WO2013002164A1 - 多孔性フィルム、電池用セパレータ、および電池 - Google Patents

多孔性フィルム、電池用セパレータ、および電池 Download PDF

Info

Publication number
WO2013002164A1
WO2013002164A1 PCT/JP2012/066117 JP2012066117W WO2013002164A1 WO 2013002164 A1 WO2013002164 A1 WO 2013002164A1 JP 2012066117 W JP2012066117 W JP 2012066117W WO 2013002164 A1 WO2013002164 A1 WO 2013002164A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
porous film
polypropylene resin
less
stretching
Prior art date
Application number
PCT/JP2012/066117
Other languages
English (en)
French (fr)
Inventor
牟田隆敏
根本友幸
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to JP2013522837A priority Critical patent/JP5699212B2/ja
Publication of WO2013002164A1 publication Critical patent/WO2013002164A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous film, which can be used as a packaging product, sanitary product, livestock product, agricultural product, building product, medical product, separation membrane, light diffusion plate, battery separator, and particularly relates to a nonaqueous electrolyte battery separator. Is.
  • the polymer porous film with many fine communication holes is used for separation membranes used for the production of ultrapure water, purification of chemicals, water treatment, waterproof and moisture permeable films used for clothing and sanitary materials, and batteries. It is used in various fields such as battery separators.
  • Secondary batteries are widely used as power sources for portable devices such as OA, FA, household electric appliances and communication devices.
  • portable devices using lithium ion secondary batteries are increasing because they have a high volumetric efficiency when mounted on devices, leading to a reduction in size and weight of the devices.
  • large-sized secondary batteries are being researched and developed in many fields related to energy / environmental issues, including road leveling, UPS, and electric vehicles, and are excellent in large capacity, high output, high voltage, and long-term storage. Therefore, the use of lithium ion secondary batteries, which are a kind of non-aqueous electrolyte secondary battery, is expanding.
  • the working voltage of a lithium ion secondary battery is usually designed with an upper limit of 4.1 to 4.2V.
  • the aqueous solution causes electrolysis and cannot be used as an electrolyte. Therefore, so-called non-aqueous electrolytes using organic solvents are used as electrolytes that can withstand high voltages.
  • the solvent for the non-aqueous electrolyte a high dielectric constant organic solvent capable of making more lithium ions exist is used, and organic carbonates such as polypropylene carbonate and ethylene carbonate are mainly used as the high dielectric constant organic solvent. in use.
  • a highly reactive electrolyte such as lithium hexafluorophosphate is dissolved in the solvent and used.
  • a separator is interposed between the positive electrode and the negative electrode from the viewpoint of preventing an internal short circuit.
  • the separator is required to have insulating properties due to its role.
  • a porous film is used as a separator.
  • the shutdown characteristic is a function that closes the micropores of the battery separator when the temperature becomes high (generally about 100 to 140 ° C.), and the lowest temperature among the temperatures at which the micropores are closed is called a shutdown temperature.
  • the shutdown characteristic is an important characteristic that contributes to safety when a battery separator is incorporated in a lithium ion secondary battery. For example, in a battery separator having a shutdown characteristic when the battery becomes abnormal due to an abnormal temperature, the micropores are blocked and ion conduction inside the battery is blocked, thereby preventing a subsequent increase in temperature inside the battery. In particular, with the recent increase in capacity of batteries, the importance for battery safety has increased, and the need for this characteristic has further increased.
  • Patent Document 1 a laminated film of polyethylene and polypropylene is uniaxially oriented.
  • Patent Document 2 a method for producing a battery separator characterized in that it is made porous by stretching in two stages at different temperatures.
  • Patent Document 2 Japanese Patent No. 2509030
  • Patent Document 3 International Publication 2002/066233
  • Patent Document 1 requires strict control of manufacturing conditions and is difficult to say that productivity is good. For example, when creating a laminated film before making it porous, film formation is performed while controlling the higher order structure with a high draft ratio, but it is very difficult to form a stable film with such a high draft ratio. Have difficulty. Further, in order to develop a porous structure, it is necessary to perform multi-stage stretching in two steps, a low temperature region and a high temperature region, at a small stretching speed, the stretching speed is greatly limited, and productivity is very poor. Furthermore, the separator manufactured by the manufacturing method is very weak against tearing in the same direction as the stretching direction, and has a problem that a tear is likely to occur in the stretching direction. Further, in Patent Documents 2 and 3, the air permeability resistance that should satisfy the recent demand for higher output of batteries is still insufficient.
  • the present invention has been made in view of the above problems, and provides a porous film having excellent air permeability, particularly a battery separator having excellent air permeability that contributes to battery performance, and a method for producing the same. Is an issue.
  • the present invention has a weight-average molecular weight (Mw) by high-temperature GPC method of 100,000 or more and a common logarithm (log Mw) of the Mw is 4.8 or less.
  • a porous film characterized by comprising a polypropylene resin composition having ⁇ activity as a main component.
  • the polypropylene resin composition preferably has a weight average molecular weight (Mw) by a high temperature GPC method of 1,000,000 or less.
  • the polypropylene resin composition preferably has a ratio of the log Mw of 4.8 or less of 50% or less of the whole.
  • the polypropylene resin composition of the present invention is a mixed resin comprising a polypropylene resin (A) having a weight average molecular weight of 100,000 or more and a low molecular weight polypropylene resin (B) having a weight average molecular weight of less than 100,000. It is preferred to have a composition.
  • the molecular weight distribution parameter Mw / Mn of the polypropylene resin (A) is preferably 1.5 to 35.0, and the melt flow rate (MFR) is preferably 0.1 to 20 g / 10 min. Moreover, it is preferable that the weight average molecular weight of the said low molecular weight polypropylene resin (B) is 80,000 or less.
  • the polypropylene resin composition further contains a ⁇ crystal nucleating agent, and the content of the ⁇ crystal nucleating agent is 0.0001 to 5 parts by mass.
  • the porous film of the present invention preferably has a layer (I layer) mainly composed of the polypropylene resin composition and a layer (II layer) mainly composed of a polyethylene resin.
  • the II layer further contains the low molecular weight polypropylene resin (B).
  • the porous film of the present invention is made porous by biaxial stretching, the porosity is 30% or more, the air permeability is 1000 sec / 100 ml or less, and the 25 ⁇ m equivalent electric resistance is 1.0 ⁇ or less.
  • the present invention provides a battery separator made of the porous film, and a battery incorporating the battery separator.
  • the present invention provides a polypropylene resin (A) having a weight average molecular weight of 100,000 or more, a low molecular weight polypropylene resin (B) having a weight average molecular weight of 80,000 or less, and a ⁇ crystal nucleating agent.
  • A polypropylene resin
  • B low molecular weight polypropylene resin
  • a ⁇ crystal nucleating agent a polypropylene resin having a weight average molecular weight of 100,000 or more
  • B low molecular weight polypropylene resin having a weight average molecular weight of 80,000 or less
  • a ⁇ crystal nucleating agent a polypropylene resin (A) having a weight average molecular weight of 100,000 or more
  • B low molecular weight polypropylene resin
  • a ⁇ crystal nucleating agent ⁇ crystal nucleating agent
  • the porous film of the present invention has excellent air permeability, it can be used as a battery separator having excellent shutdown characteristics, and a battery incorporating the battery separator has good battery performance. Furthermore, the porous film of the present invention does not require strict control of production conditions, and can be produced easily and efficiently.
  • the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified.
  • the content ratio of the components is not specified, but the main component includes 50% by mass or more, preferably 70% by mass or more, particularly preferably 90% by mass or more (including 100%) in the composition. It is.
  • “X to Y” (X and Y are arbitrary numbers) is described, it means “preferably greater than X” and “preferably smaller than Y” with the meaning of “X to Y” unless otherwise specified. Is included.
  • the polypropylene resin composition in the present invention refers to a polypropylene resin alone and / or a mixed composition mainly composed of a polypropylene resin.
  • the polypropylene resin composition has a weight average molecular weight (Mw) by GPC (gel permeation chromatography) of 100,000 or more.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the Mw is preferably 150,000 or more, more preferably 200,000 or more.
  • the upper limit is not particularly limited, but is preferably 1,000,000 or less, more preferably 800,000 or less, and still more preferably 600,000 or less.
  • the Mw is 1,000,000 or less because the polypropylene resin composition has a sufficient melt viscosity for performing extrusion processing.
  • the weight-average molecular weight (Mw) of the polypropylene resin composition by GPC is in the range of 100,000 to 1,000,000, 100,000 to 800,000, 100,000 to 600,000, 150, 000 to 1,000,000, 150,000 to 800,000, 150,000 to 600,000, 200,000 to 1,000,000, 200,000 to 800,000, 200,000 to 600,000, etc. Range.
  • the porous film of the present invention is one of the important features that the common logarithm (log Mw) of the Mw of the polypropylene resin composition occupies 4.8 or less is 15% or more of the whole. .
  • the log Mw is preferably 17% or more, and more preferably 20% or more. This mechanism is not clear because the ratio of logMw occupying 4.8 or less is not clear, but it is selectively between lamellae of the ⁇ crystal structure formed by the polypropylene resin composition. Since the low molecular weight component enters, the lamella's openability during stretching is improved, and the processing characteristics are improved. Therefore, even if the stretching speed is increased, it is presumed that the pore formation by the stretching process can be performed better.
  • the upper limit is not particularly limited, but from the viewpoint of mechanical strength, it is preferably 50% or less, more preferably 45% or less, and still more preferably 40% or less. From the above, for example, the range of the ratio of the logarithm logarithm (log Mw) of Mw of 4.8 or less of the polypropylene resin composition is 15% to 50%, 15% to 45%, 15% to 40% of the whole, The range may be 17% to 50%, 17% to 45%, 17% to 40%, 20% to 50%, 20% to 45%, 20% to 40%, and the like.
  • the porous film of this invention has (beta) activity.
  • the ⁇ activity can be regarded as an index indicating that the polypropylene resin composition produced ⁇ crystals in the non-porous film-like material before stretching. If the polypropylene-based resin composition in the non-porous film-like material before stretching generates ⁇ crystals, fine pores are formed by subsequent stretching, thereby obtaining a porous film having air permeability characteristics. be able to.
  • the ⁇ activity is measured in the state of the entire porous film in any case where the porous film of the present invention has a single-layer structure or other porous layers are laminated. Yes.
  • the presence or absence of “ ⁇ activity” is determined when the crystal melting peak temperature derived from the ⁇ crystal is detected by a differential scanning calorimeter described later and / or a wide angle X-ray diffractometer described later.
  • a diffraction peak derived from the ⁇ crystal is detected by measurement using, it is determined that the sample has “ ⁇ activity”.
  • the porous film is heated at a heating rate of 10 ° C./min from 25 ° C. to 240 ° C. for 1 minute with a differential scanning calorimeter, and then cooled at a cooling rate of 10 ° C./min from 240 ° C. to 25 ° C.
  • the crystal melting peak temperature (Tm ⁇ ) derived from the ⁇ crystal of the polypropylene resin composition is If detected, it is determined to have ⁇ activity.
  • the ⁇ activity of the porous film is calculated by the following formula using the crystal heat of fusion derived from the ⁇ crystal ( ⁇ Hm ⁇ ) and the crystal heat of heat derived from the ⁇ crystal ( ⁇ Hm ⁇ ) of the polypropylene resin composition to be detected. is doing.
  • ⁇ activity (%) [ ⁇ Hm ⁇ / ( ⁇ Hm ⁇ + ⁇ Hm ⁇ )] ⁇ 100
  • the amount of heat of crystal melting derived from ⁇ crystal ( ⁇ Hm ⁇ ) detected mainly in the range of 145 ° C. or higher and lower than 160 ° C., and mainly 160 ° C. or higher.
  • the crystal melting calorie ( ⁇ Hm ⁇ ) derived from the ⁇ crystal detected at 170 ° C. or lower For example, when random polypropylene copolymerized with 1 to 4 mol% of ethylene is included, the amount of heat of crystal melting ( ⁇ Hm ⁇ ) derived from the ⁇ crystal, which is mainly detected in the range of 120 ° C. or more and less than 140 ° C. It can be calculated from the heat of crystal melting ( ⁇ Hm ⁇ ) derived from the ⁇ crystal, which is mainly detected in the range of 140 ° C. or more and 165 ° C. or less.
  • the porous film preferably has a high ⁇ activity, and the ⁇ activity is preferably 20% or more. More preferably, it is 40% or more, and particularly preferably 60% or more. If the porous film has a ⁇ activity of 20% or more, it indicates that a large amount of ⁇ crystals of the polypropylene resin composition can be produced even in the non-porous film-like material before stretching. Many uniform pores are formed. As a result, a porous film having high mechanical strength and excellent air permeability can be obtained, particularly a battery separator.
  • the upper limit of ⁇ activity is not particularly limited, but the higher the ⁇ activity, the more effective the effect is obtained.
  • a method for obtaining the ⁇ activity of the porous layer described above a method in which a substance that promotes the formation of ⁇ crystals of the polypropylene resin composition is not added, or a peroxide radical is used as described in Japanese Patent No. 3739481.
  • Examples thereof include a method of adding polypropylene that has been subjected to the treatment to be generated, and a method of adding a ⁇ crystal nucleating agent to the composition.
  • the ⁇ crystal nucleating agent is preferably blended in the polypropylene resin composition.
  • the proportion of the ⁇ crystal nucleating agent added to the polypropylene resin composition needs to be appropriately adjusted depending on the type of the ⁇ crystal nucleating agent or the composition of the polypropylene resin composition, but the polypropylene resin composition.
  • the ⁇ crystal nucleating agent is preferably 0.0001 to 5.0 parts by mass with respect to 100 parts by mass. 0.001 to 3.0 parts by mass is more preferable, and 0.01 to 1.0 part by mass is still more preferable.
  • ⁇ crystals of the polypropylene resin composition can be sufficiently produced and grown during production, and sufficient ⁇ activity can be ensured even when a porous film is formed. Air permeability performance can be obtained. Addition of 5.0 parts by mass or less is preferable because it is economically advantageous and there is no bleeding of the ⁇ crystal nucleating agent on the surface of the porous film.
  • the addition amount of the ⁇ crystal nucleating agent in each layer may be the same, but different. May be. The porous structure of each layer can be appropriately adjusted by changing the addition amount of the ⁇ crystal nucleating agent.
  • the polypropylene resin composition used in the present invention preferably contains a polypropylene resin (A) having a weight average molecular weight of 100,000 or more and a low molecular weight polypropylene resin (B) having a weight average molecular weight of less than 100,000. .
  • polypropylene resin (A) As the polypropylene resin (A), homopropylene (propylene homopolymer), or propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene or 1 -Random copolymers or block copolymers with ⁇ -olefins such as decene.
  • homopolypropylene is more preferably used from the viewpoint of maintaining high ⁇ activity, mechanical strength of the porous film, heat resistance, and the like.
  • the polypropylene resin (A) preferably has an isotactic pentad fraction (mmmm fraction) exhibiting stereoregularity of 80 to 99%. More preferably 83 to 98%, and still more preferably 85 to 97%. If the isotactic pentad fraction is too low, the mechanical strength of the film may be reduced.
  • the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed in the industrial level in the future. is not.
  • the isotactic pentad fraction (mmmm fraction) is the same direction for all five methyl groups that are side chains with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. Means the three-dimensional structure located at or its proportion. Signal assignment of the methyl group region is as follows. Zambellietal (Macromolecules 8, 687, (1975)).
  • the weight average molecular weight of polypropylene resin (A) is 100,000 or more, Preferably it is 150,000 or more, More preferably, it is 200,000 or more.
  • the porous film can have sufficient mechanical strength and heat resistance.
  • the upper limit is not particularly limited, but is preferably 1,000,000 or less, more preferably 800,000 or less, and still more preferably 600,000 or less from the viewpoint of extrusion moldability. From the above, for example, the range of the weight average molecular weight of the polypropylene resin (A) is 100,000 to 1,000,000, 100,000 to 800,000, 100,000 to 600,000, 150,000 to 1,000. 000,000, 150,000-800,000, 150,000-600,000, 200,000-1,000,000, 200,000-800,000, 200,000-600,000, etc. be able to.
  • Mw / Mn which is a parameter indicating the molecular weight distribution of the polypropylene resin (A)
  • Mw / Mn is 1.5 to 35.0. More preferred is 1.5 to 10.0, and still more preferred is 2.0 to 8.0. This means that the smaller the Mw / Mn, the narrower the molecular weight distribution.
  • Mw / Mn is 35.0 or less, the occurrence of bleed out from the porous film due to the low molecular weight component can be sufficiently suppressed.
  • Mw / Mn is obtained by GPC (gel permeation chromatography) method.
  • the melt flow rate (MFR) of the polypropylene resin (A) is not particularly limited, but usually the MFR is preferably from 0.1 to 20 g / 10 minutes, preferably from 0.5 to 15 g / 10. More preferably, it is minutes. When the MFR is less than 0.1 g / 10 minutes, the melt viscosity of the resin at the time of molding is high and the productivity is lowered. On the other hand, if it exceeds 20 g / 10 minutes, the mechanical strength of the resulting porous film is insufficient, and problems are likely to occur in practice.
  • MFR in this invention is based on JISK7210, and refers to a measured value on the conditions of temperature 230 degreeC and load 2.16kg.
  • the polypropylene resin composition includes a polypropylene resin (A) and a low molecular weight polypropylene resin (B) described later, the viscosity of the polypropylene resin composition is increased by the addition of the low molecular weight polypropylene resin (B). Since the reduction occurs, it is preferable to adjust the composition ratio of the mixed resin composition and the MFR of the polypropylene resin (A) in view of the molding process characteristics and the characteristics of the obtained film.
  • polypropylene resin (A) examples include “Novatech PP” and “WINTEC” (manufactured by Nippon Polypro), “Notio” and “Toughmer XR” (manufactured by Mitsui Chemicals), “Zeras” and “Thermolan” (Mitsubishi Chemical).
  • the upper limit of the weight average molecular weight of the low molecular weight polypropylene resin (B) is less than 100,000, preferably 80,000 or less, more preferably 50,000 or less, and particularly preferably 30,000 or less.
  • the weight average molecular weight is 80,000 or less, an excessive increase in pore diameter can be suppressed, a fine porous structure can be obtained, and the effect of improving the air permeability characteristics can be sufficiently ensured.
  • the lower limit of the weight average molecular weight of the low molecular weight polypropylene resin (B) is preferably 1,000 or more, more preferably 3,000 or more, and still more preferably 4,500 or more.
  • the weight average molecular weight of the low molecular weight polypropylene resin (B) is 1,000 to 80,000, 1,000 to 50,000, 1,000 to 30,000, 3,000 to 80. , 3,000, 50,000 to 50,000, 3,000 to 30,000, 4,500 to 80,000, 4,500 to 50,000, 4,500 to 30,000, etc. .
  • the weight average molecular weight of the low molecular weight polypropylene (B) is calculated in terms of polystyrene using a high temperature GPC (gel per emission chromatography) method by dissolving low molecular weight polyolefin in 140 ° C. o-dichlorobenzene. Yes.
  • the low molecular weight polypropylene-based resin (B) has good compatibility with the polypropylene-based resin (A) constituting the porous film of the present invention, and is uniformly compatible during melt kneading and cooling and solidification. be able to.
  • the polypropylene resin composition contains a polypropylene resin (A) and a low molecular weight polypropylene resin (B), as described above, since it has excellent compatibility, it has been cooled and solidified nonporous film-like material. In this case, it becomes possible to form a denser pore structure.
  • the present inventors have added a porous film having ⁇ activity, the main component of which is a polypropylene resin (A) having a weight average molecular weight of 100,000 or more (the low molecular weight polypropylene resin (B) is added.
  • the porous film of the present invention has better air permeability. This mechanism is not clear, but selectively between lamellae having a ⁇ crystal structure formed by a polypropylene resin composition containing a polypropylene resin (A) and a low molecular weight polypropylene resin (B). It is presumed that this is because the low molecular weight polypropylene resin (B) enters and improves the pore opening of the lamella during stretching.
  • the stretching speed is There is an effect of slowing down the dependency.
  • the stretching speed is increased, the transmission characteristics or porosity of the resulting porous film tends to decrease. Therefore, in producing a porous film, there are many problems that productivity is not improved due to restrictions on the stretching speed.
  • the present inventors added a low molecular weight polypropylene resin (B) to the polypropylene resin (A), thereby reducing the permeability characteristics of the porous film. Clarified that it can be slowed down. That is, the present invention is considered not only to improve the permeation characteristics of the porous film but also to improve productivity.
  • the mass ratio of the low molecular weight polypropylene resin (B) in the mixed resin composition is 0.1% by mass or more, sufficient transmission characteristics can be obtained. Moreover, by being 50 mass% or less, while being able to fully hold
  • low molecular weight polypropylene or modified products thereof include “Mitsui High Wax” (manufactured by Mitsui Chemicals) series, “Biscol” (manufactured by Sanyo Chemical Industries), “Licocene” (Clariant Japan) Product) series.
  • Examples of the ⁇ crystal nucleating agent used in the present invention include the following, but are not particularly limited as long as they increase the generation and growth of ⁇ crystals of the polypropylene resin composition, and two types are also available. You may mix and use the above.
  • Examples of the ⁇ crystal nucleating agent include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc.
  • Alkali or alkaline earth metal salts of carboxylic acids represented by: aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate; diesters or triesters of dibasic or tribasic carboxylic acids; phthalocyanines Phthalocyanine pigments typified by blue, etc .; two-component compounds comprising component a which is an organic dibasic acid and component b which is an oxide, hydroxide or salt of a Group IIA metal of the periodic table; a cyclic phosphorus compound And magnesium compound Such composition comprising the like.
  • specific types of nucleating agents are described in JP-A No. 2003-306585, JP-A No. 06-289656, and JP-A No. 09-194650.
  • ⁇ crystal nucleating agent As a commercial product of ⁇ crystal nucleating agent, ⁇ crystal nucleating agent “NJESTER NU-100” manufactured by Shin Nippon Rika Co., Ltd.
  • polypropylene resin to which ⁇ crystal nucleating agent is added polypropylene manufactured by Aristech “Bepol B” -022SP ”, polypropylene“ Beta ( ⁇ ) -PPBE60-7032 ”manufactured by Borealis, polypropylene“ BNX BETAPP-LN ”manufactured by Mayzo, and the like.
  • thermoplastic resins may be added to the polypropylene resin composition as long as the thermal characteristics of the porous film, specifically, the porosity is not impaired.
  • polyolefin resin such as polyethylene; styrene resin such as styrene, AS resin, or ABS resin; ester resin such as polyvinyl chloride, fluorine resin, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, or polyarylate Ether resins such as polyacetal, polyphenylene ether, polysulfone, polyether sulfone, polyether ether ketone, or polyphenylene sulfide; thermoplastic resins such as polyamide resins such as 6 nylon, 6-6 nylon, and 6-12 nylon; It is done.
  • an additive generally blended in the resin composition can be appropriately added within a range that does not significantly impair the effects of the present invention.
  • the additive is added for the purpose of improving and adjusting various physical properties such as moldability and productivity, recycled resin generated from trimming loss such as ears, and inorganic such as silica, talc, kaolin, calcium carbonate, etc.
  • Particles pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, plasticizers, anti-aging agents, antioxidants, light stability Additives such as an agent, an ultraviolet absorber, a neutralizing agent, an antifogging agent, an antiblocking agent, a slipping agent or a coloring agent.
  • a layer mainly composed of polyethylene resin (hereinafter referred to as I layer)
  • a layer mainly composed of polyethylene resin (hereinafter referred to as II layer) is laminated. May be.
  • the thermal properties of the polyethylene resin contained in the layer (II layer) mainly composed of the polyethylene resin of the present invention are important. That is, a polyethylene resin having a crystal melting peak temperature of 100 to 150 ° C. is preferable for the composition constituting the layer mainly composed of the polyethylene resin.
  • the crystal melting peak temperature in the present invention is a peak value of the crystal melting temperature when the temperature is increased from 30 ° C. at a scanning rate of 10 ° C./min using a differential scanning calorimeter in accordance with JIS K7121.
  • polyethylene resins include not only polyethylene resins such as ultra low density polyethylene, low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, or ultra high density polyethylene alone, but also ethylene.
  • polyethylene resins such as ultra low density polyethylene, low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, or ultra high density polyethylene alone, but also ethylene.
  • examples thereof include a propylene copolymer or a mixture of a polyethylene resin and another polyolefin resin.
  • a polyethylene resin alone is preferable.
  • the density of the polyethylene resin is preferably 0.910 to 0.970 g / cm 3 , more preferably 0.930 to 0.970 g / cm 3 , and 0.940 to 0.970 g / cm 3. 3 is more preferable.
  • a density of 0.910 g / cm 3 or more is preferable because a layer having an appropriate shutdown temperature can be formed when used as a battery separator.
  • it is 0.970 g / cm 3 or less, it is possible to form a laminated porous film having a layer having an appropriate shutdown temperature when used as a battery separator, and it is preferable in that stretchability is maintained.
  • the density can be measured according to JIS K7112 using a density gradient tube method.
  • the melt flow rate (MFR) of the polyethylene resin is not particularly limited, but usually the MFR is preferably 0.03 to 15 g / 10 min, and preferably 0.3 to 10 g / 10 min. preferable. If MFR is in the above range, the back pressure of the extruder does not become too high during the molding process and the productivity is excellent.
  • MFR in this invention refers to the measured value on the conditions of temperature 190 degreeC and load 2.16kg based on JISK7210.
  • the method for producing the polyethylene-based resin is not particularly limited, and is a known polymerization method using a known olefin polymerization catalyst, for example, a multi-site catalyst represented by a Ziegler-Natta type catalyst or a metallocene-based catalyst. And a polymerization method using a single site catalyst.
  • the low molecular weight polypropylene resin (B) is contained in the polyethylene resin layer (II layer) as a main component, thereby providing stable shutdown characteristics when used as a battery separator and improving the shutdown speed. From the viewpoint of The low molecular weight polypropylene resin (B) exhibits relatively good compatibility with the polyethylene resin, and is compatible when the polyethylene resin is molten, and the polyethylene resin crystallizes. In addition, the low molecular weight polypropylene resin (B) is constructed as a domain in a matrix made of polyethylene resin.
  • the present inventors observe the non-porous film-like material before stretching of the formed film with an electron microscope, and low molecular weight polypropylene or a modified product thereof may form a domain in a polyethylene-based resin as a matrix. I have confirmed.
  • the low molecular weight polypropylene resin (B) becomes a domain and uniformly dispersed,
  • the low molecular weight compound serves as a starting point for pore formation and can provide a uniform pore distribution, thus adjusting the air permeation performance of the resulting laminated porous film. It becomes possible.
  • the low molecular weight polypropylene resin (B) when included in a layer (II layer) containing a polyethylene resin as a main component, the low molecular weight polypropylene resin (B) includes the polypropylene resin (A) and the low resin.
  • the low molecular weight polypropylene resin (B) may be the same as or different from the low molecular weight polypropylene resin (B) contained in the layer (I layer) mainly composed of the mixed resin composition containing the molecular weight polypropylene resin (B).
  • the amount of the low molecular weight polypropylene resin (B) contained in the layer containing the polyethylene resin as a main component (II layer) is 100% by mass of the resin composition constituting the layer containing the polyethylene resin as a main component.
  • it is preferably 0.1% or more and 8% or less. More preferably, they are 0.5 mass% or more and 7% or less, More preferably, they are 1% or more and 6% or less.
  • additives generally added to the resin composition can be added as appropriate within a range that does not significantly impair the effects of the present invention.
  • the additive include recycling resin, silica, talc, kaolin, calcium carbonate, and the like, which are added for the purpose of improving and adjusting molding processability, productivity, and various physical properties of the porous film.
  • Inorganic particles such as, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents, Examples thereof include additives such as antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, and coloring agents.
  • additives such as antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, and coloring agents.
  • the structure of the porous film of the present invention is not particularly limited as long as at least one layer (I layer) containing the polypropylene resin composition as a main component is present.
  • I layer the polypropylene resin composition
  • a layer (II layer) containing a polyethylene resin it is more preferable to laminate the I layer and a layer (II layer) containing a polyethylene resin as a main component.
  • Specific examples include a two-layer structure in which I layers / II layers are stacked, a three-layer structure in which I layers / II layers / I layers, or II layers / I layers / II layers are stacked.
  • III layer the structure of the porous film of the present invention is not particularly limited as long as at least one layer (I layer) containing the polypropylene resin composition as a main component is present.
  • II layer a layer containing a polyethylene resin
  • the order of stacking with layers having other functions is not particularly limited. Further, the number of layers may be increased as necessary to 4 layers, 5 layers, 6 layers, and 7 layers. In addition, when there are two or more I layers, the content of each component may be the same or different. Among these, the two-layer / three-layer configuration of I layer / II layer / I layer is more preferable because the degree of curling and surface smoothness of the resulting laminated porous film are improved. Moreover, the other layer (III layer) different from the said I layer and II layer can also be laminated
  • the form of the porous film of the present invention may be either a flat shape or a tube shape, but it is good in productivity because several products can be taken in the width direction, and the inner surface is treated with a coat or the like. From the viewpoint of being possible, a planar shape is more preferable.
  • the thickness of the porous film of the present invention is preferably 1 to 500 ⁇ m, more preferably 5 to 300 ⁇ m, still more preferably 7 to 100 ⁇ m. Particularly when used as a battery separator, it is preferably 1 to 50 ⁇ m, more preferably 10 to 30 ⁇ m.
  • the thickness is 1 ⁇ m or more, preferably 10 ⁇ m or more, substantially necessary electrical insulation can be obtained. For example, even when a large voltage is applied, it is difficult to short-circuit and is safe. Excellent. Further, if the thickness is 50 ⁇ m or less, preferably 30 ⁇ m or less, the electrical resistance of the porous film can be reduced, so that the battery performance can be sufficiently secured. Further, the stacking ratio of the I layer and the II layer can be appropriately adjusted according to the use and purpose, and is not particularly limited, but the I layer (if there are two or more layers, the total thickness thereof) ) / II layer (the total thickness when there are two or more layers) is preferably from 1 to 10, more preferably from 1 to 8. Within such a range, the air permeability is good, and the air permeability after heating at 135 ° C. for 1 minute can be sufficiently increased.
  • the physical properties of the porous film of the present invention can be freely adjusted by the layer constitution, the lamination ratio, the composition of each layer, and the production method.
  • the air permeability of the porous film of the present invention is preferably 1000 seconds / 100 ml or less, more preferably 800 seconds / 100 ml or less, still more preferably 500 seconds / 100 ml or less, particularly preferably 250 seconds / 100 ml or less. If the air permeability is 1000 seconds / 100 ml or less, it is preferable that the porous film has a communication property and an excellent air permeability can be exhibited.
  • the lower limit is not particularly limited, but is preferably 10 seconds / 100 ml or more, and more preferably 50 seconds / 100 ml or more.
  • the air permeability represents the difficulty of air passage in the film thickness direction, and is specifically expressed in seconds necessary for 100 ml of air to pass through the film. Therefore, it means that the smaller the numerical value is, the easier it is to pass through, and the higher numerical value is, the more difficult it is to pass. That is, a smaller value means better communication in the thickness direction of the film, and a larger value means poor communication in the thickness direction of the film. Communication is the degree of connection of holes in the film thickness direction. If the air permeability of the porous film of the present invention is low, it can be used for various applications. For example, when used as a battery separator, a low air permeability means that lithium ions can be easily transferred, which is preferable because battery performance is excellent.
  • the porosity is an important factor for defining the porous structure.
  • the porosity is preferably 30% or more, more preferably 35% or more, and still more preferably 40% or more. If the porosity is 30% or more, it is possible to obtain a porous film that ensures communication and has excellent air permeability.
  • the upper limit is preferably 75% or less, more preferably 70% or less, and even more preferably 65% or less. If the porosity is 75% or less, there is no problem that the number of fine holes increases and the strength of the film decreases, which is preferable from the viewpoint of handling.
  • the measuring method is described in the below-mentioned Example for the porosity.
  • the 25 ⁇ m equivalent electric resistance is preferably 1.0 ⁇ or less, more preferably 0.90 ⁇ or less, and still more preferably 0.85 ⁇ or less.
  • the 25 ⁇ m equivalent electric resistance is 1.0 ⁇ or less, it means that the charge can be easily transferred when used as a battery separator, and it is preferable because the battery performance is excellent.
  • the lower limit of the 25 ⁇ m equivalent electrical resistance is not particularly limited, but is preferably 0.10 ⁇ or more, more preferably 0.20 ⁇ or more, and further preferably 0.50 ⁇ or more. If the 25 ⁇ m equivalent electrical resistance is 0.10 ⁇ or more, troubles such as internal short circuit can be avoided when used as a battery separator.
  • the air permeability after heating for 1 minute at 135 ° C. is preferably 50,000 seconds / 100 ml or more, more preferably 75,000 seconds / 100 ml or more for the laminated porous film in which the II layer is laminated on the I layer. preferable.
  • the air permeability after heating at 135 ° C. for 1 minute to 50,000 seconds / 100 ml or more even when the battery undergoes thermal runaway when used as a battery separator, the pores are quickly closed. Troubles such as bursting can be avoided.
  • the low molecular weight polypropylene resin (B) is added to a polyethylene resin, and the kind and blending amount of the low molecular weight polypropylene resin (B) are adjusted, or a crystal nucleating agent is added to the polyethylene resin.
  • the air permeability after heating at 135 ° C. for 1 minute can be controlled.
  • the air permeability after heating for 1 minute at 135 ° C. can be adjusted to 50000 seconds / 100 ml or more by adjusting the stretching conditions.
  • a non-porous film-like material is produced by melt extrusion, and the non-porous film-like material is stretched so that a large number of fine pores having connectivity in the thickness direction are obtained.
  • the formed porous film can be obtained.
  • the method for producing the non-porous film is not particularly limited, and a known method may be used. For example, a method of melting a thermoplastic resin composition using an extruder, extruding from a T die, and cooling and solidifying with a cast roll. Is mentioned. Moreover, the method of cutting open the film-like thing manufactured by the tubular method and making it planar is also applicable.
  • There are methods for stretching the nonporous film-like material such as a roll stretching method, a rolling method, a tenter stretching method, and a simultaneous biaxial stretching method, and these methods are used alone or in combination of two or more to perform uniaxial stretching or biaxial stretching. .
  • biaxial stretching is preferable from the viewpoint of controlling the porous structure.
  • the production method is roughly classified into the following (a) to (d) depending on the order of the porous formation and lamination.
  • A A method of laminating each porous layer after laminating each porous layer or bonding with an adhesive or the like.
  • B A method of laminating each layer to produce a laminated nonporous film-like material and then making the nonporous film-like material porous.
  • C A method in which one of the layers is made porous and then laminated with another layer of a nonporous film to make it porous.
  • (D) A method of forming a laminated porous film by preparing a porous layer and then applying a coating such as inorganic / organic particles or depositing metal particles.
  • a coating such as inorganic / organic particles or depositing metal particles.
  • Particularly preferred is a method of forming a porous layer after preparing the film.
  • the polypropylene resin composition is prepared.
  • raw materials such as polypropylene resin (A), low molecular weight polypropylene resin (B), ⁇ crystal nucleating agent, and other additives as desired, preferably using a Henschel mixer, super mixer, tumbler mixer, etc.
  • all components are put in a bag and mixed by hand blending, and then melt-kneaded with a single-screw or twin-screw extruder, a kneader, etc., preferably a twin-screw extruder, and then cut to obtain pellets.
  • the pellets are put into an extruder and extruded from a T-die extrusion die to form a film.
  • the type of T die is not particularly limited.
  • the T die may be a multi-manifold type for two types and three layers or a feed block type for two types and three layers.
  • the gap of the T die to be used is determined from the final required film thickness, stretching conditions, draft rate, various conditions, etc., but generally it is preferably about 0.1 to 3.0 mm, more preferably 0.5 to 1.0 mm. By setting it to 0.1 mm or more, a sufficient production rate can be secured, and by setting it to 3.0 mm or less, it is preferable because sufficient production stability can be secured.
  • the extrusion temperature is appropriately adjusted depending on the flow characteristics and moldability of the resin composition, but is generally preferably 180 to 350 ° C, more preferably 200 to 330 ° C, and further preferably 220 to 300 ° C.
  • a temperature of 180 ° C. or higher is preferable because the viscosity of the molten resin is sufficiently low and the moldability is excellent and the productivity is improved.
  • the temperature is set to 350 ° C. or lower, it is possible to suppress the deterioration of the resin composition, and hence the mechanical strength of the resulting porous film.
  • the cooling and solidification temperature by the cast roll is very important in the present invention, and the ratio of the ⁇ crystal of the polypropylene resin composition in the non-porous film can be adjusted.
  • the cooling and solidifying temperature of the cast roll is preferably 80 to 150 ° C, more preferably 90 to 140 ° C, and still more preferably 100 to 130 ° C.
  • a cooling and solidification temperature of 80 ° C. or higher is preferable because the solidification can be achieved by cooling and the ratio of ⁇ crystals in the film can be sufficiently increased.
  • the ⁇ crystal ratio of the non-porous film-like polypropylene resin composition is 30 to 100% by setting a cast roll in the temperature range. More preferably, it is 40 to 100%, more preferably 50 to 100%, and most preferably 60 to 100%.
  • the ⁇ crystal ratio in the non-porous film-like material is determined by using a differential scanning calorimeter when the temperature is raised from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min.
  • the obtained nonporous film-like material is preferably stretched at least in a uniaxial direction, more preferably biaxial stretching in a biaxial direction.
  • Biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching.
  • sequential biaxial stretching is more preferable because the stretching conditions can be selected in each stretching step and the porous structure can be easily controlled.
  • stretching in the film take-up (flow) direction is referred to as “longitudinal stretching”
  • stretching in the perpendicular direction is referred to as “lateral stretching”.
  • the stretching temperature needs to be appropriately selected depending on the composition of the polypropylene resin composition, crystallinity, etc., but is preferably selected within the range of the following conditions.
  • the lower limit of the stretching temperature in the longitudinal stretching is generally preferably 20 ° C or higher, more preferably 40 ° C or higher, and still more preferably 60 ° C or higher.
  • the upper limit of the stretching temperature is preferably 130 ° C. or lower, more preferably 120 ° C. or lower, and even more preferably 110 ° C. or lower.
  • the lower limit of the stretching ratio in the longitudinal stretching is preferably 2 times or more, and more preferably 3 times or more.
  • the upper limit of the draw ratio is preferably 10 times or less, more preferably 8 times or less, and even more preferably 7 times or less.
  • the lower limit of the stretching temperature in transverse stretching is preferably preferably 100 ° C. or higher, more preferably 105 ° C. or higher, and even more preferably 110 ° C. or higher.
  • the upper limit of the stretching temperature is preferably 160 ° C. or lower, more preferably 150 ° C. or lower, and still more preferably 140 ° C. or lower.
  • 1.2 times or more is preferable, as for the minimum of the draw ratio in transverse stretching, 1.5 times or more are more preferable, and 2.0 times or more are still more preferable.
  • the upper limit of the draw ratio is preferably 10 times or less, more preferably 8 times or less, and still more preferably 6 times or less.
  • the lower limit of the stretching speed in the stretching step is preferably 300% / min or more, more preferably 500% / min or more, and still more preferably 1000% / min or more.
  • the upper limit of the stretching speed is preferably 12000% / min or less, more preferably 10,000% / min or less, and still more preferably 8000% / min or less. If it is the extending
  • the porous film thus obtained is preferably subjected to heat treatment for the purpose of improving dimensional stability.
  • the effect of dimensional stability can fully be anticipated by making temperature into 100 degreeC or more.
  • the heat treatment temperature is preferably 160 ° C. or lower.
  • a relaxation treatment of 1 to 20% may be performed as necessary.
  • the porous film of the present invention can be obtained by uniformly cooling and winding after the heat treatment.
  • the porous film of the present invention can be applied to various uses that require air permeability.
  • Battery separator Water treatment membrane; Sanitary materials such as disposable paper diapers and sanitary pads for absorbing body fluids or bed sheets; Medical materials such as surgical gowns and base materials for warm compresses; Jumpers, sportswear, rainwear, etc. Material for clothing; Building materials such as wallpaper, roof waterproofing material, heat insulating material, sound absorbing material, etc .; Desiccant; Dampproofing agent; Deoxidant agent; Disposable body warmer; It can be used suitably.
  • the battery separator 10 has a thickness of 5 to 40 ⁇ m, particularly preferably 5 to 30 ⁇ m. When the thickness is 5 ⁇ m or more, the battery separator is not easily broken, and when the thickness is 40 ⁇ m or less, the battery area can be increased when wound into a predetermined battery can and thus the battery capacity can be increased. it can.
  • the wound body in which the positive electrode plate 21, the battery separator 10 and the negative electrode plate 22 are integrally wound is accommodated in a bottomed cylindrical battery case and welded to the positive and negative electrode lead bodies 24 and 25.
  • the electrolyte is injected into the battery can, and after the electrolyte has sufficiently penetrated into the battery separator 10 or the like, the positive electrode lid 27 is sealed around the opening periphery of the battery can via the gasket 26, and precharging and aging are performed.
  • a cylindrical non-aqueous electrolyte battery is manufactured.
  • an electrolytic solution in which a lithium salt is used as an electrolytic solution and is dissolved in an organic solvent is used.
  • the organic solvent is not particularly limited.
  • esters such as propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate, methyl propionate or butyl acetate, and nitriles such as acetonitrile.
  • ethers such as tetrahydrofuran, 2-methyltetrahydrofuran or 4-methyl-1,3-dioxolane, or sulfolane.
  • LiPF 6 lithium hexafluorophosphate
  • an alkali metal or a compound containing an alkali metal integrated with a current collecting material such as a stainless steel net is used.
  • the alkali metal include lithium, sodium, and potassium.
  • the compound containing an alkali metal include an alloy of an alkali metal and aluminum, lead, indium, potassium, cadmium, tin or magnesium, a compound of an alkali metal and a carbon material, a low potential alkali metal and a metal oxide, and the like. Or a compound with a sulfide or the like.
  • the carbon material may be any material that can be doped and dedoped with lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, Mesocarbon microbeads, carbon fibers, activated carbon and the like can be used.
  • a carbon material having an average particle size of 10 ⁇ m is mixed with a solution in which vinylidene fluoride is dissolved in N-methylpyrrolidone to form a slurry, and this negative electrode mixture slurry is passed through a 70-mesh net. After removing the large particles, uniformly apply to both sides of the negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m and dry, and then compression-molded with a roll press machine, cut, strip-shaped negative electrode plate and We use what we did.
  • lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese dioxide, metal oxide such as vanadium pentoxide or chromium oxide, metal sulfide such as molybdenum disulfide, etc. are used as active materials.
  • These positive electrode active materials are combined with conductive additives and binders such as polytetrafluoroethylene as appropriate, and finished with a current collector material such as a stainless steel mesh as a core material. It is done.
  • a strip-like positive electrode plate produced as follows is used as the positive electrode. That is, lithium graphite oxide (LiCoO 2 ) is added with phosphorous graphite as a conductive additive at a mass ratio of 90: 5 (lithium cobalt oxide: phosphorous graphite) and mixed, and this mixture and polyvinylidene fluoride are mixed with N Mix with a solution in methylpyrrolidone to make a slurry.
  • the positive electrode mixture slurry is passed through a 70 mesh net to remove large particles, and then uniformly applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 20 ⁇ m and dried. After compression molding, it is cut into a strip-like positive electrode plate.
  • Example and comparative example of the porous film of this invention are shown.
  • the porous film of the present invention will be described in more detail, but the present invention is not limited to these.
  • the flow direction of the porous film is referred to as “longitudinal direction”, and the direction perpendicular to the flow direction is referred to as “lateral direction”.
  • Weight average molecular weight, number average molecular weight, molecular weight distribution (high temperature GPC method) The raw material used was dissolved in 140 ° C. o-dichlorobenzene, and measurement was performed at a flow rate of 0.3 mL / min using a high temperature GPC system (manufactured by Nippon Waters Co., Ltd., model: Alliance GPCV-2000). The weight average molecular weight, number average molecular weight, and molecular weight distribution were calculated using polystyrene as a standard sample.
  • Air permeability (Gurley value) A sample was cut out from the obtained porous film with a diameter of 40 mm, and the air permeability (second / 100 ml) was measured according to JIS P8117.
  • the obtained porous film was heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min for 1 minute using a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer, and then held for 240 minutes. The temperature was lowered from 10 ° C. to 25 ° C. at a cooling rate of 10 ° C./min, held for 1 minute, and further heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min.
  • DSC-7 differential scanning calorimeter
  • ⁇ activity was evaluated as follows depending on whether or not a peak was detected at 145 to 160 ° C., which is the crystal melting peak temperature (Tm ⁇ ) derived from the ⁇ crystal of the polypropylene resin at the time of reheating.
  • Tm ⁇ crystal melting peak temperature
  • When Tm ⁇ is detected within the range of 145 ° C to 160 ° C (with ⁇ activity)
  • X When Tm ⁇ is not detected within the range of 145 ° C to 160 ° C (no ⁇ activity) Note that the ⁇ activity was measured with a sample amount of 10 mg and the atmosphere gas as nitrogen.
  • the raw materials used in Examples and Comparative Examples are as follows.
  • the polypropylene resin (A), the low molecular weight polypropylene resin (B), and the low molecular weight polyethylene resin were calculated and written together according to the above-described method.
  • Example 1 to 10 and Comparative Example 1 Tables 1 and 2 show Examples 1 to 10 and Comparative Examples 1 to 4.
  • the molten resin sheet has a bowl-like appearance defect, and a non-porous film-like material is broken during cooling and solidification with a cast roll, and a sample can be collected. There wasn't.
  • a bleed-out phenomenon was observed in which a low molecular weight polyethylene resin adhered to the cast roll. Since a non-porous film-like product was not obtained with a cast roll, longitudinal stretching, lateral stretching, and film evaluation were not performed.
  • Examples 11 to 13 Tables 3 and 4 show Examples 11 to 16 and Comparative Examples 5 to 7.
  • the longitudinally uniaxially stretched film obtained in Example 3 was preheated at a preheating temperature of 150 ° C. in a film tenter facility manufactured by Kyoto Machine Co., Ltd. After transverse stretching at a stretching speed shown in Table 3, heat treatment was performed at 153 ° C. to obtain porous films, respectively.
  • Table 4 shows the evaluation results of the obtained porous film.
  • Example 14 to 16 The longitudinally uniaxially stretched film obtained in Example 9 was preheated at a preheating temperature of 150 ° C. using a film tenter facility manufactured by Kyoto Machine Co., Ltd., and then the stretching temperature was 150 ° C. and the stretching ratio was 2.1 times, as shown in Table 3. After transverse stretching at a stretching speed, heat treatment was performed at 153 ° C. to obtain porous films, respectively. Table 4 shows the evaluation results of the obtained porous film.
  • Comparative Examples 5 to 7 The longitudinally uniaxially stretched film obtained in Comparative Example 1 was preheated at a preheating temperature of 150 ° C. with a film tenter facility manufactured by Kyoto Machine Co., Ltd., and then stretched at 150 ° C., a stretching ratio of 2.1 times, as shown in Table 3. After transverse stretching at a speed, heat treatment was performed at 153 ° C. to obtain porous films, respectively. Table 4 shows the evaluation results of the obtained porous film.
  • Example 17 and 18 and Comparative Example 8 Tables 5 and 6 show Examples 17 and 18 and Comparative Example 8.
  • the strand for I layer was produced by cutting the strand with a pelletizer.
  • the raw material of the said II layer is thrown into the same equipment, and after melt-mixing at the preset temperature of 270 ° C., the strand is cooled and solidified in a water tank.
  • the laminated non-porous film-like material was longitudinally stretched with a stretching roll at a stretching ratio of 4.2 times, preheated at a preheating temperature of 95 ° C., and then laterally stretched at a stretching temperature of 95 ° C. and a stretching ratio of 2.1 times. Thereafter, a heat treatment was performed at 133 ° C. to obtain a laminated porous film. Table 6 shows the evaluation results of the obtained porous film.
  • regulated by this invention has the outstanding air permeability characteristic compared with the porous film of the comparative example 1.
  • FIG. That is, as stipulated by the present invention, the weight average molecular weight (Mw) according to the high temperature GPC method is 100,000 or more and the common logarithm (log Mw) of the Mw is 4.8 or less is 15% or more of the whole.
  • a porous film characterized by having at least one layer mainly composed of a polypropylene resin composition and having the ⁇ activity of the polypropylene resin composition does not contain the low molecular weight polypropylene resin. It shows that the transmission characteristics are improved compared to the case.
  • the porous films of the examples configured within the range defined in the present invention have the effect of slowing the deterioration of the air permeability characteristics when the stretching speed is increased.
  • the increase in the air permeability when the stretching speed was increased proportionally was moderate.
  • Comparative Examples 5 to 7 the air permeability when the stretching speed is increased proportionally increases almost linearly, and the slope of the degree of deterioration of the air permeability with respect to the stretching speed is large.
  • the porous film obtained by laminating the (I layer) of Examples 17 and 18 (layer II) functioning as a shutdown layer configured within the range defined in the present invention is compared with Comparative Example 8, The superiority of air permeability is confirmed.
  • the tendency of the shutdown characteristics to be stabilized was also confirmed.
  • the porous film of the present invention has excellent air permeability and elastic modulus, it can be used as a porous film in various fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

 延伸工程による多孔化がより良好に行うために加工特性を改良することによって、優れた透気性能を有する多孔性フィルムを提供することである。本発明は、高温GPC法による重量平均分子量(Mw)が100,000以上、当該Mwの常用対数(logMw)が4.8以下を占める割合が全体の15%以上であり、かつ、β活性を有するポリプロピレン系樹脂組成物を主成分とすることを特徴とする多孔性フィルムである。

Description

多孔性フィルム、電池用セパレータ、および電池
 本発明は多孔性フィルムに関し、包装用品、衛生用品、畜産用品、農業用品、建築用品、医療用品、分離膜、光拡散板、電池用セパレータとして利用でき、特に非水電解液電池用セパレータに関わるものである。
 多数の微細連通孔を有する高分子多孔性フィルムは、超純水の製造、薬液の精製、水処理などに使用する分離膜、衣類・衛生材料などに使用する防水透湿性フィルム、あるいは電池などに使用する電池セパレータなど各種分野で利用されている。
 二次電池はOA、FA、家庭用電器または通信機器等のポータブル機器用電源として幅広く使用されている。特に機器に装備した場合に容積効率がよく機器の小型化および軽量化につながることからリチウムイオン二次電池を使用したポータブル機器が増加している。
 一方、大型の二次電池はロードレベリング、UPS、電気自動車をはじめ、エネルギー/環境問題に関連する多くの分野において研究開発が進められ、大容量、高出力、高電圧および長期保存性に優れている点より非水電解液二次電池の一種であるリチウムイオン二次電池の用途が広がっている。
 リチウムイオン二次電池の使用電圧は通常4.1から4.2Vを上限として設計されている。このような高電圧では水溶液は電気分解を起こすので電解液として使うことができない。そのため、高電圧でも耐えられる電解液として有機溶媒を使用したいわゆる非水電解液が用いられている。非水電解液用の溶媒としては、より多くのリチウムイオンを存在させることができる高誘電率有機溶媒が用いられ、該高誘電率有機溶媒としてポリプロピレンカーボネートやエチレンカーボネート等の有機炭酸エステルが主に使用されている。溶媒中でリチウムイオン源となる支持電解質として、6フッ化リン酸リチウム等の反応性の高い電解質を溶媒中に溶かして使用している。
 リチウムイオン二次電池には内部短絡の防止の点からセパレータが正極と負極の間に介在されている。当該セパレータにはその役割から当然絶縁性が要求される。また、リチウムイオンの通路となる透気性と電解液の拡散・保持機能を付与するために微細孔構造である必要がある。これらの要求を満たすためセパレータとしては多孔性フィルムが使用されている。
 さらに、最近では適度なシャットダウン特性を持たせたセパレータが使われ始めている。シャットダウン特性とは高温状態(一般的には100~140℃程度)になると電池セパレータの微細孔が閉塞される機能であり、また微細孔が閉塞される温度のうち最も低い温度をシャットダウン温度という。シャットダウン特性は電池用セパレータをリチウムイオン二次電池に組み込んで使用した場合に安全に寄与する重要な特性である。例えば電池が異常を起こし高温状態になった際にシャットダウン特性を有する電池用セパレータではその微細孔が閉塞され、電池内部のイオン伝導を遮断することにより、その後の電池内部の温度上昇を防止できる。特に最近の電池の高容量化に伴い電池の安全性に対する重要度が増している中で、本特性の必要性は更に増している。
 この種の微細孔を有するフィルムを製膜する技術としては下記に示すような種々の技術が提案されており、例えば、特許2883726号公報(特許文献1)ではポリエチレンとポリプロピレンの積層フィルムを一軸方向に温度を変えて2段階で延伸することにより多孔質化せしめることを特徴とする電池用セパレータの製造方法が提案されている。
 一方、多孔性フィルムの透過性を高めるために、結晶形態の一つであるβ晶を多く含むポリプロピレンシートを延伸して多孔性フィルムを得る方法として、特許2509030号公報(特許文献2)、国際公開2002/066233号(特許文献3)等が提案されている。
特許2883726号公報 特許2509030号公報 国際公開2002/066233号
 しかしながら、前記特許文献1に記載の製造方法は、厳密な製造条件の制御を必要とし、かつ生産性が良いとは言い難い。例えば、多孔質化する前の積層フィルムの作成時に高いドラフト比で高次構造を制御しながら製膜を行っているが、このような高いドラフト比で安定的な製膜を行うことは非常に困難である。また、多孔構造の発現を行うためには、低温度領域と高温度領域の2段階でかつ小さい延伸速度で多段延伸を行う必要があり、延伸速度が大きく制限され、生産性が非常に悪い。更に、当該製造方法により製造されたセパレータは延伸方向と同方向の引裂きに非常に弱く、延伸方向に裂け目が生じやすい問題を有している。
 また、前記特許文献2,3では、近年の電池の高出力化に対する要望を満たすべき透気抵抗としては、未だ不十分である。
 本発明は、前記問題に鑑みてなされたもので、優れた透気性能を有する多孔性フィルム、特に電池性能に寄与する優れた透気性能を有する電池用セパレータおよび、その製造方法を提供することを課題としている。
 前記課題を解決するため、本発明は、高温GPC法による重量平均分子量(Mw)が100,000以上、当該Mwの常用対数(logMw)が4.8以下を占める割合が全体の15%以上であり、かつ、β活性を有するポリプロピレン系樹脂組成物を主成分とすることを特徴とする多孔性フィルムを提供している。
 前記本発明において、前記ポリプロピレン系樹脂組成物は、高温GPC法による重量平均分子量(Mw)が1,000,000以下であることが好ましい。
 前記本発明において、前記ポリプロピレン系樹脂組成物は、前記logMwが4.8以下を占める割合が全体の50%以下であることが好ましい。
 前記本発明の前記ポリプロピレン系樹脂組成物は、重量平均分子量が100,000以上のポリプロピレン系樹脂(A)と、重量平均分子量が100,000未満の低分子量ポリプロピレン系樹脂(B)を含む混合樹脂組成物を有することが好ましい。
 前記ポリプロピレン系樹脂(A)の分子量分布のパラメータであるMw/Mnは1.5~35.0であると共にメルトフローレート(MFR)は0.1~20g/10分であることが好ましい。
 また、前記低分子量ポリプロピレン系樹脂(B)の重量平均分子量が80,000以下であることが好ましい。
 前記ポリプロピレン系樹脂(A)と前記低分子量ポリプロピレン系樹脂(B)との混合質量比が、(A)/(B)=99.9/0.1~50/50であることが好ましい。
 前記ポリプロピレン系樹脂組成物は、更にβ晶核剤を含有し、かつ、当該β晶核剤の含有量が、0.0001~5質量部の割合であることが好ましい。
 本発明の多孔性フィルムは、前記ポリプロピレン系樹脂組成物を主成分とする層(I層)と、ポリエチレン系樹脂を主成分とする層(II層)とを有することが好ましい。
 前記II層は、更に前記低分子量ポリプロピレン系樹脂(B)を含むことが好ましい。
 本発明の多孔性フィルムは、二軸延伸によって多孔化され、空孔率は30%以上、透気度が1000秒/100ml以下、25μm換算電気抵抗は1.0Ω以下であることが好ましい。
 さらに、本発明は前記多孔性フィルムからなる電池用セパレータ、および該電池用セパレータが組み込まれている電池を提供している。
 さらにまた、本発明は、重量平均分子量が100,000以上であるポリプロピレン系樹脂(A)と、重量平均分子量が80,000以下の低分子量ポリプロピレン系樹脂(B)と、β晶核剤とを混合してポリプロピレン系樹脂組成物を調整し、
 前記ポリプロピレン系樹脂組成物を溶融押出して無孔膜状物を作成し、
 前記無孔膜状物を縦延伸後に横延伸を行って二軸延伸し、横延伸時の延伸速度は300%/分以上12000%/分以下としていることを特徴とする多孔性フィルムの製造方法を提供している。
 前記本発明の多孔性フィルムは優れた透気特性を有するため、優れたシャットダウン特性を具備した電池用セパレータとすることができ、該電池用セパレータを組み込んだ電池は良好な電池性能を有する。さらに、本発明の多孔性フィルムは、厳密な製造条件の制御を必要とせず、簡便にかつ効率よく生産することができる。
本発明の電池用セパレータを収容しているリチウムイオン電池の一部破断斜視図である。 135℃で1分間加熱後の透気度における多孔性フィルムの固定方法を説明する図である。 実施例1のポリプロピレン系樹脂組成物のGPCによる測定結果である。 比較例1のポリプロピレン系樹脂組成物のGPCによる測定結果である。
 以下、本発明の多孔性フィルムの実施形態、ならびに電池用セパレータとしての電池への適応形態について詳細に説明する。
 なお、本発明において、「主成分」と表現した場合には、特に記載しない限り、当該主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含し、特に当該主成分の含有割合を特定するものではないが、主成分は組成物中の50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占める意を包含するものである。
 また、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含するものである。
 また、本発明におけるポリプロピレン系樹脂組成物とは、ポリプロピレン系樹脂単体、及び/又はポリプロピレン系樹脂を主成分とした混合組成物のことを指す。
 本発明の多孔性フィルムは、前記ポリプロピレン系樹脂組成物のGPC(ゲルパーミッションクロマトグラフィー)による重量平均分子量(Mw)が100,000以上であることが重要な特徴の1つである。該Mwが100,000以上であることで、ポリプロピレン系樹脂組成物において、十分な平均分子鎖長を有することから、得られる多孔性フィルムは十分な機械的強度や耐熱性を有することができる。該Mwは、150,000以上が好ましく、200,000以上がより好ましい。
 一方、上限については特に限定しないが、1,000,000以下が好ましく、800,000以下がより好ましく、600,000以下が更に好ましい。前記Mwが1,000,000以下であることによって、ポリプロピレン系樹脂組成物が押出加工を行う上で十分な溶融粘度を有するために好ましい。
 以上より、例えばポリプロピレン系樹脂組成物のGPCによる重量平均分子量(Mw)の範囲として、100,000~1,000,000、100,000~800,000、100,000~600,000、150,000~1,000,000、150,000~800,000、150,000~600,000、200,000~1,000,000、200,000~800,000、200,000~600,000等の範囲とすることができる。
 また、本発明の多孔性フィルムは、ポリプロピレン系樹脂組成物の当該Mwの常用対数(logMw)が4.8以下を占める割合が全体の15%以上であることが重要な特徴の1つである。該logMwは17%以上が好ましく、20%以上がより好ましい。
 前記logMwが4.8以下を占める割合が15%以上であることによって、このメカニズムは明確とはなっていないが、ポリプロピレン系樹脂組成物が形成しているβ結晶構造のラメラ間に選択的に低分子量成分が入り込むために、延伸時におけるラメラの開孔性を良化させ、加工特性が良くなる。よって、延伸速度を速くしても、延伸工程による多孔化がより良好に行うことができると推測される。その結果、優れた透気性能を有する多孔性フィルムを得ることができる。
 一方、上限については特に限定しないが、機械的強度の観点より、全体の50%以下が好ましく、45%以下がより好ましく、40%以下が更に好ましい。
 以上より、例えばポリプロピレン系樹脂組成物の前記Mwの常用対数(logMw)が4.8以下を占める割合の範囲として、全体の15%~50%、15%~45%、15%~40%、17%~50%、17%~45%、17%~40%、20%~50%、20%~45%、20%~40%等の範囲とすることができる。
 また、本発明の多孔性フィルムは、β活性を有することが重要な特徴の1つである。β活性は、延伸前の無孔膜状物において、ポリプロピレン系樹脂組成物がβ晶を生成していたことを示す一指標と捉えることができる。延伸前の無孔膜状物中の前記ポリプロピレン系樹脂組成物がβ晶を生成していれば、その後延伸を施すことで微細孔が形成されるため、透気特性を有する多孔性フィルムを得ることができる。
 また、前記β活性は、本発明の多孔性フィルムが単層構造である場合であっても、他の多孔性層が積層される場合のいずれにおいても多孔性フィルム全層の状態で測定している。
 本発明の多孔性フィルムにおいて、「β活性」の有無は、後述する示差走査型熱量計によりβ晶に由来する結晶融解ピーク温度が検出された場合か、及び/又は後述する広角X線回折装置を用いた測定により、β晶に由来する回折ピークが検出された場合、「β活性」を有すると判断している。
 具体的には、示差走査型熱量計で多孔性フィルムを25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた際に、前記ポリプロピレン系樹脂組成物のβ晶に由来する結晶融解ピーク温度(Tmβ)が検出された場合、β活性を有すると判断している。
 また、前記多孔性フィルムのβ活性度は、検出される前記ポリプロピレン系樹脂組成物のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算している。
  β活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
 例えば、前記ポリプロピレン系樹脂組成物にホモポリプロピレンが含まれている場合は、主に145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に160℃以上170℃以下に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。また、例えばエチレンが1~4モル%共重合されているランダムポリプロピレンが含まれている場合は、主に120℃以上140℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に140℃以上165℃以下の範囲に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。
 前記多孔性フィルムのβ活性度は大きい方が好ましく、β活性度は20%以上であることが好ましい。40%以上であることがさらに好ましく、60%以上であることが特に好ましい。多孔性フィルムが20%以上のβ活性度を有すれば、延伸前の無孔膜状物中においても前記ポリプロピレン系樹脂組成物のβ晶が多く生成することができることを示し、延伸により微細かつ均一な孔が多く形成され、結果として機械的強度が高く、透気性能に優れた多孔性フィルム、特に、電池用セパレータとすることができる。
 β活性度の上限値は特に限定されないが、β活性度が高いほど前記効果がより有効に得られるので100%に近いほど好ましい。
 また前記β活性の有無は、特定の熱処理を施した多孔性フィルムの広角X線回折測定により得られる回折プロファイルでも判断できる。
 詳細には、前記ポリプロピレン系樹脂組成物の融点を超える温度である170℃~190℃の熱処理を施し、徐冷してβ晶を生成・成長させた多孔性フィルムについて広角X線測定を行い、前記混合樹脂組成物のβ晶の(300)面に由来する回折ピークが2θ=16.0°~16.5°の範囲に検出された場合、β晶生成力が有ると判断している。
 ポリプロピレン系樹脂のβ晶構造と広角X線回折測定に関する詳細は、Macromol.Chem.187,643-652(1986)、Prog.Polym.Sci.Vol.16,361-404(1991)、Macromol.Symp.89,499-511(1995)、Macromol.Chem.75,134(1964)、及びこれらの文献中に挙げられた参考文献を参照することができる。
 前述した多孔性層のβ活性を得る方法としては、前記ポリプロピレン系樹脂組成物のα晶の生成を促進させる物質を添加しない方法や、特許3739481号公報に記載されているように過酸化ラジカルを発生させる処理を施したポリプロピレンを添加する方法、及び組成物にβ晶核剤を添加する方法などが挙げられる。
仮に、前記ポリプロピレン系樹脂組成物を主成分とする層以外に、ポリプロピレン系樹脂を含有する層などを積層させる場合には、両層ともにβ活性を有することが好ましい。
 本発明において、β晶核剤は、前記ポリプロピレン系樹脂組成物に配合していることが好ましい。前記ポリプロピレン系樹脂組成物に添加するβ晶核剤の割合は、β晶核剤の種類または前記ポリプロピレン系樹脂組成物の組成などにより適宜調整することが必要であるが、前記ポリプロピレン系樹脂組成物100質量部に対しβ晶核剤0.0001~5.0質量部が好ましい。0.001~3.0質量部がより好ましく、0.01~1.0質量部が更に好ましい。0.0001質量部以上であれば、製造時において十分に前記ポリプロピレン系樹脂組成物のβ晶を生成・成長させることができ、多孔性フィルムとした際にも十分なβ活性が確保でき、所望の透気性能が得られる。また、5.0質量部以下の添加であれば、経済的にも有利になるほか、多孔性フィルム表面へのβ晶核剤のブリードなどがなく好ましい。
 また、仮に前記ポリプロピレン系樹脂組成物を主成分とする層以外に、ポリプロピレン系樹脂を含有する層などを積層させる場合には、各層のβ晶核剤の添加量は同じであっても、異なっていても良い。β晶核剤の添加量を変更することで各層の多孔構造を適宜調整することができる。
 以下に、本発明の多孔性フィルムを構成するポリプロピレン系樹脂組成物について説明する。本発明で用いるポリプロピレン系樹脂組成物は、重量平均分子量が100,000以上のポリプロピレン系樹脂(A)と重量平均分子量が100,000未満の低分子量ポリプロピレン系樹脂(B)とを含むことが好ましい。
[ポリプロピレン系樹脂(A)の説明]
 ポリプロピレン系樹脂(A)としては、ホモプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネンもしくは1-デセンなどα-オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、β活性度の高さや、多孔性フィルムの機械的強度、耐熱性などを維持する観点から、ホモポリプロピレンがより好適に使用される。
 また、ポリプロピレン系樹脂(A)としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が80~99%であることが好ましい。より好ましくは83~98%、更に好ましくは85~97%であるものを使用する。アイソタクチックペンタッド分率が低すぎるとフィルムの機械的強度が低下するおそれがある。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。
 アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素-炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambellietal(Macromolecules8,687,(1975))に準拠した。
 また、ポリプロピレン系樹脂(A)の重量平均分子量は、100,000以上であり、好ましくは150,000以上、より好ましくは200,000以上である。ポリプロピレン系樹脂(A)の重量平均分子量を100,000以上とすることで、多孔性フィルムは十分な機械的強度や耐熱性を有することができる。一方、上限については特に制限されるものではないが、押出成形性の観点から1,000,000以下が好ましく、800,000以下がより好ましく、600,000以下が更に好ましい。
 以上より、例えばポリプロピレン系樹脂(A)の重量平均分子量の範囲として、100,000~1,000,000、100,000~800,000、100,000~600,000、150,000~1,000,000、150,000~800,000、150,000~600,000、200,000~1,000,000、200,000~800,000、200,000~600,000等の範囲とすることができる。
 また、ポリプロピレン系樹脂(A)の分子量分布を示すパラメータであるMw/Mnが1.5~35.0であることが好ましい。より好ましくは1.5~10.0、更に好ましくは2.0~8.0であるものが使用される。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnが1.5以上とすることで、十分な押出成形性を確保することできる。一方、Mw/Mnが35.0以下とすることで、低分子量成分による多孔性フィルムからのブリードアウトの発現を十分に抑制することができる。なお、Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー)法によって得られる。
 また、ポリプロピレン系樹脂(A)のメルトフローレート(MFR)は特に制限されるものではないが、通常、MFRは0.1~20g/10分であることが好ましく、0.5~15g/10分であることがより好ましい。MFRが0.1g/10分未満では成形加工時の樹脂の溶融粘度が高く生産性が低下する。一方、20g/10分を超えると得られる多孔性フィルムの機械的強度が不足するため実用上問題が生じやすい。なお、本発明におけるMFRはJIS K7210に準拠し、温度230℃、荷重2.16kgの条件下で測定値をさす。
 また前記ポリプロピレン系樹脂組成物について、ポリプロピレン系樹脂(A)と後述の低分子量ポリプロピレン系樹脂(B)とを含む場合、低分子量ポリプロピレン系樹脂(B)の添加によって前記ポリプロピレン系樹脂組成物の粘度低下が生じるため、成型加工特性、得られるフィルムの特性を鑑みながら、混合樹脂組成物の組成比、ポリプロピレン系樹脂(A)のMFRを調整することが好ましい。
 ポリプロピレン系樹脂(A)としては、例えば、商品名「ノバテックPP」「WINTEC」(日本ポリプロ社製)、「ノティオ」「タフマーXR」(三井化学社製)、「ゼラス」「サーモラン」(三菱化学社製)、「住友ノーブレン」「タフセレン」(住友化学社製)、「プライムTPO」(プライムポリマー社製)、「Adflex」「Adsyl」、「HMS-PP(PF814)」(サンアロマー社製)、「バーシファイ」「インスパイア」(ダウケミカル社製)など市販されている商品を使用できる。
[低分子量ポリプロピレン系樹脂(B)の説明]
 低分子量ポリプロピレン系樹脂(B)の重量平均分子量の上限は、100,000未満、好ましくは80,000以下、さらに50,000以下がより好ましく、特に30,000以下が更に好ましい。前記重量平均分子量が80,000以下であることによって、過度な空孔径の増大が抑制でき、微細な多孔構造を有し、かつ、透気特性の改善効果を十分に確保することができる。
 一方、低分子量ポリプロピレン系樹脂(B)の重量平均分子量の下限は、1,000以上が好ましく、3,000以上がより好ましく、4,500以上が更に好ましい。前記重量平均分子量が1,000以上であることによって、多孔性フィルムからのブリードアウトの発生を十分に防ぐことができる。
 以上より、例えば低分子量ポリプロピレン系樹脂(B)の重量平均分子量の好ましい範囲として、1,000~80,000、1,000~50,000、1,000~30,000、3,000~80,000、3,000~50,000、3,000~30,000、4,500~80,000、4,500~50,000、4,500~30,000等の範囲とすることができる。
 なお、前記低分子量ポリプロピレン(B)の重量平均分子量は、低分子量ポリオレフィンを140℃のο-ジクロロベンゼンに溶解し、高温GPC(ゲルパーエミッションクロマトグラフィー)法を用いてポリスチレン換算にて算出している。
 前記低分子量ポリプロピレン系樹脂(B)は、本発明の多孔性フィルムを構成する前記ポリプロピレン系樹脂(A)との相溶性がよく、溶融混練時、および、冷却固化時においても均一に相溶させることができる。
 前記ポリプロピレン系樹脂組成物がポリプロピレン系樹脂(A)と低分子量ポリプロピレン系樹脂(B)とを含む場合では、前述のとおり、優れた相溶性を有することから、冷却固化された無孔膜状物において、より緻密な孔構造の形成が可能となる。
 また、本発明者らは、重量平均分子量が100,000以上のポリプロピレン系樹脂(A)を主成分とした、β活性を有する多孔性フィルム(前記低分子量ポリプロピレン系樹脂(B)を添加していない多孔性フィルム)と、本発明の多孔性フィルムを比較した場合、本発明の多孔性フィルムがより優れた透気特性を有することを明らかにした。このメカニズムは明確とはなっていないが、ポリプロピレン系樹脂(A)と低分子量ポリプロピレン系樹脂(B)とを含むポリプロピレン系樹脂組成物が形成しているβ結晶構造のラメラ間に、選択的に低分子量ポリプロピレン系樹脂(B)が入り込み、延伸時におけるラメラの開孔性を良化しているためであると推測している。
 また、前記ポリプロピレン系樹脂(A)と低分子量ポリプロピレン系樹脂(B)とを含むポリプロピレン系樹脂組成物を主成分とする層における、前記低分子量ポリプロピレン系樹脂(B)の効果として、延伸速度の依存性を鈍化させる効果が挙げられる。一般に多孔性フィルムを延伸により作製する場合、延伸速度が増速した場合、得られる多孔性フィルムの透過特性、ないしは、空孔率などが低下する傾向がある。そのため、多孔性フィルムを作製するに当たり、延伸速度に制約を受け、生産性を向上できないといった課題が見られることが多い。
 本発明者らは、延伸速度を増速していった場合において、前記ポリプロピレン系樹脂(A)に前記低分子量ポリプロピレン系樹脂(B)の添加することにより、多孔性フィルムの透過特性の低下を鈍化させることができることを明らかにした。すなわち、本発明は多孔性フィルムの透過特性の良化させるだけでなく、生産性向上においても優れていると考える。
 本発明の多孔性フィルムを構成する前記低分子量ポリプロピレン系樹脂(B)の配合量としては、前記ポリプロピレン系樹脂(A)と前記低分子量ポリプロピレン系樹脂(B)との混合質量比が、(A)/(B)=99.9質量%/0.1質量%~50質量%/50質量%の割合で配合されることが好ましい。さらに、前記混合質量比が、(A)/(B)=99質量%/1質量%~60質量%/40質量%の割合で配合されることがより好ましく、(A)/(B)=95質量%/5質量%~70質量%/30質量%の割合で配合されることが更に好ましい。
 前記混合樹脂組成物における前記低分子量ポリプロピレン系樹脂(B)の質量比が0.1質量%以上であることによって、十分な透過特性を有することができる。また、50質量%以下であることによって、フィルムの機械的強度や耐熱性を十分に保持させることができるとともに、延伸時における破断を抑制させることができる。
 市販されている低分子量ポリプロピレン、またはその変性体の具体例としては、「三井ハイワックス」(三井化学社製)シリーズ、「ビスコール」(三洋化成工業社製)シリーズ、「Licocene」(クラリアントジャパン社製)シリーズなどが挙げられる。
[β晶核剤の説明]
 本発明で用いるβ晶核剤としては以下に示すものが挙げられるが、前記ポリプロピレン系樹脂組成物のβ晶の生成・成長を増加させるものであれば特に限定される訳ではなく、また2種類以上を混合して用いても良い。
 β晶核剤としては、例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジエステル類もしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸である成分aと周期律表第IIA族金属の酸化物、水酸化物もしくは塩である成分bとからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられる。そのほか核剤の具体的な種類については、特開2003-306585号公報、特開平06-289566号公報、特開平09-194650号公報に記載されている。
 β晶核剤の市販品としては新日本理化社製β晶核剤「エヌジェスターNU-100」、β晶核剤の添加されたポリプロピレン系樹脂の具体例としては、Aristech社製ポリプロピレン「Bepol B-022SP」、Borealis社製ポリプロピレン「Beta(β)-PPBE60-7032」、Mayzo社製ポリプロピレン「BNX BETAPP-LN」などが挙げられる。
[他の成分の説明]
 必要に応じて前記ポリプロピレン系樹脂組成物に、多孔フィルムの熱特性、具体的には多孔化を損なわない範囲で他の熱可塑性樹脂を添加しても良い。具体的には、ポリエチレン等のポリオレフィン系樹脂;スチレン、AS樹脂、もしくはABS樹脂等のスチレン系樹脂;ポリ塩化ビニル、フッ素系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネートもしくはポリアリレート等のエステル系樹脂;ポリアセタール、ポリフェニレンエーテル、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトンもしくはポリフェニレンサルファイド等のエーテル系樹脂;6ナイロン、6-6ナイロン、6-12ナイロン等のポリアミド系樹脂等の熱可塑性樹脂が挙げられる。
 また、本発明の効果を著しく阻害しない範囲内で、一般に樹脂組成物に配合される添加剤を適宜添加できる。前記添加剤としては、成形加工性、生産性等の諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。
[ポリエチレン系樹脂を主成分とする層の説明]
 また、本発明において、前記ポリプロピレン系樹脂組成物を主成分とする層(以下、I層と称す)の他に、ポリエチレン系樹脂を主成分とする層(以下、II層と称す)を積層してもよい。
 前記ポリエチレン系樹脂を主成分とする層(II層)に前記低分子量ポリプロピレン系樹脂(B)が含まれることによって、電池用セパレータとして使用時に安定したシャットダウン特性を発現させ、シャットダウン速度向上を図れる観点から好ましい。
(ポリエチレン系樹脂)
 本発明のポリエチレン系樹脂を主成分とする層(II層)に含有されるポリエチレン系樹脂は、その熱的性質が重要である。すなわち、該ポリエチレン系樹脂を主成分とする層を構成する組成物について、結晶融解ピーク温度が100~150℃であるポリエチレン系樹脂が好ましい。なお、本発明における結晶融解ピーク温度はJIS K7121に準拠して、示差走査型熱量計を用いて30℃から走査速度10℃/分で昇温させた場合の結晶融解温度のピーク値である。
 ポリエチレン系樹脂の種類として、具体的に超低密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、または超高密度ポリエチレンのようなポリエチレン系樹脂単独だけでなく、エチレンプロピレン共重合体、またはポリエチレン系樹脂と他のポリオレフィン系樹脂との混合物が挙げられる。中でも、ポリエチレン系樹脂単独が好ましい。
 前記ポリエチレン系樹脂の密度は、0.910~0.970g/cmであることが好ましく、0.930~0.970g/cmであることがより好ましく、0.940~0.970g/cmであることが更に好ましい。密度が0.910g/cm以上であれば、電池用セパレータとして使用時に適度なシャットダウン温度を有する層を形成することができるため好ましい。一方、0.970g/cm以下であれば、電池用セパレータとして使用時に適度なシャットダウン温度を有する層を有する積層多孔性フィルムを形成することができるほか、延伸性が維持される点で好ましい。密度の測定は、密度勾配管法を用いてJIS K7112に準じて測定することができる。
 前記ポリエチレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常MFRは0.03~15g/10分であることが好ましく、0.3~10g/10分であることが好ましい。MFRが上記範囲であれば、成形加工時に押出機の背圧が高くなりすぎることが無く生産性に優れる。なお、本発明におけるMFRはJIS K7210に準拠し、温度190℃、荷重2.16kgの条件下での測定値をさす。
 前記ポリエチレン系樹脂の製造方法は特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた重合方法等が挙げられる。
 また、前記ポリエチレン系樹脂を主成分とする層(II層)に、前記低分子量ポリプロピレン系樹脂(B)が含まれることによって、電池用セパレータとして使用時に安定したシャットダウン特性の発現や、シャットダウン速度向上の観点から好ましい。
 前記低分子量ポリプロピレン系樹脂(B)は、前記ポリエチレン系樹脂に対し、比較的良好な相溶性を示し、前記ポリエチレン系樹脂が溶融している状態では相溶化し、ポリエチレン系樹脂が結晶化する際に、ポリエチレン系樹脂からなるマトリックス中に、上記低分子量ポリプロピレン系樹脂(B)がドメインとして構築される。
 本発明者らは、製膜したフィルムの延伸前の無孔膜状物を電子顕微鏡により観察を行い、マトリックスとなるポリエチレン系樹脂中に低分子量ポリプロピレン、またはその変性体がドメインを形成することが確認している。上記のように溶融時にはポリエチレン系樹脂に比較的相溶して存在し、無孔膜状物の製膜時において低分子量ポリプロピレン系樹脂(B)がドメインとなり、均一に分散させることで、無孔膜状物を延伸して多孔化する際に、前記低分子量化合物が孔形成の起点となり、かつ、均一な開孔分布を付与できるため、得られる積層多孔性フィルムの透気性能の調整をすることが可能となる。
 なお、ポリエチレン系樹脂を主成分とする層(II層)に前記低分子量ポリプロピレン系樹脂(B)を含ませる場合、低分子量ポリプロピレン系樹脂(B)は、前記ポリプロピレン系樹脂(A)と前記低分子量ポリプロピレン系樹脂(B)とを含む混合樹脂組成物を主成分とする層(I層)に含まれる低分子量ポリプロピレン系樹脂(B)と同じものでも、異なるものでもよい。
 前記ポリエチレン系樹脂を主成分とする層(II層)に含まれる前記低分子量ポリプロピレン系樹脂(B)の配合量は、前記ポリエチレン系樹脂を主成分とする層を構成する樹脂組成物100質量%に対し、0.1%以上8%以下であることが好ましい。より好ましくは、0.5質量%以上7%以下、さらに好ましくは1%以上6%以下である。かかる範囲内とすることで、目的とする良好な多孔構造が発現する効果が十分に得られることや、透気特性を向上させることができるため好ましく、製膜安定性も良好となる。さらに電池用セパレータとして使用する場合、シャットダウン特性を十分に発現させることが可能となる。
[他の成分の説明]
 本発明においては、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般に樹脂組成物に配合される添加剤を適宜添加できる。前記添加剤としては、成形加工性、生産性および多孔性フィルムの諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。具体的には、「プラスチックス配合剤」のP154~P158に記載されている酸化防止剤、P178~P182に記載されている紫外線吸収剤、P271~P275に記載されている帯電防止剤としての界面活性剤、P283~294に記載されている滑剤などが挙げられる。
[多孔性フィルムの構成の説明]
 本発明の多孔性フィルムの構成は、前記ポリプロピレン系樹脂組成物を主成分とする層(I層)を少なくとも1層存在すれば特に限定されるものではなく、単層構造であってもI層を複数積層した積層構造であってもよいが、積層構造とする場合、前記I層と、ポリエチレン系樹脂を主成分とする層(II層)とを積層させることがより好ましい。
 具体的にはI層/II層を積層した2層構造、I層/II層/I層、若しくは、II層/I層/II層として積層した3層構造などが例示できる。また、他の機能を持つ層(III層)と組み合わせて3種3層の様な形態も可能である。この場合、他の機能を持つ層との積層順序は特に問わない。更に層数としては4層、5層、6層、7層と必要に応じて増やしても良い。なお、I層が2つ以上ある場合、それぞれの成分含有量が同じであってもよいし、異なっていても良い。
 中でも、I層/II層/I層の2種3層構成は、得られる積層多孔性フィルムのカール度合いや表面平滑性が良好となるため、さらに好ましい。
 また、本発明の多孔性フィルムの機能を妨げない範囲で、前記I層、II層とは異なる他の層(III層)を積層することもできる。具体的には、強度保持層、耐熱層が挙げられる。
[多孔性フィルムの形状及び物性の説明]
 本発明の多孔性フィルムの形態としては平面状、チューブ状の何れであってもよいが、幅方向に製品として数丁取りが可能であることから生産性がよく、さらに内面にコートなどの処理が可能等の観点から、平面状がより好ましい。
 本発明の多孔性フィルムの厚みは1~500μmが好ましく、より好ましくは5~300μm、更に好ましくは7~100μmである。特に電池用セパレータとして使用する場合は1~50μmが好ましく、10~30μmがより好ましい。電池用セパレータとして使用する場合、厚みが1μm以上、好ましくは10μm以上であれば、実質的に必要な電気絶縁性を得ることができ、例えば大きな電圧がかかった場合にも短絡しにくく安全性に優れる。
 また、厚みが50μm以下、好ましくは30μm以下であれば、多孔性フィルムの電気抵抗が小さくできるので電池の性能を十分に確保することができる。
 また、前記I層と前記II層との積層比は、用途、目的に応じて適宜調整することができ、特に制約を受けるわけではないが、I層(2層以上ある場合はその厚みの合計)/II層(2層以上ある場合はその厚みの合計)の値が1~10が好ましく、より好ましくは1~8である。かかる範囲であれば、透気特性が良好であり、135℃で1分間加熱後の透気度を十分高めることが可能となる。
 本発明の多孔性フィルムの物性は、層構成や積層比、各層の組成、製造方法によって自由に調整できる。
 本発明の多孔性フィルムの透気度は1000秒/100ml以下が好ましく、より好ましくは800秒/100ml以下、さらに好ましくは500秒/100ml以下、特に好ましくは250秒/100ml以下である。透気度が1000秒/100ml以下であれば、多孔性フィルムに連通性があることを示し、優れた透気性能を示すことができるため好ましい。一方、下限については特に限定されないが、10秒/100ml以上が好ましく、50秒/100ml以上がより好ましい。
 透気度はフィルム厚み方向の空気の通り抜け難さを表し、具体的には100mlの空気が当該フィルムを通過するのに必要な秒数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚み方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚み方向の連通性が悪いことを意味する。連通性とはフィルム厚み方向の孔のつながり度合いである。本発明の多孔性フィルムの透気度が低ければ様々な用途に使用することができる。例えば電池用セパレータとして使用した場合、透気度が低いということはリチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。
 本発明の多孔性フィルムにおいて、空孔率は多孔構造を規定する為の重要なファクターである。
 空孔率は30%以上が好ましく、35%以上がより好ましく、40%以上が更に好ましい。空孔率が30%以上であれば、連通性を確保し透気特性に優れた多孔性フィルムとすることができる。
 一方、上限については75%以下が好ましく、70%以下がより好ましく、65%以下が更に好ましい。空孔率が75%以下であれば、微細孔が増えすぎてフィルムの強度が低下する問題もなくなり、ハンドリングの観点からも好ましい。なお、空孔率は後述の実施例に測定方法が記載されている。
 本発明の多孔性フィルムにおいて、25μm換算電気抵抗は1.0Ω以下が好ましく、0.90Ω以下がより好ましく、0.85Ω以下が更に好ましい。25μm換算電気抵抗が1.0Ω以下であることによって、電池用セパレータとして使用した場合に電荷の移動が容易であることを意味し、電池性能に優れるため好ましい。
 一方、25μm換算電気抵抗の下限については特に限定しないが、0.10Ω以上が好ましく、0.20Ω以上がより好ましく、0.50Ω以上が更に好ましい。25μm換算電気抵抗が0.10Ω以上であれば、電池用セパレータとして使用した場合に内部短絡等のトラブルを回避することができる。
 また、前記I層にII層を積層させた積層多孔性フィルムについて、135℃で1分間加熱後の透気度は、50,000秒/100ml以上が好ましく、75,000秒/100ml以上がより好ましい。135℃で1分間加熱後の透気度が50,000秒/100ml以上とすることで、電池用セパレータとして使用時に、電池が熱暴走を起こした場合でも空孔が速やかに閉塞するため、電池の破裂等のトラブルを回避することができる。
 135℃で1分間加熱後の透気度を50,000秒/100ml以上とするためには、孔径や空孔率に左右される。例えば、ポリエチレン系樹脂に前記低分子量ポリプロピレン系樹脂(B)を加え、前記低分子量ポリプロピレン系樹脂(B)の種類や配合量を調整すること、若しくは、結晶核剤を添加してポリエチレン系樹脂の結晶を微小化することによって、135℃で1分間加熱後の透気度を制御することができる。また、製造方法において、延伸条件を調整することによって、135℃で1分間加熱後の透気度を50000秒/100ml以上とすることも可能である。
[多孔性フィルムの製造方法の説明]
 次に本発明の多孔性フィルムの製造方法について説明するが、本発明はかかる製造方法により製造される多孔性フィルムのみに限定されるものではない。
 具体的には、前記ポリプロピレン系樹脂組成物を用いて、溶融押出により無孔膜状物を作製し、当該無孔膜状物を延伸することにより厚さ方向に連通性を有する微細孔を多数形成した多孔性フィルムを得る事ができる。
 無孔膜状物の作製方法は特に限定されず公知の方法を用いてよいが、例えば押出機を用いて熱可塑性樹脂組成物を溶融し、Tダイから押出し、キャストロールで冷却固化するという方法が挙げられる。また、チューブラー法により製造した膜状物を切り開いて平面状とする方法も適用できる。
 無孔膜状物の延伸方法については、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法などの手法があり、これらを単独あるいは2つ以上組み合わせて一軸延伸あるいは二軸延伸を行う。中でも、多孔構造制御の観点から二軸延伸が好ましい。
 また、本発明において、積層多孔性フィルムとする場合、製造方法は、多孔化と積層の順序によって次の(a)~(d)に大別される。
 (a)各層を多孔化したのち、多孔化された各層をラミネートしたり接着剤等で接着したりして積層する方法。
 (b)各層を積層して積層無孔膜状物を作製し、ついで当該無孔膜状物を多孔化する方法。
 (c)各層のうちいずれか1層を多孔化したのち、もう1層の無孔膜状物と積層し、多孔化する方法。
 (d)多孔層を作製した後、無機・有機粒子などのコーティング塗布や、金属粒子の蒸着などを行うことにより積層多孔フィルムとする方法。
 本発明においては、その工程の簡略さ、生産性の観点から(b)の方法を用いることが好ましく、なかでも2層の層間接着性を確保するために、共押出で積層無孔膜状物を作製した後多孔化する方法が特に好ましい。
 以下に、製造方法の詳細を説明する。
 まず、前記ポリプロピレン系樹脂組成物を作製する。例えば、ポリプロピレン系樹脂(A)、低分子量ポリプロピレン系樹脂(B)、β晶核剤、および所望によりその他添加物等の原材料を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練後、カッティングしてペレットを得る。
 前記のペレットを押出機に投入し、Tダイ押出用口金から押出して膜状物を成形する。
 Tダイの種類としては特に限定されない。例えば本発明の多孔性フィルムが2種3層の積層構造をとる場合、Tダイは2種3層用マルチマニホールドタイプでも構わないし、2種3層用フィードブロックタイプでも構わない。
 使用するTダイのギャップは、最終的に必要なフィルムの厚み、延伸条件、ドラフト率、各種条件等から決定されるが、一般的には0.1~3.0mm程度が好ましく、より好ましくは0.5~1.0mmである。0.1mm以上とすることで、十分な生産速度を確保することができ、また3.0mm以下とすることで、十分な生産安定性を確保することができるために好ましい。
 押出成形において、押出加工温度は樹脂組成物の流動特性や成形性等によって適宜調整されるが、概ね180~350℃が好ましく、200~330℃がより好ましく、220~300℃が更に好ましい。180℃以上の場合、溶融樹脂の粘度が十分に低く成形性に優れ生産性が向上することから好ましい。一方、350℃以下にすることにより、樹脂組成物の劣化、ひいては得られる多孔性フィルムの機械的強度の低下を抑制できる。
 キャストロールによる冷却固化温度は本発明において非常に重要であり、無孔膜状物中の前記ポリプロピレン系樹脂組成物のβ晶の比率を調整することができる。キャストロールの冷却固化温度は好ましくは80~150℃、より好ましくは90~140℃、更に好ましくは100~130℃である。冷却固化温度を80℃以上とすることで冷却固化させ、膜状物中のβ晶の比率を十分に増加させることができ好ましい。また、150℃以下とすることで押出された溶融樹脂がキャストロールへ粘着し巻き付いてしまうなどのトラブルや、添加剤のブリードアウトが起こりにくく、効率よく無孔膜状物を得ることが可能であるために好ましい。
 前記温度範囲にキャストロールを設定することで、無孔膜状物の前記ポリプロピレン系樹脂組成物のβ晶比率は、30~100%に調整することが好ましい。40~100%がより好ましく、50~100%が更に好ましく、60~100%が最も好ましい。無孔膜状物中のβ晶比率を30%以上とすることで、その後の延伸操作により多孔化が行われやすく、透気特性の良い多孔性フィルムを得ることができる。
 前記無孔膜状物中のβ晶比率は、示差走査型熱量計を用いて、25℃から240℃まで加熱速度10℃/分で昇温させた際に、検出されるポリプロピレン系樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算される。
  β晶比率(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
 ついで、得られた無孔膜状物を少なくとも一軸方向に延伸することが好ましく、二軸方向に延伸する二軸延伸がより好ましい。二軸延伸は同時二軸延伸であってもよいし、逐次二軸延伸であってもよい。なかでも、各延伸工程で延伸条件を選択でき、多孔構造を制御し易い逐次二軸延伸が更に好ましい。なお、膜状物の引き取り(流れ)方向への延伸を「縦延伸」、その直角方向への延伸を「横延伸」と称する。
 逐次二軸延伸を用いる場合、延伸温度は、前記ポリプロピレン系樹脂組成物の組成、結晶化度等によって適時選択する必要があるが、下記条件の範囲内で選択することが好ましい。
 縦延伸での延伸温度の下限は概ね20℃以上が好ましく、40℃以上がより好ましく、60℃以上が更に好ましい。一方、前記延伸温度の上限は、130℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。また、縦延伸での延伸倍率の下限は2倍以上が好ましく、3倍以上がより好ましい。一方、前記延伸倍率の上限は、10倍以下が好ましく、8倍以下がより好ましく、7倍以下が更に好ましい。前記範囲内で縦延伸を行うことで、延伸時の破断を抑制しつつ、適度な空孔起点を発現させることができる。
 縦延伸における延伸温度が20℃以上であれば、延伸時の破断が抑制され、均一な延伸が行われるため好ましい。一方、縦延伸における延伸温度が130℃以下であれば、ポリプロピレン系樹脂(A)中の空孔形成が起こるため、適切な空孔形成を行うことができる。
 一方、横延伸での延伸温度の下限は概ね100℃以上が好ましく、105℃以上がより好ましく、110℃以上が更に好ましい。一方前記延伸温度の上限は、160℃以下が好ましく、150℃以下がより好ましく、140℃以下が更に好ましい。また、横延伸での延伸倍率の下限は1.2倍以上が好ましく、1.5倍以上がより好ましく、2.0倍以上が更に好ましい。一方、前記延伸倍率の上限は、10倍以下が好ましく、8倍以下がより好ましく、6倍以下が更に好ましい。前記範囲内で横延伸することで、縦延伸により形成された空孔起点を適度に拡大させ、微細な多孔構造を発現させることができるため、結果として優れた透気特性を有する多孔性フィルムを得ることができる。
 前記延伸工程の延伸速度の下限としては、300%/分以上が好ましく、500%/分以上がより好ましく、1000%/分以上が更に好ましい。一方、前記延伸速度の上限としては、12000%/分以下が好ましく、10000%/分以下がより好ましく、8000%/分以下が更に好ましい。前記範囲内の延伸速度であれば、効率よく本発明の多孔性フィルムを製造することができる。
 このようにして得られた多孔性フィルムは、寸法安定性の改良を目的として熱処理を施すことが好ましい。この際、温度を100℃以上とすることで、寸法安定性の効果が十分に期待できる。一方、熱処理温度は160℃以下が好ましい。また、熱処理工程中には、必要に応じて1~20%の弛緩処理を施しても良い。この熱処理後均一に冷却して巻き取ることにより、本発明の多孔性フィルムが得られる。
 本発明の多孔性フィルムは、透気性が要求される種々の用途に応用することができる。電池用セパレータ;水処理膜;使い捨て紙オムツ、生理用品等の体液吸収用パッドもしくはベッドシーツ等の衛生材料;手術衣もしくは温湿布用基材等の医療用材料;ジャンパー、スポーツウエアもしくは雨着等の衣料用材料;壁紙、屋根防水材、断熱材、吸音材等の建築用材料;乾燥剤;防湿剤;脱酸素剤;使い捨てカイロ;鮮度保持包装もしくは食品包装等の包装材料等の資材として極めて好適に使用できる。
[電池用セパレータの説明]
 次に、前記多孔性フィルムを電池用セパレータとして収容している非水電解液電池(リチウムイオン電池)について、図1を参照して説明する。
 正極板21、負極板22の両極は電池用セパレータ10を介して互いに重なるようにして渦巻き状に捲回し、巻き止めテープで外側を止めて捲回体としている。この渦巻き状に巻回する際、電池用セパレータ10は厚さが5~40μmであることがなかでも好ましく、5~30μmであることが特に好ましい。厚みを5μm以上とすることにより電池用セパレータが破れにくくなり、40μm以下にすることにより所定の電池缶に捲回して収納する際電池面積を大きくとることができ、ひいては電池容量を大きくすることができる。
 前記正極板21、電池用セパレータ10および負極板22を一体的に巻き付けた捲回体を有底円筒状の電池ケース内に収容し、正極および負極のリード体24、25と溶接する。ついで、前記電解質を電池缶内に注入し、電池用セパレータ10などに十分に電解質が浸透した後、電池缶の開口周縁にガスケット26を介して正極蓋27を封口し、予備充電、エージングを行い、筒型の非水電解液電池を作製している。
 電解液としては、リチウム塩を電解液とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメチルカーボネート、プロピオン酸メチルもしくは酢酸ブチルなどのエステル類、アセトニトリル等のニトリル類、1,2-ジメトキシエタン、1,2-ジメトキシメタン、ジメトキシプロパン、1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフランもしくは4-メチル-1,3-ジオキソランなどのエーテル類、またはスルホランなどが挙げられ、これらを単独でまたは二種類以上を混合して用いることができる。
 なかでも、エチレンカーボネート1質量部に対してメチルエチルカーボネートを2質量部混合した溶媒中に六フッ化リン酸リチウム(LiPF)を1.0mol/Lの割合で溶解した電解質が好ましい。
 負極としてはアルカリ金属またはアルカリ金属を含む化合物をステンレス鋼製網などの集電材料と一体化させたものが用いられる。前記アルカリ金属としては、例えばリチウム、ナトリウムまたはカリウムなどが挙げられる。前記アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズもしくはマグネシウムなどとの合金、さらにはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物もしくは硫化物との化合物などが挙げられる。
 負極に炭素材料を用いる場合、炭素材料としてはリチウムイオンをドープ、脱ドープできるものであればよく、例えば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などを用いることができる。
 本実施形態では、負極として、フッ化ビニリデンをN-メチルピロリドンに溶解させた溶液に平均粒径10μmの炭素材料を混合してスラリーとし、この負極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み18μmの帯状の銅箔からなる負極集電体の両面に均一に塗布して乾燥させ、その後、ロールプレス機により圧縮成形した後、切断し、帯状の負極板としたものを用いている。
 正極としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウムもしくはクロム酸化物などの金属酸化物、二硫化モリブデンなどの金属硫化物などが活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレンなどの結着剤などを適宜添加した合剤を、ステンレス鋼製網などの集電材料を芯材として成形体に仕上げたものが用いられる。
 本実施形態では、正極としては、下記のようにして作製される帯状の正極板を用いている。すなわち、リチウムコバルト酸化物(LiCoO)に導電助剤としてリン状黒鉛を(リチウムコバルト酸化物:リン状黒鉛)の質量比90:5で加えて混合し、この混合物と、ポリフッ化ビニリデンをN-メチルピロリドンに溶解させた溶液とを混合してスラリーにする。この正極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚さ20μmのアルミニウム箔からなる正極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形した後、切断し、帯状の正極板としている。
[実施例の説明]
 次に、本発明の多孔性フィルムの実施例および比較例を示す。本発明の多孔性フィルムについて更に詳細に説明するが、本発明はこれらに限定されるものではない。
 なお、多孔性フィルムの流れ方向を「縦方向」、流れ方向に対して垂直方向を「横方向」と称する。
(1)重量平均分子量、数平均分子量、分子量分布(高温GPC法)
 用いた原料を140℃のo-ジクロロベンゼンに溶解し、高温GPCシステム(日本ウォーターズ社製、型式:Alliance GPCV-2000)を用いて、流速0.3mL/minにて測定を行った。重量平均分子量、数平均分子量、分子量分布の算出は、標準サンプルとしてポリスチレンを用いて換算し、算出した。
(2)厚み
 得られた多孔性フィルムを1/1000mmのダイヤルゲージにて、面内を不特定に5箇所測定しその平均を厚みとした。
(3)空孔率
 得られた多孔性フィルムの実質量W1を測定し、樹脂組成物の密度と厚みから空孔率0%の場合の質量W0を計算し、それらの値から下記式に基づき算出した。
  空孔率(%)={(W0-W1)/W0}×100
(4)透気度(ガーレー値)
 得られた多孔性フィルムから直径φ40mmの大きさでサンプルを切り出し、JIS P8117に準拠して透気度(秒/100ml)を測定した
(5)25μm換算電気抵抗
 25℃の空気雰囲気下にて多孔性フィルムを3.5cm×3.5cm角に切ってガラスシャーレに入れ、1Mの過塩素酸リチウムを含むプロピレンカーボネート:エチルメチルカーボネート=1:1(v/v)溶液(キシダ化学社製)を多孔性フィルムが浸る程度入れ、溶液を染込ませた。多孔性フィルムを取り出し、余分な電解液を拭い、φ60mmのステンレス製シャーレの中央に置いた。底面がφ30mmの100gステンレス製分銅をゆっくり乗せ、シャーレと分銅に端子を接続し、HIOKI LCR HiTESTER(日置電機社製、型番3522-50)を用いて電気抵抗を測定した。
 前記電気抵抗から、25μm換算電気抵抗を下記式に基づき算出した。
  25μm換算電気抵抗(Ω)=電気抵抗×{25/厚み(μm)}
(6)β活性(DSC)
 得られた多孔性フィルムをパーキンエルマー社製の示差走査型熱量計(DSC-7)を用いて、25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温した。再昇温時にポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)である145~160℃にピークが検出されるか否かにより、以下のようにβ活性の有無を評価した。
  ○:Tmβが145℃~160℃の範囲内に検出された場合(β活性あり)
  ×:Tmβが145℃~160℃の範囲内に検出されなかった場合(β活性なし)
 なお、β活性の測定は、試料量10mgで、雰囲気ガスを窒素として行った。
(7)135℃で1分間加熱後の透気度
 得られた多孔性フィルムを縦60mm×横60mm角に切り出し、図2(A)に示すように中央部にφ40mmの円状の穴をあけたアルミ板(材質:JISA5052、サイズ:縦60mm、横60mm、厚さ1mm)2枚の間に挟み、図2(B)に示すように周囲をグリセリン(ナカライテスク社製1級)で底面から100mmとなるまで満たした。135℃のオイルバス(アズワン社製、OB-200A)の中央部に、アルミ板2枚で固定された状態のフィルムを浸漬し、1分間加熱した。加熱後直ちに別途用意した25℃のグリセリンを満たして冷却槽に浸漬して5分間冷却した後、2-プノパノール(ナカライテスク社製、特級)で洗浄し、25℃の空気雰囲気下にて15分乾燥させた後に上記(4)の方法に従い測定した。
 実施例、比較例で使用した原材料は以下の通りである。
 なお、ポリプロピレン系樹脂(A)、低分子量ポリプロピレン系樹脂(B)、低分子量ポリエチレン系樹脂については、上記手法に従い、重量平均分子量、数平均分子量、分子量分布を算出し、併記した。
(ポリプロピレン系樹脂(A))
・A-1;ノバテックPP FY6HA (日本ポリプロ社製、MFR;2.4g/10分、重量平均分子量;305,000、数平均分子量;73,000、分子量分布;4.2)
(低分子量ポリプロピレン系樹脂(B))
・B-1;ビスコール660P (三洋化成工業社製、重量平均分子量;8,700、数平均分子量;1,500、分子量分布;5.8)
・B-2;ハイワックスNP055 (三井化学社製、重量平均分子量;9,600、数平均分子量;4,800、分子量分布;2.0)
・B-3;ビスコール330P (三洋化成工業社製、重量平均分子量;37,200、数平均分子量;18,800、分子量分布;2.0)
・B-4;ハイワックスNP105 (三井化学社製、重量平均分子量;16,200、数平均分子量;8,700、分子量分布;1.9)
・B-5;ハイワックスNP505 (三井化学社製、重量平均分子量;31,900、数平均分子量;17,800、分子量分布;1.8)
・B-6;ハイワックスNP805 (三井化学社製、重量平均分子量;44,000、数平均分子量;23,400、分子量分布;1.9)
(低分子量ポリエチレン系樹脂)
・C-1;サンワックス161P (三洋化成工業社製、重量平均分子量;29,000、数平均分子量;8,900、分子量分布;3.3)
・C-2;サンワックス165P (三洋化成工業社製、重量平均分子量;32,000、数平均分子量;9,800、分子量分布;3.3)
・C-3;サンワックスE250P (三洋化成工業社製、重量平均分子量;8,100、数平均分子量;3,500、分子量分布;2.3)
(β晶核剤)
・D-1;3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン
(酸化防止剤)
・E-1;IRGANOX-B225 (チバ・スペシャルティ・ケミカルズ社製)
(ポリエチレン系樹脂)
・F-1;ハイゼックス3600F (プライムポリマー社製、MFR;1.0g/10分)
(実施例1~10、比較例1)
 表1および表2に実施例1~10、比較例1~4を示す。
 実施例1~10及び比較例1は、各原材料を東芝機械株式会社製の2軸押出機(口径40mmφ、L/D=32)に投入し、設定温度270℃で溶融混合後、水槽にてストランドを冷却固化。ペレタイザーにてストランドをカットすることで、ペレットを作製した。次いで、三菱重工株式会社製の単軸押出機を用いて、200℃で溶融混合後Tダイより押出した溶融樹脂シートを127℃のキャストロールで引き取り、冷却固化させて、幅300mm、厚み80μm程度の無孔膜状物を得た。次いで、得られた無孔膜状物に対し、フィルムロール縦延伸機を用い、105℃に加熱したロール間において、延伸倍率4.6倍で縦延伸を行い、縦一軸延伸フィルムを得た。
 次いで、得られた縦一軸延伸フィルムを、京都機械社製フィルムテンター設備にて、予熱温度150℃で予熱した後、延伸温度150℃、延伸倍率2.1倍、延伸速度1100%/分で横延伸をした後、153℃で熱処理を行い、多孔性フィルムを得た。得られた多孔性フィルムの評価結果を表2に示す。
(比較例2~4)
 前記実施例1~10および比較例1と同様に、各原材料を東芝機械株式会社製の2軸押出機(口径40mmφ、L/D=32)に投入し、設定温度270℃で溶融混合後、水槽にてストランドを冷却固化。ペレタイザーにてストランドをカットすることで、ペレットを作製した。
 次いで、三菱重工株式会社製の単軸押出機を用いて、200℃で溶融混合後Tダイより押出した溶融樹脂シートを127℃のキャストロールで引き取ろうとした。
 但し、比較例2~4のいずれにおいても、溶融樹脂シートに簾状の外観不良が生じると共に、キャストロールにて冷却固化中に無孔膜状物が破膜し、サンプルを採取することが出来なかった。また、キャストロール状に、低分子量ポリエチレン系樹脂が付着するといったブリードアウト現象も見られた。キャストロールにて無孔膜状物が得られなかったため、縦延伸、横延伸、及び、フィルム評価は行わなかった。
(実施例11~13)
 表3および表4に実施例11~16および比較例5~7を示す。
 実施例11~13は前記実施例3にて得られた縦一軸延伸フィルムを、京都機械社製フィルムテンター設備にて、予熱温度150℃で予熱した後、延伸温度150℃、延伸倍率2.1倍、表3に示す延伸速度で、横延伸をした後、153℃で熱処理を行い、それぞれ多孔性フィルムを得た。得られた多孔性フィルムの評価結果を表4に示す。
(実施例14~16)
 前記実施例9にて得られた縦一軸延伸フィルムを、京都機械社製フィルムテンター設備にて、予熱温度150℃で予熱した後、延伸温度150℃、延伸倍率2.1倍、表3に示す延伸速度で、横延伸をした後、153℃で熱処理を行い、それぞれ多孔性フィルムを得た。得られた多孔性フィルムの評価結果を表4に示す。
(比較例5~7)
 比較例1にて得られた縦一軸延伸フィルムを、京都機械社製フィルムテンター設備にて、予熱温度150℃で予熱した後、延伸温度150℃、延伸倍率2.1倍、表3に示す延伸速度で、横延伸をした後、153℃で熱処理を行い、それぞれ多孔性フィルムを得た。得られた多孔性フィルムの評価結果を表4に示す。
(実施例17,実施例18,比較例8)
 表5と表6に実施例17、18、比較例8を示す。
 実施例17、18、比較例8は、前記I層の原材料を東芝機械株式会社製の2軸押出機(口径40mmφ、L/D=32)に投入し、設定温度270℃で溶融混合後、水槽にてストランドを冷却固化。ペレタイザーにてストランドをカットすることで、前記I層用ペレットを作製した。
 また、前記II層の原材料を同様の設備に投入し、設定温度270℃で溶融混合後、水槽にてストランドを冷却固化。ペレタイザーにてストランドをカットすることで、前記II層用ペレットを作製した。
 前記I層用ペレットを表裏層、前記II層用ペレットを中間層とするように、別々の単軸押出機を用いて200℃で溶融させ、2種3層のマルチマニホールドTダイから膜厚比率がI層/II層/I層=2/1/2となるように積層押出した後、127℃のキャスティングロール上に落として冷却固化させることで、積層無孔膜状物を得た。
 前記積層無孔膜状物を延伸ロールで、延伸倍率4.2倍で縦延伸をして、予熱温度95℃で予熱した後、延伸温度95℃、延伸倍率2.1倍で横延伸をした後、133℃で熱処理を行うことで、積層多孔性フィルムを得た。得られた多孔性フィルムの評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明で規定する範囲内で構成された実施例の多孔性フィルムは、比較例1の多孔性フィルムと比較し、優れた透気特性を有することがわかる。すなわち、本発明が規定するように、高温GPC法による重量平均分子量(Mw)が100,000以上、当該Mwの常用対数(logMw)が4.8以下を占める割合が全体の15%以上であるポリプロピレン系樹脂組成物を主成分とする層を少なくとも1層有し、かつ、前記ポリプロピレン系樹脂組成物がβ活性を有することを特徴とする多孔性フィルムは、前記低分子量ポリプロピレン系樹脂を添加しない場合と比較し、透過特性を向上させることを示す。
 また、比較例2~4に示すように、低分子量ポリエチレン系樹脂を用いた場合には、多孔性フィルムを製膜することが出来なかった。これは、低分子量ポリエチレン系樹脂を用いた場合、低分子量ポリエチレン系樹脂の重量平均分子量が1,000以上、80,000以下であっても、ポリプロピレン系樹脂との相溶性が悪く、分散不良を起こすためであると考えられる。
 また、本発明で規定する範囲内で構成された実施例の多孔性フィルムは、延伸速度を増速した場合における透気特性の悪化を鈍化させる効果をもたらすことが分かる。実施例11~16に示すように、本発明で規定する範囲内で構成された実施例の多孔性フィルムでは、延伸速度を比例的に増速させた場合における透気度の増加が緩やかに対し、比較例5~7では、延伸速度を比例的に増速させた場合における透気度は、ほぼ直線的に増加し、延伸速度に対する透気度の悪化程度の傾きも大きい。
 さらには、本発明で規定する範囲内で構成された実施例17、18の(I層)とシャットダウン層として機能する(II層)とを積層した多孔性フィルムは、比較例8と比較し、透気度の優位性が確認される。また、実施例18の(II層)のシャットダウン層に低分子量ポリプロピレンを添加した系においては、シャットダウン特性が安定化する傾向も確認される。
 本発明の多孔性フィルムは、優れた透気特性と弾性率を有するため、各種分野における多孔性フィルムとして用いることができる。
10 電池用セパレータ
20 リチウムイオン電池
21 正極板
22 負極板
31 アルミ板
32 フィルム
33 クリップ
34 フィルム縦方向
35 フィルム横方向

Claims (14)

  1.  高温GPC法による重量平均分子量(Mw)が100,000以上、当該Mwの常用対数(logMw)が4.8以下を占める割合が全体の15%以上であり、かつ、β活性を有するポリプロピレン系樹脂組成物を主成分とすることを特徴とする多孔性フィルム。
  2.  前記ポリプロピレン系樹脂組成物において、高温GPC法による重量平均分子量(Mw)が1,000,000以下である請求項1に記載の多孔性フィルム。
  3.  前記ポリプロピレン系樹脂組成物において、前記logMwが4.8以下を占める割合が全体の50%以下である請求項1または2に記載の多孔性フィルム。
  4.  前記ポリプロピレン系樹脂組成物は、重量平均分子量が100,000以上のポリプロピレン系樹脂(A)と、重量平均分子量が100,000未満の低分子量ポリプロピレン系樹脂(B)を含む請求項1乃至請求項3のいずれか1項に記載の多孔性フィルム。
  5.  前記ポリプロピレン系樹脂(A)の分子量分布のパラメータであるMw/Mnは1.5~35.0であると共にメルトフローレート(MFR)は0.1~20g/10分である請求項4に記載の多孔性フィルム。
  6.  前記低分子量ポリプロピレン系樹脂(B)の重量平均分子量が80,000以下である請求項4または請求項5に記載の多孔性フィルム。
  7.  前記ポリプロピレン系樹脂(A)と前記低分子量ポリプロピレン系樹脂(B)との混合質量比が、(A)/(B)=99.9/0.1~50/50である請求項4乃至請求項6のいずれか1項に記載の多孔性フィルム。
  8.  前記ポリプロピレン系樹脂組成物はβ晶核剤を含有し、かつ、当該β晶核剤の含有量が、該ポリプロピレン系樹脂組成物100質量部に対して0.0001~5質量部の割合である請求項1乃至請求項7のいずれか1項に記載の多孔性フィルム。
  9.  前記ポリプロピレン系樹脂組成物を主成分とする層(I層)に、ポリエチレン系樹脂を主成分とする層(II層)を積層している請求項1乃至請求項8のいずれか1項に記載の多孔性フィルム。
  10.  前記II層は前記ポリエチレン系樹脂に、前記低分子量ポリプロピレン系樹脂(B)を含んでいる請求項9に記載の多孔性フィルム。
  11.  二軸延伸によって多孔化され、空孔率は30%以上、透気度は1000秒/100ml以下、25μm換算電気抵抗は1.0Ω以下である請求項1乃至請求項10のいずれか1項に記載の多孔性フィルム。
  12.  請求項1乃至請求項11のいずれか1項に記載の多孔性フィルムからなる電池用セパレータ。
  13.  請求項12に記載の電池用セパレータが組み込まれている電池。
  14.  重量平均分子量が100,000以上であるポリプロピレン系樹脂(A)と、重量平均分子量が80,000以下の低分子量ポリプロピレン系樹脂(B)と、β晶核剤とを混合してポリプロピレン系樹脂組成物を調整し、
     前記ポリプロピレン系樹脂組成物を溶融押出して無孔膜状物を作成し、
     前記無孔膜状物を縦延伸後に横延伸を行って二軸延伸し、横延伸時の延伸速度は300%/分以上12000%/分以下としていることを特徴とする多孔性フィルムの製造方法。
PCT/JP2012/066117 2011-06-29 2012-06-25 多孔性フィルム、電池用セパレータ、および電池 WO2013002164A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522837A JP5699212B2 (ja) 2011-06-29 2012-06-25 多孔性フィルム、電池用セパレータ、および電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-144506 2011-06-29
JP2011144506 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013002164A1 true WO2013002164A1 (ja) 2013-01-03

Family

ID=47424058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066117 WO2013002164A1 (ja) 2011-06-29 2012-06-25 多孔性フィルム、電池用セパレータ、および電池

Country Status (2)

Country Link
JP (1) JP5699212B2 (ja)
WO (1) WO2013002164A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007260A1 (ja) * 2012-07-04 2014-01-09 東レ株式会社 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP2014194010A (ja) * 2013-02-28 2014-10-09 Sumitomo Chemical Co Ltd ポリプロピレン系樹脂組成物、そのシートおよびそのフィルム
JP2015123621A (ja) * 2013-12-26 2015-07-06 三菱樹脂株式会社 積層多孔性フィルム、電池用セパレータ及びその製造方法
WO2017026482A1 (ja) * 2015-08-12 2017-02-16 宇部興産株式会社 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2017076772A1 (en) * 2015-11-02 2017-05-11 Sabic Global Technologies B.V. Light diffusing article
JP2017094709A (ja) * 2015-08-12 2017-06-01 宇部興産株式会社 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
CN111584807A (zh) * 2019-02-18 2020-08-25 旭化成株式会社 蓄电装置用微多孔膜
JP2020163793A (ja) * 2019-03-29 2020-10-08 宇部興産株式会社 多孔質フィルム用の前駆体フィルム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820659A (ja) * 1994-07-08 1996-01-23 Daicel Chem Ind Ltd 微多孔膜及びその製造方法並びに非水電解液電池用セパレータ
JP2000348706A (ja) * 1999-03-31 2000-12-15 Mitsubishi Chemicals Corp 電池用セパレーター
JP2010111833A (ja) * 2008-11-10 2010-05-20 Mitsubishi Plastics Inc 多孔性フィルム、それを利用したリチウム電池用セパレータ、および電池
JP2010111096A (ja) * 2008-11-10 2010-05-20 Mitsubishi Plastics Inc 積層多孔性フィルム、それを利用したリチウムイオン電池用セパレータ、および電池
JP2011074119A (ja) * 2009-09-29 2011-04-14 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820659A (ja) * 1994-07-08 1996-01-23 Daicel Chem Ind Ltd 微多孔膜及びその製造方法並びに非水電解液電池用セパレータ
JP2000348706A (ja) * 1999-03-31 2000-12-15 Mitsubishi Chemicals Corp 電池用セパレーター
JP2010111833A (ja) * 2008-11-10 2010-05-20 Mitsubishi Plastics Inc 多孔性フィルム、それを利用したリチウム電池用セパレータ、および電池
JP2010111096A (ja) * 2008-11-10 2010-05-20 Mitsubishi Plastics Inc 積層多孔性フィルム、それを利用したリチウムイオン電池用セパレータ、および電池
JP2011074119A (ja) * 2009-09-29 2011-04-14 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007260A1 (ja) * 2012-07-04 2014-01-09 東レ株式会社 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5626486B2 (ja) * 2012-07-04 2014-11-19 東レ株式会社 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP2014194010A (ja) * 2013-02-28 2014-10-09 Sumitomo Chemical Co Ltd ポリプロピレン系樹脂組成物、そのシートおよびそのフィルム
JP2015123621A (ja) * 2013-12-26 2015-07-06 三菱樹脂株式会社 積層多孔性フィルム、電池用セパレータ及びその製造方法
WO2017026482A1 (ja) * 2015-08-12 2017-02-16 宇部興産株式会社 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP2017094709A (ja) * 2015-08-12 2017-06-01 宇部興産株式会社 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
CN107921728A (zh) * 2015-08-12 2018-04-17 宇部兴产株式会社 叠层多孔质膜、蓄电装置用间隔体、以及蓄电装置
WO2017076772A1 (en) * 2015-11-02 2017-05-11 Sabic Global Technologies B.V. Light diffusing article
CN111584807A (zh) * 2019-02-18 2020-08-25 旭化成株式会社 蓄电装置用微多孔膜
JP2020163793A (ja) * 2019-03-29 2020-10-08 宇部興産株式会社 多孔質フィルム用の前駆体フィルム
JP7293809B2 (ja) 2019-03-29 2023-06-20 Ube株式会社 多孔質フィルム用の前駆体フィルム

Also Published As

Publication number Publication date
JPWO2013002164A1 (ja) 2015-02-23
JP5699212B2 (ja) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5676577B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5685039B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5419817B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5699212B2 (ja) 多孔性フィルム、電池用セパレータ、および電池
JP5507766B2 (ja) 積層多孔フィルムの製造方法
WO2010026954A1 (ja) セパレータ用積層多孔性フィルム
JP5930032B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
WO2010053172A1 (ja) 積層多孔性フィルム、リチウム電池用セパレータおよび電池
JP5994016B2 (ja) 多孔性フィルムの製造方法
JP5092072B2 (ja) ポリオレフィン樹脂多孔性フィルム、およびそれを用いた非水電解質電池用セパレータ
JP6093636B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6154585B2 (ja) 積層多孔性フィルム
JP5620467B2 (ja) 多孔性ポリプロピレンフィルム
JP4801706B2 (ja) セパレータ用積層多孔性フィルム、およびその製造方法
JP6117493B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6137523B2 (ja) 積層多孔フィルムの製造方法、積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP4801705B2 (ja) セパレータ用積層多孔性フィルム、およびその製造方法
JP5848193B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6103921B2 (ja) 積層多孔性フィルム、電池用セパレータ、および電池
JP5460024B2 (ja) 多孔性フィルム、それを利用したリチウム電池用セパレータ、および電池
JP6232771B2 (ja) 多孔性フィルム、それを利用した電池用セパレータおよび電池
JP5997000B2 (ja) ポリプロピレン系樹脂多孔性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803615

Country of ref document: EP

Kind code of ref document: A1