WO2017026482A1 - 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス - Google Patents

積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス Download PDF

Info

Publication number
WO2017026482A1
WO2017026482A1 PCT/JP2016/073441 JP2016073441W WO2017026482A1 WO 2017026482 A1 WO2017026482 A1 WO 2017026482A1 JP 2016073441 W JP2016073441 W JP 2016073441W WO 2017026482 A1 WO2017026482 A1 WO 2017026482A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
laminated porous
laminated
filler
layer
Prior art date
Application number
PCT/JP2016/073441
Other languages
English (en)
French (fr)
Inventor
大矢 修生
昭博 松林
あすみ 鎌田
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016155871A external-priority patent/JP6187650B2/ja
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CN201680046727.0A priority Critical patent/CN107921728A/zh
Priority to US15/750,769 priority patent/US20180233730A1/en
Publication of WO2017026482A1 publication Critical patent/WO2017026482A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Patent Document 1 proposes a multilayer separator composed of a laminated porous film in which a layer containing a polymer other than polyolefin is laminated on at least one surface of a polyolefin porous film.
  • the laminated porous film it is described that the amount of lifting in an environment of a temperature of 23 ° C. and a humidity of 50% is suppressed to 15 mm or less.
  • the actual battery assembly process is in an environment where the temperature is 23 ° C. and the dew point is ⁇ 20 ° C. or less (humidity is about 4.5% or less)
  • the suppression of the warp (curl) is not fully satisfactory.
  • it is required to improve the electrolyte solution absorbability of the separator.
  • the present invention has been made in view of the above circumstances, can suppress the occurrence of warpage, and has a high liquid absorption property of an electrolytic solution, so that a power storage device is favorable when used as a power storage device separator. It aims at providing the laminated porous film which can show performance, the separator for electrical storage devices, and an electrical storage device.
  • the present inventor has intensively studied in order to solve the above problems, and applied a coating liquid containing a filler and a medium on at least one surface of a polyolefin porous film, and after drying at a predetermined drying temperature, the film is machine direction.
  • the inventors have found that the problem can be solved by heating while applying a tension of 0.1 N / mm or more per unit length width of the film, and have reached the present invention.
  • the present invention has the following features (1) to (21): (1) A laminated porous film in which a porous layer containing a filler is laminated on at least one surface of a polyolefin porous film containing polypropylene as a raw material, The rectangular laminated porous film cut out with a side length of 60 mm in the machine direction and a length of 60 mm in a direction substantially perpendicular to the machine direction is allowed to stand in an environment at a temperature of 23 ° C. and a dew point of ⁇ 20 ° C. or less for 1 hour.
  • the heat shrinkage rate in the machine direction (MD) is 1% or less at 110 ° C., and the heat shrinkage rate in the direction (TD) substantially perpendicular to the machine direction is ⁇ 1.7% to ⁇ 1.
  • the laminated porous film according to (3) which is 0%.
  • the laminated porous film according to (4), wherein an elongation rate when a tension is applied is 1.0% or more.
  • An electricity storage device separator comprising the laminated porous film according to any one of (1) to (7).
  • An electricity storage device comprising the electricity storage device separator according to (8), a positive electrode, and a negative electrode.
  • the rectangular laminated porous film cut out with a side length of 60 mm in the machine direction and a length of 60 mm in a direction substantially perpendicular to the machine direction is allowed to stand in an environment at a temperature of 23 ° C. and a dew point of ⁇ 20 ° C. or less for 1 hour.
  • the heat shrinkage rate in the machine direction is 1% or less at 110 ° C., and the heat shrinkage rate in the direction substantially perpendicular to the machine direction is ⁇ 1.7% to ⁇ 1.0% at 110 ° C.
  • polyolefin porous film As the polyolefin porous film (polyolefin microporous film) of the present invention, a polyolefin porous film applied to a conventional separator for an electricity storage device is preferably used having sufficient mechanical properties and ion permeability. be able to.
  • the heat blocking temperature is preferably set to 110 to 180 ° C., preferably 120 to 140 ° C.
  • the battery separator of the present invention has a porous layer (heat-resistant layer) containing a filler.
  • the polyolefin porous film alone can be maintained at a non-porous maintaining temperature of 170 ° C. or higher. It is preferable to have.
  • the polyolefin porous film constituting the present invention preferably has a melting point of 150 ° C. or higher, and may be a laminated polyolefin porous film.
  • the laminated polyolefin porous film preferably has a polyolefin porous film layer having a melting point of 150 ° C. or higher and a polyolefin porous film layer having a melting point in the range of 110 ° C. to 140 ° C.
  • the polyolefin porous film having a melting point of 150 ° C. or higher includes polypropylene (PP), and the polyolefin porous film having a melting point in the range of 110 ° C. to 140 ° C. is polyethylene (PE).
  • a porous film laminated in the order of PP / PE / PP is preferable.
  • the polyolefin raw material preferably has a weight average molecular weight of 35 to 1,000,000.
  • Polypropylene (PP) preferably has a weight average molecular weight of 500 to 1,000,000
  • polyethylene (PE) preferably has a weight average molecular weight of 350,000 to 700,000.
  • the weight average molecular weight of polypropylene (PP) is 550 to 800,000, and the weight average molecular weight of polyethylene (PE) is 350,000 to 550,000.
  • PP polypropylene
  • PE polyethylene
  • the thickness of the polyolefin porous film depends on the type of battery used, but is preferably 3 to 300 ⁇ m, more preferably 10 to 100 ⁇ m, and still more preferably 16 to 50 ⁇ m.
  • the filler, particles, colorant, plasticizer, lubricant, flame retardant, anti-aging agent can be used to the extent that the performance as an electricity storage device separator is not impaired.
  • a resin additive typified by an antioxidant, an adhesive, and a reinforcing agent made of an inorganic substance may be included.
  • the method for producing the polyolefin porous film used in the present invention is not particularly limited.
  • Japanese Patent Application Laid-Open No. 7-307146 discloses an invention relating to a method for producing a separator for a battery comprising a laminated porous film in which three or more laminated films in which polypropylene and polyethylene are alternately laminated are stretched and made porous. Is disclosed.
  • a laminated film of three or more layers obtained by thermocompression bonding a polypropylene film and a polyethylene film at a temperature of 120 to 140 ° C. is heat-treated in a temperature range of 110 to 140 ° C., and then maintained at a temperature of minus 20 ° C. to plus 50 ° C.
  • the film is stretched 5 to 200% in the molten state, and then stretched by 100 to 400% while being maintained at a temperature of 70 to 130 ° C., and then heat-treated at a temperature 5 to 45 ° C. higher than the temperature at the latter stretching.
  • a method for manufacturing a battery separator is disclosed. Further, a laminated film of three or more layers heat-pressed at a temperature of 120 to 140 ° C.
  • a polypropylene film and a polyethylene film is heat-treated in a temperature range of 110 to 140 ° C., and then 20 to 35 ° C.
  • the film is stretched by 10 to 100% while being held at a temperature, and then stretched by 100 to 400% while being held at a temperature of 70 to 130 ° C., and then 5 to 45 ° C. from the temperature at the latter stretching.
  • a polyolefin porous film is produced by a dry stretching method
  • the polymer is melted by adding a nucleating agent as necessary, formed into a sheet by an extrusion method, etc., subjected to a heat treatment for crystallization, and then stretched.
  • the crystal interface can be peeled off and opened.
  • a polyolefin porous film produced by a dry stretching method is preferred.
  • the porous film produced by the dry stretching method has a finer orientation of the raw material polymer than the porous film produced by the wet method, and as a result, the retention characteristics of the morphology are better than the wet type. The amount of lifting described later can be suppressed.
  • a biaxial stretching process is also performed in the manufacturing process, but since it includes a step of performing component extraction by subsequent immersion in a solvent and then drying again, the orientation of the polymer molecules is disturbed as compared with the dry stretching method.
  • the dry stretching method for example, the following method is preferable.
  • Polypropylene having a weight average molecular weight of 500 to 1,000,000 is melt-extruded into a film using a molding apparatus, and then heat-treated with the take-up direction fixed.
  • polyethylene high-density polyethylene having a weight average molecular weight of 3500 to 500,000 is melt-extruded into a film using a molding machine.
  • a heat-treated polypropylene film or polyethylene film is laminated in a three-layer structure by placing polypropylene on the surface layer and polyethylene on the inner layer (intermediate layer), thermocompression-bonded at a temperature of 120 to 140 ° C. with a heating roll, and then with a cooling roll. Cooling.
  • the obtained unstretched laminated film was stretched by 5 to 200% while being maintained at a temperature of minus 20 ° C. to plus 50 ° C., and then continuously stretched at a temperature of 70 to 130 ° C. with a total stretch amount of 100 to 100%.
  • a multilayered polyolefin film may be produced by a coextrusion method using a feed block type / multimany hold type die.
  • a coating liquid containing heat-resistant fine particles is applied to form a porous layer containing a filler on at least one surface of the polyolefin porous film, but before applying the coating liquid,
  • surface treatment such as ultraviolet treatment, corona discharge treatment, plasma discharge treatment of the polyolefin porous film
  • the wettability with respect to the coating liquid can be adjusted.
  • These surface treatments are preferably performed only on the surface of the polyolefin porous film from the viewpoint of homogeneous coating.
  • the porous layer (porous layer containing an inorganic substance) containing the filler of the present invention ensures its heat resistance by containing heat-resistant fine particles.
  • heat resistance means that shape change such as deformation is not visually confirmed at least at 150 ° C.
  • the heat resistance of the heat-resistant fine particles is preferably 200 ° C. or higher, more preferably 300 ° C. or higher, and still more preferably 400 ° C. or higher.
  • the porous layer containing the filler may be a single layer or a multilayer in which a plurality of layers are laminated.
  • Inorganic oxide fine particles such as aluminum nitride, silicon nitride, etc .; sparingly soluble ionic crystal fine particles such as calcium fluoride, barium fluoride, and barium sulfate; covalently bonded crystal fine particles such as silicon and diamond; montmorillonite Clay fine particles such as;
  • the inorganic oxide fine particles may be fine particles such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or a mineral resource-derived material or an artificial product thereof.
  • the inorganic compound constituting these inorganic fine particles may be element-substituted or solid solution, if necessary, and the inorganic fine particles may be surface-treated.
  • the inorganic fine particles are formed by electrically insulating the surface of a conductive material exemplified by metals, conductive oxides such as SnO 2 and tin-indium oxide (ITO), carbonaceous materials such as carbon black and graphite. It is also possible to use particles that are made electrically insulating by coating with a material having the above (for example, the above-mentioned inorganic oxide).
  • Organic fine particles can also be used as the heat-resistant fine particles.
  • specific examples of the organic fine particles include polyimide, melamine resin, phenol resin, aromatic polyamide resin, crosslinked polymethyl methacrylate (crosslinked PMMA), crosslinked polystyrene (crosslinked PS), polydivinylbenzene (PDVB), benzoguanamine-formaldehyde condensation.
  • the organic resin (polymer) constituting these organic fine particles is a mixture, modified body, derivative, copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer) of the materials exemplified above. ) Or a crosslinked product (in the case of the heat-resistant polymer).
  • the porous layer containing a filler contains heat-resistant fine particles as a main component.
  • “comprising as a main component” means that 70% by volume of the heat-resistant fine particles are contained in the total volume of the constituent components of the porous layer containing a filler. It means including the above.
  • the amount of the heat-resistant fine particles in the porous layer containing the filler is preferably 80% by volume or more, and more preferably 90% by volume or more in the total volume of the constituent components of the heat-resistant layer.
  • the porous layer containing a filler preferably contains an organic binder in order to bind heat-resistant fine particles included as a main component or to bind the porous layer containing the filler and the polyolefin porous film.
  • the preferable upper limit value of the heat-resistant fine particle amount in the porous layer containing the filler is, for example, 99% by volume in the total volume of the constituent components of the porous layer containing the filler. If the amount of the heat-resistant fine particles in the porous layer containing the filler is too small, for example, it is necessary to increase the amount of the organic binder in the porous layer containing the filler.
  • ethylene-acrylic acid copolymers such as ethylene-vinyl acetate copolymers (EVA, structural units derived from vinyl acetate of 20 to 35 mol%), ethylene-ethyl acrylate copolymers, fluororesins [Polyvinylidene fluoride (PVDF), etc.], fluorinated rubber, styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP) ), Poly N-vinylacetamide, crosslinked acrylic resin, polyurethane, epoxy resin, polyimide and the like.
  • EVA ethylene-vinyl acetate copolymers
  • PVDF ethylene-ethyl acrylate copolymers
  • fluororesins Polyvinylidene fluoride (PVDF), etc.
  • the organic solvent used as a medium for the coating liquid is one that does not damage the polyolefin porous film by dissolving or swelling the polyolefin porous film, and is suitable when an organic binder is used.
  • the organic binder is not particularly limited as long as it can uniformly dissolve the organic binder, but is preferably a furan such as tetrahydrofuran (THF); a ketone such as methyl ethyl ketone (MEK) or methyl isobutyl ketone (MIBK); is there.
  • the high boiling point organic solvent may damage the polyolefin porous film by heat melting or the like when the organic solvent is removed by drying after the porous layer forming composition containing the filler is applied to the polyolefin porous film. Since there is a possibility of giving, it is not preferable.
  • polyhydric alcohols ethylene glycol, triethylene glycol, etc.
  • surfactants linear alkyl benzene sulfonate, polyoxyethylene alkyl ether, polyoxyethyl alkyl phenyl ether, etc.
  • a porous layer containing a filler is formed by drying the coating liquid applied to one or both sides of the polyolefin porous film and removing the medium in the coating liquid.
  • the Gurley value (air permeability) of the laminated porous film of the present invention is not particularly limited, but is 10 to 1000 seconds / 100 cc, preferably 10 to 800 seconds / 100 cc, and more preferably 30 to 600 seconds / 100 cc. If the Gurley value is too high, the function when used as a laminated porous film is not sufficient, and if the Gurley value is too low, there is a risk of increasing the non-uniformity of the reaction inside the battery.
  • Non-aqueous electrolyte Preferred examples of the non-aqueous solvent used in the non-aqueous electrolyte include cyclic carbonates and chain esters.
  • a chain ester is included, more preferably a chain carbonate is included, and both a cyclic carbonate and a chain carbonate are included.
  • chain ester is used as a concept including a chain carbonate and a chain carboxylic acid ester.
  • cyclic carbonate examples include one or more selected from ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC), and a combination of EC and VC and a combination of PC and VC are particularly preferable.
  • EC ethylene carbonate
  • PC propylene carbonate
  • VC vinylene carbonate
  • the content of the chain ester is not particularly limited, but it is preferably used in the range of 60 to 90% by volume with respect to the total volume of the nonaqueous solvent. If the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and if it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte is lowered and the temperature is wide, particularly at high temperatures. Since there is little possibility that an electrochemical characteristic will fall, it is preferable that it is the said range.
  • the proportion of the volume occupied by EA in the chain ester is preferably 1% by volume or more in the non-aqueous solvent, and more preferably 2% by volume or more.
  • the upper limit is more preferably 10% by volume or less, and even more preferably 7% by volume or less.
  • the asymmetric chain carbonate preferably has an ethyl group, and methyl ethyl carbonate is particularly preferable.
  • the ratio between the cyclic carbonate and the chain ester is preferably 10:90 to 45:55 in terms of the cyclic carbonate: chain ester (volume ratio) from the viewpoint of improving electrochemical characteristics over a wide temperature range, particularly at high temperatures, and 15:85. ⁇ 40: 60 is more preferred, and 20:80 to 35:65 is particularly preferred.
  • the laminated porous film in which the porous layer containing the filler of the present invention is laminated can be used for the following first and second electricity storage devices as an electricity storage device separator, and only a liquid nonaqueous electrolyte is used.
  • a gelled one can be used.
  • it is preferably used as a separator for a lithium ion battery (first power storage device) or a lithium ion capacitor (second power storage device) using a lithium salt as an electrolyte salt, and more preferably used for a lithium ion battery. More preferably, it is used for a lithium ion secondary battery.
  • a lithium ion secondary battery as the electricity storage device of the present invention has the nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent.
  • Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode, can be used without particular limitation.
  • the positive electrode active material for a lithium ion secondary battery a composite metal oxide with lithium containing one or more selected from the group consisting of cobalt, manganese, and nickel is used. These positive electrode active materials can be used alone or in combination of two or more.
  • the positive electrode conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change.
  • Examples thereof include one or more carbon blacks selected from natural graphite (eg, flake graphite), graphite such as artificial graphite, acetylene black, and the like.
  • the positive electrode active material is made of a conductive agent such as acetylene black or carbon black, and polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • a conductive agent such as acetylene black or carbon black
  • PVDF polyvinylidene fluoride
  • SBR styrene and butadiene
  • SBR styrene and butadiene
  • acrylonitrile and butadiene acrylonitrile and butadiene.
  • NBR copolymer
  • CMC carboxymethyl cellulose
  • this positive electrode mixture is used as an aluminum foil or stainless steel as a current collector. It can be produced by applying it to a plate, etc., drying and press molding, and then heat-treating it under a predetermined condition.
  • the negative electrode active material for the lithium ion secondary battery is selected from lithium metal, lithium alloy, carbon material capable of occluding and releasing lithium, tin (single), tin compound, silicon (single), silicon compound, etc. These can be used alone or in combination of two or more.
  • the lithium ion secondary material when graphite and silicon or graphite and silicon compound are used in combination as the negative electrode active material, when the content of silicon and silicon compound in the total negative electrode active material is 1 to 45% by mass, the lithium ion secondary material according to the present invention is used. This is preferable because the capacity can be increased while suppressing the deterioration of the electrochemical characteristics of the secondary battery and the increase in the electrode thickness.
  • the negative electrode is kneaded using the same conductive agent, binder, and high-boiling solvent as in the production of the positive electrode, and then the negative electrode mixture is applied to the copper foil of the current collector. It can be produced by heat treatment under a predetermined condition after drying and pressure molding.
  • the battery case includes a bottomed cylindrical case body and a lid that closes an opening of the case body.
  • the lid and the case main body are made of, for example, metal and are insulated from each other.
  • the lid is electrically connected to the positive electrode current collector, and the case body is electrically connected to the negative electrode current collector.
  • cover serve as a positive electrode terminal, and a case main body may each serve as a negative electrode terminal.
  • a laminated porous film was cut out with a size of 60 mm in each of the machine direction and the width direction.
  • This cut-out size is not derived based on the content of the invention, but if the cut-out size is different, the curl amount may change, so the measurement in the present invention is performed at a size of 60 mm in the machine direction and the width direction, respectively.
  • the curl amount was compared.
  • the above measurement was performed in an environment with a temperature of 23 ° C. and a humidity of 50%, and with a temperature of 23 ° C. and a dew point of ⁇ 20 ° C. or less, particularly ⁇ 40 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、反りの発生を抑制できかつ電解液の吸液性の高い微多孔膜を提供する。本発明の積層多孔質フィルムは、原料としてポリプロピレンを含むポリオレフィン多孔質フィルムの少なくとも片面に、フィラーを含む多孔層が積層され、かつ、機械方向の辺の長さを60mm、該機械方向に略直交する方向の長さを60mmで切り出した矩形の前記積層多孔質フィルムを温度23℃で露点-20℃以下の環境下に1時間静置したときの、前記フィラーを含む多孔層を上面にした場合および下面にした場合について、4辺の浮き上がり量の合計である合計浮き上がり量が10mm以下である。

Description

積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
 本発明は、積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイスに関するものである。
 本願は、2015年8月12日に、日本に出願された特願2015-159686号、2015年11月12日に、日本に出願された特願2015-222359号及び2016年8月8日に、日本に出願された特願2016-155871号に基づき優先権を主張し、その内容をここに援用する。また、本願は、特開平7-307146号公報、特開平4-181651号公報、特開平3-80923号公報、特開平7-268118号公報、特開平8-138643号公報の内容をここに援用する。
 近年需要が増加している大容量のリチウムイオン2次電池では、容量が大きいために内部短絡を起こすとその箇所が発熱し、内部短絡が拡大しやすいため、このような場合に発生しがちな事故を回避し得る高性能なセパレータの開発が切望されている。さらに、現在、広く用いられている延伸によって製造した多孔質フィルムのセパレータは、膜形状維持特性が必ずしも十分ではなく、高温でも膜形状維持特性に優れたセパレータが求められている。
 こうした従来のポリオレフィン多孔質フィルムのもつ問題点を解消するために、これまで種々の試みがなされた。その1つとして、ポリオレフィン膜上に、耐熱性微粒子を主成分として含む耐熱多孔質層を形成させることにより耐熱安定性が向上した電池用セパレータが、異常発熱時の膜孔の閉塞機能と高温での膜形状維持特性とを両立させるセパレータとして提案されている。
 多層セパレータは、ポリオレフィン膜の片面にスラリー状などの耐熱多孔質層形成用組成物を塗布して耐熱多孔質層を形成したものである。多孔質層を形成するための一般的な手法として、溶融押出し法、相分離法、溶媒キャスト法などが挙げられる。これらの手法で多孔質膜を形成すると、耐熱層は析出・凝固することによって密度が増すため、体積が収縮する。そのため、片面コーティングでは、この収縮を緩和するために多層セパレータには激しく反り(カール)が発生するため、電池用セパレータとして用いるために電極と積層する時のハンドリング性が十分満足できるものではなかった。さらに、ポリオレフィン膜に耐熱層を新たに形成させることによって、例えばセパレータの透気度や電解液に対する濡れ性が変化し、その結果として電池の性能が著しく低下してしまう場合もあった。
 カールの解消方法の先行技術としては、例えば特許文献1では、ポリオレフィン多孔質フィルムの少なくとも片面に、ポリオレフィン以外の重合体を含む層が積層された積層多孔質フィルムからなる多層セパレータが提案され、この積層多孔質フィルムにおいて温度23℃湿度50%環境下での浮き上がり量を15mm以下に抑制することが記載されている。しかし、実際の電池組立工程は温度23℃、露点-20℃以下(湿度約4.5%以下)の環境下であるために、反り(カール)の抑制が十分満足できるものではなかった。また、電池組立工程の生産効率向上、および高粘度電解液の使用の観点から、セパレータの電解液吸液性の向上が求められている。
特開2015-26609号公報
 本発明は、上記の事情に鑑みてなされたものであり、反りの発生を抑制することができ、かつ電解液の吸液性が高く、蓄電デバイス用セパレータとして用いた際に蓄電デバイスが良好な性能を示すことができる積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイスを提供することを目的とする。
 本発明者は、上記課題を解決するため鋭意検討したところ、ポリオレフィン多孔質フィルムの少なくとも片面に、フィラーと媒体とを含む塗工液を塗布し、所定の乾燥温度で乾燥後、フィルムに機械方向にフィルムの単位長さ巾当たり0.1N/mm以上の張力を負荷しながら加熱することで課題を解決できることを見出し、本発明に至った。
 即ち、本発明は以下(1)~(21)の特徴を有するものである:
(1) 原料としてポリプロピレンを含むポリオレフィン多孔質フィルムの少なくとも片面に、フィラーを含む多孔層が積層された積層多孔質フィルムであって、
 機械方向の辺の長さを60mm、該機械方向に略直交する方向の長さを60mmで切り出した矩形の前記積層多孔質フィルムを温度23℃で露点-20℃以下の環境下に1時間静置したときの、前記フィラーを含む多孔層を上面にした場合および下面にした場合について、4辺の浮き上がり量の合計である合計浮き上がり量が10mm以下である積層多孔質フィルム。
(2) 前記ポリオレフィン多孔質フィルムがポリプロピレン層を含む多層構造であり、
 前記ポリプロピレン層を構成するポリプロピレンの重量平均分子量が50~100万である(1)に記載の積層多孔質フィルム。
(3) 前記ポリオレフィン多孔質フィルムが、前記ポリプロピレン層を表面層としポリエチレン層を内層とした三層構造である(2)に記載の積層多孔質フィルム。
(4) 機械方向(MD)の熱収縮率が110℃で1%以下であり、該機械方向に略直交する方向(TD)の熱収縮率が110℃で-1.7%~-1.0%であることを特徴とする(3)に記載の積層多孔質フィルム。
(5) 張力を負荷したときの伸び率が1.0%以上であることを特徴とする(4)に記載の積層多孔質フィルム。
(6) 電解液吸液面積が1.5cm以上であることを特徴とする(3)~(5)のいずれかに記載の積層多孔質フィルム。
(7) 前記フィラーが無機微粒子である(1)~(6)のいずれかに記載の積層多孔質フィルム。

(8) (1)~(7)のいずれか一項に記載の積層多孔質フィルムからなる蓄電デバイス用セパレータ。

(9) (8)に記載の蓄電デバイス用セパレータ、正極、および負極を備えた蓄電デバイス。
(10) 乾式延伸法によって機械方向に延伸して作製されたポリオレフィン多孔質フィルムの少なくとも片面に、フィラーを含む多孔層が積層された積層多孔質フィルムの製造方法であって、
 機械方向の辺の長さを60mm、該機械方向に略直交する方向の長さを60mmで切り出した矩形の前記積層多孔質フィルムを温度23℃で露点-20℃以下の環境下に1時間静置したときの、前記フィラーを含む多孔層を上面にした場合および下面にした場合について、4辺の浮き上がり量の合計である合計浮き上がり量が10mm以下である積層多孔質フィルムの製造方法。
(11) 前記フィラーと媒体とを含む塗工液を塗布して所定の乾燥温度で乾燥後に、フィルムに機械方向にフィルムの単位長さ巾当たり0.04N/mm以上の張力を負荷しながら加熱したことを特徴とする(10)に記載の積層多孔質フィルムの製造方法。
(12) 前記フィラーが無機微粒子である(10)または(11)に記載の積層多孔質フィルムの製造方法。
(13) 前記加熱の温度が40℃以上170℃以下であることを特徴とする(12)に記載の積層多孔質フィルムの製造方法。
(14) 乾燥後に張力を負荷する時間が60秒以下であることを特徴とする(13)に記載の積層多孔質フィルムの製造方法。
(15) 張力を負荷したときの伸び率が1.0%以上であることを特徴とする(14)に記載の積層多孔質フィルムの製造方法。
(16) (10)~(15)に記載の積層多孔質フィルムの製造方法によって製造された積層多孔質フィルムであって、
 機械方向の辺の長さを60mm、該機械方向に略直交する方向の長さを60mmで切り出した矩形の前記積層多孔質フィルムを温度23℃で露点-20℃以下の環境下に1時間静置したときの、前記フィラーを含む多孔層を上面にした場合および下面にした場合について、4辺の浮き上がり量の合計である合計浮き上がり量が10mm以下である積層多孔質フィルム。
(17) 乾式法によって製造されたポリオレフィン多孔質フィルムの少なくとも片面に、フィラーを含む多孔層が積層された積層多孔質フィルムであって、
 機械方向の辺の長さを60mm、該機械方向に略直交する方向の長さを60mmで切り出した矩形の前記積層多孔質フィルムを温度23℃で露点-20℃以下の環境下に1時間静置したときの、前記フィラーを含む多孔層を上面にした場合および下面にした場合について、4辺の浮き上がり量の合計である合計浮き上がり量が10mm以下である積層多孔質フィルム。
(18) 前記ポリオレフィン多孔質フィルムがポリプロピレン層を含む多層構造である(16)または(17)に記載の積層多孔質フィルム。
(19) 前記ポリオレフィン多孔質フィルムが、前記ポリプロピレン層を表面層としポリエチレン層を内層とした三層構造である(18)に記載の積層多孔質フィルム。
(20) 前記ポリプロピレン層を構成するポリプロピレンの重量平均分子量が50~100万である(16)~(19)のいずれかに記載の積層多孔質フィルム。
(21) 機械方向の熱収縮率が110℃で1%以下であり、該機械方向に略直交する方向の熱収縮率が110℃で-1.7%~-1.0%であることを特徴とする(20)に記載の積層多孔質フィルム。
 本発明による積層多孔質フィルムによれば、反りの発生を抑制することができ、蓄電デバイス用セパレータとして用いるために電極と積層するときのハンドリング性を改善できる。また、電解液の吸液性を高めることが出来る。
 また、一般的に絶乾状態になる温度23℃、露点-20℃以下の環境下でも本発明の積層多孔質フィルムはカールすることが低減されてハンドリング性が改善し、これによりリチウムイオン二次電池等の蓄電デバイスが組み立てやすくなり、また組立て時のトラブルも低減することができる。
図1は、実施例1~7および比較例1~4で作製した積層多孔質フィルムのカール量(合計浮き上がり量、23℃50%)と熱延伸処理の幅辺りの荷重との関係を示す図である。 図2は、実施例1~7および比較例1~4で作製した積層多孔質フィルムのカール量(合計浮き上がり量、露点‐40℃)と熱延伸処理の幅辺りの荷重との関係を示す図である。
<ポリオレフィン多孔質フィルム>
 本発明のポリオレフィン多孔質フィルム(ポリオレフィン微多孔膜)としては、従来の蓄電デバイス用セパレータに適用されているポリオレフィン多孔質フィルムの中から、十分な力学物性とイオン透過性を有するものを好適に用いることができる。
 また、蓄電デバイス用セパレータとして本発明の積層多孔質フィルムを用いた際の熱閉塞温度は、高すぎると内部短絡発生時の安全性確保が困難になり、低すぎると通常使用範囲での温度領域で無孔化する可能性があるため電池の利便性を損なう。このため、電池の特性、使用環境に合わせて設定されるが、熱閉塞温度は110~180℃、好ましくは120~140℃となるように設定されることが好ましい。また、本発明の電池用セパレータはフィラーを含む多孔層(耐熱層)を有するが、高い温度まで無孔化を維持するには、ポリオレフィン多孔質フィルム単独でも、170℃以上の無孔化維持温度を有することが好ましい。
 このような特性を満たすために、本発明を構成するポリオレフィン多孔質フィルムは、150℃以上の融点を有することが好ましく、積層ポリオレフィン多孔質フィルムであってもよい。積層ポリオレフィン多孔質フィルムの場合、好ましくは、150℃以上の融点を有するポリオレフィン多孔質フィルムの層と110℃~140℃の範囲に融点を有するポリオレフィン多孔質フィルムの層とを有する。
 上記150℃以上の融点を有するポリオレフィン多孔質フィルムとしては、ポリプロピレン(PP)が挙げられ、110℃~140℃の範囲に融点を有すポリオレフィン多孔質フィルムとしては、ポリエチレン(PE)が挙げられる。好ましくは、PP/PE/PPの順に積層された多孔質フィルムである。ポリオレフィン原料の重量平均分子量が35~100万であることが好ましい。ポリプロピレン(PP)の重量平均分子量は50~100万であり、ポリエチレン(PE)の重量平均分子量は35~70万であることが好ましい。ポリプロピレン(PP)の重量平均分子量は55~80万であり、ポリエチレン(PE)の重量平均分子量は35~55万であることがより好ましい。このような重量平均分子量を有するポリプロピレン原料を用いることにより、多孔質フィルムの製造時に従来よりもより好適な成形加工処理を行うことができ、これが結果的に後述する浮き上がり量を抑えることに寄与している。重量平均分子量が高すぎると、ポリマーの緩和時間が長くなるために浮き上がり量を抑制するための処理条件が狭くなるために好ましくない。
 ポリオレフィン多孔質フィルムの膜厚は、使用される電池の種類にもよるが、例えば、3~300μmが好ましく、10~100μmがより好ましく、16~50μmがさらに好ましい。
 また、ポリオレフィン多孔質フィルムは、製造条件やフィルムの組成等によっても異なるが、適切な通気度(ガス透過速度;ガーレー値として測定)を有することが必要であり、ガーレー値は10~1000秒/100ccであることが好ましく、10~800秒/100ccであることがより好ましく、30~600秒/100ccであることが更に好ましい。ガーレー値が高すぎると電池用セパレ-タとして使用したときの機能が十分でなく、電池内部の反応の不均一性が高まる危険性があり好ましくない。また、ガーレー値が低すぎると電池の充放電時にLiデンドライトが析出してトラブルを引き起こす危険性が高まるので好ましくない。
 蓄電デバイス用セパレータとして本発明の積層多孔質フィルムを用いた際には、蓄電デバイス用セパレータとしての性能を損なわない程度において、フィラー、粒子、着色剤、可塑剤、滑剤、難燃剤、老化防止剤、酸化防止剤等に代表される樹脂添加剤、接着剤および無機物からなる補強剤が含まれても良い。
 本発明に用いられるポリオレフィン多孔質フィルムの製造方法は、特に限定されないが、例えば、特開平7-307146号公報または特開平4-181651号公報、特開平3-80923号公報、特開平7-268118号公報、特開平8-138643号公報等に記載の方法を参照して製造することができる。
例えば、特開平7-307146号公報には、ポリプロピレンとポリエチレンとが交互に積層された三層以上の積層フイルムを延伸して多孔化した積層多孔質フイルムからなる電池用セパレ-タの製法に関する発明が開示されている。特に、ポリプロピレンフイルムとポリエチレンフイルムを120~140℃の温度で熱圧着した三層以上の積層フイルムを、110~140℃の温度領域で熱処理した後、マイナス20℃~プラス50℃の温度に保持された状態で5~200%延伸し、次いで70~130℃の温度に保持された状態で100~400%延伸して多孔化した後、後者の延伸時の温度より5~45℃高い温度で熱処理することを特徴とする電池用セパレ-タの製法が開示されている。さらに、ポリプロピレンフイルムとポリエチレンフイルムとが交互になるように120~140℃の温度で熱圧着した三層以上の積層フイルムを、110~140℃の温度領域で熱処理した後、20℃~35℃の温度に保持された状態で10~100%延伸し、次いで70~130℃の温度に保持された状態で100~400%延伸して多孔化した後、後者の延伸時の温度より5~45℃高い温度で熱処理して、極大孔径が0.02~2μm、空孔率が30~80%、層間剥離強度が3~60g/15mm、無孔化開始温度が135~140℃、無孔化維持上限温度が180~190℃の積層多孔質フイルムを得ることを特徴とする電池用セパレ-タの製法が開示されている。
 例えば、ポリオレフィン多孔質フィルムを乾式延伸法により製造する場合は、ポリマーに、必要により核剤を添加して溶融し、押出法等によりシート化し、結晶化のための熱処理を施した後、延伸により結晶界面を剥離して開孔させることができる。乾式延伸法により製造されたポリオレフィン多孔質フィルムが好ましい。乾式延伸法によって製造された多孔質フィルムは湿式法で製造された多孔質フィルムと比べて原料ポリマーが精緻に配向しており、これに起因して形態の保持特性が湿式と比較して良好となり後述する浮き上がり量を抑えることができる。湿式法も製造工程において2軸の延伸処理を行うが、その後に溶剤に浸漬して成分抽出を行い、更に再度乾燥させる工程を含むために、ポリマー分子の配向は乾式延伸法と比べて乱れる。
乾式延伸法としては、例えば、以下の方法が好ましい。重量平均分子量50~100万のポリプロピレンを成形装置を使用してフィルム状に溶融押出しした後、引取り方向を固定した状態で、熱処理を行う。また、ポリエチレンとして、重量平均分子量35~50万の高密度ポリエチレンを成型機を使用してフィルム状に溶融押出しする。熱処理したポリプロピレンフィルムまたはポリエチレンフィルムを、ポリプロピレンを表面層に、ポリエチレンを内層(中間層)に配して三層構成に積層し、加熱ロールにより温度120~140℃で熱圧着し、その後冷却ロールにより冷却する。得られた未延伸積層フィルムは、マイナス20℃~プラス50℃の温度に保持された状態で5~200%延伸した後に、引続き70~130℃の温度に保持された状態で総延伸量100~400%になるまでフィルム長さ方向(機械方向)に高温延伸した後、後者の延伸時の温度より0~45℃高い温度で熱処理し、PP/PE/PPの3層積層構造のポリオレフィン多孔質フィルムを得る。なお、フィードブロック型/マルチマニーホールド型のダイを用いた共押し出し法によって多層化されたポリオレフィンフィルムを製造しても良い。
 また、後述するように、ポリオレフィン多孔質フィルムの少なくとも片面には、フィラーを含む多孔層を形成するため、耐熱性微粒子を含有する塗工液が塗布されるが、塗工液を塗布する前にポリオレフィン多孔質フィルムの紫外線処理、コロナ放電処理、プラズマ放電処理などの表面処理を行うことにより、塗工液に対する濡れ性を調節することができる。これらの表面処理は、均質な塗工を行う観点からはポリオレフィン多孔質フィルムの表面にのみ行われることが好ましい。ポリオレフィン多孔質フィルムの内部にまで処理の効果がおよぶと、塗工液が膜内部に浸透して裏面に抜けていく「裏抜け」が発生しやすくなるおそれがある。
<フィラーを含む多孔層>
 本発明のフィラーを含む多孔層(無機物を含有した多孔層)は、耐熱性微粒子を含有することで、その耐熱性を確保している。なお、本明細書において「耐熱性」とは、少なくとも150℃において変形などの形状変化が目視で確認されないことを意味する。耐熱性微粒子の有する耐熱性は、200℃以上であることが好ましく、300℃以上であることがより好ましく、400℃以上であることが更に好ましい。また、フィラーを含む多孔層は単層であっても複数の層が積層された多層であってもよい。
 耐熱性微粒子としては、電気絶縁性を有する無機微粒子であることが好ましく、具体的には、酸化鉄、シリカ(SiO)、アルミナ(Al)、TiO、マグネシア、ベーマイト、BaTiOなどの無機酸化物微粒子;窒化アルミニウム、窒化ケイ素などの無機窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;モンモリロナイトなどの粘土微粒子;などが挙げられる。ここで、前記無機酸化物微粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などの微粒子であってもよい。また、これらの無機微粒子を構成する無機化合物は、必要に応じて、元素置換されていたり、固溶体化されていたりしてもよく、更に前記の無機微粒子は表面処理が施されていてもよい。また、無機微粒子は、金属、SnO、スズ-インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。
 耐熱性微粒子には、有機微粒子を用いることもできる。有機微粒子の具体例としては、ポリイミド、メラミン系樹脂、フェノール系樹脂、芳香族ポリアミド樹脂、架橋ポリメチルメタクリレート(架橋PMMA)、架橋ポリスチレン(架橋PS)、ポリジビニルベンゼン(PDVB)、ベンゾグアナミン-ホルムアルデヒド縮合物などの架橋高分子の微粒子;熱可塑性ポリイミドなどの耐熱性高分子の微粒子;が挙げられる。これらの有機微粒子を構成する有機樹脂(高分子)は、前記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体(前記の耐熱性高分子の場合)であってもよい。
 耐熱性微粒子は、前記例示のものを1種単独で使用してもよく、2種以上を併用してもよい。耐熱性微粒子は上記のとおり無機微粒子および有機微粒子を用いることができるが、用途に応じて適宜使い分けるとよい。例えばベーマイトの粒径は、平均粒径で、好ましくは0.001μm以上、より好ましくは0.1μm以上であって、好ましくは15μm以下、より好ましくは3μm以下である。なお、耐熱性微粒子の平均粒径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA-920」)を用い、耐熱性微粒子を溶解しない媒体に分散させて測定した数平均粒子径として規定することができる。
 耐熱性微粒子の形状としては、例えば、球状に近い形状であってもよく、板状であってもよいが、短絡防止の点からは、板状の粒子であることが好ましい。板状に形成された耐熱性微粒子の代表的な例としては、板状のアルミナや板状のベーマイトなどが挙げられる。
 フィラーを含む多孔層は耐熱性微粒子を主成分として含むが、本明細書において「主成分として含む」とは、耐熱性微粒子を、フィラーを含む多孔層の構成成分の全体積中、70体積%以上含むことを意味する。フィラーを含む多孔層における耐熱性微粒子の量は、耐熱層の構成成分の全体積中、80体積%以上であることが好ましく、90体積%以上であることがより好ましい。フィラーを含む多孔層中の耐熱性微粒子を前記のように高含有量とすることで、多層多孔質膜全体の熱収縮を良好に抑制することができる。
 また、フィラーを含む多孔層には、主成分として含む耐熱性微粒子同士を結着したりフィラーを含む多孔層とポリオレフィン多孔質フィルムとを結着したりするために有機バインダを含有させることが好ましく、このような観点から、フィラーを含む多孔層における耐熱性微粒子量の好適上限値は、例えば、フィラーを含む多孔層の構成成分の全体積中、99体積%である。なお、フィラーを含む多孔層における耐熱性微粒子の量が少なすぎると、例えば、フィラーを含む多孔層中の有機バインダ量を多くする必要が生じるが、その場合にはフィラーを含む多孔層の空孔が有機バインダによって埋められてしまい、例えばセパレータとしての機能を喪失するおそれがあり、また、開孔剤などを用いて多孔質化した場合には、耐熱性微粒子同士の間隔が大きくなりすぎて、熱収縮を抑制する効果が低下するおそれがある。
 フィラーを含む多孔層に用いる有機バインダとしては、耐熱性微粒子同士やフィラーを含む多孔層とポリオレフィン多孔質フィルムとを良好に接着でき、電気化学的に安定で、二次電池用セパレータに使用する場合には、有機電解液に対して安定であれば特に制限はない。具体的には、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、フッ素樹脂[ポリフッ化ビニリデン(PVDF)など]、フッ素系ゴム、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN-ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂、ポリイミドなどが挙げられる。これらの有機バインダは1種単独で使用してもよく、2種以上を併用してもよい。
 前記例示の有機バインダの中でも、150℃以上の耐熱性を有する耐熱樹脂が好ましく、特に、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸共重合体、エチレン-エチルアクリレート共重合体(EEA)、フッ素系ゴム、スチレン・ブタジエンゴム(SBR)などの柔軟性の高い材料がより好ましい。また、アクリル酸ブチルを主成分とし、これを架橋した構造を有する低ガラス転移温度の架橋アクリル樹脂(自己架橋型アクリル樹脂)も好ましい。
 なお、これら有機バインダを使用する場合には、フィラーを含む多孔層を形成する塗工液(スラリーなど)の媒体(溶媒)に溶解させるか、または塗工液中に分散させたエマルジョンの形態で用いればよい。
 フィラーを含む多孔層を形成する塗工液は、耐熱性微粒子や、必要に応じて有機バインダなどを含み、これらを水や有機溶剤などの媒体に分散(有機バインダは媒体に溶解していてもよい)させたスラリーなどである。
 塗工液の媒体として用いる有機溶剤としては、ポリオレフィン多孔質フィルムを溶解したり膨潤させたりするなどしてポリオレフィン多孔質フィルムにダメージを与えないものであり、また、有機バインダを使用する場合にあっては有機バインダを均一に溶解可能であるものであれば特に制限は無いが、テトラヒドロフラン(THF)などのフラン類;メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)などのケトン類;などが好適である。なお、高沸点の有機溶剤は、フィラーを含む多孔層形成用の組成物をポリオレフィン多孔質フィルムに塗布した後に乾燥などによって有機溶剤を除去する際に、ポリオレフィン多孔質フィルムに熱溶融などのダメージを与える虞があるので好ましくない。また、これらの有機溶剤に多価アルコール(エチレングリコール、トリエチレングリコールなど)や界面活性剤(直鎖アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテル、ポリオキシエチルアルキルフェニルエーテルなど)などを適宜加えてもよい。
 また、塗工液の媒体には、水を用いることもでき、その場合にもアルコール(エタノール、イソプロパノールなどの炭素数が6以下のアルコールなど)や界面活性剤(例えば、前記の有機溶剤を媒体とするフィラーを含む多孔層形成用組成物に用い得るものとして例示したもの)を加えてもよい。
<積層多孔質フィルムの製造方法>
 本発明の積層多孔質フィルムの製造方法は、上記ポリオレフィン多孔質フィルムを作製する工程と、該ポリオレフィン多孔質フィルムの片面または両面に上記耐熱性微粒子を主成分として含む塗工液を塗布する工程と、塗布された塗工液を乾燥してフィラーを含む多孔層を形成させる工程とを含む。
 ポリオレフィン多孔質フィルム上に塗工液を塗布する方法としては、通常、慣用の流延または塗布方法、例えば、ロールコーター、エヤナイフコーター、ブレードコーター、ロッドコーター、バーコーター、コンマコーター、グラビアコーター、シルクスクリーンコーター、ダイコーター、マイクログラビアコーター法などの従来公知の塗工装置を用いる方法が挙げられる。
 ポリオレフィン多孔質フィルムの片面または両面に塗布された塗工液を乾燥して塗工液中の媒体を除去することにより、フィラーを含む多孔層が形成される。
 本発明の積層多孔質フィルムにおいて、フィラーを含む多孔層の膜厚は、特に限定されないが、好ましくは0.5μm~50μmであり、より好ましくは1μm~10μmである。フィラーを含む多孔層が薄すぎるとメルトダウン防止効果が不十分となり、厚すぎるとセパレータをロール形状にする際や電池に組み込む工程で耐熱層にひびが入るなどの欠陥が生じる危険性が高まるので好ましくない。また、電解液の注液量が増加し電池製造コストの増加の一因となること、電池の体積辺りおよび重量当たりのエネルギー密度が低下することからも、フィラーを含む多孔層が厚すぎることは好ましくない。
 また、フィラーを含む多孔層の膜厚の標準偏差は、好ましくは1.4μm以下であり、より好ましくは1.2μm以下であり、さらに好ましくは1.0μm以下であり、さらに好ましくは0.8μm以下である。
 本発明の積層多孔質フィルムの膜厚(ポリオレフィン多孔質フィルムの膜厚とフィラーを含む多孔層の膜厚との合計)は、特に限定されないが、4~300μm、好ましくは9~100μm、更に好ましくは16~50μmである。膜厚みが薄すぎると、メルトダウン防止効果が不十分となる上にLiデンドライトによる短絡抑止効果も不十分となるので好ましくない。膜厚みが厚すぎると電池セパレータとして使用したとき電解液の注液量が増加し電池製造コストの増加の一因となること、電池の体積辺りおよび重量当たりのエネルギー密度が低下することから、好ましくない。
 また、ポリオレフィン多孔質フィルムの平均膜厚をa(μm)、フィラーを含む多孔層(フィラー層)の平均膜厚をb(μm)としたとき、膜厚比a/bの値が、1以上20以下であることが好ましく、2以上10以下であることがより好ましく、3以上10以下であることがさらに好ましい。ポリオレフィン多孔質フィルムに対して、フィラーを含む多孔層の膜厚を厚くすると電解液の保持率が悪くなってしまうため、膜厚比a/bの値が3.3~5程度が最も好ましい。
 本発明の積層多孔質フィルムのガーレー値(透気度)は、特に限定されないが、10~1000秒/100cc、好ましくは10~800秒/100cc、更に好ましくは30~600秒/100ccである。ガーレー値が高すぎると積層多孔質フィルムとして使用したときの機能が十分でなく、ガーレー値が低すぎると電池内部の反応の不均一性が高まる危険性があり好ましくない。
 また、本発明において、積層多孔質フィルムのガーレー値の標準偏差は、12秒/100cc以下であることが好ましく、10秒/100cc以下であることがより好ましい。
 本発明の積層多孔質フィルムにおいて、積層多孔質フィルムとしての機能を確保するため、熱閉塞温度は、110℃~180℃であることが好ましく、110~140℃であることがより好ましい。
 本発明の積層多孔質フィルムの製造方法は、更に熱延伸処理工程を含むことが好ましい。フィラーを含む多孔層を有する積層多孔質フィルムを幅が長方形に切り出し、加熱条件で一定の速度で一定の荷重がかかるまで延伸した後、その荷重にて加熱しながら保持し、熱延伸処理を行う。
熱延伸処理工程としては、例えば、フィラーを含む多孔層を形成した積層多孔質フィルムを幅が長方形に切り出し、引張試験機(例えば、INSTRON社製の万能試験機5582)を用いて、フィルムに機械方向にフィルムの単位長さ巾当たり0.01N/mm以上、好ましく0.04N/mm以上の張力を負荷しながら、80~120℃の温度条件で30~90mm/分の速度で延伸した後、その荷重にて0.05~5分間保持する工程が挙げられる。
本発明の積層多孔質フィルムは、本発明の蓄電デバイス用セパレータとして用いる。
<非水電解液>
 非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステルが好適に挙げられる。広い温度範囲、特に高温での電気化学特性が相乗的に向上するため、鎖状エステルが含まれることが好ましく、鎖状カーボネートが含まれることが更に好ましく、環状カーボネートと鎖状カーボネートの両方が含まれることがもっとも好ましい。なお、「鎖状エステル」なる用語は、鎖状カーボネートおよび鎖状カルボン酸エステルを含む概念として用いる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)から選ばれる一種又は二種以上が挙げられ、ECとVCの組み合わせ、PCとVCの組み合わせが特に好ましい。
 また、非水溶媒がエチレンカーボネートおよび/又はプロピレンカーボネートを含むと電極上に形成される被膜の安定性が増し、高温、高電圧サイクル特性が向上するので好ましく、エチレンカーボネートおよび/又はプロピレンカーボネートの含有量は、非水溶媒の総体積に対し、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上であり、また、その上限としては、好ましくは45体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
 鎖状エステルとしては、非対称鎖状カーボネートとして、メチルエチルカーボネート(MEC)、対称鎖状カーボネートとして、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、鎖状カルボン酸エステルとして酢酸エチル(以下、EA)が好適に挙げられる。前記鎖状エステルの中でも、MECとEAのような非対称かつエトキシ基を含有する鎖状エステルの組み合わせが可能である。
 鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して広い温度範囲、特に高温での電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
 鎖状エステルの中でもEAが占める体積の割合は、非水溶媒中に1体積%以上が好ましく、2体積%以上がより好ましい。その上限としては、10体積%以下がより好ましく、7体積%以下であると更に好ましい。非対称鎖状カーボネートはエチル基を有するとより好ましく、メチルエチルカーボネートが特に好ましい。
 環状カーボネートと鎖状エステルの割合は、広い温度範囲、特に高温での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(体積比)が10:90~45:55が好ましく、15:85~40:60がより好ましく、20:80~35:65が特に好ましい。
<電解質塩>
 非水電解液に含まれる電解質塩としては、リチウム塩が好適に挙げられる。
 リチウム塩としては、LiPF、LiBF、LiN(SOF)、LiN(SOCFからなる群より選ばれる1種又は2種以上が好ましく、LiPF、LiBFおよびLiN(SOF)から選ばれる1種又は2種以上が更に好ましく、LiPFを用いることが最も好ましい。
<非水電解液の製造>
 非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩および該非水電解液に対して溶解助剤などを特定の混合比率で混合させた組成物を添加する方法により得ることができる。この際、用いる非水溶媒および非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
 本発明のフィラーを含む多孔層が積層された積層多孔質フィルムは、蓄電デバイス用セパレータとして、下記の第1、第2の蓄電デバイスに使用することができ、非水電解質として液体状のものだけでなくゲル化されているものも使用できる。中でも電解質塩にリチウム塩を使用するリチウムイオン電池(第1の蓄電デバイス)用やリチウムイオンキャパシタ(第2の蓄電デバイス)用のセパレータとして用いることが好ましく、リチウムイオン電池用に用いることがより好ましく、リチウムイオン二次電池用に用いることが更に好ましい。
<リチウムイオン二次電池>
 本発明の蓄電デバイスとしてリチウムイオン二次電池は、正極、負極および非水溶媒に電解質塩が溶解されている前記非水電解液を有する。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウムイオン二次電池用正極活物質としては、コバルト、マンガン、およびニッケルからなる群より選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独で用いるか又は2種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiCo1-xMxO(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、およびCuから選ばれる1種又は2種以上の元素、LiMn、LiNiO、LiCo1-xNi、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2Mn0.3、LiNi0.8Mn0.1Co0.1O、LiNi0.8Co0.15Al0.05、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体、およびLiNi1/2Mn3/2から選ばれる1種以上が好適に挙げられる。
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラックなどから選ばれる1種又は2種以上のカーボンブラック等が挙げられる。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、およびポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)等の結着剤と混合し、これに溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製板等に塗布して、乾燥、加圧成型した後、所定条件のもとに加熱処理することにより作製することができる。
 リチウムイオン二次電池用負極活物質としては、リチウム金属やリチウム合金、およびリチウムを吸蔵および放出することが可能な炭素材料、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物等から選ばれる1種又は2種以上を組み合わせて用いることができる。
 負極活物質として、黒鉛とケイ素、または黒鉛とケイ素化合物を組み合わせて用いる場合、全負極活物質中のケイ素およびケイ素化合物の含有量が1~45質量%である場合、本発明に係るリチウムイオン二次電池の電気化学特性の低下や電極厚みの増加を抑制しつつ高容量化できるので好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、所定条件のもとに加熱処理することにより作製することができる。
<リチウムイオン二次電池>
 本発明の蓄電デバイスの1つとしてのリチウムイオン二次電池の構造に特に限定はなく、コイン型電池、円筒型電池、角型電池、又はラミネート型電池等を適用できる。
 巻回型のリチウムイオン二次電池は、例えば、電極体が非水電解液と共に電池ケースに収容された構成を有する。電極体は、正極と負極とセパレータとによって構成されている。非水電解液の少なくとも一部は、電極体に含浸されている。
 巻回型のリチウムイオン二次電池では、正極として、長尺シート状の正極集電体と、正極活物質を含み且つ正極集電体上に設けられた正極合材層とを含む。負極として、長尺シート状の負極集電体と、負極活物質を含み且つ負極集電体上に設けられた負極合材層とを含む。
 セパレータは、正極および負極と同様に、長尺シート状に形成されている。正極および負極は、それらの間にセパレータを介在させ筒状に巻回される。巻回後の電極体の形状は円筒状に限られない。例えば、正極とセパレータと負極とを巻回した後、側方から圧力を加えることにより、偏平形状に形成してもよい。
 電池ケースは、有底円筒状のケース本体と、ケース本体の開口部を塞ぐ蓋とを備える。
蓋およびケース本体は例えば金属製であり互いに絶縁されている。蓋は正極集電体に電気的に接続され、ケース本体は負極集電体に電気的に接続されている。なお、蓋が正極端子、ケース本体が負極端子をそれぞれ兼ねるようにしてもよい。
 リチウムイオン二次電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。また、巻回型リチウムイオン二次電池の内圧上昇の対策として、電池の蓋に安全弁を設ける、電池のケース本体やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を蓋に設けることもできる。
<巻回型リチウムイオン二次電池の製造>
 一例として、リチウムイオン二次電池の製造手順について以下に説明する。
 まず、正極、負極、および本発明のセパレータをそれぞれ作製する。次に、それらを重ね合わせて円筒状に巻回することにより、電極体を組み立てる。次いで電極体をケース本体に挿入し、ケース本体内に非水電解液を注入する。これにより、電極体に非水電解液が含浸する。ケース本体内に非水電解液を注入した後、ケース本体に蓋を被せ、蓋およびケース本体を密封する。なお、巻回後の電極体の形状は円筒状に限られない。例えば、正極とセパレータと負極とを巻回した後、側方から圧力を加えることにより、偏平形状に形成してもよい。
 上記のリチウムイオン二次電池は、各種用途向けの二次電池として利用可能である。例えば、自動車等の車両に搭載され、車両を駆動するモータ等の駆動源用の電源として好適に利用することができる。車両の種類は特に限定されないが、例えば、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車等があげられる。かかるリチウムイオン二次電池は、単独で使用されてもよく、直列および/または並列に複数の電池を接続して使用してもよい。
<ラミネート型電池>
 なお、上記では巻回型リチウムイオン二次電池について記載したが、本発明はこれに限らず、ラミネート型リチウムイオン二次電池に適用してもよい。
 例えば、正極または負極の電極を一対の本発明のセパレータによってサンドイッチして包装する。例えば、正極を袋詰電極にし、セパレータは、電極よりもやや大きいサイズを有する方形状に成形する。電極の本体を一対のセパレータで挟み込みつつ、電極端部から突出したタブがセパレータの端からはみ出すように重ね合わせる。重ねられた一対のセパレータの側縁同士を接合して袋詰めにし、このセパレータで袋詰めされた一方の電極と他方の電極とを交互に積層し電解液を含浸させることでラミネート型電池を作製することができる。
 方形状に形成されたセパレータの四隅は平面状に形成されていることが好ましい。例えば、セパレータの四隅のうちの1角が反り返っていた(カールした)場合、このカールを平面状に戻さなければならず、このために電池製造の歩留りが悪くなってしまう。さらに、反り返りの程度が著しく大きな場合にはセパレータが折れ曲がった状態でラミネート型電池が形成されてしまい、内部短絡の危険性が生じてしまう。上記の観点から、セパレータは平面状であることが好ましい。
<リチウムイオンキャパシタ>
 本発明の他の蓄電デバイスとしてリチウムイオンキャパシタがあげられ、セパレータとして本発明の積層多孔質フィルム、非水電解液、正極、負極を有し、負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵することができる。正極は、例えば活性炭電極と電解液との間の電気二重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF等のリチウム塩が含まれる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 下記実施例および比較例におけるポリオレフィン多孔質フィルムおよび積層多孔質フィルム(蓄電デバイス用セパレータ)についての各測定方法は以下のとおりである。
 〔1〕重量平均分子量
 本発明において、ポリプロピレン及びポリエチレンの重量平均分子量は、Waters社製V200型ゲル浸透クロマトグラフを用いて、標準ポリスチレン換算によって求めた。カラムにはShodex AT-G+AT806MSの2本を使用し、0.3wt/vol%に調製したオルトジクロロベンゼン中、145℃で測定を行い、検出器には、示差屈折計(RI)を用いた。
 〔2〕膜厚
 接触式厚み計(ピーコック製)により測定した。
 〔3〕ガーレー値
 JIS P8117に準じて測定した。測定装置として、B型ガーレーデンソメーター(東洋精機社製)を使用した。試料片を直径28.6mm、面積645mmの円孔に締め付ける。内筒重量567gにより、筒内の空気を試験円孔部から筒外へ通過させる。空気100ccが通過する時間を測定し透気度(ガーレー値)とした。
 〔4〕熱収縮率
 以下の実施例および比較例に基づいて作製した試料より、試料片(5×25mm)を長辺がそれぞれMDおよびTDとなるように両側10mm内側から採取した。得られた試料を熱機械分析装置(リガク製TMA8310)にて、荷重19.6mNを印加しながら3℃/minの昇温温度で110℃まで加熱し、その温度でのサンプルの収縮率を計測した。
 〔5〕伸び率
 以下の実施例および比較例において、INSTRON社製の万能試験機5582を用いて、延伸処理を行った際のサンプルの伸び率を計測した。
 〔6〕本発明の積層多孔質フィルムの合計浮き上がり量の測定方法
 実施例および比較例に記載した積層多孔質フィルム(蓄電デバイス用セパレータ)から、延伸方向(機械方向)に60mm、この延伸方向と略直角をなす幅方向(機械方向と直交する方向)に60mmのサイズで積層多孔質フィルムを矩形状に切り取った。切り取った積層多孔質フィルムを平面上に載置し、フィラーを含む多孔層を上面にした場合と下面にした2つの場合について、それぞれの機械方向、機械方向と直交する方向の平面からの浮き上がり量(反り上がりの高さ)を測定し、それら2つの場合の浮き上がり量の合計を合計浮き上がり量(カール高さ)とした。なお、本発明では機械方向と幅方向とでそれぞれ60mmのサイズで積層多孔質フィルムを切り出した。この切り出しサイズは発明内容に基づいて導かれるものではないが、切り出しサイズが異なるとカール量が変わる可能性があるので、本発明での測定は機械方向と幅方向とでそれぞれ60mmのサイズで測定を行いカール量を比較した。
 上記の測定を、温度23℃で湿度50%の環境下、および温度23℃で露点-20℃以下、特に-40℃の環境下で行った。
 〔7〕本発明の積層多孔質フィルムの電解液吸液性評価方法 
 実施例および比較例に記載した積層多孔質フィルムをガラス基板上に静置し、電解液(1.2MのLiPFを含むエチルカーボネート(EC)/メチルエチルカーボネート(MEC)/ジメチルカーボネート(DMC)=40/30/30、重量%の溶液)10μlを1cmの高さから滴下し、1分後に積層多孔質フィルム(セパレータ)に生じた染みの面積の大きさ(cm)を電解液吸液面積として測定することによって電解液吸液性を評価した。
 <実施例1> 
 (PP/PE/PPの三層構造を有するポリオレフィン多孔質フィルムAの製造)
 数平均分子量70000、重量平均分子量59~71万、融点160~163度のポリプロピレンをTダイ成形装置を使用して膜厚7μmのフィルム状に溶融押出しした後、引取り方向を固定した状態で、135℃で60秒間の熱処理を行った。また、ポリエチレンとして、数平均分子量20000、重量平均分子量38~40万、密度0.964の高密度ポリエチレンをTダイ成型機を使用して膜厚5μmのフィルム状に溶融押出しした。
 ポリエチレンフィルムは、引取り方向を固定された状態で、120℃で60秒間の熱処理をした後、室温まで冷却した。
 熱処理したポリプロピレンフィルムまたはポリエチレンフィルムを、ポリプロピレンを表面層に、ポリエチレンを内層(中間層)に配して三層構成に積層し、加熱ロールにより温度120℃、線圧1.8kg/cmで熱圧着し、その後50℃の冷却ロールにより冷却した。得られた未延伸積層フィルムの膜厚は20μmであった。
 未延伸積層フィルムは、30℃で25%低温延伸した後に、引続き123℃に加熱した熱風循環オーブン中で総延伸量180%になるまでフィルム長さ方向(機械方向)に高温延伸した後、123℃で30%緩和した状態で70秒間熱固定を行い、PP/PE/PPの3層積層構造のポリオレフィン多孔質フィルムAを得た。上記乾式延伸法によって機械方向に延伸して作製されたポリオレフィン多孔質フィルムAの厚みは16μmであった。
 (積層多孔質フィルム(蓄電デバイス用セパレータ)の製造)
 ベーマイト(化学組成AlOOH、平均粒子径2μm、比表面積10.7m/g)、PVB(ポリビニルブチラール)を水とイソプロピルアルコール(IPA)を溶媒として、各々の重量比が95:5:90:60になるように調整してアルミナ製の遊星ボールミル用ポットに投入した。遊星ボールミルで10分間攪拌混合を行い塗工液を得た。ガラス基板に固定したポリオレフィン多孔質フィルムAにそれぞれコーターナイフで一定の厚みで塗工液を塗布し、50℃で真空乾燥を行い、フィラーを含む多孔層を形成した積層多孔質フィルム1を得た。得られた積層多孔質フィルム1の厚みは20μmであった。フィラーを含む多孔層(フィラー層)の厚みは4μmであった。
 (フィラーを含む多孔層を形成した積層多孔質フィルム1の熱延伸処理)
 上記工程で作製したフィラーを含む多孔層を形成した積層多孔質フィルム1を幅が60mmになるような長方形に切り出し、INSTRON社製の万能試験機5582を用いて、100℃の温度条件で50mm/分の速度で一定の荷重(2.4N。0.04N/mm(幅辺りの荷重))がかかるまで延伸した後、その荷重にて1分間保持した。
 作製した積層多孔質フィルム(蓄電デバイス用セパレータ)の伸び率、ガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
<実施例2>
 上記熱延伸処理の荷重が3.0N,幅辺りの荷重が0.05N/mm(幅辺りの荷重)である以外に、実施例1と同じ方法で、積層多孔質フィルム(蓄電デバイス用セパレータ)を作成した。
 作製した積層多孔質フィルム(蓄電デバイス用セパレータ)の伸び率、ガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
<実施例3>
 上記熱延伸処理の荷重が3.6N,幅辺りの荷重が0.06N/mm(幅辺りの荷重)である以外に、実施例1と同じ方法で、積層多孔質フィルム(蓄電デバイス用セパレータ)を作成した。
 作製した積層多孔質フィルム(蓄電デバイス用セパレータ)の伸び率、ガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
<実施例4>
 上記熱延伸処理の荷重が4.8N,幅辺りの荷重が0.08N/mm(幅辺りの荷重)である以外に、実施例1と同じ方法で、積層多孔質フィルム(蓄電デバイス用セパレータ)を作成した。
 作製した積層多孔質フィルム(蓄電デバイス用セパレータ)の伸び率、ガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
<実施例5>
 上記熱延伸処理の荷重が6.0N,幅辺りの荷重が0.10N/mm(幅辺りの荷重)である以外に、実施例1と同じ方法で、積層多孔質フィルム(蓄電デバイス用セパレータ)を作成した。
 作製した積層多孔質フィルム(蓄電デバイス用セパレータ)の伸び率、ガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
<実施例6>
 上記熱延伸処理の荷重が12N,幅辺りの荷重が0.20N/mm(幅辺りの荷重)である以外に、実施例1と同じ方法で、積層多孔質フィルム(蓄電デバイス用セパレータ)を作成した。
 作製した積層多孔質フィルム(蓄電デバイス用セパレータ)の伸び率、ガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
<実施例7>
 上記熱延伸処理の荷重が40N,幅辺りの荷重が0.67N/mm(幅辺りの荷重)である以外に、実施例1と同じ方法で、積層多孔質フィルム(蓄電デバイス用セパレータ)を作成した。
 作製した積層多孔質フィルム(蓄電デバイス用セパレータ)の伸び率、ガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
 <比較例1>
 実施例1の方法にて作製した熱延伸処理を実施していないフィラーを含む多孔層を形成した積層多孔質フィルム(蓄電デバイス用セパレータ)のガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
 <比較例2>
 重量平均分子量が200万のポリエチレンの粉末とパラフィンワックスの粉末を均一に混合した後に、二軸スクリュータイプの溶融混練機を用いて200℃で混合した。この溶融混合物を溶融状態のまま取り出して即時にプレス板で挟みこみ200℃で熱プレスを行い、その後冷却することで厚みが約1mmのシートを得た。得られたシートを同時二軸延伸機を用いて縦、横それぞれ約7倍の倍率で延伸を行った。その後、四辺を金枠で固定した状態で60℃のn-デカン、続いて室温のn-ヘキサンに浸漬することでパラフィンワックス成分を抽出した。その後、フィルムを乾燥させることでポリエチレン多孔質フィルムBを得た。得られたフィルムの膜厚は16μmであった。
 上記湿式法で得られたポリエチレン多孔質フィルムBを用いる以外、比較例1と同様な方法にて作製した熱延伸処理を実施していないフィラーを含む多孔層を形成した積層多孔質フィルム(蓄電デバイス用セパレータ)のガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
 <比較例3>
 上記湿式法で得られたポリエチレン多孔質フィルムBを用い、熱延伸処理の荷重が2.4N,幅辺りの荷重が0.04N/mm(幅辺りの荷重)である以外に、実施例1と同じ方法で、積層多孔質フィルム(蓄電デバイス用セパレータ)を作成した。
 作製した積層多孔質フィルム(蓄電デバイス用セパレータ)の伸び率、ガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
 <比較例4>
 上記熱延伸処理の荷重が12.0N,幅辺りの荷重が0.20N/mm(幅辺りの荷重)である以外に、比較例3と同じ方法で、積層多孔質フィルム(蓄電デバイス用セパレータ)を作成した。
 作製した積層多孔質フィルム(蓄電デバイス用セパレータ)の伸び率、ガーレー値、カール量(合計浮き上がり量)、電解液吸液性評価、熱収縮率を測定した。結果を表1、図1、図2に示す。
<参考1>
 上記乾式延伸法によって機械方向に延伸して作製されたポリオレフィン多孔質フィルムAの熱収縮率も測定した。結果を表1に示す。
<参考2>
 上記湿式法で得られたポリエチレン多孔質フィルムBの熱収縮率も測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、反りの発生を抑制することができ、かつ、電解液の吸液性が高く、蓄電デバイス用セパレータとして用いた際に蓄電デバイスが良好な性能を示すことができる積層多孔質フィルムを提供することができる。特にハイブリッド電気自動車、プラグインハイブリッド電気自動車、バッテリー電気自動車に搭載されるリチウムイオン二次電池等の蓄電デバイスとして使用することで、これら自動車の信頼性を高めることができる。 

Claims (20)

  1.  原料としてポリプロピレンを含むポリオレフィン多孔質フィルムの少なくとも片面に、フィラーを含む多孔層が積層された積層多孔質フィルムであって、
     機械方向の辺の長さを60mm、該機械方向に略直交する方向の長さを60mmで切り出した矩形の前記積層多孔質フィルムを温度23℃で露点-20℃以下の環境下に1時間静置したときの、前記フィラーを含む多孔層を上面にした場合および下面にした場合について、4辺の浮き上がり量の合計である合計浮き上がり量が10mm以下である積層多孔質フィルム。
  2.  前記ポリオレフィン多孔質フィルムがポリプロピレン層を含む多層構造であり、前記ポリプロピレン層を構成するポリプロピレンの重量平均分子量が50~100万である請求項1に記載の積層多孔質フィルム。
  3.  前記ポリオレフィン多孔質フィルムが、前記ポリプロピレン層を表面層としポリエチレン層を内層とした三層構造である請求項2に記載の積層多孔質フィルム。
  4.  機械方向の熱収縮率が110℃で1%以下であり、該機械方向に略直交する方向の熱収縮率が110℃で-1.7%~-1.0%であることを特徴とする請求項3に記載の積層多孔質フィルム。
  5.  張力を負荷したときの伸び率が1.0%以上であることを特徴とする請求項4に記載の積層多孔質フィルム。
  6.  電解液吸液面積が1.5cm以上であることを特徴とする請求項3に記載の積層多孔質フィルム。
  7.  前記フィラーが無機微粒子である請求項1に記載の積層多孔質フィルム。

  8.  請求項1ないし7のいずれか一項に記載の積層多孔質フィルムからなる蓄電デバイス用セパレータ。

  9.  請求項8に記載の蓄電デバイス用セパレータ、正極、および負極を備えた蓄電デバイス。
  10.  乾式延伸法によって機械方向に延伸して作製されたポリオレフィン多孔質フィルムの少なくとも片面に、フィラーを含む多孔層が積層された積層多孔質フィルムの製造方法であって、
     機械方向の辺の長さを60mm、該機械方向に略直交する方向の長さを60mmで切り出した矩形の前記積層多孔質フィルムを温度23℃で露点-20℃以下の環境下に1時間静置したときの、前記フィラーを含む多孔層を上面にした場合および下面にした場合について、4辺の浮き上がり量の合計である合計浮き上がり量が10mm以下である積層多孔質フィルムの製造方法。
  11.  前記フィラーと媒体とを含む塗工液を塗布して所定の乾燥温度で乾燥後に、フィルムに機械方向にフィルムの単位長さ巾当たり0.04N/mm以上の張力を負荷しながら加熱したことを特徴とする請求項10に記載の積層多孔質フィルムの製造方法。
  12.  前記フィラーが無機微粒子である請求項10に記載の積層多孔質フィルムの製造方法。
  13.  前記加熱の温度が40℃以上170℃以下であることを特徴とする請求項12に記載の積層多孔質フィルムの製造方法。
  14.  乾燥後に張力を負荷する時間が60秒以下であることを特徴とする請求項13に記載の積層多孔質フィルムの製造方法。
  15.  張力を負荷したときの伸び率が1.0%以上であることを特徴とする請求項14に記載の積層多孔質フィルムの製造方法。
  16.  請求項10ないし請求項15のいずれか一項に記載の積層多孔質フィルムの製造方法によって製造された積層多孔質フィルムであって、
     機械方向の辺の長さを60mm、該機械方向に略直交する方向の長さを60mmで切り出した矩形の前記積層多孔質フィルムを温度23℃で露点-20℃以下の環境下に1時間静置したときの、前記フィラーを含む多孔層を上面にした場合および下面にした場合について、4辺の浮き上がり量の合計である合計浮き上がり量が10mm以下である積層多孔質フィルム。
  17.  乾式法によって製造されたポリオレフィン多孔質フィルムの少なくとも片面に、フィラーを含む多孔層が積層された積層多孔質フィルムであって、
     機械方向の辺の長さを60mm、該機械方向に略直交する方向の長さを60mmで切り出した矩形の前記積層多孔質フィルムを温度23℃で露点-20℃以下の環境下に1時間静置したときの、前記フィラーを含む多孔層を上面にした場合および下面にした場合について、4辺の浮き上がり量の合計である合計浮き上がり量が10mm以下である積層多孔質フィルム。
  18.  前記ポリオレフィン多孔質フィルムがポリプロピレン層を含む多層構造である請求項16に記載の積層多孔質フィルム。
  19.  前記ポリオレフィン多孔質フィルムが、前記ポリプロピレン層を表面層としポリエチレン層を内層とした三層構造である請求項18に記載の積層多孔質フィルム。
  20.  前記ポリプロピレン層を構成するポリプロピレンの重量平均分子量が50~100万である請求項16に記載の積層多孔質フィルム。
PCT/JP2016/073441 2015-08-12 2016-08-09 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス WO2017026482A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680046727.0A CN107921728A (zh) 2015-08-12 2016-08-09 叠层多孔质膜、蓄电装置用间隔体、以及蓄电装置
US15/750,769 US20180233730A1 (en) 2015-08-12 2016-08-09 Multi-layered porous film, separator for power storage device, and power storage device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-159686 2015-08-12
JP2015159686 2015-08-12
JP2015222359 2015-11-12
JP2015-222359 2015-11-12
JP2016-155871 2016-08-08
JP2016155871A JP6187650B2 (ja) 2015-08-12 2016-08-08 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス

Publications (1)

Publication Number Publication Date
WO2017026482A1 true WO2017026482A1 (ja) 2017-02-16

Family

ID=57984282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073441 WO2017026482A1 (ja) 2015-08-12 2016-08-09 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス

Country Status (1)

Country Link
WO (1) WO2017026482A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539091A (zh) * 2017-03-03 2018-09-14 住友化学株式会社 非水电解液二次电池用隔板
US20200313136A1 (en) * 2019-03-29 2020-10-01 Ube Industries, Ltd. Polyolefin porous film, separator for energy storage device, and energy storage device
WO2022059744A1 (ja) * 2020-09-18 2022-03-24 旭化成株式会社 蓄電デバイス用セパレータ及び蓄電デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002164A1 (ja) * 2011-06-29 2013-01-03 三菱樹脂株式会社 多孔性フィルム、電池用セパレータ、および電池
WO2015064726A1 (ja) * 2013-10-28 2015-05-07 住友化学株式会社 積層多孔質フィルム、非水電解液二次電池用セパレータおよび非水電解液二次電池
JP5943148B1 (ja) * 2015-04-20 2016-06-29 住友化学株式会社 積層多孔質フィルム、非水電解液二次電池用セパレータおよび非水電解液二次電池
JP2016143469A (ja) * 2015-01-30 2016-08-08 Jnc株式会社 多層耐熱セパレータ材およびその製造方法
JP2016183209A (ja) * 2015-03-25 2016-10-20 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002164A1 (ja) * 2011-06-29 2013-01-03 三菱樹脂株式会社 多孔性フィルム、電池用セパレータ、および電池
WO2015064726A1 (ja) * 2013-10-28 2015-05-07 住友化学株式会社 積層多孔質フィルム、非水電解液二次電池用セパレータおよび非水電解液二次電池
JP2016143469A (ja) * 2015-01-30 2016-08-08 Jnc株式会社 多層耐熱セパレータ材およびその製造方法
JP2016183209A (ja) * 2015-03-25 2016-10-20 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5943148B1 (ja) * 2015-04-20 2016-06-29 住友化学株式会社 積層多孔質フィルム、非水電解液二次電池用セパレータおよび非水電解液二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539091A (zh) * 2017-03-03 2018-09-14 住友化学株式会社 非水电解液二次电池用隔板
JP2018147684A (ja) * 2017-03-03 2018-09-20 住友化学株式会社 非水電解液二次電池用セパレータ
CN108539091B (zh) * 2017-03-03 2019-08-30 住友化学株式会社 非水电解液二次电池用隔板
US20200313136A1 (en) * 2019-03-29 2020-10-01 Ube Industries, Ltd. Polyolefin porous film, separator for energy storage device, and energy storage device
US11728100B2 (en) * 2019-03-29 2023-08-15 Ube Corporation Polyolefin porous film, separator for energy storage device, and energy storage device
WO2022059744A1 (ja) * 2020-09-18 2022-03-24 旭化成株式会社 蓄電デバイス用セパレータ及び蓄電デバイス

Similar Documents

Publication Publication Date Title
JP6187650B2 (ja) 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
KR101814921B1 (ko) 다공질층, 적층체, 다공질층을 포함하는 비수 전해액 이차 전지용 부재, 및 다공질층을 포함하는 비수 전해액 이차 전지
CN108352485B (zh) 非水系二次电池用隔膜及非水系二次电池
CN108137842B (zh) 多孔膜以及蓄电装置
CN108352484B (zh) 非水系二次电池用隔膜及非水系二次电池
KR101471795B1 (ko) 비수 전해액 리튬 2차 전지
WO2013133074A1 (ja) 非水系二次電池用セパレータ、その製造方法および非水系二次電池
JP6696518B2 (ja) ポリオレフィン微多孔膜
WO2017082259A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
EP2696392A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
CN110621731B (zh) 聚烯烃微多孔膜、蓄电装置用分隔件及蓄电装置
JP6078703B1 (ja) 非水系二次電池用セパレータ、非水系二次電池及び非水系二次電池の製造方法
JP6203975B2 (ja) 多孔質層、積層体、多孔質層を含む非水電解液二次電池用部材、および多孔質層を含む非水電解液二次電池
WO2017026482A1 (ja) 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP6101377B1 (ja) 多孔質層、積層体、多孔質層を含む非水電解液二次電池用部材、および多孔質層を含む非水電解液二次電池
WO2017138512A1 (ja) ポリオレフィン微多孔膜、蓄電デバイス用セパレータフィルム、及び蓄電デバイス
JP5979299B1 (ja) 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP2017066350A (ja) 多孔質層、積層体、多孔質層を含む非水電解液二次電池用部材、および多孔質層を含む非水電解液二次電池
JP7275574B2 (ja) ポリオレフィン微多孔膜及び蓄電デバイス
JP2019093565A (ja) 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2024087536A1 (zh) 聚烯烃基膜及其制备方法、隔离膜、二次电池及用电装置
JP7482935B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
US20230118224A1 (en) Separator, electrochemical apparatus, and electronic apparatus
JP7293809B2 (ja) 多孔質フィルム用の前駆体フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15750769

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835179

Country of ref document: EP

Kind code of ref document: A1