WO2013176477A1 - 세포 내 관통능을 가지는 rna 간섭을 유도하는 핵산 분자 및 그 용도 - Google Patents

세포 내 관통능을 가지는 rna 간섭을 유도하는 핵산 분자 및 그 용도 Download PDF

Info

Publication number
WO2013176477A1
WO2013176477A1 PCT/KR2013/004463 KR2013004463W WO2013176477A1 WO 2013176477 A1 WO2013176477 A1 WO 2013176477A1 KR 2013004463 W KR2013004463 W KR 2013004463W WO 2013176477 A1 WO2013176477 A1 WO 2013176477A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid molecule
strand
lasirna
antisense
Prior art date
Application number
PCT/KR2013/004463
Other languages
English (en)
French (fr)
Inventor
홍선우
Original Assignee
비엠티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비엠티 주식회사 filed Critical 비엠티 주식회사
Priority to EP13794539.0A priority Critical patent/EP2853597B1/en
Priority to DK13794539.0T priority patent/DK2853597T3/en
Priority to CN201380038984.6A priority patent/CN104755620B/zh
Priority to US14/403,121 priority patent/US10125362B2/en
Priority to EP18215244.7A priority patent/EP3514236A1/en
Priority to JP2015513901A priority patent/JP6139671B2/ja
Priority to ES13794539T priority patent/ES2716818T3/es
Publication of WO2013176477A1 publication Critical patent/WO2013176477A1/ko
Priority to HK15112131.8A priority patent/HK1211319A1/xx
Priority to US16/135,766 priority patent/US10883105B2/en
Priority to US17/110,640 priority patent/US20210207137A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/313Phosphorodithioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention provides an RNAi comprising a first strand comprising a region complementary to a target nucleic acid and a second strand forming a complementary bond with the first strand.
  • a double-stranded nucleic acid molecule at least one nucleotide phosphate backbone contained in the nucleic acid molecule is substituted with phosphorothioate or phosphorodithioate and is a lipophilic compound.
  • a nucleic acid molecule for RNAi induction having a cell-penetrating ability, characterized in that) is coupled.
  • RNA small interfering RNA
  • dsRNA short double stranded RNA
  • the bases constituting the single-stranded region of the antisense 3 'terminal contains a bulky base analog, or the single-stranded region is combined with mRNA to form a bulge structure It was predicted that cleavage could be induced. In addition, it was predicted that synergistic cleavage could be induced in the case of nucleic acid molecules in which ribozyme or DNAzyme were introduced into the single-stranded region of the first strand.
  • the nucleic acid molecule according to the invention shows a high gene suppression efficiency of more than 90% in the target site in vivo only by dissolving and injecting in a solution such as PBS without a separate carrier, the nucleic acid molecule according to the invention is formulated separately It could be confirmed that it is possible to develop a drug in the form of an injection without a process.
  • Example of the present invention suggests that the RNAi-derived nucleic acid molecule according to the present invention has an effect of effectively inhibiting the expression of a target gene.
  • the present invention in another aspect, inhibits the gene expression containing the RNAi-derived nucleic acid molecule. It relates to a composition for.
  • the nucleic acid molecule may be included in the form of a nucleic acid complex to which the cell carrier is bound.
  • the present invention relates to a method of inhibiting expression of a target gene in a cell using the nucleic acid molecule inducing RNAi. That is, the present invention may provide a method for inhibiting expression of a target gene in a cell, comprising introducing the RNAi-derived nucleic acid molecule into a cell.
  • the target gene may be an endogenous gene or a transgene.
  • the pharmaceutical composition may further include fillers, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers and preservatives.
  • Pharmaceutical compositions of the invention can also be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.
  • the formulations may be in the form of sterile injectable solutions and the like.
  • cp-lasiRNA (Survivin) -PS2 in which the PS2 modification was introduced at the same position in the cp-lasiRNA (Survivin) and the following cp-lasiRNA (Survivin) in the A549 cell line as in Example 1 or 2
  • real-time PCR was performed in the same manner as in Example 4 to measure the expression level of Survivin gene. The experiment was repeated twice, and the graph shows the mean and SD of the replicates.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Diabetes (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Neurology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)

Abstract

본 발명은 신규 구조의 세포 내 관통능을 가지는 RNAi 유도 핵산 분자 및 그 용도에 관한 것으로, 보다 상세하게는 RNAi를 유도하는 이중가닥의 핵산 분자에 포함되어 있는 적어도 1개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트 (Phosphorothioate) 또는 포스포로다이티오에이트 (phosphorodithioate)로 치환되고, 친유성 화합물 (lipophilic compound)이 결합된 구조를 갖도록 하여 우수한 목적 유전자 억제 효율을 가지면서도 별도의 세포 전달체 없이 세포 내 관통능을 가지는 새로운 구조의 핵산 분자 및 이를 이용한 목적 유전자의 발현 억제 방법에 관한 것이다. 본 발명에 따른 핵산 분자 구조는 콜레스테롤 변형 및 phosphorothioate modification을 함께 도입함으로써, 우수한 유전자 억제 효율을 유지하면서도 별도의 세포 전달체 없이도 세포 내 관통능을 가질 수 있어 실제 표적 부위에 RNAi 유도를 위한 충분한 양으로 전달될 수 있어 종래 문제된 in vivo 전달 문제를 해소시킬 수 있다. 이에 본 발명에 따른 핵산 분자는 종래의 siRNA 분자를 대체하여 siRNA를 이용한 암이나 바이러스 감염 치료 등에 활용될 수 있어 유용하다.

