WO2013176095A1 - ショットブラスト用研削材及びその製造方法 - Google Patents

ショットブラスト用研削材及びその製造方法 Download PDF

Info

Publication number
WO2013176095A1
WO2013176095A1 PCT/JP2013/063984 JP2013063984W WO2013176095A1 WO 2013176095 A1 WO2013176095 A1 WO 2013176095A1 JP 2013063984 W JP2013063984 W JP 2013063984W WO 2013176095 A1 WO2013176095 A1 WO 2013176095A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
slag
abrasive
shot blasting
slag particles
Prior art date
Application number
PCT/JP2013/063984
Other languages
English (en)
French (fr)
Inventor
坪根 聡
泰彦 上谷
省吾 桑原
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to CN201380026488.9A priority Critical patent/CN104471013B/zh
Priority to KR1020147034995A priority patent/KR101497892B1/ko
Priority to JP2013535172A priority patent/JP5454747B1/ja
Priority to US14/402,470 priority patent/US20150101257A1/en
Publication of WO2013176095A1 publication Critical patent/WO2013176095A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag

Definitions

  • the present invention relates to a grinding material for shot blasting and a manufacturing method thereof. More specifically, the present invention relates to a shot blasting abrasive mainly composed of an Fe component, an Si component and a Ca component, and a method for producing the same.
  • Steelmaking slag may be generated as much as 10 to 30% by mass of the raw material during melting and refining of various metal materials. For this reason, various methods for effectively utilizing steelmaking slag have been studied. Among them, it is considered to use steelmaking slag in the form of particles, and it is used as an extender or an abrasive. Among them, as the abrasive, particles having a high crushing strength can be obtained, and as the abrasive using the steelmaking slag that has been granulated, the techniques disclosed in Patent Document 1 and Patent Document 2 below are known. .
  • Patent Document 1 discloses a shot obtained by crushing a cured product obtained by cooling a molten slag obtained by reacting a powdered reducing agent containing various components with a molten product of reduced slag discharged from an electric steelmaking furnace. Blasting granules are disclosed. However, the Fe concentration of the abrasive disclosed in Patent Document 1 is as low as 2.46 to 3.01% by mass even when iron oxide such as scale is added. No consideration has been given. Further, Patent Document 2 discloses an amorphous blasting abrasive. However, the Fe concentration of the abrasive disclosed in Patent Document 2 is 5% by mass, and an abrasive having a high Fe concentration has not been studied.
  • the present invention has been made in view of the above-described conventional technology, and an object thereof is to provide a shot blasting abrasive having a high crushing strength even in a range where the Fe concentration is as high as 6 to 35% by mass in terms of FeO. .
  • the present invention is as follows.
  • the abrasive for shot blasting according to claim 1 includes Fe, Si, Ca, Al, Mg, and Mn. Having an amorphous continuous phase; While the total content of Fe, Si and Ca is respectively 50.0% by mass or more in terms of FeO, SiO 2 or CaO, with respect to 100% by mass as a whole, Fe 35.0 wt% to 6.0 wt% with FeO in terms or less, Si and SiO 2 35.0 wt% to 15.0 wt% in terms of less, the Ca in terms of CaO 10.0 wt% or more 35. The content is 0% by mass or less.
  • the shot blasting abrasive according to claim 2 is the shot blasting abrasive according to claim 1, wherein Al is 3.0% by mass in terms of Al 2 O 3 with respect to 100% by mass as a whole.
  • the gist is to contain 25.0% by mass or less.
  • the abrasive for shot blasting according to claim 3 is the abrasive for shot blasting according to claim 1 or 2, wherein Mn is 2.0% by mass or more in terms of MnO with respect to 100% by mass as a whole.
  • the content is 20.0% by mass or less.
  • the abrasive for shot blasting according to claim 4 includes Ti in the abrasive for shot blast according to any one of claims 1 to 3,
  • the gist is that Ti is contained in an amount of 0.01% by mass or more and 10.0% by mass or less in terms of TiO 2 with respect to 100% by mass as a whole.
  • the shot blasting abrasive according to claim 5 is the shot blasting abrasive according to any one of claims 1 to 4, comprising Cr,
  • the gist is to contain 0.5% by mass or more and 5.0% by mass or less of Cr in terms of Cr 2 O 3 with respect to 100% by mass as a whole.
  • the shot blasting abrasive according to claim 6 is a slag particle obtained by crushing molten slag in the shot blasting abrasive according to any one of claims 1 to 5. This is the gist.
  • the grinding material for shot blast according to claim 7 is characterized in that, in the grinding material for shot blast according to claim 6, the molten slag is an electric furnace slag.
  • the abrasive for shot blast according to claim 8 is the abrasive for shot blast according to claim 6 or 7, wherein the molten slag contains waste glass and / or silica sand as a component adjusting material.
  • the grinding material for shot blasting according to claim 9 is characterized in that, in the grinding material for shot blasting according to claim 8, the waste glass is glass for automobiles.
  • the method for producing a shot blasting abrasive according to claim 10 is the method for producing a shot blasting abrasive according to claim 6 or 7, A crushing step of crushing the molten slag to form slag particles; Cooling step of cooling the slag particles by spraying water while dropping the slag particles downward or after dropping the slag particles; And a dehydrating and conveying step of dehydrating while conveying the slag particles.
  • a method for producing a shot blasting abrasive according to claim 11 is a method for producing a shot blasting abrasive according to claim 8 or 9,
  • a dehydrating and conveying step of dehydrating while conveying the slag particles are examples of the dehydrating while conveying the slag particles.
  • the shot blasting abrasive of the present invention it is possible to obtain a shot blasting abrasive having a high crushing strength even when the FeO concentration is as high as 6.0 to 35.0% by mass. For this reason, while being excellent in grindability, the destruction of the particle
  • the grinding material for shot blasting of the present invention is slag particles obtained by air crushing molten slag
  • the grain shape is obtained directly from the molten slag
  • the lump form of steelmaking slag It is easy to obtain a crushing strength that is inherently superior to abrasives that have been crushed into particles.
  • steelmaking slag can be converted into shot blasting abrasives without loss due to crushing, resulting in excellent production efficiency.
  • the waste glass can be used effectively. Furthermore, when the waste glass is glass for automobiles, waste glass for automobiles can be effectively used.
  • automotive glass generated by scrap processing of automobiles is often accompanied by resin parts and metal parts that are difficult to remove, and is difficult to be recycled and disposed of in landfills.
  • resin parts and metal parts that are difficult to remove, and is difficult to be recycled and disposed of in landfills.
  • the present invention even if it is accompanied by resin parts, it can be utilized without any problem as an effective component adjusting material, and can contribute to waste reduction.
  • the method for producing a shot blasting abrasive of the present invention it is possible to produce a shot blasting abrasive having a high crushing strength even when the FeO concentration is as high as 6.0 to 35.0% by mass. For this reason, while being excellent in grindability, the destruction of the particle
  • phase form in the abrasive for shot blasting of this invention Comprising: (a) And (b) is a phase form included in this invention, (c) is a phase form not included in this invention It is. It is explanatory drawing which shows typically the grinding
  • the grinding material for shot blasting of the present invention contains Fe, Si, Ca, Al, Mg and Mn, Having an amorphous continuous phase; While the total content of Fe, Si and Ca is respectively 50.0% by mass or more in terms of FeO, SiO 2 or CaO, with respect to 100% by mass as a whole, Fe 35.0 wt% to 6.0 wt% with FeO in terms or less, Si and SiO 2 35.0 wt% to 15.0 wt% in terms of less, the Ca in terms of CaO 10.0 wt% or more 35. It is characterized by containing 0% by mass or less.
  • the “amorphous continuous phase” means that the main part is amorphous. Specifically, only one phase of an amorphous phase (amorphous continuous phase 1) is observed on the cut surface observed with an optical microscope at a magnification of 500 times (see FIG. 1 (a)), Alternatively, when a crystal phase 2 (crystal grains, regardless of the size of crystal grains) is observed, the crystal phase 2 is surrounded by the amorphous phase 1 which is a continuous phase ⁇ FIG. 1 (b)). That is, when the crystal phase 2 is recognized, it indicates that the crystal phase 2 is dispersed in the amorphous phase 1. Whether the observed phase is amorphous or crystalline is determined by X-ray diffraction measurement.
  • FIG. 1C is exemplified as a form having no amorphous continuous phase. That is, a form having a crystalline continuous phase 3 (polycrystalline phase in which fine crystals are assembled) can be mentioned. In this form, in many cases, a coarse crystal 4 precipitated as a coarser crystal than the other part is observed in a part of the continuous phase 3 as a crystal phase. Also in this embodiment, a crystal phase 2 such as a spinel crystal may be precipitated.
  • the abrasive for shot blasting of the present invention contains at least Fe, Si, Ca, Al, Mg, and Mn. Furthermore, when the entire abrasive for shot blasting is 100% by mass, Fe, Si and Ca are contained in an amount of 50.0% by mass or more in terms of the total content in terms of FeO, SiO 2 or CaO, respectively.
  • the “Fe” is contained in an amount of 6.0% by mass or more and 35.0% by mass or less in terms of FeO when the entire abrasive for shot blasting is 100% by mass.
  • a grinding material for shot blasting having a high crushing strength from a steelmaking slag having a FeO equivalent content of 6.0% by mass or more.
  • it can be set as the abrasive for shot blasting with a high crushing strength.
  • the crushing strength at a particle size of 2.0 mm can be 20 kgf or more.
  • the FeO equivalent content of Fe is preferably 7.0% by mass or more and 32.0% by mass or less, more preferably 8.0% by mass or more and 30.0% by mass or less, and 9.0% by mass or more and 28.0% by mass or less. % Or less is more preferable and 10.0 mass% or more and 26.0 mass% or less are especially preferable.
  • the “Si” is contained in an amount of 15.0% by mass to 35.0% by mass in terms of SiO 2 when the entire abrasive for shot blasting is 100% by mass. Within this range, particularly in a composition having a high Fe content in terms of FeO of 6.0 mass% or more and 35.0 mass% or less, it is possible to obtain a high crushing strength while suppressing variations in crushing strength. When the content of Si in terms of SiO 2 is less than 15.0% by mass, the composition in which the FeO content in terms of FeO is 6.0% by mass or more and 35.0% by mass or less is sufficiently maintained amorphous. Tend to be difficult.
  • the SiO 2 content of Si is preferably 15.0% by mass or more and 34.0% by mass or less, more preferably 16.0% by mass or more and 33.0% by mass or less, and 16.0% by mass or more and 32.0% by mass or less. More preferably, it is more preferably 17.0% by mass or more and 30.0% by mass or less, particularly preferably 18.0% by mass or more and 30.0% by mass or less, and more than 20.0% by mass. 0 mass% or less is more especially preferable, and 21.0 mass% or more and 29.0 mass% or less is especially preferable.
  • the “Ca” is contained in an amount of 10.0% by mass or more and 35.0% by mass or less in terms of CaO when the entire abrasive for shot blasting is 100% by mass. Within this range, particularly in a composition having a high Fe content in terms of FeO of 6.0 mass% or more and 35.0 mass% or less, it is possible to obtain a high crushing strength while suppressing variations in crushing strength. Although it is thought that there is no problem as a grinding material for shot blasting even if the CaO equivalent content of Ca is less than 10.0% by mass, the CaO equivalent content is actually less than 10.0% by mass. Almost no slag is obtained.
  • the CaO equivalent content of Ca is preferably 11.0% by mass or more and 34.0% by mass or less, more preferably 12.0% by mass or more and 33.0% by mass or less, and more preferably 13.0% by mass or more and 32.0% by mass. % Or less is more preferable, and 15.0 mass% or more and 31.0 mass% or less are especially preferable.
  • the total content is 50.0% by mass or more. Within this range, particularly in a composition having a high Fe content in terms of FeO of 6.0 mass% or more and 35.0 mass% or less, it is possible to obtain a high crushing strength while suppressing variations in crushing strength.
  • the upper limit of this total content is not specifically limited, Usually, it is 95.0 mass% or less.
  • the total content of each of these Fe, Si and Ca in terms of the oxide is preferably 50.0% by mass or more and 95.0% by mass or less, more preferably 53.0% by mass or more and 90.0% by mass or less, 54.0 mass% or more and 85.0 mass% or less are still more preferable, and 55.0 mass% or more and 80.0 mass% or less are especially preferable.
  • each content and total content of Al, Mg, and Mn contained other than the said 3 components of Fe, Si, and Ca are not specifically limited.
  • the Al content is preferably 3% by mass or more and 25% by mass in terms of Al 2 O 3 .
  • the Al 2 O 3 equivalent content of Al is less than 3.0% by mass, although it is considered that there is no problem as a grinding material for shot blasting, the Al 2 O 3 equivalent content is actually 3.0% by mass. Almost no slag is obtained.
  • the Al 2 O 3 equivalent content of Al exceeds 25.0 mass%, the viscosity of the slag in the molten state tends to be large and it becomes difficult to granulate by air crushing.
  • the content of Al in terms of Al 2 O 3 is preferably 3.0% by mass or more and 25.0% by mass or less, more preferably 4.0% by mass or more and 23.0% by mass or less, and more preferably 5.0% by mass or more and 20% by mass or less.
  • 0.0 mass% or less is more preferable, 5.0 mass% or more and 18.0 mass% or less is particularly preferable, 5.5 mass% or more and 18.0 mass% or less is further more preferable, and 6.0 mass% or more and 17. 0 mass% or less is especially preferable, 6.0 mass% or more and 16.5 mass% or less are more preferable, 6.5 mass% or more and 16.5 mass% or less are especially preferable.
  • the Mg is preferably 1% by mass or more and 20.0% by mass in terms of MgO. Although it is considered that there is no problem as an abrasive for shot blasting even if the MgO-equivalent content of Mg is less than 1.0% by mass, the slag whose MgO-equivalent content is actually less than 1.0% by mass Can hardly be obtained. On the other hand, if the MgO content in terms of MgO exceeds 20.0 mass%, the viscosity of the slag in the molten state tends to be large and it becomes difficult to granulate by air crushing.
  • the MgO equivalent content of Mg is preferably 1.0% by mass or more and 20.0% by mass or less, more preferably 2.0% by mass or more and 17.0% by mass or less, and 3.0% by mass or more and 13.0% by mass. % Or less is more preferable, and 3.0 mass% or more and 10.0 mass% or less is especially preferable.
  • the Mn is preferably 2.0% by mass or more and 20.0% by mass in terms of MnO. Although it is considered that there is no problem as a grinding material for shot blasting even if the Mn content in terms of MnO is less than 1.0% by mass, the slag in which the content in terms of MnO is actually less than 1.0% by mass Can hardly be obtained. On the other hand, if the content of Mn in terms of MnO exceeds 20.0 mass%, the viscosity of the slag in the molten state tends to be large and it becomes difficult to granulate by air crushing.
  • the content of Mn in terms of MnO is preferably 2.0% by mass or more and 20.0% by mass or less, more preferably 3.0% by mass or more and 18.0% by mass or less, and more preferably 4.0% by mass or more and 15.0% by mass. % Or less is more preferable, and 5.0% by mass or more and 13.0% by mass or less is particularly preferable.
  • the ratio of the MnO equivalent content of Mn to the FeO equivalent content of Fe is preferably 0.26 or more and 1.50 or less. In this range, the crushed slag particles are obtained in a more spherical shape. This ratio is more preferably 0.28 or more and 1.00 or less, and particularly preferably 0.30 or more and 0.90 or less.
  • the shot blasting abrasive according to the present invention contains Fe, Si, Ca, Al, Mg and Mn (usually contains O), and can further contain other components.
  • examples of other components include Ti, Cr, P, and S. These other components may contain only 1 type and 2 or more types may contain simultaneously.
  • Ti is preferably contained. It is considered that the abrasive is densified by the inclusion of Ti, and functions advantageously in the properties as an abrasive.
  • Ti is preferably 0.01% by mass or more and 10.0% by mass in terms of TiO 2 . In this range, the effect by including Ti can be obtained more effectively.
  • the content of Ti in terms of TiO 2 is preferably 0.1% by mass or more and 10.0% by mass or less, more preferably 0.1% by mass or more and 8.0% by mass or less, and more preferably 0.3% by mass or more and 4.0% by mass.
  • the mass% is more preferable, and 0.4 mass% or more and 1.0 mass% or less is particularly preferable.
  • the ratio of the TiO 2 equivalent content of Ti to the FeO equivalent content of Fe is 0.02 or more and 0.10 or less. In this range, the crushed slag particles are obtained in a more spherical shape. This ratio is more preferably 0.02 or more and 0.09 or less, and particularly preferably 0.02 or more and 0.08 or less.
  • the ratio of TiO 2 in terms the content of Ti with respect to terms of CaO content of Ca is preferably 0.04 or more 0.13 or less. In this range, the crushed slag particles are obtained in a more spherical shape.
  • This ratio is more preferably 0.04 or more and 0.10 or less, and particularly preferably 0.04 or more and 0.09 or less.
  • Cr is contained together with Mn. It is considered that the abrasive is densified by the inclusion of Cr, and functions advantageously in the properties as an abrasive.
  • Cr is preferably 0.5% by mass or more and 5.0% by mass in terms of Cr 2 O 3 . In this range, the effect by including Cr can be obtained more effectively.
  • the Cr 2 O 3 equivalent content of Cr is preferably 1.0% by mass or more and 4.0% by mass or less, more preferably 1.2% by mass or more and 3.7% by mass or less, and 1.3% by mass or more 3 More preferably, it is 5 mass% or less.
  • the abrasive for shot blasting according to the present invention is preferably slag particles obtained by air-pulverizing molten slag.
  • slag particles shot blasting abrasive
  • the grain shape can be obtained directly from the molten slag, so the slag lump can be crushed into particles.
  • a higher crushing strength can be obtained. That is, in the grinding material obtained by crushing and granulating the slag lump, since the slag lump itself is large, the time required for cooling becomes longer, and the possibility of generating a crystal phase in the slag lump is increased.
  • the molten slag is preferably an electric furnace slag. That is, steelmaking slag usually includes blast furnace slag, converter slag, and electric furnace slag, and among them, electric furnace slag is preferable. Furthermore, although the electric furnace slag includes oxidized slag and reduced slag, the oxidized slag is preferable. That is, an electric furnace oxidation slag is preferable. This is because electric furnace slag, particularly electric furnace oxidation slag, is characterized by a high content of iron components, and is particularly suitable as a molten slag for use in the shot blasting abrasive of the present invention.
  • the molten slag can contain waste glass and / or silica sand as a component adjusting material.
  • waste glass typically includes SiO 2, CaO, Al 2 O 3 and Na 2 O or the like.
  • the ratio of SiO 2 and Na 2 O is particularly large.
  • Waste glass is an amorphous material and has a low melting point and can be easily dissolved in the molten slag. Therefore, the waste glass is suitable as a component adjusting material for easily adjusting the components of the molten slag.
  • the said waste glass is glass for motor vehicles.
  • Glass for automobiles is glass that has been used in automobiles produced by scrap processing of automobiles. That is, for example, a windshield, a rear glass, a side glass, a lamp glass and the like are included. These may contain only 1 type and may contain 2 or more types.
  • automotive glass usually has components other than glass. Parts other than glass are parts that have been used for assembly in automobiles, and include resin parts, metal parts, and the like.
  • waste glass for automobiles generated by scrap processing of automobiles is accompanied by parts other than these glasses, so that it is difficult to reuse, and landfill disposal is common.
  • the presence of the parts does not affect the abrasive. That is, by putting waste glass for automobile use into a slag that is in a molten state at a high temperature of 1500 ° C. or more, resin parts and the like are burned away, and metal parts and the like are melted and taken into the slag. Furthermore, since glass is an amorphous component having a low melting point, it can be dissolved smoothly in molten slag and can be dissolved efficiently, and the proportion of SiO 2 component in the molten slag is increased. be able to. Furthermore, since the glass for motor vehicles normally employ
  • the Vickers hardness of the abrasive particles constituting the abrasive material for shot blasting of the present invention can be 650 Hv or more (especially 660 to 900 Hv, further 670 to 800 Hv, especially 680 to 750 Hv). Further, the crushing strength of one abrasive particle is 18 kgf (176.4 N) or more, further 20 kgf (196 N) or more ⁇ particularly 30 to 70 kgf (294 to 686 N), or even 45 to 45 mm or more. 60 kgf (441 to 588 N) ⁇ .
  • the above values are the same as those in JIS Z0312. It is a value measured using abrasive particles classified as “shot” defined in (b).
  • the Vickers hardness is an average value of Vickers hardness obtained by measuring 10 randomly selected abrasive particles according to JIS Z2244.
  • the crushing strength is an average value of load values when 10 abrasive particles selected at random are subjected to a universal testing machine and a load is applied to each abrasive particle.
  • the average particle size of the abrasive particles constituting the present abrasive material for shot blasting is not particularly limited and may be a particle size suitable for the application, but is usually 5 mm or less. In this range, the high crushing strength by the shot blasting abrasive is maintained and the dust tends to be low.
  • the average particle size is preferably 0.05 to 4.0 mm, more preferably 0.1 to 3.0 mm, and particularly preferably 0.2 to 2.0 mm.
  • this average particle diameter means 50% particle size in the percentage under the integrated sieve measured by JIS Z8815 applied mutatis mutandis to the particle size in JIS Z0312 (non-metallic abrasive for blast treatment).
  • This method (1) is a method for producing a shot blasting abrasive, A crushing step of crushing molten slag to form slag particles; A cooling step of cooling the slag particles by spraying water while dropping the slag particles downward or after dropping the slag particles; A dehydrating and conveying step of dewatering while conveying the slag particles.
  • this method (2) is a manufacturing method of this abrasive material for shot blasting, A component adjusting step of adding waste glass and / or silica sand as a component adjusting material to the electric furnace slag; A crushing step of crushing the molten slag obtained through the component adjustment step to form slag particles; A cooling step of cooling the slag particles by spraying water while dropping the slag particles downward or after dropping the slag particles; A dehydrating and conveying step of dewatering while conveying the slag particles.
  • the “component adjusting step” is a step of adding waste glass and / or silica sand as a component adjusting material to the electric furnace slag.
  • waste glass typically includes SiO 2, CaO, Al 2 O 3 and Na 2 O or the like.
  • the ratio of SiO 2 and Na 2 O is particularly large.
  • Waste glass is an amorphous material and has a low melting point and can be easily dissolved in the molten slag. Therefore, the waste glass is suitable as a component adjusting material for easily adjusting the components of the molten slag.
  • composition of the waste glass is not particularly limited with respect to the total 100 wt% waste glass, SiO 2 in terms of the content of Si, CaO converted content of Ca, Al 2 O 3 in terms of the content of Al, Na of Na 2 O
  • the total converted content is preferably 70.0% by mass or more (usually 99.9% by mass or less), more preferably 80.0 to 98.0% by mass, and 85.0 to 95.%. More preferably, it is 0 mass%.
  • the content of Si in terms of SiO 2 and the content of Na in terms of Na 2 O are 50.0% by mass or more in total (usually 90.0% by mass or less) with respect to 100% by mass of the entire waste glass.
  • the content of Si in terms of SiO 2 is preferably 50.0% by mass or more (usually 80.0% by mass or less) with respect to 100% by mass of the entire waste glass, and 55.0 to 80.0% by mass. % Is more preferable, and 60.0 to 75.0% by mass is even more preferable.
  • the amount of waste glass and / or silica sand added in this step is not particularly limited, and as a result, it can be added so as to be in the composition range shown in the above-mentioned abrasive for shot blasting of the present invention. That, Fe, Si, Ca, Al, together containing Mg and Mn, with respect to the total 100 wt%, Fe and Si and Ca, respectively FeO converted, the total content by SiO 2 conversion or as CaO 50.
  • waste glass is glass for motor vehicles.
  • Glass for automobiles is glass that has been used in automobiles produced by scrap processing of automobiles. That is, for example, a windshield, a rear glass, a side glass, a lamp glass and the like are included. These may contain only 1 type and may contain 2 or more types.
  • automotive glass usually has components other than glass. Parts other than glass are parts that have been used for assembly in automobiles, and include resin parts, metal parts, and the like.
  • waste glass for automobiles generated by scrap processing of automobiles is accompanied by parts other than these glasses, so that it is difficult to reuse and is generally disposed of in landfills.
  • the presence of the parts does not affect the abrasive. That is, by putting waste glass for automobile use into a slag that is in a molten state at a high temperature of 1500 ° C. or more, resin parts and the like are burned away, and metal parts and the like are melted and taken into the slag. Furthermore, since glass is an amorphous component having a low melting point, it can be dissolved smoothly in molten slag and can be dissolved efficiently, and the proportion of SiO 2 component in the molten slag is increased. be able to. Furthermore, since the glass for motor vehicles normally employ
  • the above “wind crushing step” is a step of crushing molten slag to form slag particles.
  • Crushing refers to pulverization using gas, and is usually performed by supplying molten slag before the gas discharged from the nozzle.
  • the shape and number of nozzles used at this time are not particularly limited. That is, for example, a ring nozzle having a plurality of nozzles arranged radially so that gas is emitted toward the center, and a plurality of nozzles arranged so as to face each other so that gas is emitted toward the center.
  • a parallel nozzle having Among these, the ring nozzle (see FIGS. 2 and 3) is preferable.
  • the ring nozzle can be provided with a uniform arrangement of nozzles radially around the entire circumference, and is effective for obtaining slag particles having uniform and excellent mechanical strength, which can more uniformly refine the molten slag.
  • the number of nozzles (gas discharge ports) provided in the ring nozzle is not particularly limited, but is usually 20 to 100, preferably 20 to 70, and more preferably 30 to 60. In this range, more stable air crushing can be performed.
  • the angle ⁇ (see FIG. 3) with respect to the center of each nozzle is not particularly limited, but is usually an angle of 5 to 45 degrees with respect to the falling direction of the molten slag (usually perpendicular to the ground). 15 to 35 degrees is preferable, and 20 to 30 degrees is more preferable. If it is this range, it will be easy to crush molten slag. Moreover, the upward splashing of the crushed slag particles can be prevented, and the slag particles still in a high temperature state can be easily prevented from sticking to each other.
  • the gas discharge pressure from the nozzle is not particularly limited, usually, one of a nozzle per 3 ⁇ 25kgf / cm 2, preferably 5 ⁇ 23kgf / cm 2, 7 ⁇ 20kgf / cm 2 is more preferable. In this range, it is particularly easy to form small-diameter slag particles, and it is possible to suppress the collapse of the shape of the slag particles obtained when the air-pulverized slag collides with the chamber inner wall or the like.
  • the amount of the gas released is not particularly limited, but is preferably set appropriately depending on the amount of slag particles dropped and the particle diameter.
  • the amount of molten slag is 2000 to 4000 kg per 60 minutes (further 2500
  • the gas release rate is preferably 600 to 6000 kiloliters (more preferably 800 to 4000 kiloliters, more preferably 1250 to 3500 kiloliters) per 60 minutes.
  • the kind of said gas used for crushing is not specifically limited, although various gases can be used, In order to make an apparatus a simple structure, it is preferable to use air.
  • the temperature of the molten slag to be used is not particularly limited, but the molten slag used in the present invention is preferably 1150 to 1600 ° C. (more preferably 1200 to 1550 ° C., still more preferably 1250 to 1500 ° C.).
  • the steelmaking slag to be used may be any slag, but as described above, the molten slag is preferably an electric furnace slag. That is, steelmaking slag usually includes blast furnace slag, converter slag, and electric furnace slag, and among them, electric furnace slag is preferable.
  • the electric furnace slag includes oxidized slag and reduced slag, the oxidized slag is preferable. That is, an electric furnace oxidation slag is preferable. This is because electric furnace slag, particularly electric furnace oxidation slag is particularly suitable in the present invention because it is characterized by a high content of iron components.
  • the “cooling step” is a step of cooling the slag particles by spraying water while dropping the crushed slag particles downward or after dropping the slag particles downward.
  • water can be sprayed to cool the slag particles while dropping the crushed slag particles downward, and the slag particles can be cooled by spraying water further after dropping.
  • the slag particles can be appropriately cooled. According to this cooling process, even if the outer surface part of the slag particles is cooled, the slag particles can be sent to the dehydrating and conveying process in a state where the core part is not cooled. That is, the thermal conductivity of the slag used in the present invention is usually about 0.3 to 2.0 W / (m ⁇ K). Therefore, the slag particles are not collapsed by excessive cooling, and it does not lead to complicated manufacturing methods such as an excessively long cooling step or a reheat treatment step, and an increase in the size of the apparatus. .
  • cooling efficiency is not sufficiently obtained only by air cooling (natural heat dissipation, gas spraying, etc.), and a large space (especially a large area and a long cooling distance) is required for heat removal.
  • air cooling natural heat dissipation, gas spraying, etc.
  • a large space especially a large area and a long cooling distance
  • a sufficient cooling effect can be obtained in a small space.
  • the drop distance during the cooling step is not particularly limited, but is usually 3 m or more (preferably 4 to 10 m, more preferably 4.5 to 8 m, particularly preferably 5 to 7 m, usually 40 m or less). If the fall distance is within this range, cooling can be performed in a small space while preventing insufficient cooling. Therefore, a shot blasting abrasive having excellent mechanical strength can be produced with high efficiency while keeping the apparatus compact.
  • the method of cooling down the slag particles by dropping the air-pulverized slag particles downward and then cooling the slag particles is to drop the slag particles that have passed through the chamber onto the steel conveyor.
  • the method of spraying water on the slag particles is mentioned. At this time, it is preferable to spray water in the same direction as the traveling direction of the steel conveyor (that is, the traveling direction of the slag particles).
  • the amount of water spray is not particularly limited, but usually 0.08 liters or more of water (preferably 0.03 to 0.30 liters, more preferably 0.05 to 0. 0 liters) per 1 kg of crushed slag particles. 20 liters) is preferably used.
  • the above-mentioned “dehydration transport process” is a process of removing water adhering in the cooling process from the slag particles while transporting the slag particles that have passed through the cooling process.
  • this dewatering and conveying step water is removed from the slag particles (whether or not it is completely removed), and heat is further dissipated.
  • the slag particles sent from the cooling step usually have sufficient heat to vaporize the water, so that part of the dehydrated water is removed by vaporization. It becomes. For this reason, it is considered that a part of the heat of the slag particles is also removed by the heat of vaporization of water in the dehydration conveyance process. That is, the temperature of the slag particles sent from the cooling step to the dehydrating and conveying step is not particularly limited, but it is usually considered to be preferably 500 ° C. or higher (preferably 500 to 1200 ° C.).
  • the temperature of the slag particles recovered after this dewatering and conveying step is 70 ° C. or more (more preferably 80 to 800 ° C., more preferably 85 to 500 ° C., particularly preferably 90 to 200 ° C., particularly 100 to 150 ° C. ) Is preferable.
  • the obtained slag particles can be kept amorphous, and particularly excellent mechanical strength can be obtained.
  • the transport time in this dehydration transport process, ie, the heat release time is not particularly limited, but is usually 0.5 to 10 minutes (preferably 0.5 to 3 minutes, more preferably 1 to 2 minutes). In this range, slag particles having particularly excellent mechanical strength can be obtained.
  • the deformed slag particles formed by connecting a plurality of slag particles before being sufficiently cooled can be formed into a more spherical shape. That is, it can be divided into particles from the connecting portion of the irregular shaped slag particles and formed into a normal particle shape.
  • the shape of the slag particles in the finished product can be made closer to a spherical shape by grinding the slag particles in the shape of needles, whiskers, and slumps.
  • the fractionation step is a step that can be provided after the dehydration conveyance step and, after the grinding step, when the grinding step is provided, from the obtained slag particles and having a desired shape and / or particle size. This is a step of separating slag particles. In this step, it is usually separated using a sieve.
  • any apparatus may be used to manufacture shot blasting abrasives.
  • molten steelmaking slag (molten slag) 200 is blown into the wind.
  • Crushing means 110 that crushes to form slag particles 201
  • cooling means 120 that cools slag particles 201 by spraying water while dropping slag particles 201 or after falling down, and slag particles
  • a shot blasting abrasive manufacturing apparatus 100 provided with dewatering and conveying means 130 for dewatering water used for cooling from slag particles 201 while conveying 201 (see FIGS. 2 and 3).
  • the above-mentioned crushing means 110 is means for crushing the molten slag 200 to form slag particles 201. This crushing is performed using the gas discharged from the nozzle 111.
  • the shape and number of the nozzles 111 used for air crushing are not particularly limited, but the ring nozzle 110 is preferable as described above.
  • the arrangement place of the ring nozzle 110 is not particularly limited, but it is preferably arranged at the upper end of the chamber 121 to be described later in order to save space.
  • the cooling means 120 is means for cooling the slag particles 201 by blowing water while dropping the slag particles 201 or after dropping the slag particles 201 downward. Therefore, a chamber 121 for dropping the slag particles 201 and a water discharge means 124 for spraying water on the slag particles 201 are usually provided. By providing the chamber 121, the slag particles 201 can be dropped without being affected by the surrounding environment (it is allowed to cool even during the dropping). Furthermore, the cooling effect by the water discharge means 124 is also improved.
  • the shape of the chamber 121 is not particularly limited, but is usually a vertically long shape (see FIG. 2). Due to the vertically long shape, it is possible to save space while ensuring a drop distance. As described above, the drop distance is usually 3 m or more (preferably 4 to 10 m, more preferably 4.5 to 8 m, particularly preferably 5 to 7 m, usually 40 m or less). Therefore, the space in the chamber 121 also usually has this distance in the vertical direction.
  • the shape in the lateral direction (cross-sectional shape in the falling direction of the slag particles) is not particularly limited, and may be circular, rectangular, or other shapes, but is preferably circular. (That is, the cylindrical portion 122 having a cylindrical shape). This is because the recovery efficiency of slag particles is excellent.
  • the inner diameter of the main part is preferably 1 to 10 m (more preferably 2 to 8 m, still more preferably 3 to 6 m).
  • the lower end of the chamber 121 has a tapered portion 123 toward the steel conveyor 126 or the dewatering conveyance means 130.
  • the lower end of the chamber 121 is preferably open to the steel conveyor 126 or the dewatering conveyance means 130.
  • the water discharge means 124 is not particularly limited as long as it can discharge water to the slag particles 201, and the water discharge by the water discharge means 124 is performed below the chamber 121 as shown in FIG. It is preferable to carry out on a steel conveyor 126 provided in That is, it is preferable to cool the slag particles 201 dropped from the chamber 121 onto the steel conveyor 126 by bathing the water discharged from the water discharge nozzle 125.
  • the dehydrating and conveying means 130 is means for dehydrating water used for cooling from the slag particles while conveying the slag particles 201. Since the dewatering and conveying means 130 has both a dehydrating function and a conveying function, the slag particles 201 can be continuously produced. That is, after the air-crushed slag particles 201 are dropped or dropped and then cooled by spraying water, the slag particles do not stay in a wet state, and are subsequently dewatered. Be transported. For this reason, the slag particles 201 having excellent mechanical strength can be obtained without cooling the slag particles 201 too rapidly. Furthermore, such slag particles can be continuously produced stably and efficiently.
  • the dehydrating function and the conveying function in the dehydrating and conveying means 130 may be provided over the entire dehydrating and conveying means 130 (that is, for example, when the whole is composed of the wedge wire screen 132), and only part of both functions And the other part may be provided only with a conveyance function (that is, for example, when the front part consists of a wedge wire screen and the rear part consists of a heat-resistant conveyor such as a steel conveyor). This is because, even in the latter case, even in the dehydrating and conveying means 130 having only a conveying function at the rear part, water can be evaporated by the heat that the slag particles 201 have at this stage while being radiated.
  • this stage is compared with the case where the slag particles 201 have already been cooled to such an extent that water cannot be evaporated by the heat possessed at this stage (for example, less than 70 ° C.). If the temperature is maintained at such a level that water can be evaporated (for example, 80 ° C. or higher, preferably 100 ° C. or higher), slag particles having higher mechanical strength tend to be obtained.
  • the dehydrating and conveying means 130 it is preferable that the slag particles 201 immediately after being transferred from the cooling means 120 are maintained at a temperature of 800 ° C. or higher. Further, the dehydrating and conveying means 130 is cooled at a rate of 130 to 600 ° C./min (more preferably 150 to 400 ° C./min, more preferably 180 to 300 ° C./min, particularly preferably 180 to 250 ° C./min) ( Usually, it is preferably allowed to cool). In this range, a shorter transport distance can be achieved while performing sufficient dehydration and cooling, and product quality and space saving can be achieved particularly effectively.
  • this conveying part may convey slag particles in a plane direction. It can be conveyed in the vertical direction. That is, for example, the bucket conveyor 134 etc. are mentioned. Thereby, further space saving can be achieved.
  • the form of the dewatering and conveying means 130 is not particularly limited, but the dehydrating and conveying means 130 includes, as at least a part of the dewatering and conveying means 130, a wedge wire screen 132 including wedge wires 131 arranged at intervals at which the slag particles 201 are not passed. It is preferable to provide. Furthermore, when the wedge wire screen 132 is provided only in a part, it is preferable that the wedge wire screen 132 is provided on the leading end side (side closer to the cooling means) in the dewatering and conveying means 130. This is because the wedge wire screen 132 can be dehydrated and transported with simple equipment.
  • the form of the wedge wire 131 used for the wedge wire screen 132 is not particularly limited.
  • the average particle diameter of the target slag particles 201 is 5 mm or less, 0.1 to 4.0 mm (preferably 0.1 mm). It is preferable to use a wedge wire 131 having a screen interval of .about.1.0 mm, more preferably 0.2 to 0.5 mm. This is because it is easier to obtain a slag particle 201 having a more spherical shape without performing a grinding step (a sizing step) in a subsequent step.
  • the wedge wire screen 132 When the wedge wire screen 132 is used, it is preferable that the wedge wire screen 132 can perform dehydration by vibration. Moreover, it is preferable that the slag particles 201 can be simultaneously conveyed by this vibration. Therefore, it is preferable that the dehydrating and conveying unit 130 includes a vibration generating unit 133 that can transmit the generated vibration to the wedge screen 132.
  • the apparatus 100 used in this method can include other means in addition to the air crushing means 110, the cooling means 120, and the dehydrating and conveying means 130.
  • a molten slag storage means 150 for feeding the molten slag 200 to the air crushing means 110 in an appropriate amount.
  • the molten slag storage unit 150 can further include a heating unit 152 such as a burner and / or a heater in order to prevent the stored molten slag 200 from being cooled.
  • a tundish 150 is usually used as the molten slag storage means 150.
  • the capacity and shape of the tundish 150 are not particularly limited, but it is preferable to have an opening that allows the molten slag to flow downward.
  • the opening is preferably circular and has an inner diameter of 10 to 50 mm (more preferably 12 to 35 mm, still more preferably 16 to 28).
  • the depth of the tundish 150 is preferably 50 to 200 cm (more preferably 70 to 150 cm, and still more preferably 80 to 120 cm).
  • the flow rate of the molten slag from the tundish 150 is preferably 5 to 40 liters / minute (more preferably 7 to 30 liters / minute, still more preferably 8 to 15 liters / minute).
  • a water discharge means at the time of carrying out water discharge for further cooling the slag particles 201 carried by the dehydrating and conveying means 130 can be provided.
  • the form of the water discharge means at the time of conveyance is not limited, for example, the water discharge pipe can be arranged in parallel to the dewatering conveyance means 130 (for example, the wedge wire screen 132).
  • heat exchange means can be provided.
  • the heat exchange means is means for recovering heat released in the apparatus (shot blasting abrasive manufacturing apparatus 100) in the process where the molten slag 200 becomes slag particles 201.
  • the form of the heat recovery means is not limited, it can be used as a heat recovery means by providing various known heat recovery devices at various locations (for example, the chamber 121 site, the tundish 150 site, etc.). By providing the heat recovery means, the exhaust heat can be used efficiently and the cooling efficiency can be improved.
  • a grinding means for performing the grinding step in the above-described method can be provided.
  • Equipment such as an Eirich mixer and a mortar mixer can be used as the grinding means.
  • a fractionating means for carrying out the method can be provided.
  • a sieve device such as a vibration sieve and a monolayer can be used.
  • a shot blasting abrasive material 201 is the shot blasting abrasive material manufacturing device 100 shown in FIG. Manufactured.
  • the shot blasting abrasive manufacturing apparatus 100 shown in FIG. 2 includes an air crushing unit 110, a cooling unit 120, a dewatering and conveying unit 130, and a collection container 141.
  • a molten slag storage means (tundish) 150 is provided as a pre-means for the air crushing means 110.
  • almost all of the manufacturing apparatus 100 is disposed in an underground pit (external leakage of operating noise can be suppressed by the underground arrangement).
  • the molten slag storage means 150 is a so-called tundish.
  • This tundish 150 has a rectangular parallelepiped shape of 200 cm ⁇ 100 cm ⁇ depth 100 cm, a nozzle made of a refractory is attached to the bottom, an opening 151 having a diameter of about 24 mm is provided, and the molten slag 200 is crushed. It can be supplied to the means 110.
  • the burner 152 which can adjust the temperature of the molten slag 200 stored in the tundish 150 is provided.
  • a dam and a damper are also provided to prevent inflow of massive foreign matter.
  • the air crushing means (ring nozzle) 110 is composed of a ring nozzle (total diameter 30 cm) in which 45 nozzles 111 are arranged radially toward the central portion.
  • the angle ⁇ (see FIG. 3) of each nozzle is set to 26 to 27 degrees.
  • the cooling means 120 includes a chamber 121, a water discharge means 124, and a steel conveyor 126.
  • the chamber 121 is a cylinder having a cylindrical portion 122 having a diameter of 400 cm and a length of 4.3 m, and a tapered portion 123 extending from the cylindrical portion 122 and having a lower end diameter of 150 cm and a length of 1.4 m.
  • the shape (the falling distance of the crushed slag immediately after the pulverizing means is 5.7 m).
  • the water discharge means 124 includes a water discharge nozzle 125.
  • the water discharge nozzle 125 is provided at the upper part of the steel conveyor 126 and is discharged to the slag particles 201 that have fallen on the steel conveyor 126 from the chamber 121.
  • the steel conveyor 126 is provided below the chamber 121, and the slag particles 201 dropped from the chamber 121 are conveyed to the wedge wire screen 132 through the steel conveyor 126.
  • the dewatering and conveying means 130 includes a wedge wire screen 132 having a length of 3 m in which inverted triangular wedge wires 131 are arranged with a gap of 0.2 mm, and a bucket conveyor 134 having a length of 12.5 m in the vertical direction. .
  • the wedge wire screen 132 is connected to the vibration generator 133 and is vibrated at a vibration (upward 45 degrees in the traveling direction) with a width of 6 mm and about 60 Hz.
  • the crushed slag 201 dropped through the cooling means by the vibration is transported while being dehydrated at a transport speed of about 12 m / min.
  • the bucket conveyor 140 is a conveyor that conveys the crushed slag 201 conveyed from the wedge wire screen 132 from the underground pit to the collection container 141 disposed on the ground, and has a conveying length of 9 m in the vertical direction. .
  • the air-cooled crushed slag 201 is discharged from the constricted portion 123, dropped onto the steel conveyor 126, and the cooling water discharged from the water discharge means 125 is 3 liters / minute and 0.3 to 0.00. It is bathed with a water discharge pressure of about 4 MPa and dropped onto the wedge wire screen 132 of the dewatering and conveying means 130.
  • the crushed slag 201 dropped and dehydrated, and the crushed slag 201 was sequentially sent to the bucket conveyor 140 by vibration.
  • the crushed slag 201 immediately after being dropped on the steel conveyor 126 was visually observed in a black-red state, and was observed to be a temperature of around 1000 ° C.
  • the conveyance time on the 3 m long wedge wire screen was 0.25 minutes, and was further conveyed by the bucket conveyor 140 at a speed of 8 m / min and collected in the collection container 141.
  • the temperature of the crushed slag immediately after being accommodated in this collection container was 99.5 degreeC.
  • the slag particles 201 were recovered from the recovery container 141, put into a separate grinding apparatus, and ground for 2 minutes under the conditions of an agitator rotation speed of 800 rpm and a bread rotation speed of 85 rpm. Next, slag particles obtained by passing through a 0.2 mm sieve were collected as a shot blasting abrasive.
  • Example 7 Component adjustment by silica sand
  • silica sand 93.1 mass in terms of SiO 2 with respect to 100 mass% in total
  • Al is contained in an amount of 1.8% by mass in terms of Al 2 O 3 ) to a ratio of 0.845 ton with respect to 10 ton of steelmaking slag to obtain molten slag 200 (using silica sand) Component adjustment).
  • a shot blasting abrasive was produced in the same manner as in the other experimental examples, except that molten slag whose components were adjusted using this silica sand was used.
  • Example 8-11 (component adjustment by waste glass for automobiles) Using the shot blasting abrasive manufacturing apparatus 100 of [1] above, 1 ton of waste glass discharged at the time of automobile scraping with respect to 10 ton of steelmaking slag is applied to the as-melted steelmaking slag obtained in an electric furnace. Thus, molten slag 200 was obtained (component adjustment was performed using waste glass for automobiles). Of the added automotive waste glass, only the glass part was analyzed, and as a result of component analysis, Si was 67.7% by mass in terms of SiO 2 and Na was Na 2 with respect to 100% by mass of the total automotive waste glass.
  • Fe + Si + Ca in Table 1 represents the total of the FeO equivalent content, the SiO 2 equivalent content, and the CaO equivalent content.
  • Mn / Fe in Table 1 represents MnO equivalent content / FeO equivalent content.
  • Ti / Fe in Table 1 represents TiO 2 equivalent content / FeO equivalent content.
  • Ti / Ca in Table 1 represents TiO 2 equivalent content / CaO equivalent content.

Abstract

 本発明の目的は、Fe濃度がFeO換算で6.0~35.0質量%と高い範囲においても圧壊強度が大きく、そのばらつきが小さい研削材を提供することである。本研削材は、Fe、Si、Ca、Al、Mg及びMnを含み、非晶質な連続相を有し、全体に対して、FeとSiとCaとを、各々FeO、SiO又はCaOの各換算による合計含有量が50.0質量%以上であるとともに、FeをFeO換算で6.0質量%以上35.0質量%以下、SiをSiO換算で15.0質量%以上35.0質量%以下、CaをCaO換算で10.0質量%以上35.0質量%以下含有する。本方法は、溶融スラグを風砕してスラグ粒子を形成する工程と、スラグ粒子を下方へ落下させながら、又は、下方へ落下させた後、水を吹き付けて冷却する工程と、スラグ粒子を搬送しながら脱水する工程と、を備える。

Description

ショットブラスト用研削材及びその製造方法
 本発明は、ショットブラスト用研削材及びその製造方法に関する。更に詳しくは、Fe成分、Si成分及びCa成分を主成分としたショットブラスト用研削材及びその製造方法に関する。
 製鋼スラグは、各種金属材料の溶解、精錬時などに原料の10~30質量%も生成される場合がある。このため、製鋼スラグを有効活用する方法が種々検討されている。なかでも、製鋼スラグを粒子化して利用することが考えられており、増量材や研削材等として用いられる。なかでも、研削材としては、圧壊強度が大きい粒子を得ることができ、粒子化した製鋼スラグを用いた研削材としては下記特許文献1及び下記特許文献2に開示された技術が知られている。
特開2001-47365号公報 特開2008-45002号公報
 製鋼スラグを利用した研削材では、Fe含有量が高い製鋼スラグを用いて、Fe濃度が高い研削材を製造しようとすると、圧壊強度が十分に得られなかったり、圧壊強度のばらつきを生じたりするという問題がある。このため、研削材を得るにはFe濃度の低い製鋼スラグを利用するか、又は、成分調整によってFe濃度を下げた調整スラグが利用されるのが現状である。
 上記特許文献1は、電気製鋼炉から排出される還元スラグの溶融物に、各種成分を含む粉化防止剤を反応させて得られた溶融スラグを冷却した硬化物を破砕して得られたショットブラスト用粒体が開示されている。しかし、特許文献1に開示された、研削材のFe濃度は、スケールなどの鉄酸化物が添加されてもなお、2.46~3.01質量%と低く、Fe濃度が高い研削材については検討がなされてない。
 また、上記特許文献2は、非晶質のブラスト用の研削材が開示されている。しかし、特許文献2に開示された、研削材のFe濃度は5質量%であり、Fe濃度が高い研削材については検討がなされてない。
 本発明は、上記従来の技術に鑑みてなされたものであり、Fe濃度がFeO換算で6~35質量%と高い範囲においても圧壊強度が大きいショットブラスト用研削材を提供することを目的とする。
 本発明は以下のとおりである。
 (1)請求項1に記載のショットブラスト用研削材は、Fe、Si、Ca、Al、Mg及びMnを含み、
 非晶質な連続相を有し、
 全体100質量%に対して、FeとSiとCaとを、各々FeO換算、SiO換算又はCaO換算による合計含有量が50.0質量%以上であるとともに、
 FeをFeO換算で6.0質量%以上35.0質量%以下、SiをSiO換算で15.0質量%以上35.0質量%以下、CaをCaO換算で10.0質量%以上35.0質量%以下含有することを要旨とする。
 (2)請求項2に記載のショットブラスト用研削材は、請求項1に記載のショットブラスト用研削材において、全体100質量%に対して、AlをAl換算で3.0質量%以上25.0質量%以下含有することを要旨とする。
 (3)請求項3に記載のショットブラスト用研削材は、請求項1又は2に記載のショットブラスト用研削材において、全体100質量%に対して、MnをMnO換算で2.0質量%以上20.0質量%以下含有することを要旨とする。
 (4)請求項4に記載のショットブラスト用研削材は、請求項1乃至3のうちのいずれかに記載のショットブラスト用研削材において、Tiを含み、
 全体100質量%に対して、TiをTiO換算で0.01質量%以上10.0質量%以下含有することを要旨とする。
 (5)請求項5に記載のショットブラスト用研削材は、請求項1乃至4のうちのいずれかに記載のショットブラスト用研削材において、Crを含み、
 全体100質量%に対して、CrをCr換算で0.5質量%以上5.0質量%以下含有することを要旨とする。
 (6)請求項6に記載のショットブラスト用研削材は、請求項1乃至5のうちのいずれかに記載のショットブラスト用研削材において、溶融スラグを風砕して得られたスラグ粒子であることを要旨とする。
 (7)請求項7に記載のショットブラスト用研削材は、請求項6に記載のショットブラスト用研削材において、溶融スラグが電気炉スラグであることを要旨とする。
 (8)請求項8に記載のショットブラスト用研削材は、請求項6又は7に記載のショットブラスト用研削材において、溶融スラグは、成分調整材として廃ガラス及び/又は珪砂を含むことを要旨とする。
 (9)請求項9に記載のショットブラスト用研削材は、請求項8に記載のショットブラスト用研削材において、廃ガラスが、自動車用ガラスであることを要旨とする。
 (10)請求項10に記載のショットブラスト用研削材の製造方法は、請求項6又は7に記載のショットブラスト用研削材の製造方法であって、
 前記溶融スラグを風砕してスラグ粒子を形成する風砕工程と、
 前記スラグ粒子を下方へ落下させながら、又は、下方へ落下させた後、水を吹き付けて、前記スラグ粒子を冷却する冷却工程と、
 前記スラグ粒子を搬送しながら脱水する脱水搬送工程と、を備えることを特徴とするショットブラスト用研削材の製造方法。
 (11)請求項11に記載のショットブラスト用研削材の製造方法は、請求項8又は9に記載のショットブラスト用研削材の製造方法であって、
 電気炉スラグに、廃ガラス及び/又は珪砂を成分調整材として添加する成分調整工程と、
 前記成分調整工程を経て得られた溶融スラグを風砕してスラグ粒子を形成する風砕工程と、
 前記スラグ粒子を下方へ落下させながら、又は、下方へ落下させた後、水を吹き付けて、前記スラグ粒子を冷却する冷却工程と、
 前記スラグ粒子を搬送しながら脱水する脱水搬送工程と、を備えることを要旨とする。
 本発明のショットブラスト用研削材によれば、FeO濃度が6.0~35.0質量%と高い範囲においても圧壊強度が大きいショットブラスト用研削材とすることができる。このため、研削性に優れるとともに、研削時の粒子の破壊が抑制され、粉塵量が少なく再利用性に優れたショットブラスト用研削材とすることができる。
 更に、本発明のショットブラスト用研削材が、溶融スラグを風砕して得られたスラグ粒子である場合には、溶融状態のスラグから直接に粒形状が得られているため、製鋼スラグの塊状物を破砕して粒子化した研削材に比べて本来的に優れた圧壊強度を得やすい。また、破砕によるロスなく、製鋼スラグをショットブラスト用研削材に変換でき、生産効率に優れる。
 溶融スラグが成分調整材として廃ガラスを含む場合には、廃ガラスを有効活用することができる。更に、その廃ガラスが自動車用ガラスである場合には、自動車用途の廃ガラスを有効活用することができる。特に自動車のスクラップ処理によって生じる自動車用ガラスは、取り除くことが難しい樹脂部品及び金属部品を伴っていることが多く、リサイクル活用が困難であり、埋め立て処分されている。しかし、本発明では、樹脂部品を伴っていても、有効な成分調整材として問題無く活用でき、ゴミ減量に寄与できる。
 本発明のショットブラスト用研削材の製造方法によれば、FeO濃度が6.0~35.0質量%と高い範囲においても圧壊強度が大きいショットブラスト用研削材を製造できる。このため、研削性に優れるとともに、研削時の粒子の破壊が抑制され、粉塵量が少なく再利用性に優れたショットブラスト用研削材を製造できる。
 また、このようなショットブラスト用研削材を連続的に製造でき、更には、小さなスペースで製造できる。そして、風砕スラグを下方へ落下させながら、又は、下方へ落下させた後、水を吹き付けて、スラグ粒を冷却する冷却工程を有することで、平面方向に大きなスペースを使用する必要がなく、小さなスペースでショットブラスト用研削材を安定して製造できる。
本発明のショットブラスト用研削材における相形態を説明する説明図であって、(a)及び(b)は本発明に含まれる相形態であり、(c)は本発明に含まれない相形態である。 実施例で用いたショットブラスト用研削材製造装置を模式的に示す説明図である。 図2のショットブラスト用研削材製造装置における風砕手段の近傍を模式的に示す説明図である。
 以下、本発明を詳しく説明する。
[1]ショットブラスト用研削材
 本発明のショットブラスト用研削材は、Fe、Si、Ca、Al、Mg及びMnを含み、
 非晶質な連続相を有し、
 全体100質量%に対して、FeとSiとCaとを、各々FeO換算、SiO換算又はCaO換算による合計含有量が50.0質量%以上であるとともに、
 FeをFeO換算で6.0質量%以上35.0質量%以下、SiをSiO換算で15.0質量%以上35.0質量%以下、CaをCaO換算で10.0質量%以上35.0質量%以下含有することを特徴とする。
 上記「非晶質な連続相」とは、即ち、主たる部位が非晶質であることを表す。具体的には、光学顕微鏡により、500倍に拡大して観察した切断面に、非晶質相(非晶質な連続相1)1相のみが認められる{図1(a)参照)か、或いは、結晶相2(結晶粒、結晶粒の大小は問わない)が認められる場合には、当該結晶相2が、連続相となった非晶質相1に囲まれて存在している{図1(b)参照)ことを表す。即ち、結晶相2が認められる場合には、非晶質相1中に結晶相2が分散された形態であることを表す。観察された相が非晶質であるか結晶であるかは、X線回折測定により判定される。即ち、X線回折測定により得られるチャートがハロー図形であれば非晶質であり、帰属可能なピークが認められれば結晶である。本発明のショットブラスト用研削材において、非晶質な連続相1によって囲まれて存在される結晶としては、例えば、スピネル結晶が挙げられる。
 一方、非晶質な連続相を有さない形態としては、図1(c)が例示される。即ち、結晶質な連続相3(微細結晶が集合されてなる多結晶相)を有する形態が挙げられる。この形態では、結晶相として連続相3の一部に、他部よりも粗大な結晶となって析出された粗大結晶4が認められる場合が多い。また、この形態においても、スピネル結晶などの結晶相2が析出されている場合がある。
 本発明のショットブラスト用研削材には、少なくとも、Fe、Si、Ca、Al、Mg及びMnが含まれる。
 更に、本ショットブラスト用研削材全体を100質量%とした場合に、Fe、Si及びCaは、各々FeO換算、SiO換算又はCaO換算による合計含有量において50.0質量%以上含有される。
 上記「Fe」は、本ショットブラスト用研削材全体を100質量%とした場合にFeO換算で6.0質量%以上35.0質量%以下含有される。従来、FeO換算含有量が6.0質量%以上と高い製鋼スラグから圧壊強度が大きいショットブラスト用研削材を得ることが困難であった。しかし、本発明の研削材の組成範囲であれば、圧壊強度が大きいショットブラスト用研削材とすることができる。具体的には、粒径2.0mmにおける圧壊強度を20kgf以上とすることができる。
 一方、FeのFeO換算含有量が35.0質量%を越えると、圧壊強度のばらつきを小さくすることが困難となる傾向にあるとともに、高い圧壊強度を十分に維持することが困難となる傾向にある。具体的には、粒径2.0mmにおける圧壊強度を20kgf以上に維持することが困難となる傾向にある。
 このFeのFeO換算含有量は、7.0質量%以上32.0質量%以下が好ましく、8.0質量%以上30.0質量%以下がより好ましく、9.0質量%以上28.0質量%以下が更に好ましく、10.0質量%以上26.0質量%以下が特に好ましい。
 上記「Si」は、本ショットブラスト用研削材全体を100質量%とした場合にSiO換算で15.0質量%以上35.0質量%以下含有される。この範囲では、特にFeのFeO換算含有量が6.0質量%以上35.0質量%以下と高い組成において、圧壊強度のばらつきを小さく抑えて、高い圧壊強度を得ることができる。SiのSiO換算含有量が15.0質量%未満であると、FeのFeO換算含有量が6.0質量%以上35.0質量%以下である組成を十分に非晶質に維持することが困難となる傾向にある。一方、SiのSiO換算含有量が35.0質量%を超えると、溶融状態におけるスラグの粘度が大きく風砕によって粒状化することが困難となる傾向にある。
 このSiのSiO換算含有量は、15.0質量%以上34.0質量%以下が好ましく、16.0質量%以上33.0質量%以下がより好ましく、16.0質量%以上32.0質量%以下が更に好ましく、17.0質量%以上30.0質量%以下がより更に好ましく、18.0質量%以上30.0質量%以下が特に好ましく、20.0質量%を超えて30.0質量%以下がより特に好ましく、21.0質量%以上29.0質量%以下がとりわけ好ましい。
 上記「Ca」は、本ショットブラスト用研削材全体を100質量%とした場合にCaO換算で10.0質量%以上35.0質量%以下含有される。この範囲では、特にFeのFeO換算含有量が6.0質量%以上35.0質量%以下と高い組成において、圧壊強度のばらつきを小さく抑えて、高い圧壊強度を得ることができる。CaのCaO換算含有量は、10.0質量%未満であってもショットブラスト用研削材として問題はないと考えられるものの、実際にはCaO換算含有量が10.0質量%未満となるようなスラグがほとんど得られない。一方、CaのCaO換算含有量が35.0質量%を超えると、溶融状態におけるスラグの粘度が大きく風砕によって粒状化することが困難となる傾向にある。また、スラグの融点が高くなる傾向にもあり好ましくない。
 このCaのCaO換算含有量は、11.0質量%以上34.0質量%以下が好ましく、12.0質量%以上33.0質量%以下がより好ましく、13.0質量%以上32.0質量%以下が更に好ましく、15.0質量%以上31.0質量%以下が特に好ましい。
 更に、これらFe、Si及びCaの三成分は、本ショットブラスト用研削材全体を100質量%とした場合に、FeのFeO換算含有量と、SiのSiO換算含有量と、CaのCaO換算含有量と、の合計含有量が50.0質量%以上である。この範囲では、特にFeのFeO換算含有量が6.0質量%以上35.0質量%以下と高い組成において、圧壊強度のばらつきを小さく抑えて、高い圧壊強度を得ることができる。尚、この合計含有量の上限は特に限定されないものの、通常、95.0質量%以下である。
 これらFe、Si及びCaの各々の上記酸化物換算による合計含有量は、50.0質量%以上95.0質量%以下が好ましく、53.0質量%以上90.0質量%以下がより好ましく、54.0質量%以上85.0質量%以下が更に好ましく、55.0質量%以上80.0質量%以下が特に好ましい。
 また、上記Fe、Si及びCaの三成分以外に含有されるAl、Mg及びMnの各含有量及び合計含有量は特に限定されない。
 上記Alは、Al換算で3質量%以上25質量%であることが好ましい。AlのAl換算含有量は3.0質量%未満であってもショットブラスト用研削材として問題はないと考えられるものの、実際にはAl換算含有量が3.0質量%未満となるようなスラグがほとんど得られない。一方、AlのAl換算含有量が25.0質量%を超えると、溶融状態におけるスラグの粘度が大きく風砕によって粒状化することが困難となる傾向にある。また、スラグの融点が高くなる傾向にもあり好ましくない。
 このAlのAl換算含有量は、3.0質量%以上25.0質量%以下が好ましく、4.0質量%以上23.0質量%以下がより好ましく、5.0質量%以上20.0質量%以下が更に好ましく、5.0質量%以上18.0質量%以下が特に好ましく、5.5質量%以上18.0質量%以下がより更に好ましく、6.0質量%以上17.0質量%以下が特に好ましく、6.0質量%以上16.5質量%以下がより特に好ましく、6.5質量%以上16.5質量%以下がとりわけ好ましい。
 上記Mgは、MgO換算で1質量%以上20.0質量%であることが好ましい。MgのMgO換算含有量は1.0質量%未満であってもショットブラスト用研削材として問題はないと考えられるものの、実際にはMgO換算含有量が1.0質量%未満となるようなスラグがほとんど得られない。一方、MgのMgO換算含有量が20.0質量%を超えると、溶融状態におけるスラグの粘度が大きく風砕によって粒状化することが困難となる傾向にある。
 このMgのMgO換算含有量は、1.0質量%以上20.0質量%以下が好ましく、2.0質量%以上17.0質量%以下がより好ましく、3.0質量%以上13.0質量%以下が更に好ましく、3.0質量%以上10.0質量%以下が特に好ましい。
 上記Mnは、MnO換算で2.0質量%以上20.0質量%であることが好ましい。MnのMnO換算含有量は1.0質量%未満であってもショットブラスト用研削材として問題はないと考えられるものの、実際にはMnO換算含有量が1.0質量%未満となるようなスラグがほとんど得られない。一方、MnのMnO換算含有量が20.0質量%を超えると、溶融状態におけるスラグの粘度が大きく風砕によって粒状化することが困難となる傾向にある。
 このMnのMnO換算含有量は、2.0質量%以上20.0質量%以下が好ましく、3.0質量%以上18.0質量%以下がより好ましく、4.0質量%以上15.0質量%以下が更に好ましく、5.0質量%以上13.0質量%以下が特に好ましい。
 更に、FeのFeO換算含有量に対するMnのMnO換算含有量の比(MnO換算含有量/FeO換算含有量)は、0.26以上1.50以下であることが好ましい。この範囲では風砕されたスラグ粒子がより球形に近い形状として得られる。この比は、0.28以上1.00以下であることがより好ましく、0.30以上0.90以下であることが特に好ましい。
 本発明のショットブラスト用研削材は、Fe、Si、Ca、Al、Mg及びMnを含んだうえで(通常、Oが含まれる)、更に他の成分を含有できる。他の成分としては、Ti、Cr、P、S等が挙げられる。これらの他の成分は1種のみが含有されてもよく、2種以上が同時に含有されてもよい。
 上記他の成分のなかでは、Tiが含まれることが好ましい。Tiが含まれることによって研削材が緻密化されるものと考えられ、研削材としての特性において有利に機能される。Tiは、TiO換算で0.01質量%以上10.0質量%であることが好ましい。この範囲では、Tiを含むことによる効果をより効果的に得ることができる。
 このTiのTiO換算含有量は、0.1質量%以上10.0質量%以下が好ましく、0.1質量%以上8.0質量%以下がより好ましく、0.3質量%以上4.0質量%以下が更に好ましく、0.4質量%以上1.0質量%以下が特に好ましい。
 更に、FeのFeO換算含有量に対するTiのTiO換算含有量の比(TiO換算含有量/FeO換算含有量)は、0.02以上0.10以下であることが好ましい。この範囲では風砕されたスラグ粒子がより球形に近い形状として得られる。この比は、0.02以上0.09以下であることがより好ましく、0.02以上0.08以下であることが特に好ましい。
 また、CaのCaO換算含有量に対するTiのTiO換算含有量の比(TiO換算含有量/CaO換算含有量)は、0.04以上0.13以下であることが好ましい。この範囲では風砕されたスラグ粒子がより球形に近い形状として得られる。この比は、0.04以上0.10以下であることがより好ましく、0.04以上0.09以下であることが特に好ましい。
 上記他の成分のなかでは、MnとともにCrが含まれることが好ましい。Crが含まれることによって研削材が緻密化されるものと考えられ、研削材としての特性において有利に機能される。Crは、Cr換算で0.5質量%以上5.0質量%であることが好ましい。この範囲では、Crを含むことによる効果をより効果的に得ることができる。
 このCrのCr換算含有量は、1.0質量%以上4.0質量%以下が好ましく、1.2質量%以上3.7質量%以下がより好ましく、1.3質量%以上3.5質量%以下が更に好ましい。
 更に、本発明のショットブラスト用研削材は、溶融スラグを風砕して得られたスラグ粒子であることが好ましい。溶融スラグを風砕して得たスラグ粒子(ショットブラスト用研削材)である場合は、溶融状態のスラグから直接に粒形状が得られるため、スラグ塊状物を破砕して粒子化した研削材に比べて本来的に高い圧壊強度を得ることができる。即ち、スラグ塊状物を破砕して粒子化した研削材では、スラグ塊状物自体が大きいために冷却に要する時間が長くなり、スラグ塊状物内で結晶相を生じる可能性がより高くなる。また、冷却された後に破砕されるために、冷却によって生じたスラグ塊状物内の応力バランスが崩れ易い。更に、破砕中に潜在的な傷(破壊基点)が形成される場合がある。これらのことから、研削時の衝撃で研削材粒子が破壊され易くなる。一方、溶融スラグを風砕して得たスラグ粒子からなるショットブラスト用研削材は、冷却時に得られる粒子の形態を高い確率で維持したまま、研削材粒子にそのまま利用できる。このために、冷却時に得られたスラグ粒子内の応力バランスが維持されより高い圧壊強度を保持でき、圧壊強度のばらつきを小さく抑えることができる。加えて、破砕によるロスなく、製鋼スラグをショットブラスト用研削材に変換でき、生産効率に優れる。
 また、上記溶融スラグは、電気炉スラグであることが好ましい。即ち、通常、製鋼スラグには、高炉スラグ、転炉スラグ及び電気炉スラグが、含まれるが、このうちの電気炉スラグであることが好ましい。更に、電気炉スラグには、酸化スラグ及び還元スラグが含まれるが、このうちの酸化スラグであることが好ましい。即ち、電気炉酸化スラグであることが好ましい。電気炉スラグ、特に電気炉酸化スラグは、鉄成分の含有量が多いのが特徴であるため、本願発明のショットブラスト用研削材に用いる溶融スラグとしてとりわけ適しているからである。
 更に、上記溶融スラグは、成分調整材として廃ガラス及び/又は珪砂を含むことができる。このうち、廃ガラスは、通常、SiO、CaO、Al及びNaO等を含む。これらのなかでも、特にSiO及びNaOの割合が多いのが特徴である。廃ガラスは、非晶質な材料であるとともに、融点が低く溶融スラグ内に容易に溶解させることができるために、溶融スラグの成分調整を容易に行う成分調整材として適している。
 また、上記廃ガラスは、自動車用ガラスであることが好ましい。自動車用ガラス(自動車用途の廃ガラス)は、自動車のスクラップ処理によって生じる自動車に利用されていたガラスである。即ち、例えば、フロントガラス、リアガラス、サイドガラス、ランプガラス等が含まれる。これらは、1種のみが含まれてもよく、2種以上が含まれてもよい。自動車用ガラスは、通常、ガラス以外の部品類が併存されていることが多い。ガラス以外の部品類は自動車への組み付けに利用されていた部品であり、樹脂部品や、金属部品等が含まれる。従来、自動車のスクラップ処理によって生じた自動車用途の廃ガラスは、これらのガラス以外の部品を伴っていることから、再利用が困難であり、埋め立て処分ことが一般的である。これに対して、溶融スラグに配合された場合には、上記部品類の存在は研削材に対して影響することがない。即ち、1500℃以上の高温で溶融状態にあるスラグ内へ自動車用途の廃ガラスを投入することによって、樹脂部品等は焼失され、金属部品等は溶融されてスラグ内に取り込まれることとなる。更に、ガラスは、融点が低い非晶質な成分であることから、溶融スラグ内にスムーズに溶解されて、エネルギー効率よく溶解させることができるとともに、溶融スラグ内のSiO成分の割合を増加させることができる。更に、自動車用ガラスは、通常、破壊された場合に破片が粒状となる熱処理ガラスが採用されているために、溶融スラグに対して添加する形態として極めて好ましい。
 本発明のショットブラスト用研削材を構成する研削材粒子のビッカース硬度は650Hv以上(特に660~900Hv、更には670~800Hv、とりわけ680~750Hv)とすることができる。
 更に、研削材粒子1粒の圧壊強度は、直径2mm以上の粒子において、18kgf(176.4N)以上、更には、20kgf(196N)以上{特に30~70kgf(294~686N)、更には45~60kgf(441~588N)}とすることができる。尚、例えば、直径1mm以上の粒子においては7kgf(68.6N)以上{特に7~15kgf(68.6~147N)、更には8~13kgf(78.4~127.4N)}とすることができる。尚、上記圧壊強度は1kgfが9.8Nと換算される。
 上記各値は、JIS Z0312における3.(b)に定義された「ショット」に分類される研削材粒子を用いて測定された値である。また、上記ビッカース硬度は、無作為に選択した10個の研削材粒子を各々JIS Z2244に準拠して測定し、得られたビッカース硬さの平均値である。一方、圧壊強度は、無作為に選択した10個の研削材粒子を万能試験機に供し、各1粒の研削材粒子に荷重を負荷して圧壊したときの荷重値の平均値である。
 本ショットブラスト用研削材を構成する研削材粒子の平均粒径は特に限定されず、用途に適した粒径とすればよいが、通常、平均粒径5mm以下である。この範囲では、本ショットブラスト用研削材による高い圧壊強度を維持して低粉塵となりやすい。この平均粒径は、0.05~4.0mmが好ましく、0.1~3.0mmがより好ましく、0.2~2.0mmが特に好ましい。尚、この平均粒径は、JIS Z0312(ブラスト処理用非金属系研削材)内の粒度に準用されたJIS Z8815によって測定される積算ふるい下百分率における50%粒度を意味する。
[2]ショットブラスト用研削材の製造方法
 本方法(1)は、本ショットブラスト用研削材の製造方法であって、
 溶融スラグを風砕してスラグ粒子を形成する風砕工程と、
 スラグ粒子を下方へ落下させながら、又は、下方へ落下させた後、水を吹き付けて、スラグ粒子を冷却する冷却工程と、
 スラグ粒子を搬送しながら脱水する脱水搬送工程と、を備えることを特徴とする。
 また、本方法(2)は、本ショットブラスト用研削材の製造方法であって、
 電気炉スラグに、廃ガラス及び/又は珪砂を成分調整材として添加する成分調整工程と、
 成分調整工程を経て得られた溶融スラグを風砕してスラグ粒子を形成する風砕工程と、
 スラグ粒子を下方へ落下させながら、又は、下方へ落下させた後、水を吹き付けて、スラグ粒子を冷却する冷却工程と、
 スラグ粒子を搬送しながら脱水する脱水搬送工程と、を備えることを特徴とする。
 上記「成分調整工程」は、電気炉スラグに、廃ガラス及び/又は珪砂を成分調整材として添加する工程である。このうち、廃ガラスは、通常、SiO、CaO、Al及びNaO等を含む。これらのなかでも、特にSiO及びNaOの割合が多いのが特徴である。廃ガラスは、非晶質な材料であるとともに、融点が低く溶融スラグ内に容易に溶解させることができるために、溶融スラグの成分調整を容易に行う成分調整材として適している。
 廃ガラスの組成は特に限定されないものの、廃ガラス全体100質量%に対して、SiのSiO換算含有量、CaのCaO換算含有量、AlのAl換算含有量、NaのNaO換算含有量の合計が70.0質量%以上(通常、99.9質量%以下)であることが好ましく、80.0~98.0質量%であることがより好ましく、85.0~95.0質量%であることが更に好ましい。
 また、廃ガラス全体100質量%に対して、SiのSiO換算含有量と、NaのNaO換算含有量と、は合計で50.0質量%以上(通常、90.0質量%以下)であることが好ましく、60.0~90.0質量%であることがより好ましく、70.0~85.0質量%であることが更に好ましい。とりわけ、廃ガラス全体100質量%に対して、SiのSiO換算含有量は50.0質量%以上(通常、80.0質量%以下)であることが好ましく、55.0~80.0質量%であることがより好ましく、60.0~75.0質量%であることが更に好ましい。
 この工程で添加する廃ガラス及び/又は珪砂の量は特に限定されず、結果的に前述の本発明のショットブラスト用研削材に示した組成範囲となるように添加することができる。即ち、Fe、Si、Ca、Al、Mg及びMnを含むとともに、全体100質量%に対して、FeとSiとCaとを、各々FeO換算、SiO換算又はCaO換算による合計含有量が50.0質量%以上であり、且つ、FeのFeO換算含有量が6.0質量%以上35.0質量%以下、SiのSiO換算含有量が15.0質量%以上35.0質量%以下、CaのCaO換算含有量が10.0質量%以上35.0質量%以下となるように添加される。
 また、廃ガラスは、自動車用ガラスであることが好ましい。自動車用ガラス(自動車用途の廃ガラス)は、自動車のスクラップ処理によって生じる自動車に利用されていたガラスである。即ち、例えば、フロントガラス、リアガラス、サイドガラス、ランプガラス等が含まれる。これらは、1種のみが含まれてもよく、2種以上が含まれてもよい。自動車用ガラスは、通常、ガラス以外の部品類が併存されていることが多い。ガラス以外の部品類は自動車への組み付けに利用されていた部品であり、樹脂部品や、金属部品等が含まれる。従来、自動車のスクラップ処理によって生じた自動車用途の廃ガラスは、これらのガラス以外の部品を伴っていることから、再利用が困難であり、埋め立て処分することが一般的である。これに対して、溶融スラグに配合された場合には、上記部品類の存在は研削材に対して影響することがない。即ち、1500℃以上の高温で溶融状態にあるスラグ内へ自動車用途の廃ガラスを投入することによって、樹脂部品等は焼失され、金属部品等は溶融されてスラグ内に取り込まれることとなる。更に、ガラスは、融点が低い非晶質な成分であることから、溶融スラグ内にスムーズに溶解されて、エネルギー効率よく溶解させることができるとともに、溶融スラグ内のSiO成分の割合を増加させることができる。更に、自動車用ガラスは、通常、破壊された場合に破片が粒状となる熱処理ガラスが採用されているために、溶融スラグに対して添加する形態として極めて好ましい。
 上記「風砕工程」は、溶融スラグを風砕してスラグ粒子を形成する工程である。風砕は、気体を用いて粉砕することを表し、通常、ノズルから放出された気体前に溶融スラグを供給して行う。この際に用いるノズルの形状及び数等は特に限定されない。即ち、例えば、中心部に向かって気体が放出されるように放射状に配置された複数のノズルを有するリングノズル、中心部に向かって気体が放出されるように対向して配置された複数のノズルを有する平行ノズル等が挙げられる。これらのなかでは、上記リングノズル(図2及び図3参照)が好ましい。リングノズルは放射状に全周にわたってノズルを均等な配置で備えることができ、溶融スラグをより均一に細粒化でき、均質で優れた機械的強度を有するスラグ粒子を得る目的において効果的である。
 このリングノズルに設けられるノズル(気体放出口)の数は特に限定されないが、通常、20~100本であり、20~70本が好ましく、30~60本がより好ましい。この範囲ではより安定した風砕を行うことができる。
 また、各ノズルの中心部に対する角度α(図3参照)も特に限定されないが、溶融スラグの落下方向(通常、地面に対して垂直方向)に対して、通常、5~45度の角度であり、15~35度が好ましく、20~30度がより好ましい。この範囲であれば、溶融スラグを風砕し易い。また、風砕されたスラグ粒子の上方へのハネ上がりを防止でき、更に、まだ高温状態にあるスラグ粒子同士がくっつくことを抑制し易い。
 更に、ノズルからの気体放出圧力は特に限定されないが、通常、1本のノズルあたり3~25kgf/cmであり、5~23kgf/cmが好ましく、7~20kgf/cmがより好ましい。この範囲では特に小径のスラグ粒を形成し易く、また、風砕スラグがチャンバー内壁等に衝突されて得られるスラグ粒の形状が崩れることを抑制できる。
 また、上記気体の放出量は特に限定されないが、落下されるスラグ粒子の量及び粒子径等によって適宜とすることが好ましいが、例えば、溶融スラグ量が60分あたりに2000~4000kg(更には2500~3000kg)であれば気体放出量は60分あたりに600~6000キロリットル(より好ましくは800~4000キロリットル、更に好ましくは1250~3500キロリットル)とすることが好ましい。また、風砕に用いる上記気体の種類は特に限定されず、各種の気体を用いることができるが、装置を簡便な構造とするために空気を用いることが好ましい。
 また、用いる溶融スラグの温度は特に限定されないが、本発明で用いる溶融スラグは、通常、1150~1600℃(より好ましくは1200~1550℃、更に好ましくは1250~1500℃)であることが好ましい。更に、用いる製鋼スラグはどのようなスラグであってもよいが、前述のように、溶融スラグは、電気炉スラグであることが好ましい。即ち、通常、製鋼スラグには、高炉スラグ、転炉スラグ及び電気炉スラグが、含まれるが、このうちの電気炉スラグであることが好ましい。更に、電気炉スラグには、酸化スラグ及び還元スラグが含まれるが、このうちの酸化スラグであることが好ましい。即ち、電気炉酸化スラグであることが好ましい。電気炉スラグ、特に電気炉酸化スラグは、鉄成分の含有量が多いのが特徴であるため、本発明においてはとりわけ適しているからである。
 上記「冷却工程」は、風砕されたスラグ粒子を下方に落下させながら、又は、下方へ落下させた後、水を吹き付けて、スラグ粒子を冷却する工程である。当然ながら、風砕されたスラグ粒子を下方に落下させながら水を吹き付けてスラグ粒子を冷却するとともに、下方へ落下させた後に更に水を吹き付けてスラグ粒子を冷却することもできる。この冷却工程を行うことでスラグ粒子を適度に冷却できる。
 この冷却工程によれば、スラグ粒子の外表面部は冷却されても、芯部までは冷却されない状態で、スラグ粒子を脱水搬送工程へ送ることができる。即ち、通常、本発明で用いるスラグの熱伝導率は0.3~2.0W/(m・K)程度である。従って、過度な冷却によってスラグ粒子が崩壊されることなく、また、過度に長い放冷工程を要したり、再熱処理工程を要したりといった製造方法の複雑化や装置の大型化などを招かない。
 一般に冷却工程で行う冷却方法としては、水冷及び空冷等が考えられる。本方法では水冷を用いる。研削材の製造においては、空冷(自然放熱、気体吹き付け等)のみでは冷却効率が十分に得られず、除熱のために多大な空間(特に大きな面積や長い冷却距離)を要することとなる。しかし、本方法では、小さなスペースで十分な冷却効果を得ることができる。
 また、水冷を行う場合には、上記の冷却方法以外にも、省スペース化できる方法としてチャンバー内に貯水された水にスラグ粒子を落下させる方法も考えられる。しかし、この方法では、過度に急速な冷却がなされるためにスラグ粒子が崩壊してしまう(変形及び割れを生じ易い)。これに対して、本方法では、適度な冷却を行うことができ、スラグ粒子を崩壊させることがない。更に、水中を通過せず、また、垂直下方へ気体中を落下されるためにスラグ粒子の形状をより球形状に近い形に形成し易い。従って、高い機械的強度を発揮できる形状を保持し易い(図2参照)。
 更に、水にスラグ粒子を落下させる方法では、チャンバー内に水を貯留するためにチャンバー下端を閉じる必要があり、製造をバッチ式で行うこととなる。これに対して、本方法では、チャンバーを開放した状態で使用でき、連続的に研削材を製造でき、高い製造効率を発揮できる(図2参照)。特に連続稼働されている製鋼施設等においては、スラグを保管するコストを削減できる等のメリットがある。
 上記冷却工程を行う際の落下距離は、特に限定されないが、通常、3m以上(好ましくは4~10m、更に好ましくは4.5~8m、特に好ましくは5~7m、通常40m以下)である。落下距離がこの範囲であれば、冷却不足を防止しつつ、小さなスペースで冷却を行うことができる。従って、装置をコンパクトに保ちつつ、優れた機械的強度を有するショットブラスト用研削材を高効率に製造できる。
 特に下方へ落下させた後に水を吹き付けてスラグ粒子を冷却する場合には、落下後においても未固化である粒径の大きな粒子同士の融着を防止することができ、回収製品の歩留を向上させることができる。風砕されたスラグ粒子を下方に落下させた後に水を吹き付けてスラグ粒子を冷却する方法としては、チャンバーを通過したスラグ粒子をスチールコンベア上に落下させて、スチールコンベアで搬送しながら、コンベア上のスラグ粒子に水を吹き付ける方法が挙げられる。この際は、スチールコンベアの進行方向と同じ方向(即ち、スラグ粒子の進行方向)へ向かって水を吹き付けることが好ましい。水の吹き付け量は特に限定されないが、通常、風砕されたスラグ粒子1kgに対して、水0.08リットル以上(好ましくは0.03~0.30リットル、更に好ましくは0.05~0.20リットル)を用いることが好ましい。
 上記「脱水搬送工程」は、冷却工程を経たスラグ粒子を搬送しつつ、冷却工程で付着された水をスラグ粒子から除去する工程である。この脱水搬送工程により、スラグ粒子から水が除去(完全な除去であってもなくてもよい)され、更に熱が放散される。この脱水搬送工程では、上記冷却工程から送られたスラグ粒子は、通常、まだ水を気化させるのに十分な熱を有しているため、脱水される水の一部は気化により除去されることとなる。このため、脱水搬送工程ではスラグ粒子の熱の一部は水の気化熱によっても除去されているものと考えられる。即ち、冷却工程からこの脱水搬送工程へ送られるスラグ粒子の温度は特に限定されないが、通常、500℃以上(好ましくは500~1200℃)であることが好ましいものと考えられる。
 また、この脱水搬送工程を経た後に回収されるスラグ粒子の温度は70℃以上(より好ましくは80~800℃、更に好ましくは85~500℃、特に好ましくは90~200℃、とりわけ100~150℃)であることが好ましい。この範囲では、得られるスラグ粒子を非晶質に保持でき、特に優れた機械的強度を得ることができる。この脱水搬送工程における搬送時間、即ち、放熱時間は特に限定されないが、通常、0.5~10分(好ましくは0.5~3分、より好ましくは1~2分)である。この範囲では、特に優れた機械的強度を有するスラグ粒子を得ることができる。
 本方法では、上記の風砕工程、冷却工程、及び脱水搬送工程以外にも他の工程を備えることができる。他の工程としては、磨砕工程及び分別工程等が挙げられる。
 磨砕工程(整粒工程)は、脱水搬送工程を経て得られたスラグ粒子同士を擦り合わせる工程である。この磨砕工程を行うことにより、十分に冷却される前に複数のスラグ粒子同士が連結されてなる等した異形スラグ粒子をより球形状に近い形へ成形することができる。即ち、異形スラグ粒子の連結部から粒子状に分割されて正常な粒形に成形することができる。例えば、針状、ウィスカー状及びなみだ形のスラグ粒子を磨砕することで、完成品のスラグ粒子の形状をより球形状に近づけることができる。
 上記分別工程は、脱水搬送工程の後、磨砕工程を備える場合には磨砕工程の後、に設けることができる工程であり、得られたスラグ粒子から目的とする形状及び/又は粒径のスラグ粒子を分別する工程である。この工程では、通常、篩を用いて分別される。
 本方法では、どのような装置を用いて、ショットブラスト用研削材を製造してもよいが、上述の各工程を確実に行うために、通常、溶融された製鋼スラグ(溶融スラグ)200を風砕してスラグ粒子201を形成する風砕手段110と、スラグ粒子201を落下させながら、又は、下方へ落下させた後、水を吹き付けて、スラグ粒子201を冷却する冷却手段120と、スラグ粒子201を搬送しながら冷却に用いられた水をスラグ粒子201から脱水する脱水搬送手段130と、を備えたショットブラスト用研削材の製造装置100を用いることが好ましい(図2及び図3参照)。
 上記風砕手段110は、溶融スラグ200を風砕してスラグ粒子201を形成する手段である。この風砕はノズル111から放出された気体を用いて行うものである。風砕に用いるノズル111の形状及び数等は特に限定されないが、前述のように、リングノズル110が好ましい。このリングノズル110の配設場所は特に限定されないが、省スペースのために後述するチャンバー121の上端に配置されることが好ましい。
 上記冷却手段120は、スラグ粒子201を落下させながら、又は、下方へ落下させた後、水を吹き付けて、スラグ粒子201を冷却する手段である。従って、通常、スラグ粒子201を落下させるチャンバー121と、スラグ粒子201に水を吹き付ける放水手段124とを備える。チャンバー121を備えることにより、スラグ粒子201を周囲の環境に影響されることなく落下させることができる(落下中にも放冷される)。更に、放水手段124による冷却効果も向上される。
 このチャンバー121の形状は特に限定されないが、通常、縦長形状である(図2参照)。縦長形状であることにより、落下距離を確保しつつ、省スペース化できる。この落下距離は、前述のように、通常、3m以上(好ましくは4~10m、更に好ましくは4.5~8m、特に好ましくは5~7m、通常40m以下)である。従って、チャンバー121内の空間も、通常、縦方向にこの距離を有する。横方向の形状(スラグ粒子の落下方向の断面形状)は特に限定されず、円形であってもよく、矩形であってもよく、その他の形状であってもよいが、円形であることが好ましい(即ち、円筒形状を呈した円筒部分122)。スラグ粒子の回収効率に優れるためである。例えば、円形である場合(円形でない場合には内部の最大長)、その主部における内直径は1~10m(より好ましくは2~8m、更に好ましくは3~6m)であることが好ましい。また、チャンバー121の下端はスチールコンベア126又は脱水搬送手段130へ向けて先窄まり部123を有することが好ましい。更に、前述のようにチャンバー121の下端は、スチールコンベア126又は脱水搬送手段130に対して開放された状態であることが好ましい。これにより連続式でスラグ粒子の製造を行うことができ、また、得られるスラグ粒子の機械的強度を高く保つことができる。
 上記放水手段124は、スラグ粒子201に対して放水することができればよく、その形態及び大きさ等は特に限定されないが、この放水手段124による放水は、図2に示す様に、チャンバー121の下方に設けられたスチールコンベア126の上で行なうが好ましい。即ち、チャンバー121からスチールコンベア126上に落下したスラグ粒子201に対して放水ノズル125から放水された水を浴びせて冷却するのが好ましい。
 上記脱水搬送手段130は、スラグ粒子201を搬送しながら冷却に用いられた水をスラグ粒子から脱水する手段である。この脱水搬送手段130は、脱水機能と搬送機能との両方を併せ有するため、スラグ粒子201を連続的に製造することができる。即ち、風砕されたスラグ粒子201を落下させつつ又は落下させた後に水を吹き付けて冷却した後、スラグ粒子を濡れたままの状態で滞留させることがなく、引き続いて脱水が行われ、更には搬送される。このため、スラグ粒子201を過度に急激に冷却することがなく、優れた機械的強度を有するスラグ粒子201が得られることとなる。更にこのようなスラグ粒子を安定的に効率よく連続的に製造できる。
 また、上記脱水搬送手段130における脱水機能及び搬送機能は、脱水搬送手段130の全体にわたって備えられていてもよく(即ち、例えば、全体がウェッジワイヤスクリーン132からなる場合)、一部のみが両機能を備え、他部は搬送機能のみを備えるものであってもよい(即ち、例えば、前部はウェッジワイヤスクリーンからなり、後部はスチールコンベア等の耐熱コンベアからなる場合)。後者のように、後部に搬送機能のみを備えた脱水搬送手段130であっても、放熱されながらスラグ粒子201がこの段階で有している熱により水が蒸散され得るからである。通常、この脱水搬送手段130において、スラグ粒子201がこの段階で有している熱により水を蒸散させることができない程度(例えば70℃未満)にまで既に冷却されている場合に比べて、この段階で水を蒸散させることができる程度(例えば80℃以上、好ましくは100℃以上)の温度を保持している場合は、より高い機械的強度を有するスラグ粒子が得られる傾向にある。
 この脱水搬送手段130においては、冷却手段120から移行された直後のスラグ粒子201では800℃以上の温度が保持されていることが好ましい。更に、この脱水搬送手段130では130~600℃/分(より好ましくは150~400℃/分、更に好ましくは180~300℃/分、特に好ましくは180~250℃/分)の速度で冷却(通常、放冷)されることが好ましい。この範囲では、十分な脱水及び冷却を行いつつ、より短い搬送距離とすることができ、製品品質と省スペース化とを特に効果的に両立させることができる。
 また、前記のように脱水搬送手段130が、後半部分に脱水機能を備えず、搬送機能を備える搬送部位を備える場合、この搬送部位は平面方向へスラグ粒子を搬送するものであってもよいが、上下方向へ搬送するものとすることができる。即ち、例えば、バケットコンベア134等が挙げられる。これにより更に省スペース化を達することができる。
 上記脱水搬送手段130の形態は特に限定されないが、脱水搬送手段130は、脱水搬送手段130の少なくとも一部として、スラグ粒子201が通過されない間隔で並べられたウェッジワイヤ131を備えるウェッジワイヤスクリーン132を備えることが好ましい。更に、一部のみにウェッジワイヤスクリーン132を備える場合、ウェッジワイヤスクリーン132は脱水搬送手段130における先端側(冷却手段により近い側)に設けられることが好ましい。ウェッジワイヤスクリーン132は、簡便な設備で脱水及び搬送を行うことができるからである。
 このウェッジワイヤスクリーン132に用いるウェッジワイヤ131の形態は特に限定されないが、目的とするスラグ粒子201の平均粒径が5mm以下である場合には、0.1~4.0mm(好ましくは0.1~1.0mm、更に好ましくは0.2~0.5mm)のスクリーン間隔であるウェッジワイヤ131を用いることが好ましい。後工程で磨砕工程(整粒工程)を行わなくともより球形状に近いスラグ粒子201を得やすいからである。
 上記ウェッジワイヤスクリーン132を用いる場合、このウェッジワイヤスクリーン132は脱水を振動により行うことができるものであることが好ましい。また、この振動により同時にスラグ粒子201を搬送できるものであることが好ましい。従って、脱水搬送手段130は、振動発生手段133を備え、発生された振動を上記ウェッジスクリーン132へ伝達できるものであることが好ましい。
 本方法で用いる装置100は、風砕手段110、冷却手段120及び脱水搬送手段130以外にも他の手段を備えることができる。他の手段としては、風砕手段110に対して溶融スラグ200を適量ずつ送るための溶融スラグ貯留手段150が挙げられる。この溶融スラグ貯留手段150は、更に、貯留された溶融スラグ200が放冷されることを防止するためにバーナー及び/又はヒータ等の加熱手段152を備えることができる。この溶融スラグ貯留手段150としては、通常、タンディッシュ150が用いられる。タンディッシュ150の容量及び形状等は特に限定されないが、下方に溶融スラグを流下させることができる開口部を備えることが好ましい。更に、この開口部は、円形であり、且つ内直径が10~50mm(より好ましくは12~35mm、更に好ましくは16~28)であることが好ましい。また、このタンディッシュ150の深さは50~200cm(より好ましくは70~150cm、更に好ましくは80~120cm)であることが好ましい。更に、このタンディッシュ150からの溶融スラグの流出速度は、5~40リットル/分(より好ましくは7~30リットル/分、更に好ましくは8~15リットル/分)とすることが好ましい。
 更に、他の手段としては、脱水搬送手段130で搬送されるスラグ粒子201を更に冷却するために放水を行う搬送時放水手段を備えることができる。搬送時放水手段の形態等は限定されないが、例えば、脱水搬送手段130(例えば、ウェッジワイヤスクリーン132)に平行して放水管を配置することができる。
 また、その他の手段としては、熱交換手段を備えることができる。熱交換手段は溶融スラグ200がスラグ粒子201となる過程において装置(ショットブラスト用研削材の製造装置100)内で放出される熱を回収する手段である。熱回収手段の形態等は限定されないが、公知の各種熱回収器を装置の各所(例えば、チャンバー121部位、タンディッシュ150部位等)に設けることにより熱回収手段とすることができる。熱回収手段を備えることにより排熱を効率的に利用でき、また冷却効率を向上させることもできる。
 更に、その他の手段として、前述の本方法における磨砕工程を行うための磨砕手段を備えることができる。磨砕手段として、アイリッヒミキサー及びモルタルミキサー等の器機を利用することができる。更に、この磨砕手段の後に、本方法を行うための分別手段を備えることができる。分別手段としては、振動篩及びモノレイヤー等の篩器機を利用することができる。
 以下、本発明を実施例によって具体的に説明する。
[1]ショットブラスト用研削材の製造
 図2に示すショットブラスト用研削材製造装置100であって、図3に示す風砕手段120近傍構造を有する装置を用いて、ショットブラスト用研削材201を製造した。
 図2に示すショットブラスト用研削材製造装置100は、風砕手段110と、冷却手段120と、脱水搬送手段130と、回収容器141と、を備える。更に、風砕手段110の前手段として溶融スラグ貯留手段(タンディッシュ)150を備える。また、この製造装置100は、そのほぼ全体が地下ピット内に配設されている(地下配設により作動音の外部漏出を抑制できる)。
 上記溶融スラグ貯留手段150は、いわゆるタンディッシュである。このタンディッシュ150は、200cm×100cm×深さ100cmの直方体形状であり、底部には耐火物で出来たノズルが付設されており直径約24mmの開口部151が設けられ、溶融スラグ200を風砕手段110へ供給できるようになっている。更に、タンディッシュ150内に貯留された溶融スラグ200の温度を調節できるバーナー152を備えている。また、塊状異物の流入を防止するために図示されない堰及びダンパーも備えている。
 上記風砕手段(リングノズル)110は、45本のノズル111が中心部方向に向けて放射状に配列されたリングノズル(全形直径30cm)からなる。各ノズルの角度α(図3参照)は各々26~27度に設定されている。
 上記冷却手段120は、チャンバー121、放水手段124及びスチールコンベア126を備える。このうちチャンバー121は、直径が400cm且つ長さ4.3mの円筒部分122と、この円筒部分122から延設された下端直径が150cm且つ長さ1.4mの先窄まり部123とを有する筒形状(風砕手段直後からの風砕スラグの落下距離は5.7m)である。放水手段124は、放水ノズル125を備える。この放水ノズル125はスチールコンベア126の上部に設けられ、チャンバー121からスチールコンベア126上に落下したスラグ粒子201に放水される。スチールコンベア126はチャンバー121の下方に設けられており、チャンバー121から落下したスラグ粒201はスチールコンベア126を介して、ウェッジワイヤスクリーン132へと搬送される。
 上記脱水搬送手段130は、逆三角形状のウェッジワイヤ131が0.2mmの間隙を持って配列された長さ3mのウェッジワイヤスクリーン132と、縦方向へ長さ12.5mバケットコンベア134とからなる。このうちウェッジワイヤスクリーン132は、振動発生装置133と接続されて、振動(進行方向上向き45度)幅6mm且つ60Hz程度で振動されるようになっている。また、このウェッジワイヤスクリーン132上では、上記振動により冷却手段を経て落下された風砕スラグ201が約12m/分の搬送速度で、脱水されながら搬送されるようになっている。一方、バケットコンベア140は、ウェッジワイヤスクリーン132から搬送されてきた風砕スラグ201を地下ピット内から地上に配置された回収容器141へ運び上げるコンベアであり、縦方向に9mの搬送長さを有する。
[2]ショットブラスト用研削材の製造
(1)実験例1-6、実験例12-16
 上記[1]のショットブラスト用研削材製造装置100を用い、電気炉で得られた製鋼スラグを原料として用いてショットブラスト用研削材を以下のようにして製造した。
 即ち、電気炉で得られた熔解されたままの溶融スラグ200、を上記[1]の製造装置100のタンディッシュ150内へ約3トン投入した。
 溶融スラグ200は、タンディッシュ150の底部の開口部から流下されてチャンバー121内に供給され、その後、リングノズル110の中心部を通過した。リングノズル110からは16kgf/cmの気体放出圧力で空気を放出させた。これにより、リングノズル110内を通過する溶融スラグ200は風砕により粒子形状となってチャンバー121内を落下した。チャンバー121内では、空冷により風砕スラグ201の冷却を行った。
 更に、空冷された風砕スラグ201は、先窄まり部123から排出されて、スチールコンベア126上に落下され、放水手段125から放出された冷却水が3リットル/分且つ0.3~0.4MPa程度の水放出圧力で浴びせられ、脱水搬送手段130のウェッジワイヤスクリーン132上へと落下される。
 ウェッジワイヤスクリーン132上では風砕スラグ201が落下されると共に脱水され、更に、振動により順次風砕スラグ201がバケットコンベア140へ向けて送られた。スチールコンベア126上に落下された直後の風砕スラグ201は、黒赤色の状態が目視で観察され、1000℃前後の温度であることが観察された。長さ3mのウェッジワイヤスクリーン上での搬送時間は0.25分であった、更に、バケットコンベア140により8m/分の速度で搬送されて回収容器141に回収された。また、この回収容器に収容された直後の風砕スラグの温度は99.5℃であった。
 その後、回収容器141からスラグ粒子201を回収し、別設された磨砕装置に投入し、2分間、アジテーター回転数800rpm、パンの回転数85rpmの条件で磨砕を行った。次いで、0.2mm目の篩器を通過させて得られたスラグ粒子をショットブラスト用研削材として回収した。
(2)実施例7(珪砂による成分調整)
 上記[1]のショットブラスト用研削材製造装置100を用い、電気炉で得られた熔解されたままの製鋼スラグに、珪砂(全体100質量%に対してSiをSiO換算で93.1質量%、AlをAl換算で1.8質量%含有)を、製鋼スラグ10トンに対して0.845トンの割合となるように添加して、溶融スラグ200を得た(珪砂を用いて成分調整を行った)。
 この珪砂を用いて成分調整を行った溶融スラグを用いた以外は、他の実験例と同様にしてショットブラスト用研削材の製造を行った。
(3)実施例8-11(自動車用廃ガラスによる成分調整)
 上記[1]のショットブラスト用研削材製造装置100を用い、電気炉で得られた熔解されたままの製鋼スラグに、自動車のスクラップ時に排出された廃ガラスを製鋼スラグ10トンに対して1トンの割合となるように添加して、溶融スラグ200を得た(自動車用廃ガラスを用いて成分調整を行った)。尚、添加した自動車用廃ガラスのうち、ガラス部分のみの部分は成分分析の結果、自動車用廃ガラス全体100質量%に対して、SiをSiO換算で67.7質量%、NaをNaO換算で12.6質量%、AlをAl換算で2.0質量%、CaをCaO換算で9.5質量%含有していた。
 この自動車用廃ガラスを用いて成分調整を行った溶融スラグを用いた以外は、他の実験例と同様にしてショットブラスト用研削材の製造を行った。
Figure JPOXMLDOC01-appb-T000001
 表1の「Fe+Si+Ca」は、FeO換算含有量とSiO換算含有量とCaO換算含有量との合計を表す。
 表1の「Mn/Fe」は、MnO換算含有量/FeO換算含有量を表す。
 表1の「Ti/Fe」は、TiO換算含有量/FeO換算含有量を表す。
 表1の「Ti/Ca」は、TiO換算含有量/CaO換算含有量を表す。
[3]ショットブラスト用研削材の評価
(1)成分分析
 実験例1-16で、得られた各ショットブラスト用研削材を、振動ミルにより粉砕し、得られた粉末を圧粉成形した試料を、多元素同時蛍光X線分析装置(株式会社リガク製、「サイマルティックス10型」)を用いて成分分析し、その結果を表1に示した。
(2)圧壊強度
 実験例1-16で、得られた各ショットブラスト用研削材から、JIS Z0312における3.(b)に定義された「ショット」に分類される研削材粒子であって、形状が球状のものをピックアップして、且つ、粒径が実測2mm(デジタルノギスを用いた粒径測定において2.0mm±0.1mm)である研削材粒子を選択した。更に、その研削材粒子の中から、無作為に選択した10個の研削材粒子の圧壊強度(各1粒の研削材粒子に荷重を負荷して圧壊したときの荷重値)を、各々圧壊強度測定計(東京衡機製造所製、形式「アムスラー型万能材料試験機 AU-30」)を用いて測定した後、得られた各10点のデータの平均値を算出し、表1に示した。
(3)ビッカース硬さ
 実験例1-16で、得られた各ショットブラスト用研削材から、JIS Z0312における3.(b)に定義された「ショット」に分類される研削材粒子であって、形状が球状のものをピックアップして、且つ、粒径が実測2mm(デジタルノギスを用いた粒径測定において2.0mm±0.1mm)である研削材粒子を選択した。更に、その研削材粒子の中から、無作為に選択した10個の研削材粒子のビッカース硬さを、各々ビッカース硬度計(株式会社明石製作所製、形式「MVK」)を用いて測定(JIS Z2244に準拠)した後、得られた各10点のデータの平均値を算出し、表1に示した。
(4)非晶質な連続層の有無の確認
 得られた各ショットブラスト用研削材から、JIS Z0312における3.(b)に定義された「ショット」に分類される研削材粒子であって、形状が球状のものをピックアップして、且つ、粒径が実測2mm(デジタルノギスを用いた粒径測定において2.0mm±0.1mm)である研削材粒子を選択した。更に、その研削材粒子の中から、無作為に選択した10個の研削材粒子を切断し、その表面を研磨した。得られた研磨面を、光学顕微鏡により500倍に拡大して観察し、非晶質な連続相の有無を確認した。その結果、10個の試料の全てに非晶質な連続相が認められた実験例には、表1の「非晶質連続層」の欄に「○」を示した。一方、10個の試料のうち1個でも非晶質な連続相が認められなかった実験例には、表1の「非晶質連続層」の欄に「×」を示した。
 1;非晶質な連続相、2;結晶相、3;結晶質な連続相(多結晶相)、4;結晶相(粗大結晶)、
 100;ショットブラスト用研削材製造装置、
 110;風砕手段(リングノズル)、111;ノズル、
 120;冷却手段、121;チャンバー、122;円筒部分、123;先窄まり部、124;放水手段、125;放水ノズル、126;スチールコンベア、
 130;脱水搬送手段、131;ウェッジワイヤ、132;ウェッジワイヤスクリーン、133;振動発生手段(振動発生装置)、
 140;バケットコンベア、141;回収容器、
 150;溶融スラグ貯留手段(タンディッシュ)、151;溶融スラグ貯留手段の開口部、152;加熱手段(バーナー)、
 200;溶融スラグ、201;スラグ粒子(ショットブラスト用研削材)。

Claims (11)

  1.  Fe、Si、Ca、Al、Mg及びMnを含み、
     非晶質な連続相を有し、
     全体100質量%に対して、FeとSiとCaとを、各々FeO換算、SiO換算又はCaO換算による合計含有量が50.0質量%以上であるとともに、
     FeをFeO換算で6.0質量%以上35.0質量%以下、SiをSiO換算で15.0質量%以上35.0質量%以下、CaをCaO換算で10.0質量%以上35.0質量%以下含有することを特徴とするショットブラスト用研削材。
  2.  全体100質量%に対して、AlをAl換算で3.0質量%以上25.0質量%以下含有する請求項1に記載のショットブラスト用研削材。
  3.  全体100質量%に対して、MnをMnO換算で2.0質量%以上20.0質量%以下含有する請求項1又は2に記載のショットブラスト用研削材。
  4.  Tiを含み、
     全体100質量%に対して、TiをTiO換算で0.01質量%以上10.0質量%以下含有する請求項1乃至3のうちのいずれかに記載のショットブラスト用研削材。
  5.  Crを含み、
     全体100質量%に対して、CrをCr換算で0.5質量%以上5.0質量%以下含有する請求項1乃至4のうちのいずれかに記載のショットブラスト用研削材。
  6.  溶融スラグを風砕して得られたスラグ粒子である請求項1乃至5のうちのいずれかに記載のショットブラスト用研削材。
  7.  前記溶融スラグは、電気炉スラグである請求項6に記載のショットブラスト用研削材。
  8.  前記溶融スラグは、成分調整材として廃ガラス及び/又は珪砂を含む請求項6又は7に記載のショットブラスト用研削材。
  9.  前記廃ガラスは、自動車用ガラスである請求項8に記載のショットブラスト用研削材。
  10.  請求項6又は7に記載のショットブラスト用研削材の製造方法であって、
     前記溶融スラグを風砕してスラグ粒子を形成する風砕工程と、
     前記スラグ粒子を下方へ落下させながら、又は、下方へ落下させた後、水を吹き付けて、前記スラグ粒子を冷却する冷却工程と、
     前記スラグ粒子を搬送しながら脱水する脱水搬送工程と、を備えることを特徴とするショットブラスト用研削材の製造方法。
  11.  請求項8又は9に記載のショットブラスト用研削材の製造方法であって、
     電気炉スラグに、廃ガラス及び/又は珪砂を成分調整材として添加する成分調整工程と、
     前記成分調整工程を経て得られた溶融スラグを風砕してスラグ粒子を形成する風砕工程と、
     前記スラグ粒子を下方へ落下させながら、又は、下方へ落下させた後、水を吹き付けて、前記スラグ粒子を冷却する冷却工程と、
     前記スラグ粒子を搬送しながら脱水する脱水搬送工程と、を備えることを特徴とするショットブラスト用研削材の製造方法。
PCT/JP2013/063984 2012-05-22 2013-05-20 ショットブラスト用研削材及びその製造方法 WO2013176095A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380026488.9A CN104471013B (zh) 2012-05-22 2013-05-20 喷砂用研磨材料及其制造方法
KR1020147034995A KR101497892B1 (ko) 2012-05-22 2013-05-20 숏 블라스트용 연삭재 및 그 제조 방법
JP2013535172A JP5454747B1 (ja) 2012-05-22 2013-05-20 ショットブラスト用研削材及びその製造方法
US14/402,470 US20150101257A1 (en) 2012-05-22 2013-05-20 Abrasive material for shot blasting, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-116648 2012-05-22
JP2012116648 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013176095A1 true WO2013176095A1 (ja) 2013-11-28

Family

ID=49623785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063984 WO2013176095A1 (ja) 2012-05-22 2013-05-20 ショットブラスト用研削材及びその製造方法

Country Status (6)

Country Link
US (1) US20150101257A1 (ja)
JP (1) JP5454747B1 (ja)
KR (1) KR101497892B1 (ja)
CN (1) CN104471013B (ja)
TW (1) TWI574791B (ja)
WO (1) WO2013176095A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437609A (zh) * 2018-12-19 2019-03-08 南京凯盛国际工程有限公司 一种镁渣造粒方法
CN113046025A (zh) * 2021-03-31 2021-06-29 成渝钒钛科技有限公司 一种高钛高炉渣非金属磨料及制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640307B2 (ja) * 2007-09-20 2014-12-17 愛知製鋼株式会社 ブラスト用研削材及びブラスト用研削材の製造方法。
KR101676709B1 (ko) 2016-05-12 2016-11-16 이혜준 쇼트볼 제조장치
JP6315043B2 (ja) * 2016-08-31 2018-04-25 住友金属鉱山株式会社 水砕スラグの製造方法
CN107298584B (zh) * 2017-05-25 2020-11-13 共享智能装备有限公司 一种铸造用陶粒砂及其制备方法
CN107267119B (zh) * 2017-06-09 2019-03-05 烟台市金奥环保科技有限公司 一种氰化尾渣生产喷砂磨料的生产方法
EP3743243A4 (en) * 2018-01-23 2021-10-27 Conox, LLC AMORPORH SILICON DIOXIDE PARTICLES AND METHOD FOR PREPARING AMORPHERIC SILICON DIOXIDE PARTICLES
US11155734B1 (en) * 2018-07-23 2021-10-26 10X Engineered Materials, LLC Sediment mixture configured to be used as an abrasive agent
CN109439814A (zh) * 2018-12-03 2019-03-08 攀枝花环业冶金渣开发有限责任公司 高钛型高炉渣制备除锈砂的方法
WO2021257979A1 (en) * 2020-06-19 2021-12-23 Conox, LLC Blasting abrasives and method of producing blasting abrasives
US20220332994A1 (en) * 2021-04-14 2022-10-20 Harsco Technologies LLC Demetallized slag for abrasives and/or roofing granules and related methods
CN114014536B (zh) * 2021-10-20 2023-07-07 杭州乾智坤达新材料科技有限公司 一种增强型高圆度玻璃抛/喷丸的制备方法、产品及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127810A (en) * 1978-03-28 1979-10-04 Kowa Seikou Kk Shot or grit from converter dust for shot blast and preparation thereof
JPH09301749A (ja) * 1996-05-13 1997-11-25 Tone Chika Gijutsu Kk 高炉スラグ微粉末の利用方法および塗料
JP2000290048A (ja) * 1999-04-09 2000-10-17 Hoshino Sansho:Kk ショットブラスト用粒体
JP2002363544A (ja) * 2001-06-04 2002-12-18 Sinto Brator Co Ltd 球状投射材の製造方法及び投射材
JP2004238276A (ja) * 2003-01-17 2004-08-26 Jfe Material Co Ltd 高炭素フェロクロム風砕スラグの製造方法及び研掃材
JP2009073940A (ja) * 2007-09-20 2009-04-09 Toyota Motor Corp 研削材及び研削材の製造方法。
JP2013091143A (ja) * 2011-10-27 2013-05-16 Jfe Engineering Corp 研掃材の製造方法及び研掃材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273566A (en) * 1993-01-26 1993-12-28 International Environmelting Corporation Process for producing an environmentally acceptable abrasive product from hazardous wastes
JP2001047365A (ja) * 1999-08-05 2001-02-20 Hoshino Sansho:Kk ショットブラスト用粒体
CN1649802B (zh) * 2001-08-02 2012-02-01 3M创新有限公司 陶瓷材料、磨粒、磨具及制造和使用方法
JP4245035B2 (ja) * 2005-12-28 2009-03-25 セイコーエプソン株式会社 研削用粉末および研削方法
JP5125026B2 (ja) * 2006-08-11 2013-01-23 愛知製鋼株式会社 研削材、研削材の製造方法及び研削材製造装置
PL2174751T3 (pl) * 2008-10-10 2014-12-31 Center For Abrasives And Refractories Res & Development C A R R D Gmbh Aglomeraty ziaren ściernych, sposób ich wytwarzania, jak również ich zastosowanie do produkcji materiałów ściernych
JP5565826B2 (ja) * 2009-10-16 2014-08-06 日新製鋼株式会社 ブラスト処理用研削材およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127810A (en) * 1978-03-28 1979-10-04 Kowa Seikou Kk Shot or grit from converter dust for shot blast and preparation thereof
JPH09301749A (ja) * 1996-05-13 1997-11-25 Tone Chika Gijutsu Kk 高炉スラグ微粉末の利用方法および塗料
JP2000290048A (ja) * 1999-04-09 2000-10-17 Hoshino Sansho:Kk ショットブラスト用粒体
JP2002363544A (ja) * 2001-06-04 2002-12-18 Sinto Brator Co Ltd 球状投射材の製造方法及び投射材
JP2004238276A (ja) * 2003-01-17 2004-08-26 Jfe Material Co Ltd 高炭素フェロクロム風砕スラグの製造方法及び研掃材
JP2009073940A (ja) * 2007-09-20 2009-04-09 Toyota Motor Corp 研削材及び研削材の製造方法。
JP2013091143A (ja) * 2011-10-27 2013-05-16 Jfe Engineering Corp 研掃材の製造方法及び研掃材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437609A (zh) * 2018-12-19 2019-03-08 南京凯盛国际工程有限公司 一种镁渣造粒方法
CN113046025A (zh) * 2021-03-31 2021-06-29 成渝钒钛科技有限公司 一种高钛高炉渣非金属磨料及制备方法

Also Published As

Publication number Publication date
CN104471013A (zh) 2015-03-25
TW201408437A (zh) 2014-03-01
JP5454747B1 (ja) 2014-03-26
US20150101257A1 (en) 2015-04-16
KR20150003919A (ko) 2015-01-09
KR101497892B1 (ko) 2015-03-02
JPWO2013176095A1 (ja) 2016-01-14
CN104471013B (zh) 2016-11-02
TWI574791B (zh) 2017-03-21

Similar Documents

Publication Publication Date Title
JP5454747B1 (ja) ショットブラスト用研削材及びその製造方法
JP5640307B2 (ja) ブラスト用研削材及びブラスト用研削材の製造方法。
JP2009507636A (ja) 冶金スラグの加工処理
JP5125026B2 (ja) 研削材、研削材の製造方法及び研削材製造装置
JP2001192741A (ja) 製鋼スラグの利用方法
JP5565826B2 (ja) ブラスト処理用研削材およびその製造方法
JP4867406B2 (ja) 製鋼スラグの鉄分回収方法およびリサイクル方法
CN106661667B (zh) 镍氧化矿的冶炼方法、颗粒的装入方法
JP2004237288A (ja) 人工焼結砂およびその製造方法
CN115446292A (zh) 一种熔模壳型铸件的清理分级铁磁分离方法
JP2009228042A (ja) スラグ除去材およびスラグの除去方法
JP2014185050A (ja) 砂代替材及びその製造方法
JP3720622B2 (ja) ショットブラスト用粒体
JP2002206867A (ja) 耐火物のリサイクル方法
CA1203662A (en) Rapidly solidified powder production system
JP2009228043A (ja) スラグ除去材および除去方法
JP6069976B2 (ja) 水砕スラグ及びその製造方法
TWI787969B (zh) 卜作嵐材料、其製造方法及製造系統
US4783900A (en) Method of continuously producing rapidly solidified powder
JP6188022B2 (ja) スラグの製造方法及びスラグの製造システム
KR200278865Y1 (ko) 알루미늄 드로스로부터 알루미늄 칩 및 Powder 제조기술
JP5679836B2 (ja) 製鋼スラグからの鉄、マンガン酸化物の回収方法
JP6315043B2 (ja) 水砕スラグの製造方法
KR101079503B1 (ko) 비자착 슬래그의 재활용 방법, 그로부터 제조된 고비중 재료 및 그 제조방법
KR100901989B1 (ko) 제강슬래그 중 메탈회수 증대방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013535172

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14402470

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147034995

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13793858

Country of ref document: EP

Kind code of ref document: A1