WO2013179764A1 - 撮像装置の製造方法および半導体装置の製造方法 - Google Patents

撮像装置の製造方法および半導体装置の製造方法 Download PDF

Info

Publication number
WO2013179764A1
WO2013179764A1 PCT/JP2013/060342 JP2013060342W WO2013179764A1 WO 2013179764 A1 WO2013179764 A1 WO 2013179764A1 JP 2013060342 W JP2013060342 W JP 2013060342W WO 2013179764 A1 WO2013179764 A1 WO 2013179764A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
imaging
bonded
wafer
manufacturing
Prior art date
Application number
PCT/JP2013/060342
Other languages
English (en)
French (fr)
Inventor
紀幸 藤森
考俊 五十嵐
和洋 吉田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP13796999.4A priority Critical patent/EP2858112A4/en
Priority to CN201380028598.9A priority patent/CN104380466B/zh
Priority to JP2014518321A priority patent/JPWO2013179764A1/ja
Publication of WO2013179764A1 publication Critical patent/WO2013179764A1/ja
Priority to US14/557,157 priority patent/US9240398B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/782Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, each consisting of a single circuit element
    • H01L21/786Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, each consisting of a single circuit element the substrate being other than a semiconductor body, e.g. insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14638Structures specially adapted for transferring the charges across the imager perpendicular to the imaging plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an imaging device manufacturing method and a semiconductor device manufacturing method including a step of cutting a bonded wafer in which a plurality of imaging chips (semiconductor chips) are bonded to a support substrate.
  • Chip size package (CSP) technology is used to reduce the size of semiconductor devices.
  • CSP Chip size package
  • a through wiring reaching the second main surface is formed in a semiconductor chip having a semiconductor circuit portion formed on the first main surface, and an external connection terminal on the second main surface is connected to the wiring board.
  • a transparent support member that protects the light receiving unit is joined to the first main surface of the imaging chip on which the light receiving unit that is a semiconductor circuit unit is formed.
  • Wafer level chip size package (WL-CSP) technology is used to manufacture a plurality of image pickup devices at once.
  • WL-CSP after processing such as through wiring formation is performed in the state of a bonded wafer in which an imaging chip substrate on which a plurality of light receiving portions are formed and a transparent support substrate are bonded via an adhesive layer, each imaging device is processed. It is divided into pieces.
  • the imaging chip with the defective light receiving portion is also processed as an imaging device, and thus the manufacturing cost increases. Further, as the diameter of the semiconductor wafer is increased, all the processing facilities are required to cope with the large diameter, and the capital investment cost increases and the manufacturing cost increases, resulting in a decrease in productivity.
  • a semiconductor chip mounted on a mounting surface of a silicon wafer is sealed with a sealing resin, and then the silicon wafer is polished from the surface opposite to the mounting surface.
  • a method of manufacturing a package component by the CSP method that separates into individual package components is disclosed.
  • the semiconductor chip is not processed, and the silicon wafer is processed to be an interposer of the semiconductor chip.
  • the package component manufacturing method a plurality of semiconductor chips are mounted, and polishing or the like is performed on the surface sealed with a sealing resin. Then, depending on the bonding position of the semiconductor chip, the thickness cannot be processed uniformly. There was a risk that the yield would decrease.
  • Embodiments of the present invention are intended to provide a method for manufacturing an imaging device with a high yield and a method for manufacturing a semiconductor device with a high yield.
  • a plurality of light receiving units are formed on the first main surface, and an imaging chip substrate on which an electrode pad is formed around each light receiving unit is cut to obtain a plurality of images.
  • a step of manufacturing a chip, and the first main surface of the imaging chip is bonded to a transparent support substrate through a transparent adhesive layer, and a dummy chip is provided in an outer peripheral region of the support substrate to which the imaging chip is not bonded Are bonded through the adhesive layer, a step of manufacturing a bonded wafer, a step of filling the space between the imaging chip and the dummy chip bonded to the bonded wafer with a sealing member, A step of reducing the thickness by processing from the main surface side of 2, a step of forming an external connection electrode connected to the electrode pad via a through-wiring on the second main surface, and cutting the bonded wafer Process and To Bei.
  • a method of manufacturing a semiconductor device comprising: a semiconductor chip substrate having a plurality of semiconductor circuit portions formed on a first main surface, and electrode pads formed around each semiconductor circuit portion; A step of cutting and producing a plurality of semiconductor chips, and bonding the first main surface of the semiconductor chip to a support substrate through an adhesive layer, and an outer peripheral region of the support substrate to which the semiconductor chip is not bonded Bonding a dummy chip to the bonding layer via the adhesive layer, producing a bonded wafer, filling the semiconductor chip bonded to the bonded wafer and the dummy chip with a sealing member, and the bonded wafer Forming the external connection electrode connected to the electrode pad via a through-wiring on the second main surface; and Comprising the step of cutting the wafer, the
  • FIG. 7B is a cross-sectional view of the bonded wafer along the line VIIB-VIIB in FIG. 7A. It is a top view of the bonded wafer for demonstrating the manufacturing method of the imaging device of embodiment.
  • FIG. 8B is a cross-sectional view of the bonded wafer along the line VIIIB-VIIIB in FIG. 8A.
  • 10 is a top view of a bonded wafer for explaining a method for manufacturing an imaging device according to Modification 1.
  • FIG. 9B is a cross-sectional view of the bonded wafer along the line IXB-IXB in FIG. 9A.
  • 10 is a top view of a bonded wafer for explaining a method for manufacturing an imaging device according to Modification 2.
  • FIG. 10B is a sectional view of the bonded wafer taken along line XB-XB in FIG. 10A.
  • an imaging device 10 that is a semiconductor device includes an imaging chip (imager chip) 30 and a cover glass 20 that is a support substrate portion (transparent flat plate portion) through an adhesive layer 41 made of a transparent resin. Are glued together.
  • a light receiving portion 31 that is a semiconductor circuit portion is formed on the first main surface 30SA of the imaging chip 30. Further, around the light receiving portion 31 on the first main surface 30SA, a light receiving portion 31 and a wiring ( A plurality of electrode pads 32 connected by (not shown) are formed. The electrode pad 32 is connected to the external connection electrode 34 and the external connection terminal 35 of the second main surface 30SB through the through wiring 33.
  • the plurality of electrode pads 32 supply power to the light receiving unit 31 and transmit / receive input / output signals to / from the light receiving unit 31. Further, the outer peripheral portion of the imaging chip 30 and the outer peripheral portion of the adhesive layer 41 are covered with a sealing member 42 without a gap.
  • the planar view size of the cover glass 20 is larger than the planar view size of the imaging chip 30.
  • the imaging device 10 is bonded to a glass wafer 20W, which is a transparent support substrate serving as the cover glass 20, with a plurality of imaging chips 30 separated by a predetermined distance via an adhesive layer 41.
  • the wafer 40W is manufactured by cutting (dividing into pieces).
  • an alignment mark 21 for arranging each imaging chip 30 at a predetermined position is formed on the glass wafer 20W. That is, since the glass wafer 20W is transparent, the alignment mark (first alignment mark) 21 and the alignment mark (second alignment mark) 36 of the image pickup chip 30 (see FIG. 5)).
  • a dummy chip 30D is bonded to the outer peripheral region of the glass wafer 20W to which the imaging chip 30 is not bonded.
  • the dummy chip 30D is made of the same material as the imaging chip 30 and has the same shape.
  • the second main surface 30SB of the dummy chip 30D is hatched to distinguish it from the imaging chip 30, but both are the same in appearance.
  • the number and arrangement of the imaging chips 30 to be bonded to the glass wafer 20W may not be the same for ease of explanation.
  • an alignment mark 21 for placing the imaging chip 30 at a predetermined position is formed on a glass wafer 20W that is a transparent support substrate.
  • the image pickup chip arrangement region 30 ⁇ / b> S is indicated by a broken line for explanation.
  • the glass wafer 20W that is cut and becomes the cover glass 20 only needs to be transparent in the wavelength band of the light to be imaged.
  • borosilicate glass, quartz glass, single crystal sapphire, or the like is used.
  • the alignment mark 22 and the alignment mark 23 are formed simultaneously with the formation of the alignment mark 21.
  • the alignment mark 22 is for dicing at the time of separation, and the alignment mark 23 is for processing such as formation of the through wiring 33 of the imaging chip 30.
  • the alignment marks 21 and the like are formed, for example, by forming a metal layer made of Al or the like on the entire surface and then patterning by photolithography. For accurate positioning, it is preferable that there are two alignment marks for one positioning process.
  • the alignment mark 21 and the like may be formed by partially etching the glass wafer 20W.
  • Imaging Chip Manufacturing Process A plurality of light receiving portions 31 that are a plurality of semiconductor circuit portions and the respective light receiving portions 31 are connected to the first main surface 30SA of a semiconductor wafer such as a silicon wafer by a known semiconductor process.
  • the imaging chip substrate 30W (see FIG. 2) is manufactured.
  • the imaging chip substrate (semiconductor chip substrate) 30W is cut to produce a plurality of imaging chips (semiconductor chips) 30 shown in FIG.
  • the sizes of the imaging chip substrate and the glass wafer 20W are selected in accordance with the available manufacturing equipment and the like according to the configuration and specifications of the imaging device to be manufactured.
  • the imaging chip substrate and the glass wafer 20W can be different sizes. For example, even if the imaging chip is formed of a large-diameter 12 inch (300 mm) ⁇ or a larger substrate, the individual imaging chips 30 separated into individual pieces are re-applied to an 8-inch (200 mm) ⁇ glass wafer 20W. By performing processing by arranging (bonding), it is possible to manufacture with equipment for 8 inches (200 mm) ⁇ without using equipment for large-diameter wafers.
  • substrates and wafers having different shapes such as an 8-inch (200 mm) ⁇ imaging chip substrate and a 6-inch (150 mm) square glass wafer 20W may be used depending on the equipment and apparatus.
  • the imaging chip substrate and the glass wafer 20W having a size or shape suitable for usable manufacturing equipment can be used, the existing equipment can be used effectively.
  • An imaging device can be manufactured.
  • the imaging chip 30 determined as a non-defective product in the inspection process is used. That is, since a “defective chip” that is not a non-defective product is not used in the subsequent processes, even when the yield of the imaging chip 30 on the imaging chip substrate 30W is low, imaging obtained by rearrangement and reprocessing is performed. There is no reduction in chip yield.
  • the inspection for determining the quality of the imaging chip may be performed for each individual imaging chip 30 in a singulated state, but is preferably performed in the state of the substrate 30W in terms of work efficiency.
  • the alignment mark 36 corresponds to the alignment mark 21 on the glass wafer 20W. As shown in FIG. 5, the alignment marks 36 are preferably formed on the outer peripheral portions facing each other across the center of the imaging chip 30.
  • the imaging chip 30 can be automatically mounted with high accuracy using a mounting apparatus.
  • a step portion 37 is formed on the outer peripheral portion of the first main surface 30SA of the imaging chip 30.
  • the step portion 37 is manufactured by dicing the imaging chip substrate 30W by step cut.
  • the imaging chip 30 having the stepped portion 37 can reduce the distance L between adjacent chips in order to prevent the adhesive 41L from spreading (fillet) to the outside of the imaging chip 30 when bonded to the glass wafer 20W.
  • a microlens group may be disposed on the light receiving unit 31.
  • a dummy chip 30D is manufactured by cutting a semiconductor wafer such as a silicon wafer that is the same as the imaging chip 30.
  • a so-called defective chip in which the light receiving unit or the like is determined to be defective may be used.
  • a plurality of imaging chips 30 are bonded to the glass wafer 20W by a predetermined distance L, and are attached to the outer peripheral region of the glass wafer 20W to which the imaging chip 30 is not bonded.
  • the dummy chip 30D is bonded in the same manner as the imaging chip 30, and the bonded wafer 40W is manufactured.
  • the dummy chip 30D is bonded in place of the imaging chip 30 in an outer peripheral region that is likely to be a defective product in the processing process.
  • the plurality of imaging chips 30 formed on the imaging chip substrate 30W under a predetermined arrangement condition are rearranged on the glass wafer 20W after cutting.
  • the interval L needs to be longer than the thickness of the dicing blade used in the dicing process described later.
  • the distance L is preferably 15 ⁇ m or more and 500 ⁇ m or less, which is slightly longer than the thickness of the dicing blade.
  • interval L constant among all the imaging chips 30, it is possible to improve the workability in the sealing member filling step described later, and it is possible to uniformly fill the sealing member. Cracks due to uneven stress can be prevented.
  • an appropriate amount of the liquid adhesive 41L is applied to five locations in the imaging chip arrangement region 30S of the glass wafer 20W.
  • the imaging chip arrangement region 30S can be grasped by the two alignment marks 21 arranged on the diagonal line.
  • a coating method for example, a dispensing method in which a solution is pushed out from a tip nozzle of a dispenser and applied is used.
  • the adhesive 41L has high transparency (for example, a transmittance of 90% or more at a visible wavelength), a strong adhesive force, and does not deteriorate due to heat or the like in a subsequent process.
  • BCB benzocyclobutene
  • Resin epoxy resin, or silicone resin is used.
  • the first alignment mark 21 of the glass wafer 20W and the second alignment mark 36 of the first main surface 30SA of the imaging chip 30 are aligned,
  • the imaging chip 30 is bonded to the glass wafer 20W.
  • the first alignment mark 21 and the second alignment mark 36 are set so as to be easily aligned.
  • the first alignment mark 21 has a cross shape as shown in FIG. 4, and the second alignment mark 36 has four rectangles as shown in FIG.
  • the reference marks may be formed on the glass wafer 20W, and the imaging chips 30 may be arranged at a predetermined pitch based on the reference marks. By using such a method, the throughput can be increased. Further, in place of the second alignment mark 36, alignment may be performed using a pattern such as an electrode pad 32 formed on the imaging chip 30.
  • the liquid adhesive 41 ⁇ / b> L is cured with the alignment mark aligned, and becomes the adhesive layer 41.
  • the second main surface of the imaging chip is completely cured while being pressed with a predetermined pressure by the wafer-like pressing jig, the parallelism between the main surface of the imaging chip and the main surface of the glass wafer 20W increases.
  • a thermal curing method, a UV curing method, a UV curing method + thermal curing method, a UV curing method + a moisture curing method, or a room temperature curing method may be used.
  • a flip chip bonder provided with a curing means for the adhesive 41L such as a heating unit or a UV irradiation unit, the imaging chip 30 can be disposed at a predetermined position and the adhesive 41L can be cured at the same time.
  • the adhesive 41L may be completely cured by a flip chip bonder, but care must be taken in the case of the adhesive 41L that is likely to cause voids due to rapid curing.
  • the curing by the flip chip bonder is semi-curing so that the imaging chip 30 disposed at a predetermined position does not move and cause a positional shift, and the plurality of imaging chips 30 and the dummy chips are formed on the glass wafer 20W. After 30D is disposed, it is preferable that the adhesive 41L is completely cured at once to form the adhesive layer 41.
  • a liquid sealing resin 42L filled by, for example, a dispensing method is provided between the plurality of imaging chips 30 disposed on the glass wafer 20W. Cured to form the sealing member 42. Instead of the dispensing method, the sealing resin 42L may be poured into the gap.
  • the sealing member can be filled between the plurality of imaging chips 30 by capillary action.
  • region where the vertex of the several imaging chip 30 opposes tends to become low in height (thickness), when the sealing resin 42L is filled. For this reason, after hardening sealing resin once, you may apply
  • the sealing member 42 has a low moisture permeability for improving the moisture resistance of the imaging device 10 and is preferably not easily deteriorated by heat or plasma in a subsequent process.
  • BCB resin or polyimide is used.
  • the sealing member 42 may be the same as the adhesive layer 41 or may be a different material.
  • the sealing member 42 has a function of a light shielding member for preventing external light from entering the light receiving portion.
  • a light shielding material such as a dye or a black pigment.
  • the sealing member 42 needs to be an insulator, when using a pigment etc., a nonelectroconductive material is used.
  • the thickness of the sealing member 42 that is, the height to be filled only needs to be larger than the thickness of the imaging chip 30 after being thinned in step S14. That is, the sealing member 42 does not have to completely fill the space between the plurality of imaging chips 30 before the thinning process. Conversely, the sealing member 42 may protrude from the space between the imaging chips 30.
  • the sealing member 42 is not limited to a hardened liquid resin.
  • the sheet-like resin member may be cured after filling the space between the imaging chips 30 while embedding the imaging chip 30 by vacuum hot pressing or vacuum lamination.
  • the second main surface 30SB side of the imaging chip 30 is flattened by reducing the thickness of the bonded wafer 40W. That is, a back grinding process and a CMP (Chemical Mechanical Polishing) process are performed from the second main surface 30SB side.
  • CMP Chemical Mechanical Polishing
  • a diamond wheel called a back grinding wheel is used.
  • the CMP process is performed to reduce the surface roughness of the surface ground by the back grinding process.
  • the processed second main surface 30SB may be tapered.
  • the above phenomenon is remarkable in the CMP process.
  • the interval between the imaging chip 30 filled with the sealing member 42 and the dummy chip 30D is the same as the interval L between the imaging chip 30 and the imaging chip 30 in the central region.
  • the sealing member 42 that protrudes from between the imaging chips 30 is shaved with a blade.
  • dishing in which the central portion of the surface of the sealing member 42 is concave may occur by the back grinding process and the CMP process. However, since the concave portion is removed in the dicing process, there is no problem.
  • the second main surface 30SB of the imaging chip 30 of the bonded wafer 40W after the thinning and the surface of the sealing member 42 form a flat surface. For this reason, the same process as that of a normal semiconductor wafer can be performed on the thinned bonded wafer 40W.
  • the through via 33S for forming the through wiring 33 connected to the electrode pad 32 formed on the first main surface 30SA of the imaging chip 30 is a normal semiconductor wafer process. It is formed.
  • an etching mask 39 having an opening in a region immediately above the electrode pad 32 is formed on the imaging chip 30 and the sealing member 42.
  • the etching mask is also a protective film that protects the imaging chip 30 and the sealing member 42 from chemicals and plasma used in later processes.
  • the etching mask 39 for example, a silicon oxide film or a silicon nitride film is used.
  • plasma CVD is preferably used as a method for forming the etching mask 39.
  • the alignment mark 23 for forming the through wiring formed on the glass wafer 20W is used for alignment of the photomask when forming a patterning mask (not shown) for forming an opening in the etching mask 39. .
  • a through via 33S reaching the electrode pad 32 is formed by wet etching with an alkaline solution such as KOH or TMAH, or dry etching by an ICP-RIE method or the like.
  • the through via 33S may be formed by a physical processing method such as laser processing.
  • the through wiring 33 made of a conductor is formed inside the through via 33S.
  • the external connection electrode 34 connected to the through wiring 33 is formed on the second main surface 30SB of the imaging chip 30, and the convex external connection terminal is formed on the external connection electrode 34. 35 is disposed.
  • a plating process may be used, and a solder ball or the like may be used for the external connection terminal 35.
  • Step S15 Individualization process (dicing process) A large number of imaging devices 10 are manufactured from a single bonded wafer 40W by the separation process of cutting the bonded wafer 40W.
  • the cutting is preferably a two-stage dicing method shown in FIGS. 6F and 6G. That is, after half-cutting about 10 to 200 ⁇ m from the surface of the glass wafer 20W (upper side in the drawing), the glass wafer 20W is subjected to full-cut dicing, thereby preventing cracks due to stress and peeling of the sealing member 42. . Further, in the two-stage dicing method, for the dicing of the sealing member 42, a blade type (bond material, abrasive grain size, concentration) suitable for the resin and processing conditions (feed speed, rotation speed) are used, and the glass wafer 20W is used.
  • a blade type bond material, abrasive grain size, concentration
  • the processing quality (resin burrs, glass chipping, resin layer delamination) can be improved.
  • the resin blade may be made thicker than the glass blade, and a step cut may be formed in which a step is formed at the end of the imaging chip 30 after separation.
  • the sealing member 42 on the dicing line may be removed by laser dicing or etching, and then the glass wafer 20W may be cut into full pieces by blade dicing or laser dicing for glass.
  • Alignment marks 22 formed first on the glass wafer 20W are used for dicing alignment.
  • a dicing alignment mark may be formed on the second main surface 30 SB of the imaging chip 30 or the sealing resin between the imaging chips 30 in a through wiring forming process or the like. Good.
  • the bonded wafer 40W is manufactured using only the non-defective imaging chip 30. For this reason, since a defective chip does not become an imaging device, the imaging device 10 can be manufactured at low cost, and productivity is high.
  • the manufacturing method of the embodiment it is possible to manufacture with the bonded wafer 40W having a predetermined diameter regardless of the diameter of the imaging chip substrate 30W.
  • Productivity is high because processing equipment corresponding to large diameter is not required.
  • the imaging chip since it is an imaging chip having a large thickness before processing that is bonded to the glass wafer 20W, handling is easy. That is, the imaging chip thinned to form the through wiring is likely to be damaged and easily deformed due to stress or the like during bonding. However, in the manufacturing method of the embodiment, the imaging chip can be bonded to the glass wafer 20W in a thick state.
  • the alignment by the alignment mark can be performed from the opposite surface of the imaging chip bonding surface.
  • the manufacturing method of the imaging device 10 when the bonded wafer 40W is processed from the second main surface 30SB side and the thickness is reduced, the thickness of the imaging chip 30 varies or the sealing is performed. The member 42 does not peel off. For this reason, the manufacturing method of the imaging device 10 has a high yield.
  • the sealing resin 42L can be easily filled, and cracking of the sealing resin 42L can be prevented, so that the manufacturing yield is high.
  • the wafer By aligning the outer surface of the imaging chip 30 and the outer surface of the sealing member 42 by CMP, the wafer can be handled as a single wafer, and the semiconductor wafer process can be performed on the chip-shaped component. High-precision and high-density processing can be performed.
  • the yield of the imaging apparatus 10 does not decrease.
  • the imaging device 10 is an imaging chip 30 that is a semiconductor chip in which the light receiving unit 31 that is a semiconductor circuit unit is formed on the first main surface 30SA, and a support substrate unit that has a larger planar view size than the imaging chip 30.
  • a sealing member 42 made of an insulating material having a size (dimension in plan view).
  • the imaging device 10 is excellent in electrical insulation and moisture resistance.
  • the objective lens unit may be aligned with and bonded to the surface of the glass wafer 20W opposite to the surface to which the imaging chip 30 is bonded.
  • a digital signal processor (DSP) (Digital Signal Processor) chip for processing an imaging signal may be bonded to the second main surface 30SB of the imaging chip 30.
  • a back-illuminated imaging device can also be manufactured through a process of forming a color filter and a microlens on 31 and removing the silicon layer on the electrode to expose the electrode.
  • the semiconductor chip is not limited to the imaging chip, and a semiconductor device to be manufactured is not limited to the imaging apparatus, regardless of the type, such as a general semiconductor chip, various sensors or actuators.
  • the shape of some of the dummy chips 30D is different from the shape of the imaging chip 30.
  • the shape of the dummy chip 30D is a triangle or a fan shape in accordance with the outer edge shape of the bonded wafer 40WA. That is, the shape of the dummy chip 30D may be the same as or different from that of the imaging chip 30.
  • the processing speed of the dummy chip 30D in the CMP process is preferably substantially equal to or slower than the processing speed of the imaging chip 30, and it is particularly preferable that both are made of the same material.
  • a continuous convex portion (dam) made of resin may be formed in advance.
  • the thickness D2 of the dummy chip 30D1 is smaller than the thickness D1 of the imaging chip 30 and is the same as the target thickness of the imaging chip 30 in CMP processing. is there. Further, the processing speed of the dummy chip 30D1 in the CMP process is slower than the processing speed of the imaging chip 30.
  • the processing speed of the dummy chip 30D1 is preferably 50% or less of the processing speed of the imaging chip 30. Further, it is particularly preferable that the dummy chip 30D1 has substantially the same thickness as the target processing thickness of the imaging chip 30 in the CMP process and is hardly processed in the CMP process.
  • the imaging chip 30 and the sealing member 42 are first processed to be thin.
  • the processing speed of the imaging chip 30 becomes substantially the same as the processing speed of the dummy chip 30D1, and thus the speed is suddenly decreased. For this reason, in the manufacturing method of the imaging device of the modification, it is easy to accurately process the imaging chip 30 to the target processing thickness in the CMP process.
  • the manufacturing method of the imaging device of the modification 2 has the effect of the manufacturing method of the imaging device of embodiment, and a yield is also high.
  • the manufacturing method of the imaging apparatus according to the embodiment and the modified example can manufacture an ultra-compact and highly reliable imaging apparatus. Therefore, the imaging apparatus disposed in the distal end portion of the electronic endoscope or the capsule endoscope is particularly preferable. It can be used in a manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Dicing (AREA)

Abstract

 撮像装置10の製造方法は、複数の受光部31が第1の主面30SAに形成され、それぞれの受光部31の周囲に電極パッド32が形成された撮像チップ基板30Wを切断し複数の撮像チップ30を作製する工程と、撮像チップ30の第1の主面30SAを透明な接着層41を介してガラスウエハ20Wに接着するとともに撮像チップ30が接着されていないガラスウエハ20Wの外周領域にダミーチップ30Dを接着層41を介して接着し接合ウエハ40Wを作製する工程と、撮像チップ30およびダミーチップ30Dの間を封止部材42で充填する工程と、接合ウエハ40Wを加工し厚さを薄くする工程と、貫通配線33を介して電極パッド32と接続された外部接続電極34を第2の主面30SBに形成する工程と、接合ウエハ40Wを切断する工程と、を具備する。

Description

撮像装置の製造方法および半導体装置の製造方法
 本発明は、複数の撮像チップ(半導体チップ)が支持基板に接合された接合ウエハを切断する工程を具備する撮像装置の製造方法および半導体装置の製造方法に関する。
 半導体装置の小型化のため、チップサイズパッケージ(CSP)技術が用いられている。CSPでは、第1の主面に半導体回路部が形成された半導体チップに、第2の主面に到達する貫通配線が形成され、第2の主面の外部接続端子が配線板と接続される。
 ここで、小型の撮像装置では、半導体回路部である受光部が形成された撮像チップの第1の主面には受光部を保護する透明支持部材が接合されている。複数の撮像装置を一括して作製するために、ウエハレベルチップサイズパッケージ(WL-CSP)技術が用いられている。WL-CSPでは、複数の受光部が形成された撮像チップ基板と透明支持基板とが接着層を介して接着された接合ウエハの状態で貫通配線形成等の加工がされた後に、個々の撮像装置に個片化される。
 しかし、従来のWL-CSPでは、撮像チップ基板の撮像チップの歩留まりが低い場合には、不良受光部のある撮像チップも撮像装置として加工されるため、製造コストが増大する。また、半導体ウエハの大口径化に伴い、加工設備も全て大口径に対応する必要があり、設備投資費が増大し製造コストが増大するため、生産性が低下する。
 なお、日本国特開2011-243596号公報には、シリコンウエハの実装面に実装した半導体チップを封止樹脂で封止した後に、シリコンウエハを実装面と反対面から研磨加工等を行い、さらに個々のパッケージ部品に個片化するCSP法によるパッケージ部品の製造方法が開示されている。
 すなわち、上記製造方法では、半導体チップは加工されず、シリコンウエハが加工され半導体チップのインターポーザーとなる。
 上記パッケージ部品の製造方法では、複数の半導体チップが実装され、封止樹脂で封止された面に対して研磨加工等が行われる。すると、半導体チップの接着位置によっては、厚さが均一に加工できず。歩留まりが低下するおそれがあった。
 本発明の実施形態は、歩留まりの高い撮像装置の製造方法および歩留まりの高い半導体装置の製造方法を提供することを目的とする。
 本発明の実施形態の撮像装置の製造方法は、複数の受光部が第1の主面に形成され、それぞれの受光部の周囲に電極パッドが形成された撮像チップ基板を切断し、複数の撮像チップを作製する工程と、撮像チップの前記第1の主面を透明な接着層を介して透明な支持基板に接着するとともに、前記撮像チップが接着されていない前記支持基板の外周領域にダミーチップを前記接着層を介して接着し、接合ウエハを作製する工程と、前記接合ウエハに接着された前記撮像チップおよび前記ダミーチップの間を封止部材で充填する工程と、前記接合ウエハを、第2の主面側から加工し厚さを薄くする工程と、貫通配線を介して前記電極パッドと接続された外部接続電極を前記第2の主面に形成する工程と、前記接合ウエハを切断する工程と、を具備する。
 また、本発明の別の実施形態の半導体装置の製造方法は、複数の半導体回路部が第1の主面に形成され、それぞれの半導体回路部の周囲に電極パッドが形成された半導体チップ基板を切断し、複数の半導体チップを作製する工程と、半導体チップの前記第1の主面を、接着層を介して支持基板に接着するとともに、前記半導体チップが接着されていない前記支持基板の外周領域にダミーチップを前記接着層を介して接着し、接合ウエハを作製する工程と、前記接合ウエハに接着された前記半導体チップおよび前記ダミーチップの間を封止部材で充填する工程と、前記接合ウエハを、第2の主面側から加工し厚さを薄くする工程と、貫通配線を介して前記電極パッドと接続された外部接続電極を前記第2の主面に形成する工程と、前記接合ウエハを切断する工程と、を具備する
実施形態の撮像装置の断面図である。 実施形態の撮像装置の製造方法を説明するための斜視図である。 実施形態の撮像装置の製造方法を説明するためのフローチャートである。 実施形態の撮像装置の透明基板の平面図および部分拡大図である。 実施形態の撮像装置の撮像チップの斜視図である。 実施形態の撮像装置の製造方法を説明するための断面図である。 実施形態の撮像装置の製造方法を説明するための断面図である。 実施形態の撮像装置の製造方法を説明するための断面図である。 実施形態の撮像装置の製造方法を説明するための断面図である。 実施形態の撮像装置の製造方法を説明するための断面図である。 実施形態の撮像装置の製造方法を説明するための断面図である。 実施形態の撮像装置の製造方法を説明するための断面図である。 撮像装置の製造方法を説明するための接合ウエハの上面図である。 図7AのVIIB-VIIB線に沿った接合ウエハの断面図である。 実施形態の撮像装置の製造方法を説明するための接合ウエハの上面図である。 図8AのVIIIB-VIIIB線に沿った接合ウエハの断面図である。 変形例1の撮像装置の製造方法を説明するための接合ウエハの上面図である。 図9AのIXB-IXB線に沿った接合ウエハの断面図である。 変形例2の撮像装置の製造方法を説明するための接合ウエハの上面図である。 図10AのXB-XB線に沿った接合ウエハの断面図である。
<実施形態>
 図1に示すように、半導体装置である撮像装置10は、撮像チップ(イメージャチップ)30と、支持基板部(透明平板部)であるカバーガラス20と、が透明樹脂からなる接着層41を介して接着されている。撮像チップ30の第1の主面30SAには、半導体回路部である受光部31が形成されており、さらに、第1の主面30SAの受光部31の周囲には、受光部31と配線(不図示)により接続された複数の電極パッド32が形成されている。そして、電極パッド32は、貫通配線33を介して、第2の主面30SBの外部接続電極34および外部接続端子35と接続されている。すなわち、複数の電極パッド32は、受光部31へ電力を供給するとともに、受光部31との間で入出力信号を送受信する。さらに、撮像チップ30の外周部および接着層41の外周部は、封止部材42により隙間なく覆われている。
 すなわち、撮像装置10では、カバーガラス20の平面視寸法は、撮像チップ30の平面視寸法よりも大きい。これは、図2に示すように、撮像装置10が、複数の撮像チップ30を接着層41を介してカバーガラス20となる透明支持基板であるガラスウエハ20Wに所定間隔だけ離して接着された接合ウエハ40Wの切断(個片化)により作製されているためである。後述するように、ガラスウエハ20Wには、それぞれの撮像チップ30を所定位置に配置するためのアライメントマーク21が形成されている。すなわち、ガラスウエハ20Wは、透明であるため、アライメントマーク21形成面の反対面から、アライメントマーク(第1のアライメントマーク)21と、撮像チップ30のアライメントマーク(第2のアライメントマーク)36(図5参照)の位置合わせを行うことができる。
 そして、図2に示すように、撮像チップ30が接着されていないガラスウエハ20Wの外周領域には、ダミーチップ30Dが接着されている。ダミーチップ30Dは、撮像チップ30と同じ材料からなり同じ形状である。なお、図2においては、撮像チップ30と区別するために、ダミーチップ30Dの第2の主面30SBをハッチング表示しているが、両者は、外観上は同一である。なお、以下の図において、ガラスウエハ20Wに接着する撮像チップ30等の数および配置等は、説明を容易にするため同じではない場合がある。
 次に、図3のフローチャートに従い、実施形態の撮像装置10の製造方法を詳細に説明する。
 <ステップS10>ガラスウエハ作製工程
 図4に示すように、透明支持基板であるガラスウエハ20Wに、撮像チップ30を所定位置に配置するためのアライメントマーク21が形成される。なお、図4には、説明のため、撮像チップ配置領域30Sを破線で示している。切断されカバーガラス20となるガラスウエハ20Wは、撮像する光の波長帯域において透明であればよく、例えば、ホウケイ酸ガラス、石英ガラス、または単結晶サファイア等を用いる。
 なお、アライメントマーク21形成時に、同時に、アライメントマーク22およびアライメントマーク23が形成される。アライメントマーク22は個片化のときのダイシング用であり、アライメントマーク23は撮像チップ30の貫通配線33形成等の加工用である。アライメントマーク21等は、例えば、全面にAl等からなる金属層を成膜したのちに、フォトリソグラフィによりパターニングすることにより形成される。正確な位置決めのためには、それぞれのアライメントマークは、1回の位置決め処理用に2個あることが好ましい。なお、アライメントマーク21等は、ガラスウエハ20Wを部分的にエッチングすることにより形成してもよい。
 なお、以降の工程において加工されない、ガラスウエハ20Wの裏面(アライメントマーク21形成面の反対面)をフォトレジストなどによって覆うことにより保護してもよい。
 <ステップS11>撮像チップ作製工程
 シリコンウエハ等の半導体ウエハの第1の主面30SAに、公知の半導体プロセスにより、複数の半導体回路部である受光部31と、それぞれの受光部31と接続された複数の電極パッド32と、複数のアライメントマーク36と、が形成されることで、撮像チップ基板30W(図2参照)が作製される。そして、撮像チップ基板(半導体チップ基板)30Wが切断され、図5に示す複数の撮像チップ(半導体チップ)30が作製される。
 製作しようとする撮像装置の形態および仕様等に応じて、撮像チップ基板およびガラスウエハ20Wのサイズは、使用可能な製造設備等に合わせて選択される。また、撮像チップ基板とガラスウエハ20Wを、異なるサイズとすることもできる。例えば、大口径の12インチ(300mm)φ、または、さらに大きい基板で形成された撮像チップであっても、個片化した個々の撮像チップ30を8インチ(200mm)φのガラスウエハ20Wに再配列(接着)して加工を行うことで、大口径ウエハ対応の設備等を用いることなく、8インチ(200mm)φ用の設備で製造することが可能となる。さらに、設備および装置等に応じて、例えば8インチ(200mm)φの撮像チップ基板と6インチ(150mm)角のガラスウエハ20Wという異なる形状の基板およびウエハを用いてもよい。このように、使用可能な製造設備等(製造装置、治具および工具等)に適した大きさまたは形状の、撮像チップ基板およびガラスウエハ20Wを使用できるので、現有設備等を有効に活用して撮像装置を製造することが可能となる。
 また、以降の工程では、検査工程で良品と判断された撮像チップ30だけが使用される。すなわち、良品ではない「不良チップ」は以降の工程において使用されることがないので、撮像チップ基板30Wの撮像チップ30の歩留まりが低い場合であっても、再配列され再加工されて得られる撮像チップの歩留まり低下につながることはない。なお、撮像チップの良否を判断する検査は、個片化された状態の個々の撮像チップ30毎に行ってもよいが、作業効率上、基板30Wの状態で行うのが好ましい。
 アライメントマーク36は、ガラスウエハ20Wのアライメントマーク21と対応している。図5に示すように、アライメントマーク36は、撮像チップ30の中心をはさんで対向する外周部に、それぞれ形成されていることが好ましい。
ガラスウエハ20Wと撮像チップ30とに、それぞれアライメントマークを形成しておくことで、実装装置を用いて高精度に自動で撮像チップ30の搭載ができる。
 また、撮像チップ30の第1の主面30SAの外周部には、段差部37が形成されている。段差部37は、撮像チップ基板30Wをステップカットにてダイシングすることで作製される。段差部37がある撮像チップ30は、ガラスウエハ20Wとの接着時に接着剤41Lの撮像チップ30の外側への広がり(フィレット)を防止するために、隣接チップとの間隔Lを小さくできる。また、受光部31の上に、マイクロレンズ群が配設されていてもよい。
 一方、撮像チップ30と同じシリコンウエハ等の半導体ウエハを切断することでダミーチップ30Dが作製される。なお、ダミーチップ30Dとして、受光部等が不良と判定された、いわゆる不良チップを用いてもよい。
 <ステップS12>接着工程
 図2に示すように、複数の撮像チップ30が、ガラスウエハ20Wに、所定の間隔Lだけ離して接着され、撮像チップ30が接着されていないガラスウエハ20Wの外周領域にダミーチップ30Dが撮像チップ30と同様に接着され、接合ウエハ40Wが作製される。ダミーチップ30Dは、加工工程で不良品となる可能性の高い外周領域に撮像チップ30に替えて接着される。
 すなわち、撮像チップ基板30Wに所定の配列条件で形成された複数の撮像チップ30が、切断後に、今度はガラスウエハ20Wに再配列される。
 間隔Lは、後述するダイシング工程にて用いるダイシングブレードの厚みよりも長い必要がある。しかし、間隔Lが長すぎると、1枚のガラスウエハ20Wから作製できる撮像装置の数が少なくなると同時に、後述する封止部材充填工程において封止部材の体積が大きくなり、硬化収縮応力が大きくなることでクラックが生じやすくなる。このため、間隔Lは、ダイシングブレードの厚みよりも少し長い15μm以上500μm以下が好ましい。
 また、間隔Lは全ての撮像チップ30の間で一定とすることにより、後述の封止部材充填工程において、作業性を良くできるとともに、封止部材を均一に充填することが可能となり、硬化収縮応力の不均一によるクラックを防ぐことができる。
 例えば、最初に、液体状の接着剤41Lが、ガラスウエハ20Wの撮像チップ配置領域30Sの5箇所に適量が塗布される。撮像チップ配置領域30Sは、対角線上に配置されている2つのアライメントマーク21により把握可能である。塗布方法としては、例えば、ディスペンサの先端ノズルから溶液を押し出して塗布するディスペンス法を用いる。
 接着剤41Lは、透明性が高い(例えば可視波長での透過率が90%以上)、接着力が強い、および後工程における熱等により劣化しない、などの特性を満足する、BCB(ベンゾシクロブテン)樹脂、エポキシ系樹脂、またはシリコーン系樹脂等を用いる。
 そして、例えば、フリップチップボンダを用いて、ガラスウエハ20Wの第1のアライメントマーク21と、撮像チップ30の第1の主面30SAの第2のアライメントマーク36と、が位置合わせされた状態で、撮像チップ30がガラスウエハ20Wに接着される。第1のアライメントマーク21と第2のアライメントマーク36とは位置合わせしやすいように設定されている。例えば、図4に示すように第1のアライメントマーク21は十字形であり、図5に示すように第2のアライメントマーク36は、4つの矩形からなる。
 なお、それぞれの撮像チップ専用のアライメントマークを形成しないで、ガラスウエハ20Wに基準マークを形成しておき、基準マークをもとに、所定のピッチで撮像チップ30を配置してもよい。このような方法を用いるとスループットを上げることができる。また、第2のアライメントマーク36に替えて、撮像チップ30に形成された電極パッド32等のパターンを用いて位置合わせを行ってもよい。
 液状の接着剤41Lは、アライメントマークが位置合わせされた状態で、硬化され、接着層41となる。ウエハ状の押さえ冶具により、撮像チップの第2の主面を所定の圧力で押圧しながら完全硬化させると、撮像チップの主面とガラスウエハ20Wの主面との平行度が高くなる。
 接着剤41Lの硬化方法も、所望の特性を満足すれば、樹脂に応じて、熱硬化法、UV硬化法、UV硬化法+熱硬化法、UV硬化法+湿気硬化法、または、常温硬化法等のいずれでもよい。加熱部またはUV照射部等の接着剤41Lの硬化手段を備えたフリップチップボンダを用いることで、撮像チップ30の所定位置への配置と、接着剤41Lの硬化とを同時に行うことができる。
 なお、フリップチップボンダにより接着剤41Lを完全硬化してもよいが、急速な硬化により、ボイドが生じやすい接着剤41Lの場合には注意が必要である。この場合には、例えば、フリップチップボンダによる硬化は、所定位置に配設した撮像チップ30が移動して位置ずれを起こさない程度の半硬化とし、ガラスウエハ20Wに複数の撮像チップ30およびダミーチップ30Dを配設した後に、一括して接着剤41Lを完全硬化し接着層41とすることが好ましい。
<ステップS13>封止部材充填工程
 図6Bに示すように、ガラスウエハ20Wの上に、配設された複数の撮像チップ30の間に、例えばディスペンス法により充填された液状の封止樹脂42Lが硬化されて封止部材42となる。ディスペンス法に替えて封止樹脂42Lを隙間に流し込んでもよい。
 複数の撮像チップ30の配置間隔Lを15μm以上500μm以下とすることで、複数の撮像チップ30の間に毛細管現象により封止部材を充填できる。なお、複数の撮像チップ30の頂点が対峙する領域は、封止樹脂42Lを充填したときに高さ(厚さ)が低くなりやすい。このため、封止樹脂を一度硬化させた後、複数の撮像チップ30の頂点が対峙する部分にだけ封止樹脂を再度、塗布しても良い。
 封止部材42は、撮像装置10の耐湿性向上のために透湿度が低く、また、後工程における熱またはプラズマにより劣化しにくいことが好ましく、例えば、BCB樹脂またはポリイミド等を用いる。なお、封止部材42は接着層41と同じものでもよいし、異なる材料でもよい。
 また、封止部材42は、外光が受光部に入射するのを防止する遮光部材の機能を有することが好ましい。このためには、封止部材42は接着層41と同じ樹脂であっても、染料または黒色系顔料等の遮光材料を混合して用いることが好ましい。なお、封止部材42は絶縁体である必要があるので、顔料等を用いる場合には非導電性材料が用いられる。
 封止部材42の厚さ、すなわち充填する高さは、ステップS14で薄厚化した後の撮像チップ30の厚さよりも大きければよい。すなわち、封止部材42は、薄厚化加工前の複数の撮像チップ30の間の空間を完全に充填している必要はない。逆に、封止部材42が、撮像チップ30の間の空間から、はみ出していてもよい。
 なお、封止樹脂42Lの硬化時の収縮応力によるクラック発生防止のために、封止樹脂42Lの硬化においては急加熱、急冷却を行わないことが好ましい。また、ボイド発生防止のためには、硬化前に真空中で脱泡したり、真空中で硬化したりすることが好ましい。
 なお、封止部材42としては、硬化された液状の樹脂に限られるものではない。例えば、シート状の樹脂部材を、真空熱プレスまたは真空ラミネートによって撮像チップ30を埋め込みながら撮像チップ30の間の空間を充填した後に、硬化してもよい。
<ステップS14>撮像チップ加工工程
 図6Cに示すように、接合ウエハ40Wが薄厚化されることで、撮像チップ30の第2の主面30SB側が平坦化される。すなわち、第2の主面30SB側からバックグラインド工程とCMP(Chemical Mechanical Polishing)工程とが行われる。
 バックグラインド工程では、バックグラインディングホイールと呼ばれるダイヤモンドホイールが用いられる。CMP工程は、バックグラインド処理により研削された表面の表面粗さを小さくするために行われる。
 ここで、図7Aおよび図7Bに示すように、ガラスウエハ20Wの中央領域に撮像チップ30だけを接着した接合ウエハ140Wでは、加工後の第2の主面30SBがテーパー形状になるおそれがある。特に、CMP工程において上記現象は顕著である。
 また、外周領域に配設される封止樹脂42Lの総体積が大きいために、硬化時にクラックが発生したり、剥離したりするおそれがある。
 これに対して、図8Aおよび図8Bに示すように、ガラスウエハ20Wの中央領域に撮像チップ30を接着するとともに、撮像チップ30が接着されていない外周領域にダミーチップ30Dを接着した接合ウエハ40Wでは、上記問題は発生しない。
 すなわち、外周領域においても、封止部材42が充填される撮像チップ30とダミーチップ30Dの間隔は、中央領域の撮像チップ30と撮像チップ30の間隔Lと同じである。
 なお、封止部材充填後の接合ウエハ40Wの表面の凹凸が大きい場合は、バックグラインド工程の前に別の手段による前処理を行うことが好ましい。例えば前処理として、撮像チップ30の間からはみ出した封止部材42が刃物により削られる。
 なお、バックグラインド工程およびCMP工程によって、封止部材42の表面の中央部が凹となるディッシングが生じることがある。しかし、凹部分はダイシング工程において除去されるため、問題とはならない。
 薄厚化後の接合ウエハ40Wの撮像チップ30の第2の主面30SBと封止部材42の表面とは、平坦面を形成している。このため、薄厚化された接合ウエハ40Wに対しては、通常の半導体ウエハと同様のプロセスを行うことができる。
 すなわち、図6Dに示すように、撮像チップ30の第1の主面30SAに形成された電極パッド32と接続された貫通配線33を形成するための貫通ビア33Sが、通常の半導体ウエハプロセスで、形成される。貫通ビア形成のために、電極パッド32の直上領域に開口のあるエッチングマスク39が、撮像チップ30上と封止部材42上に成膜される。エッチングマスクは、後の工程で用いられる薬品およびプラズマから撮像チップ30および封止部材42を保護する保護膜でもある。エッチングマスク39としては、例えば、シリコン酸化膜またはシリコン窒化膜を用いる。エッチングマスク39の成膜方法として低温で成膜することができ、撮像チップ30に形成された半導体回路部等にダメージを与えることがないため、プラズマCVDを好ましく用いる。
 なお、エッチングマスク39に開口を形成するためのパターニングマスク(不図示)を形成するときのフォトマスクの位置合わせにはガラスウエハ20Wに形成しておいた貫通配線形成用のアライメントマーク23が用いられる。
 KOHまたはTMAH等のアルカリ溶液によるウェットエッチング、または、ICP-RIE法等によるドライエッチングにより、電極パッド32まで達する貫通ビア33Sが形成される。なお、レーザー加工等の物理的加工方法により貫通ビア33Sを形成してもよい。
 そして、図6Eに示すように、貫通ビア33Sの壁面等に絶縁層(不図示)が形成された後に、貫通ビア33Sの内部に導電体からなる貫通配線33が形成される。そして、エッチングマスク39の除去後に、撮像チップ30の第2の主面30SBに貫通配線33と接続された外部接続電極34が形成され、さらに、外部接続電極34の上に凸状の外部接続端子35が配設される。
 なお、貫通配線形成工程等においては、めっきプロセスを用いてもよいし、外部接続端子35には、はんだボールなどを用いてもよい。
<ステップS15>個片化工程(ダイシング工程)
 接合ウエハ40Wを、切断する個片化工程により、1枚の接合ウエハ40Wから、多数の撮像装置10が作製される。
 切断は、図6Fおよび図6Gに示す、二段ダイシング法が好ましい。すなわち、ガラスウエハ20Wの表面(図中上側)から10~200μm程度までをハーフカットした後、ガラスウエハ20Wをフルカットダイシングすることで、応力によるクラックの発生および封止部材42の剥離を防止できる。さらに、二段ダイシング法では、封止部材42のダイシングには、樹脂に適したブレード品種(ボンド材、砥粒径、集中度)および加工条件(送り速度、回転数)を用い、ガラスウエハ20Wのダイシングにはガラスに適したブレード品種および加工条件を用いることで、加工品質(樹脂のバリ、ガラスのチッピング、樹脂層のデラミネーション)を向上できる。また、樹脂用ブレードをガラス用ブレードより厚みの大きいものにして、個片化後の撮像チップ30端部に段差ができるステップカットとしてもよい。
 また、ダイシングライン上の封止部材42をレーザーダイシングまたはエッチングにより除去したのち、ガラス用のブレードダイシングまたはレーザーダイシングによりガラスウエハ20Wをフルカットダイシングすることで、個片化してもよい。
 ダイシングのアライメントには、最初にガラスウエハ20Wに形成したアライメントマーク22を用いる。なお、アライメントマーク22に替えて、貫通配線形成工程等において、撮像チップ30の第2の主面30SB、または撮像チップ30の間の封止樹脂の上にダイシング用のアライメントマークを形成してもよい。
 実施形態の製造方法では、撮像チップ基板30Wの撮像素子の歩留まりが低い場合であっても、良品の撮像チップ30だけを用いて接合ウエハ40Wを作製する。このため、不良チップが撮像装置になることがないため、低コストで撮像装置10を製造でき、生産性が高い。
 また、実施形態の製造方法では、撮像チップ基板30Wの口径に関係なく、所定の口径の接合ウエハ40Wにより製造できる。大口径に対応した加工設備が不要であるため、生産性が高い。
 さらに、ガラスウエハ20Wに接着するのは、加工前の厚さが厚い撮像チップであるため、ハンドリングが容易である。すなわち、貫通配線を形成するために薄厚化された撮像チップは、破損しやすく、また接着時の応力等で変形しやすい。しかし、実施形態の製造方法では、厚い状態で撮像チップをガラスウエハ20Wに接着できる。
 また、支持基板が透明なガラスウエハ20Wであるため、図2に示したように撮像チップ接合面の反対面からアライメントマークによる位置合わせができる。
 さらに実施形態の撮像装置10の製造方法では、接合ウエハ40Wを、第2の主面30SB側から加工し厚さを薄くするときに、撮像チップ30の厚さにばらつき等が生じたり、封止部材42が剥離したりすることがない。このため、撮像装置10の製造方法は、歩留まりが高い。
 また、チップ配置間隔を一定にしているために、封止樹脂42Lの充填が容易であり、封止樹脂42Lのクラックを防止できるため、製造歩留まりが高い。
 CMPによって撮像チップ30の外面と封止部材42の外面とを面一に揃えることにより、1枚のウエハとして扱うことが可能となり、チップ状部品に対しても半導体ウエハ工程を施すことができ、高精度・高密度な加工が行える。
 また、接合ウエハ40Wの外周部に接着されているのは良品の撮像チップ30ではなく、ダミーチップ30Dであるため、撮像装置10の歩留まりが低下することがない。
 そして、撮像装置10は、半導体回路部である受光部31が第1の主面30SAに形成された半導体チップである撮像チップ30と、撮像チップ30よりも平面視寸法が大きい支持基板部であるカバーガラス20と、撮像チップ30の第1の主面30SAと撮像チップ30とを接着する透明な接着層41と、撮像チップ30の側面および接着層41の側面を覆う、カバーガラス20と同じ外寸(平面視寸法)の絶縁材料からなる封止部材42と、を具備する。
 すなわち、撮像チップ30の側面が封止部材42により覆われ、撮像チップ30が外部に露出していない。このため、撮像装置10は、電気絶縁性および耐湿性に優れている。
 なお、上記実施形態の撮像装置10に、さらに機能部材を付加してもよい。例えば、ガラスウエハ20Wの撮像チップ30が接着されている面と反対の面に、対物レンズユニットを撮像チップ30に対して位置合わせして接合してもよい。また、撮像チップ30の第2の主面30SBに、撮像信号を処理するデジタルシグナルプロセッサ (DSP :Digital Signal Processor)チップを接合してもよい。
 また、支持基板に撮像チップ30の配線層側を接着し、撮像チップ30の間に封止樹脂を充填し、撮像チップ30を3μm程度に薄厚化して受光部31を露出させた後、受光部31の上にカラーフィルタおよびマイクロレンズを形成し、電極上のシリコン層を除去して電極を露出させる工程を経て、裏面照射型撮像装置を製造することもできる。
 また、半導体チップは撮像チップに限らず、一般的な半導体チップ、各種センサまたはアクチュエータ等、その種類は問わず、製造される半導体装置も撮像装置に限られるものではない。
<変形例>
 次に本発明の実施形態の変形例1、2の撮像装置の製造方法について説明する。変形例の製造方法は実施形態の製造方法と類似し同じ効果を有しているため、同じ構成要素には同じ符号を付し説明は省略する。
 図9Aおよび図9Bに示す変形例1の撮像装置の製造方法では、一部のダミーチップ30Dの形状が、撮像チップ30の形状と異なる。例えば、図9Aに示す例では、接合ウエハ40WAの外縁形状に合わせて、ダミーチップ30Dの形状は三角形または扇状等である。すなわち、ダミーチップ30Dの形状は、撮像チップ30と同じでもよいし異なっていてもよい。
 ただし、CMP工程における、ダミーチップ30Dの加工速度は撮像チップ30の加工速度と略同等または遅いことが好ましく、両者は同一材料から構成されていることが特に好ましい。
 なお、異なる寸法、異なる機能の撮像チップ30を1枚のガラスウエハ20Wに接着してもよい。さらに、ダミーチップ接着領域の外周部に封止樹脂42Lがガラスウエハ20Wの側面および裏面に回り込むのを防止するために、予め樹脂による連続した凸部(ダム)を形成しておいてもよい。
 図10Aおよび図10Bに示す変形例2の撮像装置の製造方法では、ダミーチップ30D1の厚さD2が、撮像チップ30の厚さD1よりも薄く、CMP加工における撮像チップ30の目標厚さと同じである。さらに、CMP工程におけるダミーチップ30D1の加工速度が、撮像チップ30の加工速度よりも遅い。
 ダミーチップ30D1の加工速度は、撮像チップ30の加工速度の50%以下であることが好ましい。また、ダミーチップ30D1は、その厚さがCMP加工における撮像チップ30の目標加工厚さと略同じで、CMP工程では殆ど加工されないことが特に好ましい。
 このため、CMP工程において、最初は、撮像チップ30および封止部材42だけが薄く加工されていく。そして、ダミーチップ30D1の厚さD2まで加工されると、撮像チップ30の加工速度はダミーチップ30D1の加工速度と略同じになるため、急に遅くなる。このため、変形例の撮像装置の製造方法では、CMP工程において、正確に目標加工厚さまで撮像チップ30を加工することが容易である。
このため、変形例2の撮像装置の製造方法は、実施形態の撮像装置の製造方法の効果を有し、さらに歩留まりが高い。
 上記実施形態および変形例の撮像装置の製造方法は、超小型で信頼性が高い撮像装置が製造できるため、特に電子内視鏡の先端部またはカプセル型内視鏡に配設される撮像装置の製造方法に用いることができる。
 すなわち、本発明は上述した実施形態等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変、組み合わせ等ができる。
 本出願は、2012年5月30日に日本国に出願された特願2012-123226号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (6)

  1.  複数の受光部が第1の主面に形成され、それぞれの受光部の周囲に電極パッドが形成された撮像チップ基板を切断し、複数の撮像チップを作製する工程と、
     撮像チップの前記第1の主面を透明な接着層を介して透明な支持基板に接着するとともに、前記撮像チップが接着されていない前記支持基板の外周領域にダミーチップを前記接着層を介して接着し、接合ウエハを作製する工程と、
     前記接合ウエハに接着された前記撮像チップおよび前記ダミーチップの間を封止部材で充填する工程と、
     前記接合ウエハを、第2の主面側から加工し厚さを薄くする工程と、
     貫通配線を介して前記電極パッドと接続された外部接続電極を前記第2の主面に形成する工程と、
     前記接合ウエハを切断する工程と、を具備することを特徴とする撮像装置の製造方法。
  2.  検査により良品と判断された撮像チップが、前記支持基板に接着されることを特徴とする請求項1に記載の撮像装置の製造方法。
  3.  複数の半導体回路部が第1の主面に形成され、それぞれの半導体回路部の周囲に電極パッドが形成された半導体チップ基板を切断し、複数の半導体チップを作製する工程と、
     半導体チップの前記第1の主面を、接着層を介して支持基板に接着するとともに、前記半導体チップが接着されていない前記支持基板の外周領域にダミーチップを前記接着層を介して接着し、接合ウエハを作製する工程と、
     前記接合ウエハに接着された前記半導体チップおよび前記ダミーチップの間を封止部材で充填する工程と、
     前記接合ウエハを、第2の主面側から加工し厚さを薄くする工程と、
     貫通配線を介して前記電極パッドと接続された外部接続電極を前記第2の主面に形成する工程と、
     前記接合ウエハを切断する工程と、を具備することを特徴とする半導体装置の製造方法。
  4.  検査により良品と判断された半導体チップが、前記支持基板に接着されることを特徴とする請求項3に記載の半導体装置の製造方法。
  5.  前記厚さを薄くする工程が、CMP工程を含むことを特徴とする請求項4に記載の半導体装置の製造方法。
  6.  前記CMP工程における、前記ダミーチップの加工速度が、前記半導体チップの加工速度よりも遅く、前記ダミーチップの厚さがCMP加工における半導体チップの目標加工厚さと同じであることを特徴とする請求項5に記載の半導体装置の製造方法。
PCT/JP2013/060342 2012-05-30 2013-04-04 撮像装置の製造方法および半導体装置の製造方法 WO2013179764A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13796999.4A EP2858112A4 (en) 2012-05-30 2013-04-04 METHODS OF MANUFACTURING IMAGING DEVICE, AND SEMICONDUCTOR DEVICE
CN201380028598.9A CN104380466B (zh) 2012-05-30 2013-04-04 摄像装置的制造方法以及半导体装置的制造方法
JP2014518321A JPWO2013179764A1 (ja) 2012-05-30 2013-04-04 撮像装置の製造方法および半導体装置の製造方法
US14/557,157 US9240398B2 (en) 2012-05-30 2014-12-01 Method for producing image pickup apparatus and method for producing semiconductor apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012123226 2012-05-30
JP2012-123226 2012-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/557,157 Continuation US9240398B2 (en) 2012-05-30 2014-12-01 Method for producing image pickup apparatus and method for producing semiconductor apparatus

Publications (1)

Publication Number Publication Date
WO2013179764A1 true WO2013179764A1 (ja) 2013-12-05

Family

ID=49672972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060342 WO2013179764A1 (ja) 2012-05-30 2013-04-04 撮像装置の製造方法および半導体装置の製造方法

Country Status (5)

Country Link
US (1) US9240398B2 (ja)
EP (1) EP2858112A4 (ja)
JP (1) JPWO2013179764A1 (ja)
CN (1) CN104380466B (ja)
WO (1) WO2013179764A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143211A (ja) * 2016-02-12 2017-08-17 凸版印刷株式会社 固体撮像素子及びその製造方法
KR20170120092A (ko) * 2015-02-23 2017-10-30 니폰 덴키 가라스 가부시키가이샤 유리 기판 및 이것을 사용한 적층체
JP2018093140A (ja) * 2016-12-07 2018-06-14 日本電信電話株式会社 半導体デバイスのウェハ接合方法
EP3245934A4 (en) * 2015-01-15 2018-08-01 Olympus Corporation Endoscope and imaging device
JP2020036030A (ja) * 2019-10-28 2020-03-05 浜松ホトニクス株式会社 光検出装置及び光検出装置の製造方法
JP2022088340A (ja) * 2020-12-02 2022-06-14 エルジー ディスプレイ カンパニー リミテッド Ledの転写方法及びそれを用いた表示装置の製造方法
US11444220B2 (en) 2018-07-11 2022-09-13 Hamamatsu Photonics K.K. Light detection device and method for manufacturing light detection device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10043769B2 (en) * 2015-06-03 2018-08-07 Micron Technology, Inc. Semiconductor devices including dummy chips
KR102430496B1 (ko) 2017-09-29 2022-08-08 삼성전자주식회사 이미지 센싱 장치 및 그 제조 방법
KR102477352B1 (ko) * 2017-09-29 2022-12-15 삼성전자주식회사 반도체 패키지 및 이미지 센서
EP3967438A4 (en) * 2019-05-08 2023-02-08 Tokyo Electron Limited CONNECTION DEVICE, CONNECTION SYSTEM AND CONNECTION METHOD
WO2020234850A1 (en) * 2019-05-22 2020-11-26 Vuereal Inc. An alignment process for the transfer setup
US11515268B2 (en) * 2021-03-05 2022-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package and manufacturing method thereof
KR20230012365A (ko) 2021-07-15 2023-01-26 삼성전자주식회사 반도체 패키지 및 그 제조 방법
US20230275031A1 (en) 2022-02-25 2023-08-31 Taiwan Semiconductor Manufacturing Co., Ltd. Method of Bonding Active Dies and Dummy Dies and Structures Thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128625A (ja) * 2004-09-30 2006-05-18 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
JP2008130738A (ja) * 2006-11-20 2008-06-05 Fujifilm Corp 固体撮像素子
JP2008235401A (ja) * 2007-03-19 2008-10-02 Spansion Llc 半導体装置及びその製造方法
WO2009088069A1 (ja) * 2008-01-09 2009-07-16 Nec Corporation コンデンサ内蔵装置の製造方法及びコンデンサ内蔵パッケージの製造方法
JP2010120145A (ja) * 2008-11-21 2010-06-03 Toshiba Corp Memsパッケージおよびmemsパッケージの製造方法
JP2011243596A (ja) 2010-05-14 2011-12-01 Panasonic Corp パッケージ部品の製造方法およびパッケージ部品

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274569A (ja) * 1985-09-28 1987-04-06 Toshiba Corp 半導体素子の薄膜製造方法
JPH04199619A (ja) * 1990-11-29 1992-07-20 Fujitsu Ltd 半導体装置用ウエハの製造方法
JPH0997776A (ja) * 1995-09-29 1997-04-08 Sony Corp 半導体基板の製造方法
JP4234269B2 (ja) * 1999-07-16 2009-03-04 浜松ホトニクス株式会社 半導体装置及びその製造方法
JP4530497B2 (ja) * 2000-07-24 2010-08-25 オリンパス株式会社 撮像装置
JP2002231920A (ja) * 2001-02-06 2002-08-16 Olympus Optical Co Ltd 固体撮像装置及びその製造方法
JP5044878B2 (ja) * 2001-09-19 2012-10-10 ソニー株式会社 固体撮像装置
JP4663184B2 (ja) * 2001-09-26 2011-03-30 パナソニック株式会社 半導体装置の製造方法
JP2003335922A (ja) * 2002-05-20 2003-11-28 Kyocera Chemical Corp 封止用樹脂組成物および樹脂封止型半導体装置
US7180149B2 (en) * 2003-08-28 2007-02-20 Fujikura Ltd. Semiconductor package with through-hole
JP2005203617A (ja) * 2004-01-16 2005-07-28 Sony Corp 固体撮像装置及びその製造方法
JP3945482B2 (ja) * 2004-01-26 2007-07-18 松下電工株式会社 半導体封止用樹脂組成物とそれを用いた半導体装置
JP2007317822A (ja) * 2006-05-25 2007-12-06 Sony Corp 基板処理方法及び半導体装置の製造方法
JP2008227413A (ja) * 2007-03-15 2008-09-25 Consortium For Advanced Semiconductor Materials & Related Technologies Cmp方法
CN100561677C (zh) * 2007-07-30 2009-11-18 中芯国际集成电路制造(上海)有限公司 晶圆表面平坦化的方法
JP2009158873A (ja) * 2007-12-28 2009-07-16 Panasonic Corp 光学デバイスおよび光学デバイスの製造方法
JP2010212297A (ja) * 2009-03-06 2010-09-24 Toshiba Corp 半導体装置および半導体装置の製造方法
CN102044430A (zh) * 2009-10-23 2011-05-04 无锡华润上华半导体有限公司 一种抛光晶圆的方法
TWI513301B (zh) * 2010-06-02 2015-12-11 Sony Corp 半導體裝置,固態成像裝置及相機系統
JPWO2013179766A1 (ja) * 2012-05-30 2016-01-18 オリンパス株式会社 撮像装置、半導体装置および撮像ユニット
JP6147250B2 (ja) * 2012-05-30 2017-06-14 オリンパス株式会社 撮像装置の製造方法および半導体装置の製造方法
WO2013179765A1 (ja) * 2012-05-30 2013-12-05 オリンパス株式会社 撮像装置の製造方法および半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128625A (ja) * 2004-09-30 2006-05-18 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
JP2008130738A (ja) * 2006-11-20 2008-06-05 Fujifilm Corp 固体撮像素子
JP2008235401A (ja) * 2007-03-19 2008-10-02 Spansion Llc 半導体装置及びその製造方法
WO2009088069A1 (ja) * 2008-01-09 2009-07-16 Nec Corporation コンデンサ内蔵装置の製造方法及びコンデンサ内蔵パッケージの製造方法
JP2010120145A (ja) * 2008-11-21 2010-06-03 Toshiba Corp Memsパッケージおよびmemsパッケージの製造方法
JP2011243596A (ja) 2010-05-14 2011-12-01 Panasonic Corp パッケージ部品の製造方法およびパッケージ部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858112A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3245934A4 (en) * 2015-01-15 2018-08-01 Olympus Corporation Endoscope and imaging device
KR20170120092A (ko) * 2015-02-23 2017-10-30 니폰 덴키 가라스 가부시키가이샤 유리 기판 및 이것을 사용한 적층체
JP2018029093A (ja) * 2015-02-23 2018-02-22 日本電気硝子株式会社 ガラス基板及びこれを用いた積層体
KR102522297B1 (ko) * 2015-02-23 2023-04-17 니폰 덴키 가라스 가부시키가이샤 유리 기판 및 이것을 사용한 적층체
JP2017143211A (ja) * 2016-02-12 2017-08-17 凸版印刷株式会社 固体撮像素子及びその製造方法
JP2018093140A (ja) * 2016-12-07 2018-06-14 日本電信電話株式会社 半導体デバイスのウェハ接合方法
US11444220B2 (en) 2018-07-11 2022-09-13 Hamamatsu Photonics K.K. Light detection device and method for manufacturing light detection device
JP2020036030A (ja) * 2019-10-28 2020-03-05 浜松ホトニクス株式会社 光検出装置及び光検出装置の製造方法
JP7170618B2 (ja) 2019-10-28 2022-11-14 浜松ホトニクス株式会社 光検出装置及び光検出装置の製造方法
JP2022088340A (ja) * 2020-12-02 2022-06-14 エルジー ディスプレイ カンパニー リミテッド Ledの転写方法及びそれを用いた表示装置の製造方法
JP7295205B2 (ja) 2020-12-02 2023-06-20 エルジー ディスプレイ カンパニー リミテッド Ledの転写方法及びそれを用いた表示装置の製造方法
US12074248B2 (en) 2020-12-02 2024-08-27 Lg Display Co., Ltd. LED transfer method and manufacturing method of display device using the same

Also Published As

Publication number Publication date
US9240398B2 (en) 2016-01-19
CN104380466B (zh) 2017-05-24
EP2858112A1 (en) 2015-04-08
US20150087088A1 (en) 2015-03-26
JPWO2013179764A1 (ja) 2016-01-18
EP2858112A4 (en) 2016-04-13
CN104380466A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
JP6395600B2 (ja) 撮像装置の製造方法および半導体装置の製造方法
WO2013179764A1 (ja) 撮像装置の製造方法および半導体装置の製造方法
JP6315859B2 (ja) 撮像装置、半導体装置および撮像ユニット
JP6147250B2 (ja) 撮像装置の製造方法および半導体装置の製造方法
US7061106B2 (en) Structure of image sensor module and a method for manufacturing of wafer level package
US9231018B2 (en) Wafer level packaging structure for image sensors and wafer level packaging method for image sensors
US9601531B2 (en) Wafer-level packaging structure for image sensors with packaging cover dike structures corresponding to scribe line regions
JP2005158948A (ja) 固体撮像装置及びその製造方法
TW201530668A (zh) 半導體裝置及其製造方法
TWI421956B (zh) 晶片尺寸封裝件及其製法
JP2006049700A (ja) 固体撮像装置の製造方法
US20230395633A1 (en) Image sensor packaging structures and related methods
JP2010147355A (ja) 半導体装置の製造方法
JP2011171433A (ja) 半導体装置の製造方法および半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013796999

Country of ref document: EP