Description

세포 내 관통능을 가지는 RNA 간섭을 유도하는 핵산 분자 및 그 용도
본 발명은 신규 구조의 세포 내 관통능을 가지는 RNAi 유도 핵산 분자 및 그 용도에 관한 것으로, 보다 상세하게는 RNAi를 유도하는 이중가닥의 핵산 분자에 포함되어 있는 적어도 1개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트 (Phosphorothioate) 또는 포스포로다이티오에이트 (phosphorodithioate)로 치환되고, 친유성 화합물 (lipophilic compound)이 결합된 구조를 갖도록 하여 우수한 목적 유전자 억제 효율을 가지면서도 별도의 세포 전달체 없이 세포 내 관통능을 가지는 새로운 구조의 핵산 분자 및 이를 이용한 목적 유전자의 발현 억제 방법에 관한 것이다.
RNA 간섭(RNA interference:RNAi)은 매우 특이적이고, 효율적으로 유전자 발현을 억제할 수 있는 메카니즘으로, 이는 목적유전자의 mRNA와 상동인 서열을 가지는 센스 가닥과 이것과 상보적인 서열을 가지는 안티센스 가닥으로 구성되는 이중가닥 RNA(dsRNA)를 세포 등에 도입하여 목적유전자 mRNA의 분해를 유도함으로서 목적유전자의 발현을 억제한다.
이러한 RNA 간섭을 유도하는 siRNA 는 염기 서열 특이적으로 표적 유전자의 발현을 억제할 수 있는 짧은 길이 (19~21bp)의 이중가닥 RNA로, 높은 효율성과 표적 특이성에 기인하여 현재 치료가 어려운 암, 바이러스의 감염, 및 유전병 등 다양한 질병에 대한 치료제로 각광 받고 있다. siRNA를 이용한 효과적인 치료제 개발을 위해서는 안정성, silencing efficiency, 면역반응, 오프-타겟 효과 (off-target effects) 등 여러 가지 해결 되어야 할 문제점들이 있지만, 그 중에서도 in vivo 에서의 효과적인 전달 (delivery)이 가장 큰 어려움으로 지적되고 있다. siRNA는 포스페이트 백본 (phosphate backbone) 구조 때문에 높은 음성 전하 (negative charge)를 띄고 있어 세포막을 통과 할 수 없고 그 작은 사이즈 때문에 혈액 (blood) 내에서 빠르게 제거되어 실제 표적 부위에 RNAi 유도를 위한 충분한 양의 siRNA를 전달하는 데에 큰 어려움을 겪고 있다.
현재 in vitro delivery의 경우 양이온성 지질 (cationic lipids)과 양이온성 폴리머 (cationic polymers)들을 이용한 높은 효율의 delivery방법이 많이 개발되어 있다 (Sioud M, Sorensen DR Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 2003; 312: 1220-1225). 하지만 대부분의 경우 in vivo에서는, in vitro만큼의 높은 효율로 siRNA를 전달하기 어렵고, 생체 내에 존재하는 다양한 단백질들과의 interaction에 의하여 siRNA의 전달 효율이 감소하는 문제점이 있다 (Bolcato-Bellemin AL, Bonnet ME, Creusat G, et al. Sticky overhangs enhance siRNA-mediated gene silencing. Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 16050-16055). 또한 질병이 발생되는 부위와 무관하게, delivery vehicle의 조성에 따라 간이나 폐와 같은 특정 장기에 높게 축적되어 독성을 유도하는 문제점을 갖고 있다.
한편, 결합 조직 성장 인자 (Connective tisssue frowth factor, CTGF/CCN2)는 metricellular protein의 하나로 세포의 분화, 성장, migration, ECM production, adhesion 등에서 중요한 역할을 하는 것으로 알려져 있다. 다양한 장기에서 fibrosis를 유도하여 장기의 기능에 손상을 일으키는 chronic fibrotic disorders의 경우, fibrotic disorder가 일어나는 조직에서 CTGF가 과 발현 되는 것으로 확인 되었으며, 피부의 경우에는 CTGF와 fibrosis의 관계가 비교적 잘 연구되어 있다. 정상 피부에서는 CTGF가 basal level로 발현이 억제 되어 있지만, 상처가 발생하는 경우 일시적으로 CTGF의 발현이 증가하는 것으로 관찰 되었다. 이와는 대조적으로 keloid나 localized sclerosis의 경우 상처의 치유 이후에도 CTFG의 과 발현이 계속 유지되는 것으로 나타났으며, antisense등을 이용하여 CTGF의 발현을 억제한 경우 fibrosis 및 keloid의 생성이 억제되어, CTGF가 fibrosis 및 비대 흉터의 생성에 중요한 역할을 하고 있음이 확인 되었다 (Sisco M, Kryger ZB, O'Shaughnessy KD, et al. Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regen 2008; 16: 661-673. DOI: WRR416 [pii]). 병리학적으로는, 전장 CTGF 분자는 결합 조직 세포의 과다증식 및 세포외 매트릭스의 과다침착이 있는 상태에 관여하는 것으로 보고되어 있다. CTGF는 또한 혈관 내피세포 이동 및 증식 및 혈관신생에 관련된 상태와도 연관이 있는 것으로 당업계에 기재되어 있다. 이런 상태와 관련된 질병 및 장애에는 예를 들어, 피부 및 주요 기관의 섬유증, 암, 및 관련 질병 및 장애 예를 들어, 전신 경화증, 혈관형성, 죽상동맥경화증, 당뇨성 신증 및 신장성 고혈압 등이 있다. 또한, CTGF는 창상 치유, 결합 조직 복구, 뼈 및 연골 복구에도 유용한 것으로 보고되어 있다. 이러한 측면에서, CTGF는 골다공증, 골관절염 또는 골연골염, 관절염, 골격 장애, 비후성 반흔, 화상, 혈관성 비대증 또는 소리 (sound) 치유와 같은 장애에서 뼈, 조직 또는 연골 형성의 유도인자로서 기재되어 있다 (예를 들어, 문헌 (미국 특허 제5,837,258호 참조).
이에 본 발명자들은 in vitroin vivo 에서의 효과적인 전달이 가능한 세포 내로의 투과능을 가지는 새로운 구조의 RNAi를 유도하는 핵산 분자를 제공하고자 예의 노력한 결과, RNAi를 유도하는 이중가닥의 핵산 분자에 포함되어 있는 적어도 1종의 뉴클레오티드의 포스페이트 백본을 포스포로티오에이트 (Phosphorothioate)로 치환시키고, 친유성 화합물 (lipophilic compound)을 컨쥬게이션 시킨 경우 in vivo에서도 별도의 세포 전달체 없이 우수한 목적 유전자 억제 효율을 가지면서도 우수한 세포 내 관통능을 가지는 것을 확인하고, 본 발명을 완성하였다.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.
<선행기술문헌>
<특허문헌>
(특허문헌 1) 미국 특허 제5,837,258호
<비특허문헌>
(비특허문헌 1) Sioud M, Sorensen DR Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 2003; 312: 1220-1225
(비특허문헌 2) Bolcato-Bellemin AL, Bonnet ME, Creusat G, et al. Sticky overhangs enhance siRNA-mediated gene silencing. Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 16050-16055
(비특허문헌 3) Sisco M, Kryger ZB, O'Shaughnessy KD, et al. Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regen 2008; 16: 661-673. DOI: WRR416 [pii]
발명의 요약
본 발명의 목적은 in vitro 및 in vivo 에서의 효과적인 전달이 가능한 세포 내로의 투과능을 가지는 새로운 구조의 RNAi를 유도하는 핵산 분자 및 그 용도를 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 목적 핵산(target nucleic acid)과 상보적인 영역을 포함하는 제1가닥과, 상기 제1가닥과 상보적 결합을 형성하는 제2가닥으로 구성되는 RNAi를 유도하는 이중가닥의 핵산 분자에 있어서, 상기 핵산 분자에 포함되어 있는 적어도 1개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트 (Phosphorothioate) 또는 포스포로다이티오에이트 (phosphorodithioate)로 치환되어 있고, 친유성 화합물 (lipophilic compound)이 결합되어 있는 것을 특징으로 하는, 세포 내 관통능(cell-penetrating ability)을 가지는 RNAi 유도용 핵산 분자를 제공한다.
본 발명은 또한, 상기 핵산 분자를 함유하는 유전자 발현 억제용 조성물을 제공한다.
본 발명은 또한, 상기 핵산 분자를 세포 내 도입시키는 단계를 포함하는 세포 내 목적 유전자의 발현 억제 방법를 제공한다.
본 발명은 또한, 결합 조직 성장 인자 (Connective tisssue frowth factor, CTGF)를 코딩하는 mRNA를 목적 핵산으로 하는 상기 핵산 분자를 함유하는 CTGF 관련 질병 또는 장애의 치료 또는 예방용 약학 조성물을 제공한다.
본 발명은 또한, 결합 조직 성장 인자 (Connective tisssue frowth factor, CTGF)를 코딩하는 mRNA와 상보적인 영역을 포함하는 제1가닥과, 상기 제1가닥과 상보적 결합을 형성하는 제2가닥으로 구성되는 RNAi를 유도하는 이중가닥의 핵산 분자에 있어서, 상기 핵산 분자에 포함되어 있는 1 내지 31개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트 (Phosphorothioate) 또는 포스포로다이티오에이트 (phosphorodithioate)로 치환되어 있고, 친유성 화합물이 결합되어 있으며, 상기 RNAi를 유도하는 이중 가닥의 핵산 분자는 서열번호 153 및 154의 염기서열쌍으로 구성된 군에서 선택된 염기서열쌍을 갖는 것을 특징으로 하는, 세포 내 관통을 가지는 CTGF 발현 억제용 핵산 분자를 제공한다.
본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부된 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 표 1 내지 표 3의 CTGF를 표적으로 하는 24종의 서열에 대한 siRNA, asiRNA, lasiRNA 구조체들의 유전자 억제 효율을 나타내는 그래프이다.
도 2는 콜레스테롤 변형에 따른 lasiRNA의 세포 내 흡수효율 증가를 나타내는 형광 현미경 관찰 사진이다.
도 3은 본 발명에 따른 콜레스테롤 및 PS 변형된 lasiRNA의 구조를 나타낸다 (밑줄: OMe modification, *:PS modification, Chol: Cholesterol, Cy3: Cy3).
도 4은 Phosphorothioate (PS) 변형에 따른 chol-lasiRNA 의 세포내로의 흡수 효율 증가를 나타내는 형광 현미경 관찰 사진이다.
도 5은 Phosphorothioate (PS) 변형에 따른 chol-lasiRNA 의 유전자 감소 효과 비교한 그래프이다 (각 그래프는 3회 반복 실험의 평균과 SD를 나타냄).
도 6는 MyD88을 표적으로 하는 chol-lasiRNA-PS7의 구조를 나타낸다 (밑줄: OMe modification, *:PS modification, Chol: Cholesterol).
도 7은 다양한 cell penetrating lasiRNA (cp-lasiRNA)들의 유전자 억제 효율 비교한 그래프이다 (괄호 안의 CTGF 또는 MyD88은 cp-lasiRNA들의 표적 유전자를 나타냄).
도 8은 친유성 화합물 변형, 즉 소수성 변형에 따른 본 발명에 따른 핵산 분자의 유전자 억제 효율을 나타내는 그래프이다.
도 9는 안티센스 가닥 길이에 따른 본 발명에 따른 핵산 분자의 유전자 억제 효율을 나타내는 그래프이다.
도 10은 PS2 변형의 구조이다.
도 11은 포스페이트 백본 변형에 따른 본 발명에 따른 핵산 분자의 유전자 억제 효율을 나타내는 그래프이다.
도 12는 본 발명에 따른 핵산 분자의 in vivo 표적 유전자 억제 효율을 나타내는 그래프이다.
도 13은 본 발명에 따른 핵산 분자의 농도별 in vivo 표적 유전자 억제 효율을 나타내는 그래프이다.
도 14는 본 발명에 따른 핵산 분자의 기간 별 표적 유전자 억제 효율을 나타내는 그래프이다.
발명의 상세한 설명 및 구체적인 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명의 상세한 설명 등에서 사용되는 주요 용어의 정의는 다음과 같다.
본원에서 "RNAi (RNA interference)"란, 목적유전자의 mRNA와 상동인 서열을 가지는 가닥과 이것과 상보적인 서열을 가지는 가닥으로 구성되는 이중가닥 RNA(dsRNA)를 세포 등에 도입하여 목적유전자 mRNA의 분해를 유도함으로서 목적유전자의 발현을 억제하는 메카니즘을 의미한다.
본원에서 "siRNA (small interfering RNA)"란, 서열 특이적으로 효율적인 유전자 발현 억제(gene silencing)를 매개하는 짧은 이중 가닥의 RNA(dsRNA)를 의미한다.
본원에서, "안티센스 가닥(antisense strand)"이란 관심있는 목적 핵산(target nucleic acid)에 실질적으로 또는 100% 상보적인 폴리뉴클레오티드로서, 예를 들어 mRNA (messenger RNA), mRNA가 아닌 RNA 서열(e.g., microRNA, piwiRNA, tRNA, rRNA 및 hnRNA) 또는 코딩 또는 비코딩 DNA 서열과 전체로서 또는 일부로서 상보적일 수 있다. 본원에서, 안티센스 가닥 및 가이드 가닥은 교환되어 사용될 수 있다.
본원에서, "센스 가닥(sense strand)"이란 목적 핵산과 동일한 핵산 서열을 갖는 폴리뉴클레오티드로서, mRNA (messenger RNA), mRNA가 아닌 RNA 서열(e.g., microRNA, piwiRNA, tRNA, rRNA 및 hnRNA) 또는 코딩 또는 비코딩 DNA 서열과 전체로서 또는 일부로서 동일한 폴리뉴클레오티드를 말한다.
본원에서 "유전자"란 최광의의 의미로 간주되어야 하며, 구조 단백질 또는 조절 단백질을 암호화할 수 있다. 이때, 조절단백질은 전사인자, 열 충격단백질 또는 DNA/RNA 복제, 전사 및/또는 번역에 관여하는 단백질을 포함한다. 본 발명에 있어서, 발현 억제의 대상이 되는 목적유전자는 바이러스 게놈에 내재된 것으로, 동물유전자로 통합되거나 염색체 외 구성요소로서 존재할 수 있다. 예컨대, 목적유전자는 HIV 게놈상의 유전자일 수 있다. 이 경우, siRNA 분자는 포유동물 세포 내 HIV 유전자의 번역을 불활성화시키는데 유용하다.
본 발명은 일 관점에서, 목적 핵산(target nucleic acid)과 상보적인 영역을 포함하는 제1가닥과, 상기 제1가닥과 상보적 결합을 형성하는 제2가닥으로 구성되는 RNAi를 유도하는 이중가닥의 핵산 분자에 있어서, 상기 핵산 분자에 포함되어 있는 적어도 1개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트 (Phosphorothioate) 또는 포스포로다이티오에이트 (phosphorodithioate)로 치환되어 있고, 친유성 화합물 (lipophilic compound)이 결합되어 있는 것을 특징으로 하는, 세포 내 관통능(cell-penetrating ability)을 가지는 RNAi 유도용 핵산 분자에 관한 것이다. 이때, 제1가닥은 siRNA의 안티센스 가닥에 대응되며, 제2가닥은 센스 가닥에 대응된다.
본 발명에 있어서, 상기 RNAi를 유도하는 이중 가닥의 핵산 분자에서 제1가닥은 16 내지 121nt, 바람직하게는 24 내지 121nt 길이일 수 있다. 제1가닥은 목적 핵산과 상보적인 일부 영역을 포함하며 이때, 목적 핵산과 상보적인 일부 영역을 포함하는 영역의 길이는 16 내지 31nt, 19 내지 31nt, 또는 19 내지 21nt 인 것을 특징으로 할 수 있다. 아울러, 제2가닥은 13 내지 25nt, 13 내지 21nt, 또는 16 내지 21nt의 길이를 갖는 것을 특징으로 할 수 있다.
본 발명에서는, 바람직하게는, 상기 유도하는 이중 가닥의 핵산 분자는 목적 핵산과 상보적인 일부 영역을 포함하는 24~121nt 길이의 제1가닥과, 상기 제1가닥의 목적 핵산과 상보적인 일부 영역과 상보적 결합을 형성하는 영역을 갖는 13~21nt 길이의 제2가닥으로 구성되는 것을 특징으로 할 수 있다. 본 발명의 일 실시예에서는 이와 같은 구조를 갖는 핵산 분자를 CTGF를 표적으로 하는 24종의 서열에 대하여 제작한 결과, 기존의 siRNA에 비하여 전반적으로 더 높은 유전자 발현 억제 효율을 나타내는 경향성이 있음을 확인하였다. 본 발명자들은 상기와 같이 제2가닥과 상보적 결합을 형성하지 않는 긴 단일가닥 영역을 갖는 RNAi 를 유도하는 이중 가닥의 핵산 분자, 즉 긴 안티센스 가닥을 가지는 siRNA를 'lasiRNA'로 명명하였다.
lasiRNA는 기존의 siRNA보다 더 짧은 이중가닥 길이를 가지면서도 높은 유전자 억제 효율을 갖는 신규한 구조의 비 대칭형 RNAi 유도 구조이다. 또한 긴 overhang구조의 antisense 역할에 기인하여, siRNA나 asiRNA에 비하여 증가된 최대 유전자 억제 효율을 가져, 기존의 구조들을 대체하여 치료제 개발에 이용될 것으로 기대되고 있다. 또한 다른 구조들에 비하여 더 긴 overhang의 길이를 가지며, overhang의 다양한 modification에도 높은 활성을 유지하는 특성이 있어 비교적 많은 chemical modification의 자유로운 도입이 가능하여 다양한 기능을 추가할 수 있는 특징이 있다.
이러한, lasiRNA는 상기 제1가닥의 목적 핵산(target nucleic acid)과 상보적인 일부 영역의 길이는 19~21nt 인 것을 특징으로 할 수 있다. 따라서, 상기 제1가닥은 제2가닥과 결합하지 않는 단일 가닥 영역을 포함하며, 바람직하게는 제1가닥은 단일 가닥 영역에 안티센스 DNA, 안티센스 RNA, 라이보자임 및 DNAzyme으로 구성된 군에서 선택되는 핵산올리고뉴클레오티드를 추가로 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 제1가닥 중 제2가닥과 상보적 결합을 형성하지 않는 단일 가닥 영역은 직접 또는 링커에 의하여 상기 제2가닥과 상보적 결합을 형성하는 영역에 연결될 수 있으며, 이때 링커는 화학적 링커(chemical linker)임을 특징으로 할 수 있다. 이때, 상기 화학적 링커는 이로 제한되는 것은 아니나, 핵산 (a nucleic acid moiety), PNA (a PNA moiety), 펩타이드 (a peptide moiety), 다이설퍼이드 결합 (a disulfide bond) 또는 폴리에틸렌 글리콜 (a polyethylene glycol moiety)인 것을 특징으로 할 수 있다.
아울러, 본 발명에 있어서, 상기 제1가닥은 단일 가닥 영역에 상기 목적 핵산과 상보적인 서열을 추가로 함유하거나 상보적이지 않은 서열을 함유하는 것을 특징으로 할 수 있고, 상보적인 경우에 있어서, 본 발명에 따른 핵산 분자의 이중 가닥 영역, 즉 siRNA의 목적 핵산에 상보적인 영역과 연속적으로 위치할 수 있고, 멀리 떨어져 위치할 수도 있다. 마찬가지로, siRNA가 표적하는 sequence와 상기 단일가닥 영역의 ribozyme이나 DNAzyme이 표적하는 sequence는 연속적으로 위치할 수도 있고, 멀리 떨어져 위치할 수도 있다. 또한, 상기 제1가닥의 단일가닥 영역이 상기 siRNA의 목적유전자와 상보적인 서열을 갖는 경우에 있어서, 단일가닥 영역에 포함되는 서열이 안티센스 DNA 또는 안티센스 RNA이면 그 서열과 siRNA의 목적유전자의 서열이 약 70-80% 이상, 바람직하게는 약 80-90% 이상, 보다 더 바람직하게는 약 95-99% 이상 서로 상보적인 것을 특징으로 할 수 있고, 단일가닥 영역이 라이보자임 또는 DNAzyme이면 그 서열과 siRNA의 목적유전자의 서열이 약 50-60% 이상 서로 상보적인 것을 특징으로 할 수 있다.
아울러, 상기 단일 가닥 영역은 5 내지 100nt일 수 있다. 5nt 이하이면 유전자 발현 억제 효율의 증가 효과가 미비하며, 100nt이상인 경우 RNA 분자의 합성효율이 저하된다. 또한, 상기 단일가닥 영역은 바람직하게는 9 내지 100nt일 수 있으며, 또는 50nt이하의 길이를 갖는 것을 특징으로 할 수 있으며, 더욱 바람직하게는 10 내지 15nt의 길이를 갖는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 단일 가닥 영역을 구성하는 염기 중 적어도 하나 이상이 거대한(bulky) 염기 유사체(base analog)를 포함하는 것을 특징으로 할 수 있다. 페닐 그룹을 가지는 deoxyadenosine 유도체와 같은 거대한 염기 유사체가 확장 서열에 포함되어 있으면, 이 확장 서열과 상보적으로 결합하는 mRNA 가닥은 거대한 염기 유사체의 위치에서 cleavage가 일어나게 된다. 이러한 cleavage를 유도하는 거대한 염기 유사체라면 제한 없이 본 발명에 포함될 수 있다.
본 발명에서는 siRNA의 안티센스 가닥을 표적 mRNA 서열과 상보적으로 길게 늘인 핵산 구조체의 경우, 5'말단 부분은 RNAi 기작으로 작용하며 동시에 3'말단 부분은 안티센스 메커니즘으로 작용하거나 5'말단 siRNA 부분을 표적 mRNA로 유도하는 작용을 할 것으로 예측하였다. 이때, 안티센스 3'말단의 mRNA에 상보적인 서열이 DNA일 경우에는 RNase H 의존적 mRNA 절단을 유도할 수 있다. 또한, 안티센스 3'말단의 단일가닥 영역을 구성하는 염기 중 적어도 하나 이상이 거대한(bulky) 염기 유사체(base analog)를 포함하거나, 단일가닥 영역이 mRNA와 결합하여 벌지(bulge) 구조를 형성하는 경우에도 cleavage를 유도할 수 있을 것으로 예측하였다. 또한, 제1 가닥의 단일가닥 영역에 ribozyme이나 DNAzyme을 도입한 핵산 분자의 경우에는 synergistic cleavage를 유도할 수 있을 것으로 예측하였다.
19-21nt 길이의 안티센스 가닥 및 13-16nt 길이의 센스 가닥으로 구성된 siRNA 분자로서, 안티센스 가닥의 5' 방향의 말단이 블런트 말단(blunt end)인 siRNA 구조체는 siRNA의 센스 가닥에 의한 오프-타겟 효과의 발생이나 타 RNAi 기작을 저해함 없이 우수한 목적 유전자 발현 억제 효율을 제공하는 것으로(대한민국 공개특허 10-2009-0065880), 이러한 siRNA에 본 발명에 따른 구조를 적용시키는 경우 오프-타겟 효과를 최소화하면서 제1가닥의 단일가닥 영역에 포함되는 핵산올리고뉴클레오티드에 의한 상기와 같은 효과를 동시에 나타낼 수 있다. 본원에서, "오프-타겟 효과(Off-target effect)"란 본래 siRNA는 안티센스 가닥과 상보적인 서열을 갖는 mRNA의 분해를 유도하여 해당 mRNA의 유전자 발현을 억제하는 효과를 얻기 위하여 사용하는 것임에 불구하고, siRNA의 센스 가닥에 의해 타 mRNA의 분해가 발생하게 되는 경우 센스 가닥에 의해 발생하는 이러한 예상치 못한 타 mRNA의 분해 내지 해당 유전자의 발현 억제 효과 및 siRNA의 안티센스 가닥이 잘못된 타겟과 페어링하여 타 mRNA의 분해가 발생하는 안티센스 가닥에 의한 타 mRNA의 분해 내지 해당 유전자의 발현 억제효과를 모두 포함하는 것이다.
본 발명의 일 실시예에서는, 콜레스테롤 변형 및 PS 변형을 수행하여, 콜레스테롤의 결합이 lasiRNA의 세포 투과능을 높이는 것이 확인되었지만, 충분한 수의 PS가 도입되지 않는 경우 콜레스테롤만으로는 별도의 세포 전달체 없이 효과적인 표적 유전자 억제를 유도하기에 충분하지 않음을 확인하였다. 이때 PS 변형의 도입은 그 도입 개수에 비례하여 세포 투과능을 높이는 것으로 나타났는데, PS 변형이 너무 많아지는 경우에는 lasiRNA가 RNAi에 의한 유전자 억제를 유도하지 못하는 것으로 확인되었다. 따라서, 세포와 함께 incubation한 뒤 유전자 억제 효율의 비교를 통하여 최적화된 PS modification의 개수를 확립하였다. 즉, 본 발명에 따란 핵산 분자는 1 내지 48개, 바람직하게는 1 내지 31개, 더욱 바람직하게는 2 내지 17개, 더욱 바람직하게는 4 내지 17개 또는 12 내지 17개의 뉴클레오티드의 포스포페이트 백본이 포스포로티오에이트로 치환되어 있는 것을 특징으로 할 수 있다.
이때, 상기 핵산 분자 중 제1가닥에 포함되어 있는 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트로 치환되어 있는 것을 특징으로 할 수 있으며, 또한, 상기 제1가닥 중 목적 핵산과 상보적인 영역 이외의 영역의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트로 치환되어 있는 것을 특징으로 할 수 있다. 이때, 제1가닥에 포함되어 있는 1 내지 31개, 바람직하게는 1 내지 17개, 더욱 바람직하게는 2 내지 17개, 더욱 바람직하게는 4 내지 17개, 또는 12개 내지 17개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트로 치환되어 있는 것을 특징으로 할 수 있다. 아울러, 상기 핵산 분자 중 제2가닥에 포함되어 있는 1 내지 21개, 바람직하게는 1 내지 17개, 더욱 바람직하게는 2 내지 17개, 더욱 바람직하게는 4 내지 17개, 또는 12개 내지 17개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트로 치환되어 있는 것을 특징으로 할 수 있다.
이때, 본 발명의 다른 실시예에서는 PS 대신 도 10과 같은 PS2 (phosphorodithioate) 변형을 이용하여서도 PS보다는 감소된 유전자 억제 효능을 보이기는 하나, 종래 siRNA 구조에 비하여 향상된 유전자 억제 효율을 가져옴을 확인할 수 있었다. 이에 본 발명에 따른 핵산 분자는 하나 이상의 뉴클레오티드의 포스페이트 백본이 포스포로다이티오에이트로 치환되어 있는 것을 특징으로 할 수 있으며, 이때 바람직하게는 1 내지 48개, 바람직하게는 1 내지 31개, 더욱 바람직하게는 2 내지 17개, 더욱 바람직하게는 4 내지 17개 또는 12 내지 17개의 뉴클레오티드의 포스페이트 백본이 치환되어 있는 것을 특징으로 할 수 있으며, 이때 제1가닥의 1 내지 31개, 바람직하게는 1 내지 17개, 더욱 바람직하게는 2 내지 17개, 더욱 바람직하게는 4 내지 17개, 또는 12개 내지 17개의 뉴클레오티드의 포스페이트 백본이 포스포로다이티오에이트로 치환되어 있거나 제2가닥의 1 내지 17개, 더욱 바람직하게는 2 내지 17개, 더욱 바람직하게는 4 내지 17개, 또는 12개 내지 17개의 뉴클레오티드의 포스페이트 백본이 포스포로다이티오에이트로 치환되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 친유성 화합물은 소수성 변형을 가져오는 것으로서, 예시적으로 지질, 친유성 펩타이드 또는 친유성 단백질 등을 이용할 수 있다. 이때, 지질로는 이로서 제한되는 것은 아니나, 콜레스테롤, 토코페롤 및 스테아린산, 팔미트산 등과 같은 탄소수 10개 이상의 장쇄 지방산 등을 이용하는 것을 특징으로 할 수 잇다. 아울러, 이로 제한되는 것은 아니나, 상기 콜레스테롤 등의 친유성 화합물은 상기 핵산 분자의 제1가닥 또는 제2가닥의 5' 말단 또는 3'말단에 결합될 수 있다.
본 발명에 있어서, 상기 목적 핵산은 이로 한정되는 것은 아니나, mRNA (messenger RNA), microRNA, piRNA (piwi-interacting RNA), 코딩 DNA 서열 및 비코딩 DNA 서열 등 일 수 있다.
본 발명의 핵산 분자는 일반적으로 합성된 것일 수 있으나, 이에 국한되는 것은 아니다. 즉, 본 발명에 있어서, 상기 핵산 분자는 화학적 또는 효소학적으로 합성된 것일 수 있다. 본 발명의 siRNA 분자는 표준 재조합 기법에 의해 자연 발생적 유전자로부터 유도할 수 있으나, 이 경우 발현을 변화시킬 목적 유전자의 mRNA의 적어도 일부분과 뉴클레오티드 서열 수준에서 실질적으로 상보적인 것을 특징으로 할 수 있다.
이에 본 발명에 따른 핵산 분자는 화학적 변형을 포함하는 것을 특징으로 할 수 있다. 상기 화학적 변형은 상기 핵산 분자에 포함되는 적어도 1개의 뉴클레오티드의 리보스의 2' 위치의 히드록실기가 수소원자, 불소원자, -O-알킬기, -O-아실기, 및 아미노기 중 어느 하나로 치환되는 것을 특징으로 할 수 있으며, 이에 제한되지 않고 핵산 분자의 전달능을 높이기 위해서라면 -Br, -Cl, -R, -R'OR, -SH, -SR, -N3 및 -CN (R= alkyl, aryl, alkylene) 중 어느 하나로도 치환될 수 있다. 또한, 적어도 1개의 뉴클레오티드의 포스페이트 백본이 alkylphosphonate form, phosphoroamidate form 및 boranophosphate form 중 어느 하나로 치환될 수 있다. 또한, 상기 화학적 변형은 상기 핵산 분자에 포함되는 적어도 1종의 뉴클레오티드가 LNA (locked nucleic acid), UNA(unlocked nucleic acid), Morpholino, PNA (peptide nucleic acid) 중 어느 하나로 치환된 것임을 특징으로 할 수 있으며, 상기 화학적 변형은 상기 핵산 분자가 지질, 세포투과성 펩타이드(cell penetrating peptide) 및 세포 표적 리간드로 구성된 군에서 선택되는 하나 이상과 결합되는 것을 특징으로 할 수 있다.
아울러, 본 발명에 따른 핵산 분자는, 기존에 올리고뉴클레오티드를 세포 내로 효과적으로 전달하는 것으로 알려진, liposome, cationic polymer, antibody, aptamer, nanoparticles 등의 다양한 전달체 및 전달 방법과 함께 사용되어 효율적으로 in vitroin vivo 전달을 위하여 사용될 수 있다.
한편, 본 발명의 일 실시예에서는 별도의 전달체 없이도 PBS와 같은 용액에 녹여서 주사하는 것만으로 in vivo에서 표적 부위에 90% 이상의 높은 유전자 억제 효율을 나타내어, 본 발명에 따른 핵산 분자가 별도의 제형화 과정 없이도 주사제 형태의 약물로 바로 개발이 가능함을 확인할 수 있었다.
본 발명의 실시예는 본 발명에 따른 RNAi를 유도하는 핵산 분자가 효율적으로 목적 유전자 발현 억제 효과를 가져옴을 제시한 바, 본 발명은 다른 관점에서 상기 RNAi를 유도하는 핵산 분자를 함유하는 유전자 발현 억제용 조성물에 관한 것이다. 이때, 상기 핵산 분자는 상기 세포전달체가 결합된 핵산 복합체의 형태로 포함될 수 있다.
본 발명의 실시예에서는, 목적유전자로서 CTGF를 타겟으로 하는 siRNA에 대하여 적용시켜 그 억제효율이 우수하고 투과능이 우수함을 확인하였으나, 본 발명에 따른 핵산 분자 구조는 기타 다른 목적 유전자를 타겟으로 하는 핵산 분자를 제공한 경우에도 동일한 결과를 얻을 수 있다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 사항이라 할 것이다.
한편, 상기 유전자 발현 억제용 조성물은 유전자 발현 억제용 키트(kit)의 형태로 제공될 수 있다. 유전자 발현 억제용 키트는 병, 통(tub), 작은 봉지(sachet), 봉투(envelope), 튜브, 앰플(ampoule) 등과 같은 형태를 취할 수 있으며 이들은 부분적으로 또는 전체적으로 플라스틱, 유리, 종이, 호일, 왁스 등으로부터 형성될 수 있다. 용기는, 처음에는 용기의 일부이거나 또는 기계적, 접착성, 또는 기타 수단에 의해 용기에 부착될 수 있는, 완전히 또는 부분적으로 분리가 가능한 마개를 장착할 수 있다. 용기는 또한 주사바늘에 의해 내용물에 접근할 수 있는, 스토퍼가 장착될 수 있다. 상기 키트는 외부 패키지를 포함할 수 있으며, 외부 패키지는 구성 요소들의 사용에 관한 사용설명서를 포함할 수 있다.
본 발명은 또 다른 관점에서, 상기 RNAi를 유도하는 핵산 분자를 이용하여 세포 내 목적 유전자의 발현을 억제시키는 방법에 관한 것이다. 즉, 본 발명은 상기 RNAi를 유도하는 핵산 분자를 세포 내 도입시키는 단계를 포함하는 세포 내 타겟 유전자의 발현 억제 방법을 제공할 수 있다.
본 발명에 있어서, 상기 RNAi를 유도하는 핵산 분자의 제1가닥은 목적 유전자의 mRNA 서열에 상보적인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 목적 유전자는 내인성(endogeneous) 유전자이거나 삽입유전자(transgene)일 수 있다.
이때, 본 발명에서 따른 핵산 분자는 반드시 합성 siRNA로 제한되지 않고, 세포내에서 발현 벡터 등을 이용하여 발현되는 siRNA나 shRNA에도 적용이 가능한 장점이 있다. 즉, 본 발명에 따른 핵산 분자는 세포 내에서 발현시킴으로써 목적 유전자의 발현을 억제시킬 수 있다. 따라서, 본 발명은 다른 관점에서, 상기 RNAi를 유도하는 핵산 분자를 세포 내에서 발현시키는 단계를 포함하는 유전자 발현 억제 방법에 관한 것이다.
한편, 본 발명에 따른 핵산 분자는 결합 조직 성장 인자 (Connective tisssue frowth factor, CTGF)를 코딩하는 mRNA를 목적 핵산으로 할 수 있다. 본 발명의 일 실시예에서는 본 발명에 따른 구조의 핵산 분자를 도입함으로써 CTGF 발현을 억제함을 확인하였다. 이에 본 발명은 다른 관점에서, 상기 핵산 분자를 함유하는 CTGF 관련 질병 또는 장애의 치료 또는 예방용 약학 조성물에 관한 것이다.
뿐만 아니라, 국소 질환에 대한 치료제 이외에도 본 발명에 따른 핵산 분자는 기존에 알려진 다양한 세포 특이적인 antibody, aptamer, ligand등을 함께 사용하여, 원하는 부위에서만 유전자 억제 효과를 나타내는 유전자 조절 치료제의 개발이 가능 할 것으로 기대된다.
본 발명에 따른 약학 조성물은 상기 RNAi를 유도하는 핵산 분자를 단독으로 포함하거나 하나 이상의 약학적으로 허용되는 담체, 부형제 또는 희석제를 포함하여 약학 조성물로 제공될 수 있으며, 상기 핵산 분자는 질환 및 이의 중증정도, 환자의 연령, 체중, 건강상태, 성별, 투여 경로 및 치료 기간 등에 따라 적절한 약학적으로 유효한 양으로 약학 조성물에 포함될 수 있다.
상기에서 "약학적으로 허용되는"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리톤, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.
상기 약학 조성물은 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다. 또한 본 발명의 약학 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 멸균 주사 용액 등의 형태일 수 있다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: CTGF를 타겟으로 한 RNAi를 유도하는 이중 가닥의 핵산 분자의 스크리닝
효과적인 self delivery 구조를 위한 다양한 chemical modification의 도입에 앞서, CTGF를 표적으로 하는 고 효율의 RNAi를 유도하는 이중 가닥의 핵산 분자를 확보하기 위하여, CTGF에 대한 50종의 표적 서열을 디자인 한 뒤 screening을 진행 하였다.
lasiRNA와 기존 RNAi 유도 구조체들과의 CTGF 유전자 억제 효율을 비교 하기 위하여, 표 1 내지 3과 같이, 각 염기 서열을 표적으로 하는 siRNA, asiRNA, lasiRNA 구조체들을 합성하였다. 표 1 내지 표 3은 CTGF에 대한 24종의 서열에 대한 siRNA, asiRNA, lasiRNA 구조체들의 염기서열 정보이다 (대문자: RNA, 소문자: DNA). 각 염기 서열 및 구조들의 CTGF mRNA발현 억제 효과를 test하기 위하여, 각 구조들을 HaCaT (ATCC) 에 10nM로 transfection 한 뒤 Real-time PCR로 CTGF mRNA 발현 정도를 측정하였다.
표 1
No siRNA Name SEQ Sequence (5’→3’)
No1 siRNA 12 sense GCGAGGAGUGGGUGUGUGAtt
2 antisense UCCUCGCAGCAUUUCCCGGtt
asiRNA 3 sense AGGAGUGGGUGUGUGA
4 antisense UCCUCGCAGCAUUUCCCGGtt
lasiRNA 5 sense AGGAGUGGGUGUGUGA
6 antisense UCACACACCCACUCCUCGCAGCAUUUCCCGG
No2 siRNA 7 sense AGACCUGUGGGAUGGGCAUtt
8 antisense CAGGUCUUGGAACAGGCGCtt
asiRNA 9 sense CCUGUGGGAUGGGCAU
10 antisense CAGGUCUUGGAACAGGCGCtt
lasiRNA 11 sense CCUGUGGGAUGGGCAU
12 antisense AUGCCCAUCCCACAGGUCUUGGAACAGGCGC
No3 siRNA 13 sense ACAGGAAGAUGUACGGAGAtt
14 antisense UUCCUGUAGUACAGCGAUUtt
asiRNA 15 sense GGAAGAUGUACGGAGA
16 antisense UUCCUGUAGUACAGCGAUUtt
lasiRNA 17 sense GGAAGAUGUACGGAGA
18 antisense UCUCCGUACAUCUUCCUGUAGUACAGCGAUU
No4 siRNA 19 sense GCACCAGCAUGAAGACAUAtt
20 antisense UAUGUCUUCAUGCUGGUGCtt
asiRNA 21 sense CCAGCAUGAAGACAUA
22 antisense UAUGUCUUCAUGCUGGUGCtt
lasiRNA 23 sense CCAGCAUGAAGACAUA
24 antisense UAUGUCUUCAUGCUGGUCCAGCCAGAAAGCU
No5 siRNA 25 sense GAAGACAUACCGAGCUAAAtt
26 antisense UUUAGCUCGGUAUGUCUUCtt
asiRNA 27 sense GACAUACCGAGCUAAA
28 antisense UUUAGCUCGGUAUGUCUUCtt
lasiRNA 29 sense GACAUACCGAGCUAAA
30 antisense UUUAGCUCGGUAUGUCUUCAUGCUGGUGCAG
No6 siRNA 31 sense GCUAAAUUCUGUGGAGUAUtt
32 antisense AUACUCCACAGAAUUUAGCtt
asiRNA 33 sense AAAUUCUGUGGAGUAU
34 antisense AUACUCCACAGAAUUUAGCtt
lasiRNA 35 sense AAAUUCUGUGGAGUAU
36 antisense AUACUCCACAGAAUUUAGCUCGGUAUGUCUU
No7 siRNA 37 sense GCGAGGUCAUGAAGAAGAAtt
38 antisense UUGUUCUUCAUGACCUCGCtt
asiRNA 39 sense AGGUCAUGAAGAAGAA
40 antisense UUGUUCUUCAUGACCUCGCtt
lasiRNA 41 sense AGGUCAUGAAGAAGAA
42 antisense UUGUUCUUCAUGACCUCGCCGUCAGGGCACU
No8 siRNA 43 sense UGGAAGAGAACAUUAAGAAtt
44 antisense UUCUUAAUGUUCUCUUCCAtt
asiRNA 45 sense AAGAGAACAUUAAGAA
46 antisense UUCUUAAUGUUCUCUUCCAtt
lasiRNA 47 sense AAGAGAACAUUAAGAA
48 antisense UUCUUAAUGUUCUCUUCCAGGUCAGCUUCGC
(대문자: RNA, 소문자: DNA)
표 2
No siRNA NAME Sequence (5’→3’)
No9 siRNA (49)sense CGGCUUACCGACUGGAAGAtt
(50)antisense UCUUCCAGUCGGUAAGCCGtt
asiRNA (51)sense CUUACCGACUGGAAGA
(52)antisense UCUUCCAGUCGGUAAGCCGtt
lasiRNA (53)sense CUUACCGACUGGAAGA
(54)antisense UCUUCCAGUCGGUAAGCCGCGAGGGCAGGCC
No10 siRNA (55)sense GCAUGAAGCCAGAGAGUGAtt
(56)antisense UCACUCUCUGGCUUCAUGCtt
asiRNA (57)sense UGAAGCCAGAGAGUGA
(58)antisense UCACUCUCUGGCUUCAUGCtt
lasiRNA (59)sense UGAAGCCAGAGAGUGA
(60)antisense UCACUCUCUGGCUUCAUGCCCAUGUCUCCGU
No11 siRNA (61)sense CACCAUAGGUAGAAUGUAAtt
(62)antisense UUACAUUCUACCUAUGGUGtt
asiRNA (63)sense CAUAGGUAGAAUGUAA
(64)antisense UUACAUUCUACCUAUGGUGtt
lasiRNA (65)sense CAUAGGUAGAAUGUAA
(66)antisense UUACAUUCUACCUAUGGUGUUCAGAAAUUGA
No12 siRNA (67)sense CCUGCAGGCUAGAGAAGCAtt
(68)antisense UGCUUCUCUAGCCUGCAGGtt
asiRNA (69)sense GCAGGCUAGAGAAGCA
(70)antisense UGCUUCUCUAGCCUGCAGGtt
lasiRNA (71)sense GCAGGCUAGAGAAGCA
(72)antisense UGCUUCUCUAGCCUGCAGGAGGCGUUGUCAU
No13 siRNA (73)sense CCAGAGAGUGAGAGACAUUtt
(74)antisense AAUGUCUCUCACUCUCUGGtt
asiRNA (75)sense GAGAGUGAGAGACAUU
(76)antisense AAUGUCUCUCACUCUCUGGtt
lasiRNA (77)sense GAGAGUGAGAGACAUU
(78)antisense AAUGUCUCUCACUCUCUGGCUUCAUGCCAUG
No14 siRNA (79)sense GCGAAGCUGACCUGGAAGAtt
(80)antisense UCUUCCAGGUCAGCUUCGCtt
asiRNA (81)sense AAGCUGACCUGGAAG2
(82)antisense UCUUCCAGGUCAGCUUCGCtt
lasiRNA (83)sense AAGCUGACCUGGAAGA
(84)antisense UCUUCCAGGUCAGCUUCGCAAGGCCUGACCA
NO15 siRNA (85)sense CCGGAGACAAUGACAUCUUtt
(86)antisense AAGAUGUCAUUGUCUCCGGtt
asiRNA (87)sense GAGACAAUGACAUCUU
(88)antisense AAGAUGUCAUUGUCUCCGGtt
lasiRNA (89)sense GAGACAAUGACAUCUU
(90)antisense AAGAUGUCAUUGUCUCCGGGACAGUUGUAAU
NO16 siRNA (91)sense UCUUUGAAUCGCUGUACUAt
(92)antisense UAGUACAGCGAUUCAAAGAtt
asiRNA (93)sense UUGAAUCGCUGUACUA
(94)antisense UAGUACAGCGAUUCAAAGAtt
lasiRNA (95)sense UUGAAUCGCUGUACUA
(96)antisense UAGUACAGCGAUUCAAAGAUGUCAUUGUCUC
(대문자: RNA, 소문자: DNA)
표 3
No siRNA NAME SEQ ID No Sequence(5’→3’)
No17 siRNA 97 sense UUGCGAAGCUGACCUGGAAtt
98 antisense UUCCAGGUCAGCUUCGCAAtt
asiRNA 99 sense CGAAGCUGACCUGGAA
100 antisense UUCCAGGUCAGCUUCGCAAtt
lasiRNA 101 sense CGAAGCUGACCUGGAA
102 antisense UUCCAGGUCAGCUUCGCAAGGCCUGACCAUG
No18 siRNA 103 sense CAACUAUGAUUAGAGCCAAtt
104 antisense UUGGCUCUAAUCAUAGUUGtt
asiRNA 105 sense CUAUGAUUAGAGCCAA
106 antisense UUGGCUCUAAUCAUAGUUGtt
lasiRNA 107 sense CUAUGAUUAGAGCCAA
108 antisense UUGGCUCUAAUCAUAGUUGGGUCUGGGCCAA
No19 siRNA 109 sense GUACCAGUGCACGUGCCUGtt
110 antisense CAGGCACGUGCACUGGUACtt
asiRNA 111 sense CCAGUGCACGUGCCUG
112 antisense CAGGCACGUGCACUGGUACtt
lasiRNA 113 sense CCAGUGCACGUGCCUG
114 antisense CAGGCACGUGCACUGGUACUUGCAGCUGCUC
No20 siRNA 115 sense AGUGCAUCCGUACUCCCAAtt
116 antisense UUGGGAGUACGGAUGCACUtt
asiRNA 117 sense GCAUCCGUACUCCCAA
118 antisense UUGGGAGUACGGAUGCACUtt
lasiRNA 119 sense GCAUCCGUACUCCCAA
120 antisense UUGGGAGUACGGAUGCACUUUUUGCCCUUCU
No21 siRNA 121 sense CAUGAUGUUCAUCAAGACCtt
122 antisense GGUCUUGAUGAACAUCAUGtt
asiRNA 123 sense GAUGUUCAUCAAGACC
124 antisense GGUCUUGAUGAACAUCAUGtt
lasiRNA 125 sense GAUGUUCAUCAAGACC
126 antisense GGUCUUGAUGAACAUCAUGUUCUUCUUCAUG
No22 siRNA 127 sense CCAUGACCGCCGCCAGUAUtt
128 antisense AUACUGGCGGCGGUCAUGGtt
asiRNA 129 sense UGACCGCCGCCAGUAU
130 antisense AUACUGGCGGCGGUCAUGGtt
lasiRNA 131 sense UGACCGCCGCCAGUAU
132 antisense AUACUGGCGGCGGUCAUGGUUGGCACUGCGG
No23 siRNA 133 sense GAACAUUAAGAAGGGCAAAtt
134 antisense UUUGCCCUUCUUAAUGUUCtt
asiRNA 135 sense CAUUAAGAAGGGCAAA
136 antisense UUUGCCCUUCUUAAUGUUCtt
lasiRNA 137 sense CAUUAAGAAGGGCAAA
138 antisense UUUGCCCUUCUUAAUGUUCUCUUCCAGGUCA
No24 siRNA 139 sense GGAAGACACGUUUGGCCCAtt
140 antisense UGGGCCAAACGUGUCUUCCtt
asiRNA 141 sense AGACACGUUUGGCCCA
142 antisense UGGGCCAAACGUGUCUUCCtt
lasiRNA 143 sense AGACACGUUUGGCCCA
144 antisense UGGGCCAAACGUGUCUUCCAGUCGGUAAGCC
(대문자: RNA, 소문자: DNA)
즉, HaCat 세포를 100mm petri dish에 10% fetal bovine serum (Gibco), 100μg/ml penicillin/streptomycin을 첨가한 Dulbecco's modified Eagle's medium (Gibco)에서 배양하였다. Hacat의 경우 transfection하기 직전에 12-well plate에 8X104개의 세포를 seeding 하였다. 한편, 상기 siRNA, asiRNA, lasiRNA의 경우 1X siRNA duplex buffer(바이오세상)에 알맞은 농도로 희석하여 90℃에서 2분, 37℃에서 1시간 incubation하였다. Annealing된 siRNA들은 10% polyacrylamide gel에 전기영동 한 후, EtBr에서 5분 staining하여 UV transiluminator를 통해 밴드를 확인하였다. 이들은 Lipofectamine 2000(Invitrogen)에서 제공하는 manual에 기초하여 siRNA를 transfection한 뒤 24시간 후에 mRNA level을 측정하였다.
이때, Transfection 후 Isol-RNA lysis reagent (5PRIME)를 사용하여 total RNA를 추출하였고, 그 중 500ng의 RNA를 cDNA합성에 사용하였다. cDNA는 High-capacity cDNA reverse transcription kit(Applied Biosystems)을 이용하여 제공된 프로토콜에 따라 합성되었다. 합성된 cDNA는 dilution을 통해 농도를 낮춘 후, step one real-time PCR system (Applied Biosystems)을 이용하여 제공된 프로토콜에 따라 정량적인 real-time PCR에 이용하였다. 표적유전자는 유전자에 특이적인 primer와 함께 power SYBR green PCR master Mix(Applied Biosystems)를 이용하여 확인하였다. 실험에 사용된 primer 염기서열은 다음과 같다.
GAPDH-forward 5’-GAG TCA ACG GAT TTG GTC GT-3’(서열번호 145)
GAPDH-reverse 5’-GAC AAG CTT CCC GTT CTC AG-3’(서열번호 146)
CTGF-forward 5’-CAA GGG CCT CTT CTG TGA CT-3’(서열번호 147)
CTGF-reverse 5’-ACG TGC ACT GGT ACT TGC AG-3’(서열번호 148)
24개의 염기 서열에 대한 screening결과, 도 1에 나타난 바와 같이, 총 24개의 염기 서열 중 14개의 서열에서 lasiRNA가 siRNA에 비하여 증가된 activity (lasiRNA가 siRNA 대비 20%이상 증가된 유전자 억제 효율을 나타내는 경우)를 갖는 것으로 확인 되었으며, 5종의 서열에서는 siRNA가 lasiRNA에 비하여 더 높은 유전자 억제 효율을 보이는 것으로 나타나, lasiRNA가 기존의 siRNA에 비하여 전반적으로 더 높은 유전자 발현 억제 효율을 나타내는 경향성을 확인 할 수 있었다.
특히, 90% 이상의 유전자 억제 효율을 보이는 siRNA와 lasiRNA에 대한 IC50 측정 결과, 9번과 16번 염기서열을 표적으로 하는 lasiRNA가 가장 낮은 IC50를 갖는 것으로 확인 되었으나, 이중 modification과 self delivery 실험을 위한 최종 후보군으로 9번 염기 서열을 선정하였으며, 이는 하기 표 4과 같다.
표 4 No. 9의 RNAi 유도 이중 가닥 핵산 분자
No siRNA NAME Sequence(5’→3’) 서열목록
No9 siRNA sense CGGCUUACCGACUGGAAGAtt 149
antisense UCUUCCAGUCGGUAAGCCGtt 150
asiRNA sense CUUACCGACUGGAAGA 151
antisense UCUUCCAGUCGGUAAGCCGtt 152
lasiRNA sense CUUACCGACUGGAAGA 153
antisense UCUUCCAGUCGGUAAGCCGCGAGGGCAGGCC 154
(대문자: RNA, 소문자: DNA)
실시예 2: 본 발명에 따른 핵산 분자의 제조 및 세포 내 uptake 수율 측정
2-1: 콜레스테롤 변형에 따른 영향
먼저, 콜레스테롤 modification이 lasiRNA의 delivery에 미치는 영향을 알아보기 위하여, lasiRNA sense strand, 즉 제2가닥의 5' 말단을 cy3로 표지한 다음 콜레스테롤 유무에 따른 uptake 차이를 형광 현미경으로 확인하였다. 즉, HeLa cells에 cy3로 표지 된 lasiRNA 또는 chol-lasiRNA 구조체들을 1uM로 incubation 한 뒤 3시간 후에 형광 현미경으로 관찰 하여 세포 내에 전달 된 정도를 비교 하였다
먼저, HeLa 세포 (ATCC)를 100mm petri dish에 10% fetal bovine serum (Gibco), 100μg/ml penicillin/streptomycin을 첨가한 Dulbecco's modified Eagle's medium (Gibco)에서 배양하였다.
Cholesterol modification시킨 lasiRNA는 각각의 single strand Accell siRNA delivery media (Thermo scientific)에 알맞은 농도로 희석하여 사용하며, Cholesterol이 적용된 single strand는 annealing전에 90℃에서 20~30초간 incubation후 사용하였다. Sense strand와 antisense strand를 혼합한 후 90℃에서 30초, 37℃에서 1시간 incubation하고, Annealing된 siRNA들은 10% polyacrylamide gel에 전기영동 한 후, EtBr에서 5분 staining 후 UV transiluminator를 통해 밴드를 확인하였다.
Incubation test를 위해서 lasiRNA를 처리하기 24시간 전에 Coverglass-bottom dish (SPL)에 2X105개의 의 HeLa cell을 seeding하였다. 준비 된 dish의 culture media 제거 후 2 ml of 1X DPBS 로 두 번 washing해주었다. 37℃ water-bath 에서 미리 데워놓은 Accell siRNA delivery media (Thermo scientific) 100μL에 희석해서 준비해 두었던 siRNA를 넣고 배양하였다. 3시간 후 Accell media 제거하고 1X DPBS 로 두 번 washing 후, 1ug/ml of Hoechst 33343 (Sigma) in Opti-MEM(gibco)으로 37℃에서 10분간 incubation하여 핵을 염색하였다. Hoechst 제거 후 1X DPBS(Gibco)로 두 번 washing 후 Opti-MEM media 넣고 현미경(Microscope - Olympus IX81, software - MetaMorph)으로 세포의 형광을 관찰하였다.
그 결과, 도 2에 나타나 바와 같이, 콜레스테롤 변형에 의한 lasiRNA의 세포 내로의 흡수 효율을 확인한 결과, Cholesterol이 없는 경우에는 세포 내에서 cy3 형광이 거의 관찰 되지 않았으나, lasiRNA에 cholesterol을 conjugation한 lasiRNA-chol의 경우에는 매우 강한 형광을 나타내는 것을 알 수 있었다.
이는 lasiRNA 구조가 콜레스테롤 변형을 통하여 intracellular delivery가 증가 하는 것을 나타낸다.
2-2: PS modification에 따른 영향
추가로, 포스포로티오에이트를 직접 siRNA에 도입하는 변형을 수행하는 경우, lasiRNA의 uptake 효율을 증가시켜 주는지 확인하기 위하여, 콜레스테롤을 결합시킨 chol-lasiRNA의 안티센스 가닥, 즉 제1가닥의 3' overhang에 PS modification을 도입하고 PS modification에 따른 chol-lasiRNA의 uptake효율 변화를 test하였다. HeLa cells에 cy3로 표지 된 chol-lasiRNA-PS(N) 구조체들을 1uM로 incubation 한 뒤 3시간 후에 형광 현미경으로 관찰 하여 세포내에 전달 된 정도를 비교 하였다. 구조체들 간의 세포 투과능의 정확한 비교를 위하여 chol-lasiRNA-PS0이 최소한의 형광을 보이는 조건을 세팅 후 다른 구조체 들의 형광 세기를 비교하였다.
이를 위하여 도 3과 같이, Chol-lasiRNA의 antisense 3' 말단을 시작으로, 0, 4, 7, 12, 17의 PS modification을 도입 한 뒤 HeLa cell과 함께 incubation 또는 transfection하여 실시예 2-1과 같이 형광현미경에서 PS modification의 개수에 따른 delivery 효율의 차이를 관찰 하였다. 도 3에서, 밑줄 및 적색은 OMe modification을, *는 PS modification을, Chol은 콜레스테롤을, Cy3은 Cy3 형광물질를 나타낸다.
그 결과, 도 4에 나타난 바와 같이, PS modifcation이 없는 chol-lasiRNA-PS0의 경우 HeLa cell에서 형광이 거의 관찰 되지 않았으며, 다른 샘플들에 비하여 낮은 uptake효율을 보이는 것으로 확인 되었다.
아울러, lasiRNA의 Antisense가닥, 즉 제1가닥에 PS modification이 증가함에 따라 점점 밝은 형광을 보이는 것으로 확인 되었으며, 전체 sample들 중 PS가 각 12, 17개 modification 된 chol-lasiRNA-PS12, chol-lasiRNA-PS17이 가장 밝은 형광을 나타내는 것으로 확인 되어, chol-lasiRNA에 PS modification개수를 증가시킴에 따라 internalized 된 lasiRNA의 양이 증가하는 것으로 확인 되었다.
실시예 3: CTGF 발현 억제효율 측정
실시예 2에서 Cy3-labeld lasiRNA를 이용한 internalization 실험 결과, lasiRNA 구조에 cholesterol과 PS modification을 직접 도입하여 delivery vehicle이나 추가적인 시약 없이도 lasiRNA의 효과적인 세포 내 전달이 가능함이 확인 되었다. 하지만 siRNA에 다양한 chemical modification을 도입하는 경우, siRNA의 활성을 다소 감소 시키거나 modification에 따라 siRNA의 활성이 급격히 감소하는 것으로 알려져 있는바, 각 modification이 lasiRNA의 활성에 미치는 영향을 알아보기 위하여, 다양한 구조의 lasiRNA를 HeLa cell에 transfection 한 뒤 CTGF mRNA의 expression 변화를 측정하여 각 modification이 lasiRNA의 유전자 발현 억제에 미치는 영향을 측정하였다.
PS modification이 lasiRNA의 유전자 억제 효율에 미치는 영향을 확인 하기 위하여, 다양한 구조의 PS modified lasiRNA [chol-lasiRNA-PS(N)]을 HeLa cell에 transfection 한 후 CTGF 유전자의 발현 억제 효율을 측정 하였다. 즉, HeLa cells에 chol-lasiRNA-PS(N) 구조체들을 10nM 로 transfection 한 뒤 48시간 후에 real-time PCR로 CTGF mRNA 의 발현 정도를 측정 하였다.
그 다음, 실험 수행 24시간 전에 24 well-plate에 2.5X104개의 HeLa 세포를 seeding한 뒤 프로토콜에 따라 lipofectamine 2000을 이용하여 각 lasiRNA들을 transfection하였다. 이 후 48시간 동안 5% CO2 incubator에서 배양한 뒤 실시예 1의 방법에 따라 mRNA level의 발현을 측정하였다.
그 결과, 도 5에 나타난 바와 같이, antisense 가닥에 PS modification이 증가 함에 따라 유전자 억제 효율이 감소하는 경향을 보였으며, antisense에 12개 이상의 PS modification을 도입한 경우 약간의 silencing activity의 감소가 관찰 되었다. antisense에 17개의 modification을 도입한 chol-lasiRNA-PS17의 경우 유전자 억제 효율이 급격히 감소하여, CTGF에 대한 발현 억제 효과를 거의 나타내지 못하는 것으로 확인 되어 antisense에 PS는 최대 17개 이하로 사용하는 것이 바람직하며 antisense strand에 그 이상의 PS modification은 self-delivery를 위한 modification으로는 적당하지 않음을 확인 할 수 있었다. 도 5에서, 각 그래프는 3회 반복 실험의 평균과 SD를 나타낸다.
추가로, PS modification의 증가는 chol-lasiRNA의 자가 세포 전달 효율을 증가시켜주지만, 동시에 그 정도에 따라 lasiRNA의 silencing activity를 감소시키는 문제점이 있다. Vehicle 없이 최적의 silencing을 유도하는 modification 구조를 확립하기 위하여, 다양한 개수의 PS modification을 갖는 chol-lasiRNA-PS(N) 구조들을 HeLa와 함께 incubation 한 뒤 CTGF mRNA level을 측정하여 유전자 억제 효율을 비교 하였다. 이때, 0.1 μM, 0.3 μM, 및 1 μM의 농도로 각 lasiRNA들을 처리하였으며, MyD88을 표적으로 하는 chol-lasiRNA-PS7 (도 6, 적색: OMe modification, *:PS modification, Chol: Cholesterol)를 대조군으로 함께 사용하였다. 즉, HeLa cells에 CTGF 또는 MyD88을 표적으로 하는 chol-lasiRNA-PS(N) 구조체들을 함께 incubation 한 뒤 48시간 후에 real-time PCR로 CTGF mRNA 의 발현 정도를 측정 하였다.
그 결과, 도 7에 나타난 바와 같이, chol-lasiRNA-PS4 의 경우에는 가장 높은 농도인 1uM 에서도 약 55% 정도의 유전자 억제 효율 밖에 나타내지 못하는 것으로 나타났으며 chol-lasiRNA-PS7, chol-lasiRNA-PS12의 경우 1uM에서 CTGF의 발현을 약 95% 이상 억제하는 것을 확인 할 수 있었다. 좀더 정확한 유전자 억제 효율 비교를 위해, 더 낮은 농도에서 각 구조체 들을 incubation 한 뒤 CTGF mRNA level을 측정 한 결과에서는, PS12가 낮은 농도에서도 가장 효율적으로 CTGF 유전자의 발현을 억제 하는 것으로 나타났다. chol-lasiRNA-PS17은 transfection 한 경우와 마찬가지로 높은 농도(1uM)에서 incubation 한 경우에서도 50% 정도의 유전자 발현 억제 효과 밖에 갖지 못하는 것으로 확인 되어 너무 많은 수의 PS modification을 도입하는 것보다는 delivery의 증가와 silencing activity의 감소에 따른 적당한 PS modification 개수의 최적화가 필요함을 확인 할 수 있었다. 또한 MyD88을 표적으로 하는 chol-lasiRNA-PS7의 경우에는 CTGF에 대한 유전자 억제 효율이 전혀 나타나지 않아, cp-lasiRNA 구조체들에 의한 유전자 발현 억제가 염기 서열 특이적으로 일어남을 확인 할 수 있었다.
실시예 4: 타 친유성 화합물 변형에 따른 세포 내 untake 수율 측정
콜레스테롤 이외에 다른 친유성 화합물 (lipophilic modification) 변형 (즉, hydrophobic modification)을 사용하는 경우의 영향을 조사하기 위하여, 다음의 서열로 서바이빈을 목적유전자로 한 본 발명에 따른 cp-lasiRNA (cell penetrating lasiRNA)를 제조하였다. 이때, cp-lasiRNA-1은 콜레스테롤이 결합된 것이고, cp-lasiRNA-2는 콜레스테롤 대신 해당 위치에 토코페놀을 결합한 것이고, cp-lasiRNA-3은 콜레스테롤 대신 센스가닥의 5' 위치에 스테아린산을 결합한 것이다.
<cp-lasiRNA (survivin) 31mer>
cp-lasiRNA (survivin) Antisense 31nt : 5’
UGAAAAUGUUGAUCUCCUUUCCUAAGA*C*A*T*T 3’ (서열번호 169)
cp-lasiRNA (survivin) Sense : 5’ GAGAUCAACAUUUU*C*A*cholesterol. 3’ (서열번호 170)
밑줄: OMe 변형, *: PS (phosphorothioate bond)
A549 세포주 (ATCC)에 상기 cp-lasiRNA-1, cp-lasiRNA-2, cp-lasiRNA-3을 각각 300mM로 실시예 2와 같이 incubation 한후, 24시간 후에 real-time PCR로 Survivin mRNA의 발현정도를 측정하였다. 각 2회 반복 실험의 평균과 SD를 도 8에 나타내었다.
Transfection 후 Isol-RNA lysis reagent (5PRIME)를 사용하여 total RNA를 추출하였고, 그 중 500ng의 RNA를 cDNA합성에 사용하였다. cDNA는 High-capacity cDNA reverse transcription kit(Applied Biosystems)을 이용하여 제공된 프로토콜에 따라 합성되었다. 합성된 cDNA는 dilution을 통해 농도를 낮춘 후, step one real-time PCR system (Applied Biosystems)을 이용하여 제공된 프로토콜에 따라 정량적인 real-time PCR에 이용하였다. 표적유전자는 유전자에 특이적인 primer와 함께 power SYBR green PCR master Mix(Applied Biosystems)를 이용하여 확인하였다. 실험에 사용된 primer 염기서열은 다음과 같다.
Survivin
Forward 5'-GCA CCA CTT CCA GGG TTT AT-3' (서열번호 172)
Reverse 5'-CTC TGG TGC CAC TTT CAA GA-3' (서열번호 173)
그 결과, 도 8에 나타난 바와 같이, 콜레스테롤을 다른 소수성 변형을 유도한 경우에도 높은 효율로 표적 유전자를 억제할 수 있음을 확인하였다. 또한, 스테아릴의 경우 센스 가닥의 5' 말단에 결합시켰음에도 높은 유전자 억제효율을 나타내어 본 발명에 따른 핵산 분자는 다양한 위치에 소수성 변형, 즉 친유성 화합물을 결합시킨 경우에도 목적하는 효과를 얻을 수 있음을 확인하였다.
실시예 5: 안티센스 가닥 길이에 따른 표적 유전자 억제 효율 조사
본 발명에 따른 핵산 분자의 제1가닥의 길이에 따른 표적 유전자 억제 효율을 조사하기 위하여, 동일한 16nt의 제2가닥 (센스가닥)에 31nt 안티센스 또는 21 nt의 안티센스를 조합하여 cp-lasiRNA를 만든 후 A549 세포주에 처리하였다.
<cp-lasiRNA (survivin) 31mer>
cp-lasiRNA (survivin) Antisense 31nt :
5’ UGAAAAUGUUGAUCUCCUUUCCUAAGA*C*A*T*T 3’ (서열번호 169)
cp-lasiRNA (survivin) Sense : 5’ GAGAUCAACAUUUU*C*A*cholesterol. 3’ (서열번호 170)
<cp-lasiRNA (survivin) 21mer>
cp-lasiRNA (survivin) Antisense 21nt : 5’ UGAAAAUGUUGAUCUCCU*U*U*C*C 3’ (서열번호 171)
cp-lasiRNA (survivin) Sense : 5’ GAGAUCAACAUUUU*C*A*cholesterol. 3’ (서열번호 170)
밑줄: OMe 변형, *: PS (phosphorothioate bond)
<cp-lasiRNA (CTGF) 31mer>
cp-lasiRNA (CTGF) Antisense 31nt : 5’ UCUUCCAGUCGGUAAGCCGCGAGGGCA*G*G*C*C 3’ (서열번호 174)
cp-lasiRNA (CTGF) Sense : 5’ CTTACCGACTGGAA*G*A*chol. 3’(서열번호 175)
<cp-lasiRNA (CTGF) 21mer>
cp-lasiRNA (CTGF) Antisense 21nt: 5’ UCUUCCAGUCGGUAAGC*C*G*C*G 3’ (서열번호 176)
cp-lasiRNA (CTGF) Sense : 5’ CTTACCGACTGGAA*G*A*chol. 3’(서열번호 175)
밑줄: OMe 변형, *: PS (phosphorothioate bond)
즉, A549 세포주 (ATCC)에 상기 핵산분자들을 각각 실시예 1과 같은 방법으로 transfection하거나, 실시예 2와 같이 incubation 한후, 24시간 후에 real-time PCR로 표적 유전자 mRNA의 발현정도를 측정하였다. 각 2회 반복 실험의 평균과 SD를 도 9에 나타내었다. 도 9A는 21 mer 안티센스를 갖는 CTGF 표적 cp-lasiRNA의 유전자 억제효율을, 9B는 31 mer 안티센스를 갖는 CTGF 표적 cp-lasiRNA의 유전자 억제효율을, 9C는 21 mer 안티센스를 갖는 서바이빈 표적 cp-lasiRNA의 유전자 억제효율을, 9D는 21 mer 안티센스를 갖는 서바이빈 표적 cp-lasiRNA의 유전자 억제효율을 나타낸다. CTGF는 실시예 1의 프라이머를 이용하여 억제효율을 측정하였고, 서바이빈은 실시예 4의 프라이머를 이용하여 억제효율을 측정하였다.
도 9에 나타난 바와 같이, CTGF를 표적으로 하는 cp-lasiRNA의 경우 trnasfection과 incubation 모두에서 31nt antisense를 갖는 경우가 21nt antisense를 갖는 경우보다 더 높은 표적 유전자 억제 효율을 나타냈으며 (도 9A-B), survivin을 표적으로 하는 cp-lasiRNA를 incubation한 경우에도 동일하게 31nt antisense의 표적유전자 억제 효율이 높게 관찰 되는 것을 확인 하였다. 즉, 본 발명에 따른 핵산분자는 19nt~31nt의 다양한 길이의 antisense, 즉 제1가닥을 갖는 핵산 분자의 디자인이 가능하고 이를 이용하여 효과적으로 표적 유전자 억제가 가능하지만, 31nt길이를 갖는 경우가 21nt의 antisense 보다 더 효율적으로 표적 유전자 억제가 가능함이 확인 되었다.
실시예 6: PS2 변형에 따른 효과 확인
핵산 분자 중 하나 이상의 뉴클레오티드 포스페이트 백본을 포스포로티오에이트로 변형시키는 것 이외에 도 10과 같은 구조의 포스포로다이티오에이트(PS2)로 변형하는 경우 효과를 다음과 같이 조사하였다.
즉, A549 세포주에 하기의 cp-lasiRNA (Survivin) 및 하기의 cp-lasiRNA (Survivin)에서 동일 위치에서 PS 변형 대신 PS2 변형을 도입한 cp-lasiRNA(Survivin)-PS2를 실시예 1 또는 2와 같은 방법으로 transfection 또는 incubation 한 뒤 24시간 뒤에 실시예 4와 동일한 방법으로 real-time PCR을 수행하여 Survivin 유전자의 발현 정도를 측정하였다. 각각 2회 반복실험하여 그래프에 반복실험의 평균과 SD를 나타내었다.
<cp-lasiRNA (survivin)>
cp-lasiRNA (survivin) Antisense 31nt : 5’ UGAAAAUGUUGAUCUCCUUUCCUAAGA*C*A*T*T 3’ (서열번호 169)
cp-lasiRNA (survivin) Sense : 5’ GAGAUCAACAUUUU*C*A*cholesterol. 3’ (서열번호 170)
밑줄: OMe 변형, *: PS (phosphorothioate bond or phosphorodithioate bond)
그 결과, 도 11에 나타난 바와 같이, 추가적인 sulfur modification (PS2)에 의한 향상된 유전자 억제효과는 관찰되지 않았으며, 기존의 cp-lasiRNA보다 감소된 유전자 억제 효능을 보이는 것으로 확인 되었다.
실시예 7: 본 발명에 따른 핵산 분자의 in vivo 타겟에서의 유전자 억제 효율 측정
현재 RNAi 기술을 이용한 치료제 개발에서 가장 어려움을 겪고 있는 부분 중의 하나는 in vivo에서의 효과적인 RNA전달 기술의 개발이다. 현재 개발되어 있는 많은 전달체 기술을이 in vitro상에서는 높은 효율을 갖는 반면, in vivo에 적용 되었을 경우 그 효율이 현저히 감소하는 문제점을 가지고 있다. 이에 본 발명에 따른 핵산 분자가 in vivo에서도 높은 유전자 억제 효과를 갖는지 확인하기 위하여, 별도의 전달체를 사용하지 않고 cp-lasiRNA만을 Rat의 피부에 주사하여 표적 유전자의 발현 억제 효과를 비교 하였다.
즉, Rat skin에 PBS, siRNA (CTGF), cp-lasiRNA (CTGF), 또는 cp-lasiRNA (Scrambled)를 도 12에 표기된 농도대로 100ul의 PBS에 녹여 intradermal injection 한 뒤 24h 후에 조직 회수하여 표적 유전자의 발현 효율을 측정 하였다. 이때, Zoletil과 rompun solution을 Rat의 복강에 injection하여 마취 후 Rat (SD Rat, 오리엔트바이오)의 등 부분을 전체 제모함. 제모 된 부위의 피부에 반지름 5mm의 원을 그린 후 중심 부위에 insulin syringe (BD, 31G)로 100ul의 PBS, siRNA, 또는 cp-lasiRNA를 intradermal injection. Injection 후 표기 된 날짜에 8mm biopsy punch로 피부 조직을 떼어내어, 유전자 발현 분석을 조사하였다. 사용된 핵산 분자는 다음과 같다.
cp-lasiRNA (CTGF) Antisense Rat : 5'- UCUUCCAGUCGGUAGGCAGCUAGGGCA*G*G*G*C -3' (서열번호 177)
cp-lasiRNA (CTGF) Sense Rat : 5'- CCTACCGACTGGAA*G*A*choleterol. 3' (서열번호 178)
밑줄: OMe 변형, *: PS (phosphorothioate bond)
siRNA로는 다음을 이용하였다.
siRNA (CTGF) antisense : 5'- CUGCCUACCGACUGGAAGATT -3' (서열번호 179)
siRNA (CTGF) sense : 5'- CUGCCUACCGACUGGAAGATT -3' (서열번호 180)
밑줄: OMe 변형
이때, RNeasy Fibrous tissue mini kit (Qiagen)을 사용하여 RNA를 추출 하였으며 총 1ug의 RNA를 cDNA합성에 사용 하였다. cDNA는 High-capacity cDNA reverse transcription kit(Applied Biosystems)을 이용하여 제공된 프로토콜에 따라 합성되었다. 합성된 cDNA는 dilution을 통해 농도를 낮춘 후, step one real-time PCR system (Applied Biosystems)을 이용하여 제공된 프로토콜에 따라 정량적인 real-time PCR에 이용하였다. 표적유전자는 유전자에 특이적인 primer와 함께 power SYBR green PCR master Mix(Applied Biosystems)를 이용하여 확인하였다. 실험에 사용된 primer 염기서열은 다음과 같다. 도 12에서 각 그래프는 5회 반복 실험의 평균과 SD를 나타낸다.
CTGF-Rat
Forward 5'-GGC TCG CAT CAT AGT TG-3' (서열번호 181)
Reverse 5'-CGG GAA ATG CTG TGA GGA GT-3' (서열번호 182)
Rat skin에 PBS, siRNA (CTGF), cp-lasiRNA (CTGF), 또는 cp-lasiRNA (Scrambled)를 표기된 농도대로 100ul의 PBS에 녹여 intradermal injection 한 뒤 24h 후에 조직 회수하여 표적 유전자의 발현 효율을 측정 하였다. 각 그래프는 5회 반복 실험의 평균과 SD를 나타낸다.
그 결과, 도 12에 나타난 바와 같이, PBS, cp-lasiRNA (scrambled), 또는 siRNA (CTGF) 를 처리한 군에 비하여 cp-lasiRNA(CTGF)를 처리한 그룹에서 CTGF의 발현이 80~90% 이상 감소하여 cp-lasiRNA가 in vivo에서도 높은 효율로 표적 유전자 억제가 가능함을 확인 하였다.
추가로, Cp-lasiRNA의 in vivo에서 유전자 억제 효율을 확인하기 위하여 상기와 동일한 방법으로 100ug/injection~0.1ug/injection 구간의 cp-lasiRNA를 Rat에 injection 후 표적 유전자의 발현을 측정하였다.
그 결과, 도 13에 나타난 바와 같이, cp-lasiRNA (CTGF)는 약 0.3ug/injection의 낮은 농도에서도 70%이상의 높은 표적 유전자 억제 효율을 갖는 것으로 확인 되었으며, 약 0.21ug/injection의 IC50값을 갖는 것으로 확인 되었다. 각 그래프는 2회 반복 실험의 평균과 SD를 나타낸다.
추가로, 상기와 동일한 방법으로 cp-lasiRNA (CTGF) injection 후 Day1, Day2, Day3, Day6에 조직을 분석하여 유전자 발현을 측정하였다. 즉, Day1에서 cp-lasiRNA(CTGF)를 intradermal injection 한 뒤 표기된 날짜에 조직을 떼어내어 CTGF의 발현을 Realtime PCR로 확인하였다.
그 결과, 도 14에 나타난 바와 같이, cp-lasiRNA(CTGF)는 최소 5일 이상 표적 유전자의 발현을 억제하는 것으로 확인 되었다. 각 그래프는 2회 반복 실험의 평균과 SD를 나타낸다.
이상 설명한 바와 같이, 본 발명에 따른 핵산 분자 구조는 콜레스테롤 변형 및 phosphorothioate modification을 함께 도입함으로써, 우수한 유전자 억제 효율을 유지하면서도 별도의 세포 전달체 없이도 세포 내 관통능을 가질 수 있어 실제 표적 부위에 RNAi 유도를 위한 충분한 양으로 전달될 수 있어 종래 문제된 in vivo 전달 문제를 해소시킬 수 있다. 이에 본 발명에 따른 핵산 분자는 종래의 siRNA 분자를 대체하여 siRNA를 이용한 암이나 바이러스 감염 치료 등에 활용될 수 있어 유용하다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
전자파일 첨부하였음.

Claims (24)

  1. 목적 핵산(target nucleic acid)과 상보적인 영역을 포함하는 제1가닥과, 상기 제1가닥과 상보적 결합을 형성하는 제2가닥으로 구성되는 RNAi를 유도하는 이중가닥의 핵산 분자에 있어서, 상기 핵산 분자에 포함되어 있는 적어도 1개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트 (Phosphorothioate) 또는 포스포로다이티오에이트(phosphorodithioate)로 치환되어 있고, 친유성 화합물 (lipophilic compound)이 결합되어 있는 것을 특징으로 하는, 세포 내 관통능(cell-penetrating ability)을 가지는 RNAi 유도용 핵산 분자.
  2. 제1항에 있어서, 상기 RNAi를 유도하는 이중 가닥의 핵산 분자는 목적 핵산과 상보적인 일부 영역을 포함하는 24~121nt 길이의 제1가닥과, 상기 제1가닥의 목적 핵산과 상보적인 일부 영역과 상보적 결합을 형성하는 영역을 갖는 13~21nt 길이의 제2가닥으로 구성되는 것을 특징으로 하는 핵산 분자.
  3. 제2항에 있어서, 상기 제1가닥의 5' 방향의 말단이 블런트 말단(blunt end)인 것을 특징으로 하는 핵산 분자.
  4. 제2항에 있어서, 상기 제1가닥의 목적 핵산(target nucleic acid)과 상보적인 일부 영역의 길이는 19~31nt 인 것을 특징으로 하는 핵산 분자.
  5. 제1항에 있어서, 1 내지 48개의 뉴클레오티드의 포스포페이트 백본이 포스포로티오에이트 또는 포스포로다이티오에이트로 치환되어 있는 것을 특징으로 하는 핵산 분자.
  6. 제5항에 있어서, 상기 핵산 분자 중 제1가닥에 포함되어 있는 1 내지 31개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트 또는 포스포로다이티오에이트로 치환되어 있는 것을 특징으로 하는 핵산 분자.
  7. 제5항에 있어서, 상기 핵산 분자 중 제2가닥에 포함되어 있는 1 내지 17개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트 또는 포스포로다이티오에이트로 치환되어 있는 것을 특징으로 하는 핵산 분자.
  8. 제7항에 있어서, 상기 제1가닥 중 목적 핵산과 상보적인 영역 이외의 영역의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트 또는 포스포로다이티오에이트로 치환되어 있는 것을 특징으로 하는 핵산 분자.
  9. 제1항에 있어서, 상기 핵산 분자에 포함되어 있는 적어도 1개의 뉴클레오티드의 포스페이트 백본은 포스포로티오에이트로 치환되어 있는 것을 특징으로 하는 핵산 분자.
  10. 제1항에 있어서, 상기 친유성 화합물은 지질, 친유성 펩타이드 및 친유성 단백질로 구성되는 군에서 선택된 것을 특징으로 하는 핵산 분자.
  11. 제10항에 있어서, 상기 지질은 콜레스테롤, 토코페롤 및 탄소수 10개 이상의 장쇄지방산으로 구성되는 군에서 선택된 것을 특징으로 하는 핵산 분자.
  12. 제1항에 있어서, 상기 친유성 화합물은 상기 핵산 분자의 제1가닥 또는 제2가닥의 말단에 결합되어 있는 것을 특징으로 하는 핵산 분자.
  13. 제1항에 있어서, 상기 목적 핵산은 mRNA (messenger RNA), microRNA, piRNA (piwi-interacting RNA), 코딩 DNA 서열 및 비코딩 DNA 서열 중 어느 하나인 것을 특징으로 하는 RNAi를 유도하는 핵산 분자.
  14. 제1항에 있어서, 상기 핵산 분자에 포함되는 적어도 1개의 뉴클레오티드의 리보스의 2' 위치의 히드록실기가 수소원자, 불소원자, -O-알킬기, -O-아실기 및 아미노기 중 어느 하나로 치환된 것임을 특징으로 하는 핵산 분자.
  15. 제1항에 있어서, 상기 핵산 분자에 포함되는 적어도 1개의 뉴클레오티드의 포스페이트 백본이 alkylphosphonate form, phosphoroamidate form 및 boranophosphate form 중 어느 하나로 치환된 것임을 특징으로 하는 RNAi를 유도하는 핵산 분자.
  16. 제1항에 있어서, 상기 핵산 분자에 포함되는 적어도 1개의 뉴클레오티드가 LNA (locked nucleic acid), UNA(unlocked nucleic acid), Morpholino 및 PNA (peptide nucleic acid) 중 어느 하나로 치환된 것임을 특징으로 하는 RNAi를 유도하는 핵산 분자.
  17. 제1항에 있어서, 상기 제1가닥에서 단일 가닥 영역을 구성하는 염기 중 적어도 하나 이상이 거대한(bulky) 염기 유사체(base analog)를 포함하는 것을 특징으로 하는 핵산 분자.
  18. 제1항에 있어서, 상기 목적 핵산은 결합 조직 성장 인자 (Connective tisssue frowth factor, CTGF)를 코딩하는 mRNA이고, 상기 RNAi를 유도하는 이중 가닥의 핵산 분자는 서열번호 149 및 150의 염기서열쌍, 서열번호 151 및 152의 염기서열쌍 및 서열번호 153 및 154의 염기서열쌍으로 구성된 군에서 선택된 염기서열쌍을 갖는 것을 특징으로 하는 핵산 분자.
  19. 제1항 내지 제18항 중 어느 한 항의 핵산 분자를 함유하는 유전자 발현 억제용 조성물.
  20. 제1항 내지 제18항 중 어느 한 항의 핵산 분자를 세포 내 도입시키는 단계를 포함하는 세포 내 목적 유전자의 발현 억제 방법.
  21. 결합 조직 성장 인자 (Connective tisssue frowth factor, CTGF)를 코딩하는 mRNA를 목적 핵산으로 하는 제1항 내지 제18항 중 어느 한 항의 핵산 분자를 함유하는 CTGF 관련 질병 또는 장애의 치료 또는 예방용 약학 조성물.
  22. 제21항에 있어서, 상기 CTGF 관련 질병 또는 장애는 켈로이드, 신장 섬유증, 경피증, 폐섬유증, 간 섬유증, 관절염, 고혈압, 신장 장애, 혈관 형성 관련 장애, 피부 섬유증 장애 및 심혈관계 장애로 이루어진 군에서 선택되는 것을 특징으로 하는 약학 조성물.
  23. 제21항에 있어서, 상기 핵산 분자는 서열번호 149 및 150의 염기서열쌍, 서열번호 151 및 152의 염기서열쌍 및 서열번호 153 및 154의 염기서열쌍으로 구성된 군에서 선택된 염기서열쌍을 갖는 것을 특징으로 하는 약학 조성물.
  24. 결합 조직 성장 인자 (Connective tisssue frowth factor, CTGF)를 코딩하는 mRNA와 상보적인 영역을 포함하는 제1가닥과, 상기 제1가닥과 상보적 결합을 형성하는 제2가닥으로 구성되는 RNAi를 유도하는 이중가닥의 핵산 분자에 있어서, 상기 핵산 분자에 포함되어 있는 1 내지 31개의 뉴클레오티드의 포스페이트 백본이 포스포로티오에이트 (Phosphorothioate) 또는 포스포다이티오에이트로 치환되어 있고, 친유성 화합물이 결합되어 있으며, 상기 RNAi를 유도하는 이중 가닥의 핵산 분자는 서열번호 153 및 154의 염기서열쌍으로 구성된 군에서 선택된 염기서열쌍을 갖는 것을 특징으로 하는, 세포 내 관통을 가지는 CTGF 발현 억제용 핵산 분자.
PCT/KR2013/004463 2012-05-22 2013-05-21 세포 내 관통능을 가지는 rna 간섭을 유도하는 핵산 분자 및 그 용도 WO2013176477A1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP13794539.0A EP2853597B1 (en) 2012-05-22 2013-05-21 Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor
DK13794539.0T DK2853597T3 (en) 2012-05-22 2013-05-21 RNA INTERFERENCE-INducing NUCLEIC ACID MOLECULES WITH CELL PENETENING EQUIPMENT AND USE THEREOF
CN201380038984.6A CN104755620B (zh) 2012-05-22 2013-05-21 具有细胞内穿透能力的诱导rna干扰的核酸分子及其用途
US14/403,121 US10125362B2 (en) 2012-05-22 2013-05-21 RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor
EP18215244.7A EP3514236A1 (en) 2012-05-22 2013-05-21 Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor
JP2015513901A JP6139671B2 (ja) 2012-05-22 2013-05-21 細胞内貫通能を持ってrna干渉を誘導する核酸分子およびその用途
ES13794539T ES2716818T3 (es) 2012-05-22 2013-05-21 Molécula de ácido nucleico inductora de interferencias de arn capaz de penetrar en las células y uso de la misma
HK15112131.8A HK1211319A1 (en) 2012-05-22 2015-12-09 Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor rna
US16/135,766 US10883105B2 (en) 2012-05-22 2018-09-19 RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor
US17/110,640 US20210207137A1 (en) 2012-05-22 2020-12-03 Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120053950 2012-05-22
KR10-2012-0053950 2012-05-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/403,121 A-371-Of-International US10125362B2 (en) 2012-05-22 2013-05-21 RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor
US16/135,766 Continuation US10883105B2 (en) 2012-05-22 2018-09-19 RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor

Publications (1)

Publication Number Publication Date
WO2013176477A1 true WO2013176477A1 (ko) 2013-11-28

Family

ID=49624096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004463 WO2013176477A1 (ko) 2012-05-22 2013-05-21 세포 내 관통능을 가지는 rna 간섭을 유도하는 핵산 분자 및 그 용도

Country Status (9)

Country Link
US (3) US10125362B2 (ko)
EP (2) EP2853597B1 (ko)
JP (3) JP6139671B2 (ko)
KR (2) KR101567576B1 (ko)
CN (2) CN108148838A (ko)
DK (1) DK2853597T3 (ko)
ES (1) ES2716818T3 (ko)
HK (1) HK1211319A1 (ko)
WO (1) WO2013176477A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180128423A (ko) * 2016-04-11 2018-12-03 올릭스 주식회사 연결 조직 성장 인자를 표적화하는 rna 복합체를 사용한 특발성 폐 섬유증의 치료 방법
US11873489B2 (en) 2017-11-13 2024-01-16 Silence Therapeutics Gmbh Nucleic acids for inhibiting expression of a target gene comprising phosphorodithioate linkages
RU2812806C2 (ru) * 2017-11-13 2024-02-02 Сайленс Терапьютикс Гмбх Нуклеиновые кислоты для ингибирования экспрессии гена-мишени, содержащие фосфодитиоатные связи

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2732929T3 (es) 2010-10-22 2019-11-26 Olix Pharmaceuticals Inc Moléculas de ácido nucleico que inducen interferencia de ARN y usos de las mismas
EP2853597B1 (en) 2012-05-22 2018-12-26 Olix Pharmaceuticals, Inc. Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor
KR102279110B1 (ko) * 2014-04-30 2021-07-20 올릭스 주식회사 LasiRNA를 유효성분으로 포함하는 피부 미백용 조성물
CN116004624A (zh) 2015-04-03 2023-04-25 马萨诸塞大学 用于靶向亨廷汀mRNA的寡核苷酸化合物
CN111875265B (zh) 2015-05-15 2023-09-12 Agc株式会社 化学增强玻璃
US11661463B2 (en) * 2015-08-06 2023-05-30 City Of Hope Cell penetrating protein-antibody conjugates and methods of use
EP3334499A4 (en) * 2015-08-14 2019-04-17 University of Massachusetts BIOACTIVE CONJUGATES FOR THE RELEASE OF OLIGONUCLEOTIDES
JP7027311B2 (ja) * 2015-11-16 2022-03-01 オリックス ファーマシューティカルズ,インコーポレーテッド MyD88又はTLR3を標的とするRNA複合体を使用した加齢黄斑変性の治療
US10478503B2 (en) 2016-01-31 2019-11-19 University Of Massachusetts Branched oligonucleotides
EP3411480A4 (en) 2016-02-02 2020-01-22 Olix Pharmaceuticals, Inc. TREATMENT OF ATOPIC DERMATITIS AND ASTHMA USING RNA COMPLEXES THAT TARGETE IL4R, TRPA1, OR F2RL1
KR20180104692A (ko) 2016-02-02 2018-09-21 올릭스 주식회사 Angpt2 및 pdgfb를 표적화하는 rna 복합체를 사용하는 혈관신생 관련 질환의 치료
KR101916652B1 (ko) * 2016-06-29 2018-11-08 올릭스 주식회사 작은 간섭 rna의 rna 간섭효과 증진용 화합물 및 이의 용도
WO2018031933A2 (en) 2016-08-12 2018-02-15 University Of Massachusetts Conjugated oligonucleotides
JP7424728B2 (ja) 2017-02-10 2024-01-30 オリック パルマセゥティカルズ インコーポレイテッド Rna干渉のための長鎖の二本鎖rna
KR102321426B1 (ko) * 2017-02-21 2021-11-05 올릭스 주식회사 남성형 탈모 표적 유전자의 발현을 억제하는 비대칭 siRNA
KR20190037166A (ko) * 2017-09-28 2019-04-05 올릭스 주식회사 결합 조직 성장 인자를 표적으로 하는 rna 복합체를 함유하는 노인성 황반변성의 예방 또는 치료용 약학 조성물
RS63955B1 (sr) * 2017-11-13 2023-02-28 Silence Therapeutics Gmbh Nukleinske kiseline za inhibiciju ekspresije lpa u ćeliji
KR20210093227A (ko) 2018-08-10 2021-07-27 유니버시티 오브 매사추세츠 Snp를 표적화하는 변형된 올리고뉴클레오티드
TW202028465A (zh) 2018-09-28 2020-08-01 美商阿尼拉製藥公司 甲狀腺素運載蛋白(TTR)iRNA組成物及其治療或預防TTR相關眼部疾病之使用方法
CN109402127B (zh) * 2018-09-29 2021-12-10 复旦大学附属眼耳鼻喉科医院 一组与结缔组织生长因子特异性结合的高亲和力核酸适配体及其应用
KR102321425B1 (ko) * 2019-01-18 2021-11-04 올릭스 주식회사 NRL(Neural retina leucine zipper)의 발현을 억제하는 비대칭 siRNA
KR20210063137A (ko) * 2019-11-22 2021-06-01 (주)바이오니아 Ctgf 유전자 특이적 이중가닥 올리고뉴클레오티드 및 이를 포함하는 섬유증 관련 질환 및 호흡기 관련 질환 예방 및 치료용 조성물
KR102259402B1 (ko) * 2020-06-04 2021-06-01 주식회사 아임뉴런바이오사이언스 개선된 안정성을 갖는 핵산 분자 및 이의 용도
WO2022124739A1 (ko) * 2020-12-07 2022-06-16 올릭스 주식회사 ROR-beta의 발현을 억제하는 비대칭 RNAi 유도용 핵산 분자
CN114807127A (zh) * 2021-01-19 2022-07-29 陈璞 用于结缔组织生长因子的小干扰rna及其应用
EP4359539A1 (en) 2021-06-23 2024-05-01 University Of Massachusetts Optimized anti-flt1 oligonucleotide compounds for treatment of preeclampsia and other angiogenic disorders

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837258A (en) 1991-08-30 1998-11-17 University Of South Florida Induction of tissue, bone or cartilage formation using connective tissue growth factor
US20050119202A1 (en) * 2001-10-26 2005-06-02 Roland Kreutzer Medicament to treat a fibrotic disease
KR20090065880A (ko) 2007-12-18 2009-06-23 이동기 오프-타겟 효과를 최소화하고 RNAi 기구를 포화시키지않는 신규한 siRNA 구조 및 그 용도
US20110237648A1 (en) * 2008-09-22 2011-09-29 Rxi Pharmaceuticals Corporation Rna interference in skin indications
US20120016011A1 (en) * 2009-03-19 2012-01-19 Merck Sharp & Dohme Corp. RNA Interference Mediated Inhibition of Connective Tissue Growth Factor (CTGF) Gene Expression Using Short Interfering Nucleic Acid (siNA)
WO2012053741A2 (ko) * 2010-10-22 2012-04-26 성균관대학교산학협력단 Rna 간섭을 유도하는 핵산 분자 및 그 용도

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160151A1 (de) 2001-01-09 2003-06-26 Ribopharma Ag Verfahren zur Hemmung der Expression eines vorgegebenen Zielgens
US8202979B2 (en) * 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
ES2215494T5 (es) 2000-12-01 2017-12-28 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Moléculas de RNA pequeñas que median la interferencia de RNA
US20050282188A1 (en) 2001-05-18 2005-12-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20080188430A1 (en) 2001-05-18 2008-08-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA)
US20040138163A1 (en) 2002-05-29 2004-07-15 Mcswiggen James RNA interference mediated inhibition of vascular edothelial growth factor and vascular edothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
PT1527176E (pt) * 2002-08-05 2007-04-30 Atugen Ag Novas formas de muléculas de arn de interferência
EP1560931B1 (en) 2002-11-14 2011-07-27 Dharmacon, Inc. Functional and hyperfunctional sirna
WO2006006948A2 (en) * 2002-11-14 2006-01-19 Dharmacon, Inc. METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY
EP1605978B1 (en) 2003-03-07 2010-09-01 Alnylam Pharmaceuticals Inc. Therapeutic compositions
WO2004083432A1 (en) * 2003-03-21 2004-09-30 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure
US20040198640A1 (en) 2003-04-02 2004-10-07 Dharmacon, Inc. Stabilized polynucleotides for use in RNA interference
US20050136437A1 (en) 2003-08-25 2005-06-23 Nastech Pharmaceutical Company Inc. Nanoparticles for delivery of nucleic acids and stable double-stranded RNA
MXPA06002216A (es) * 2003-08-28 2006-04-27 Novartis Ag Interferencia de arn doble que tiene extremos romos y modificaciones 3'.
US20060134787A1 (en) 2004-12-22 2006-06-22 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended siRNA
WO2005062937A2 (en) 2003-12-22 2005-07-14 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended sirna
US20060069050A1 (en) 2004-02-17 2006-03-30 University Of Massachusetts Methods and compositions for mediating gene silencing
ES2423060T3 (es) * 2004-03-12 2013-09-17 Alnylam Pharmaceuticals, Inc. Agentes iRNA que tienen como diana al VEGF
KR101147147B1 (ko) 2004-04-01 2012-05-25 머크 샤프 앤드 돔 코포레이션 Rna 간섭의 오프 타겟 효과 감소를 위한 변형된폴리뉴클레오타이드
WO2006031901A2 (en) 2004-09-10 2006-03-23 Somagenics, Inc. SMALL INTERFERING RNAs THAT EFFICIENTLY INHIBIT VIRAL GENE EXPRESSION AND METHODS OF USE THEREOF
EP2377873B1 (en) * 2004-09-24 2014-08-20 Alnylam Pharmaceuticals, Inc. RNAi modulation of ApoB and uses thereof
US20060142228A1 (en) 2004-12-23 2006-06-29 Ambion, Inc. Methods and compositions concerning siRNA's as mediators of RNA interference
TWI386225B (zh) * 2004-12-23 2013-02-21 Alcon Inc 用於治療眼睛病症的結締組織生長因子(CTGF)RNA干擾(RNAi)抑制技術
CA2603842A1 (en) 2005-04-08 2006-10-19 Nastech Pharmaceutical Company Inc. Rnai therapeutic for respiratory virus infection
ATE546526T1 (de) 2005-05-25 2012-03-15 Univ York Hybrid-interferenz-rna
NZ564375A (en) 2005-06-24 2010-02-26 Intervet Int Bv Inactivated chimeric flavivirus vaccines and related methods of use
EP2230305A1 (en) 2005-07-21 2010-09-22 Alnylam Pharmaceuticals Inc. Rnai modulation of the rho-a gene and uses thereof
EP1937066A4 (en) * 2005-08-18 2008-12-24 Alnylam Pharmaceuticals Inc METHOD AND COMPOSITIONS FOR THE TREATMENT OF NERVOUS DISEASES
FR2890859B1 (fr) 2005-09-21 2012-12-21 Oreal Oligonucleotide d'arn double brin inhibant l'expression de la tyrosinase
WO2007041282A2 (en) 2005-09-29 2007-04-12 The Johns Hopkins University Methods and compositions for treatment of cystic fibrosis
US7825099B2 (en) 2006-01-20 2010-11-02 Quark Pharmaceuticals, Inc. Treatment or prevention of oto-pathologies by inhibition of pro-apoptotic genes
JP2009524430A (ja) 2006-01-26 2009-07-02 ユニバーシティ オブ マサチューセッツ 治療的使用のためのrna干渉剤
CA2913655A1 (en) 2006-01-27 2007-08-09 Biogen Ma Inc. Nogo receptor antagonists
US20070218495A1 (en) 2006-03-16 2007-09-20 Dharmacon, Inc. Methods, libraries and computer program products for gene silencing with reduced off-target effects
US7700541B2 (en) 2006-04-06 2010-04-20 Nitto Denko Corporation Biodegradable cationic polymers
GB0608838D0 (en) * 2006-05-04 2006-06-14 Novartis Ag Organic compounds
CA2679867A1 (en) 2007-03-02 2008-09-12 Mdrna, Inc. Nucleic acid compounds for inhibiting vegf family gene expression and uses thereof
US20100105134A1 (en) 2007-03-02 2010-04-29 Mdrna, Inc. Nucleic acid compounds for inhibiting gene expression and uses thereof
DK2164967T3 (en) 2007-05-31 2015-10-19 Univ Iowa Res Found Reduction of off-target rna interferenstoksicitet
US20090004668A1 (en) 2007-06-22 2009-01-01 The Board Of Trustees Of The Leland Stanford Junior University Pre-miRNA loop-modulated target regulation
WO2009020344A2 (en) 2007-08-06 2009-02-12 Postech Acad Ind Found Small interfering rnas (sirnas) controlling multiple target genes and method for preparing the same
CN101842381A (zh) 2007-08-27 2010-09-22 波士顿生物医药公司 作为微小rna模拟物或抑制剂的不对称rna双链体的组合物
CN101849008A (zh) 2007-09-19 2010-09-29 应用生物系统有限公司 用于减少RNAi中的脱靶表型效应的siRNA的不依赖于序列的修饰形式和其稳定形式
WO2009045457A2 (en) * 2007-10-02 2009-04-09 Rxi Pharmaceuticals Corp. Tripartite rnai constructs
CA2701845A1 (en) 2007-10-03 2009-04-09 Quark Pharmaceuticals, Inc. Novel sirna structures
US8614311B2 (en) 2007-12-12 2013-12-24 Quark Pharmaceuticals, Inc. RTP801L siRNA compounds and methods of use thereof
CA2731779A1 (en) 2008-07-24 2010-01-28 Rxi Pharmaceuticals Corporation Rnai constructs and uses therof
US8946172B2 (en) * 2008-08-25 2015-02-03 Excaliard Pharmaceuticals, Inc. Method for reducing scarring during wound healing using antisense compounds directed to CTGF
WO2010026660A1 (ja) 2008-09-08 2010-03-11 学校法人福岡大学 Zfat遺伝子発現抑制rna
US20100227920A1 (en) 2008-09-29 2010-09-09 The Regents Of The University Of California Aldehyde dehydrogenase inhibitors as novel depigmenting agents
WO2010090762A1 (en) 2009-02-04 2010-08-12 Rxi Pharmaceuticals Corporation Rna duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
US8829179B2 (en) 2009-02-18 2014-09-09 Silence Therapeutics Gmbh Means for inhibiting the expression of ANG2
ES2921573T3 (es) 2009-04-03 2022-08-29 Dicerna Pharmaceuticals Inc Métodos y composiciones para la inhibición específica de KRAS por RNA bicatenario asimétrico
WO2011019887A2 (en) 2009-08-14 2011-02-17 Massachusetts Institute Of Technology Waveguide coupler having continuous three-dimensional tapering
KR101237036B1 (ko) * 2009-11-04 2013-02-25 성균관대학교산학협력단 안티센스 가닥에 의한 오프-타겟 효과를 최소화한 신규한 siRNA 구조 및 그 용도
KR101207561B1 (ko) 2009-12-15 2012-12-04 주식회사 코리아나화장품 티로시나제의 발현을 저해하는 siRNA 올리고뉴클레오타이드 및 이를 함유하는 화장료 조성물
WO2011084193A1 (en) 2010-01-07 2011-07-14 Quark Pharmaceuticals, Inc. Oligonucleotide compounds comprising non-nucleotide overhangs
JP5847700B2 (ja) 2010-03-05 2016-01-27 株式会社Wave Life Sciences Japan リボヌクレオシドホスホロチオエートの製造方法
EP2550001B1 (en) * 2010-03-24 2019-05-22 Phio Pharmaceuticals Corp. Rna interference in ocular indications
EP2569445B1 (en) 2010-05-12 2017-01-04 Val-Chum, Limited Partnership Screening assays based on abhd6 for selecting insulin secretion promoting agents
WO2012037254A1 (en) * 2010-09-15 2012-03-22 Alnylam Pharmaceuticals, Inc. MODIFIED iRNA AGENTS
CN103298939A (zh) 2010-12-06 2013-09-11 夸克医药公司 包含位置修饰的双链寡核苷酸化合物
SI2670411T1 (sl) * 2011-02-02 2019-06-28 Excaliard Pharmaceuticals, Inc. Protismiselne spojine, ki so usmerjene na rastni faktor veznega tkiva (CTGF), za uporabo v postopku zdravljenja keloidov ali hipertrofnih brazgotin
CA2828544A1 (en) 2011-03-03 2012-09-07 Quark Pharmaceuticals, Inc. Oligonucleotide modulators of the toll-like receptor pathway
CN102719432B (zh) 2011-03-29 2013-10-23 南京大学 特异性抑制肿瘤凋亡抑制基因Bcl2的双链不对称小核酸干扰分子asiRNA及其应用
KR101590586B1 (ko) 2011-05-30 2016-02-01 성균관대학교산학협력단 표적 유전자 발현 억제 및 면역 반응을 동시에 유발하는 이중가닥의 긴 간섭 rna
EP2734240B1 (en) 2011-07-18 2018-03-21 University Of Kentucky Research Foundation Protection of cells from alu-rna-induced degenereation and inhibitors for protecting cells
US9707235B1 (en) 2012-01-13 2017-07-18 University Of Kentucky Research Foundation Protection of cells from degeneration and treatment of geographic atrophy
EP2853597B1 (en) 2012-05-22 2018-12-26 Olix Pharmaceuticals, Inc. Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor
WO2014043291A1 (en) 2012-09-12 2014-03-20 Quark Pharmaceuticals, Inc. Double-stranded nucleic acid compounds
JP2016525346A (ja) 2013-07-05 2016-08-25 バイオニア コーポレーションBioneer Corporation 呼吸器疾患関連遺伝子特異的siRNA、そのようなsiRNAを含む二重らせんオリゴRNA構造体およびこれを含む呼吸器疾患予防または治療用組成物
US20160208247A1 (en) 2013-07-31 2016-07-21 Qbi Enterprises Ltd. Methods of use of sphingolipid polyalkylamine oligonucleotide compounds
US9790506B2 (en) 2013-10-02 2017-10-17 The Regents Of The University Of California Diagnostic and screening methods for atopic dermatitis
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US20170226507A1 (en) 2014-05-05 2017-08-10 The Brigham And Women's Hospital, Inc. Coordinate control of pathogenic signaling by the mir-130/301 family in pulmonary hypertension and fibroproliferative diseases
US9139648B1 (en) 2014-07-15 2015-09-22 Kymab Limited Precision medicine by targeting human NAV1.9 variants for treatment of pain
WO2016161388A1 (en) 2015-04-03 2016-10-06 University Of Massachusetts Fully stabilized asymmetric sirna
CN108138181B (zh) 2015-07-27 2022-05-24 奥利克斯医药有限公司 抑制黑色素生成的rna复合物
JP7027311B2 (ja) 2015-11-16 2022-03-01 オリックス ファーマシューティカルズ,インコーポレーテッド MyD88又はTLR3を標的とするRNA複合体を使用した加齢黄斑変性の治療
KR20180104692A (ko) 2016-02-02 2018-09-21 올릭스 주식회사 Angpt2 및 pdgfb를 표적화하는 rna 복합체를 사용하는 혈관신생 관련 질환의 치료
EP3411480A4 (en) 2016-02-02 2020-01-22 Olix Pharmaceuticals, Inc. TREATMENT OF ATOPIC DERMATITIS AND ASTHMA USING RNA COMPLEXES THAT TARGETE IL4R, TRPA1, OR F2RL1
WO2017178883A2 (en) 2016-04-11 2017-10-19 Olix Pharmaceuticals, Inc. Treatment of idiopathic pulmonary fibrosis using rna complexes that target connective tissue growth factor
KR101916652B1 (ko) 2016-06-29 2018-11-08 올릭스 주식회사 작은 간섭 rna의 rna 간섭효과 증진용 화합물 및 이의 용도
JP7424728B2 (ja) 2017-02-10 2024-01-30 オリック パルマセゥティカルズ インコーポレイテッド Rna干渉のための長鎖の二本鎖rna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837258A (en) 1991-08-30 1998-11-17 University Of South Florida Induction of tissue, bone or cartilage formation using connective tissue growth factor
US20050119202A1 (en) * 2001-10-26 2005-06-02 Roland Kreutzer Medicament to treat a fibrotic disease
KR20090065880A (ko) 2007-12-18 2009-06-23 이동기 오프-타겟 효과를 최소화하고 RNAi 기구를 포화시키지않는 신규한 siRNA 구조 및 그 용도
US20110237648A1 (en) * 2008-09-22 2011-09-29 Rxi Pharmaceuticals Corporation Rna interference in skin indications
US20120016011A1 (en) * 2009-03-19 2012-01-19 Merck Sharp & Dohme Corp. RNA Interference Mediated Inhibition of Connective Tissue Growth Factor (CTGF) Gene Expression Using Short Interfering Nucleic Acid (siNA)
WO2012053741A2 (ko) * 2010-10-22 2012-04-26 성균관대학교산학협력단 Rna 간섭을 유도하는 핵산 분자 및 그 용도

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BOLCATO-BELLEMIN AL; BONNET ME; CREUSAT G ET AL.: "Sticky overhangs enhance siRNA-mediated gene silencing", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 104, 2007, pages 16050 - 16055, XP055050168, DOI: doi:10.1073/pnas.0707831104
DATABASE GENBANK [online] 21 March 2005 (2005-03-21), "SYNTHETIC CONSTRUCT HOMO SAPIENS CLONE FLH019006.01L CONNECTIVE TISSUE GROWTH FACTOR (CTGF) MRNA, PARTIAL CDS", XP003034289, Database accession no. AY890732.1 *
LI, GUANMING ET AL.: "Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats", THE JOURNAL OF GENE MEDICINE, vol. 8, no. 7, July 2006 (2006-07-01), pages 889 - 900, XP002526204 *
LUO, G. H. ET AL.: "Inhibition of connective tissue growth factor by small interfering RNA prevents renal fibrosis in rats undergoing chronic allograft nephropathy", TRANSPLANTATION PRECEEDINGS, vol. 40, no. 7, September 2008 (2008-09-01), pages 2365 - 2369, XP025407213 *
See also references of EP2853597A4
SIOUD M; SORENSEN DR: "Cationic liposome-mediated delivery of siRNAs in adult mice", BIOCHEM BIOPHYS RES COMMUN, vol. 312, 2003, pages 1220 - 1225, XP004476408, DOI: doi:10.1016/j.bbrc.2003.11.057
SISCO M; KRYGER ZB; O'SHAUGHNESSY KD ET AL.: "Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo", WOUND REPAIR REGEN, vol. 16, 2008, pages 661 - 673, XP055044203, DOI: doi:10.1111/j.1524-475X.2008.00416.x

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180128423A (ko) * 2016-04-11 2018-12-03 올릭스 주식회사 연결 조직 성장 인자를 표적화하는 rna 복합체를 사용한 특발성 폐 섬유증의 치료 방법
US10301628B2 (en) * 2016-04-11 2019-05-28 Olix Pharmaceuticals, Inc. Treatment of idiopathic pulmonary fibrosis using RNA complexes that target connective tissue growth factor
EP3443093A4 (en) * 2016-04-11 2020-01-01 Olix Pharmaceuticals, Inc. TREATMENT OF IDIOPATHIC LUNG FIBROSIS WITH RNA COMPLEXES TARGETED AGAINST THE TISSUE GROWTH FACTOR
US10829761B2 (en) 2016-04-11 2020-11-10 Olix Pharmaceuticals, Inc. Treatment of idiopathic pulmonary fibrosis using RNA complexes that target connective tissue growth factor
KR102339886B1 (ko) * 2016-04-11 2021-12-17 올릭스 주식회사 연결 조직 성장 인자를 표적화하는 rna 복합체를 사용한 특발성 폐 섬유증의 치료 방법
US11873489B2 (en) 2017-11-13 2024-01-16 Silence Therapeutics Gmbh Nucleic acids for inhibiting expression of a target gene comprising phosphorodithioate linkages
RU2812806C2 (ru) * 2017-11-13 2024-02-02 Сайленс Терапьютикс Гмбх Нуклеиновые кислоты для ингибирования экспрессии гена-мишени, содержащие фосфодитиоатные связи

Also Published As

Publication number Publication date
KR101581655B1 (ko) 2015-12-31
ES2716818T3 (es) 2019-06-17
US20190002881A1 (en) 2019-01-03
KR101581655B9 (ko) 2015-12-31
US20150111948A1 (en) 2015-04-23
US20210207137A1 (en) 2021-07-08
EP2853597A1 (en) 2015-04-01
US10125362B2 (en) 2018-11-13
EP2853597A4 (en) 2016-01-27
JP2017093448A (ja) 2017-06-01
JP6139671B2 (ja) 2017-05-31
DK2853597T3 (en) 2019-04-08
KR20130130653A (ko) 2013-12-02
JP2019122379A (ja) 2019-07-25
EP3514236A1 (en) 2019-07-24
EP2853597B1 (en) 2018-12-26
JP2015518721A (ja) 2015-07-06
JP6629712B2 (ja) 2020-01-15
CN104755620B (zh) 2018-03-02
CN108148838A (zh) 2018-06-12
JP6999590B2 (ja) 2022-01-18
CN104755620A (zh) 2015-07-01
KR101567576B1 (ko) 2015-11-10
US10883105B2 (en) 2021-01-05
HK1211319A1 (en) 2016-05-20
KR20150118061A (ko) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2013176477A1 (ko) 세포 내 관통능을 가지는 rna 간섭을 유도하는 핵산 분자 및 그 용도
WO2013103249A1 (ko) 고효율 나노입자형 이중나선 올리고 rna 구조체 및 그의 제조방법
TWI527901B (zh) A single stranded nucleic acid molecule used to control gene expression
TWI515294B (zh) A single stranded nucleic acid molecule having a nitrogen-containing lipid ring skeleton
US20100113332A1 (en) Method of treating an inflammatory disease by double stranded ribonucleic acid
WO2012053741A9 (ko) Rna 간섭을 유도하는 핵산 분자 및 그 용도
WO2019050071A1 (ko) 엑소좀 또는 엑소좀 유래 리보핵산을 포함하는 간섬유증 예방 또는 치료용 조성물
WO2015005670A1 (en) LIVER CANCER RELATED GENES-SPECIFIC siRNA, DOUBLE-STRANDED OLIGO RNA MOLECULES COMPRISING THE siRNA, AND COMPOSITION FOR PREVENTING OR TREATING CANCER COMPRISING THE SAME
WO2015005669A1 (en) LIVER CANCER RELATED GENES-SPECIFIC siRNA, DOUBLE-STRANDED OLIGO RNA MOLECULES COMPRISING THE siRNA, AND COMPOSITION FOR PREVENTING OR TREATING CANCER COMPRISING THE SAME
WO2020149702A1 (ko) Nrl(neural retina leucine zipper)의 발현을 억제하는 비대칭 sirna
WO2019066519A1 (ko) 결합 조직 성장 인자를 표적으로 하는 rna 복합체를 함유하는 노인성 황반변성의 예방 또는 치료용 약학 조성물
WO2018155890A1 (ko) 남성형 탈모 표적 유전자의 발현을 억제하는 비대칭 siRNA
WO2022131883A1 (ko) HBV 발현을 억제하는 RNAi 제제 및 이의 용도
WO2022124739A1 (ko) ROR-beta의 발현을 억제하는 비대칭 RNAi 유도용 핵산 분자
CN110650742A (zh) 使用经结构强化的S-TuD的新的癌症治疗方法
WO2020122534A1 (ko) Snai1의 발현을 억제하는 비대칭 sirna
WO2015093886A1 (ko) Prk2를 표적으로 하는 c형 간염 바이러스 치료제 sirna
WO2021101113A1 (ko) Ctgf 유전자 특이적 이중가닥 올리고뉴클레오티드 및 이를 포함하는 섬유증 관련 질환 및 호흡기 관련 질환 예방 및 치료용 조성물
WO2023219479A1 (ko) Dicer에 의한 dsrna 가공의 서열 결정 인자
EP1861496B1 (en) Inhibition of spag9 expression with sirnas
WO2018038558A1 (ko) 마이크로 rna를 포함하는 이중나선 올리고 rna 구조체
KR20210110593A (ko) 마이오스타틴 신호 억제제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513901

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14403121

Country of ref document: US

Ref document number: 2013794539

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE