JP2011110704A - 積層多孔フィルム、電池用セパレータ、および電池 - Google Patents

積層多孔フィルム、電池用セパレータ、および電池 Download PDF

Info

Publication number
JP2011110704A
JP2011110704A JP2009265927A JP2009265927A JP2011110704A JP 2011110704 A JP2011110704 A JP 2011110704A JP 2009265927 A JP2009265927 A JP 2009265927A JP 2009265927 A JP2009265927 A JP 2009265927A JP 2011110704 A JP2011110704 A JP 2011110704A
Authority
JP
Japan
Prior art keywords
porous film
resin
laminated porous
battery
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009265927A
Other languages
English (en)
Other versions
JP5697328B2 (ja
Inventor
Yoshito Takagi
義人 高木
Satoshi Imanaka
智 今中
Tomoyuki Nemoto
友幸 根本
Yasushi Usami
康 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2009265927A priority Critical patent/JP5697328B2/ja
Publication of JP2011110704A publication Critical patent/JP2011110704A/ja
Application granted granted Critical
Publication of JP5697328B2 publication Critical patent/JP5697328B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】透気特性と耐熱性を兼ね備えた多孔フィルムであり、電池用セパレータとして使用時に、優れた滑り性、ピン抜け性を有するだけでなく、製造工程における金属の混入を回避できる耐熱層を具備した積層多孔フィルムを提供する。
【解決手段】ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、フィラーと樹脂バインダとを含む耐熱層を積層しており、該フィラーのモース硬度が6以下であることを特徴とする積層多孔フィルム。
【選択図】図2

Description

本発明は、積層多孔フィルムに関し、包装用、衛生用、畜産用、農業用、建築用、医療用、分離膜、光拡散板、電池用セパレータとして利用でき、特に、非水電解電池用セパレータとして好適に利用できるものである。
多数の微細連通孔を有する高分子多孔体は、超純水の製造、薬液の精製、水処理などに使用する分離膜、衣類・衛生材料などに使用する防水透湿性フィルム、あるいは電池などに使用する電池セパレータなど各種の分野で利用されている。
特に二次電池はOA、FA、家庭用電器または通信機器等のポータブル機器用電源として幅広く使用されている。特に機器に装備した場合に容積効率がよく機器の小型化および軽量化につながることからリチウムイオン二次電池を使用したポータブル機器が増加している。一方、大型の二次電池はロードレベリング、UPS、電気自動車をはじめ、エネルギー/環境問題に関連する多くの分野において研究開発が進められ、大容量、高出力、高電圧および長期保存性に優れている点より非水電解液二次電池の一種であるリチウムイオン二次電池の用途が広がっている。
リチウムイオン二次電池の使用電圧は通常4.1Vから4.2Vを上限として設計されている。このような高電圧では水溶液は電気分解を起こすので電解液として使うことができない。そのため、高電圧でも耐えられる電解液として有機溶媒を使用したいわゆる非水電解液が用いられている。非水電解液用溶媒としては、より多くのリチウムイオンを存在させることができる高誘電率有機溶媒が用いられ、該高誘電率有機溶媒としてプロピレンカーボネートやエチレンカーボネート等の有機炭酸エステル化合物が主に使用されている。溶媒中でリチウムイオン源となる支持電解質として、6フッ化リン酸リチウム等の反応性の高い電解質を溶媒中に溶解させて使用している。
リチウムイオン二次電池には内部短絡の防止の点からセパレータが正極と負極の間に介在されている。該セパレータにはその役割から当然絶縁性が要求される。また、リチウムイオンの通路となる透気性と電解液の拡散・保持機能を付与するために微細孔構造である必要がある。これらの要求を満たすためセパレータとしては多孔性フィルムが使用されている。
最近の電池の高容量化に伴い、電池の安全性に対する重要度が増してきている。電池用セパレータの安全に寄与する特性として、シャットダウン特性(以後、「SD特性」と称す)がある。このSD特性は、100〜150℃程度の高温状態になると微細孔が閉塞され、その結果電池内部のイオン伝導が遮断されるため、その後の電池内部の温度上昇を防止できるという機能である。この時、積層多孔性フィルムの微細孔が閉塞される温度のうち最も低い温度をシャットダウン温度(以後、「SD温度」と称す)という。電池用セパレータとして使用する場合は、このSD特性を具備していることが必要である。
しかしながら、近年リチウムイオン二次電池の高エネルギー密度化、ハイパワー化に伴い、通常のシャットダウン機能が十分に機能せず、電池内部の温度がポリエチレンの融点である150℃前後を超え、さらに上昇し、セパレータが破膜して発火に至る事故が発生している。この原因については、製造工程に混入した金属粉などの異物が引き金となり、内部短絡によって局所的に急激な発熱が起こるためであるとされている。そこで、安全性を確保するため、現在のSD特性と耐熱性を合わせもつセパレータが求められている。
前記要望に対し、シャットダウン機能を有する多孔質フィルムと耐熱樹脂からなる多孔質層とを含むセパレータ(特許文献1)、熱可塑性樹脂を主成分とする多孔層に、耐熱性を有する多孔層を積層したセパレータ(特許文献2)、水溶性ポリマーの多孔フィルムとポリオレフィンの多孔フィルムとが積層されてなるセパレータ(特許文献3)、ポリオレフィン樹脂多孔フィルムの少なくとも片面に、無機フィラーと樹脂バインダとを含む多孔層を備えた積層多孔フィルム(特許文献4)などが提案されている。
また、セパレータに求められる特性として滑り性が求められている。その一つに、電池組立におけるピンの抜け性がある。円筒型、角型などの捲回型リチウムイオン二次電池では、セパレータと正負極を重ね合わせ、ピンに捲回する。この後、渦巻状の電池要素をピンから抜く工程を経て、電池が組立てられる。この際、ピンと接触するセパレータの滑り性が悪ければ、ピンから電池要素を引き抜くことができない。また、引抜き難ければ生産上に影響するといった課題を有していた。その他、滑り性が悪ければ、製膜時におけるフィルム巻取りの際に巻皺の原因になるなど、加工性が悪くなるという課題もあった。前記ピン抜け性を改善するために、ピンに表面処理を施し、ピンの摩擦係数を低くしている。(特許文献5)
特開2000−223107号公報 特許3756815号公報 特開2004−227972号公報 特開2009−26733号公報 特開2009−70726号公報
特許文献1〜4において、ピンの抜け性、ピンの磨耗性については考慮されておらず、さらに硬いアルミナを用いている為、ピンが削れ、金属が混入し、内部短絡、さらには、局所的な加熱を起こし、重大な事故につながる危険性があった。また、スリット加工等に用いる刃や、フィルムへの塗工時に使用するグラビアロールなどがアルミナによって磨耗し、金属混入の危険性および加工性の問題があった。
また特許文献5では、ピンの抜け性は改善されたものの、加工性の改善には至らず、生産性の観点からは好ましくない。
本発明の課題は、前記した問題点を解決することにある。すなわち、透気特性と耐熱性を兼ね備えた多孔フィルムであり、電池用セパレータとして使用時に、優れた滑り性、ピン抜け性を有するだけでなく、製造工程における金属の混入を回避できる耐熱層を具備した積層多孔フィルムを提供することを目的とする。
本発明者らは、前記の課題を解決すべく鋭意検討した結果、次のような積層多孔性フィルムにより達成できることを見出した。すなわち、本発明は以下の通りである。
[1]ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、フィラーと樹脂バインダとを含む耐熱層を積層しており、該フィラーのモース硬度が6以下であることを特徴とする積層多孔フィルム。
[2]前記フィラーが無機フィラーであることを特徴とする[1]に記載の積層多孔フィルム。
[3]前記無機フィラーが、硫酸バリウム、ベーマイト、およびアナタース型酸化チタンから選ばれることを特徴とする[2]に記載の積層多孔フィルム。
[4]透気度が2000秒/100ml以下であることを特徴とする[1]〜[3]のいずれかに記載の積層多孔フィルム。
[5]150℃における収縮率が10%以下であることを特徴とする[1]〜[4]のいずれかに記載の積層多孔フィルム。
[6]β活性を有することを特徴とする[1]〜[5]のいずれかに記載の積層多孔フィルム。
[7][1]〜[6]のいずれかに記載の積層多孔フィルムを用いた電池用セパレータ。
[8][7]に記載の電池用セパレータを用いた電池。
本発明は、透気特性と滑り性を兼ね備えており、製造工程における金属の混入を回避できる耐熱層を具備した積層多孔フィルムが得られ、電池用セパレータとしても好適に使用することができる。
本発明の積層多孔フィルムを収容している電池の一部破断斜視図である。 捲回工程で用いるピンを説明する図である。 ピン抜け性を測定するための測定装置を説明する図である。 SD特性、X線回折測定における積層多孔フィルムの固定方法を説明する図である。
以下、本発明の積層多孔フィルムの実施形態について詳細に説明する。
なお、本発明において、「主成分」と表現した場合には、特に記載しない限り、当該主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含し、特に当該主成分の含有割合を特定するものではないが、主成分は組成物中の50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占める意を包含するものである。
また、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含するものである。
以下に、本発明の積層多孔フィルムを構成する各成分について説明する。
(ポリオレフィン系樹脂多孔フィルム)
ポリオレフィン系樹脂多孔フィルムで用いるポリオレフィン系樹脂として、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキサンなどを重合した単独重合体または共重合体が挙げられる。この中でも、ポリプロピレン系樹脂、ポリエチレン系樹脂が好ましい。
(ポリプロピレン系樹脂)
ポリプロピレン系樹脂としては、ホモプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1−ブテン、1−ペンテン、1−へキセン、1−へプテン、1−オクテン、1−ノネンもしくは1−デセンなどα−オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、積層多孔フィルムの機械的強度、耐熱性などを維持する観点から、ホモポリプロピレンがより好適に使用される。
また、ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が80〜99%であることが好ましい。より好ましくは83〜98%、更に好ましくは85〜97%であるものを使用する。アイソタクチックペンタッド分率が低すぎるとフィルムの機械的強度が低下するおそれがある。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。
アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素−炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli et al(Macromolecules8,687,(1975))に準拠した。
また、ポリプロピレン系樹脂としては、分子量分布を示すパラメータであるMw/Mnが2.0〜10.0であることが好ましい。より好ましくは2.0〜8.0、更に好ましくは2.0〜6.0であるものが使用される。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnが2.0未満であると押出成形性が低下する等の問題が生じるほか、工業的に生産することも困難である。一方、Mw/Mnが10.0を超えた場合は低分子量成分が多くなり、積層多孔フィルムの機械的強度が低下しやすい。Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー)法によって得られる。
また、ポリプロピレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常、MFRは0.5〜15g/10分であることが好ましく、1.0〜10g/10分であることがより好ましい。MFRが0.5g/10分以上とすることで、成形加工時の樹脂の溶融粘度が高く、十分な生産性を確保することができる。一方、15g/10分以下とすることで、得られる積層多孔フィルムの機械的強度を十分に保持することができる。MFRはJIS K7210に従い、温度230℃、荷重2.16kgの条件で測定する。
なお、前記ポリプロピレン系樹脂の製造方法は特に限定されるものではなく、公知の重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた重合方法等が挙げられる。
ポリプロピレン系樹脂としては、例えば、商品名「ノバテックPP」「WINTEC」(日本ポリプロ社製)、「バーシファイ」「ノティオ」「タフマーXR」(三井化学社製)、「ゼラス」「サーモラン」(三菱化学社製)、「住友ノーブレン」「タフセレン」(住友化学社製)、「プライム TPO」(プライムポリマー社製)、「Adflex」、「Adsyl」、「HMS−PP(PF814)」(サンアロマー社製)、「インスパイア」(ダウケミカル)など市販されている商品を使用できる。
本発明の積層多孔フィルムは、前記β活性を有することが好ましい。
β活性は、延伸前の膜状物においてポリプロピレン系樹脂がβ晶を生成していたことを示す一指標と捉えることができる。延伸前の膜状物中のポリプロピレン系樹脂がβ晶を生成していれば、フィラー等の添加剤を使用しない場合においても、延伸を施すことで微細孔が容易に形成されるため、透気特性を有する積層多孔フィルムを得ることができる。
本発明の積層多孔フィルムにおいて、「β活性」の有無は、後述する示差走査型熱量計によりβ晶に由来する結晶融解ピーク温度が検出された場合か、及び/又は後述するX線回折装置を用いた測定により、β晶に由来する回折ピークが検出された場合、「β活性」を有すると判断している。
具体的には、示差走査型熱量計で積層多孔フィルムを25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた際に、ポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)が検出された場合、β活性を有すると判断している。
また、前記積層多孔フィルムのβ活性度は、検出されるポリプロピレン系樹のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算している。
β活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
例えば、ポリプロピレン系樹脂がホモポリプロピレンの場合は、主に145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に160℃以上170℃以下に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。また、例えばエチレンが1〜4モル%共重合されているランダムポリプロピレンの場合は、主に120℃以上140℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に140℃以上165℃以下の範囲に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。
前記積層多孔フィルムのβ活性度は大きい方が好ましく、β活性度は20%以上であることが好ましい。40%以上であることがさらに好ましく、60%以上であることが特に好ましい。積層多孔フィルムが20%以上のβ活性度を有すれば、延伸前の膜状物中においてもポリプロピレン系樹脂のβ晶が多く生成することができることを示し、延伸により微細かつ均一な孔が多く形成され、結果として機械的強度が高く、透気性能に優れたリチウムイオンリチウム電池用セパレータとすることができる。
β活性度の上限値は特に限定されないが、β活性度が高いほど前記効果がより有効に得られるので100%に近いほど好ましい。
また前記β活性の有無は、特定の熱処理を施した積層多孔フィルムの広角X線回折測定により得られる回折プロファイルでも判断できる。
詳細には、ポリプロピレン系樹脂の融点を超える温度である170℃〜190℃の熱処理を施し、徐冷してβ晶を生成・成長させた積層多孔フィルムについて広角X線測定を行い、ポリプロピレン系樹脂のβ晶の(300)面に由来する回折ピークが2θ=16.0°〜16.5°の範囲に検出された場合、β活性が有ると判断している。
ポリプロピレン系樹脂のβ晶構造と広角X線回折に関する詳細は、Macromol.Chem.187,643−652(1986)、Prog.Polym.Sci.Vol.16,361−404(1991)、Macromol.Symp.89,499−511(1995)、Macromol.Chem.75,134(1964)、及びこれらの文献中に挙げられた参考文献を参照することができる。広角X線回折を用いたβ活性の詳細な評価方法については、後述の実施例にて示す。
前記β活性は、本発明の積層多孔フィルムが単層構造である場合であっても、他の多孔性層が積層される場合のいずれにおいても積層多孔フィルム全層の状態で測定することができる。
また、仮に、ポリプロピレン系樹脂からなる層以外に、ポリプロピレン系樹脂を含有する層などを積層させる場合には、両層ともにβ活性を有することが好ましい。
前述したβ活性を得る方法としては、特許3739481号公報に記載されているように過酸化ラジカルを発生させる処理を施したポリプロピレンを添加する方法、及び組成物にβ晶核剤を添加する方法などが挙げられる。
(β晶核剤)
本発明で用いるβ晶核剤としては以下に示すものが挙げられるが、ポリプロピレン系樹脂のβ晶の生成・成長を増加させるものであれば特に限定される訳ではなく、また2種類以上を混合して用いても良い。
β晶核剤としては、例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2−ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジもしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸である成分Aと周期律表第IIA族金属の酸化物、水酸化物もしくは塩である成分Bとからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられる。そのほか核剤の具体的な種類については、特開2003−306585号公報、特開平06−289566号公報、特開平09−194650号公報に記載されている。
β晶核剤の市販品としては新日本理化社製β晶核剤「エヌジェスターNU−100」、β晶核剤の添加されたポリプロピレン系樹脂の具体例としては、Aristech社製ポリプロピレン「Bepol B−022SP」、Borealis社製ポリプロピレン「Beta(β)−PP BE60−7032」、Mayzo社製ポリプロピレン「BNX BETAPP−LN」などが挙げられる。
前記ポリプロピレン系樹脂に添加するβ晶核剤の割合は、β晶核剤の種類またはポリプロピレン系樹脂の組成などにより適宜調整することが必要であるが、ポリプロピレン系樹脂100質量部に対しβ晶核剤0.0001〜5.0質量部が好ましい。0.001〜3.0質量部がより好ましく、0.01〜1.0質量部が更に好ましい。0.0001質量部以上であれば、製造時において十分にポリプロピレン系樹脂のβ晶を生成・成長させることができ、セパレータとした際にも十分なβ活性が確保でき、所望の透気性能が得られる。また、5.0質量部以下の添加であれば、経済的にも有利になるほか、積層多孔フィルム表面へのβ晶核剤のブリードなどがなく好ましい。
また、仮にポリプロピレン系樹脂からなる層以外に、ポリプロピレン系樹脂を含有する層などを積層させる場合には、各層のβ晶核剤の添加量は同じであっても、異なっていても良い。β晶核剤の添加量を変更することで各層の多孔構造を適宜調整することができる。
(他の成分)
本発明においては、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般に樹脂組成物に配合される添加剤を適宜添加できる。前記添加剤としては、成形加工性、生産性および積層多孔フィルムの諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。具体的には、「プラスチックス配合剤」のP154〜P158に記載されている酸化防止剤、P178〜P182に記載されている紫外線吸収剤、P271〜P275に記載されている帯電防止剤としての界面活性剤、P283〜P294に記載されている滑剤などが挙げられる。
(ポリエチレン系樹脂)
ポリプロピレン系樹脂としては、具体的に超低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、また分子量に特徴のある超高分子量ポリエチレンのようなホモポリマーポリエチレンだけでなく、エチレンプロピレン共重合体、またはポリエチレン系樹脂と他のポリオレフィン系樹脂とのコポリマーポリエチレンが挙げられる。中でも、ホモポリマーポリエチレン、或いはα−オレフィンコモノマー含量が2モル%以下のコポリマーポリエチレンが好ましく、ホモポリマーポリエチレンであることが更に好ましい。α−オレフィンコモノマーの種類については特に制限はない。
前記ポリエチレン系樹脂の密度は、0.910〜0.970g/cmであることが好ましく、0.930〜0.970g/cmであることがより好ましく、0.940〜0.970g/cmであることが更に好ましい。密度が0.910g/cm以上であれば適度なSD特性を有することができるため好ましい。一方、0.970g/cm以下であれば適度なSD特性を有することができるほか、延伸性が維持される点で好ましい。密度の測定は密度勾配管法を用いてJIS K7112に準じて測定することができる。
また、前記ポリエチレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常MFRは0.03〜30g/10分であることが好ましく、0.3〜10g/10分であることがより好ましい。MFRが0.03g/10分以上であれば成形加工時の樹脂の溶融粘度が十分に低いため生産性に優れ好ましい。一方、30g/10分以下であれば、十分な機械的強度を得ることができるために好ましい。
MFRはJIS K7210に従い、温度190℃、荷重2.16kgの条件で測定している。
ポリエチレン系樹脂の重合触媒には特に制限はなく、チーグラー型触媒、フィリップス型触媒、カミンスキー型触媒等いずれのものでも良い。ポリエチレン系樹脂の重合方法として、一段重合、二段重合、もしくはそれ以上の多段重合等があり、いずれの方法のポリエチレン系樹脂も使用可能である。
(多孔化促進化合物)
ポリエチレン系樹脂に、多孔化促進化合物Xを添加することが好ましい。前記多孔化促進化合物Xを添加することにより、より効率的に多孔構造を得ることができ、孔の形状や孔径を制御しやすくなる。
前記多孔化促進化合物Xは特に限定しないが、具体的に例示すると、変性ポリオレフィン樹脂、脂環族飽和炭化水素樹脂若しくはその変性体、エチレン系共重合体、またはワックスから選ばれる多孔化促進化合物Xのうち少なくとも1種が含まれていることが好ましい。中でも、多孔化でより効果の大きい脂環族飽和炭化水素樹脂若しくはその変性体、エチレン系共重合体、またはワックスがより好ましく、成形性の観点からワックスが更に好ましい。
脂環族飽和炭化水素樹脂及びその変性体について、石油樹脂、ロジン樹脂、テルペン樹脂、クマロン樹脂、インデン樹脂、クマロン−インデン樹脂、及びそれらの変性体等が挙げられる。
本発明における石油樹脂とは、ナフサの熱分解などによる副生物から得られるC4〜C10の脂肪族オレフィン類やジオレフィン類、オレフィン性不飽和結合を有するC8以上の芳香族化合物で、それらの中に含まれる化合物の一種又は二種以上を単独若しくは共重合することにより得られる脂肪族系、芳香族系及び共重合系石油樹脂を言う。
石油樹脂としては、例えばC5留分を主原料とする脂肪族系石油樹脂、C9留分を主原料とする芳香族系石油樹脂、それらの共重合系石油樹脂、脂環族系石油樹脂がある。テルペン樹脂としてはβ−ピネンからのテルペン樹脂やテルペン−フェノール樹脂が、またロジン系樹脂としては、ガムロジン、ウツドロジンなどのロジン樹脂、グリセリンやペンタエリスリトールで変性したエステル化ロジン樹脂などが例示できる。脂環族飽和炭化水素樹脂及びその変性体はポリエチレン系樹脂に混合した場合に比較的良好な相溶性を示すが、色調や熱安定性といった面から石油樹脂がより好ましく、水添石油樹脂を用いることが更に好ましい。
水添石油樹脂は、石油樹脂を慣用の方法によって水素化することにより得られるものである。例えば、水素化脂肪族系石油樹脂、水素化芳香族系石油樹脂、水素化共重合系石油樹脂及び水素化脂環族系石油樹脂、並びに水素化テルペン系樹脂が挙げられる。水添石油樹脂の中でも、水素化脂環族系石油樹脂で、シクロペンタジエン系化合物と芳香族ビニル系化合物とを共重合して水素添加したものが特に好ましい。市販されている水添石油樹脂としては、「アルコン」(荒川化学工業社製)などが挙げられる。
本発明におけるエチレン系共重合体とは、エチレンと、酢酸ビニル、不飽和カルボン酸、不飽和カルボン酸無水物、またはカルボン酸エステル等の中から1種類以上とを共重合させることにより得られる化合物である。
エチレン系共重合体は、エチレン単量体単位の含有率が好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上である。一方、上限については、エチレン単量体単位の含有率が好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは85質量%以下であることが望ましい。エチレン単量体単位の含有率が所定の範囲内であれば、より効率的に多孔構造を形成することができる。
前記エチレン系共重合体は、MFR(JIS K7210、温度:190℃、荷重:2.16kg)が0.1g/10分以上10g/10分以下のものが好適に用いられる。MFRが0.1g/10分以上であれば、押出加工性を良好に維持でき、一方、MFRが10g/10分以下で有ればフィルムの強度低下を起こしにくく、好ましい。
前記エチレン系共重合体は、エチレン−酢酸ビニル共重合体として「EVAFLEX」(三井・デュポン ポリケミカル社製)、「ノバテックEVA」(日本ポリエチレン社製)、エチレン−アクリル酸共重合体として「NUCコポリマー」 (日本ユニカー社製)、エバフレックス−EAA (三井・デュポン ポリケミカル社製)、「REXPEARL EAA」(日本エチレン社製)、エチレン−(メタ)アクリル酸共重合体として「ELVALOY」(三井・デュポン ポリケミカル社製)、「REXPEARL EMA」(日本エチレン社製)、エチレン−アクリル酸エチル共重合体として「REXPEARL EEA」(日本エチレン社製)、エチレン−メチル(メタ)アクリル酸共重合体として「アクリフト」(住友化学社製)、エチレン−酢酸ビニル−無水マレイン酸三元共重合体として「ボンダイン」(住友化学社製)、エチレン−メタクリル酸グリシジル共重合体、エチレン−酢酸ビニル−メタクリル酸グリシジル三元共重合体、エチレン−アクリル酸エチル−メタクリル酸グリシジル三元共重合体として「ボンドファースト」(住友化学社製)などが商業的に入手できる。
本発明におけるワックスとは、以下の(ア)および(イ)の性質を満たす有機化合物のことである。
(ア)融点が40℃〜200℃である。
(イ)融点より10℃高い温度での溶融粘度が50Pa・s以下である。
ワックスについて、極性または非極性ワックス、ポリプロピレンワックス、ポリエチレンワックス及びワックス改質剤を含む。具体的には、極性ワックス、非極性ワックス、フィッシャー−トロプシュワックス、酸化フィッシャー−トロプシュワックス、ヒドロキシステアロマイドワックス、機能化ワックス、ポリプロピレンワックス、ポリエチレンワックス、ワックス改質剤、アモルファスワックス、カルナウバワックス、キャスター・オイルワックス、マイクロクリスタリンワックス、蜜ろう、カルナウバろう、キャスターワックス、植物ろう、カンデリラろう、日本ろう、ouricuryワックス、ダグラスファーバーク・ワックス、米ぬかワックス、ホホバワックス、ヤマモモワックス、モンタンワックス、オゾケライトワックス、セレシンワックス、石油ろう、パラフィンワックス、化学変性炭化水素ワックス、置換アミドワックス、及びこれらの組み合わせ及び誘導体が挙げられる。中でも多孔構造を効率的に形成できる点から、パラフィンワックス、ポリエチレンワックス、マイクロクリスタリンワックスが好ましく、SD特性の観点より孔径をより微小化できるマイクロクリスタリンワックスが更に好ましい。市販されているポリエチレンワックスとしては「FT−115」(日本精蝋社製)、マイクロクリスタリンワックスとしては「Hi−Mic」(日本精蝋社製)などが挙げられる。
前記多孔化促進化合物Xの配合量は、ポリエチレン系樹脂と前記多孔化促進化合物Xとの界面を剥離させて微細孔を形成させる場合、一層に含まれるポリエチレン系樹脂100質量部に対し、下限として1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上が更に好ましい。一方、上限として50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下が更に好ましい。前記多孔化促進化合物Xの配合量がポリエチレン系樹脂100質量部に対し、1質量部以上とすることで、目的とする良好な多孔構造が発現する効果が十分に得られる。また、前記多孔化促進化合物Xの配合量が50質量部以下とすることで、より安定した成形性を確保することができる。
必要に応じてポリエチレン系樹脂や多孔化促進化合物X以外に、多孔性フィルムの熱特性、具体的には多孔化を損なわない範囲で熱可塑性樹脂を用いても良い。前述のポリエチレン系樹脂との混合させることができる他の熱可塑性樹脂としては、スチレン、AS樹脂、もしくはABS樹脂等のスチレン系樹脂:ポリ塩化ビニル、フッ素系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネートもしくはポリアリレート等のエステル系樹脂;ポリアセタール、ポリフェニレンエーテル、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトンもしくはポリフェニレンサルファイド等のエーテル系樹脂;6ナイロン、6−6ナイロン、6−12ナイロン等のポリアミド系樹脂等の熱可塑性樹脂が挙げられる。
また、必要に応じて熱可塑性エラストマー等のゴム成分と呼ばれているものを添加しても良い。熱可塑性エラストマーとしては、スチレン・ブタジエン系、ポリオレフィン系、ウレタン系、ポリエステル系、ポリアミド系、1,2−ポリブタジエン、ポリ塩化ビニル系、アイオノマーなどが挙げられる。
ポリエチレン系樹脂や多孔化促進化合物X以外に、一般に樹脂組成物に配合される添加剤または他の成分を含んでいてもよい。前記添加剤としては、成形加工性、生産性および積層多孔性フィルムの諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。
中でも、核剤はポリエチレン系樹脂の結晶構造を制御し、延伸開孔時の多孔構造を細かくするという効果があるため好ましい。市販されているものとして、「ゲルオールD」(新日本理化社製)、「アデカ スタブ」(旭電化工業社製)、「Hyperform」(ミリケンケミカル社製)、または「IRGACLEAR D」(チバ スペシャルケミカルズ社製)等が挙げられる。また、核剤の添加されたポリエチレン系樹脂の具体例としては、「リケマスター」(理研ビタミン社製)等が商業的に入手できる。
(ポリオレフィン系樹脂多孔フィルムの層構成)
本発明において、ポリオレフィン系樹脂多孔フィルムは、単層でも積層でも構わないが、2層以上に積層させることが好ましい。中でも、ポリプロピレン系樹脂を含有する層とポリエチレン系樹脂を含有する層とを積層したものがより好ましい。
ポリオレフィン系樹脂多孔フィルムの層構成は、ポリプロピレン系樹脂を含有する層(以降「A層」と称す)を少なくとも1層存在すれば特に限定されるものではない。また、ポリオレフィン系樹脂多孔フィルムの機能を妨げない範囲で他の層(以降「B層」と称す)を積層することもできる。強度保持層、耐熱層(高融解温度樹脂層)、シャットダウン層(低融解温度樹脂層)などを積層させた構成が挙げられる。例えば、リチウムイオン電池用セパレータとして用いる際には、特開平04−181651号公報に記載されているような高温雰囲気化で孔閉塞し、電池の安全性を確保する低融点樹脂層を積層させることが好ましい。
具体的にはA層/B層を積層した2層構造、A層/B層/A層、若しくは、B層/A層/B層として積層した3層構造などが例示できる。また、他の機能を持つ層と組み合わせて3種3層の様な形態も可能である。この場合、他の機能を持つ層との積層順序は特に問わない。更に層数としては4層、5層、6層、7層と必要に応じて増やしても良い。
本発明のポリオレフィン系樹脂多孔フィルムの物性は、層構成や積層比、各層の組成、製造方法によって自由に調整できる。
(ポリオレフィン系樹脂多孔フィルムの製造方法)
次に本発明のポリオレフィン系樹脂多孔フィルムの製造方法について説明するが、本発明はかかる製造方法により製造される積層多孔フィルムのみに限定されるものではない。
無孔膜状物の作製方法は特に限定されず公知の方法を用いてよいが、例えば押出機を用いて熱可塑性樹脂組成物を溶融し、Tダイから押出し、キャストロールで冷却固化するという方法が挙げられる。また、チューブラー法により製造した膜状物を切り開いて平面状とする方法も適用できる。
無孔膜状物の延伸方法については、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法などの手法があり、これらを単独あるいは2つ以上組み合わせて一軸延伸あるいは二軸延伸を行う。中でも、多孔構造制御の観点から逐次二軸延伸が好ましい。
また、本発明において、ポリオレフィン系樹脂多孔フィルムを積層にする場合、製造方法は、多孔化と積層の順序によって次の4つに大別される。
(a)各層を多孔化したのち、多孔化された各層をラミネートしたり接着剤等で接着したりして積層する方法。
(b)各層を積層して積層無孔膜状物を作製し、ついで当該無孔膜状物を多孔化する方法。
(c)各層のうちいずれか1層を多孔化したのち、もう1層の無孔膜状物と積層し、多孔化する方法。
(d)多孔層を作製した後、無機・有機粒子などのコーティング塗布や、金属粒子の蒸着などを行うことにより積層多孔フィルムとする方法。
本発明においては、その工程の簡略さ、生産性の観点から(b)の方法を用いることが好ましく、なかでも2層の層間接着性を確保するために、共押出で積層無孔膜状物を作製した後、多孔化する方法が特に好ましい。
以下に、製造方法の詳細を説明する。
まずポリプロピレン系樹脂と、必要であれば熱可塑性樹脂、添加剤の混合樹脂組成物を作製する。例えば、ポリプロピレン系樹脂、β晶核剤、および所望によりその他添加物等の原材料を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練後、カッティングしてペレットを得る。
前記のペレットを押出機に投入し、Tダイ押出用口金から押出して膜状物を成形する。
Tダイの種類としては特に限定されない。例えば本発明の積層多孔フィルムが2種3層の積層構造をとる場合、Tダイは2種3層用マルチマニホールドタイプでも構わないし、2種3層用フィードブロックタイプでも構わない。
使用するTダイのギャップは、最終的に必要なフィルムの厚み、延伸条件、ドラフト率、各種条件等から決定されるが、一般的には0.1〜3.0mm程度、好ましくは0.5〜1.0mmである。0.1mm未満では生産速度という観点から好ましくなく、また3.0mmより大きければ、ドラフト率が大きくなるので生産安定性の観点から好ましくない。
押出成形において、押出加工温度は樹脂組成物の流動特性や成形性等によって適宜調整されるが、概ね180〜350℃が好ましく、200〜330℃がより好ましく、220〜300℃が更に好ましい。180℃以上の場合、溶融樹脂の粘度が十分に低く成形性に優れ生産性が向上することから好ましい。一方、350℃以下にすることにより、樹脂組成物の劣化、ひいては得られる積層多孔フィルムの機械的強度の低下を抑制できる。
キャストロールによる冷却固化温度は本発明において非常に重要であり、膜状物中のポリプロピレン系樹脂のβ晶の比率を調整することができる。キャストロールの冷却固化温度は好ましくは80〜150℃、より好ましくは90〜140℃、更に好ましくは100〜130℃である。冷却固化温度を80℃以上とすることで、膜状物中のβ晶の比率を十分に増加させることができるために好ましい。また、150℃以下とすることで押出された溶融樹脂がキャストロールへ粘着し巻き付いてしまうなどのトラブルが起こりにくく、効率よく膜状物化することが可能であるので好ましい。
前記温度範囲にキャストロールを設定することで、延伸前の膜状物のポリプロピレン系樹脂のβ晶比率は30〜100%に調整することが好ましい。40〜100%がより好ましく、50〜100%が更に好ましく、60〜100%が最も好ましい。延伸前の膜状物中のβ晶比率を30%以上とすることで、その後の延伸操作により多孔化が行われやすく、透気特性の良いポリオレフィン系樹脂多孔フィルムを得ることができる。
延伸前の膜状物中のβ晶比率は、示差走査型熱量計を用いて、該膜状物を25℃から240℃まで加熱速度10℃/分で昇温させた際に、検出されるポリプロピレン系樹脂(A)のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算される。
β晶比率(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
延伸工程においては、縦方向又は横方向に一軸延伸してもよいし、二軸延伸であってもよい。また、二軸延伸を行う場合は同時二軸延伸であってもよいし、逐次二軸延伸であってもよい。本発明のポリオレフィン系樹脂多孔フィルムを作製する場合には、各延伸工程で延伸条件を選択でき、かつ多孔構造を制御し易い逐次二軸延伸がより好ましい。
ついで、得られた無孔膜状物を少なくとも二軸延伸することがより好ましい。二軸延伸は同時二軸延伸であってもよいし、逐次二軸延伸であってもよいが、各延伸工程で延伸条件(倍率、温度)を簡便に選択でき、多孔構造を制御し易い逐次二軸延伸がより好ましい。なお、膜状物及びフィルムの長手方向を「縦方向」、長手方向に対して垂直方向を「横方向」と称する。また、長手方向への延伸を「縦延伸」、長手方向に対して垂直方向への延伸を「横延伸」と称する。
逐次二軸延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、結晶化状態によって、適時選択する必要があるが、下記条件の範囲内で選択することが好ましい。
逐次二軸延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、結晶融解ピーク温度、結晶化度等によって適時変える必要があるが、縦延伸での延伸温度は概ね0〜130℃が好ましく、より好ましくは10〜120℃、更に好ましくは20〜110℃の範囲で制御される。また、縦延伸倍率は2〜10倍が好ましく、より好ましくは3〜8倍、更に好ましくは4〜7倍である。前記範囲内で縦延伸を行うことで、延伸時の破断を抑制しつつ、適度な空孔起点を発現させることができる。
一方、横延伸での延伸温度は概ね100〜160℃、好ましくは110〜150℃、更に好ましくは120〜140℃である。また、好ましい横延伸倍率は2〜10倍、より好ましくは3〜8倍、更に好ましくは4〜7倍である。前記範囲内で横延伸することで、縦延伸により形成された空孔起点を適度に拡大させ、微細な多孔構造を発現させることができる。
前記延伸工程の延伸速度としては、500〜12000%/分が好ましく、1500〜10000%/分がさらに好ましく、2500〜8000%/分であることが更に好ましい。
このようにして得られた積層多孔フィルムは、寸法安定性の改良を目的として熱処理を施すことが好ましい。この際、温度は好ましくは100℃以上、より好ましくは120℃以上、更に好ましくは140℃以上とすることで、寸法安定性の効果が期待できる。一方、熱処理温度は好ましくは170℃以下、より好ましくは165℃以下、更に好ましくは160℃以下である。熱処理温度が170℃以下であれば、熱処理によってポリプロピレンの融解が起こりにくく、多孔構造を維持できるため好ましい。また、熱処理工程中には、必要に応じて1〜20%の弛緩処理を施しても良い。なお、熱処理後、均一に冷却して巻き取ることにより、本発明の積層多孔フィルムが得られる。
(耐熱層)
本発明は、ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、フィラーと樹脂バインダとを含む耐熱層を積層させている。
(フィラー)
本発明に用いることができるフィラーとして、無機フィラー、有機フィラーなどがあるが特に制約されるものではない。耐熱性の観点から、無機フィラーを用いることが好ましい。
本発明において、前記フィラーのモース硬度が6以下であることが重要であり、4以下が好ましい。モース硬度の値が6より大きければ、電池用セパレータとして使用時に、ピンに捲回した後、電池要素からピンを引き抜く際にピンが磨耗したり、スリット加工等の切削工程の際に刃を傷つけたりする可能性があり、電池内に金属混入のおそれがある。前記金属混入は内部短絡、更には、局所加熱を引き起こし、重大な事故につながる危険性がある。一方、モース硬度が6以下であれば、前記ピンに捲回した後、電池要素を引き抜く際に、ピンを磨耗することなく引き抜いたり、スリット加工等に用いる刃やフィルムへの塗工時に使用するグラビアロール等を傷つけたりすることがなくなるため、金属混入の可能性がなく、局所加熱に伴う重大な事故につながる可能性がなくなる。
ここで、モース硬度とは、以下の10種の鉱物(モース硬度1:滑石、モース硬度2:石膏、モース硬度3:方解石、モース硬度4:蛍石モース硬度5:燐灰石、モース硬度6:正長石、モース硬度7:石英、モース硬度8:トパーズ、モース硬度9:コランダム、モース硬度10:ダイヤモンド)を標準物質として、これらと比較した硬さを評価する方法である。標準物質とサンプルをこすり、ひっかき傷が付いた方を硬度が低いとして判定を行う。なお、モース硬度を直接測定することが困難な場合、組成分析から組成を求め、同じ組成の物質のモース硬度から判断することができる。
無機フィラーの例としては、炭酸カルシウム(モース硬度:3)、炭酸マグネシウム(モース硬度:3.5〜4.5)、炭酸バリウム(モース硬度:3〜3.5)などの炭酸塩;硫酸カルシウム(モース硬度:2)、硫酸マグネシウム(モース硬度:2〜3)、硫酸バリウム(モース硬度:3〜3.5)などの硫酸塩;塩化ナトリウム(モース硬度:2〜2.5)、塩化カルシウム、塩化マグネシウムなどの塩化物、タルク(モース硬度:1)、クレー、マイカ(モース硬度:2.5〜3)などのケイ酸塩、ベーマイト(モース硬度:3.5〜4)、酸化マグネシウム(モース硬度:4)、酸化亜鉛(モース硬度:4〜5)、酸化カルシウム(モース硬度:4)、アナタース型酸化チタン(モース硬度:5.5〜6)などが挙げられる。これらの中でも、硬度と電気化学的安定性の点から硫酸バリウム、ベーマイト、またはアナタース型酸化チタンが好ましい。
有機フィラーの例としては、超高分子量ポリエチレン、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリイミド、ポリエーテルイミド、メラミン、ベンゾグアナミンなどの熱可塑性樹脂及び熱硬化性樹脂が挙げられる。これらの中でも、特に架橋させたポリスチレンなどが好ましい。
前記フィラーの平均粒径としては、好ましくは0.1μm以上、より好ましくは0.2μm以上、更に好ましくは0.3μm以上であり、上限として好ましくは3.0μm以下、より好ましくは1.5μm以下である。平均粒径を0.1μm以上とすることで、積層多孔フィルムの収縮率を低減して破膜しにくくする観点、及び、耐熱性を実現する観点から好ましい。一方、平均粒径を3.0μm以下とすることで、積層多孔フィルムの収縮率を低減して破膜しにくくする観点から好ましい。また、平均粒径を1.5μm以下とすることは、層厚の小さい耐熱層を良好に形成する観点、及び無機フィラーの耐熱層中における分散性の観点からより好ましい。
なお、本実施の形態において「フィラーの平均粒径」とは、SEMを用いる方法に準じて測定される値である。
前記耐熱層において、フィラーと樹脂バインダの総量に占めるフィラーの割合(以後、「F%」と称す)が92質量%以上であることが好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。前記F%が92質量%以上であれば、連通性がある積層多孔フィルムを作製でき、優れた透気性能を示すことができるために好ましい。
(樹脂バインダ)
本発明に用いることができる樹脂バインダの例として、前記フィラーや前記ポリオレフィン系樹脂多孔フィルムを良好に接着でき、電気化学的に安定で、かつ積層多孔フィルムを電池として使用する場合には、有機電解液に対して安定であれば特に制限はない。具体的には、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体などのエチレン−アクリル酸、共重合体、フッ素樹脂[ポリフッ化ビニリデン(PVDF)など]、フッ素系ゴム、スチレン−ブタジエンゴム(SBR)、ニトリルブタジエンゴム(NBR)、ポリブタジエンゴム(BR)、ポリアクリロニトリル(PAN)、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN−ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられる。これらの有機バインダは1種単独で使用してもよく、2種以上を併用しても構わない。これらの中でもポリビニルアルコール、ポリフッ化ビニリデン、スチレン−ブタジエンゴム、カルボキシメチルセルロース、ポリアクリル酸が好ましい。
(耐熱層の製造方法)
本実施の形態の積層多孔フィルムは、前記フィラーと前記樹脂バインダとを溶媒に溶解または分散させたフィラー含有樹脂溶液(分散液)を、前記ポリオレフィン系樹脂多孔フィルムの少なくとも片面に塗布することによってポリオレフィン系樹脂多孔フィルム表面に耐熱層を形成して製造することができる。
前記溶媒としては、前記フィラーと前記樹脂バインダとが均一かつ安定に溶解または分散可能な溶媒を用いることが好ましい。このような溶媒としては、例えば、N−メチルピロリドンやN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、ヘキサンなどを挙げることができる。また、フィラー含有樹脂溶液(分散液)を安定化させるため、あるいはポリオレフィン系樹脂多孔フィルムへの塗工性を向上させるために、前記分散液には界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤、酸やアルカリを含めたPH調製剤、等の各種添加剤を加えてもよい。これらの添加剤は、溶媒除去や可塑剤抽出の際に除去できるものが好ましいが、リチウムイオン二次電池の使用範囲において電気化学的に安定で、電池反応を阻害せず、かつ200℃程度まで安定ならば、電池内(積層多孔フィルム内)に残存してもよい。
フィラーと樹脂バインダとを溶媒に溶解または分散させる方法としては、例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌法、等が挙げられる。
前記分散液をポリオレフィン系樹脂多孔フィルムの表面に塗布する方法としては、必要とする層厚や塗布面積を実現できる方法であれば特に限定されない。このような塗布方法としては、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法、等が挙げられる。また、また、前記分散液は、その用途に照らし、ポリオレフィン系樹脂多孔フィルムの片面だけに塗布されてもよいし、両面に塗布されてもよい。
前記溶媒としては、ポリオレフィン系樹脂多孔フィルムに塗布した分散液から除去され得る溶媒であることが好ましい。溶媒を除去する方法としては、ポリオレフィン系樹脂多孔フィルムに悪影響を及ぼさない方法であれば特に限定することなく採用することが出来る。溶媒を除去する方法としては、例えば、ポリオレフィン系樹脂多孔フィルムを固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、樹脂バインダに対する貧溶媒に浸漬して樹脂バインダを凝固させると同時に溶媒を抽出する方法などが挙げられる。
なお、本実施の形態の積層多孔フィルムは、上述した製造方法とは異なる方法を用いて製造することも可能である。例えば、一方の押出機にポリオレフィン系樹脂多孔フィルムの原料を投入し、他方の押出機に耐熱層の原料を投入し、一つのダイで一体化させて積層膜状物を成形した後に、多孔化処理する方法を採用することも可能である。
(積層多孔フィルムの形状及び物性)
本発明の積層多孔フィルムの膜厚は5〜100μmが好ましい。より好ましくは8〜50μm、更に好ましくは10〜30μmである。電池用セパレータとして使用する場合、5μm以上であれば、実質的に必要な電気絶縁性を得ることができ、例えば電極の突起部分に大きな力がかかった場合でも、電池用セパレータを突き破って短絡しにくく安全性に優れる。また、膜厚が100μm以下であれば、積層多孔フィルムの電気抵抗を小さくすることができるので、電池の性能が十分に確保することができる。
耐熱層としては、耐熱性向上の観点から、好ましくは0.5μm以上、より好ましくは2μm以上、更に好ましくは3μm以上、特に好ましくは4μm以上である。上限としては、透過性や電池の高容量化の観点から、好ましくは90μm以下、より好ましくは50μm以下、更に好ましくは30μm以下、特に好ましくは10μm以下である。
本発明の積層多孔フィルムにおいて、空孔率は30%以上が好ましく、35%以上がより好ましく、40%以上が更に好ましい。空孔率が30%以上であれば、連通性を確保し透気特性に優れた積層多孔フィルムとすることができる。
一方、上限については70%以下が好ましく、65%以下がより好ましく、60%以下が更に好ましい。空孔率が70%以下であれば、積層多孔フィルムの強度が低下しにくく、ハンドリングの観点からも好ましい。なお、空孔率は実施例に記載の方法で測定している。
本発明の積層多孔フィルムの透気度は2000秒/100ml以下が好ましく、10〜1000秒/100mlがより好ましく、50〜800秒/100mlが更に好ましい。透気度が2000秒/100ml以下であれば、積層多孔フィルムに連通性があることを示し、優れた透気性能を示すことができるため好ましい。
透気度はフィルム厚み方向の空気の通り抜け難さを表し、具体的には100mlの空気が当該フィルムを通過するのに必要な数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚み方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚み方向の連通性が悪いことを意味する。連通性とはフィルム厚み方向の孔のつながり度合いである。本発明の積層多孔フィルムの透気度が低ければ様々な用途に使用することができる。例えば電池用セパレータとして使用する場合、透気度が低いということはリチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。
本発明の積層多孔フィルムは、電池用セパレータとして使用時において、SD特性を有することが好ましい。具体的には135℃で5秒間加熱後の透気度は10000秒/100ml以上であることが好ましく、より好ましくは25000秒/100ml以上、さらに好ましくは50000秒/100ml以上である。135℃で5秒間加熱後の透気度が10000秒/100ml以上とすることで、異常発熱時において空孔が速やかに閉塞し、電流が遮断されるため、電池の破裂等のトラブルを回避することができる。
本発明の積層多孔フィルムにおいて、当該フィルムの長手方向の3%伸張時の引張弾性率は400MPa以上が好ましく、450MPa以上がより好ましく、500MPa以上が更に好ましい。一方、上限については特に限定しないが、1000MPa以下であることが好ましく、900MPa以下がより好ましく、800MPa以下が更に好ましい。前記3%伸張時の引張弾性率が400MPa以上あれば、電池用セパレータとして使用時に、前記積層多孔フィルムを捲回・搬送などハンドリングする際に、積層多孔フィルムが伸ばされて、シワが入るなどの問題が無く、好適に積層多孔フィルムを使用することができる。一方で、可撓性、ハンドリングの観点から1000MPa以下が好ましい。
なお、前記3%伸張時の引張弾性率は、後述の実施例に測定方法が記載されている。
積層多孔フィルムの150℃における収縮率は、15%以下が好ましく、12%以下がより好ましく、10%以下であることが更に好ましい。前記150℃における収縮率が15%以下であれば、電池用セパレータとして使用時に、異常発熱した際においても、寸法安定性がよく、破膜するのを防げ、内部短絡温度を向上することができる。下限としては限定しないが、1%以上がより好ましい。
(電池)
続いて、本発明の前記積層多孔フィルムを電池用セパレータとして収容している非水電解液電池について、図1に参照して説明する。
正極板21、負極板22の両極は電池用セパレータ10を介して互いに重なるようにして渦巻き状に捲回し、巻き止めテープで外側を止めて捲回体としている。
前記捲回工程について詳しく説明する。電池用セパレータの片端をピン(図2)のスリット1の間に通し、ピンを少しだけ回転させて電池用セパレータの一端をピンに巻きつけておく。この時、ピンの表面と電池用セパレータの耐熱層とが接触している。その後、電池用セパレータを間に挟むようにして正極と負極を配置し、捲回機によってピンを回転させて、正負極と電池用セパレータを捲回する。捲回後、ピンは捲回物から引き抜かれる。
前記正極板21、電池用セパレータ10および負極板22を一体的に巻き付けた捲回体を有底円筒状の電池ケース内に収容し、正極および負極のリード体24、25と溶接する。ついで、前記電解質を電池缶内に注入し、電池用セパレータ10などに十分に電解質が浸透した後、電池缶の開口周縁にガスケット26を介して正極蓋27を封口し、予備充電、エージングを行い、筒型の非水電解液電池を作製している。
電解液としては、リチウム塩を電解液とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート、プロピオン酸メチルもしくは酢酸ブチルなどのエステル類、アセトニトリル等のニトリル類、1,2−ジメトキシエタン、1,2−ジメトキシメタン、ジメトキシプロパン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフランもしくは4−メチル−1,3−ジオキソランなどのエーテル類、またはスルホランなどが挙げられ、これらを単独でまたは二種類以上を混合して用いることができる。
なかでも、エチレンカーボネート1質量部に対してメチルエチルカーボネートを2質量部混合した溶媒中に六フッ化リン酸リチウム(LiPF)を1.0mol/Lの割合で溶解した電解質が好ましい。
負極としてはアルカリ金属またはアルカリ金属を含む化合物をステンレス鋼製網などの集電材料と一体化させたものが用いられる。前記アルカリ金属としては、例えばリチウム、ナトリウムまたはカリウムなどが挙げられる。前記アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズもしくはマグネシウムなどとの合金、さらにはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物もしくは硫化物との化合物などが挙げられる。
負極に炭素材料を用いる場合、炭素材料としてはリチウムイオンをドープ、脱ドープできるものであればよく、例えば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などを用いることができる。
本実施形態では、負極として、フッ化ビニリデンをN−メチルピロリドンに溶解させた溶液に平均粒径10μmの炭素材料を混合してスラリーとし、この負極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み18μmの帯状の銅箔からなる負極集電体の両面に均一に塗布して乾燥させ、その後、ロールプレス機により圧縮成形した後、切断し、帯状の負極板としたものを用いている。
正極としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウムもしくはクロム酸化物などの金属酸化物、二硫化モリブデンなどの金属硫化物などが活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレンなどの結着剤などを適宜添加した合剤を、ステンレス鋼製網などの集電材料を芯材として成形体に仕上げたものが用いられる。
本実施形態では、正極としては、下記のようにして作製される帯状の正極板を用いている。すなわち、リチウムコバルト酸化物(LiCoO)に導電助剤としてリン状黒鉛を(リチウムコバルト酸化物:リン状黒鉛)の質量比90:5で加えて混合し、この混合物と、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液とを混合してスラリーにする。この正極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み20μmのアルミニウム箔からなる正極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形した後、切断し、帯状の正極板としている。
以下に実施例および比較例を示し、本発明の積層多孔フィルムについて更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、積層多孔フィルムの長手方向を「縦方向」、長手方向に対して垂直方向を「横方向」と称する。
(1)膜厚
1/1000mmのダイアルゲージにて、面内を不特定に30箇所測定し、その平均値を膜厚とした。
(2)F%
耐熱層において、フィラーと樹脂バインダの総量に占めるフィラーの割合をF%とした。
(3)SUSテスト
A4サイズのステンレス板(材質:SUS304、モース硬度:6)を固定し、積層多孔フィルムを丸棒に耐熱層が外側になるように巻きつけ、1秒間に1往復する速さでステンレス板と耐熱層を10秒間擦り付けた。擦り付けた後の耐熱層の状態を以下の判断基準に基づいて評価した。
○:積層多孔フィルムが黒く変色、かつ磨耗が認められる
×:積層多孔フィルムが変色しない
(4)ピン抜け性
図3に示す装置を用い、縦5000mm、横580mm角に切り出した積層多孔フィルム2枚を重ね、片端を図3のスリット部1に挟み、反対端に4.3Nの重り7をぶら下げ、積層多孔フィルムを固定した。次に、耐熱層が内側になるように、速度0.6m/minで積層多孔フィルムをピン2に巻きつけ、セロハンテープで固定した。ピン2を装置から取り出し、鍔3によりピン2に捲きつけた積層多孔フィルムを引き抜いた。これを4回繰り返し、以下の判断基準に基づいてピン抜け性を評価して、「◎」となる積層多孔フィルムを合格とした。
◎:引き抜けた回数が3回以上
△:引き抜けた回数が2回
×:引き抜けた回数が1回以下
(5)透気度(ガーレ値)
JIS P8117に準拠して透気度(秒/100ml)を測定した。
(6)SD特性(135℃で5秒間加熱後の透気度)
積層多孔フィルムを縦60mm、横60mm角に切り出し、図4(A)に示すように
中央部にφ40mmの円状の穴を空けたアルミ板(材質:JIS A5052、サイズ:
縦60mm、横60mm、厚さ1mm)2枚の間にはさみ、図4(B)に示すように周囲をクリップで固定した。次に、グリセリン(ナカライテスク社製、1級)を底面から100mmとなるまで満たした、135℃のオイルバス(アズワン社製、OB−200A)の中央部に、アルミ板2枚で固定された状態のフィルムを浸漬し、5秒間加熱した。加熱後直ちに、別途用意した25℃のグリセリンを満たした冷却槽に浸漬して5分間冷却した後、2−プロパノール(ナカライテスク社製、特級)、アセトン(ナカライテスク社製、特級)で洗浄し、25℃の空気雰囲気下にて15分間乾燥した。この乾燥後のフィルムの透気度を前記(5)の方法に従い測定した。
(7)150℃における収縮率
積層多孔フィルムを縦150mm、横30mm角に切出したサンプルをチャック間100mmとなるように印を入れ、風が直接当たらないようにアルミホイルでサンプルを挟み、150℃に設定したオーブン(タバイエスペック社製、タバイギヤオーブンGPH200)に該サンプルを入れ、1時間静置した。該サンプルをオーブンから取り出し冷却した後、長さを測定し、以下の式にて縦方向(MD)、横方向(TD)の収縮率をそれぞれ算出した。
収縮率(%)={(100−加熱後の長さ)/100}×100
更に、得られた積層多孔フィルムについて次のようにしてβ活性の評価を行った。
(8)示差走査型熱量測定(DSC)
得られた積層多孔フィルムをパーキンエルマー社製の示差走査型熱量計(DSC−7)を用いて、25℃から240℃まで走査速度10℃/分で昇温後1分間保持し、次に240℃〜25℃まで走査速度10℃/分で降温後1分間保持し、次に25℃から240℃まで走査速度10℃/分で再昇温させた。この再昇温時にポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)である145〜160℃にピークが検出されるか否かによりβ活性の有無を以下の基準にて評価した。
○:Tmβが145℃〜160℃の範囲内に検出された場合(β活性あり)
×:Tmβが145℃〜160℃の範囲内に検出されなかった場合(β活性なし)
なお、β活性の測定は、試料量10mgで、窒素雰囲気下にて行った。
(9)広角X線回折測定(XRD)
積層多孔フィルムを縦60mm、横60mm角に切り出し、図4(A)に示すように中央部が40mmφの円状に穴の空いたアルミ板(材質:JIS A5052、サイズ:縦60mm、横60mm、厚さ1mm)2枚の間にはさみ、図4(B)に示すように周囲をクリップで固定した。
積層多孔フィルムをアルミ板2枚に拘束した状態のサンプルを設定温度180℃、表示温度180℃である送風定温恒温器(ヤマト科学株式会社製、型式:DKN602)に入れ3分間保持した後、設定温度を100℃に変更し、10分以上の時間をかけて100℃まで徐冷を行った。表示温度が100℃になった時点でサンプルを取り出し、アルミ板2枚に拘束した状態のまま25℃の雰囲気下で5分間冷却して得られたサンプルについて、以下の測定条件で、中央部の40mmφの円状の部分について広角X線回折測定を行った。
・広角X線回折測定装置:マックサイエンス社製、型番:XMP18A
・X線源:CuKα線、出力:40kV、200mA
・走査方法:2θ/θスキャン、2θ範囲:5°〜25°、走査間隔:0.05°、走査速度:5°/min
得られた回折プロファイルについて、ポリプロピレン系樹脂のβ晶の(300)面に由来するピークより、β活性の有無を以下のように評価した。
○:ピークが2θ=16.0〜16.5°の範囲に検出された場合(β活性あり)
×:ピークが2θ=16.0〜16.5°の範囲に検出されなかった場合(β活性なし)
なお、積層多孔フィルム片が縦60mm、横60mm角に切り出せない場合は、中央部に40mmφの円状の穴に積層多孔フィルムが設置されるように調整し、サンプルを作成しても構わない。
(10)総合評価
以下の条件を全て満たす積層多孔フィルムを◎、1つでも満たさないものを×とした。
1.透気度:1〜2000秒/100ml
2.SD特性:10000秒/100ml以上
3.150℃における収縮率:縦方向、横方向ともに10%以下
4.ピン抜け性:◎
5.SUSテスト:○
[実施例1]
(ポリオレフィン系樹脂フィルム)
A層として、ポリプロピレン系樹脂(プライムポリマー社製、300SV、密度:0.90g/cm、MFR:3.0g/10分、Tm:167℃)と、β晶核剤として、N,N’−ジシクロヘキシル−2,6−ナフタレンジカルボン酸アミドを準備した。ポリプロピレン系樹脂100質量部に対して、β晶核剤を0.2質量部の割合で各原材料をブレンドし、東芝機械株式会社製の2軸押出機(口径:40mmφ、L/D:32)に投入し、設定温度300℃で溶融混合後、水槽にてストランドを冷却固化し、ペレタイザーにてストランドをカットし、ポリプロピレン系樹脂組成物のペレットを作製した。ポリプロピレン系樹脂組成物のβ活性は80%であった。
次にB層を構成する混合樹脂組成物として、高密度ポリエチレン(日本ポリエチ社製、ノバテックHD HF560、密度:0.963g/cm、MFR:7.0g/10分)100質量部に、グリセリンモノエステルを0.04質量部、及びマイクロクリスタリンワックス(日本精蝋社製、Hi−Mic1080)10質量部を加え、同型の同方向二軸押出機を用いて220℃にて溶融混練してペレット状に加工した樹脂組成物を得た。
前記2種類の原料を用いて、外層がA層、中間層がB層となるように別々の押出機を用いて、2種3層のフィードブロックを通じて積層成型用の口金より押出し、124℃のキャスティングロールで冷却固化させて、A層/B層/A層とした2種3層の積層膜状物を作製した。
前記積層膜状物を、縦延伸機を用いて縦方向に4.6倍延伸し、その後、横延伸機にて98℃で横方向に1.9倍延伸後、熱固定/弛緩処理を行った。その結果、膜厚20μm、透気度450秒/100mlの多孔フィルムを得た。
得られたポリオレフィン系樹脂多孔フィルムは、コロナ処理装置(春日電機社製、ライン速度:50m/min、処理出力:2kW)にてコロナ表面処理を施した。
(耐熱層)
硫酸バリウム(堺化学工業社製、B−35T、平均粒径:0.6μm、モース硬度:3.5)25.5重量部、ポリビニルアルコール(クラレ社製、PVA120、鹸化度:98.0〜99.0、平均重合度:2000)0.5重量部を水66.6重量部と2−プロパノール7.4重量部の混合液に分散させた分散液を得た。得られた分散液を前記ポリオレフィン系樹脂多孔フィルムのコロナ処理面にグラビアコーターを用いて塗布した後、75℃で乾燥した。
得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[実施例2]
硫酸バリウム(堺化学工業社製、B−35T、平均粒径:0.3μm、モース硬度:3.5)24.7重量部、ポリビニルアルコール(クラレ社製、PVA120、鹸化度:98.0〜99.0、平均重合度:2000)1.3重量部を水66.6重量部と2−プロパノール7.4重量部の混合液に分散させた分散液を得た。得られた分散液を実施例1で製造したポリオレフィン系樹脂多孔フィルムのコロナ処理面にグラビアコーターを用いて塗布した後、75℃で乾燥した。
得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[比較例1]
アルミナ(住友化学社製、スミコランダムAA−03、平均粒径:0.3μm、モース硬度:9.0)39.2重量部、ポリビニルアルコール(クラレ社製、PVA120、鹸化度:98.0〜99.0、平均重合度:2000)0.8重量部を60.0重量部の水に分散させた分散液を得た。得られた分散液を実施例1で製造したポリオレフィン系樹脂多孔フィルムのコロナ処理面にグラビアコーターを用いて塗布した後、75℃で乾燥した。
得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[比較例2]
アルミナ(住友化学社製、スミコランダムAA−03、平均粒径:0.6μm、モース硬度:9.0)39.2重量部、ポリビニルアルコール(クラレ社製、PVA120、鹸化度:98.0〜99.0、平均重合度:2000)0.8重量部を60.0重量部の水に分散させた分散液を得た。得られた分散液を実施例1で製造したポリオレフィン系樹脂多孔フィルムのコロナ処理面にグラビアコーターを用いて塗布した後、75℃で乾燥した。
得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[比較例3]
実施例1で製造したポリオレフィン系樹脂多孔フィルムの物性評価を行い、その結果を表1にまとめた。
Figure 2011110704
表1に、各実施例及び比較例において得られた物性値を示す。本発明で規定する範囲内で構成された実施例の積層多孔フィルムは、本発明で規定する以外の範囲で構成された比較例3のポリオレフィン系樹脂多孔フィルムと比べてSUSを磨耗せず、優れたピン抜け性及び透気特性を有することがわかる。
一方、比較例1、2からモース硬度が高いフィラーを用いた場合には、ピン抜け性が良好であっても、SUSを磨耗し、製造工程中において金属が混入する可能性があることを示唆している。
本発明の積層多孔フィルムは、透気特性が要求される種々の用途に応用することができる。リチウム電池用セパレータ;使い捨て紙オムツ、生理用品等の体液吸収用パットもしくはベッドシーツ等の衛生材料;手術衣もしくは温湿布用基材等の医療用材料;ジャンパー、スポーツウエアもしくは雨着等の衣料用材料;壁紙、屋根防水材、断熱材、吸音材等の建築用材料;乾燥剤;防湿剤;脱酸素剤;使い捨てカイロ;鮮度保持包装もしくは食品包装等の包装材料等の資材として極めて好適に使用できる。
1 スリット部
2 ピン
3 鍔
5 回転ロール部
6 サンプル
7 重り
10 電池用セパレータ
20 二次電池
21 正極板
22 負極板
24 正極リード体
25 負極リード体
26 ガスケット
27 正極蓋
31 アルミ板
32 セパレータ
33 クリップ
34 フィルム縦方向
35 フィルム横方向

Claims (8)

  1. ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、フィラーと樹脂バインダとを含む耐熱層を積層しており、該フィラーのモース硬度が6以下であることを特徴とする積層多孔フィルム。
  2. 前記フィラーが無機フィラーであることを特徴とする請求項1に記載の積層多孔フィルム。
  3. 前記無機フィラーが、硫酸バリウム、ベーマイト、およびアナタース型酸化チタンから選ばれることを特徴とする請求項2に記載の積層多孔フィルム。
  4. 透気度が2000秒/100ml以下であることを特徴とする請求項1〜3のいずれかに記載の積層多孔フィルム。
  5. 150℃における収縮率が10%以下であることを特徴とする請求項1〜4のいずれかに記載の積層多孔フィルム。
  6. β活性を有することを特徴とする請求項1〜5のいずれかに記載の積層多孔フィルム。
  7. 請求項1〜6のいずれかに記載の積層多孔フィルムを用いた電池用セパレータ。
  8. 請求項7記載の電池用セパレータを用いた電池。
JP2009265927A 2009-11-24 2009-11-24 積層多孔フィルム、電池用セパレータ、および電池 Active JP5697328B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265927A JP5697328B2 (ja) 2009-11-24 2009-11-24 積層多孔フィルム、電池用セパレータ、および電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265927A JP5697328B2 (ja) 2009-11-24 2009-11-24 積層多孔フィルム、電池用セパレータ、および電池

Publications (2)

Publication Number Publication Date
JP2011110704A true JP2011110704A (ja) 2011-06-09
JP5697328B2 JP5697328B2 (ja) 2015-04-08

Family

ID=44233437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265927A Active JP5697328B2 (ja) 2009-11-24 2009-11-24 積層多孔フィルム、電池用セパレータ、および電池

Country Status (1)

Country Link
JP (1) JP5697328B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002139A1 (ja) * 2011-06-28 2013-01-03 株式会社村田製作所 蓄電デバイスおよびその製造方法
WO2013015228A1 (ja) * 2011-07-22 2013-01-31 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
WO2013154090A1 (ja) 2012-04-13 2013-10-17 東レバッテリーセパレータフィルム株式会社 積層多孔質膜、電池用セパレーター及び電池
WO2013183666A1 (ja) 2012-06-07 2013-12-12 三菱樹脂株式会社 ポリオレフィン系樹脂多孔性フィルム
JP2014030951A (ja) * 2012-08-03 2014-02-20 Mitsubishi Plastics Inc 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2014037136A (ja) * 2012-07-19 2014-02-27 Toray Ind Inc 多孔質フィルムおよび蓄電デバイス用セパレータ
JP2015508553A (ja) * 2011-12-20 2015-03-19 トレオファン・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト コーティングおよびシャットダウン機能を備えた高多孔性セパレータフィルム
CN104582949A (zh) * 2012-08-23 2015-04-29 捷恩智株式会社 耐热性优良的复合多孔质膜
JP2017069147A (ja) * 2015-10-02 2017-04-06 トヨタ自動車株式会社 電極体および電極体の製造方法
US9705120B2 (en) 2011-07-28 2017-07-11 Sumitomo Chemical Company, Limited Laminated porous film and non-aqueous electrolyte secondary battery
JP2020155248A (ja) * 2019-03-19 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2022025215A1 (ja) * 2020-07-31 2022-02-03 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US11769929B2 (en) 2018-11-05 2023-09-26 Lg Energy Solution, Ltd. Separator for electrochemical device and electrochemical device containing same
JP7408224B2 (ja) 2020-08-14 2024-01-05 エルジー エナジー ソリューション リミテッド セパレーター及びこれを含む電気化学素子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328627A (ja) * 1986-07-22 1988-02-06 Toyobo Co Ltd 配向ポリエステルフイルム
JP2008311220A (ja) * 2007-05-11 2008-12-25 Mitsubishi Plastics Inc 積層多孔性フィルム、電池用セパレータおよび電池
JP2009070726A (ja) * 2007-09-14 2009-04-02 Teijin Ltd 非水電解質電池の製造方法
WO2009044741A1 (ja) * 2007-10-03 2009-04-09 Hitachi Maxell, Ltd. 電池用セパレータおよび非水電解液電池
JP2009199793A (ja) * 2008-02-20 2009-09-03 Hitachi Maxell Ltd リチウム二次電池
JP2009227819A (ja) * 2008-03-24 2009-10-08 Toray Ind Inc ポリプロピレン多孔性フィルム、その製造方法、および蓄電デバイス
JP2009259662A (ja) * 2008-04-18 2009-11-05 Hitachi Maxell Ltd 電気化学素子用セパレータおよび電気化学素子
JP2009272153A (ja) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd リチウム二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328627A (ja) * 1986-07-22 1988-02-06 Toyobo Co Ltd 配向ポリエステルフイルム
JP2008311220A (ja) * 2007-05-11 2008-12-25 Mitsubishi Plastics Inc 積層多孔性フィルム、電池用セパレータおよび電池
JP2009070726A (ja) * 2007-09-14 2009-04-02 Teijin Ltd 非水電解質電池の製造方法
WO2009044741A1 (ja) * 2007-10-03 2009-04-09 Hitachi Maxell, Ltd. 電池用セパレータおよび非水電解液電池
JP2009199793A (ja) * 2008-02-20 2009-09-03 Hitachi Maxell Ltd リチウム二次電池
JP2009227819A (ja) * 2008-03-24 2009-10-08 Toray Ind Inc ポリプロピレン多孔性フィルム、その製造方法、および蓄電デバイス
JP2009259662A (ja) * 2008-04-18 2009-11-05 Hitachi Maxell Ltd 電気化学素子用セパレータおよび電気化学素子
JP2009272153A (ja) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd リチウム二次電池

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013002139A1 (ja) * 2011-06-28 2015-02-23 株式会社村田製作所 蓄電デバイスおよびその製造方法
US9793062B2 (en) 2011-06-28 2017-10-17 Murata Manufacturing Co., Ltd. Electric storage device and method for producing the same
JP5578282B2 (ja) * 2011-06-28 2014-08-27 株式会社村田製作所 蓄電デバイスおよびその製造方法
WO2013002139A1 (ja) * 2011-06-28 2013-01-03 株式会社村田製作所 蓄電デバイスおよびその製造方法
WO2013015228A1 (ja) * 2011-07-22 2013-01-31 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
US10418608B2 (en) 2011-07-28 2019-09-17 Sumitomo Chemical Company, Limited Laminated porous film and non-aqueous electrolyte secondary battery
US9882191B2 (en) 2011-07-28 2018-01-30 Sumitomo Chemical Company, Limited Laminated porous film and non-aqueous electrolyte secondary battery
US9705120B2 (en) 2011-07-28 2017-07-11 Sumitomo Chemical Company, Limited Laminated porous film and non-aqueous electrolyte secondary battery
JP2015508553A (ja) * 2011-12-20 2015-03-19 トレオファン・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト コーティングおよびシャットダウン機能を備えた高多孔性セパレータフィルム
KR20150004322A (ko) 2012-04-13 2015-01-12 도레이 배터리 세퍼레이터 필름 주식회사 적층 다공질막, 전지용 세퍼레이터 및 전지
WO2013154090A1 (ja) 2012-04-13 2013-10-17 東レバッテリーセパレータフィルム株式会社 積層多孔質膜、電池用セパレーター及び電池
JPWO2013154090A1 (ja) * 2012-04-13 2015-12-17 東レバッテリーセパレータフィルム株式会社 積層多孔質膜、電池用セパレーター及び電池
KR20150020548A (ko) 2012-06-07 2015-02-26 미쓰비시 쥬시 가부시끼가이샤 폴리올레핀계 수지 다공성 필름
CN104334619A (zh) * 2012-06-07 2015-02-04 三菱树脂株式会社 聚烯烃系树脂多孔性膜
JPWO2013183666A1 (ja) * 2012-06-07 2016-02-01 三菱樹脂株式会社 ポリオレフィン系樹脂多孔性フィルム
WO2013183666A1 (ja) 2012-06-07 2013-12-12 三菱樹脂株式会社 ポリオレフィン系樹脂多孔性フィルム
JP2014037136A (ja) * 2012-07-19 2014-02-27 Toray Ind Inc 多孔質フィルムおよび蓄電デバイス用セパレータ
JP2014030951A (ja) * 2012-08-03 2014-02-20 Mitsubishi Plastics Inc 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
US9748542B2 (en) 2012-08-23 2017-08-29 Jnc Corporation Composite porous film having excellent heat resistance
CN104582949B (zh) * 2012-08-23 2016-08-17 捷恩智株式会社 耐热性优良的复合多孔质膜
CN104582949A (zh) * 2012-08-23 2015-04-29 捷恩智株式会社 耐热性优良的复合多孔质膜
JP2017069147A (ja) * 2015-10-02 2017-04-06 トヨタ自動車株式会社 電極体および電極体の製造方法
US11769929B2 (en) 2018-11-05 2023-09-26 Lg Energy Solution, Ltd. Separator for electrochemical device and electrochemical device containing same
JP2020155248A (ja) * 2019-03-19 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN113574728A (zh) * 2019-03-19 2021-10-29 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
JP7416522B2 (ja) 2019-03-19 2024-01-17 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2022025215A1 (ja) * 2020-07-31 2022-02-03 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP7408224B2 (ja) 2020-08-14 2024-01-05 エルジー エナジー ソリューション リミテッド セパレーター及びこれを含む電気化学素子

Also Published As

Publication number Publication date
JP5697328B2 (ja) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5502707B2 (ja) 積層多孔フィルム、電池用セパレータおよび電池
JP5676577B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5697328B2 (ja) 積層多孔フィルム、電池用セパレータ、および電池
JP5419817B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5298247B2 (ja) 積層多孔フィルム、電池用セパレータおよび電池
JP5690832B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5778657B2 (ja) ポリプロピレン系樹脂多孔フィルム、電池用セパレータおよび電池
JP5265052B1 (ja) 積層多孔フィルムの製造方法
JP5685039B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP4734397B2 (ja) 積層多孔性フィルム、それを利用したリチウムイオン電池用セパレータ、および電池
WO2010053172A1 (ja) 積層多孔性フィルム、リチウム電池用セパレータおよび電池
WO2013080701A1 (ja) 積層多孔フィルムロール及びその製造方法
WO2014002701A1 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5603410B2 (ja) ポリプロピレン系樹脂多孔フィルム、電池用セパレータおよび電池
JP5976305B2 (ja) 積層多孔フィルムの製造方法
JP5848193B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2013116442A (ja) 積層多孔フィルムの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130805

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R150 Certificate of patent or registration of utility model

Ref document number: 5697328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350