性フィルムの諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。
(多孔性フィルムの層構成)
 本発明において、多孔性フィルムは、単層でも積層でも構わない。多孔性フィルムの層構成は、ポリオレフィン系樹脂を含有する層(以降「A層」と称す)を少なくとも1層存在すれば特に限定されるものではない。また、多孔性フィルムの機能を妨げない範囲で他の層(以降「B層」と称す)を積層することもできる。強度保持層、耐熱層(高融解温度樹脂層)、シャットダウン層(低融解温度樹脂層)などを積層させた構成が挙げられる。例えば、電池用セパレータとして用いる際には、特開平04-181651号公報に記載されているような高温雰囲気化で孔閉塞し、電池の安全性を確保する低融点樹脂層を積層させることが好ましい。
 具体的には、A層/B層を積層した2層構造、A層/B層/A層、若しくは、B層/A層/B層として積層した3層構造などが例示できる。また、他の機能を持つ層と組み合わせて3種3層の様な形態も可能である。この場合、他の機能を持つ層との積層順序は特に問わない。更に層数としては4層、5層、6層、7層と必要に応じて増やしても良い。
 本発明の多孔性フィルムの物性は、層構成や積層比、各層の組成、製造方法によって自由に調整できる。
(コート層)
 本発明では、ポリオレフィン系樹脂多孔性フィルムの少なくとも片面にコーティング層(以下、コート層と略称する)を積層させても良い。該コート層はフィラーと樹脂バインダーとが含まれている耐熱層とすることが好ましい。
 なお、本発明のポリオレフィン系樹脂多孔性フィルムは前記耐熱層をコーティングして設けない場合も含まれる。
(フィラー)
 本発明に用いることができるフィラーとして、無機フィラー、有機フィラーなどが挙げられるが、特に制約されるものではない。
 無機フィラーの例としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウムなどの炭酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸バリウムなどの硫酸塩;塩化ナトリウム、塩化カルシウム、塩化マグネシウムなどの塩化物、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化チタン、シリカなどの酸化物のほか、タルク、クレー、マイカなどのケイ酸塩等が挙げられる。これらの中でも、硫酸バリウム、酸化アルミニウムが好ましい。
 有機フィラーの例としては、超高分子量ポリエチレン、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリイミド、ポリエーテルイミド、メラミン、ベンゾグアナミンなどの熱可塑性樹脂及び熱硬化性樹脂が挙げられる。これらの中でも、特に架橋させたポリスチレンなどが好ましい。
 前記フィラーの平均粒径としては、好ましくは0.1μm以上、より好ましくは0.2μm以上、更に好ましくは0.3μm以上であり、上限として好ましくは3.0μm以下、より好ましくは1.5μm以下である。前記平均粒径が規定した範囲内であることで、十分な耐熱性を発現することができる。また、コート層におけるフィラーの分散性の観点から、平均粒径は1.5μm以下がより好ましい。
 なお、本実施の形態において「フィラーの平均粒径」とは、SEMを用いる方法に準じて測定される値である。
 コート層において、前記フィラーの含有率は、樹脂バインダー100質量%に対して、100質量%以上が好ましく、200質量%以上がより好ましい。一方、上限については、1500質量%以下がより好ましく、800質量%以下が更に好ましい。前記フィラーの含有率が樹脂バインダー100質量%に対して100質量%以上であれば、連通性がある多孔性フィルムを作製でき、優れた透気性能を示すことができるために好ましい。一方、前記フィラーの含有率が1500質量%以下であれば、コート層の割れや剥離の発生を抑え、十分な延伸性を確保できることから好ましい。
(樹脂バインダー)
 本発明のコート層として用いることができる樹脂バインダーとして、前記フィラー、および前記ポリオレフィン系樹脂多孔性フィルムを良好に接着でき、電気化学的に安定で、かつ積層多孔性フィルムを非水電解液二次電池として使用する場合には、非水電解液に対して安定であれば特に制限はない。
 具体的には、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸、共重合体、フッ素樹脂[ポリフッ化ビニリデンなど]、フッ素系ゴム、スチレン-ブタジエンゴム(SBR)、ニトリルブタジエンゴム(NBR)、ポリブタジエンゴム(BR)、ポリアクリロニトリル(PAN)、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN-ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられる。これらの有機バインダーは1種単独で使用してもよく、2種以上を併用しても構わない。これらの中でもポリビニルアルコール、ポリフッ化ビニリデン、スチレン-ブタジエンゴム、カルボキシメチルセルロース、ポリアクリル酸が好ましく、耐熱性と延伸性の観点からポリビニルアルコールがより好ましい。
(コート層の製造方法)
 前記コート層について、前記フィラーと前記樹脂バインダーとを溶媒に溶解または分散させた分散液を、前記ポリオレフィン系樹脂多孔性フィルムの少なくとも片面に塗布することによって、ポリオレフィン系樹脂多孔性フィルム表面にコート層を形成して製造することができる。
 前記溶媒としては、前記フィラーと前記樹脂バインダーとが均一かつ安定に溶解または分散可能な溶媒を用いることが好ましい。このような溶媒としては、例えば、N-メチルピロリドンやN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、ヘキサンなどを挙げることができる。また、前記分散液を安定化させるため、あるいはポリオレフィン系樹脂多孔性フィルムへの塗工性を向上させるために、前記分散液には界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤、酸やアルカリを含めたpH調製剤等の各種添加剤を加えてもよい。前記添加剤は、溶媒除去や可塑剤抽出の際に除去できるものが好ましいが、非水電解液二次電池の使用範囲において電気化学的に安定で、電池反応を阻害せず、かつ200℃程度まで安定ならば、電池内(積層多孔性フィルム内)に残存してもよい。
 前記フィラーと前記樹脂バインダーとを溶媒に溶解または分散させる方法としては、例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌法、等が挙げられる。
 前記分散液をポリオレフィン系樹脂多孔性フィルムの表面に塗布する方法としては、前記押出成形の後であってもよいし、縦延伸工程の後であってもよいし、横延伸工程の後であってもよい。特に、乾燥工程と延伸工程が同時に行なえるという点で、押出成形の後、または縦延伸工程の後が好ましい。
 前記塗布工程において塗布方式としては、必要とする層厚や塗布面積を実現できる方式であれば特に限定されない。このような塗布方法としては、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法、等が挙げられる。また、前記分散液は、その用途に照らし、ポリオレフィン系樹脂多孔性フィルムの片面だけに塗布されてもよいし、両面に塗布されてもよい。
 前記溶媒としては、ポリオレフィン系樹脂多孔性フィルムに塗布した分散液から除去され得る溶媒であることが好ましい。溶媒を除去する方法としては、ポリオレフィン系樹脂多孔性フィルムに悪影響を及ぼさない方法であれば特に限定することなく採用することができる。溶媒を除去する方法としては、例えば、ポリオレフィン系樹脂多孔性フィルムを固定しながら、その融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、樹脂バインダーに対する貧溶媒に浸漬して樹脂バインダーを凝固させると同時に溶媒を抽出する方法などが挙げられる。
(ポリオレフィン系樹脂多孔性の形状及び物性)
 本発明のポリオレフィン系樹脂多孔性フィルムにおいては、90℃における流れ方向、つまり縦方向の1%モジュラスが4.5MPa以上であることが重要である。さらに、5.5MPa以上が好ましく、6.0MPa以上がより好ましく、7.0MPa以上が特に好ましい。
 通常では、樹脂の剛性によって、ポリオレフィン系樹脂多孔性フィルムは搬送による張力に対する拮抗力を持っており、伸び難いものである。しかし、コート層の乾燥工程において、乾燥時間、材料にもよるが、分散液に水系溶媒を用いる場合、乾燥温度は有機溶剤に比べて高く、多孔性フィルムの剛性の観点からは非常に厳しい状態に晒されることになる。よって、高温環境下では、ポリオレフィン系樹脂が軟化して拮抗力が低下する。多孔性フィルムの剛性が搬送による張力に負けて伸ばされるとき、多孔性フィルムの流れ方向に対して垂直方向、つまり横方向に縮みが発生する。この際、横方向の収縮率が大きいとシワが発現する。その結果、縦方向と平行にシワが多数発生するために、コーティング不良となる。この場合、コート層の厚さは不均一となり、耐熱性は低下するために好ましくない。
 90℃における流れ方向の1%モジュラスを4.5MPa以上にする手段としては、後述するように縦延伸の延伸倍率または再縦延伸の延伸倍率を高くしたり、横延伸の延伸倍率を低くしたりすることで達成できる。
 また、本発明において、90℃における流れ方向の収縮応力が1.5MPa以上であることが好ましく、2.0MPa以上がより好ましく、3.0MPa以上が更に好ましい。 90℃における流れ方向の収縮応力が1.5MPa以上であることによって、搬送による張力に対する拮抗力として縦方向の弾性率が向上する。更に、コート層の乾燥工程の温度域で縦方向に収縮応力が働くように設計されているため、高温環境下であっても縦方向の伸びが抑制され、コート層の乾燥工程でのシワの発現を防止することができる。
 更に、前記収縮応力が1.5MPa以上あることで、高温環境下での多孔性フィルムの弾性率が低下しても、収縮応力によって多孔性フィルムが伸びにくくなるため好ましい。 90℃における流れ方向の収縮応力は高ければ高いほうが望ましいが、上限として10MPa以下が好ましい。前記収縮応力が10MPa以下であることによって、常温における流れ方向の収縮も十分に抑制できる点で好ましい。90℃における流れ方向の収縮応力を向上させる手段としては、縦延伸の延伸倍率または再縦延伸の延伸倍率を高くしたり、横延伸の延伸倍率を低くしたりすることで達成できる。
 本発明のポリオレフィン系樹脂多孔性フィルムの透気度は800秒/100ml以下であることが重要である。さらに、10~600秒/100mlが好ましく、50~400秒/100mlがより好ましい。
 透気度は多孔性フィルムの厚さ方向の空気の通り抜け難さを表し、具体的には100mlの空気が当該フィルムを通過するのに必要な秒数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方が多孔性フィルムの厚さ方向の連通性が良いことを意味し、その数値が大きい方が当該フィルムの厚さ方向の連通性が悪いことを意味する。連通性とは多孔性フィルムの厚さ方向の孔のつながり度合いである。本発明のポリオレフィン系樹脂多孔性フィルムの透気度が低ければ様々な用途に使用することができる。例えば非水電解質二次電池用セパレータとして使用した場合、透気度が低いということはリチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。透気度が800秒/100ml以下であれば、前記多孔性フィルムに連通性があることを示し、優れた透気特性を示唆している。透気特性を向上させる手段としては、横延伸の延伸倍率を大きくしたり、再縦延伸の延伸倍率を低くしたりすることで達成できる。
(ポリオレフィン系樹脂多孔性フィルムの製造方法)
 次に、本発明のポリオレフィン系樹脂多孔性フィルムの製造方法について説明する。
 なお、本発明はかかる製造方法により製造されるポリオレフィン系樹脂多孔性フィルムのみに限定されるものではない。
 膜状物の作製方法は特に限定されず公知の方法を用いてよいが、例えば押出機を用いて熱可塑性樹脂組成物を溶融し、Tダイから押出し、キャストロールで冷却固化するという方法が挙げられる。また、チューブラー法により製造した膜状物を切り開いて平面状とする方法も適用できる。
 膜状物の延伸方法については、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法などの手法があり、これらを単独あるいは2つ以上組み合わせて一軸延伸、あるいは二軸以上の延伸を行う。
 以下に、製造方法の詳細を説明する。
 まずポリオレフィン系樹脂と、必要であれば熱可塑性樹脂、添加剤を含有する混合樹脂組成物を作製する。例えば、ポリプロピレン系樹脂、β晶核剤、および所望により添加物等を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練後、カッティングしてペレットを得る。
 前記のペレットを押出機に投入し、Tダイ押出用口金から押出して膜状物を成形する。 Tダイの種類としては特に限定されない。例えば本発明のポリオレフィン系樹脂多孔性フィルムが2種3層の積層構造をとる場合、Tダイは2種3層用マルチマニホールドタイプでも構わないし、2種3層用フィードブロックタイプでも構わない。
 使用するTダイのギャップは、最終的に必要な多孔性フィルムの厚さ、延伸条件、ドラフト率、各種条件等から決定されるが、一般的には0.1~3.0mm程度、好ましくは0.5~1.0mmである。0.1mm未満では生産速度という観点から好ましくなく、また3.0mmより大きければ、ドラフト率が大きくなるので生産安定性の観点から好ましくない。
 押出成形において、押出加工温度は樹脂組成物の流動特性や成形性等によって適宜調整されるが、概ね180~350℃が好ましく、200~330℃がより好ましく、220~300℃が更に好ましい。180℃以上の場合、溶融樹脂の粘度が十分に低く成形性に優れ生産性が向上することから好ましい。一方、350℃以下にすることにより、樹脂組成物の劣化、ひいては得られるポリオレフィン系樹脂多孔性フィルムの機械的強度の低下を抑制できる。
 キャストロールの冷却固化温度は好ましくは80~150℃、より好ましくは90~140℃、更に好ましくは100~130℃である。規定した温度範囲にすることによって、押出された溶融樹脂がキャストロールへ粘着し巻き付いてしまうなどのトラブルが起こりにくく、効率よく膜状物化することが可能であるので好ましい。また、β晶活性を有する膜状物において、β晶の比率を十分に増加させることができ、十分な空孔率を得ることができるために好ましい。
 前記温度範囲にキャストロールを設定することで、延伸前の膜状物のポリプロピレン系樹脂のβ晶比率は30~100%に調整することが好ましい。40~100%がより好ましく、50~100%が更に好ましく、60~100%が最も好ましい。延伸前の膜状物中のβ晶比率を30%以上とすることで、その後の延伸操作により多孔化が行われやすく、透気特性の良い多孔性フィルムを得ることができる。
 延伸前の膜状物のβ晶比率は、示差走査型熱量計を用いて、当該膜状物を25℃から240℃まで加熱速度10℃/分で昇温させた際に、検出されるポリプロピレン系樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算される。
   β晶比率(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
 延伸工程においては、流れ方向(縦方向)または流れ方向に対して垂直方向(横方向)に一軸延伸してもよいし、二軸以上の延伸であってもよい。本発明の意図する高温環境下における搬送による張力に対する拮抗力を得るためには、二軸延伸の後に流れ方向に延伸することが好ましく(以下「再縦延伸」と略す)、縦方向、横方向の順番に逐次二軸延伸の後に、再縦延伸を行うことがより好ましい。
 通常、逐次二軸延伸を行う場合、最初の縦延伸により縦方向に分子が配向し、縦方向の弾性率が向上するが、その後の横延伸で縦方向の分子配向は低減する。逐次二軸延伸の後、再縦延伸を行うことで縦方向への分子配向は再度向上し、弾性率を向上させるとともに、高温環境下で収縮応力を発現させることができる。その結果、コート層の乾燥工程で搬送による張力に対する拮抗力が得られので、多孔性フィルムの変形、シワの発現を抑制させることができ、コーティング不良は低減される。
 前記再縦延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、熱可塑性樹脂の結晶融解ピーク温度、ポリオレフィン系樹脂の結晶化度等によって適時選択する必要があるが、下記条件の範囲内で選択することが好ましい。
 最初の縦延伸の延伸温度は20~130℃で制御されるのが好ましく、40~120℃がより好ましく、60~110℃が更に好ましい。前記縦延伸での延伸温度が20℃以上であれば、縦延伸時の破断が起こり難く、空孔起点の形成が行われるため好ましい。一方、前記縦延伸での延伸温度が130℃以下であれば、ポリオレフィン系樹脂中に空孔形成が起こるため、適切な空孔形成を行うことができる。
 また、最初の縦延伸の延伸倍率は3.0~8.0倍が好ましく、4.0~7.0倍より好ましい。前記縦延伸の延伸倍率が3.0倍以上とすることによって、十分な空孔起点を形成することができるとともに、縦方向の分子配向が増すため、縦方向の弾性率を向上させることができる。また前記縦延伸の延伸倍率が8.0倍以下とすることで、延伸時の破断頻度を低減させることができる。なお、空孔起点の形成と熱的安定性の観点から、前記縦延伸の延伸倍率は5.0~6.0倍であることが更に好ましい。
 横延伸の延伸温度は100℃~160℃が好ましく、110℃~150℃がより好ましく、更に好ましくは120℃~145℃である。横延伸での延伸温度が前記範囲内であれば、ポリオレフィン系樹脂の軟質化に伴う横延伸時の破断が起こり難く、また縦延伸により形成された空孔起点が目開きし易くなるため、結果として高い空孔率を有する多孔性フィルムを得ることができる。
 また、横延伸の延伸倍率は好ましくは1.1~6.0倍、より好ましくは1.1~4.0倍、更に好ましくは1.1~2.0倍である。横延伸の延伸倍率を1.1倍以上にすることで、縦延伸により形成された空孔起点を適度なサイズに拡大させ、緻密な多孔構造を有する二軸延伸フィルムを得ることができる。横延伸倍率を6.0倍以下とすることで、延伸時の破断頻度を低減させることができる。この際、横延伸倍率が低くすることで、縦延伸にて生じた分子配向を維持しつつ適度な空孔拡大が行われるため、透過特性に優れたセパレータを得ることができる。
 横延伸の延伸速度としては、100~10000%/分が好ましく、200~5000%/分がより好ましく、500~2000%/分であることが更に好ましい。前記範囲内の延伸速度であれば、効率よく本発明の多孔性フィルムを製造することができる。
 本発明では、二軸延伸の後に流れ方向に延伸すること(再縦延伸)が好ましい。再縦延伸を行うことによって、コート層の乾燥工程において、シワの発現を十分に抑制することができる。
 再縦延伸の延伸温度について、下限としては80℃以上が好ましく、90℃以上がより好ましく、100℃以上が更に好ましい。一方、上限としては160℃以下が好ましく、150℃以下がより好ましく、140℃以下が更に好ましい。再縦延伸の延伸温度が前記範囲であれば、延伸時の破断がポリプロピレン系樹脂の軟質化によって抑制され、また高温環境下において十分な収縮応力が得られるため、所望の多孔性フィルムを得ることができる。
 また、再縦延伸の延伸倍率について、下限として1.1倍以上が好ましく、1.2倍以上がより好ましい。一方、上限としては3.0倍が好ましく、2.5倍以下がより好ましく、2.0倍以下が更に好ましい。再縦延伸の延伸倍率を1.1倍以上とすることによって、高温環境下において十分な収縮応力を有する多孔性フィルムを得ることができる。また、再縦延伸の延伸倍率を3.0倍以下とすることによって、延伸時における破断を抑制させることができる。
 このようにして得られた多孔性フィルムは、熱収縮低減を目的として熱処理を施すことが好ましい。熱処理温度の下限として、130℃以上が好ましく、135℃以上がより好ましく、140℃以上が更に好ましい。熱処理温度が130℃以上であることで、ポリプロピレン系樹脂の結晶化が促進されるとともに、延伸により発生した多孔性フィルムの残留歪を低減させることができる。よって、熱処理によって熱収縮低減の効果を有し、高温環境下における透気度悪化を抑制することができる。
 一方、熱処理温度の上限として、160℃以下が好ましく、155℃以下がより好ましい。熱処理温度が160℃以下であることによって、ポリプロピレン系樹脂の必要以上の融解・軟質化が起こらず、多孔性フィルムの多孔構造が維持できるため好ましい。
 熱処理において、必要に応じて1~20%の弛緩処理を施しても良いし、拘束状態で熱処理を行い結晶化促進させた後に、弛緩処理を施しても良い。熱処理後、均一に徐冷していくことで本発明の多孔性フィルムが得られる。
 前記延伸と弛緩処理とは、下記の条件で行うことが好ましい。
 流れ方向(縦方向)に延伸温度が好ましくは20~130℃、より好ましくは60℃~110℃、更に好ましくは100~110℃で、延伸倍率が好ましくは3.0~8.0倍、より好ましくは4.0~7.0倍、更に好ましくは4.5~6.0倍で縦延伸を行い、
 ついで、流れ方向に対して垂直方向(横方向)に延伸温度が好ましくは100~160℃、より好ましくは110~150℃で、延伸倍率が好ましくは1.1~6.0倍、より好ましくは1.1~4.0倍で横延伸を行い、
 ついで、流れ方向に対して垂直方向(横方向)に好ましくは130℃以上で1~20%、より好ましくは135~160℃で3~12%の弛緩処理を行い、
 その後、流れ方向に延伸倍率が好ましくは1.1倍以上、より好ましくは1.1~3.0倍で再縦延伸を行う。
[非水電解液二次電池用セパレータの説明]
 次に、本発明のポリオレフィン系樹脂多孔性フィルムを非水電解液二次電池用セパレータとして収容している非水電解液電池(リチウムイオン電池)について、図1を参照して説明する。
 正極板21、負極板22の両極は前記電池用セパレータ10を介して互いに重なるようにして渦巻き状に捲回し、巻き止めテープで外側を止めて捲回体としている。この渦巻き状に巻回する際、電池用セパレータ10は厚さが5~40μmであることがなかでも好ましく、5~30μmであることが特に好ましい。厚さを5μm以上とすることにより電池用セパレータが破れにくくなり、40μm以下にすることにより所定の電池缶に捲回して収納する際電池面積を大きくとることができ、ひいては電池容量を大きくすることができる。
 前記正極板21、前記電池用セパレータ10および前記負極板22を一体的に巻き付けた捲回体を有底円筒状の電池ケース内に収容し、正極および負極のリード体24、25と溶接する。ついで、前記電解質を電池缶内に注入し、電池用セパレータ10などに十分に電解質が浸透した後、電池缶の開口周縁にガスケット26を介して正極蓋27を封口し、予備充電、エージングを行い、筒型の非水電解液電池を作製している。
 電解液としては、リチウム塩を電解液とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメチルカーボネート、プロピオン酸メチルもしくは酢酸ブチルなどのエステル類、アセトニトリル等のニトリル類、1,2-ジメトキシエタン、1,2-ジメトキシメタン、ジメトキシプロパン、1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフランもしくは4-メチル-1,3-ジオキソランなどのエーテル類、またはスルホランなどが挙げられ、これらを単独でまたは二種類以上を混合して用いることができる。
 なかでも、エチレンカーボネート1質量部に対してメチルエチルカーボネートを2質量部混合した溶媒中に六フッ化リン酸リチウム(LiPF)を1.0mol/Lの割合で溶解した電解質が好ましい。
 負極としてはアルカリ金属またはアルカリ金属を含む化合物をステンレス鋼製網などの集電材料と一体化させたものが用いられる。前記アルカリ金属としては、例えばリチウム、ナトリウムまたはカリウムなどが挙げられる。前記アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズもしくはマグネシウムなどとの合金、さらにはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物もしくは硫化物との化合物などが挙げられる。
 負極に炭素材料を用いる場合、炭素材料としてはリチウムイオンをドープ、脱ドープできるものであればよく、例えば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などを用いることができる。
 本実施形態では、負極として、フッ化ビニリデンをN-メチルピロリドンに溶解させた溶液に平均粒径10μmの炭素材料を混合してスラリーとし、この負極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚さ18μmの帯状の銅箔からなる負極集電体の両面に均一に塗布して乾燥させ、その後、ロールプレス機により圧縮成形した後、切断し、帯状の負極板としたものを用いている。
 正極としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウムもしくはクロム酸化物などの金属酸化物、二硫化モリブデンなどの金属硫化物などが活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレンなどの結着剤などを適宜添加した合剤を、ステンレス鋼製網などの集電材料を芯材として成形体に仕上げたものが用いられる。
 本実施形態では、正極としては、下記のようにして作製される帯状の正極板を用いている。すなわち、リチウムコバルト酸化物(LiCoO)に導電助剤としてリン状黒鉛を(リチウムコバルト酸化物:リン状黒鉛)の質量比90:5で加えて混合し、この混合物と、ポリフッ化ビニリデンをN-メチルピロリドンに溶解させた溶液とを混合してスラリーにする。この正極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚さ20μmのアルミニウム箔からなる正極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形した後、切断し、帯状の正極板としている。
 以下に実施例および比較例を示し、本発明のポリオレフィン系樹脂多孔性フィルムについて詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 得られたポリオレフィン系樹脂多孔性フィルムは、以下のようにして各種特性の測定および評価を行い、その結果を表1にまとめた。
(1)厚さ
 1/1000mmのダイアルゲージにて、面内を不特定に10箇所測定し、その平均を厚さとした。
(2)透気度
 JIS P8117に準拠して、20℃環境下で透気度(秒/100ml)を測定した。
(3)90℃における流れ方向の1%モジュラス
 JIS K7127に準じて、90℃における流れ方向の1%伸張時の張力の測定を行い、以下の式に基づいて90℃における流れ方向の1%モジュラスを算出した。また、下記の基準で評価した結果も併記した。
  (1%モジュラス)=(1%伸長時の張力)/(伸張前のフィルム断面積)
  ○:90℃における流れ方向のモジュラスが4.5MPa以上
  ×:90℃における流れ方向のモジュラスが4.5MPa未満
(4)90℃における流れ方向の収縮応力
 熱応力歪測定装置(TMA/SS150、セイコー電子工業株式会社製)により測定を行い、90℃における流れ方向の収縮応力を得た。測定条件はサンプル幅3mm、チャック間隔5mm、昇温スピード3℃/分、荷重9.8kN/mで行った。また、下記の基準で評価した結果も併記した。
  ○:90℃における流れ方向の収縮応力が1.5MPa以上
  ×:90℃における流れ方向の収縮応力が1.5MPa未満
(5)搬送性
 得られたポリオレフィン系樹脂多孔性フィルムのフィルムロールをスリット設備にて幅200mmにスリットし、巻取張力は10Nで、1000m長のスリットロールを得た。得られたスリットロールをコーター設備にて、10分間搬送させて、出口のシワの状態を確認して、下記の基準で評価した。なお、搬送条件として、オーブン温度は90℃、オーブン内搬送張力は30N、走行速度は40m/分であった。
  ○:シワが発現しなかったもの
  ×:シワが発現したもの
 更に、得られたポリオレフィン系樹脂多孔性フィルムについて、次のようにしてβ晶活性の評価を行った。
(6)示差走査型熱量測定(DSC)
 ポリオレフィン系樹脂多孔性フィルムをパーキンエルマー社製の示差走査型熱量計(DSC-7)を用いて、25℃から240℃まで走査速度10℃/分で昇温後1分間保持し、次に240℃~25℃まで走査速度10℃/分で降温後1分間保持し、次に25℃から240℃まで走査速度10℃/分で再昇温させた。この再昇温時にポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)である145~160℃にピークが検出されるか否かによりβ晶活性の有無を以下の基準にて評価した。
  ○:Tmβが145℃~160℃の範囲内に検出された場合(β晶活性あり)
  ×:Tmβが145℃~160℃の範囲内に検出されなかった場合(β晶活性なし) なお、β晶活性の測定は、試料量10mgで、窒素雰囲気下にて行った。
(7)広角X線回折測定(XRD)
 サンプルとして、ポリオレフィン系樹脂多孔性フィルムを縦60mm、横60mm角に切り出し、図2(A)に示すように中央部が40mmφの円状に穴の空いたアルミ板(材質:JIS A5052、サイズ:縦60mm、横60mm、厚さ1mm)2枚の間にはさみ、図2(B)に示すように周囲をクリップで固定した。
 ポリオレフィン系樹脂多孔性フィルムをアルミ板2枚に拘束した状態のサンプルを設定温度180℃、表示温度180℃である送風定温恒温器(ヤマト科学株式会社製、型式:DKN602)に入れ3分間保持した後、設定温度を100℃に変更し、10分以上の時間をかけて100℃まで徐冷を行った。表示温度が100℃になった時点でサンプルを取り出し、アルミ板2枚に拘束した状態のまま25℃の雰囲気下で5分間冷却して得られた前記フィルムについて、以下の測定条件で、中央部の40mmφの円状の部分について広角X線回折測定を行った。
 ・広角X線回折測定装置:マックサイエンス社製、型番:XMP18A
 ・X線源:CuKα線、出力:40kV、200mA
 ・走査方法:2θ/θスキャン、2θ範囲:5°~25°、走査間隔:0.05°、走査速度:5°/分
 得られた回折プロファイルについて、ポリプロピレン系樹脂のβ晶の(300)面に由来するピークより、β晶活性の有無を以下のように評価した。
  ○:ピークが2θ=16.0~16.5°の範囲に検出された場合(β晶活性あり)  ×:ピークが2θ=16.0~16.5°の範囲に検出されなかった場合(β晶活性なし)
 なお、前記フィルム片が縦60mm、横60mm角に切り出せない場合は、中央部に40mmφの円状の穴に前記多孔性フィルムが設置されるように調整し、サンプルを作成しても構わない。
[実施例、比較例]
 ポリプロピレン系樹脂としてプライムPP F300SV(プライムポリマー社製、MFR:3.0g/10分)を100質量部に対して、β晶核剤として3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンを0.1質量部添加した後、2軸押出機(東芝機械株式会社製、口径:40mmφ、L/D=32)に投入し、設定温度270℃で溶融混合後、24℃の水槽にてストランドを冷却固化し、ペレタイザーにてストランドをカットしてペレットを作製した。
 次いで、単軸押出機(三菱重工株式会社製、口径:40mmφ、L/D=32)を用いて、設定温度200℃で溶融混合した後、Tダイより押出した溶融樹脂シートを表1記載の温度のキャストロールで引き取り、冷却固化させて、幅300mm、厚さ80μmの膜状物を得た。この際、溶融樹脂シートとキャストロールの接触時間は15秒であった。
 得られた膜状物は、ロール縦延伸機を用い、ロール間で表1に記載の延伸温度および延伸倍率で縦方向に延伸を行った。次いでフィルムテンター設備(京都機械社製)にて、表1に記載の延伸温度および延伸倍率で横方向に延伸を行った後、熱固定を十分に施した後、横方向に表1に記載の弛緩温度および弛緩率で熱弛緩を行い、多孔性フィルムを得た。
 次いで、得られた多孔性フィルムは、ロール縦延伸機を用い、ロール間で延伸温度、延伸倍率で縦方向に延伸を行った後、熱処理ロールにて120℃にて3%の縦方向に熱弛緩を行い、最終的な多孔性フィルムを得た。得られた物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3のように再縦延伸を行ったポリオレフィン系樹脂多孔性フィルムは、90℃における流れ方向の1%モジュラスが4.5MPa以上、90℃における流れ方向の収縮応力が1.5MPa以上であったため、優れた搬送性、すなわちコート層の乾燥工程においてシワが発現しないポリオレフィン系樹脂多孔性フィルムとなった。
 一方、比較例1のように再縦延伸を行ったポリオレフィン系樹脂多孔性フィルムは、90℃における流れ方向の1%モジュラス、90℃における流れ方向の収縮応力が規定された範囲を満たさないため、不十分な搬送性、すなわちコート層の乾燥工程においてシワが発現しやすいポリオレフィン系樹脂多孔性フィルムとなった。
 本発明の多孔性フィルムは、優れた透気特性と弾性率を有するため、各種分野における多孔性フィルムとして用いることができる。
10 非水電解液二次電池用セパレータ
20 非水電解液二次電池
21 正極板
22 負極板
31 アルミ板
32 多孔性フィルム
33 クリップ
34 フィルム縦方向
35 フィルム横方向

Claims (9)

  1.  90℃における流れ方向の1%モジュラスが4.5MPa以上であり、かつ、透気度が800秒/100ml以下であることを特徴とするポリオレフィン系樹脂多孔性フィルム。
  2.  90℃における流れ方向の収縮応力が1.5MPa以上である請求項1に記載のポリオレフィン系樹脂多孔性フィルム。
  3.  前記ポリオレフィン系樹脂について、ポリプロピレン系樹脂が主成分である請求項1または請求項2に記載のポリオレフィン系樹脂多孔性フィルム。
  4.  β晶活性を有する請求項1乃至請求項3のいずれか1項に記載のポリオレフィン系樹脂多孔性フィルム。
  5.  二軸延伸の後に流れ方向に延伸する請求項1乃至請求項4のいずれか1項に記載のポリオレフィン系樹脂多孔性フィルム。
  6.  少なくとも片面にコート層を積層させる請求項1乃至請求項5のいずれか1項に記載のポリオレフィン系樹脂多孔性フィルム。
  7.  請求項1乃至請求項6のいずれか1項に記載のポリオレフィン系樹脂多孔性フィルムからなる非水電解質二次電池用セパレータ。
  8.  請求項7に記載の非水電解質二次電池用セパレータを有する非水電解質二次電池。
  9.  請求項5に記載のポリオレフィン系樹脂多孔性フィルムの形成方法であって、
     前記二軸延伸は、
     流れ方向(縦方向)に延伸温度が20~130℃で、延伸倍率が3.0~8.0倍で縦延伸を行い、ついで、流れ方向に対して垂直方向(横方向)に延伸温度が100~160℃、延伸倍率が1.1~6.0倍で横延伸を行い、
     ついで、流れ方向に対して垂直方向(横方向)に130℃以上で1~20%の弛緩処理を行い、
     その後、流れ方向(縦方向)に延伸倍率が1.1倍以上で再縦延伸を行うポリオレフィン系樹脂多孔性フィルムの形成方法。
PCT/JP2013/065573 2012-06-07 2013-06-05 ポリオレフィン系樹脂多孔性フィルム WO2013183666A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147034056A KR102089256B1 (ko) 2012-06-07 2013-06-05 폴리올레핀계 수지 다공성 필름
US14/406,011 US20150125734A1 (en) 2012-06-07 2013-06-05 Polyolefin resin porous film
EP13801339.6A EP2860216A4 (en) 2012-06-07 2013-06-05 POROUS POLYOLEFIN RESIN FILM
CN201380029263.9A CN104334619B (zh) 2012-06-07 2013-06-05 聚烯烃系树脂多孔性膜
JP2014520026A JP6222087B2 (ja) 2012-06-07 2013-06-05 ポリオレフィン系樹脂多孔性フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-129482 2012-06-07
JP2012129482 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013183666A1 true WO2013183666A1 (ja) 2013-12-12

Family

ID=49712055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065573 WO2013183666A1 (ja) 2012-06-07 2013-06-05 ポリオレフィン系樹脂多孔性フィルム

Country Status (6)

Country Link
US (1) US20150125734A1 (ja)
EP (1) EP2860216A4 (ja)
JP (1) JP6222087B2 (ja)
KR (1) KR102089256B1 (ja)
CN (1) CN104334619B (ja)
WO (1) WO2013183666A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103713A1 (ja) * 2012-12-26 2014-07-03 東レ株式会社 多孔性ポリオレフィンフィルムおよびその製造方法、ならびにそれを用いてなる蓄電デバイス用セパレータ
WO2016157656A1 (ja) * 2015-03-31 2016-10-06 帝人株式会社 複合膜の製造方法
JP2018159080A (ja) * 2013-06-21 2018-10-11 住友化学株式会社 積層多孔質フィルムの製造方法
WO2020129411A1 (ja) 2018-12-18 2020-06-25 日本碍子株式会社 リチウム二次電池
CN112542653A (zh) * 2019-09-05 2021-03-23 深圳市拓邦锂电池有限公司 锂电池的抗褶皱隔膜及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10786948B2 (en) 2014-11-18 2020-09-29 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US10207489B2 (en) * 2015-09-30 2019-02-19 Sigma Labs, Inc. Systems and methods for additive manufacturing operations
CN110350155B (zh) * 2018-04-04 2022-01-14 北京师范大学 一种含沿横向拉伸方向取向的纳米纤维状多孔层的复合微孔膜

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181651A (ja) 1990-11-14 1992-06-29 Nitto Denko Corp 電池用セパレータの製造法
JPH06289566A (ja) 1993-03-30 1994-10-18 Fuji Photo Film Co Ltd 感光材料処理装置
JPH09194650A (ja) 1996-01-23 1997-07-29 Chisso Corp 結晶性プロピレン重合体組成物
JP2002151044A (ja) 2000-08-30 2002-05-24 Sumitomo Chem Co Ltd 非水電解液二次電池用セパレータおよび非水電解液二次電池
JP2003306585A (ja) 2002-04-15 2003-10-31 Sekisui Chem Co Ltd 樹脂−層状珪酸塩複合材料及びその製造方法
JP3739481B2 (ja) 1995-05-17 2006-01-25 昭和電工株式会社 ポリプロピレン系樹脂材料及びその製造方法
JP2007046226A (ja) 2005-08-05 2007-02-22 Nakamura Bussan Kk 建築物の外壁構造
WO2007046226A1 (ja) 2005-10-18 2007-04-26 Toray Industries, Inc. 蓄電デバイスセパレータ用微多孔フィルムおよびそれを用いた蓄電デバイスセパレータ
JP2010147149A (ja) 2008-12-17 2010-07-01 Hitachi Ltd 光モジュール及び半導体発光素子
WO2010147149A1 (ja) * 2009-06-19 2010-12-23 三菱樹脂株式会社 多孔性ポリプロピレンフィルム
JP2011110704A (ja) 2009-11-24 2011-06-09 Mitsubishi Plastics Inc 積層多孔フィルム、電池用セパレータ、および電池
JP2012033315A (ja) * 2010-07-29 2012-02-16 Konica Minolta Opto Inc 非水系二次電池用セパレータ及びそれを用いた非水系二次電池
JP2012089243A (ja) * 2010-10-15 2012-05-10 Konica Minolta Opto Inc 非水系二次電池用のセパレータ及びそれを用いた非水系二次電池
JP2012107252A (ja) * 2004-04-22 2012-06-07 Toray Ind Inc 微孔性ポリプロピレンフィルムおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134091A (ja) * 2000-10-30 2002-05-10 Nitto Denko Corp 非水電解液電池用セパレータ及び非水電解液電池
JP4880824B2 (ja) * 2001-04-12 2012-02-22 住友化学株式会社 多孔性フィルム
US20090008816A1 (en) * 2005-03-29 2009-01-08 Tonen Chemical Corporation Method for producing microporous polyolefin membrane and microporous membrane
JP5202866B2 (ja) * 2007-04-09 2013-06-05 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP5280522B2 (ja) * 2009-04-28 2013-09-04 キヤノンアネルバ株式会社 識別情報設定装置、および識別情報設定方法
JP5400671B2 (ja) * 2010-03-12 2014-01-29 帝人株式会社 ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池
WO2012046753A1 (ja) * 2010-10-06 2012-04-12 三菱樹脂株式会社 ポリオレフィン系樹脂多孔フィルム

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181651A (ja) 1990-11-14 1992-06-29 Nitto Denko Corp 電池用セパレータの製造法
JPH06289566A (ja) 1993-03-30 1994-10-18 Fuji Photo Film Co Ltd 感光材料処理装置
JP3739481B2 (ja) 1995-05-17 2006-01-25 昭和電工株式会社 ポリプロピレン系樹脂材料及びその製造方法
JPH09194650A (ja) 1996-01-23 1997-07-29 Chisso Corp 結晶性プロピレン重合体組成物
JP2002151044A (ja) 2000-08-30 2002-05-24 Sumitomo Chem Co Ltd 非水電解液二次電池用セパレータおよび非水電解液二次電池
JP2003306585A (ja) 2002-04-15 2003-10-31 Sekisui Chem Co Ltd 樹脂−層状珪酸塩複合材料及びその製造方法
JP2012107252A (ja) * 2004-04-22 2012-06-07 Toray Ind Inc 微孔性ポリプロピレンフィルムおよびその製造方法
JP2007046226A (ja) 2005-08-05 2007-02-22 Nakamura Bussan Kk 建築物の外壁構造
WO2007046226A1 (ja) 2005-10-18 2007-04-26 Toray Industries, Inc. 蓄電デバイスセパレータ用微多孔フィルムおよびそれを用いた蓄電デバイスセパレータ
JP2010147149A (ja) 2008-12-17 2010-07-01 Hitachi Ltd 光モジュール及び半導体発光素子
WO2010147149A1 (ja) * 2009-06-19 2010-12-23 三菱樹脂株式会社 多孔性ポリプロピレンフィルム
JP2011110704A (ja) 2009-11-24 2011-06-09 Mitsubishi Plastics Inc 積層多孔フィルム、電池用セパレータ、および電池
JP2012033315A (ja) * 2010-07-29 2012-02-16 Konica Minolta Opto Inc 非水系二次電池用セパレータ及びそれを用いた非水系二次電池
JP2012089243A (ja) * 2010-10-15 2012-05-10 Konica Minolta Opto Inc 非水系二次電池用のセパレータ及びそれを用いた非水系二次電池

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. ZAMBELLI ET AL., MACROMOLECULES, vol. 8, 1975, pages 687
MACROMOL. CHEM., vol. 187, 1986, pages 643 - 652
MACROMOL. CHEM., vol. 75, 1964, pages 134
MACROMOL. SYMP., vol. 89, 1995, pages 499 - 511
PROG. POLYM. SCI., vol. 16, 1991, pages 361 - 404
See also references of EP2860216A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103713A1 (ja) * 2012-12-26 2014-07-03 東レ株式会社 多孔性ポリオレフィンフィルムおよびその製造方法、ならびにそれを用いてなる蓄電デバイス用セパレータ
JP2018159080A (ja) * 2013-06-21 2018-10-11 住友化学株式会社 積層多孔質フィルムの製造方法
WO2016157656A1 (ja) * 2015-03-31 2016-10-06 帝人株式会社 複合膜の製造方法
JPWO2016157656A1 (ja) * 2015-03-31 2017-04-27 帝人株式会社 複合膜の製造方法
US20180071774A1 (en) * 2015-03-31 2018-03-15 Teijin Limited Method for manufacturing composite film
WO2020129411A1 (ja) 2018-12-18 2020-06-25 日本碍子株式会社 リチウム二次電池
CN112542653A (zh) * 2019-09-05 2021-03-23 深圳市拓邦锂电池有限公司 锂电池的抗褶皱隔膜及其制备方法

Also Published As

Publication number Publication date
KR20150020548A (ko) 2015-02-26
CN104334619B (zh) 2018-07-10
JPWO2013183666A1 (ja) 2016-02-01
EP2860216A4 (en) 2015-11-25
EP2860216A1 (en) 2015-04-15
KR102089256B1 (ko) 2020-03-16
US20150125734A1 (en) 2015-05-07
CN104334619A (zh) 2015-02-04
JP6222087B2 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
JP5685039B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP6222087B2 (ja) ポリオレフィン系樹脂多孔性フィルム
KR101392131B1 (ko) 적층 다공 필름, 전지용 세퍼레이터 및 전지
US9343719B2 (en) Method for producing laminated porous film, and laminated porous film
JP5930032B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
KR101489627B1 (ko) 적층 다공 필름, 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지
JP6432203B2 (ja) 積層多孔フィルムの製造方法
WO2010053172A1 (ja) 積層多孔性フィルム、リチウム電池用セパレータおよび電池
WO2012042965A1 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5858696B2 (ja) 多孔性フィルム、電池用セパレータ及び電池
JP6093636B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5460025B2 (ja) 多孔性フィルム、それを利用したリチウム電池用セパレータ、および電池
WO2013002164A1 (ja) 多孔性フィルム、電池用セパレータ、および電池
WO2015105009A1 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6682942B2 (ja) ポリプロピレン系樹脂多孔性フィルム及びその製造方法
JP6137523B2 (ja) 積層多孔フィルムの製造方法、積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6117493B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6318919B2 (ja) 積層多孔フィルム、積層多孔フィルムの製造方法、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5848193B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5885104B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5750511B2 (ja) 電池用セパレータおよび電池
WO2022059744A1 (ja) 蓄電デバイス用セパレータ及び蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520026

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013801339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013801339

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147034056

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14406011

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE