WO2013175814A1 - 中子砂充填方法 - Google Patents

中子砂充填方法 Download PDF

Info

Publication number
WO2013175814A1
WO2013175814A1 PCT/JP2013/052931 JP2013052931W WO2013175814A1 WO 2013175814 A1 WO2013175814 A1 WO 2013175814A1 JP 2013052931 W JP2013052931 W JP 2013052931W WO 2013175814 A1 WO2013175814 A1 WO 2013175814A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
pressure
core
air supply
compressed air
Prior art date
Application number
PCT/JP2013/052931
Other languages
English (en)
French (fr)
Inventor
繁佳 加藤
原田 久
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to EP13794598.6A priority Critical patent/EP2826574B1/en
Priority to EP16185470.8A priority patent/EP3117927B1/en
Priority to US14/402,753 priority patent/US9339866B2/en
Priority to CN201380027154.3A priority patent/CN104334296B/zh
Priority to DK13794598.6T priority patent/DK2826574T3/en
Priority to ES13794598.6T priority patent/ES2630066T3/es
Priority to JP2014516686A priority patent/JP5884904B2/ja
Publication of WO2013175814A1 publication Critical patent/WO2013175814A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C13/00Moulding machines for making moulds or cores of particular shapes
    • B22C13/12Moulding machines for making moulds or cores of particular shapes for cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C13/00Moulding machines for making moulds or cores of particular shapes
    • B22C13/12Moulding machines for making moulds or cores of particular shapes for cores
    • B22C13/16Moulding machines for making moulds or cores of particular shapes for cores by pressing through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/23Compacting by gas pressure or vacuum
    • B22C15/24Compacting by gas pressure or vacuum involving blowing devices in which the mould material is supplied in the form of loose particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C19/00Components or accessories for moulding machines
    • B22C19/04Controlling devices specially designed for moulding machines

Definitions

  • the present invention relates to a core sand filling method for filling core sand into a core mold in a core molding machine.
  • a so-called top blow type core molding machine in which a blow head is arranged above the core mold and core sand is blown from above the core mold toward the core mold below (for example, Patent Document 1).
  • the blow head is disposed above the core mold, and further the core sand hopper is disposed thereon, so that the height of the apparatus is increased and the apparatus is enlarged.
  • a so-called blow head is disposed below the core mold and core sand is blown from the bottom of the core mold toward the upper core mold.
  • the use of an underblow type core molding machine can be considered.
  • the object of the present invention is to satisfactorily fill the core mold with the core sand when adopting the under blow type in which the core sand is blown from the bottom toward the core mold positioned above.
  • An object of the present invention is to provide a core sand filling method that contributes to the improvement of core production efficiency.
  • the core sand filling method is a core sand filling method for filling core sand into a core mold cavity from a blow head having a sand blowing chamber and a sand storage chamber.
  • the aeration air supply means supplies the aeration air into the sand blowing chamber while the blow head is positioned below the core mold and the blow head and the core mold communicate with each other.
  • the compressed air supply means stores the sand in accordance with an instruction from the control unit.
  • the compressed air supply means supplies compressed air to the sand storage chamber based on an instruction from the control unit.
  • the core sand supplied and floated and fluidized in the sand blowing chamber is filled into the core cavity. For this reason, when the core sand in the sand blowing chamber floats and fluidizes, the compressed air supply means can be quickly operated to fill the core sand into the core cavity in a short time.
  • the control unit determines whether or not the filling of the core sand into the cavity is completed based on the pressure in the sand blowing chamber and the pressure in the sand storage chamber, When the filling is completed, the operations of the aeration air supply unit and the compressed air supply unit are stopped based on an instruction from the control unit. Therefore, it can be detected by measuring the pressure whether core sand is filled in the core cavity. As described above, by performing air supply control according to the pressure in the blow head, the core sand is sufficiently floated and fluidized to fill the core sand into the core cavity, and filling Can be realized together.
  • Whether the pressure in the sand blowing chamber has reached the first pressure may be determined by measuring the pressure in the sand blowing chamber, or a predetermined time indicating that the pressure has reached the first pressure. You may judge by whether it passed.
  • the first pressure may be a pressure that allows the core sand to be fluidized and brought into a state suitable for blowing the core sand into the cavity. In this case, by comparing the pressure in the sand blowing chamber with the first pressure, whether or not the core sand in the sand blowing chamber is floated and fluidized and is suitable for blowing core sand into the cavity. Can be detected.
  • the first pressure may be selected from 0.01 MPa to 0.1 MPa, for example.
  • control unit may determine whether the pressure in the sand blowing chamber and the pressure in the sand storage chamber have reached the second pressure. In this case, by comparing the pressure in the sand blowing chamber and the pressure in the sand storage chamber with the second pressure, it is possible to detect whether the core sand is filled in the core cavity.
  • the control unit may determine whether or not the second condition that the pressure is less than or equal to the second pressure is satisfied. In this case, when the core cavity is filled with core sand, the pressure in the sand blowing chamber increases, approaches the pressure in the sand storage chamber, and the differential pressure decreases. Therefore, by determining whether or not the second condition based on the differential pressure is satisfied, it is possible to automatically determine the completion of filling the core sand into the core mold cavity.
  • the third pressure may be selected from the range of 0.002 MPa to 0.015 MPa, for example.
  • the operations of the aeration air supply means and the compressed air supply means are continued for a predetermined first time.
  • the supply of aeration air and compressed air is continued for a predetermined time, so that the core sand filled in the core cavity is filled.
  • the state can be stabilized.
  • the first time may be selected from a range of 0.3 seconds to 1 second.
  • the second pressure may be set higher than the first pressure and 75% to 80% of the pressure of the compressed air supplied from the compressed air supply means.
  • the compressed air is reliably supplied to the sand blowing chamber and the sand storage chamber by measuring the pressure in the sand blowing chamber and the sand blowing chamber and comparing it with the second pressure. Therefore, core sand can be blown into the core cavity sufficiently and sufficiently.
  • the control unit may evaluate whether or not the second condition is satisfied by an average value of the differential pressure within a predetermined second time. In this case, even if noise occurs in the pressure sensor, it can be accurately determined whether or not the second condition is satisfied.
  • the second time may be selected from the range of 0.05 seconds to 0.1 seconds, for example.
  • the core sand filling method is a core sand filling in a core molding machine using an underblow type core sand filling device that blows and fills core sand from below the core mold.
  • the core sand filling device stores a core mold having a cavity for filling core sand, a sand blowing chamber for blowing core sand into the cavity, and core sand supplied to the sand blowing chamber.
  • a blow head having a sand storage chamber communicated with the sand blowing chamber, aeration air supply means for supplying aeration air to the sand blowing chamber to float and fluidize core sand in the sand blowing chamber, and sand storage Compressed air supply means for supplying compressed air to the chamber, an exhaust valve for exhausting compressed air remaining in the sand blowing chamber, a first pressure sensor for measuring the pressure Pf in the sand blowing chamber, and a pressure P in the sand storage chamber And a control unit for controlling the operations of the aeration air supply means, the compressed air supply means, and the exhaust valve based on signals from the first and second pressure sensors.
  • the aeration air supply means supplies the aeration air into the sand blowing chamber while the blow head is positioned below the core mold and the blow head and the core mold are in communication with each other.
  • the first step of floating and fluidizing core sand in the sand blowing chamber, and whether the pressure Pf of the sand blowing chamber measured by the first pressure sensor has reached the first pressure P1 after the first step If the control unit determines whether or not the first pressure P1 is reached, the compressed air supply means supplies compressed air into the sand storage chamber based on an instruction from the control unit, and the floating fluidized sand In the room
  • the compressed air supply means is placed in the sand storage chamber based on an instruction from the control unit. Compressed air is supplied to fill the core-shaped cavity with the core sand in the floating sand-blowing sand. For this reason, when the core sand in the sand blowing chamber floats and fluidizes, the compressed air supply means can be quickly operated to fill the core sand into the core cavity in a short time.
  • Supply of aeration air based on an instruction from the control unit when the second condition that the differential pressure ⁇ P Pc ⁇ Pf between the pressure Pc and the pressure Pf in the sand blowing chamber is equal to or lower than the third pressure P3 is satisfied.
  • the operations of the means and the compressed air supply means are stopped. Therefore, it can be detected by measuring the pressure whether core sand is filled in the core cavity.
  • the pressure in the sand blowing chamber Pf rises and approaches the pressure in the sand storage chamber Pc, and the differential pressure ⁇ P decreases. Therefore, by determining whether or not the second condition based on the differential pressure ⁇ P is satisfied, it is possible to automatically determine the completion of filling the core sand into the core mold cavity.
  • the core sand is sufficiently floated and fluidized to fill the core sand into the core cavity, It is possible to achieve the proper completion of the filling of the sand sand. As a result, the core mold can be satisfactorily filled with the core sand, thereby improving the core production efficiency.
  • the first pressure P1 may be a pressure that allows the core sand to float and fluidize and to be in a state suitable for blowing the core sand into the cavity. In this case, by comparing the pressure in the sand blowing chamber with the first pressure P1, is the core sand in the sand blowing chamber floating and fluidized and is the state suitable for blowing the core sand into the cavity? Whether or not can be detected.
  • the first pressure P1 may be selected from a range of 0.01 MPa to 0.1 MPa, for example.
  • the third pressure may be selected from the range of 0.002 MPa to 0.015 MPa, for example.
  • the second pressure P2 may be set to 75% to 80% of the pressure of the compressed air supplied from the compressed air supply means.
  • the compressed air is reliably supplied to the sand blowing chamber and the sand storage chamber by measuring the pressure in the sand blowing chamber and the sand blowing chamber and comparing it with the second pressure. Therefore, core sand can be blown into the core cavity sufficiently and sufficiently.
  • the control unit may evaluate whether or not the second condition is satisfied by an average value of the differential pressure ⁇ P within a predetermined time. In this case, even if noise occurs in the pressure sensor, it can be accurately determined whether or not the second condition is satisfied.
  • the control unit may evaluate whether or not the second condition is satisfied by, for example, an average value of the differential pressure ⁇ P in 0.05 seconds to 0.1 seconds.
  • the operations of the aeration air supply means and the compressed air supply means are continued for a predetermined time T1, and then the aeration air supply
  • the operations of the means and the compressed air supply means may be stopped.
  • the supply of aeration air and compressed air is continued for a predetermined time, so that the core sand filled in the core cavity is filled.
  • the state can be stabilized.
  • the predetermined time T1 may be selected from a range of 0.3 seconds to 1 second, for example.
  • the control unit determines whether or not the first to fourth steps have been completed before the predetermined time T3 has elapsed since the start of the first step, and the first to fourth steps.
  • the predetermined time T3 arrives before the end of the operation, the operation of the core sand filling device may be stopped. In this case, it is determined that an abnormality such as insufficient supply of compressed air or leakage of compressed air from the blow head has occurred, and the operation of the core sand filling device can be automatically stopped.
  • the core sand filling method is a core sand filling in a core molding machine using an underblow type core sand filling device that blows and fills core sand from below the core mold.
  • the core sand filling device stores a core mold having a cavity for filling core sand, a sand blowing chamber for blowing core sand into the cavity, and core sand supplied to the sand blowing chamber.
  • a blow head having a sand storage chamber communicated with the sand blowing chamber, aeration air supply means for supplying aeration air to the sand blowing chamber to float and fluidize core sand in the sand blowing chamber, and sand storage Compressed air supply means for supplying compressed air to the chamber, an exhaust valve for exhausting compressed air remaining in the sand blowing chamber, a first pressure sensor for measuring the pressure Pf in the sand blowing chamber, and a pressure P in the sand storage chamber And a control unit for controlling the operations of the aeration air supply means, the compressed air supply means, and the exhaust valve based on signals from the first and second pressure sensors.
  • the aeration air supply means supplies the aeration air into the sand blowing chamber while the blow head is positioned below the core mold and the blow head and the core mold are in communication with each other.
  • the first step of floating and fluidizing core sand in the sand blowing chamber, and the pressure Pf of the sand blowing chamber measured by the first pressure sensor has reached the first pressure P1 after the first step.
  • the control unit determines whether or not a predetermined time has elapsed, and when the predetermined time has arrived, the compressed air supply means supplies the compressed air into the sand storage chamber based on an instruction from the control unit.
  • the second step of filling core sand in the sand blowing chamber into the core cavity and the pressure Pf in the sand blowing chamber and the pressure Pc in the sand storage chamber after the second step are the first step.
  • the control unit determines whether or not the second condition is satisfied, and if both the first and second conditions are satisfied, the aeration air is based on an instruction from the control unit.
  • the compressed air supply means supplies the compressed air to the sand storage chamber, and fills the core-shaped cavity with the core sand in the floating sand-blowing chamber. For this reason, when the core sand in the sand blowing chamber floats and fluidizes, the compressed air supply means can be quickly operated to fill the core sand into the core cavity in a short time.
  • Supply of aeration air based on an instruction from the control unit when the second condition that the differential pressure ⁇ P Pc ⁇ Pf between the pressure Pc and the pressure Pf in the sand blowing chamber is equal to or lower than the third pressure P3 is satisfied.
  • the operations of the means and the compressed air supply means are stopped. Therefore, it can be detected by measuring the pressure whether core sand is filled in the core cavity.
  • the pressure in the sand blowing chamber Pf rises and approaches the pressure in the sand storage chamber Pc, and the differential pressure ⁇ P decreases. Therefore, by determining whether or not the second condition based on the differential pressure ⁇ P is satisfied, it is possible to automatically determine the completion of filling the core sand into the core mold cavity.
  • the core sand is sufficiently floated and fluidized to fill the core sand into the core cavity, It is possible to achieve the proper completion of the filling of the sand sand. As a result, the core mold can be satisfactorily filled with the core sand, thereby improving the core production efficiency.
  • the core manufacturing method is a core manufacturing method for manufacturing a core by filling core sand into a core mold cavity from a blow head having a sand blowing chamber and a sand storage chamber.
  • the blow head is located below the core mold, and the aeration air supply means supplies the aeration air to the sand blow chamber while the blow head and the core mold communicate with each other.
  • the control unit determines whether or not the filling of the core sand into the cavity is completed, and the second pressure in which the pressure in the sand blowing chamber and the pressure in the sand storage chamber is higher than the first pressure is filled.
  • the control unit determines whether or not the air pressure has reached the second pressure, and when the second pressure is reached, the operation of the aeration air supply unit and the compressed air supply unit is stopped based on an instruction from the control unit. , A fourth step of exhausting the compressed air in the sand blowing chamber after the third step, and a fifth step of solidifying the core sand in the core cavity and molding the core. including.
  • the compressed air supply means supplies the compressed air to the sand storage chamber based on an instruction from the control unit.
  • the core sand supplied and floated and fluidized in the sand blowing chamber is filled into the core cavity. For this reason, when the core sand in the sand blowing chamber floats and fluidizes, the compressed air supply means can be quickly operated to fill the core sand into the core cavity in a short time.
  • the control unit determines whether or not the filling of the core sand into the cavity is completed, When the filling is completed, the operations of the aeration air supply unit and the compressed air supply unit are stopped based on an instruction from the control unit. Therefore, it can be detected by measuring the pressure whether core sand is filled in the core cavity.
  • the core sand is sufficiently floated and fluidized to fill the core sand into the core cavity, and filling Can be realized together. As a result, the core mold can be satisfactorily filled with the core sand, thereby improving the core production efficiency.
  • the core manufacturing method is a core sand filling method in a core molding machine using an underblow type core sand filling device that blows and fills core sand from below the core mold.
  • the core sand filling device stores a core mold having a cavity for filling the core sand, a sand blowing chamber for blowing the core sand into the cavity, and core sand supplied to the sand blowing chamber.
  • a blow head having a sand storage chamber communicated with the sand blowing chamber, aeration air supply means for supplying aeration air to the sand blowing chamber to float and fluidize core sand in the sand blowing chamber, and a sand storage chamber Compressed air supply means for supplying compressed air, an exhaust valve for exhausting compressed air remaining in the sand blowing chamber, a first pressure sensor for measuring the pressure Pf in the sand blowing chamber, and a pressure Pc in the sand storage chamber A second pressure sensor to be measured, and a control unit for controlling each operation of the aeration air supply means, the compressed air supply means, and the exhaust valve based on signals from the first and second pressure sensors;
  • the aeration air supply means supplies the aeration air into the sand blowing chamber while the blow head is positioned below the core mold and the blow head and the core mold are in communication with each other.
  • the compressed air supply means compresses air into the sand storage chamber based on an instruction from the control unit and floats and fluidizes the sand blowing chamber.
  • Core sand After the second step of filling the cavity of the child mold and the second step, the pressure Pf in the sand blowing chamber and the pressure Pc in the sand storage chamber are equal to or higher than the second pressure P2 higher than the first pressure P1.
  • the control unit determines whether the first and second conditions are both satisfied, the operations of the aeration air supply unit and the compressed air supply unit are stopped based on an instruction from the control unit. After the third step, the control unit instructs the exhaust valve to open the exhaust valve to exhaust the compressed air in the sand blowing chamber, and the inside of the core cavity The fifth work to solidify the core sand and mold the core Including the door.
  • the compressed air supply means compresses the sand storage chamber based on an instruction from the control unit. Air is supplied to fill the core cavity with the core sand in the floating sand-blowing sand. For this reason, when the core sand in the sand blowing chamber floats and fluidizes, the compressed air supply means can be quickly operated to fill the core sand into the core cavity in a short time.
  • the pressure in the sand blowing chamber Pf rises and approaches the pressure in the sand storage chamber Pc, and the differential pressure ⁇ P decreases. Therefore, by determining whether or not the second condition based on the differential pressure ⁇ P is satisfied, it is possible to automatically determine the completion of filling the core sand into the core mold cavity.
  • the core sand is sufficiently floated and fluidized to fill the core sand into the core cavity, It is possible to achieve the proper completion of the filling of the sand sand. As a result, the core mold can be satisfactorily filled with the core sand, thereby improving the core production efficiency.
  • the core manufacturing method is a core sand filling method in a core molding machine using an underblow type core sand filling device that blows and fills core sand from below the core mold.
  • the core sand filling device stores a core mold having a cavity for filling the core sand, a sand blowing chamber for blowing the core sand into the cavity, and core sand supplied to the sand blowing chamber.
  • a blow head having a sand storage chamber communicated with the sand blowing chamber, aeration air supply means for supplying aeration air to the sand blowing chamber to float and fluidize core sand in the sand blowing chamber, and a sand storage chamber Compressed air supply means for supplying compressed air, an exhaust valve for exhausting compressed air remaining in the sand blowing chamber, a first pressure sensor for measuring the pressure Pf in the sand blowing chamber, and a pressure Pc in the sand storage chamber A second pressure sensor to be measured, and a control unit for controlling each operation of the aeration air supply means, the compressed air supply means, and the exhaust valve based on signals from the first and second pressure sensors;
  • the aeration air supply means supplies the aeration air into the sand blowing chamber while the blow head is positioned below the core mold and the blow head and the core mold are in communication with each other.
  • the control unit determines whether or not the predetermined time has elapsed, and when the predetermined time has arrived, the compressed air supply means supplies the compressed air to the sand storage chamber based on an instruction from the control unit. Floating current
  • the second step of filling the core-shaped cavity into the core-shaped cavity and the pressure Pf in the sand-blowing chamber and the pressure Pc in the sand storage chamber after the second step are the first step.
  • the differential pressure ⁇ P Pc ⁇ Pf between the first condition that the second pressure P2 higher than the pressure P1 is equal to or higher than the second pressure P2 and the pressure Pc in the sand storage chamber and the pressure Pf in the sand blowing chamber is equal to or lower than the third pressure P3.
  • the control unit determines whether or not the second condition is satisfied, and when both the first and second conditions are satisfied, aeration air supply is performed based on an instruction from the control unit. And a third step of stopping the operation of each of the means and the compressed air supply means, and after the third step, the control unit instructs the exhaust valve to open the exhaust valve and exhausts the compressed air in the sand blowing chamber.
  • Step 4 and core sand in the core mold cavity Solidified by including a fifth step of molding the core.
  • the compressed air supply means supplies compressed air into the sand storage chamber, and fills the core-shaped cavity with the core sand in the floating sand-blowing chamber. For this reason, when the core sand in the sand blowing chamber floats and fluidizes, the compressed air supply means can be quickly operated to fill the core sand into the core cavity in a short time.
  • the pressure in the sand blowing chamber Pf rises and approaches the pressure in the sand storage chamber Pc, and the differential pressure ⁇ P decreases. Therefore, by determining whether or not the second condition based on the differential pressure ⁇ P is satisfied, it is possible to automatically determine the completion of filling the core sand into the core mold cavity.
  • the core sand is sufficiently floated and fluidized to fill the core sand into the core cavity, It is possible to achieve the proper completion of the filling of the sand sand. As a result, the core mold can be satisfactorily filled with the core sand, thereby improving the core production efficiency.
  • the core mold in the case of adopting the underblow type in which core sand is blown toward the core mold located above, the core mold can be satisfactorily filled with the core sand, and thereby the core It is possible to provide a core sand filling method and a core manufacturing method that contribute to improving the manufacturing efficiency of the core.
  • FIG. 1 is a cross-sectional explanatory view showing the structure of a core sand filling apparatus using the core sand filling method of the present invention.
  • FIG. 2 is a cross-sectional explanatory view taken along arrow AA in FIG. 3 is an explanatory view taken along the line BB in FIG. 4 is an explanatory view taken along the line CC in FIG.
  • FIG. 5 is an explanatory diagram showing the steps of the core sand filling method of the present invention.
  • FIG. 6 is an explanatory diagram showing the operation timing of the aeration air supply means, the compressed air supply means, and the exhaust valve.
  • the core molding machine refers to a machine that molds (manufactures) a core (including a main mold if the main mold is formed) by blowing core sand into a mold.
  • Shell machine cold box molding machine, green core molding machine, etc.
  • a shell core molding machine that molds a shell core by blowing and filling resin-coated sand into a heated mold is shown.
  • the core sand filling device is an underblow type core sand filling device that blows core sand from below the core die toward the upper core die.
  • the core sand filling device in the core molding machine is mainly shown, and the components of the core molding machine other than the core sand filling device are not shown as appropriate.
  • a blow head 2 that can be moved up and down relative to the core mold 1 is disposed below the matched core mold 1. It is arranged.
  • the blow head 2 is connected to an elevating cylinder (not shown).
  • the blow head 2 is configured to be movable up and down with respect to the core mold 1 arranged at a predetermined position.
  • the blow head 2 supplies the core sand to the sand blowing chamber 4 and the sand blowing chamber 4 for blowing the core sand into the cavity 1 a of the core mold 1 by the partition plate 3 provided at an intermediate position.
  • the sand storage chamber 5 is divided into two chambers.
  • a plate 4 a that is in close contact with the core mold 1 is attached to the upper end of the sand blowing chamber 4.
  • the plate 4 a is provided with a sand blowing hole 4 b for blowing the core sand S in the sand blowing chamber 4 into the cavity 1 a of the core mold 1.
  • the core mold 1 has a vent hole 1b communicating with the cavity 1a.
  • a sand blowing nozzle 6 that communicates the sand blowing chamber 4 and the cavity 1a of the core mold 1 is provided.
  • an opening 3a (see FIG. 2) is provided in the lower center of the partition plate 3.
  • the sand blowing chamber 4 and the sand storage chamber 5 are communicated with each other through the opening 3a.
  • the sand storage chamber 5 has an inclined surface 5 a (see FIG. 1) in which a part of the bottom surface is inclined toward the sand blowing chamber 4.
  • the upper surface of the ceiling plate 5 b of the sand storage chamber 5 is positioned lower than the upper surface of the plate 4 a in the sand blowing chamber 4.
  • a compressed air supply port 7 for supplying compressed air into the sand storage chamber 5 is attached to a lower portion of the inclined surface 5 a in the sand storage chamber 5 so as to communicate with the sand storage chamber 5.
  • a porous sintered body 7 a made of bronze is attached to the tip of the compressed air supply port 7.
  • the compressed air supply port 7 is connected to a compressed air supply source 19 provided with, for example, a compressor and an air tank via an on-off valve 8.
  • the compressed air supply means 7A is constituted by the compressed air supply port 7, the sintered body 7a, the on-off valve 8, and the compressed air supply source 19.
  • the aeration air supply port 9 is attached to the upper part of the side wall of the sand blowing chamber 4 so as to communicate with the sand blowing chamber 4 through a plate member 4d.
  • the aeration air supply port 9 supplies aeration air that floats and fluidizes core sand in the sand blowing chamber 4 into the sand blowing chamber 4.
  • a porous sintered body 9 a made of bronze is attached to the tip of the aeration air supply port 9.
  • the aeration air supply port 9 is connected to a compressed air supply source 19 via an air pipe 10 and an on-off valve 11.
  • the aeration air supply port 9, the sintered body 9 a, the air pipe 10, the on-off valve 11, and the compressed air supply source 19 constitute an aeration air supply means 9 A.
  • a branch air pipe 12 connected to an exhaust valve 13 for exhausting compressed air remaining in the sand blowing chamber 4 is provided in the air pipe 10.
  • a first pressure sensor 14 for measuring the pressure in the sand blowing chamber 4 is mounted on the upper part of the side wall orthogonal to the side wall on which the aeration air supply port 9 is mounted.
  • a second pressure sensor 15 that measures the pressure in the sand storage chamber 5 is attached to the upper portion of the side wall of the sand storage chamber 5.
  • a plate material 5 c is attached to the upper end of the sand storage chamber 5.
  • Sand ceiling holes 5d are formed in the ceiling plate 5b and the plate material 5c of the sand storage chamber 5.
  • a flange 16 having a through hole 16a is disposed above the plate 5c.
  • a sand supply pipe 17 communicating with the through hole 16 a is fixed to the upper end of the flange 16.
  • the sand supply pipe 17 is connected to a sand hopper (not shown) that stores and supplies core sand via a sand supply hose (not shown).
  • an open / close gate 18 having a communication hole 18a is disposed between the plate 5c and the flange 16.
  • the open / close gate 18 is configured to be opened and closed (moved left and right) by a cylinder (not shown).
  • a lift cylinder not shown
  • the plate material 5c, the open / close gate 18, the flange 16 and the sand supply pipe 17 are also lifted and lowered.
  • the control device 20 includes a control unit 20a, a timer 20b, and a determination unit 20c.
  • the control unit 20a controls the operation of each unit of the core sand filling device M.
  • the timer 20b measures the operating time of the core sand filling device M.
  • the determination unit 20c makes a determination based on the measurement pressure by the first pressure sensor 14, the measurement pressure by the second pressure sensor 15, the time measured by the timer 20b, and the like, and outputs a command signal to the control unit 20a.
  • the control device 20 may be, for example, a personal computer, a programmable logic controller (PLC), or many other types of electronic calculation / processing devices.
  • the timer 20b may be provided separately from the control device 20.
  • FIG. 6 the upper diagram is an explanatory view showing the operation timing of the aeration air supply means 9 ⁇ / b> A, the compressed air supply means 7 ⁇ / b> A and the exhaust valve 13 (actuated by the hatched portion), and the lower diagram is the inside of the sand blowing chamber 4 and the sand reservoir 5. It is explanatory drawing which shows the pressure change.
  • step S1 the control unit 20a instructs the core sand filling device M to place the core mold 1 at a predetermined position and close the open / close gate 18 by a cylinder (not shown).
  • the control unit 20a instructs the core sand filling device M to raise the blow head 2 by a lift cylinder (not shown) to bring the core mold 1 and the plate 4a into close contact with each other as shown in FIG.
  • the sand filling hole 5d is closed by the open / close gate 18, and the inside of the blow head 2 is sealed.
  • the sand blowing chamber 4 and the sand storage chamber 5 each contain a necessary amount of core sand S.
  • the control unit 20a instructs the aeration air supply means 9A to open the on-off valve 11 and starts measuring the elapsed time by the timer 20b.
  • compressed air aeration air
  • the control unit 20a instructs the aeration air supply means 9A to open the on-off valve 11 and starts measuring the elapsed time by the timer 20b.
  • compressed air aeration air
  • the core sand in the sand blowing chamber 4 is floated and fluidized.
  • the aeration air supply means is actuated, as shown in FIG. 6, the measured pressure Pf by the first pressure sensor 14 attached to the sand blowing chamber 4 increases, and the second pressure attached to the sand storage chamber 5.
  • the measurement pressure Pc of the sensor 15 rises following.
  • the core sand in the sand blowing chamber 4 is floated and fluidized. It is blown into the cavity 1 a of the child mold 1. If this state continues for a long time, the core sand is filled in the cavity 1a halfway, and the core has a low filling density of the core sand or wrinkles are generated on the core surface. Therefore, when the core sand in the sand blowing chamber 4 floats and fluidizes, the compressed air supply means 7A may be activated quickly to fill the cavity 1a in a short time.
  • the control device 20 determines whether or not the measured pressure Pf of the first pressure sensor 14 has reached a preset first pressure P1.
  • the first pressure P1 is a pressure suitable for the core sand in the sand blowing chamber 4 to be sufficiently floated and fluidized to blow the core sand into the cavity 1a.
  • the pressure may be set to 1 MPa, and further set to 0.03 to 0.07 MPa.
  • step S3: YES When the control device 20 (control unit 20a) determines that the measured pressure Pf of the first pressure sensor 14 has reached the first pressure P1 (step S3: YES), the process proceeds to step S4, and the first If it is determined that the measured pressure Pf of the pressure sensor 14 has not reached the first pressure P1 (step S3: NO), the process proceeds to step S12.
  • step S12 the control device (control unit 20a) 20 determines whether a preset time (third time T3) has elapsed after the aeration air supply means 9A is activated. If it is determined that the elapsed time is less than the third time T3 (step S12: NO), the process returns to step S3. If the measured pressure Pf of the first pressure sensor 14 does not reach the predetermined pressure (P1) even after the elapse of a predetermined time (T3) after the aeration air supply means 9A is actuated (step S12: YES), Since there may be an abnormality such as insufficient supply of compressed air or leakage of compressed air from the blow head 2, the process proceeds to step S15.
  • a preset time third time T3
  • step S15 for example, an abnormality display and a warning are issued on the display provided in the control device 20, and the process proceeds to step S8, where the core sand filling operation is terminated.
  • the third time T3 may be set to 4 to 10 seconds.
  • step S4 the control unit 20a instructs the compressed air supply means 7A to open the on-off valve 8.
  • compressed air is ejected from the sintered body 7 a mounted at the tip of the compressed air supply port 7, and the core sand in the sand storage chamber 5 is sent into the sand blowing chamber 4.
  • the core sand in the sand blowing chamber 4 is blown into the cavity 1a of the core mold 1 through the sand blowing nozzle 6 and the sand blowing hole 4b.
  • the compressed air blown into the cavity 1a together with the core sand is exhausted from the vent hole 1b. Since the core sand is sufficiently suspended and fluidized, the cavity 1a can be reliably filled.
  • the compressed air supply means 7A can be quickly operated to fill the cavity 1a in a short time, so that A child can be formed (manufactured).
  • the pressure of the sand storage chamber 5, that is, the measured pressure Pc of the second pressure sensor 15 is rapid. And rises above the pressure in the sand blowing chamber 4, that is, the measured pressure Pc of the first pressure sensor 14.
  • step S5 whether the measured pressure Pf of the first pressure sensor 14 and the measured pressure Pc of the second pressure sensor 15 have reached the preset second pressure P2 by the control device 20 (control unit 20a). Judge whether or not.
  • the second pressure P2 is used to confirm that compressed air is reliably supplied to the sand blowing chamber 4 and the sand storage chamber 5 and core sand is blown into the cavity 1a of the core mold 1.
  • the second pressure P2 may be set to about 75 to 80% of the pressure of the compressed air supplied from the compressed air supply source 19.
  • step S5 determines that the measured pressure Pf of the first pressure sensor 14 and the measured pressure Pc of the second pressure sensor 15 have reached the second pressure P2 (step S5: YES)
  • step S6 if it is determined that the second pressure P2 has not been reached (step S5: NO), the process proceeds to step S13.
  • step S13 the control device 20 (control unit 20a) determines whether or not the third time T3 has elapsed. If it is determined that the third time T3 has not elapsed (step S13: NO), the process returns to step S5.
  • step S13: NO the process returns to step S5.
  • step S15 Since there may be an abnormality such as insufficient supply of compressed air or leakage of compressed air from the blow head 2, the process proceeds to step S15.
  • step S15 for example, an abnormality display and an alarm are issued on the display provided in the control device 20, and the process proceeds to step S8, where the core sand filling operation is terminated.
  • the measured pressure Pf of the first pressure sensor 14 and the measured pressure Pc of the second pressure sensor 15 are the pressures of the compressed air supplied from the compressed air supply source 19, for example, the pressure of the air tank that supplies the compressed air. As you approach, the climb stops. Since the compressed air is continuously supplied into the sand storage chamber 5, the second pressure is higher than the measured pressure Pf of the first pressure sensor 14 attached to the sand blowing chamber 4 on the side exhausted through the vent hole 1b.
  • the measured pressure Pc of the pressure sensor 15 becomes a high pressure. Accordingly, a differential pressure ⁇ P is generated between the measured pressure Pc of the first pressure sensor 14 and the measured pressure Pf of the second pressure sensor 15.
  • a differential pressure ⁇ P is generated between the measured pressure Pc of the first pressure sensor 14 and the measured pressure Pf of the second pressure sensor 15.
  • the third pressure P3 may be set to 0.002 MPa to 0.015 MPa. Since the determination of the differential pressure ⁇ P is performed based on a minute pressure difference, the noise of the pressure sensor is taken into consideration, for example, in the control device 20, for example, an average value (for example, 0.05 to 0) for a predetermined time (second time T2). .. (average value of measured values for 1 second) can be used to improve detection accuracy.
  • step S6 determines that the differential pressure ⁇ P is equal to or lower than the third pressure P3 (step S6: YES).
  • step S7 the differential pressure ⁇ P is equal to or lower than the third pressure P3. If it is determined that this is not the case (step S6: NO), the process proceeds to step S14.
  • step S14 similarly to step S12, the control device 20 (control unit 20a) determines whether or not the third time T3 has elapsed. If it is determined that the third time T3 has not elapsed (step S14: NO), the process returns to step S6. If the differential pressure ⁇ P does not become equal to or lower than the third pressure P3 even after the third time T3 has elapsed (step S14: YES), there may be an abnormality such as insufficient supply of compressed air or leakage of compressed air from the blow head 2. Therefore, the process proceeds to step S15. In step S15, for example, an abnormality display and an alarm are issued on the display provided in the control device 20, and the process proceeds to step S8, where the core sand filling operation is terminated.
  • step S15 for example, an abnormality display and an alarm are issued on the display provided in the control device 20, and the process proceeds to step S8, where the core sand filling operation is terminated.
  • step S7 the operations of the aeration air supply means 9A and the compressed air supply means 7A are continued for a predetermined time (first time T1) after the differential pressure ⁇ P becomes equal to or lower than the third pressure P3. Thereby, the state of the core sand filled in the cavity 1a can be stabilized.
  • T2 may be set to about 0.3 to 1 second.
  • the control unit 20a instructs the aeration air supply means 9A and the compressed air supply means 7A to close the on-off valve 11 and the on-off valve 8, and operates the aeration air supply means 9A and the compressed air supply means 7A. Stop. At this time, the pressure in the cavity 1a is lower than the pressure in the sand blowing chamber 4 due to the exhaust from the vent hole 1b. For this reason, the core sand in the sand blowing chamber 4 and the sand storage chamber 5 is subjected to pressure to move into the cavity 1a of the core mold 1, and therefore the core sand filled in the cavity 1a. None fall.
  • the control unit 20a instructs the exhaust valve 13 to open the exhaust valve 13. Thereby, the compressed air remaining in the sand blowing chamber 4 is exhausted.
  • the compressed air remaining in the sand blowing chamber 4 enters the aeration air supply port 9 from the sintered body 9 a, and is exhausted from the exhaust valve 13 through the air pipe 10 and the branch air pipe 12.
  • the sand is stored along the flow.
  • the core sand in the chamber 5 moves into the sand blowing chamber 4 and the sand blowing chamber 4 is filled with the core sand.
  • control device 20 determines whether or not the measured pressures of the first pressure sensor 14 and the second pressure sensor 15 are substantially zero in relative pressure (gauge pressure).
  • step S10: YES the process proceeds to step S11, and when it is determined that the measured pressure is not zero (step S10: NO) ) Wait until it reaches zero.
  • step 11 the exhaust valve 13 is closed and the series of core sand filling processing is completed.
  • control unit 20a instructs the core sand filling device M to lower the blow head 2 by a lift cylinder (not shown) to separate the core mold 1 and the blow head 2 from each other. Then, the control unit 20a instructs the core sand filling device M to horizontally move the core mold 1 and then perform mold opening to take out the manufactured core. Subsequently, the open / close gate 18 is opened, and the core sand in the sand hopper is supplied into the sand storage chamber 5 through the sand supply pipe 17, the through hole 16a, the communication hole 18a and the sand storage hole 5d. Provided for filling sand.
  • the compressed air supply means 7A is activated.
  • step S3 when the core sand in the sand blowing chamber 4 floats and fluidizes, the compressed air supply means 7A can be quickly operated to fill the cavity 1a in a short time.
  • the core mold when the core mold is replaced, the cavity volume of the core mold changes, so the time until filling is completed changes. Even in such a case, a good core without defective filling can be stably formed. .
  • the pressure Pf in the sand blowing chamber 4 and the pressure Pc in the sand storage chamber 5 are equal to or higher than a preset second pressure P2 (step S5), and the pressure in the sand blowing chamber 4 and the sand storage chamber 5
  • first time T1 step S7
  • the operations of the aeration air supply means 9A and the compressed air supply means 7A are stopped. (Step S8).
  • the usage-amount of compressed air can be reduced.
  • the mold is heated in the shell mold method, if compressed air is supplied even after the core sand is completely filled, the compressed air passes through the cavity 1a of the core mold 1 and is exhausted.
  • the core mold 1 was deprived of heat and the firing time of the core became longer, requiring extra heating energy.
  • such extra heating energy can be eliminated.
  • step S3 a time corresponding to the time when the measured pressure Pf of the first pressure sensor 14 reaches the first pressure P1 is obtained and set in advance, and after the aeration air supply means 9A is activated.
  • the control unit 20a may instruct the compressed air supply means 7A to open the on-off valve 8. Also by this, when the core sand in the sand blowing chamber 4 floats and fluidizes, the compressed air supply means 7A can be quickly operated to fill the cavity 1a in a short time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

 上方に位置する中子型に向かって中子砂を吹き込むアンダーブロー式を採用した場合において、中子型に中子砂を良好に充填することができ、それにより中子の製造効率の向上に寄与する中子砂充填方法を提供する。 中子砂充填方法は、エアレーションエア供給手段9Aを作動させ、砂吹き込み室4内の中子砂を浮遊流動化させ、第1の圧力センサ14により測定された砂吹き込み室4の圧力Pfが第1の圧力P1に到達すると、圧縮エア供給手段7Aを作動させる工程と、砂吹き込み室4内の圧力Pf及び砂貯留室5内の圧力Pcが第2の圧力P2以上、かつ、差圧ΔP=Pc-Pfが第3の圧力P3以下になると、エアレーションエア供給手段9A及び圧縮エア供給手段7Aの作動を停止させる工程と、を備えている。

Description

中子砂充填方法
 本発明は、中子造型機において中子型に中子砂を充填する中子砂充填方法に関する。
 従来、中子型の上方にブローヘッドを配置して該中子型の上方から下方の中子型に向かって中子砂を吹き込む、いわゆるトップブロー式の中子造型機が用いられている(例えば、特許文献1)。トップブロー式の中子造型機は、中子型の上方にブローヘッドが配置され、更にその上に中子砂ホッパが配置されるため、装置の背丈が高くなり、装置が大型化してしまう。
特公昭47-013179号公報
 装置の背丈をできるだけ低くし、装置を小型化するために、中子型の下方にブローヘッドを配置して該中子型の下方から上方の中子型に向かって中子砂を吹き込む、いわゆるアンダーブロー式の中子造型機の使用が考えられる。
 本発明の目的は、上方に位置する中子型に向かって下方から中子砂を吹き込むアンダーブロー式を採用した場合において、中子型に中子砂を良好に充填することができ、それにより中子の製造効率の向上に寄与する中子砂充填方法を提供することを目的とする。
 ところで、アンダーブロー式の中子造型機の場合、中子型に中子砂を充填するために、中子型の下方に配置されたブローヘッド内にエアレーションエアを導入して、中子砂を十分に浮遊流動化させた状態とする工程と、ブローヘッド内に圧縮エアを導入してブローヘッドの上方に位置する中子型のキャビティに向かって中子砂を吹き込む工程とが行われる。しかしながら、本発明者らが鋭意研究を行ったところ、ブローヘッド内へのエアの供給状況によっては、中子砂の中子型への充填が良好に行えない場合があることが判明した。例えば、製造された中子に中子砂の充填密度の低い部分が存在してしまったり、製造された中子の表面に皺が発生してしまったり、といった充填不良が生じうる。そこで、本研究者らがさらなる検討を行ったところ、ブローヘッド内の圧力に着目し、当該圧力に応じたエアの供給制御を行うことにより、中子型に中子砂を良好に充填することができることを見出だした。
 すなわち、本発明の一側面に係る中子砂充填方法は、砂吹き込み室と砂貯留室とを有するブローヘッドから中子型のキャビティ内に中子砂を充填する中子砂充填方法であって、ブローヘッドが中子型の下方に位置すると共に、ブローヘッドと中子型とが連通された状態で、エアレーションエア供給手段が砂吹き込み室内にエアレーションエアを供給し、砂吹き込み室内の中子砂を浮遊流動化させる第1の工程と、第1の工程の後に、砂吹き込み室内の圧力が第1の圧力に到達した場合には、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる第2の工程と、第2の工程の後に、砂吹き込み室内及び砂貯留室内の圧力に基づいて制御部が中子砂のキャビティ内への充填が完了したか否かを判断し、充填が完了した場合には、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる第3の工程と、第3の工程の後に、砂吹き込み室内の圧縮エアを排気する第4の工程とを含む。
 本発明の一側面に係る中子砂充填方法では、砂吹き込み室内の圧力が第1の圧力に到達した場合に、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる。そのため、砂吹き込み室内の中子砂が浮遊流動化した時点で、速やかに圧縮エア供給手段を動作させ、中子砂を短時間に中子型のキャビティ内に充填できる。本発明の一側面に係る中子砂充填方法では、砂吹き込み室内の圧力及び砂貯留室内の圧力に基づいて制御部が中子砂のキャビティ内への充填が完了したか否かを判断し、充填が完了した場合に、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる。そのため、中子砂が中子型のキャビティ内に充填されたかどうかを、圧力を測定することで検出できる。以上のように、ブローヘッド内の圧力に応じたエアの供給制御を行うことで、中子砂を十分に浮遊流動化させつつ中子砂を中子型のキャビティ内へ充填させることと、充填を適切に完了させることとを共に実現できる。その結果、中子型に中子砂を良好に充填することができ、それにより中子の製造効率の向上を図ることができる。なお、砂吹き込み室内の圧力が第1の圧力に到達したかの判断は、砂吹き込み室内の圧力を測定して判断してもよいし、第1の圧力に到達したことを示す所定の時間が経過したか否かによって判断してもよい。
 第1の圧力は、中子砂を浮遊流動化させ且つキャビティ内に中子砂を吹き込むために適した状態にすることができる圧力であってもよい。この場合、砂吹き込み室内の圧力と第1の圧力とを比較することにより、砂吹き込み室内の中子砂が浮遊流動化され且つキャビティ内に中子砂を吹き込むために適した状態であるか否かを検知することができる。 第1の圧力は、例えば0.01MPa~0.1MPaから選択してもよい。
 第3の工程では、砂吹き込み室内の圧力及び砂貯留室内の圧力が、第2の圧力に到達した否かを制御部が判断してもよい。この場合、砂吹き込み室内の圧力及び砂貯留室内の圧力と第2の圧力とを比較することで、中子砂が中子型のキャビティ内に充填されているかどうかを検知することができる。
 第3の工程では、砂吹き込み室内の圧力及び砂貯留室内の圧力が第2の圧力以上であるという第1の条件と、砂貯留室内の圧力と砂吹き込み室内の圧力との差圧が第3の圧力以下であるという第2の条件とが満たされているか否かを制御部が判断してもよい。この場合、中子型のキャビティ内が中子砂で充填されていくと、砂吹き込み室内の圧力が上昇して砂貯留室内の圧力に近づき、差圧が減少する。そのため、この差圧に基づく第2の条件を満たしているか否かを判断することにより、中子砂の中子型のキャビティ内への中子砂の充填完了を自動的に判断できる。第3の圧力は、例えば0.002MPa~0.015MPaの範囲から選択してもよい。
 第3の工程では、第1の条件と第2の条件とが共に満たされた後、所定の第1の時間の間、エアレーションエア供給手段及び圧縮エア供給手段の動作を継続させ、その後、エアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させてもよい。この場合、第1の条件と第2の条件とが共に満たされた後、エアレーションエアと圧縮エアの供給を所定の時間継続することで、中子型のキャビティ内に充填された中子砂の状態を安定させることができる。第1の時間は例えば0.3秒~1秒の範囲から選択してもよい。
 第2の圧力は、第1の圧力よりも高く、且つ、圧縮エア供給手段から供給される圧縮エアの圧力の75%~80%の圧力に設定されていてもよい。この場合、砂吹き込み室内および砂吹き込み室内の圧力を計測して第2の圧力と比較することにより、砂吹き込み室及び砂貯留室に確実に圧縮エアが供給される。そのため、中子型のキャビティに中子砂を必要十分に吹き込むことができる。
 制御部は、第2の条件が満たされているか否かを所定の第2の時間内における差圧の平均値により評価してもよい。この場合、圧力センサにノイズが生じても第2の条件を満たしているか否かの判断を精度よく行うことができる。第2の時間は例えば0.05秒~0.1秒の範囲から選択してもよい。
 本発明の他の側面に係る中子砂充填方法は、中子砂を中子型の下方から吹き込んで充填するアンダーブロー式の中子砂充填装置を用いた中子造型機における中子砂充填方法であって、中子砂充填装置は、中子砂を充填するキャビティを有する中子型と、キャビティ内に中子砂を吹き込む砂吹き込み室と、砂吹き込み室に供給する中子砂を貯留すると共に砂吹き込み室に連通された砂貯留室とを有するブローヘッドと、砂吹き込み室内の中子砂を浮遊流動化させるためのエアレーションエアを砂吹き込み室に供給するエアレーションエア供給手段と、砂貯留室に圧縮エアを供給する圧縮エア供給手段と、砂吹き込み室内に残存する圧縮エアを排気する排気弁と、砂吹き込み室内の圧力Pfを測定する第1の圧力センサと、砂貯留室内の圧力Pcを測定する第2の圧力センサと、第1及び第2の圧力センサからの信号に基づいて、エアレーションエア供給手段及び圧縮エア供給手段及び排気弁の各動作を制御する制御部とを備えており、中子砂充填方法は、ブローヘッドが中子型の下方に位置すると共に、ブローヘッドと中子型とが連通された状態で、エアレーションエア供給手段が砂吹き込み室内にエアレーションエアを供給し、砂吹き込み室内の中子砂を浮遊流動化させる第1の工程と、第1の工程の後に、第1の圧力センサにより測定される砂吹き込み室の圧力Pfが第1の圧力P1に到達したか否かを制御部が判断して、第1の圧力P1に到達した場合には、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる第2の工程と、第2の工程の後に、砂吹き込み室内の圧力Pf及び砂貯留室内の圧力Pcが、第1の圧力P1よりも高い第2の圧力P2以上であるという第1の条件と、砂貯留室内の圧力Pcと砂吹き込み室内の圧力Pfとの差圧ΔP=Pc-Pfが第3の圧力P3以下であるという第2の条件とが満たされているか否かを制御部が判断して、第1及び第2の条件が共に満たされている場合には、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる第3の工程と、第3の工程の後に、制御部が排気弁に指示して排気弁を開放させ、砂吹き込み室内の圧縮エアを排気する第4の工程とを含む。
 本発明の他の側面に係る中子砂充填方法では、砂吹き込み室内の圧力Pfが第1の圧力P1に到達した場合に、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる。そのため、砂吹き込み室内の中子砂が浮遊流動化した時点で、速やかに圧縮エア供給手段を動作させ、中子砂を短時間に中子型のキャビティ内に充填できる。本発明の他の側面に係る中子砂充填方法では、砂吹き込み室内の圧力Pf及び砂貯留室Pc内の圧力が第2の圧力P2以上であるという第1の条件と、砂貯留室内の圧力Pcと砂吹き込み室内の圧力Pfとの差圧ΔP=Pc-Pfが第3の圧力P3以下であるという第2の条件とが満たされた場合に、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる。そのため、中子砂が中子型のキャビティ内に充填されたかどうかを、圧力を測定することで検出できる。また中子型のキャビティ内が中子砂で充填されていくと、砂吹き込み室Pf内の圧力が上昇して砂貯留室Pc内の圧力に近づき、差圧ΔPが減少する。そのため、この差圧ΔPに基づく第2の条件を満たしているか否かを判断することにより、中子型のキャビティ内への中子砂の充填完了を自動的に判断できる。以上のように、ブローヘッド内の圧力に応じたエアの供給制御を行うことで、中子砂を十分に浮遊流動化させつつ中子砂を中子型のキャビティ内へ充填させることと、中子砂の充填を適切に完了させることとを共に実現できる。その結果、中子型に中子砂を良好に充填することができ、それにより中子の製造効率の向上を図ることができる。
 第1の圧力P1は、中子砂を浮遊流動化させ且つキャビティ内に中子砂を吹き込むために適した状態にすることができる圧力であってもよい。この場合、砂吹き込み室内の圧力と第1の圧力P1とを比較することにより、砂吹き込み室内の中子砂が浮遊流動化され且つキャビティ内に中子砂を吹き込むために適した状態であるか否かを検知することができる。第1の圧力P1は、例えば0.01MPa~0.1MPaの範囲から選択してもよい。第3の圧力は、例えば0.002MPa~0.015MPaの範囲から選択してもよい。
 第2の圧力P2は、圧縮エア供給手段から供給される圧縮エアの圧力の75%~80%の圧力に設定されていてもよい。この場合、砂吹き込み室内および砂吹き込み室内の圧力を計測して第2の圧力と比較することにより、砂吹き込み室及び砂貯留室に確実に圧縮エアが供給される。そのため、中子型のキャビティに中子砂を必要十分に吹き込むことができる。
 制御部は、第2の条件が満たされているか否かを所定時間内における差圧ΔPの平均値により評価してもよい。この場合、圧力センサにノイズが生じても第2の条件を満たしているか否かの判断を精度よく行うことができる。制御部は、第2の条件が満たされているか否かを例えば0.05秒~0.1秒間における差圧ΔPの平均値により評価してもよい。
 第3の工程では、第1の条件と第2の条件とが共に満たされた後、所定の時間T1の間、エアレーションエア供給手段及び圧縮エア供給手段の動作を継続させ、その後、エアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させてもよい。この場合、第1の条件と第2の条件とが共に満たされた後、エアレーションエアと圧縮エアの供給を所定の時間継続することで、中子型のキャビティ内に充填された中子砂の状態を安定させることができる。所定の時間T1は、例えば0.3秒~1秒の範囲から選択してもよい。
 制御部は、第1の工程が開始してから所定の時間T3が経過するまでに第1~第4のそれぞれの工程が終了したか否かを判断し、第1~第4のそれぞれの工程が終了する前に所定の時間T3が到来した場合には、中子砂充填装置の動作を停止させてもよい。この場合、圧縮空気の供給不足や、ブローヘッドからの圧縮空気の漏れなどの異常が発生したと判断して、自動的に中子砂充填装置の動作を停止できる。
 本発明の他の側面に係る中子砂充填方法は、中子砂を中子型の下方から吹き込んで充填するアンダーブロー式の中子砂充填装置を用いた中子造型機における中子砂充填方法であって、中子砂充填装置は、中子砂を充填するキャビティを有する中子型と、キャビティ内に中子砂を吹き込む砂吹き込み室と、砂吹き込み室に供給する中子砂を貯留すると共に砂吹き込み室に連通された砂貯留室とを有するブローヘッドと、砂吹き込み室内の中子砂を浮遊流動化させるためのエアレーションエアを砂吹き込み室に供給するエアレーションエア供給手段と、砂貯留室に圧縮エアを供給する圧縮エア供給手段と、砂吹き込み室内に残存する圧縮エアを排気する排気弁と、砂吹き込み室内の圧力Pfを測定する第1の圧力センサと、砂貯留室内の圧力Pcを測定する第2の圧力センサと、第1及び第2の圧力センサからの信号に基づいて、エアレーションエア供給手段及び圧縮エア供給手段及び排気弁の各動作を制御する制御部とを備えており、中子砂充填方法は、ブローヘッドが中子型の下方に位置すると共に、ブローヘッドと中子型とが連通された状態で、エアレーションエア供給手段が砂吹き込み室内にエアレーションエアを供給し、砂吹き込み室内の中子砂を浮遊流動化させる第1の工程と、第1の工程の後に、第1の圧力センサにより測定される砂吹き込み室の圧力Pfが第1の圧力P1に到達したことを示す所定の時間が経過したか否かを制御部が判断して、所定の時間が到来した場合には、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる第2の工程と、第2の工程の後に、砂吹き込み室内の圧力Pf及び砂貯留室内の圧力Pcが、第1の圧力P1よりも高い第2の圧力P2以上であるという第1の条件と、砂貯留室内の圧力Pcと砂吹き込み室内の圧力Pfとの差圧ΔP=Pc-Pfが第3の圧力P3以下であるという第2の条件とが満たされているか否かを制御部が判断して、第1及び第2の条件が共に満たされている場合には、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる第3の工程と、第3の工程の後に、制御部が排気弁に指示して排気弁を開放させ、砂吹き込み室内の圧縮エアを排気する第4の工程とを含む。
 本発明の他の側面に係る中子砂充填方法では、砂吹き込み室内の圧力Pfが第1の圧力P1に到達したことを示す所定の時間が経過した場合に、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる。そのため、砂吹き込み室内の中子砂が浮遊流動化した時点で、速やかに圧縮エア供給手段を動作させ、中子砂を短時間に中子型のキャビティ内に充填できる。本発明の他の側面に係る中子砂充填方法では、砂吹き込み室内の圧力Pf及び砂貯留室Pc内の圧力が第2の圧力P2以上であるという第1の条件と、砂貯留室内の圧力Pcと砂吹き込み室内の圧力Pfとの差圧ΔP=Pc-Pfが第3の圧力P3以下であるという第2の条件とが満たされた場合に、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる。そのため、中子砂が中子型のキャビティ内に充填されたかどうかを、圧力を測定することで検出できる。また中子型のキャビティ内が中子砂で充填されていくと、砂吹き込み室Pf内の圧力が上昇して砂貯留室Pc内の圧力に近づき、差圧ΔPが減少する。そのため、この差圧ΔPに基づく第2の条件を満たしているか否かを判断することにより、中子型のキャビティ内への中子砂の充填完了を自動的に判断できる。以上のように、ブローヘッド内の圧力に応じたエアの供給制御を行うことで、中子砂を十分に浮遊流動化させつつ中子砂を中子型のキャビティ内へ充填させることと、中子砂の充填を適切に完了させることとを共に実現できる。その結果、中子型に中子砂を良好に充填することができ、それにより中子の製造効率の向上を図ることができる。
 本発明の他の側面に係る中子製造方法は、砂吹き込み室と砂貯留室とを有するブローヘッドから中子型のキャビティ内に中子砂を充填することで中子を製造する中子製造方法であって、ブローヘッドが中子型の下方に位置すると共に、ブローヘッドと中子型とが連通された状態で、エアレーションエア供給手段が砂吹き込み室内にエアレーションエアを供給し、砂吹き込み室内の中子砂を浮遊流動化させる第1の工程と、第1の工程の後に、砂吹き込み室内の圧力が第1の圧力に到達した場合には、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる第2の工程と、第2の工程の後に、砂吹き込み室内及び砂貯留室内の圧力に基づいて制御部が中子砂のキャビティ内への充填が完了したか否かを判断し、充填が完了砂吹き込み室内の圧力及び砂貯留室内の圧力が、第1の圧力よりも高い第2の圧力に到達したか否かを制御部が判断して、第2の圧力に到達した場合には、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる第3の工程と、第3の工程の後に、砂吹き込み室内の圧縮エアを排気する第4の工程と、中子型のキャビティ内の中子砂を固化して中子を造型する第5の工程とを含む。
 本発明の他の側面に係る中子製造方法では、砂吹き込み室内の圧力が第1の圧力に到達した場合に、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる。そのため、砂吹き込み室内の中子砂が浮遊流動化した時点で、速やかに圧縮エア供給手段を動作させ、中子砂を短時間に中子型のキャビティ内に充填できる。本発明の他の側面に係る中子製造方法では、砂吹き込み室内の圧力及び砂貯留室内の圧力に基づいて制御部が中子砂のキャビティ内への充填が完了したか否かを判断し、充填が完了した場合に、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる。そのため、中子砂が中子型のキャビティ内に充填されたかどうかを、圧力を測定することで検出できる。以上のように、ブローヘッド内の圧力に応じたエアの供給制御を行うことで、中子砂を十分に浮遊流動化させつつ中子砂を中子型のキャビティ内へ充填させることと、充填を適切に完了させることとを共に実現できる。その結果、中子型に中子砂を良好に充填することができ、それにより中子の製造効率の向上を図ることができる。
 本発明の他の側面に係る中子製造方法は、中子砂を中子型の下方から吹き込んで充填するアンダーブロー式の中子砂充填装置を用いた中子造型機における中子砂充填方法であって、中子砂充填装置は、中子砂を充填するキャビティを有する中子型と、キャビティ内に中子砂を吹き込む砂吹き込み室と、砂吹き込み室に供給する中子砂を貯留すると共に砂吹き込み室に連通された砂貯留室とを有するブローヘッドと、砂吹き込み室内の中子砂を浮遊流動化させるためのエアレーションエアを砂吹き込み室に供給するエアレーションエア供給手段と、砂貯留室に圧縮エアを供給する圧縮エア供給手段と、砂吹き込み室内に残存する圧縮エアを排気する排気弁と、砂吹き込み室内の圧力Pfを測定する第1の圧力センサと、砂貯留室内の圧力Pcを測定する第2の圧力センサと、第1及び第2の圧力センサからの信号に基づいて、エアレーションエア供給手段及び圧縮エア供給手段及び排気弁の各動作を制御する制御部とを備えており、中子砂充填方法は、ブローヘッドが中子型の下方に位置すると共に、ブローヘッドと中子型とが連通された状態で、エアレーションエア供給手段が砂吹き込み室内にエアレーションエアを供給し、砂吹き込み室内の中子砂を浮遊流動化させる第1の工程と、第1の工程の後に、第1の圧力センサにより測定される砂吹き込み室の圧力Pfが第1の圧力P1に到達したか否かを制御部が判断して、第1の圧力P1に到達した場合には、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアし、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる第2の工程と、第2の工程の後に、砂吹き込み室内の圧力Pf及び砂貯留室内の圧力Pcが、第1の圧力P1よりも高い第2の圧力P2以上であるという第1の条件と、砂貯留室内の圧力Pcと砂吹き込み室内の圧力Pfとの差圧ΔP=Pc-Pfが第3の圧力P3以下であるという第2の条件とが満たされているか否かを制御部が判断して、第1及び第2の条件が共に満たされている場合には、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる第3の工程と、第3の工程の後に、制御部が排気弁に指示して排気弁を開放させ、砂吹き込み室内の圧縮エアを排気する第4の工程と、中子型のキャビティ内の中子砂を固化して中子を造型する第5の工程とを含む。
 本発明の他の側面に係る中子製造方法では、砂吹き込み室内の圧力Pfが第1の圧力P1に到達した場合に、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる。そのため、砂吹き込み室内の中子砂が浮遊流動化した時点で、速やかに圧縮エア供給手段を動作させ、中子砂を短時間に中子型のキャビティ内に充填できる。本発明の他の側面に係る中子製造方法では、砂吹き込み室内の圧力Pf及び砂貯留室Pc内の圧力が第2の圧力P2以上であるという第1の条件と、砂貯留室内の圧力Pcと砂吹き込み室内の圧力Pfとの差圧ΔP=Pc-Pfが第3の圧力P3以下であるという第2の条件とが満たされた場合に、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる。そのため、中子砂が中子型のキャビティ内に充填されたかどうかを、圧力を測定することで検出できる。また中子型のキャビティ内が中子砂で充填されていくと、砂吹き込み室Pf内の圧力が上昇して砂貯留室Pc内の圧力に近づき、差圧ΔPが減少する。そのため、この差圧ΔPに基づく第2の条件を満たしているか否かを判断することにより、中子型のキャビティ内への中子砂の充填完了を自動的に判断できる。以上のように、ブローヘッド内の圧力に応じたエアの供給制御を行うことで、中子砂を十分に浮遊流動化させつつ中子砂を中子型のキャビティ内へ充填させることと、中子砂の充填を適切に完了させることとを共に実現できる。その結果、中子型に中子砂を良好に充填することができ、それにより中子の製造効率の向上を図ることができる。
 本発明の他の側面に係る中子製造方法は、中子砂を中子型の下方から吹き込んで充填するアンダーブロー式の中子砂充填装置を用いた中子造型機における中子砂充填方法であって、中子砂充填装置は、中子砂を充填するキャビティを有する中子型と、キャビティ内に中子砂を吹き込む砂吹き込み室と、砂吹き込み室に供給する中子砂を貯留すると共に砂吹き込み室に連通された砂貯留室とを有するブローヘッドと、砂吹き込み室内の中子砂を浮遊流動化させるためのエアレーションエアを砂吹き込み室に供給するエアレーションエア供給手段と、砂貯留室に圧縮エアを供給する圧縮エア供給手段と、砂吹き込み室内に残存する圧縮エアを排気する排気弁と、砂吹き込み室内の圧力Pfを測定する第1の圧力センサと、砂貯留室内の圧力Pcを測定する第2の圧力センサと、第1及び第2の圧力センサからの信号に基づいて、エアレーションエア供給手段及び圧縮エア供給手段及び排気弁の各動作を制御する制御部とを備えており、中子砂充填方法は、ブローヘッドが中子型の下方に位置すると共に、ブローヘッドと中子型とが連通された状態で、エアレーションエア供給手段が砂吹き込み室内にエアレーションエアを供給し、砂吹き込み室内の中子砂を浮遊流動化させる第1の工程と、第1の工程の後に、第1の圧力センサにより測定される砂吹き込み室の圧力Pfが第1の圧力P1に到達したことを示す所定の時間が経過したか否かを制御部が判断して、所定の時間が到来した場合には、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる第2の工程と、第2の工程の後に、砂吹き込み室内の圧力Pf及び砂貯留室内の圧力Pcが、第1の圧力P1よりも高い第2の圧力P2以上であるという第1の条件と、砂貯留室内の圧力Pcと砂吹き込み室内の圧力Pfとの差圧ΔP=Pc-Pfが第3の圧力P3以下であるという第2の条件とが満たされているか否かを制御部が判断して、第1及び第2の条件が共に満たされている場合には、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる第3の工程と、第3の工程の後に、制御部が排気弁に指示して排気弁を開放させ、砂吹き込み室内の圧縮エアを排気する第4の工程と、中子型のキャビティ内の中子砂を固化して中子を造型する第5の工程とを含む。
 本発明の他の側面に係る中子製造方法では、砂吹き込み室内の圧力Pfが第1の圧力P1に到達したことを示す所定の時間が経過した場合に、制御部からの指示に基づいて圧縮エア供給手段が砂貯留室内に圧縮エアを供給し、浮遊流動化した砂吹き込み室内の中子砂を中子型のキャビティ内に充填させる。そのため、砂吹き込み室内の中子砂が浮遊流動化した時点で、速やかに圧縮エア供給手段を動作させ、中子砂を短時間に中子型のキャビティ内に充填できる。本発明の他の側面に係る中子製造方法では、砂吹き込み室内の圧力Pf及び砂貯留室Pc内の圧力が第2の圧力P2以上であるという第1の条件と、砂貯留室内の圧力Pcと砂吹き込み室内の圧力Pfとの差圧ΔP=Pc-Pfが第3の圧力P3以下であるという第2の条件とが満たされた場合に、制御部からの指示に基づいてエアレーションエア供給手段及び圧縮エア供給手段の動作をそれぞれ停止させる。そのため、中子砂が中子型のキャビティ内に充填されたかどうかを、圧力を測定することで検出できる。また中子型のキャビティ内が中子砂で充填されていくと、砂吹き込み室Pf内の圧力が上昇して砂貯留室Pc内の圧力に近づき、差圧ΔPが減少する。そのため、この差圧ΔPに基づく第2の条件を満たしているか否かを判断することにより、中子型のキャビティ内への中子砂の充填完了を自動的に判断できる。以上のように、ブローヘッド内の圧力に応じたエアの供給制御を行うことで、中子砂を十分に浮遊流動化させつつ中子砂を中子型のキャビティ内へ充填させることと、中子砂の充填を適切に完了させることとを共に実現できる。その結果、中子型に中子砂を良好に充填することができ、それにより中子の製造効率の向上を図ることができる。
 本発明によれば、上方に位置する中子型に向かって中子砂を吹き込むアンダーブロー式を採用した場合において、中子型に中子砂を良好に充填することができ、それにより中子の製造効率の向上に寄与する中子砂充填方法及び中子製造方法を提供できる。
図1は、本発明の中子砂充填方法を用いる中子砂充填装置の構造を示す断面説明図である。 図2は、図1におけるA-A矢視断面説明図である。 図3は、図1におけるB-B矢視説明図である。 図4は、図1におけるC-C矢視説明図である。 図5は、本発明の中子砂充填方法の工程を示す説明図である。 図6は、エアレーションエア供給手段、圧縮エア供給手段及び排気弁の作動タイミングを示す説明図である。
 本実施形態に係る中子砂充填方法及び中子製造方法について、図を参照して説明する。本実施形態において中子造型機とは、金型に中子砂を吹き込んで中子(主型を造型する場合は、主型も含まれる。)を造型(製造)するものをいい、例えば、シェルマシン、コ-ルドボックス造型機、生型中子造型機等をいう。本実施形態では、中子造型機として、熱した金型にレジンコーテッドサンドを吹き込み充填し、シェル中子を造型するシェル中子造型機を用いた例を示す。また、中子砂充填装置は、中子型の下方から上方の中子型に向かって中子砂を吹き込むアンダーブロー式の中子砂充填装置である。図では、主に中子造型機における中子砂充填装置を示しており、中子砂充填装置以外の中子造型機の構成要素については適宜図示を省略している。
 図1~図4に示すように、中子砂充填装置Mにおいて、型合せされた中子型1の下方には、中子型1に対して相対的に昇降可能にされたブローヘッド2が配設されている。ブローヘッド2は、図示されない昇降シリンダに連結されており、本実施形態では、所定位置に配置された中子型1に対してブローヘッド2が昇降可能に構成されている。
 ブローヘッド2は中間位置に設けられた仕切り板3により、中子型1のキャビティ1aに中子砂を吹き込んで充填するための砂吹き込み室4と、砂吹き込み室4に中子砂を供給するための砂貯留室5と、の2室に区画されている。
 砂吹き込み室4の上端には、中子型1と密着するプレート4aが付属されている。プレート4aには、砂吹き込み室4内の中子砂Sを中子型1のキャビティ1aに吹き込むための砂吹き込み孔4bが穿設されている。中子型1には、キャビティ1aに連通するベントホール1bが穿設されている。
 砂吹き込み孔4bの下端には、砂吹き込み室4と中子型1のキャビティ1aとを連通する砂吹き込みノズル6が設けられている。
 仕切り板3の下位中央には、開口部3a(図2参照)が設けられている。砂吹き込み室4と砂貯留室5は、開口部3aを介して互いに連通されている。砂貯留室5は、底面の一部が砂吹き込み室4に向かって傾斜する傾斜面5a(図1参照)にされている。砂貯留室5の天井板5bの上面は、砂吹き込み室4におけるプレート4aの上面よりも低い位置にされている。
 砂貯留室5における傾斜面5aの下位部には、圧縮エアを砂貯留室5内に供給する圧縮エア供給口7が、砂貯留室5に連通するように装着されている。圧縮エア供給口7の先端には、青銅(ブロンズ)からなる多孔質の焼結体7aが装着されている。圧縮エア供給口7は、開閉弁8を介して、例えば、コンプレッサやエアタンクを備えた圧縮エア供給源19に接続されている。本実施形態においては、圧縮エア供給口7、焼結体7a、開閉弁8及び圧縮エア供給源19により、圧縮エア供給手段7Aが構成されている。
 砂吹き込み室4における側壁の上位部には、板部材4dを介して、エアレーションエア供給口9が砂吹き込み室4に連通するように装着されている。エアレーションエア供給口9は、砂吹き込み室4内の中子砂を浮遊流動化させるエアレーションエアを砂吹き込み室4内に供給する。エアレーションエア供給口9の先端には青銅(ブロンズ)からなる多孔質の焼結体9aが装着されている。エアレーションエア供給口9は、エア配管10及び開閉弁11を介して圧縮エア供給源19に接続されている。本実施形態においては、エアレーションエア供給口9、焼結体9a、エア配管10、開閉弁11及び圧縮エア供給源19により、エアレーションエア供給手段9Aが構成されている。エア配管10の途中には、砂吹き込み室4内に残存する圧縮エアを排気する排気弁13と接続された分岐エア配管12が設けられている。
 砂吹き込み室4において、エアレーションエア供給口9が装着されている側壁と直交する側壁の上位部には、砂吹き込み室4内の圧力を測定する第1の圧力センサ14が装着されている。砂貯留室5における側壁の上位部には、砂貯留室5内の圧力を測定する第2の圧力センサ15が装着されている。
 砂貯留室5の上端には、板材5cが付属されている。砂貯留室5の天井板5b及び板材5cには、砂入れ孔5dが穿設されている。板材5cの上方には、通し孔16aが穿設されたフランジ16が配設されている。フランジ16の上端には、通し孔16aと連通する砂供給管17が固着されている。砂供給管17は、図示しない砂供給ホースを介して、中子砂を貯留・供給する砂ホッパ(図示せず)に接続されている。
 板材5cとフランジ16との間には、連通孔18aが穿設された開閉ゲート18が配設されている。開閉ゲート18は、図示されないシリンダにより開閉される(左右に動く)ように構成されている。図示されない昇降シリンダによりブローヘッド2が昇降する際、板材5c、開閉ゲート18、フランジ16及び砂供給管17も共に昇降する。
 制御装置20は、制御部20aと、タイマー20bと、判断部20cとを有する。制御部20aは、中子砂充填装置Mの各部の動作を制御する。タイマー20bは、中子砂充填装置Mの動作時間を計測する。判断部20cは、第1の圧力センサ14による測定圧力、第2の圧力センサ15による測定圧力、タイマー20bにより計測された時間などに基づいて判断を行い、制御部20aに指令信号を出力する。本実施形態において、制御装置20は、例えばパーソナルコンピュータであってもよいし、プログラマブルロジックコントローラ(PLC)や多くの他のタイプの電子式の計算・処理装置でもよい。また、タイマー20bは、制御装置20とは別に設けてもよい。
 (中子砂充填装置における中子砂充填方法)
 次に、中子砂充填装置Mにより、中子砂を中子型1のキャビティ1aに充填する方法について図5及び図6を参照して説明する。図6において、上図はエアレーションエア供給手段9A、圧縮エア供給手段7A及び排気弁13の作動タイミング(ハッチング部で作動)を示す説明図であり、下図は砂吹き込み室4及び砂貯留室5内の圧力変化を示す説明図である。
 まず、後述する圧力P1、P2、P3、時間T1、T3などを、制御装置20に登録しておく。ステップS1では、制御部20aが中子砂充填装置Mに指示して、中子型1を所定位置に配置すると共に、図示されないシリンダにより開閉ゲート18を閉鎖する。その後、制御部20aが中子砂充填装置Mに指示して、図示されない昇降シリンダによりブローヘッド2を上昇させ、中子型1とプレート4aとが密着した図1の状態とする。このとき、砂入れ孔5dは開閉ゲート18で塞がれており、ブローヘッド2内は密閉空間にされている。また、砂吹き込み室4内と砂貯留室5内には各々、必要量の中子砂Sが入っている。
 続くステップS2では、制御部20aがエアレーションエア供給手段9Aに指示して開閉弁11を開放すると共に、タイマー20bによる経過時間の計測を開始する。これにより、エアレーションエア供給口9の先端に装着された焼結体9aから圧縮エア(エアレーションエア)が噴出され、砂吹き込み室4内の中子砂が浮遊流動化される。エアレーションエア供給手段を作動させると、図6に示すように、砂吹き込み室4に装着された第1の圧力センサ14による測定圧力Pfが上昇し、砂貯留室5に装着された第2の圧力センサ15の測定圧力Pcが追従して上昇する。
 エアレーションエア供給手段9Aが動作して開閉弁11が開放されると、砂吹き込み室4内の中子砂が浮遊流動化されるが、一部の中子砂は、砂吹き込み室4内から中子型1のキャビティ1aに吹き込まれる。この状態が長く続くと、中子砂が中途半端にキャビティ1aに充填され、中子に中子砂の充填密度の低いところが発生したり、中子表面に皺が発生したりする。従って、砂吹き込み室4内の中子砂が浮遊流動化した時点で、速やかに圧縮エア供給手段7Aを作動させ、短時間にキャビティ1aへの充填を行ってもよい。
 続くステップS3では、制御装置20(制御部20a)により、第1の圧力センサ14の測定圧力Pfがあらかじめ設定した第1の圧力P1に達したか否かを判断する。ここで、第1の圧力P1は、砂吹き込み室4内の中子砂が十分に浮遊流動化され、キャビティ1a内に中子砂を吹き込むために適した圧力であり、0.01~0.1MPaに設定してもよく、さらには0.03~0.07MPaに設定してもよい。
 制御装置20(制御部20a)において、第1の圧力センサ14の測定圧力Pfが第1の圧力P1に達したと判断した場合(ステップS3:YES)には、ステップS4に進み、第1の圧力センサ14の測定圧力Pfが第1の圧力P1に達していないと判断した場合(ステップS3:NO)には、ステップS12に進む。
 ステップS12では、制御装置(制御部20a)20により、エアレーションエア供給手段9Aが作動してからあらかじめ設定した時間(第3の時間T3)が経過したか否かを判断する。経過時間が第3の時間T3未満である(ステップS12:NO)と判断した場合には、ステップS3に戻る。エアレーションエア供給手段9Aを作動させてから所定の時間(T3)の経過後も、第1の圧力センサ14の測定圧力Pfが所定の圧力(P1)に達しない場合(ステップS12:YES)は、圧縮空気の供給不足や、ブローヘッド2からの圧縮空気漏れ等の異常が考えられるため、ステップS15に進む。ステップS15では、例えば、制御装置20が備えたディスプレーに異常表示と警報を発して、ステップS8に進み、中子砂の充填動作を終了する。ここで、第3の時間T3は4~10秒に設定してもよい。
 ステップS4では、制御部20aが圧縮エア供給手段7Aに指示して、開閉弁8を開放する。これにより、圧縮エア供給口7の先端に装着された焼結体7aから圧縮エアが噴出され、砂貯留室5内の中子砂が砂吹き込み室4に送り込まれる。これに伴い、砂吹き込み室4内の中子砂が砂吹き込みノズル6及び砂吹き込み孔4bを介して中子型1のキャビティ1aに吹き込まれる。このとき、中子砂とともにキャビティ1a内に吹き込まれた圧縮エアは、ベントホール1bから排気される。中子砂が十分に浮遊流動化されているので、確実にキャビティ1aに充填することができる。また、砂吹き込み室4内の中子砂が浮遊流動化した時点で、速やかに圧縮エア供給手段7Aを作動させ短時間にキャビティ1aへの充填を行うことができるので、安定して良品の中子を造型(製造)できる。
 このときの第1の圧力センサ14と第2の圧力センサ15の測定圧力を見ると、図6に示すように、砂貯留室5の圧力、つまり第2の圧力センサ15の測定圧力Pcが急速に上昇し、砂吹き込み室4の圧力、つまり第1の圧力センサ14の測定圧力Pcより高くなる。
 続くステップS5では、制御装置20(制御部20a)により、第1の圧力センサ14の測定圧力Pf及び第2の圧力センサ15の測定圧力Pcがあらかじめ設定された第2の圧力P2に達したか否かを判断する。ここで、第2の圧力P2は、砂吹き込み室4及び砂貯留室5に確実に圧縮エアが供給され、中子型1のキャビティ1aに中子砂が吹き込まれていることを確認するための検出圧力である。第2の圧力P2は、圧縮エア供給源19から供給される圧縮エアの圧力の75~80%程度に設定してもよい。
 制御装置20(制御部20a)において、第1の圧力センサ14の測定圧力Pf及び第2の圧力センサ15の測定圧力Pcが第2の圧力P2に達したと判断した場合(ステップS5:YES)には、ステップS6に進み、第2の圧力P2に達していないと判断した場合(ステップS5:NO)には、ステップS13に進む。
 ステップS13では、ステップS12同様に、制御装置20(制御部20a)により第3の時間T3が経過したか否かを判断する。第3の時間T3が経過していない(ステップS13:NO)と判断した場合には、ステップS5に戻る。第3の時間T3が経過した後も、第1の圧力センサ14の測定圧力Pf及び第2の圧力センサ15の測定圧力Pcが第2の圧力P2に達しない場合(ステップS13:YES)は、圧縮空気の供給不足や、ブローヘッド2からの圧縮空気漏れ等の異常が考えられるため、ステップS15に進む。ステップS15では、例えば制御装置20が備えたディスプレーに異常表示と警報を発して、ステップS8に進み、中子砂の充填動作を終了する。
 続くステップS6では、制御装置20(制御部20a)において、第1の圧力センサ14の測定圧力Pf及び第2の圧力センサ15の測定圧力Pcの差圧ΔP=Pc-Pfがあらかじめ設定された第3の圧力P3以下であるか否かを判断する。第1の圧力センサ14の測定圧力Pf及び第2の圧力センサ15の測定圧力Pcは、圧縮エア供給源19から供給される圧縮エアの圧力、例えば、圧縮エアを供給しているエアタンクの圧力に近づくと上昇が止まる。砂貯留室5内には引き続き圧縮エアが供給されるので、ベントホール1bを介して排気される側の砂吹き込み室4に装着された第1の圧力センサ14の測定圧力Pfよりも、第2の圧力センサ15の測定圧力Pcが高い圧力となる。従って、第1の圧力センサ14の測定圧力Pcと第2の圧力センサ15の測定圧力Pfとの間に差圧ΔPが生じる。中子型1のキャビティ1aが吹き込まれた中子砂で充填され、次いでノズル6及び砂吹き込み孔4bも中子砂で充填されると、この間の圧縮エアの通気抵抗が増し、ベントホール1bからの排気量が減少する。そのため、砂吹き込み室4内の圧力が上昇して、砂貯留室5内の圧力に近づいて、差圧ΔPが減少する。従って、この差圧ΔPにより中子砂の充填が完了したことを検知することができる。第3の圧力P3は、0.002MPa~0.015MPaに設定してもよい。差圧ΔPの判断は微小な圧力差で行うので、圧力センサのノイズを考慮し、例えば、制御装置20において、所定の時間(第2の時間T2)の平均値(例えば、0.05~0.1秒間の測定値の平均値)により評価することにより検出精度を向上させることができる。
 制御装置20(制御部20a)において、差圧ΔPが第3の圧力P3以下であると判断した場合(ステップS6:YES)には、ステップS7に進み、差圧ΔPが第3の圧力P3以下ではないと判断した場合(ステップS6:NO)には、ステップS14に進む。
 ステップS14では、ステップS12同様に、制御装置20(制御部20a)により第3の時間T3が経過したか否かを判断する。第3の時間T3が経過していない(ステップS14:NO)と判断した場合には、ステップS6に戻る。第3の時間T3経過後も、差圧ΔPが第3の圧力P3以下にならない場合(ステップS14:YES)は、圧縮空気の供給不足や、ブローヘッド2からの圧縮空気漏れ等の異常が考えられるため、ステップS15に進む。ステップS15では、例えば制御装置20が備えたディスプレーに異常表示と警報を発して、ステップS8に進み、中子砂の充填動作を終了する。
 続くステップS7では、差圧ΔPが第3の圧力P3以下になってから所定時間(第1の時間T1)だけエアレーションエア供給手段9A及び圧縮エア供給手段7Aの作動を継続する。これにより、キャビティ1aに充填された中子砂の状態を安定させることができる。ここで、T2は0.3~1秒程度に設定してもよい。
 続くステップS8では、制御部20aがエアレーションエア供給手段9A及び圧縮エア供給手段7Aに指示して、開閉弁11及び開閉弁8を閉鎖し、エアレーションエア供給手段9A及び圧縮エア供給手段7Aの作動を停止させる。このとき、ベントホール1bからの排気により、キャビティ1a内の圧力は、砂吹き込み室4内の圧力より低くなっている。このため、砂吹き込み室4内及び砂貯留室5内の中子砂には、中子型1のキャビティ1a内へ移動しようとする圧力が作用するため、キャビティ1a内に充填された中子砂が落下することはない。
 続くステップ9では、制御部20aが排気弁13に指示して、排気弁13を開放する。これにより、砂吹き込み室4内に残存する圧縮エアが排気される。砂吹き込み室4内に残存する圧縮エアは、焼結体9aからエアレーションエア供給口9に入り、エア配管10、分岐エア配管12を通って排気弁13から排気される。このとき、砂吹き込み室4内及び砂貯留室5内に残存する圧縮エアが焼結体9aからエアレーションエア供給口9に入っていくというエアの流れができるため、その流れにのって砂貯留室5内の中子砂が砂吹き込み室4内に移動し、砂吹き込み室4内が中子砂で充填される。
 続くステップ10では、制御装置20(制御部20a)により、第1の圧力センサ14及び第2の圧力センサ15の測定圧力が相対圧力(ゲージ圧)でほぼゼロであるか否かを判断する。第1の圧力センサ14及び第2の圧力センサ15の測定圧力がゼロであると判断した場合(ステップS10:YES)には、ステップS11に進み、ゼロではないと判断した場合(ステップS10:NO)には、ゼロになるまで待機する。
 続くステップ11では、排気弁13を閉じて一連の中子砂充填処理を終了する。
 その後、制御部20aが中子砂充填装置Mに指示して、図示されない昇降シリンダによりブローヘッド2を下降させ、中子型1とブローヘッド2を分離する。そして、制御部20aが中子砂充填装置Mに指示して、中子型1を水平移動した後に型開きを行い、製造された中子を取り出す。続いて、開閉ゲート18が開かれ、砂ホッパ内の中子砂が砂供給管17、通し孔16a、連通孔18a及び砂入れ孔5dを通って砂貯留室5内に供給され、次の中子砂充填処理に備えられる。
 (実施形態の効果)
 本発明の中子砂充填方法によれば、第1の圧力センサ14により測定された砂吹き込み室4の圧力Pfがあらかじめ設定された第1の圧力P1に到達すると、圧縮エア供給手段7Aを作動させる工程(ステップS3)により、砂吹き込み室4内の中子砂が浮遊流動化した時点で、速やかに圧縮エア供給手段7Aを作動させ短時間にキャビティ1aへの充填を行うことができる。また、中子型を取り替えた場合、中子型のキャビティ容積が変化するので充填完了までの時間が変化するが、このような場合でも、充填不良のない良品の中子を安定して造型できる。
 また、砂吹き込み室4内の圧力Pf及び砂貯留室5内の圧力Pcがあらかじめ設定された第2の圧力P2以上(ステップS5)、かつ、砂吹き込み室4内の圧力と砂貯留室5内の圧力との差圧ΔP=Pc-Pfがあらかじめ設定された第3の圧力P3以下(ステップS6)になることで、中子型のキャビティへの中子砂の充填が完了したことを検出し、所定の時間(第1の時間T1)エアレーションエア供給手段及び圧縮エア供給手段7Aの作動を継続させた後(ステップS7)、エアレーションエア供給手段9A及び圧縮エア供給手段7Aの作動を停止させることができる(ステップS8)。これにより、中子砂を充填する工程の時間を短縮することができるとともに、圧縮エアの使用量を低減することができる。
 また、シェルモールド法では金型を加熱しているが、中子砂が充填完了した後も圧縮エアを供給すると、その圧縮エアは中子型1のキャビティ1aを通過して排気されるため、中子型1の熱を奪い中子の焼成時間が長くなり余分な加熱エネルギーを必要としていた。しかしながら、本実施形態に係る中子砂充填方法及び中子製造方法によれば、そのような余分な加熱エネルギーをなくすことができる。
 (その他の実施形態)
 ステップS3に変えて、第1の圧力センサ14の測定圧力Pfが第1の圧力P1に到達する時間に対応する時間を求めてあらかじめ設定しておき、エアレーションエア供給手段9Aが作動してからのタイマー20bによる経過時間が当該あらかじめ設定しておいた時間に到達すると、制御部20aが圧縮エア供給手段7Aに指示して、開閉弁8を開放させるようにしてもよい。これによっても、砂吹き込み室4内の中子砂が浮遊流動化した時点で、速やかに圧縮エア供給手段7Aを作動させ短時間にキャビティ1aへの充填を行うことができる。
 1…中子型、1a…キャビティ、1b…ベントホール、2…ブローヘッド、3…仕切り板、4…砂吹き込み室、5…砂貯留室、7A…圧縮エア供給手段、8…開閉弁、9A…エアレーションエア供給手段、10…エア配管、11…開閉弁、13…排気弁、14…第1の圧力センサ、15…第2の圧力センサ、16…フランジ、17…砂供給管、18…開閉ゲート、19…圧縮エア供給源、20…制御装置、20a…制御部、20b…タイマー、20c…判断部、M…中子砂充填装置。

Claims (18)

  1.  砂吹き込み室と砂貯留室とを有するブローヘッドから中子型のキャビティ内に中子砂を充填する中子砂充填方法であって、
     前記ブローヘッドが前記中子型の下方に位置すると共に、前記ブローヘッドと前記中子型とが連通された状態で、エアレーションエア供給手段が前記砂吹き込み室内にエアレーションエアを供給し、前記砂吹き込み室内の中子砂を浮遊流動化させる第1の工程と、
     前記第1の工程の後に、前記砂吹き込み室内の圧力が第1の圧力に到達した場合には、制御部からの指示に基づいて圧縮エア供給手段が前記砂貯留室内に圧縮エアを供給し、浮遊流動化した前記砂吹き込み室内の中子砂を前記中子型の前記キャビティ内に充填させる第2の工程と、
     前記第2の工程の後に、前記砂吹き込み室内及び前記砂貯留室内の圧力に基づいて前記制御部が前記中子砂の前記キャビティ内への充填が完了したか否かを判断し、充填が完了した場合には、前記制御部からの指示に基づいて前記エアレーションエア供給手段及び前記圧縮エア供給手段の動作をそれぞれ停止させる第3の工程と、
     前記第3の工程の後に、前記砂吹き込み室内の圧縮エアを排気する第4の工程とを含む、中子砂充填方法。
  2.  前記第1の圧力は0.01MPa~0.1MPaである、請求項1に記載の中子砂充填方法。
  3.  前記第3の工程では、前記砂吹き込み室内の圧力及び前記砂貯留室内の圧力が、第2の圧力に到達した否かを前記制御部が判断する、請求項1に記載の中子砂充填方法。
  4.  前記第3の工程では、前記砂吹き込み室内の圧力及び前記砂貯留室内の圧力が前記第2の圧力以上であるという第1の条件と、前記砂貯留室内の圧力と前記砂吹き込み室内の圧力との差圧が第3の圧力以下であるという第2の条件とが満たされているか否かを前記制御部が判断する、請求項3に記載の中子砂充填方法。
  5.  前記第3の圧力は0.002MPa~0.015MPaである、請求項4に記載の中子砂充填方法。
  6.  前記第3の工程では、前記第1の条件と前記第2の条件とが共に満たされた後、所定の第1の時間の間、前記エアレーションエア供給手段及び前記圧縮エア供給手段の動作を継続させ、その後、前記エアレーションエア供給手段及び前記圧縮エア供給手段の動作をそれぞれ停止させる、請求項4に記載の中子砂充填方法。
  7.  前記第1の時間は0.3秒~1秒である、請求項6に記載の中子砂充填方法。
  8.  前記第2の圧力は、前記第1の圧力よりも高く、且つ、前記圧縮エア供給手段から供給される圧縮エアの圧力の75%~80%の圧力に設定されている、請求項3に記載の中子砂充填方法。
  9.  前記制御部は、前記第2の条件が満たされているか否かを所定の第2の時間内における前記差圧の平均値により評価する、請求項4に記載の中子砂充填方法。
  10.  前記第2の時間は0.05秒~0.1秒である、請求項9に記載の中子砂充填方法。
  11.  中子砂を中子型の下方から吹き込んで充填するアンダーブロー式の中子砂充填装置を用いた中子造型機における中子砂充填方法であって、
     前記中子砂充填装置は、
      中子砂を充填するキャビティを有する前記中子型と、
      前記キャビティ内に中子砂を吹き込む砂吹き込み室と、前記砂吹き込み室に供給する中子砂を貯留すると共に前記砂吹き込み室に連通された砂貯留室とを有するブローヘッドと、
      前記砂吹き込み室内の中子砂を浮遊流動化させるためのエアレーションエアを前記砂吹き込み室に供給するエアレーションエア供給手段と、
      前記砂貯留室に圧縮エアを供給する圧縮エア供給手段と、
      前記砂吹き込み室内に残存する圧縮エアを排気する排気弁と、
      前記砂吹き込み室内の圧力Pfを測定する第1の圧力センサと、
      前記砂貯留室内の圧力Pcを測定する第2の圧力センサと、
      前記第1及び第2の圧力センサからの信号に基づいて、前記エアレーションエア供給手段及び前記圧縮エア供給手段及び前記排気弁の各動作を制御する制御部とを備えており、
     前記中子砂充填方法は、
      前記ブローヘッドが前記中子型の下方に位置すると共に、前記ブローヘッドと前記中子型とが連通された状態で、前記エアレーションエア供給手段が前記砂吹き込み室内にエアレーションエアを供給し、前記砂吹き込み室内の中子砂を浮遊流動化させる第1の工程と、
      前記第1の工程の後に、前記第1の圧力センサにより測定される前記砂吹き込み室の圧力Pfが第1の圧力P1に到達したか否かを前記制御部が判断して、前記第1の圧力P1に到達した場合には、前記制御部からの指示に基づいて前記圧縮エア供給手段が前記砂貯留室内に圧縮エアを供給し、浮遊流動化した前記砂吹き込み室内の中子砂を前記中子型の前記キャビティ内に充填させる第2の工程と、
      前記第2の工程の後に、前記砂吹き込み室内の圧力Pf及び前記砂貯留室内の圧力Pcが、前記第1の圧力P1よりも高い第2の圧力P2以上であるという第1の条件と、前記砂貯留室内の圧力Pcと前記砂吹き込み室内の圧力Pfとの差圧ΔP=Pc-Pfが第3の圧力P3以下であるという第2の条件とが満たされているか否かを前記制御部が判断して、前記第1及び第2の条件が共に満たされている場合には、前記制御部からの指示に基づいて前記エアレーションエア供給手段及び前記圧縮エア供給手段の動作をそれぞれ停止させる第3の工程と、
      前記第3の工程の後に、前記制御部が前記排気弁に指示して前記排気弁を開放させ、前記砂吹き込み室内の圧縮エアを排気する第4の工程とを含む、中子砂充填方法。
  12.  前記第1の圧力P1は0.01MPa~0.1MPaである、請求項11に記載の中子砂充填方法。
  13.  前記第2の圧力P2は、前記圧縮エア供給手段から供給される圧縮エアの圧力の75%~80%の圧力に設定されている、請求項11に記載の中子砂充填方法。
  14.  前記第3の圧力は、0.002MPa~0.015MPaである、請求項11に記載の中子砂充填方法。
  15.  前記第3の工程では、前記第1の条件と前記第2の条件とが共に満たされた後、所定の時間T1の間、前記エアレーションエア供給手段及び前記圧縮エア供給手段の動作を継続させ、その後、前記エアレーションエア供給手段及び前記圧縮エア供給手段の動作をそれぞれ停止させる、請求項11に記載の中子砂充填方法。
  16.  前記所定の時間T1は0.3秒~1秒である、請求項15に記載の中子砂充填方法。
  17.  前記制御部は、前記第1の工程が開始してから所定の時間T3が経過するまでに前記第1~第4のそれぞれの工程が終了したか否かを判断し、前記第1~第4のそれぞれの工程が終了する前に前記所定の時間T3が到来した場合には、前記中子砂充填装置の動作を停止させる、請求項11に記載の中子砂充填方法。
  18.  中子砂を中子型の下方から吹き込んで充填するアンダーブロー式の中子砂充填装置を用いた中子造型機における中子砂充填方法であって、
     前記中子砂充填装置は、
      中子砂を充填するキャビティを有する前記中子型と、
      前記キャビティ内に中子砂を吹き込む砂吹き込み室と、前記砂吹き込み室に供給する中子砂を貯留すると共に前記砂吹き込み室に連通された砂貯留室とを有するブローヘッドと、
      前記砂吹き込み室内の中子砂を浮遊流動化させるためのエアレーションエアを前記砂吹き込み室に供給するエアレーションエア供給手段と、
      前記砂貯留室に圧縮エアを供給する圧縮エア供給手段と、
      前記砂吹き込み室内に残存する圧縮エアを排気する排気弁と、
      前記砂吹き込み室内の圧力Pfを測定する第1の圧力センサと、
      前記砂貯留室内の圧力Pcを測定する第2の圧力センサと、
      前記第1及び第2の圧力センサからの信号に基づいて、前記エアレーションエア供給手段及び前記圧縮エア供給手段及び前記排気弁の各動作を制御する制御部とを備えており、
     前記中子砂充填方法は、
      前記ブローヘッドが前記中子型の下方に位置すると共に、前記ブローヘッドと前記中子型とが連通された状態で、前記エアレーションエア供給手段が前記砂吹き込み室内にエアレーションエアを供給し、前記砂吹き込み室内の中子砂を浮遊流動化させる第1の工程と、
      前記第1の工程の後に、前記第1の圧力センサにより測定される前記砂吹き込み室の圧力Pfが第1の圧力P1に到達したことを示す所定の時間が経過したか否かを前記制御部が判断して、前記所定の時間が到来した場合には、前記制御部からの指示に基づいて前記圧縮エア供給手段が前記砂貯留室内に圧縮エアを供給し、浮遊流動化した前記砂吹き込み室内の中子砂を前記中子型の前記キャビティ内に充填させる第2の工程と、
      前記第2の工程の後に、前記砂吹き込み室内の圧力Pf及び前記砂貯留室内の圧力Pcが、前記第1の圧力P1よりも高い第2の圧力P2以上であるという第1の条件と、前記砂貯留室内の圧力Pcと前記砂吹き込み室内の圧力Pfとの差圧ΔP=Pc-Pfが第3の圧力P3以下であるという第2の条件とが満たされているか否かを前記制御部が判断して、前記第1及び第2の条件が共に満たされている場合には、前記制御部からの指示に基づいて前記エアレーションエア供給手段及び前記圧縮エア供給手段の動作をそれぞれ停止させる第3の工程と、
      前記第3の工程の後に、前記制御部が前記排気弁に指示して前記排気弁を開放させ、前記砂吹き込み室内の圧縮エアを排気する第4の工程とを含む、中子砂充填方法。
PCT/JP2013/052931 2012-05-25 2013-02-07 中子砂充填方法 WO2013175814A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13794598.6A EP2826574B1 (en) 2012-05-25 2013-02-07 Core sand filling method
EP16185470.8A EP3117927B1 (en) 2012-05-25 2013-02-07 Core sand filling method
US14/402,753 US9339866B2 (en) 2012-05-25 2013-02-07 Core sand filling method
CN201380027154.3A CN104334296B (zh) 2012-05-25 2013-02-07 砂芯砂充填方法
DK13794598.6T DK2826574T3 (en) 2012-05-25 2013-02-07 CORE SAND FILLING PROCESS
ES13794598.6T ES2630066T3 (es) 2012-05-25 2013-02-07 Procedimiento de llenado de arena de núcleo
JP2014516686A JP5884904B2 (ja) 2012-05-25 2013-02-07 中子砂充填方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-119357 2012-05-25
JP2012119357 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013175814A1 true WO2013175814A1 (ja) 2013-11-28

Family

ID=49623519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052931 WO2013175814A1 (ja) 2012-05-25 2013-02-07 中子砂充填方法

Country Status (10)

Country Link
US (1) US9339866B2 (ja)
EP (2) EP3117927B1 (ja)
JP (1) JP5884904B2 (ja)
CN (1) CN104334296B (ja)
DK (1) DK2826574T3 (ja)
ES (2) ES2630066T3 (ja)
PL (1) PL2826574T3 (ja)
TR (1) TR201906818T4 (ja)
TW (1) TWI556887B (ja)
WO (1) WO2013175814A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3307456B1 (en) * 2015-06-12 2019-07-10 Disa Industries A/S Sand moulding machine and method of producing moulds
JP6396876B2 (ja) * 2015-11-06 2018-09-26 トヨタ自動車株式会社 混練砂の充填方法及び充填装置
DE112019003020T5 (de) * 2018-06-15 2021-03-18 Sintokogio, Ltd. Form-Formungsvorrichtung und Verfahren zum Steuern einer Form-Formungsvorrichtung
CN114096360B (zh) * 2020-04-27 2023-07-21 雅马哈发动机株式会社 砂模制造装置
CN113695515B (zh) * 2020-05-21 2023-07-14 邓超 一种无机砂再生工艺方法
CN114247855B (zh) * 2022-02-28 2022-05-13 新乡市美斯威精密机器有限公司 一种制冷压缩机缸盖铸造成型用浮游式砂芯砂充填装置
CN114713777B (zh) * 2022-04-15 2024-03-15 苏州明志科技股份有限公司 一种超大型射芯机射芯装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713179B1 (ja) 1967-10-14 1972-04-21
JPS4741368Y1 (ja) * 1969-06-30 1972-12-14
JPH05305386A (ja) * 1992-05-01 1993-11-19 Osaka Shell Kogyosho:Kk 中空中子の製造方法
JP2008264867A (ja) * 2007-03-29 2008-11-06 Sintokogio Ltd 鋳物製品の鋳造設備

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713179A (ja) 1971-12-16 1972-07-04
JPS5941821B2 (ja) 1979-12-12 1984-10-09 トヨタ自動車株式会社 鋳型造型機
JPS5941821A (ja) 1982-09-02 1984-03-08 Nippon Hoso Kyokai <Nhk> 光磁気記録用非晶質磁性多層膜の製造方法
JPS60113146U (ja) 1984-01-09 1985-07-31 マツダ株式会社 中子造形機
JPS61202747A (ja) 1985-03-06 1986-09-08 Naniwa Seisakusho:Kk 垂直割鋳型造型機における鋳型取出装置
JPH0741368Y2 (ja) * 1989-05-25 1995-09-27 日本化学産業株式会社 パラソルスタンド
JP3556060B2 (ja) 1996-12-06 2004-08-18 旭有機材工業株式会社 二層シェル鋳型及びその製造方法
JP3322387B2 (ja) * 1997-01-31 2002-09-09 新東工業株式会社 ブロースクイズ式鋳型造型機におけるブロー用圧縮空気の供給方法
JP2001198653A (ja) * 2000-01-17 2001-07-24 Sintokogio Ltd 同時吹込み式鋳型造型機における鋳物砂吹込み方法
CN2506375Y (zh) 2001-09-24 2002-08-21 段晓鸣 射砂压力恒定的树脂砂射芯机
JP4379795B2 (ja) * 2004-04-21 2009-12-09 新東工業株式会社 鋳物砂の充填方法
CN2701552Y (zh) 2004-06-07 2005-05-25 苏州工业园区明志铸造装备有限公司 一种射芯机的射砂机构
JP5076670B2 (ja) 2006-08-04 2012-11-21 新東工業株式会社 無枠鋳型造型機
WO2008120559A1 (ja) 2007-03-29 2008-10-09 Sintokogio, Ltd. 鋳物製品の鋳造設備
JP4900880B2 (ja) 2008-02-07 2012-03-21 新東工業株式会社 鋳型造型設備
CN201249253Y (zh) * 2008-08-04 2009-06-03 林舜尧 一种改进的砂芯注射机
JP5062540B2 (ja) * 2010-01-13 2012-10-31 新東工業株式会社 鋳型造型機におけるサンドタンクの給排気装置及び給排気方法
JP4687822B1 (ja) * 2010-01-29 2011-05-25 新東工業株式会社 抜枠鋳型造型装置
CN103492103A (zh) 2011-06-03 2014-01-01 新东工业株式会社 在制芯机中的芯沙填充设备和芯沙填充方法
MX2013013990A (es) 2011-06-03 2014-05-27 Sintokogio Ltd Dispositivo de relleno de arena para machos y metodo de relleno de arena para machos en maquina de fabricacion de machos.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713179B1 (ja) 1967-10-14 1972-04-21
JPS4741368Y1 (ja) * 1969-06-30 1972-12-14
JPH05305386A (ja) * 1992-05-01 1993-11-19 Osaka Shell Kogyosho:Kk 中空中子の製造方法
JP2008264867A (ja) * 2007-03-29 2008-11-06 Sintokogio Ltd 鋳物製品の鋳造設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2826574A4 *

Also Published As

Publication number Publication date
JP5884904B2 (ja) 2016-03-15
CN104334296B (zh) 2016-08-31
US9339866B2 (en) 2016-05-17
US20150144289A1 (en) 2015-05-28
DK2826574T3 (en) 2017-06-06
ES2630066T3 (es) 2017-08-17
EP3117927A1 (en) 2017-01-18
EP2826574B1 (en) 2017-04-19
TR201906818T4 (tr) 2019-05-21
EP2826574A4 (en) 2016-04-13
TWI556887B (zh) 2016-11-11
TW201347873A (zh) 2013-12-01
EP3117927B1 (en) 2019-04-03
CN104334296A (zh) 2015-02-04
EP2826574A1 (en) 2015-01-21
JPWO2013175814A1 (ja) 2016-01-12
PL2826574T3 (pl) 2017-09-29
ES2729225T3 (es) 2019-10-31

Similar Documents

Publication Publication Date Title
JP5884904B2 (ja) 中子砂充填方法
WO2005102561A1 (ja) 砂型造型法
WO2012165181A1 (ja) 中子造型機における中子砂充填装置及び中子砂充填方法
KR101906093B1 (ko) 흡인 가압 주조 방법
CN109689249B (zh) 铸造装置用的注射装置及铸造方法
KR20070012435A (ko) 감압 주형조형의 주탕 방법, 장치 및 주물
WO2016135843A1 (ja) 鋳造装置及び鋳造方法
JP6973481B2 (ja) 抜枠造型機
CN101657282A (zh) 低压铸造装置、向该装置注入惰性气体的方法以及铸件制造方法
JP6474031B2 (ja) 鋳造装置及び鋳造方法
JP2009255133A (ja) 差圧鋳造装置
JP2005305502A (ja) 鋳物砂の充填方法
CN103492103A (zh) 在制芯机中的芯沙填充设备和芯沙填充方法
KR101961295B1 (ko) 사형 주조용 코어 성형장치
TW201908032A (zh) 鑄模高度變更單元、無箱造模機、及鑄模高度變更方法
JP6406509B2 (ja) 鋳造装置及び鋳造方法
JP2003145261A (ja) ダイカストマシンの吸引給湯方法及び同方法を用いた吸引給湯装置
CN206184700U (zh) 一种填充式led荧光粉敷膜装置
JP5920189B2 (ja) 鋳造装置及び鋳造方法
JP3415497B2 (ja) 吹込み式鋳型造型機における鋳物砂吹込み充填異常検知方法及びそのシステム
JP2005118813A (ja) ダイカストマシンの給湯方法
JPH0237480Y2 (ja)
JPH058012A (ja) 堅型ダイカストマシンの給湯・射出装置
JP2008036674A (ja) 鋳型造型方法及びその装置
JP2006122910A (ja) 金属低圧鋳造炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516686

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013794598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013794598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14402753

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE