WO2013175762A1 - 非水電解質蓄電デバイス用セパレータの製造方法、及びエポキシ樹脂多孔質膜の製造方法 - Google Patents

非水電解質蓄電デバイス用セパレータの製造方法、及びエポキシ樹脂多孔質膜の製造方法 Download PDF

Info

Publication number
WO2013175762A1
WO2013175762A1 PCT/JP2013/003208 JP2013003208W WO2013175762A1 WO 2013175762 A1 WO2013175762 A1 WO 2013175762A1 JP 2013003208 W JP2013003208 W JP 2013003208W WO 2013175762 A1 WO2013175762 A1 WO 2013175762A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
porous membrane
sheet
separator
membrane
Prior art date
Application number
PCT/JP2013/003208
Other languages
English (en)
French (fr)
Inventor
洋佑 山田
坂本 亨枝
俊祐 能見
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP13794631.5A priority Critical patent/EP2854198A4/en
Priority to KR1020147035757A priority patent/KR20150013865A/ko
Priority to US14/387,739 priority patent/US20150076741A1/en
Priority to CN201380026686.5A priority patent/CN104335391A/zh
Publication of WO2013175762A1 publication Critical patent/WO2013175762A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2263/00Use of EP, i.e. epoxy resins or derivatives thereof as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/001Flat articles, e.g. films or sheets having irregular or rough surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for a nonaqueous electrolyte electricity storage device and a method for producing an epoxy resin porous membrane.
  • polyolefin porous membranes have been used as separators for nonaqueous electrolyte electricity storage devices.
  • the polyolefin porous membrane can be produced by the method described below.
  • a polyolefin solution is prepared by mixing and heating a solvent and a polyolefin resin.
  • a mold such as a T-die
  • the polyolefin solution is discharged and cooled while forming into a sheet shape to obtain a sheet-like molded body.
  • a solvent is removed from a molded object.
  • An organic solvent is used in the step of removing the solvent from the molded body (see Patent Document 1).
  • halogenated organic compound such as dichloromethane is often used as the organic solvent.
  • the use of halogenated organic compounds is problematic because the environmental burden is very large.
  • An object of the present invention is to provide a method for producing a separator for a non-aqueous electrolyte electricity storage device that can avoid the use of a solvent having a large environmental load and is suitable for controlling parameters such as an average pore diameter and a film thickness.
  • the present invention A step (i) of preparing an epoxy resin composition comprising an epoxy resin, a curing agent and a porogen; Cutting the cured body of the epoxy resin composition into a sheet or curing the sheet-shaped molded body of the epoxy resin composition so that an epoxy resin sheet is obtained (ii); Removing the porogen from the epoxy resin sheet using a halogen-free solvent to form an epoxy resin porous membrane (iii); Irradiating the epoxy resin porous membrane with infrared rays to measure infrared absorption characteristics of the epoxy resin porous membrane (iv); And (v) calculating a film thickness and / or an average pore size of the epoxy resin porous membrane based on the infrared absorption characteristics, and manufacturing a separator for a nonaqueous electrolyte electricity storage device provided with the epoxy resin porous membrane Method.
  • the porogen is removed from the epoxy resin sheet using a halogen-free solvent, whereby an epoxy resin porous film is obtained. Therefore, it is possible to avoid the use of a solvent having a large environmental load. Further, according to the present invention, parameters such as average pore diameter and film thickness can be easily controlled.
  • the separator 4 for a non-aqueous electrolyte electricity storage device is disposed between the cathode 2 and the anode 3 in the non-aqueous electrolyte electricity storage device 100, and isolates the cathode 2 and the anode 3.
  • Non-aqueous electrolyte is held and the role of ensuring ion conductivity between the cathode 2 and the anode 3 is assumed.
  • an epoxy resin porous membrane manufactured by any one of the following methods (a), (b), and (c) is used as a separator for a nonaqueous electrolyte electricity storage device.
  • the methods (a) and (b) are common in that the curing step is performed after the epoxy resin composition is applied on a substrate and formed into a sheet.
  • the method (c) is characterized in that an epoxy resin block-shaped cured body is formed and the cured body is formed into a sheet shape.
  • Method (a) An epoxy resin composition containing an epoxy resin, a curing agent and a porogen is applied onto a substrate so that a sheet-like molded body of the epoxy resin composition is obtained. Thereafter, the sheet-like molded body of the epoxy resin composition is heated to three-dimensionally crosslink the epoxy resin. At that time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen. Thereafter, the porogen is removed from the obtained epoxy resin sheet by washing and dried to obtain an epoxy resin porous film having pores communicating with the three-dimensional network skeleton.
  • substrate is not specifically limited, A plastic substrate, a glass substrate, a metal plate, etc. can be used as a board
  • Method (b) An epoxy resin composition containing an epoxy resin, a curing agent and a porogen is applied on the substrate. Thereafter, another substrate is placed on the applied epoxy resin composition to produce a sandwich structure. Note that spacers (for example, double-sided tape) may be provided at the four corners of the substrate in order to ensure a certain distance between the substrates. Next, the sandwich structure is heated to cross-link the epoxy resin three-dimensionally. At that time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen. Thereafter, the obtained epoxy resin sheet is taken out, and the porogen is removed by washing, followed by drying, whereby an epoxy resin porous film having pores communicating with the three-dimensional network skeleton is obtained.
  • substrate is not restrict
  • Method (c) An epoxy resin composition containing an epoxy resin, a curing agent and a porogen is filled into a mold having a predetermined shape. Thereafter, a cured product of the cylindrical or columnar epoxy resin composition is produced by three-dimensionally crosslinking the epoxy resin. At that time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen. Then, while rotating the hardening body of an epoxy resin composition centering on a cylinder axis
  • the epoxy resin porous membrane can be manufactured through the following main steps.
  • an epoxy resin composition containing an epoxy resin, a curing agent and a porogen is prepared. Specifically, an epoxy resin and a curing agent are dissolved in a porogen to prepare a uniform solution.
  • an aromatic epoxy resin either an aromatic epoxy resin or a non-aromatic epoxy resin can be used.
  • the aromatic epoxy resin include a polyphenyl-based epoxy resin, an epoxy resin containing a fluorene ring, an epoxy resin containing triglycidyl isocyanurate, an epoxy resin containing a heteroaromatic ring (for example, a triazine ring), and the like.
  • Polyphenyl-based epoxy resins include bisphenol A type epoxy resins, brominated bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, stilbene type epoxy resins, biphenyl type epoxy resins, and bisphenol A novolak type epoxy resins.
  • Non-aromatic epoxy resins include aliphatic glycidyl ether type epoxy resins, aliphatic glycidyl ester type epoxy resins, alicyclic glycidyl ether type epoxy resins, alicyclic glycidyl amine type epoxy resins, and alicyclic glycidyl ester type epoxy resins. Etc. These may be used alone or in combination of two or more.
  • bisphenol A type epoxy resin brominated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, epoxy resin containing fluorene ring, epoxy resin containing triglycidyl isocyanurate, alicyclic glycidyl At least one selected from the group consisting of an ether type epoxy resin, an alicyclic glycidyl amine type epoxy resin and an alicyclic glycidyl ester type epoxy resin, having an epoxy equivalent of 6000 or less and a melting point of 170 ° C. or less. It can be used suitably. When these epoxy resins are used, a uniform three-dimensional network skeleton and uniform pores can be formed, and excellent chemical resistance and high strength can be imparted to the epoxy resin porous membrane.
  • Aromatic curing agents include aromatic amines (eg, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzyldimethylamine, dimethylaminomethylbenzene), aromatic acid anhydrides (eg, phthalic anhydride, trimellitic anhydride) , Pyromellitic anhydride), phenol resins, phenol novolac resins, amines containing heteroaromatic rings (for example, amines containing triazine rings), and the like.
  • Non-aromatic curing agents include aliphatic amines (eg, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, iminobispropylamine, bis (hexamethylene) triamine, 1,3,6-trisaminomethylhexane , Polymethylenediamine, trimethylhexamethylenediamine, polyetherdiamine), alicyclic amines (eg, isophoronediamine, menthanediamine, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) 2,4, 8,10-tetraoxaspiro (5,5) undecane adduct, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane, modified products thereof), polyamines and dimer acid Including aliphatic polyamide Min, and the like. These may be used alone or in combination of two or more.
  • a curing agent having two or more primary amines in the molecule can be suitably used. Specifically, at least one selected from the group consisting of metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, polymethylenediamine, bis (4-amino-3-methylcyclohexyl) methane and bis (4-aminocyclohexyl) methane. Can be suitably used.
  • these curing agents are used, a uniform three-dimensional network skeleton and uniform pores can be formed, and high strength and appropriate elasticity can be imparted to the epoxy resin porous membrane.
  • a combination of an epoxy resin and a curing agent a combination of an aromatic epoxy resin and an aliphatic amine curing agent, a combination of an aromatic epoxy resin and an alicyclic amine curing agent, or an alicyclic epoxy resin and an aromatic amine A combination with a curing agent is preferred.
  • excellent heat resistance can be imparted to the epoxy resin porous membrane.
  • the porogen may be a solvent that can dissolve the epoxy resin and the curing agent. Porogens are also used as solvents that can cause reaction-induced phase separation after the epoxy resin and curing agent are polymerized. Specifically, cellosolves such as methyl cellosolve and ethyl cellosolve, esters such as ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate, glycols such as polyethylene glycol and polypropylene glycol, polyoxyethylene monomethyl ether and polyoxyethylene Ethers such as dimethyl ether can be used as the porogen. These may be used alone or in combination of two or more.
  • at least one selected from the group consisting of polyethylene glycol having an average molecular weight of 200 or less, polypropylene glycol having a molecular weight of 500 or less, polyoxyethylene monomethyl ether, and propylene glycol monomethyl ether acetate can be preferably used.
  • these porogens are used, a uniform three-dimensional network skeleton and uniform pores can be formed. These may be used alone or in combination of two or more.
  • a solvent in which a reaction product of the epoxy resin and the curing agent is soluble can be used as a porogen.
  • porogen include brominated bisphenol A type epoxy resin (“Epicoat 5058” manufactured by Japan Epoxy Resin Co., Ltd.).
  • the porosity, average pore size, and pore size distribution of the epoxy resin porous membrane vary depending on the type of raw material, the mixing ratio of the raw material, and reaction conditions (for example, heating temperature and heating time during reaction-induced phase separation). Therefore, it is preferable to select optimum conditions in order to obtain the target porosity, average pore diameter, and pore diameter distribution.
  • reaction conditions for example, heating temperature and heating time during reaction-induced phase separation. Therefore, it is preferable to select optimum conditions in order to obtain the target porosity, average pore diameter, and pore diameter distribution.
  • the co-continuous structure of the crosslinked epoxy resin and porogen is fixed in a specific state and stable. A porous structure can be obtained.
  • the blending ratio of the curing agent to the epoxy resin is, for example, 0.6 to 1.5 in terms of the curing agent equivalent to 1 equivalent of epoxy group.
  • Appropriate curing agent equivalent contributes to improvement of properties such as heat resistance, chemical durability and mechanical properties of the porous epoxy resin membrane.
  • a curing accelerator may be added to the solution in order to obtain the desired porous structure.
  • the curing accelerator include tertiary amines such as triethylamine and tributylamine, and imidazoles such as 2-phenol-4-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenol-4,5-dihydroxyimidazole. It is done.
  • porogen 40 to 80% by weight of porogen can be used with respect to the total weight of epoxy resin, curing agent and porogen.
  • an epoxy resin porous membrane having a desired porosity, average pore diameter and air permeability can be formed.
  • the average pore diameter of the epoxy resin porous membrane As one method for adjusting the average pore diameter of the epoxy resin porous membrane to a desired range, there is a method of using a mixture of two or more epoxy resins having different epoxy equivalents.
  • the difference in epoxy equivalent is preferably 100 or more, and there are cases where an epoxy resin that is liquid at normal temperature and an epoxy resin that is solid at normal temperature are mixed and used.
  • a cured product of the epoxy resin composition is prepared from a solution containing an epoxy resin, a curing agent and a porogen. Specifically, the solution is filled in a mold and heated as necessary. A cured body having a predetermined shape is obtained by three-dimensionally crosslinking the epoxy resin. In that case, a co-continuous structure is formed by phase-separation of a crosslinked epoxy resin and a porogen.
  • the shape of the cured body is not particularly limited. If a columnar or cylindrical mold is used, a cured body having a cylindrical or columnar shape can be obtained. When the cured body has a cylindrical or columnar shape, it is easy to carry out a cutting step (see FIG. 2) described later.
  • the temperature and time required for curing the epoxy resin composition are not particularly limited because they vary depending on the type of epoxy resin and curing agent.
  • a curing treatment can be performed at room temperature.
  • the temperature is about 20 to 40 ° C., and the time is about 3 to 100 hours, preferably about 20 to 50 hours.
  • the temperature is about 40 to 120 ° C., preferably about 60 to 100 ° C., and the time is about 10 to 300 minutes, preferably about 30 to 180 minutes.
  • post-cure post-treatment
  • post-curing conditions are not particularly limited, but the temperature is room temperature or about 50 to 160 ° C., and the time is about 2 to 48 hours.
  • the dimensions of the cured body are not particularly limited.
  • the diameter of the cured body is, for example, 30 cm or more, and preferably 40 to 150 cm, from the viewpoint of manufacturing efficiency of the epoxy resin porous membrane.
  • the length (axial direction) of the cured body can also be appropriately set in consideration of the dimensions of the epoxy resin porous film to be obtained.
  • the length of the cured body is, for example, 20 to 200 cm, preferably 20 to 150 cm, and more preferably 20 to 120 cm from the viewpoint of ease of handling.
  • the cured body is formed into a sheet.
  • the cured body having a cylindrical or columnar shape can be formed into a sheet shape by the following method. Specifically, the cured body 12 is attached to the shaft 14 as shown in FIG.
  • the surface layer portion of the cured body 12 is cut (sliced) at a predetermined thickness using a cutting blade 18 (slicer) so that an epoxy resin sheet 16 having a long shape is obtained.
  • the surface layer portion of the cured body 12 is cut while rotating the cured body 12 relative to the cutting blade 18 around the cylindrical axis O (or columnar axis) of the cured body 12.
  • the cutting blade 18 with respect to the cylindrical axis O of the hardened body 12 approaches the cylindrical axis O (or the columnar axis) by a predetermined distance.
  • the position is controlled.
  • the predetermined distance at this time corresponds to the cutting thickness. According to this method, the epoxy resin sheet 16 having a predetermined thickness can be efficiently produced.
  • the line speed when cutting the cured body 12 is, for example, in the range of 2 to 50 m / min.
  • the thickness of the epoxy resin sheet 16 is determined according to the target film thickness (for example, 5 to 50 ⁇ m, or 10 to 50 ⁇ m, for example) of the epoxy resin porous film. Since the thickness slightly decreases when the porogen is removed and dried, the epoxy resin sheet 16 is usually slightly thicker than the target film thickness of the porous epoxy resin film.
  • the length of the epoxy resin sheet 16 is not specifically limited, From a viewpoint of the production efficiency of the epoxy resin sheet 16, it is 100 m or more, for example, Preferably it is 1000 m or more.
  • the porogen is extracted from the epoxy resin sheet 16 and removed. Specifically, the porogen can be removed from the epoxy resin sheet 16 by immersing the epoxy resin sheet 16 in a halogen-free solvent. Thereby, the epoxy resin porous membrane which can be utilized as the separator 4 is obtained.
  • the halogen-free solvent for removing the porogen from the epoxy resin sheet 16 at least one selected from the group consisting of water, DMF (N, N-dimethylformamide), DMSO (dimethyl sulfoxide), and THF (tetrahydrofuran) is used as the porogen. It can be used depending on the type. Also, supercritical fluids such as water and carbon dioxide can be used as a solvent for removing porogen. In order to positively remove the porogen from the epoxy resin sheet 16, ultrasonic cleaning may be performed, or the solvent may be heated and used.
  • the cleaning device for removing the porogen is not particularly limited, and a known cleaning device can be used.
  • a multistage cleaning apparatus having a plurality of cleaning tanks can be suitably used.
  • the number of cleaning stages is more preferably 3 or more.
  • the temperature of the solvent may be changed or the type of the solvent may be changed in the cleaning of each stage.
  • the porous epoxy resin membrane is dried.
  • the drying conditions are not particularly limited, and the temperature is usually about 40 to 120 ° C., preferably about 50 to 80 ° C., and the drying time is about 3 minutes to 3 hours.
  • a drying apparatus employing a known sheet drying method such as a tenter method, a floating method, a roll method, or a belt method can be used. A plurality of drying methods may be combined.
  • an epoxy resin porous membrane that can be used as the separator 4 can be manufactured very easily. Since the process required at the time of manufacture of the conventional polyolefin porous membrane, for example, an extending process, can be omitted, an epoxy resin porous membrane can be manufactured with high productivity. Moreover, since the conventional polyolefin porous membrane receives high temperature and high shear force in the manufacturing process, it is necessary to use additives, such as antioxidant. On the other hand, according to the method of this embodiment, an epoxy resin porous membrane can be manufactured without applying high temperature and high shearing force. Therefore, it is not necessary to use an additive such as an antioxidant contained in the conventional polyolefin porous membrane. Moreover, since inexpensive materials can be used as the epoxy resin, the curing agent, and the porogen, the production cost of the separator 4 can be reduced.
  • the epoxy resin porous film obtained as described above is irradiated with infrared rays, and the infrared absorption characteristics are measured.
  • the measured infrared absorption characteristics can be used to calculate the thickness and / or average pore diameter of the porous epoxy resin membrane. That is, the method of this embodiment further includes the following steps (iv) to (v). -Process (iv): The infrared absorption characteristic of an epoxy resin porous membrane is measured. Step (v): Calculate the thickness and / or average pore size of the porous epoxy resin membrane based on the infrared absorption characteristics.
  • the infrared absorption characteristic in the present embodiment is an infrared absorption spectrum created by detecting infrared light transmitted through the epoxy resin porous film in the film thickness direction, that is, a spectrum (IR chart) obtained by infrared spectroscopy. is there.
  • a spectrum IR chart
  • In the infrared absorption spectrum there exists an absorption peak whose peak intensity varies depending on the amount of resin contained in the porous epoxy resin membrane.
  • peak intensity is used as a term meaning absorbance at the peak apex.
  • the “absorbance at the absorption peak” is determined based on the absorbance at the peak apex of the absorption peak as usual.
  • the absorbance in a specific wavenumber region in the infrared absorption spectrum (hereinafter, the terms “wavenumber” and “wavenumber region” are used instead of “wavelength” and “wavelength region” because the wavelength is displayed by the wavenumber) Reflects the degree of light scattering in the epoxy resin porous membrane. Therefore, based on these absorbances, the thickness and / or average pore diameter of the epoxy resin porous membrane can be calculated.
  • the infrared absorption characteristics are not limited to the infrared absorption spectrum. As the infrared absorption characteristics, for example, the absorbance at only a specific wave number reflecting the amount of resin and a specific wave number reflecting the degree of light scattering may be measured.
  • Evaluation of film thickness and / or average pore diameter based on infrared absorption characteristics can be applied to an epoxy resin porous film being transported through a production line.
  • the evaluation based on infrared absorption characteristics enables on-line measurement of film thickness and / or average pore size. Therefore, the evaluation based on the infrared absorption characteristic is suitable for application to the mass production process of the epoxy resin porous membrane as compared with the off-line evaluation represented by the measurement of the average pore diameter by the mercury intrusion method.
  • the film thickness is stabilized based on the evaluation results while performing online evaluation by feedback control described later, it becomes possible to operate the mass production line stably over a long period of time. Yield is also improved.
  • the film thickness and / or average pore diameter of the epoxy resin porous membrane can be calculated based on a calibration curve.
  • the calibration curve used for the calculation of the film thickness is, for example, the film thickness measured using a contact type digital length measuring instrument (for example, “Lightmatic VL-50-B” manufactured by Mitutoyo Corporation) and the absorption peak used for the calculation. It can be created based on the peak intensity.
  • a calibration curve used for calculating the average pore diameter can be created based on, for example, the ratio of the average pore diameter measured by the mercury intrusion method and the peak intensity of the two absorption peaks used for the calculation. It is convenient to store a calibration curve in advance in the storage means provided in the measuring instrument so that the film thickness and the like are displayed immediately from the measurement result such as peak intensity.
  • the absorbance of the absorption peak (hereinafter referred to as “absorbance A”) showing a strong correlation between the abundance of the resin and the peak intensity.
  • an absorption peak existing in the wave number range of 500 to 2000 cm ⁇ 1 is suitable, although it varies depending on the type of epoxy resin and curing agent.
  • an absorption peak having an absorbance of 2 or less, for example, 0.05 to 2, particularly 0.1 to 1.5 is suitable.
  • an absorption peak with a small degree of overlap with an adjacent peak is suitable.
  • an absorption peak at 1607 cm ⁇ 1 As an absorption peak for specifying the absorbance A.
  • This absorption peak derived from the absorption of the aromatic ring is small enough that the absorbance can be 1 or less, and is suitable for estimating the abundance of the resin.
  • the absorbance of other absorption peaks existing at 500 to 2000 cm ⁇ 1 may be selected.
  • the absorption peak existing at a predetermined wave number includes not only an absorption peak having a peak apex at the wave number but also a peak having a peak midpoint at the wave number.
  • the absorption peak existing in a predetermined wave number range means an absorption peak whose peak apex exists in the wave number range.
  • absorbance B For the calculation of the average pore diameter, it is desirable to select the absorbance (hereinafter referred to as “absorbance B”) that shows a strong correlation with the degree of light scattering by the pores of the membrane, together with the absorbance A.
  • the absorbance B an absorbance at a specific wave number selected from a wave number range of 3800 to 4200 cm ⁇ 1 is suitable. In this wave number region, absorption by the functional group does not substantially occur, so there is no clear absorption peak. The absorbance measured in this wavenumber range is due to light scattering in the epoxy resin porous membrane. Therefore, unlike the absorbance A, it is appropriate to specify the absorbance B not simply as the peak intensity of the absorption peak, but simply as the absorbance at a predetermined wave number.
  • Examples of preferable absorbance B include absorbance measured at 4000 cm ⁇ 1 . Selected for calculation of the average pore diameter, for example, the absorbance B to the absorbance A ratio, the wavenumber range of specifically 500 ⁇ 2000 cm 3800 to the absorbance A of the absorption peaks present in wavenumber range of -1 ⁇ 4200cm -1 the ratio of the absorbance B at a particular wave number to be preferably present in / (1607 cm -1 (absorbance B at 4000 cm -1) absorbance ratio of B, i.e., in the 4000 cm -1 to the absorbance a of the absorption peaks at 1607 cm -1
  • the absorbance A) of the absorption peak to be used is preferably used as an index.
  • the method of the present embodiment preferably further includes the following step (vi).
  • the step of correcting the film thickness is performed, for example, as the following step (vi-a) after performing the step (v) of calculating the thickness of the porous epoxy resin membrane based on the infrared absorption characteristics.
  • the factor that determines the thickness at which the cured body is cut includes control of the positional relationship between the cured body and the cutting blade when the cured body is cut. That is, in step (ii), the surface layer portion of the cured body while rotating the cured body of the epoxy resin composition relative to the cutting blade around the cylindrical axis or the column axis of the cured body having a cylindrical or columnar shape
  • the distance that the cutting blade approaches the cylindrical axis or the columnar axis is changed while the cured body makes one rotation with respect to the cutting blade. Change the control of the positional relationship between the cured body and the cutting blade so that the distance becomes longer when the epoxy resin sheet should be thicker, and the distance becomes shorter when the epoxy resin sheet should be thinner Good.
  • factors for determining the thickness of the sheet-shaped molded article of the epoxy resin composition include, for example, the composition of the epoxy resin composition, the application condition of the epoxy resin composition, the heating condition of the sheet-shaped molded article Is mentioned. That is, in the step (ii), when the sheet-like molded body formed by applying the epoxy resin composition on the substrate is heated, the inclusion of the components constituting the epoxy resin composition in the step (vi-a) It is preferable to change at least one selected from the rate, the application condition of the epoxy resin composition on the substrate, and the heating condition of the sheet-like molded body.
  • the content of the epoxy resin and the curing agent may be increased.
  • the amount of the epoxy resin composition to be supplied by increasing the extrusion pressure in the extruder among the application conditions of the epoxy resin composition on the substrate may be increased. For example, it is good to reduce temperature among the heating conditions of a sheet-like molded object.
  • step (vi-a) After performing step (vi-a), if at least steps (ii) to (iii) are further performed, it is possible to manufacture an epoxy resin porous film with a corrected film thickness.
  • the steps (i) to (iii) may be further performed.
  • the product may be prepared and stored.
  • the steps (ii) to (vi-a) are repeated a plurality of times after performing the step (vi-a), the thickness of the resulting epoxy resin porous membrane is brought close to the target thickness. Is possible.
  • the target film thickness of the porous epoxy resin membrane as the separator for the nonaqueous electrolyte electricity storage device is preferably set to a predetermined value within a range of 5 ⁇ m to 50 ⁇ m, particularly within a range of 10 ⁇ m to 30 ⁇ m.
  • the step of correcting the average pore diameter is performed, for example, as the following step (vi-b) after performing the step (v) of calculating the average pore size of the porous epoxy resin membrane based on the infrared absorption characteristics.
  • step (vi-b) After the step (vi-b) is performed, the steps (i) to (iii) are further performed, whereby an epoxy resin porous membrane with a corrected average pore diameter can be produced. Also in this case, after the step (vi-b) is performed, the steps (i) to (vi-b) are performed a plurality of times so that the thickness of the resulting epoxy resin porous membrane is close to the target thickness. It is possible to go. Needless to say, after step (v), both step (vi-a) and step (vi-b) may be performed, and then at least steps (i) to (iii) may be further performed. According to this preferred embodiment, both the film thickness and the average pore diameter can be brought close to the target values.
  • the target average pore diameter of the porous epoxy resin membrane as the separator for nonaqueous electrolyte electricity storage devices is preferably set to a predetermined value within the range of 0.2 ⁇ m to 1 ⁇ m, particularly within the range of 200 nm to 400 nm.
  • the manufacturing method of the present embodiment is preferably carried out using the non-aqueous electrolyte electricity storage device separator manufacturing systems 200 and 300 shown in FIGS.
  • the manufacturing system 200 shown in FIG. 3 is a manufacturing system suitable for carrying out the method (a).
  • the manufacturing system 200 includes a mixing device 21; an extruder 22; a base material transport device 23 and a heating device 24 as devices for curing a sheet-like molded body of an epoxy resin composition containing an epoxy resin, a curing agent, and a porogen;
  • a cleaning tank 25 holding a halogen-free solvent for removing the porogen; a dryer 26; and a winding device 27 are provided.
  • Each device is connected in the above order.
  • the epoxy resin composition mixed by the mixing device 21 is extruded into a sheet form from the extruder 22 onto the substrate, and is formed into a sheet-like molded body.
  • the base material is an endless belt that is rotatably supported by a base material transport device 23 having a pair of drive rolls.
  • the sheet-like molded body is conveyed into the heating device 24 by the base material, and is heated and cured in the heating device 24 to generate an epoxy resin sheet (epoxy resin crosslinked body) 16.
  • the epoxy resin sheet 16 is conveyed to the cleaning tank 25.
  • the washing tank 25 is filled with a halogen-free solvent for removing the porogen, and the epoxy resin sheet 16 passes through the washing tank 25 to remove the porogen.
  • the epoxy resin sheet (porous film) 17 from which the porogen has been removed is dried in a dryer 26 and wound into a roll by a winding device 27.
  • the manufacturing system 200 includes an infrared absorption characteristic measuring device (infrared spectrometer, hereinafter simply referred to as “sensor”) 28 in addition to the devices 21 to 27 described above.
  • the sensor 28 is disposed between the dryer 26 and the winding device 27.
  • the sensor 28 irradiates the epoxy resin porous film with infrared rays and detects infrared rays transmitted through the epoxy resin porous membrane, and an infrared absorption spectrum is created based on the result.
  • the film thickness and / or the average pore diameter can be calculated by measuring the absorbance of at least one, preferably 2 or more.
  • the senor 28 is arranged between the dryer 26 and the winding device 27, but after the drying process by the dryer 26, the sensor 28 There is no particular restriction on the arrangement.
  • the sensor 28 may be disposed in a feeding portion for feeding the porous porous epoxy resin film wound up by the winding device 27 to a slitter that slits to a predetermined size.
  • the manufacturing system 300 shown in FIG. 4 is a manufacturing system suitable for carrying out the method (c).
  • the manufacturing system 300 includes a cutting device 33 as a device for forming a cured product of an epoxy resin composition containing an epoxy resin, a curing agent, and a porogen into a sheet, and a porogen as a device for removing porogen from an epoxy resin sheet.
  • a cleaning tank 34 holding a halogen-free solvent for removal; a dryer 35; and a winding device 36 are provided. Each device is connected in the above order.
  • a cured body 32 of a cylindrical or columnar epoxy resin composition obtained in the mixing device 31 separated from the manufacturing system 300 is set in a cutting device 33 having a cutting blade and a rotating device.
  • the surface layer portion of the hardened body 32 is cut by the cutting device 33 while the hardened body 32 is rotated relative to the cutting blade by the rotating device around the cylindrical axis or the columnar axis of the hardened body 32. Thereby, the surface layer part of the hardening body 32 of the shape of a cylinder or a column is cut by predetermined thickness, and the epoxy resin sheet 16 which has a long shape is formed continuously.
  • the epoxy resin sheet 16 is conveyed to the cleaning tank 34.
  • the washing tank 34 is filled with a halogen-free solvent for removing the porogen, and the epoxy resin sheet 16 passes through the washing tank 34 to remove the porogen.
  • the porous epoxy resin membrane 17 from which the porogen has been removed is dried in the dryer 35 and wound into a roll by the winding device 36.
  • the epoxy resin sheet 16 obtained by cutting with the cutting device is once wound up by the winding device to form a sheet roll, It is also possible to unwind the sheet roll and transport the epoxy resin sheet to the cleaning tank.
  • the sensor 38 is disposed between the dryer 35 and the winding device 36.
  • the film thickness and average pore diameter can be calculated by the sensor 38, and an epoxy resin porous film with stable quality can be manufactured.
  • a long epoxy resin porous film can be stably manufactured. Is possible.
  • This embodiment is a system in which the film thickness and the average pore diameter can be measured simultaneously, but there is no problem even if it is used for measuring only the film thickness or only the average pore diameter.
  • the nonaqueous electrolyte electricity storage device 100 includes a cathode 2, an anode 3, a separator 4, and a case 5.
  • the separator 4 is disposed between the cathode 2 and the anode 3.
  • the cathode 2, the anode 3 and the separator 4 are integrally wound to constitute an electrode group 10 as a power generation element.
  • the electrode group 10 is accommodated in a case 5 having a bottom.
  • the electricity storage device 100 is typically a lithium ion secondary battery.
  • the case 5 has a cylindrical shape. That is, the electricity storage device 100 has a cylindrical shape.
  • the shape of the electricity storage device 100 is not particularly limited.
  • the electricity storage device 100 may have, for example, a flat square shape.
  • the electrode group 10 does not require a winding structure.
  • a plate-like electrode group may be formed by simply laminating the cathode 2, the separator 4 and the anode 3.
  • the case 5 is made of a metal such as stainless steel or aluminum.
  • the electrode group 10 may be put in a case made of a flexible material.
  • the flexible material is composed of, for example, an aluminum foil and a resin film bonded to both surfaces of the aluminum foil.
  • the electricity storage device 100 further includes a cathode lead 2a, an anode lead 3a, a lid body 6, a packing 9, and two insulating plates 8.
  • the lid 6 is fixed to the opening of the case 5 via the packing 9.
  • the two insulating plates 8 are respectively disposed on the upper and lower portions of the electrode group 10.
  • the cathode lead 2 a has one end electrically connected to the cathode 2 and the other end electrically connected to the lid body 6.
  • the anode lead 3 a has one end electrically connected to the anode 3 and the other end electrically connected to the bottom of the case 5.
  • the electricity storage device 100 is filled with a nonaqueous electrolyte (typically a nonaqueous electrolyte) having ion conductivity.
  • the nonaqueous electrolyte is impregnated in the electrode group 10.
  • ions typically lithium ions
  • the cathode 2 can be composed of a cathode active material that can occlude and release lithium ions, a binder, and a current collector.
  • the cathode 2 can be produced by mixing a cathode active material with a solution containing a binder to prepare a mixture, and applying and drying the mixture on a cathode current collector.
  • the well-known material used as a cathode active material of a lithium ion secondary battery can be used.
  • lithium-containing transition metal oxides, lithium-containing transition metal phosphates, chalcogen compounds, and the like can be used as the cathode active material.
  • the lithium-containing transition metal oxide include LiCoO 2 , LiMnO 2 , LiNiO 2 , and compounds in which a part of these transition metals is substituted with another metal.
  • the lithium-containing transition metal phosphorous oxide include compounds in which a part of the transition metal (Fe) of LiFePO 4 and LiFePO 4 is substituted with another metal.
  • the chalcogen compound include titanium disulfide and molybdenum disulfide.
  • a known resin can be used as the binder.
  • fluorine resins such as polyvinylidene fluoride (PVDF), hexafluoropropylene, polytetrafluoroethylene, hydrocarbon resins such as styrene butadiene rubber and ethylene propylene terpolymer, and mixtures thereof can be used as the binder.
  • a conductive powder such as carbon black may be contained in the cathode 2 as a conductive aid.
  • a metal material excellent in oxidation resistance for example, aluminum processed into a foil shape or a mesh shape is preferably used.
  • the anode 3 can be composed of an anode active material capable of occluding and releasing lithium ions, a binder, and a current collector.
  • the anode 3 can also be produced by the same method as the cathode 2.
  • the same binder as that used for the cathode 2 can be used for the anode 3.
  • anode active material a known material used as an anode active material of a lithium ion secondary battery can be used.
  • a carbon-based active material an alloy-based active material capable of forming an alloy with lithium, a lithium-titanium composite oxide (for example, Li 4 Ti 5 O 12 ), or the like can be used as the anode active material.
  • the carbon-based active material include calcined bodies such as coke, pitch, phenol resin, polyimide, and cellulose, artificial graphite, and natural graphite.
  • the alloy active material include aluminum, tin, tin compounds, silicon, and silicon compounds.
  • anode current collector a metal material excellent in reduction stability, for example, copper or copper alloy processed into a foil shape or a mesh shape is preferably used.
  • a high potential anode active material such as lithium titanium composite oxide is used
  • aluminum processed into a foil shape or mesh shape can also be used as the anode current collector.
  • the non-aqueous electrolyte typically includes a non-aqueous solvent and an electrolyte.
  • an electrolytic solution in which a lithium salt (electrolyte) is dissolved in a nonaqueous solvent can be preferably used.
  • a gel electrolyte containing a non-aqueous electrolyte, a solid electrolyte obtained by dissolving and decomposing a lithium salt in a polymer such as polyethylene oxide, and the like can also be used as the non-aqueous electrolyte.
  • Non-aqueous solvents include propylene carbonate (PC), ethylene carbonate (EC), methyl ethyl carbonate (MEC), 1,2-dimethoxyethane (DME), ⁇ -butyrolactone ( ⁇ -BL), and mixtures thereof. It is done.
  • the separator 4 is composed of an epoxy resin porous film having a three-dimensional network skeleton and pores. Adjacent holes may be in communication with each other so that ions can move between the front and back surfaces of the separator 4, that is, ions can move between the cathode 2 and the anode 3.
  • the separator 4 has a thickness in the range of 5 to 50 ⁇ m, for example, and a thickness in the range of 10 to 50 ⁇ m, for example. If the separator 4 is too thick, it becomes difficult to move ions between the cathode 2 and the anode 3. Although it is not impossible to manufacture the separator 4 having a thickness of less than 5 ⁇ m, a thickness of 5 ⁇ m or more is preferable in order to ensure the reliability of the electricity storage device 100.
  • the separator 4 has, for example, a porosity in the range of 20 to 80%, and an average pore diameter in the range of 0.02 to 1 ⁇ m, preferably 0.2 to 1 ⁇ m. When the porosity and average pore diameter are adjusted to such ranges, the separator 4 can sufficiently exhibit the required functions.
  • the average pore diameter can be obtained by observing the cross section of the separator 4 with a scanning electron microscope in addition to the mercury intrusion method. Specifically, image processing is performed for each of the holes existing in a range of a field width of 60 ⁇ m and a predetermined depth from the surface (for example, 1/5 to 1/100 of the thickness of the separator 4). Thus, the pore diameter can be obtained and the average value thereof can be obtained as the average pore diameter. Image processing can be performed using, for example, free software “Image J” or “Photoshop” manufactured by Adobe. In addition, when a difference occurs in the measurement value of the average pore diameter by the measurement method, in this specification, the measurement value by the mercury intrusion method, more specifically, the mode diameter is adopted.
  • the separator 4 may have an air permeability (Gurley value) in the range of 1 to 1000 seconds / 100 cm 3 . Since the separator 4 has air permeability in such a range, ions can easily move between the cathode 2 and the anode 3.
  • the air permeability can be measured according to a method defined in Japanese Industrial Standard (JIS) P8117.
  • the separator 4 may be comprised only by the epoxy resin porous film, and may be comprised by the laminated body of an epoxy resin porous film and another porous material.
  • porous materials include polyolefin porous films such as polyethylene porous films and polypropylene porous films, cellulose porous films, and fluororesin porous films.
  • Other porous materials may be provided only on one side of the epoxy resin porous membrane, or may be provided on both sides.
  • the separator 4 may be composed of a laminate of an epoxy resin porous membrane and a reinforcing material.
  • the reinforcing material include woven fabric and non-woven fabric.
  • the reinforcing material may be provided only on one side of the epoxy resin porous membrane, or may be provided on both sides.
  • the porous epoxy resin membrane obtained by this embodiment can be used in applications other than the separator for nonaqueous electrolyte electricity storage devices.
  • the epoxy resin porous membrane of this embodiment can be used as a porous support of a composite semipermeable membrane comprising a porous support and a skin layer formed thereon. is there.
  • the porous epoxy resin membrane according to the present embodiment is used for a composite semipermeable membrane such as a reverse osmosis membrane, a composite semipermeable membrane having high chemical stability and suppressed deterioration over a long period of time can be obtained. It is possible to extend the life of the membrane element.
  • the material for forming the skin layer is not particularly limited, and examples thereof include cellulose acetate, ethyl cellulose, polyether, polyester, and polyamide.
  • a skin layer containing a polyamide-based resin obtained by polymerizing a polyfunctional amine component and a polyfunctional acid halogen component can be preferably used.
  • the polyfunctional amine component is a polyfunctional amine having two or more reactive amino groups, and examples thereof include aromatic, aliphatic, and alicyclic polyfunctional amines.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • Examples include benzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N′-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidole, xylylenediamine and the like.
  • Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, and n-phenyl-ethylenediamine.
  • Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine, and the like. . These polyfunctional amines may be used alone or in combination of two or more. In order to obtain a skin layer having a high salt inhibition performance, it is preferable to use an aromatic polyfunctional amine.
  • the polyfunctional acid halide component is a polyfunctional acid halide having two or more reactive carbonyl groups.
  • the polyfunctional acid halide include aromatic, aliphatic, and alicyclic polyfunctional acid halides.
  • aromatic polyfunctional acid halide include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, chlorosulfonylbenzene dicarboxylic acid.
  • An acid dichloride etc. are mentioned.
  • Examples of the aliphatic polyfunctional acid halide include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide, adipoid Examples include luhalides.
  • Examples of the alicyclic polyfunctional acid halide include cyclopropanetricarboxylic acid trichloride, cyclobutanetetracarboxylic acid tetrachloride, cyclopentanetricarboxylic acid trichloride, cyclopentanetetracarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, and tetrahydrofuran.
  • Examples thereof include tetracarboxylic acid tetrachloride, cyclopentane dicarboxylic acid dichloride, cyclobutane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
  • These polyfunctional acid halides may be used alone or in combination of two or more.
  • an aromatic polyfunctional acid halide In order to obtain a skin layer having a high salt inhibition performance, it is preferable to use an aromatic polyfunctional acid halide.
  • it is preferable to form a crosslinked structure by using a trifunctional or higher polyfunctional acid halide as at least a part of the polyfunctional acid halide component.
  • a polymer such as polyvinyl alcohol, polyvinyl pyrrolidone or polyacrylic acid, a polyhydric alcohol such as sorbitol or glycerin, or the like may be copolymerized.
  • the method for forming the skin layer containing the polyamide resin on the surface of the epoxy resin porous membrane is not particularly limited, and any known method can be used. Examples thereof include an interfacial polymerization method, a phase separation method, and a thin film coating method.
  • the interfacial polymerization method is a method in which a skin layer is formed by interfacial polymerization by bringing an amine aqueous solution containing a polyfunctional amine component into contact with an organic solution containing a polyfunctional acid halide component. Or a skin layer made of a polyamide resin directly on the epoxy resin porous membrane by the interfacial polymerization on the epoxy resin porous membrane. Details of the conditions of such interfacial polymerization method are described in JP-A-58-24303, JP-A-1-180208, etc., and those known techniques can be appropriately employed.
  • a release agent (manufactured by Nagase ChemteX, QZ-13) was thinly applied to the inside of a cylindrical stainless steel container having an inner diameter of 120 mm ⁇ 150 mm, and the container was dried in a drier set at 80 ° C.
  • the mixture was stirred for 285 minutes at 200 rpm with a stirring blade using a three-one motor.
  • the temperature of the solution increased with stirring and reached 37.2 ° C. immediately after stirring.
  • vacuum deaeration was performed using a vacuum board (VZ type, manufactured by ASONE Co., Ltd.) at room temperature at about 0.1 MPa until bubbles disappeared. Then, it was left to cure at 50 ° C. for about 1 day.
  • the epoxy resin block was taken out from the stainless steel container and continuously sliced with a thickness of 30 ⁇ m using a cutting lathe device to obtain an epoxy resin sheet.
  • the measured infrared absorption spectrum at this time is shown in FIG.
  • the thickness of the porous epoxy resin membrane calculated based on the absorbance A of the absorption peak present at 1607 cm ⁇ 1 was 28 ⁇ m.
  • the ratio of absorbance B at 4000 cm ⁇ 1 to absorbance A was calculated to be 0.812.
  • the average pore diameter of the porous epoxy resin membrane calculated from this ratio was 332 nm.
  • FIG. 6 is a calibration curve prepared for obtaining the average pore diameter.
  • the “mode diameter (nm)” calculated from the mercury intrusion method is used for the vertical axis.
  • This calibration curve measured the average pore diameter and infrared absorption spectrum measured by the mercury intrusion method for the epoxy resin porous membrane produced in the same manner as above except that the production conditions such as the mixing ratio of raw materials were appropriately changed. , Based on this result.
  • the calibration curve about a film thickness is abbreviate
  • the porous epoxy resin membrane provided by the present invention can be suitably used as a separator for non-aqueous electrolyte electricity storage devices such as lithium ion secondary batteries, and in particular, electricity storage for vehicles, motorcycles, ships, construction machines, industrial machines, and houses. It can be suitably used for a large-capacity secondary battery required for a system or the like.
  • the epoxy resin porous membrane provided by the present invention can be used as a porous support for a composite semipermeable membrane comprising a porous support and a skin layer formed thereon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

 エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を調製する工程(i);エポキシ樹脂シートが得られるように、エポキシ樹脂組成物の硬化体をシート状に切削する又はエポキシ樹脂組成物のシート状成形体を硬化させる工程(ii);ハロゲンフリーの溶剤を用いてエポキシ樹脂シートからポロゲンを除去してエポキシ樹脂多孔質膜とする工程(iii);エポキシ樹脂多孔質膜に赤外線を照射してエポキシ樹脂多孔質膜の赤外線吸収特性を測定する工程(iv);赤外線吸収特性に基づいてエポキシ樹脂多孔質膜の膜厚及び/又は平均孔径を算出する工程(v)と、を含む、エポキシ樹脂多孔質膜を備えた非水電解質蓄電デバイス用セパレータの製造方法を提供する。この製造方法は、環境に対する負荷が大きい溶剤の使用を回避し、平均孔径及び膜厚等のパラメータの制御に適したものである。

Description

非水電解質蓄電デバイス用セパレータの製造方法、及びエポキシ樹脂多孔質膜の製造方法
 本発明は、非水電解質蓄電デバイス用セパレータ及びエポキシ樹脂多孔質膜の製造方法に関する。
 地球環境保全、化石燃料の枯渇等の諸問題を背景に、リチウムイオン二次電池やリチウムイオンキャパシタ等に代表される非水電解質蓄電デバイスの需要が年々増加している。非水電解質蓄電デバイスのセパレータとして、従来、ポリオレフィン多孔質膜が使用されている。ポリオレフィン多孔質膜は、以下に説明する方法で製造することができる。
 まず、溶媒とポリオレフィン樹脂とを混合及び加熱してポリオレフィン溶液を調製する。Tダイ等の金型を用い、ポリオレフィン溶液をシート形状に成形しながら吐出及び冷却し、シート状の成形体を得る。シート状の成形体を延伸するとともに、成形体から溶媒を除去する。これにより、ポリオレフィン多孔質膜が得られる。成形体から溶媒を除去する工程で、有機溶剤が使用される(特許文献1参照)。
特開2001-192487号公報 特開2000-30683号公報
 上記製造方法において、有機溶剤として、ジクロロメタンのようなハロゲン化有機化合物を使用することが多い。ハロゲン化有機化合物の使用は、環境に対する負荷が非常に大きいので問題となっている。
 他方、特許文献2に記載されている方法(いわゆる乾式法)によれば、環境に対する負荷が大きい溶剤を使用せずにポリオレフィン多孔質膜を製造することができる。しかし、この方法には、多孔質膜の孔径を制御するのが難しい問題がある。また、この方法で製造された多孔質膜をセパレータとして用いると、蓄電デバイスの内部でイオン透過の偏りが発生しやすい問題もある。
 本発明は、環境に対する負荷が大きい溶剤の使用を回避できるとともに、平均孔径及び膜厚等のパラメータの制御に適した、非水電解質蓄電デバイス用セパレータの製造方法を提供することを目的とする。
 本発明は、
 エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を調製する工程(i)と、
 エポキシ樹脂シートが得られるように、前記エポキシ樹脂組成物の硬化体をシート状に切削する又は前記エポキシ樹脂組成物のシート状成形体を硬化させる工程(ii)と、
 ハロゲンフリーの溶剤を用いて前記エポキシ樹脂シートから前記ポロゲンを除去してエポキシ樹脂多孔質膜とする工程(iii)と、
 前記エポキシ樹脂多孔質膜に赤外線を照射して前記エポキシ樹脂多孔質膜の赤外線吸収特性を測定する工程(iv)と、
 前記赤外線吸収特性に基づいて前記エポキシ樹脂多孔質膜の膜厚及び/又は平均孔径を算出する工程(v)と、を含む、エポキシ樹脂多孔質膜を備えた非水電解質蓄電デバイス用セパレータの製造方法、を提供する。
 本発明によれば、ハロゲンフリーの溶剤を用いてエポキシ樹脂シートからポロゲンが除去され、これにより、エポキシ樹脂多孔質膜が得られる。従って、環境に対する負荷が大きい溶剤の使用を回避できる。また、本発明によれば、平均孔径、膜厚等のパラメータを容易に制御することができる。
本発明の一実施形態に係る非水電解質蓄電デバイスの概略断面図である。 切削工程の概略図である。 本発明による製造方法を実施するための製造システムの一実施態様の概略図である。 本発明による製造方法を実施するための製造システムの別の実施態様の概略図である。 本発明の実施例で得られた赤外吸収スペクトル(IRチャート)である。 本発明の実施例において作成した平均孔径を求めるための検量線である。
 以下、添付の図面を参照しつつ、本発明の一実施形態を説明する。
 図1に例示するように、非水電解質蓄電デバイス用セパレータ4は、非水電解質蓄電デバイス100において、カソード2とアノード3との間に配置され、カソード2とアノード3とを隔離しつつ電解液(非水電解液)を保持してカソード2とアノード3との間のイオン伝導性を確保する役割を担う。本実施形態では、非水電解質蓄電デバイス用セパレータとして、例えば、下記(a)(b)及び(c)のいずれかの方法で製造されるエポキシ樹脂多孔質膜が使用される。方法(a)及び(b)は、エポキシ樹脂組成物を基板上に塗布してシート状に成形した後で硬化工程を実施する点で共通している。方法(c)は、エポキシ樹脂のブロック状の硬化体を作り、その硬化体をシート状に成形することを特徴としている。
 方法(a)
 エポキシ樹脂組成物のシート状成形体が得られるように、エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を基板上に塗布する。その後、エポキシ樹脂組成物のシート状成形体を加熱してエポキシ樹脂を三次元架橋させる。その際、エポキシ樹脂架橋体とポロゲンとの相分離により共連続構造が形成される。その後、得られたエポキシ樹脂シートからポロゲンを洗浄によって除去し、乾燥させることにより、三次元網目状骨格と連通する空孔とを有するエポキシ樹脂多孔質膜が得られる。基板の種類は特に限定されず、プラスチック基板、ガラス基板、金属板等を基板として使用できる。
 方法(b)
 エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を基板上に塗布する。その後、塗布したエポキシ樹脂組成物の上に別の基板を被せてサンドイッチ構造体を作製する。なお、基板と基板との間に一定の間隔を確保するために、基板の四隅にスペーサー(例えば、両面テープ)を設けてもよい。次に、サンドイッチ構造体を加熱してエポキシ樹脂を三次元架橋させる。その際、エポキシ樹脂架橋体とポロゲンとの相分離により共連続構造が形成される。その後、得られたエポキシ樹脂シートを取り出し、ポロゲンを洗浄によって除去し、乾燥させることにより、三次元網目状骨格と連通する空孔とを有するエポキシ樹脂多孔質膜が得られる。基板の種類は特に制限されず、プラスチック基板、ガラス基板、金属板等を基板として使用できる。特に、ガラス基板を好適に使用できる。
 方法(c)
 エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を所定形状の金型内に充填する。その後、エポキシ樹脂を三次元架橋させることによって、円筒状又は円柱状のエポキシ樹脂組成物の硬化体を作製する。その際、エポキシ樹脂架橋体とポロゲンとの相分離により共連続構造が形成される。その後、エポキシ樹脂組成物の硬化体を円筒軸又は円柱軸を中心に回転させながら、硬化体の表層部を所定の厚さに切削して長尺状のエポキシ樹脂シートを作製する。そして、エポキシ樹脂シートに含まれたポロゲンを洗浄によって除去し、乾燥させることにより、三次元網目状骨格と連通する空孔とを有するエポキシ樹脂多孔質膜が得られる。
 以下、方法(c)を詳細に説明する。ただし、エポキシ樹脂組成物を調製する工程、エポキシ樹脂を硬化させる工程、ポロゲンを除去する工程等は、各方法に共通している。また、使用できる材料も各方法に共通である。
 方法(c)によれば、エポキシ樹脂多孔質膜は以下の主要な工程を経て製造されうる。
・工程(i):エポキシ樹脂組成物を調製する。
・工程(ii):エポキシ樹脂組成物の硬化体をシート状に成形する。
・工程(iii):エポキシ樹脂シートからポロゲンを除去する。
 まず、エポキシ樹脂、硬化剤及びポロゲン(細孔形成剤)を含むエポキシ樹脂組成物を調製する。具体的には、エポキシ樹脂及び硬化剤をポロゲンに溶解させて均一な溶液を調製する。
 エポキシ樹脂としては、芳香族エポキシ樹脂及び非芳香族エポキシ樹脂のいずれも使用可能である。芳香族エポキシ樹脂としては、ポリフェニルベースエポキシ樹脂、フルオレン環を含むエポキシ樹脂、トリグリシジルイソシアヌレートを含むエポキシ樹脂、複素芳香環(例えば、トリアジン環)を含むエポキシ樹脂等が挙げられる。ポリフェニルベースエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、スチルベン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、テトラキス(ヒドロキシフェニル)エタンベースエポキシ樹脂等が挙げられる。非芳香族エポキシ樹脂としては、脂肪族グリシジルエーテル型エポキシ樹脂、脂肪族グリシジルエステル型エポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルアミン型エポキシ樹脂、脂環族グリシジルエステル型エポキシ樹脂等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フルオレン環を含むエポキシ樹脂、トリグリシジルイソシアヌレートを含むエポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルアミン型エポキシ樹脂及び脂環族グリシジルエステル型エポキシ樹脂からなる群より選ばれる少なくとも1つであって、6000以下のエポキシ当量及び170℃以下の融点を有するものを好適に使用できる。これらのエポキシ樹脂を使用すると、均一な三次元網目状骨格及び均一な空孔を形成できるとともに、エポキシ樹脂多孔質膜に優れた耐薬品性及び高い強度を付与できる。
 硬化剤としては、芳香族硬化剤及び非芳香族硬化剤のいずれも使用可能である。芳香族硬化剤としては、芳香族アミン(例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ベンジルジメチルアミン、ジメチルアミノメチルベンゼン)、芳香族酸無水物(例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸)、フェノール樹脂、フェノールノボラック樹脂、複素芳香環を含むアミン(例えば、トリアジン環を含むアミン)等が挙げられる。非芳香族硬化剤としては、脂肪族アミン類(例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、1,3,6-トリスアミノメチルヘキサン、ポリメチレンジアミン、トリメチルヘキサメチレンジアミン、ポリエーテルジアミン)、脂環族アミン類(例えば、イソホロンジアミン、メンタンジアミン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ(5,5)ウンデカンアダクト、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、これらの変性品)、ポリアミン類とダイマー酸とを含む脂肪族ポリアミドアミン等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、分子内に一級アミンを2つ以上有する硬化剤を好適に使用できる。具体的には、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ポリメチレンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン及びビス(4-アミノシクロヘキシル)メタンからなる群より選ばれる少なくとも1つを好適に使用できる。これらの硬化剤を使用すると、均一な三次元網目状骨格及び均一な空孔を形成できるとともに、エポキシ樹脂多孔質膜に高い強度及び適切な弾性を付与できる。
 エポキシ樹脂と硬化剤との組み合わせとしては、芳香族エポキシ樹脂と脂肪族アミン硬化剤との組み合わせ、芳香族エポキシ樹脂と脂環族アミン硬化剤との組み合わせ、又は脂環族エポキシ樹脂と芳香族アミン硬化剤との組み合わせが好ましい。これらの組み合わせにより、エポキシ樹脂多孔質膜に優れた耐熱性を付与できる。
 ポロゲンは、エポキシ樹脂及び硬化剤を溶かすことができる溶剤でありうる。ポロゲンは、また、エポキシ樹脂と硬化剤とが重合した後、反応誘起相分離を生じさせることができる溶剤として使用される。具体的には、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類、ポリオキシエチレンモノメチルエーテル、ポリオキシエチレンジメチルエーテル等のエーテル類をポロゲンとして使用できる。これらは単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、メチルセロソルブ、エチルセロソルブ、分子量600以下のポリエチレングリコール、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ポリプロピレングリコール、ポリオキシエチレンモノメチルエーテル及びポリオキシエチレンジメチルエーテルからなる群より選ばれる少なくとも1つを好適に使用できる。特に、平均分子量200以下のポリエチレングリコール、分子量500以下のポリプロピレングリコール、ポリオキシエチレンモノメチルエーテル及びプロピレングリコールモノメチルエーテルアセテートからなる群より選ばれる少なくとも1つを好適に使用できる。これらのポロゲンを使用すると、均一な三次元網目状骨格及び均一な空孔を形成できる。これらは単独で用いてもよく、2種以上を併用してもよい。
 また、個々のエポキシ樹脂又は硬化剤と常温で不溶又は難溶であっても、エポキシ樹脂と硬化剤との反応物が可溶となる溶剤についてはポロゲンとして使用可能である。このようなポロゲンとしては、例えば、臭素化ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート5058」)が挙げられる。
 エポキシ樹脂多孔質膜の空孔率、平均孔径及び孔径分布は、原料の種類、原料の配合比率及び反応条件(例えば、反応誘起相分離時における加熱温度及び加熱時間)に応じて変化する。そのため、目的とする空孔率、平均孔径、孔径分布を得るために、最適な条件を選択することが好ましい。また、相分離時におけるエポキシ樹脂架橋体の分子量、分子量分布、溶液の粘度、架橋反応速度等を制御することにより、エポキシ樹脂架橋体とポロゲンとの共連続構造を特定の状態で固定し、安定した多孔質構造を得ることができる。
 エポキシ樹脂に対する硬化剤の配合比率は、例えば、エポキシ基1当量に対して硬化剤当量が0.6~1.5である。適切な硬化剤当量は、エポキシ樹脂多孔質膜の耐熱性、化学的耐久性、力学特性等の特性の向上に寄与する。
 硬化剤の他に、目的とする多孔質構造を得るために、溶液中に硬化促進剤を添加してもよい。硬化促進剤としては、トリエチルアミン、トリブチルアミン等の三級アミン、2-フェノール-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェノール-4,5-ジヒドロキシイミダゾール等のイミダゾール類が挙げられる。
 エポキシ樹脂、硬化剤及びポロゲンの総重量に対して、例えば40~80重量%のポロゲンを使用できる。適切な量のポロゲンを使用することにより、所望の空孔率、平均孔径及び通気度を有するエポキシ樹脂多孔質膜を形成しうる。
 エポキシ樹脂多孔質膜の平均孔径を所望の範囲に調節する方法の1つとして、エポキシ当量の異なる2種以上のエポキシ樹脂を混合して用いる方法が挙げられる。その際、エポキシ当量の差は100以上であることが好ましく、常温で液状のエポキシ樹脂と常温で固形のエポキシ樹脂とを混合して用いる場合もある。
 次に、エポキシ樹脂、硬化剤及びポロゲンを含む溶液からエポキシ樹脂組成物の硬化体を作製する。具体的には、溶液を金型に充填し、必要に応じて加熱する。エポキシ樹脂を三次元架橋させることによって、所定の形状を有する硬化体が得られる。その際、エポキシ樹脂架橋体とポロゲンとが相分離することにより、共連続構造が形成される。
 硬化体の形状は特に限定されない。円柱状又は円筒状の金型を使用すれば、円筒又は円柱の形状を有する硬化体を得ることができる。硬化体が円筒又は円柱の形状を有していると、後述する切削工程(図2参照)を実施しやすい。
 エポキシ樹脂組成物を硬化させるために必要な温度及び時間は、エポキシ樹脂及び硬化剤の種類に応じて変化するので特に限定されない。均一な分布及び均一な孔径を持った空孔を有するエポキシ樹脂多孔質膜を得るために、室温にて硬化処理を実施することができる。室温硬化の場合、温度は20~40℃程度であり、時間は3~100時間程度、好ましくは20~50時間程度である。加熱硬化の場合、温度は40~120℃程度、好ましくは60~100℃程度であり、時間は10~300分程度、好ましくは30~180分程度である。硬化処理後、エポキシ樹脂架橋体の架橋度を高めるためにポストキュア(後処理)を行ってもよい。ポストキュアの条件は特に制限されないが、温度は室温又は50~160℃程度であり、時間は2~48時間程度である。
 硬化体の寸法は特に限定されない。硬化体が円筒又は円柱の形状を有している場合、エポキシ樹脂多孔質膜の製造効率の観点から、硬化体の直径は、例えば30cm以上であり、好ましくは40~150cmである。硬化体の長さ(軸方向)も、得るべきエポキシ樹脂多孔質膜の寸法を考慮して適宜設定することができる。硬化体の長さは、例えば20~200cmであり、取扱いやすさの観点から20~150cmであることが好ましく、20~120cmであることがより好ましい。
 次に、硬化体をシート状に成形する。円筒又は円柱の形状を有する硬化体は、以下の方法でシート状に成形されうる。具体的には、図2に示すように、硬化体12をシャフト14に取り付ける。長尺の形状を有するエポキシ樹脂シート16が得られるように、切削刃18(スライサー)を用いて、硬化体12の表層部を所定の厚さで切削(スライス)する。詳細には、硬化体12の円筒軸O(又は円柱軸)を中心として、切削刃18に対して硬化体12を相対的に回転させながら硬化体12の表層部を切削する。硬化体12が切削刃18に対して一回転する間に、切削刃18が円筒軸O(又は円柱軸)に対して所定の距離だけ近づくように硬化体12の円筒軸Oに対する切削刃18の位置が制御される。このときの所定の距離が切削厚さに相当する。この方法によれば、効率的に所定の厚さのエポキシ樹脂シート16を作製することができる。
 硬化体12を切削するときのライン速度は、例えば2~50m/minの範囲にある。エポキシ樹脂シート16の厚さは、エポキシ樹脂多孔質膜の目標膜厚(例えば5~50μm、また例えば10~50μm)に応じて決定される。ポロゲンを除去して乾燥させると厚さが若干減少するので、エポキシ樹脂シート16は、通常、エポキシ樹脂多孔質膜の目標膜厚よりも若干厚い。エポキシ樹脂シート16の長さは特に限定されないが、エポキシ樹脂シート16の製造効率の観点から、例えば100m以上であり、好ましくは1000m以上である。
 最後に、エポキシ樹脂シート16からポロゲンを抽出し、除去する。具体的には、ハロゲンフリーの溶剤にエポキシ樹脂シート16を浸漬することによって、エポキシ樹脂シート16からポロゲンを除去することができる。これにより、セパレータ4として利用できるエポキシ樹脂多孔質膜が得られる。
 エポキシ樹脂シート16からポロゲンを除去するためのハロゲンフリーの溶剤として、水、DMF(N,N-ジメチルホルムアミド)、DMSO(ジメチルスルホキシド)及びTHF(テトラヒドロフラン)からなる群より選ばれる少なくとも1つをポロゲンの種類に応じて使用できる。また、水、二酸化炭素等の超臨界流体もポロゲンを除去するための溶剤として使用できる。エポキシ樹脂シート16からポロゲンを積極的に除去するために、超音波洗浄を行ってもよく、また、溶剤を加熱して用いてもよい。
 ポロゲンを除去するための洗浄装置も特に限定されず、公知の洗浄装置を使用できる。エポキシ樹脂シート16を溶剤に浸漬することによってポロゲンを除去する場合には、洗浄槽を複数備えた多段洗浄装置を好適に使用できる。洗浄の段数としては、3段以上がより好ましい。また、カウンターフローを利用することによって、実質的に多段洗浄を行ってもよい。さらに、各段の洗浄で、溶剤の温度を変えたり、溶剤の種類を変えたりしてもよい。
 ポロゲンを除去した後、エポキシ樹脂多孔質膜の乾燥処理を行う。乾燥条件は特に限定されず、温度は通常40~120℃程度であり、50~80℃程度が好ましく、乾燥時間は3分~3時間程度である。乾燥処理には、テンター方式、フローティング方式、ロール方式、ベルト方式等の公知のシート乾燥方法を採用した乾燥装置を使用できる。複数の乾燥方法を組み合わせてもよい。
 本実施形態の方法によれば、セパレータ4として使用できるエポキシ樹脂多孔質膜を極めて簡単に製造できる。従来のポリオレフィン多孔質膜の製造時に必要だった工程、例えば延伸工程を省略できるため、高い生産性でエポキシ樹脂多孔質膜を製造できる。また、従来のポリオレフィン多孔質膜は、その製造過程において、高い温度及び高いせん断力を受けるので、酸化防止剤等の添加剤を使用する必要がある。これに対し、本実施形態の方法によれば、高い温度及び高いせん断力を加えることなく、エポキシ樹脂多孔質膜を製造できる。そのため、従来のポリオレフィン多孔質膜に含まれていた酸化防止剤等の添加剤を使用せずに済む。また、エポキシ樹脂、硬化剤及びポロゲンとして、低廉な材料を使用できるため、セパレータ4の生産コストを低減できる。
 本実施形態では、以上のようにして得たエポキシ樹脂多孔質膜に赤外線が照射され、赤外線吸収特性が測定される。測定された赤外線吸収特性は、エポキシ樹脂多孔質膜の膜厚及び/又は平均孔径を算出するために使用されうる。すなわち、本実施形態の方法は、以下の工程(iv)~(v)をさらに含む。
・工程(iv):エポキシ樹脂多孔質膜の赤外線吸収特性を測定する。
・工程(v):赤外線吸収特性に基づいてエポキシ樹脂多孔質膜の膜厚及び/又は平均孔径を算出する。
 本実施形態における赤外線吸収特性は、エポキシ樹脂多孔質膜をその膜厚方向に透過した赤外線を検出して作成された赤外吸収スペクトル、すなわち赤外分光法により得られたスペクトル(IRチャート)である。赤外吸収スペクトルにはエポキシ樹脂多孔質膜に含まれる樹脂の量に応じてピーク強度が変化する吸収ピークが存在する。なお、本明細書では、「ピーク強度」をピーク頂点における吸光度を意味する用語として使用する。「吸収ピークの吸光度」は、慣用のとおり、吸収ピークのピーク頂点における吸光度により定めることとする。また、赤外吸収スペクトルにおける特定の波数域(以降、波長を波数により表示することから「波長」及び「波長域」に代えて用語「波数」及び「波数域」を使用する)における吸光度は、エポキシ樹脂多孔質膜における光の散乱の程度を反映する。従って、これらの吸光度に基づいて、エポキシ樹脂多孔質膜の膜厚及び/又は平均孔径を算出することができる。なお、赤外線吸収特性は赤外吸収スペクトルに限るわけではない。赤外線吸収特性として、例えば樹脂の量を反映する特定の波数及び光の散乱の程度を反映する特定の波数のみにおける吸光度を測定してもよい。
 赤外線吸収特性に基づく膜厚及び/又は平均孔径の評価は、製造ラインを搬送されているエポキシ樹脂多孔質膜に適用できる。言い換えると、赤外線吸収特性に基づく評価は、膜厚及び/又は平均孔径のオンライン測定を可能とする。従って、赤外線吸収特性に基づく評価は、水銀圧入法による平均孔径の測定に代表されるオフライン評価と比較して、エポキシ樹脂多孔質膜の量産工程への適用に適している。また、後述するフィードバック制御により、オンライン評価を実施しながらその評価結果に基づいて膜厚を安定させれば、長期間にわたって安定して量産ラインを運転することが可能となり、エポキシ樹脂多孔質膜の歩留まりも向上する。
 エポキシ樹脂多孔質膜の膜厚及び/又は平均孔径は、検量線に基づいて算出することができる。膜厚の算出に用いる検量線は、例えば接触式デジタル測長機(一例を挙げると「ミツトヨ社製ライトマチックVL-50-B」)を用いて測定した膜厚と、算出に用いる吸収ピークのピーク強度とに基づいて作成することができる。また、平均孔径の算出に用いる検量線は、例えば水銀圧入法により測定した平均孔径と、算出に用いる2つの吸収ピークのピーク強度の比に基づいて作成することができる。なお、測定機器が具備する記憶手段に予め検量線を保存しておいて、ピーク強度等の測定結果から直ちに膜厚等が表示されるようにしておくと便利である。
 膜厚の算出のためには、樹脂の存在量とピーク強度とが強い相関を示す吸収ピークの吸光度(以下、「吸光度A」という)を用いることが望ましい。吸光度Aを特定するために選択する所定の吸収ピークとしては、エポキシ樹脂及び硬化剤の種類等によって相違するものの、500~2000cm-1の波数域に存在する吸収ピークが適している。また、吸光度が2以下、例えば0.05~2、特に0.1~1.5、である吸収ピークが適している。また、隣接するピークとの重複の程度が少ない吸収ピークが適している。芳香環を有するエポキシ樹脂により構成されたエポキシ樹脂多孔質膜については、吸光度Aを特定するための吸収ピークとして、1607cm-1に存在する吸収ピークを選択することが好ましい。芳香環の吸収に由来するこの吸収ピークは、その吸光度が1以下になりうる程度に小さく、樹脂の存在量を見積もるのに適している。芳香環を含まないエポキシ樹脂については、500~2000cm-1に存在するその他の吸収ピークの吸光度を選択するとよい。ここで、所定の波数(例えば1607cm-1)に存在する吸収ピークとは、ピーク頂点がその波数に存在する吸収ピークのみならず、ピーク中腹がその波数に存在するピークも包含される。また、所定の波数域(例えば500~2000cm-1)に存在する吸収ピークとは、ピーク頂点がその波数域に存在する吸収ピークを意味する。
 膜厚方向に存在する樹脂の量が同一であっても膜の空孔率が異なれば、多孔質膜の膜厚は相違する。このため、吸収度Aから算出した膜厚は、空孔率によって補正することが望ましい。厳密な測定が必要とされる場合には、空孔率の範囲に対応する複数の検量線を準備しておいてもよい。ただし、通常の量産工程で想定される程度の空孔率のバラツキであれば、空孔率で補正しなくても信頼性の高い膜厚の測定値を得ることに困難はない。
 平均孔径の算出のためには、吸光度Aとともに、膜の空孔による光の散乱の程度と強い相関を示す吸光度(以下、「吸光度B」という)を選択することが望ましい。吸光度Bは、3800~4200cm-1の波数域から選択された特定の波数における吸光度が適している。この波数域においては官能基による吸収が実質的に生じないため、明確な吸収ピークは存在しない。この波数域において測定される吸光度は、エポキシ樹脂多孔質膜における光の散乱によるものである。したがって、吸光度Bは、吸光度Aと異なり、吸収ピークのピーク強度ではなく、単に、所定の波数における吸光度として特定することが適切である。好ましい吸光度Bとしては、4000cm-1において測定した吸光度を例示できる。平均孔径の算出のためには、例えば、吸光度Aに対する吸光度Bの比、具体的には500~2000cm-1の波数域に存在する吸収ピークの吸光度Aに対する3800~4200cm-1の波数域から選択される特定の波数における吸光度Bの比、好ましくは1607cm-1に存在する吸収ピークの吸光度Aに対する4000cm-1における吸光度Bの比、すなわち(4000cm-1における吸光度B)/(1607cm-1に存在する吸収ピークの吸光度A)を指標として用いることが好ましい。
 工程(iv)~(v)に引き続き、本実施形態の方法は、好ましくは以下の工程(vi)をさらに含む。
・工程(vi):目標値を参照してエポキシ樹脂多孔質膜の膜厚及び/又は平均孔径を修正する。すなわち目標膜厚及び/又は目標平均孔径を目標値とするフィードバック制御を実施する。
 膜厚を修正する工程は、赤外線吸収特性に基づいてエポキシ樹脂多孔質膜の膜厚を算出する工程(v)を実施した後、例えば以下の工程(vi-a)として実施される。
・工程(vi-a)
 工程(v)において算出された膜厚がエポキシ樹脂多孔質膜の目標膜厚よりも大きい場合には工程(ii)において得られるエポキシ樹脂シートの厚さが小さくなるように、かつ工程(v)において算出された膜厚がエポキシ樹脂多孔質膜の目標膜厚よりも小さい場合には工程(ii)において得られるエポキシ樹脂シートの厚さが大きくなるように、エポキシ樹脂組成物の硬化体を切削する厚さを定める因子又はエポキシ樹脂組成物のシート状成形体の厚さを定める因子を変更する工程。
 工程(vi-a)において、硬化体を切削する厚さを定める因子としては、硬化体を切削するときの硬化体と切削刃との位置関係の制御が挙げられる。すなわち、工程(ii)において、円筒又は円柱の形状を有する硬化体の円筒軸又は円柱軸を中心として切削刃に対してエポキシ樹脂組成物の硬化体を相対的に回転させながら硬化体の表層部を切削する場合には、工程(vi-a)において、硬化体が切削刃に対して一回転する間に切削刃が円筒軸又は円柱軸に対して近づく距離を変更する、より具体的には、エポキシ樹脂シートをより厚くするべき場合には上記距離が長くなるように、エポキシ樹脂シートを薄くするべき場合には上記距離が短くなるように硬化体と切削刃との位置関係の制御を変更するとよい。
 工程(vi-a)において、エポキシ樹脂組成物のシート状成形体の厚さを定める因子としては、例えば、エポキシ樹脂組成物の組成、エポキシ樹脂組成物の塗布条件、シート状成形体の加熱条件が挙げられる。すなわち、工程(ii)において、基板上にエポキシ樹脂組成物を塗布して成形したシート状成形体を加熱する場合には、工程(vi-a)において、エポキシ樹脂組成物を構成する成分の含有率、基板上へのエポキシ樹脂組成物の塗布条件、及びシート状成形体の加熱条件から選ばれる少なくとも一つを変更するとよい。
 シート状成形体の厚さを増すためには、例えばエポキシ樹脂組成物を構成する成分のうち、エポキシ樹脂と硬化剤の含有率を増加させればよい。また例えば、基板上へのエポキシ樹脂組成物の塗布条件のうち押出機における押出圧力を上昇させて供給するエポキシ樹脂組成物量を増やせばよい。また例えば、シート状成形体の加熱条件のうち、温度を低下させるとよい。
 工程(vi-a)を実施した後、少なくとも工程(ii)~(iii)をさらに実施すれば、膜厚が修正されたエポキシ樹脂多孔質膜を製造することが可能となる。工程(vi-a)を実施した後、工程(i)~(iii)をさらに実施してもよいが、工程(i)において工程(ii)を複数回実施することができる量のエポキシ樹脂組成物を調製して保管しておいてもよい。また、工程(vi-a)を実施した後、工程(ii)~(vi-a)を複数回繰り返し実施すれば、得られるエポキシ樹脂多孔質膜の膜厚を目標膜厚に近づけていくことが可能となる。
 非水電解質蓄電デバイス用セパレータとしてのエポキシ樹脂多孔質膜の目標膜厚は、5μm~50μmの範囲内、特に10μm~30μmの範囲内の所定値に定めることが好ましい。
 平均孔径を修正する工程は、赤外線吸収特性に基づいてエポキシ樹脂多孔質膜の平均孔径を算出する工程(v)を実施した後、例えば以下の工程(vi-b)として実施される。
・工程(vi-b)
 工程(v)において算出された平均孔径がエポキシ樹脂多孔質膜の目標平均孔径よりも大きい場合には工程(i)において得られるエポキシ樹脂組成物におけるポロゲンの比率が減少するように、かつ工程(v)において算出された平均孔径がエポキシ樹脂多孔質膜の目標平均孔径よりも小さい場合には工程(i)において得られるエポキシ樹脂組成物におけるポロゲンの比率が増加するように、工程(i)を実施するために準備するエポキシ樹脂組成物の構成成分の比を変更する工程。
 工程(vi-b)を実施した後、工程(i)~(iii)をさらに実施することにより、平均孔径が修正されたエポキシ樹脂多孔質膜を製造することが可能となる。この場合も、工程(vi-b)を実施した後、工程(i)~(vi-b)を複数回実施することにより、得られるエポキシ樹脂多孔質膜の膜厚を目標膜厚に近づけていくことが可能となる。言うまでもなく、工程(v)の後、工程(vi-a)及び工程(vi-b)をともに実施し、その後、少なくとも工程(i)~(iii)をさらに実施しても構わない。この好ましい形態によれば、膜厚及び平均孔径をともに目標値に近づけることができる。
 非水電解質蓄電デバイス用セパレータとしてのエポキシ樹脂多孔質膜の目標平均孔径は、0.2μm~1μmの範囲内、特に200nm~400nmの範囲内の所定値に定めることが好ましい。
 本実施形態の製造方法は、好適には、図3及び図4に示された非水電解質蓄電デバイス用セパレータの製造システム200及び300を用いて実施される。
 図3に示された製造システム200は、上記の方法(a)の実施に好適な製造システムである。製造システム200は、混合装置21;押出機22;エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物のシート状成形体を硬化させるための装置として基材搬送装置23及び加熱装置24;エポキシ樹脂シートからポロゲンを除去するための装置として、ポロゲンを除去するためのハロゲンフリーの溶剤を保持する洗浄槽25;乾燥機26;並びに巻取装置27を備えている。各装置は上記の順に接続されている。混合装置21で混合されたエポキシ樹脂組成物が、押出機22より基材上にシート状に押し出されて、シート状成形体へと成形される。基材は、1対の駆動ロールを有する基材搬送装置23によって回転可能に支持されているエンドレスベルトである。基材によって、シート状成形体は、加熱装置24内に搬送され、加熱装置24内で加熱されて硬化して、エポキシ樹脂シート(エポキシ樹脂架橋体)16が生成する。エポキシ樹脂シート16は、洗浄槽25に搬送される。洗浄槽25は、ポロゲンを除去するためのハロゲンフリーの溶剤で満たされており、エポキシ樹脂シート16が洗浄槽25を通過して、ポロゲンが除去される。ポロゲンが除去されたエポキシ樹脂シート(多孔質膜)17は、乾燥機26内で乾燥され、巻取装置27によってロール状に巻き取られる。
 製造システム200は、上記各装置21~27に加え、赤外線吸収特性測定装置(赤外分光装置、以下では単に「センサ」という)28を備えている。センサ28は、乾燥機26と巻取装置27との間に配置されている。センサ28は、エポキシ樹脂多孔質膜に赤外線を照射するとともにエポキシ樹脂多孔質膜を透過してきた赤外線を検出し、その結果に基づいて赤外吸収スペクトルが作成される。
 センサ28によって測定された赤外吸収スペクトルにおいて、少なくとも1つ、好ましくは2以上の吸光度を測定することにより、膜厚及び/又は平均孔径を算出することができる。
 なお、図3に示された製造システム200では、センサ28が乾燥機26と巻取装置27との間に配置されているが、乾燥機26による乾燥工程を経た後であれば、センサ28の配置に特に制限はない。例えば、センサ28は、巻取装置27で巻き取ったエポキシ樹脂多孔質膜を所定のサイズにスリットするスリッターへと繰り出すための繰り出し部に配置してもよい。
 図4に示された製造システム300は、上記の方法(c)の実施に好適な製造システムである。製造システム300は、エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物の硬化体をシート状に成形するための装置として切削装置33;エボキシ樹脂シートからポロゲンを除去するための装置として、ポロゲンを除去するためのハロゲンフリーの溶剤を保持する洗浄槽34;乾燥機35;及び巻取装置36を備えている。各装置は上記の順に接続されている。製造システム300とは切り離された混合装置31において得られた円筒又は円柱状のエポキシ樹脂組成物の硬化体32を、切削刃と回転装置を有する切削装置33にセットする。切削装置33により、硬化体32の円筒軸又は円柱軸を中心として切削刃に対して硬化体32を回転装置で相対的に回転させながら硬化体32の表層部を切削する。これにより、円筒又は円柱の形状の硬化体32の表層部が所定の厚さに切削されて、長尺の形状を有するエポキシ樹脂シート16が連続して形成される。エポキシ樹脂シート16は、洗浄槽34に搬送される。洗浄槽34は、ポロゲンを除去するためのハロゲンフリーの溶剤で満たされており、エポキシ樹脂シート16が洗浄槽34を通過して、ポロゲンが除去される。ポロゲンが除去されたエポキシ樹脂多孔質膜17は、乾燥機35内で乾燥され、巻取装置36によってロール状に巻き取られる。なお、製造システム300とは別の実施態様として、切削装置と洗浄槽を接続せずに、切削装置により切削されて得られるエポキシ樹脂シート16を巻取装置にて一旦巻き取ってシートロールとし、当該シートロールを巻き出してエポキシ樹脂シートを洗浄槽に搬送することもできる。
 製造システム300においても、センサ38が乾燥機35と巻取装置36との間に配置されている。先述の製造システム200の場合と同様に、センサ38によって膜厚及び平均孔径の算出が可能であり、安定した品質のエポキシ樹脂多孔質膜を製造することができる。また、例えば、膜厚の算出結果を切削装置33にフィードバックして、膜厚が一定の範囲内となるように制御することで、長尺のエポキシ樹脂多孔質膜を安定して製造することも可能である。
 本実施形態は、膜厚及び平均孔径が同時に測定できるシステムであるが、膜厚のみ、もしくは平均孔径のみの測定に使用しても何ら問題ない。
 以下、本発明により得られた非水電解質蓄電デバイス用セパレータの使用形態について説明する。図1に示すように、本実施形態に係る非水電解質蓄電デバイス100は、カソード2、アノード3、セパレータ4及びケース5を備えている。セパレータ4は、カソード2とアノード3との間に配置されている。カソード2、アノード3及びセパレータ4は、一体的に巻回されて発電要素としての電極群10を構成している。電極群10は、底部を有するケース5に収容されている。蓄電デバイス100は、典型的には、リチウムイオン二次電池である。
 本実施形態において、ケース5は円筒の形状を有している。すなわち、蓄電デバイス100は円筒の形状を有している。しかし、蓄電デバイス100の形状は特に限定されない。蓄電デバイス100は、例えば、扁平な角型の形状を有していてもよい。また、電極群10は巻回構造を必須としない。カソード2、セパレータ4及びアノード3が単に積層されることによって、板状の電極群が形成されていてもよい。ケース5は、ステンレス、アルミニウム等の金属で作られている。さらに、電極群10が可撓性を有する材料で作られたケースに入れられていてもよい。可撓性を有する材料は、例えば、アルミニウム箔と、アルミニウム箔の両面に貼り合わされた樹脂フィルムとで構成されている。
 蓄電デバイス100は、さらに、カソードリード2a、アノードリード3a、蓋体6、パッキン9及び2つの絶縁板8を備えている。蓋体6は、パッキン9を介してケース5の開口部に固定されている。2つの絶縁板8は、電極群10の上部と下部とにそれぞれ配置されている。カソードリード2aは、カソード2に電気的に接続された一端と、蓋体6に電気的に接続された他端とを有する。アノードリード3aは、アノード3に電気的に接続された一端と、ケース5の底部に電気的に接続された他端とを有する。蓄電デバイス100の内部にはイオン伝導性を有する非水電解質(典型的には非水電解液)が充填されている。非水電解質は、電極群10に含浸されている。これにより、セパレータ4を通じて、カソード2とアノード3との間でイオン(典型的にはリチウムイオン)の移動が可能となっている。
 カソード2は、リチウムイオンを吸蔵及び放出しうるカソード活物質と、バインダーと、集電体とで構成されうる。例えば、バインダーを含む溶液にカソード活物質を混合して合剤を調製し、この合剤をカソード集電体に塗布及び乾燥させることによってカソード2を作製できる。
 カソード活物質としては、リチウムイオン二次電池のカソード活物質として用いられている公知の材料を使用できる。具体的には、リチウム含有遷移金属酸化物、リチウム含有遷移金属リン酸化物、カルコゲン化合物等をカソード活物質として使用できる。リチウム含有遷移金属酸化物としては、LiCoO2、LiMnO2、LiNiO2、それらの遷移金属の一部が他の金属で置換された化合物が挙げられる。リチウム含有遷移金属リン酸化物としては、LiFePO4、LiFePO4の遷移金属(Fe)の一部が他の金属で置換された化合物が挙げられる。カルコゲン化合物としては、二硫化チタン、二硫化モリブデンが挙げられる。
 バインダーとしては、公知の樹脂を使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ヘキサフロロプロピレン、ポリテトラフルオロエチレン等のフッ素系樹脂、スチレンブタジエンゴム、エチレンプロピレンターポリマー等の炭化水素系樹脂、それらの混合物をバインダーとして使用できる。導電助剤として、カーボンブラック等の導電性粉末がカソード2に含まれていてもよい。
 カソード集電体としては、耐酸化性に優れた金属材料、例えば箔状又はメッシュ状に加工されたアルミニウムが好適に用いられる。
 アノード3は、リチウムイオンを吸蔵及び放出しうるアノード活物質と、バインダーと、集電体とで構成されうる。アノード3も、カソード2と同様の方法で作製できる。カソード2で用いたバインダーと同様のものをアノード3に使用できる。
 アノード活物質としては、リチウムイオン二次電池のアノード活物質として用いられている公知の材料を使用できる。具体的には、炭素系活物質、リチウムと合金を形成しうる合金系活物質、リチウムチタン複合酸化物(例えばLi4Ti512)等をアノード活物質として使用できる。炭素系活物質としては、コークス、ピッチ、フェノール樹脂、ポリイミド、セルロース等の焼成体、人造黒鉛、天然黒鉛等が挙げられる。合金系活物質としては、アルミニウム、スズ、スズ化合物、シリコン、シリコン化合物等が挙げられる。
 アノード集電体としては、還元安定性に優れた金属材料、例えば箔状又はメッシュ状に加工された銅又は銅合金が好適に用いられる。リチウムチタン複合酸化物等の高電位アノード活物質を用いる場合には、箔状又はメッシュ状に加工されたアルミニウムもアノード集電体として使用できる。
 非水電解液は、典型的には、非水溶媒及び電解質を含んでいる。具体的には、リチウム塩(電解質)を非水溶媒に溶解させた電解液を好適に使用できる。また、非水電解液を含むゲル電解質、リチウム塩をポリエチレンオキシド等のポリマーに溶解及び分解させた固体電解質等も非水電解質として使用できる。リチウム塩としては、ホウ四フッ化リチウム(LiBF4)、六フッ化リン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)、トリフロロスルホン酸リチウム(LiCF3SO3)等が挙げられる。非水溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、メチルエチルカーボネート(MEC)、1,2-ジメトキシエタン(DME)、γ-ブチロラクトン(γ-BL)、これらの混合物等が挙げられる。
 本実施形態において、セパレータ4は、三次元網目状骨格と、空孔とを備えたエポキシ樹脂多孔質膜で構成されている。セパレータ4の表面と裏面との間でイオンが移動できるように、つまり、カソード2とアノード3との間をイオンが移動できるように、隣り合う空孔は互いに連通していてもよい。セパレータ4は、例えば5~50μmの範囲の厚さ、また例えば10~50μmの範囲の厚さ、を有する。セパレータ4が厚すぎると、カソード2とアノード3との間のイオンの移動が困難となる。5μm未満の厚さのセパレータ4を製造することは不可能ではないが、蓄電デバイス100の信頼性を確保するうえで、5μm以上の厚さが好ましい。
 セパレータ4は、例えば、20~80%の範囲の空孔率を有し、0.02~1μm、好ましくは0.2~1μmの範囲の平均孔径を有する。空孔率及び平均孔径がこのような範囲に調節されていると、セパレータ4は、必要とされる機能を十分に発揮しうる。
 空孔率は、以下の方法で測定できる。まず、測定対象を一定の寸法(例えば、直径6cmの円形)に切断し、その体積及び重量を求める。得られた結果を次式に代入して空孔率を算出する。
  空孔率(%)=100×(V-(W/D))/V
   V:体積(cm3
   W:重量(g)
   D:構成成分の平均密度(g/cm3
 平均孔径は、水銀圧入法による他、走査型電子顕微鏡でセパレータ4の断面を観察して求めることができる。具体的には、視野幅60μm、かつ表面から所定の深さ(例えば、セパレータ4の厚さの1/5~1/100)までの範囲内に存在する空孔のそれぞれについて、画像処理を行って孔径を求め、それらの平均値を平均孔径として求めることもできる。画像処理は、例えば、フリーソフト「Image J」又はAdobe社製「Photoshop」を使用して行える。なお、測定法により平均孔径の測定値に相違が生じた場合、本明細書では、水銀圧入法による測定値、より具体的にはモード径、を採用する。
 また、セパレータ4は、1~1000秒/100cm3の範囲の通気度(ガーレー値)を有していてもよい。セパレータ4がこのような範囲に通気度を有していることにより、カソード2とアノード3との間をイオンが容易に移動しうる。通気度は、日本工業規格(JIS)P8117に規定された方法に従って測定できる。
 なお、セパレータ4は、エポキシ樹脂多孔質膜のみで構成されていてもよいし、エポキシ樹脂多孔質膜と他の多孔質材料との積層体で構成されていてもよい。他の多孔質材料としては、ポリエチレン多孔質膜、ポリプロピレン多孔質膜等のポリオレフィン多孔質膜、セルロース多孔質膜、フッ素樹脂多孔質膜等が挙げられる。他の多孔質材料は、エポキシ樹脂多孔質膜の片面にのみ設けられていてもよいし、両面に設けられていてもよい。
 同様に、セパレータ4は、エポキシ樹脂多孔質膜と補強材との積層体で構成されていてもよい。補強材としては、織布、不織布等が挙げられる。補強材は、エポキシ樹脂多孔質膜の片面にのみ設けられていてもよいし、両面に設けられていてもよい。
 本実施形態により得られるエポキシ樹脂多孔質膜は、非水電解質蓄電デバイス用セパレータ以外の用途においても使用できる。例えば水処理用膜の用途では、多孔質支持体とその上に形成されたスキン層とからなる複合半透膜の多孔質支持体として本実施形態のエポキシ樹脂多孔質膜を用いることが可能である。本実施形態によるエポキシ樹脂多孔質膜を逆浸透膜等の複合半透膜に用いれば、化学的安定性が高く、長期にわたって劣化が抑制された複合半透膜とすることができ、それを用いた膜エレメントを長寿命化することができる。
 以下、エポキシ樹脂多孔質膜の表面にスキン層が形成されている複合半透膜の製造方法について説明する。
 スキン層を形成する材料は特に制限されず、例えば、酢酸セルロース、エチルセルロース、ポリエーテル、ポリエステル、及びポリアミドが挙げられる。
 本発明においては、多官能アミン成分と多官能酸ハロゲン成分とを重合してなるポリアミド系樹脂を含むスキン層を好ましく用いることができる。
 多官能アミン成分とは、2以上の反応性アミノ基を有する多官能アミンであり、芳香族、脂肪族、及び脂環式の多官能アミンが挙げられる。芳香族多官能アミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、キシリレンジアミン等が挙げられる。脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2-アミノエチル)アミン、n-フェニル-エチレンジアミン等が挙げられる。脂環式多官能アミンとしては、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ピペラジン、2,5-ジメチルピペラジン、4-アミノメチルピペラジン等が挙げられる。これらの多官能アミンは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能アミンを用いることが好ましい。
 多官能酸ハライド成分とは、反応性カルボニル基を2個以上有する多官能酸ハライドである。多官能酸ハライドとしては、芳香族、脂肪族、及び脂環式の多官能酸ハライドが挙げられる。芳香族多官能酸ハライドとしては、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライド、クロロスルホニルベンゼンジカルボン酸ジクロライド等が挙げられる。脂肪族多官能酸ハライドとしては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド等が挙げられる。脂環式多官能酸ハライドとしては、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、テトラハイドロフランジカルボン酸ジクロライド等が挙げられる。これら多官能酸ハライドは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能酸ハライドを用いることが好ましい。また、多官能酸ハライド成分の少なくとも一部に3価以上の多官能酸ハライドを用いて、架橋構造を形成するのが好ましい。
 また、ポリアミド系樹脂を含むスキン層の性能を向上させるために、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸等のポリマー、ソルビトール、グリセリン等の多価アルコール等を共重合させてもよい。
 ポリアミド系樹脂を含むスキン層をエポキシ樹脂多孔質膜の表面に形成する方法は特に制限されず、あらゆる公知の手法を用いることができる。例えば、界面重合法、相分離法、薄膜塗布法等が挙げられる。界面重合法とは、具体的に、多官能アミン成分を含有するアミン水溶液と、多官能酸ハライド成分を含有する有機溶液とを接触させて界面重合させることによりスキン層を形成し、該スキン層をエポキシ樹脂多孔質膜上に載置する方法や、エポキシ樹脂多孔質膜上での前記界面重合によりポリアミド系樹脂からなるスキン層をエポキシ樹脂多孔質膜上に直接形成する方法である。かかる界面重合法の条件等の詳細は、特開昭58-24303号公報、特開平1-180208号公報等に記載されており、それらの公知技術を適宜採用することができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明は、これら実施例に限定されるものではない。
 内径120mm×150mmの円筒形のステンレス容器の内側に離型剤(ナガセケムテックス製、QZ-13)を薄く塗布し、この容器を80℃に設定した乾燥機中で乾燥させた。
 100重量部のビスフェノールA型エポキシ樹脂(三菱化学製、jER828、エポキシ当量184~194g/eq.)を147重量部のポリプロピレングリコール(三洋化成製サンニックスPP-400)に溶解させ、エポキシ樹脂/ポリプロピレングリコール溶液を調製した。そしてこの溶液を前記ステンレス容器内に加えた。その後、15重量部の1,6-ジアミノヘキサン(特級、東京化成製)を前記容器内に加えた。
 スリーワンモーターを用いて、撹拌翼で200rpmにて285分撹拌した。撹拌に伴って上記溶液の温度は上昇し、撹拌直後には37.2℃に達した。その後、真空盤(アズワン社製 VZ型)を用いて、室温下で約0.1MPaにて泡がなくなるまで真空脱泡した。その後、50℃で約1日放置して硬化させた。
 次に、ステンレス容器からエポキシ樹脂ブロックを取り出し、切削旋盤装置を用いて30μmの厚みで連続的にスライスしてエポキシ樹脂シートを得た。該エポキシ樹脂シートをRO水/DMF=1/1(v/v)混合液中で10分間超音波洗浄した後、RO水のみで10分間超音波洗浄し、RO水中12時間浸漬させてポリプロピレングリコールを除去した。その後、80℃での乾燥を2時間行って、エポキシ樹脂多孔質膜を得た。このとき、測定した赤外吸収スペクトルを図5に示す。1607cm-1に存在する吸収ピークの吸光度Aに基づいて算出したエポキシ樹脂多孔質膜の膜厚は28μmであった。また、吸光度Aに対する4000cm-1における吸光度Bの比を算出したところ、0.812であった。また、この比から算出したエポキシ樹脂多孔質膜の平均孔径は332nmであった。
 図6は平均孔径を求めるために作成した検量線である。図6において、縦軸は水銀圧入法から算出された「モード径(nm)」を採用している。この検量線は、原料の混合比率等の製造条件を適宜変更した以外は上記と同様にして作製したエポキシ樹脂多孔質膜について、水銀圧入法により測定した平均孔径と赤外吸収スペクトルとを測定し、この結果に基づいて作成したものである。なお、膜厚についての検量線は省略するが、上記と同様、製造条件を適宜変更したエポキシ樹脂多孔質膜についての膜厚と赤外吸収スペクトルとを測定して作成することができる。
 本発明によって提供されたエポキシ樹脂多孔質膜は、リチウムイオン二次電池等の非水電解質蓄電デバイスのセパレータとして好適に使用でき、特に、車両、オートバイ、船舶、建設機械、産業機械、住宅用蓄電システム等に必要とされる大容量の二次電池に好適に使用できる。また、本発明によって提供されたエポキシ樹脂多孔質膜は、多孔質支持体とその上に形成されたスキン層とからなる複合半透膜の多孔質支持体として用いることが可能である。

Claims (13)

  1.  エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を調製する工程(i)と、
     エポキシ樹脂シートが得られるように、前記エポキシ樹脂組成物の硬化体をシート状に切削する又は前記エポキシ樹脂組成物のシート状成形体を硬化させる工程(ii)と、
     ハロゲンフリーの溶剤を用いて前記エポキシ樹脂シートから前記ポロゲンを除去してエポキシ樹脂多孔質膜とする工程(iii)と、
     前記エポキシ樹脂多孔質膜に赤外線を照射して前記エポキシ樹脂多孔質膜の赤外線吸収特性を測定する工程(iv)と、
     前記赤外線吸収特性に基づいて前記エポキシ樹脂多孔質膜の膜厚及び/又は平均孔径を算出する工程(v)と、を含む、エポキシ樹脂多孔質膜を備えた非水電解質蓄電デバイス用セパレータの製造方法。
  2.  前記工程(v)において前記エポキシ樹脂多孔質膜の膜厚を算出するとともに、
     前記工程(v)において算出された膜厚が前記エポキシ樹脂多孔質膜の目標膜厚よりも大きい場合には前記工程(ii)において得られる前記エポキシ樹脂シートの厚さが小さくなるように、かつ前記工程(v)において算出された膜厚が前記エポキシ樹脂多孔質膜の目標膜厚よりも小さい場合には前記工程(ii)において得られる前記エポキシ樹脂シートの厚さが大きくなるように、前記硬化体を切削する厚さを定める因子又は前記シート状成形体の厚さを定める因子を変更する工程(vi-a)、をさらに含み、
     前記工程(vi-a)を実施した後に少なくとも前記工程(ii)~(iii)をさらに実施してエポキシ樹脂多孔質膜を得る、
     請求項1に記載の非水電解質蓄電デバイス用セパレータの製造方法。
  3.  前記工程(ii)において、円筒又は円柱の形状を有する前記硬化体の円筒軸又は円柱軸を中心として、切削刃に対して前記硬化体を相対的に回転させながら前記硬化体の表層部を切削し、
     前記工程(vi-a)において、前記硬化体が前記切削刃に対して一回転する間に前記切削刃が前記円筒軸又は前記円柱軸に対して近づく距離を変更する、
     請求項2に記載の非水電解質蓄電デバイス用セパレータの製造方法。
  4.  前記工程(ii)において、基板上に前記エポキシ樹脂組成物を塗布して成形した前記シート状成形体を加熱し、
     前記工程(vi-a)において、前記エポキシ樹脂組成物を構成する成分の含有率、前記基板上への前記エポキシ樹脂組成物の塗布条件、及び前記シート状成形体の加熱条件から選ばれる少なくとも一つを変更する、
     請求項2に記載の非水電解質蓄電デバイス用セパレータの製造方法。
  5.  前記エポキシ樹脂多孔質膜の目標膜厚を5μm~50μmの範囲内に定める、請求項2に記載の非水電解質蓄電デバイス用セパレータの製造方法。
  6.  前記工程(v)において前記エポキシ樹脂多孔質膜の平均孔径を算出するとともに、
     前記工程(v)において算出された平均孔径が前記エポキシ樹脂多孔質膜の目標平均孔径よりも大きい場合には前記工程(i)において得られる前記エポキシ樹脂組成物における前記ポロゲンの比率が減少するように、かつ前記工程(v)において算出された平均孔径が前記エポキシ樹脂多孔質膜の目標平均孔径よりも小さい場合には前記工程(i)において得られる前記エポキシ樹脂組成物における前記ポロゲンの比率が増加するように、前記工程(i)を実施するために準備する前記エポキシ樹脂組成物の構成成分の比を変更する工程(vi-b)、をさらに含み、
     前記工程(vi-b)を実施した後に前記工程(i)~(iii)をさらに実施してエポキシ樹脂多孔質膜を得る、
     請求項1に記載の非水電解質蓄電デバイス用セパレータの製造方法。
  7.  前記エポキシ樹脂多孔質膜の目標平均孔径を0.2μm~1μmの範囲内に定める、請求項6に記載の非水電解質蓄電デバイス用セパレータの製造方法。
  8.  前記工程(v)において、500~2000cm-1の波数域に存在する吸収ピークの吸光度に基づいて前記エポキシ樹脂多孔質膜の膜厚を算出する、請求項1に記載の非水電解質デバイス用セパレータの製造方法。
  9.  前記工程(v)において、1607cm-1に存在する吸収ピークの吸光度に基づいて前記エポキシ樹脂多孔質膜の膜厚を算出する、請求項8に記載の非水電解質デバイス用セパレータの製造方法。
  10.  前記工程(v)において、吸光度が2以下である吸収ピークの前記吸光度に基づいて前記エポキシ樹脂多孔質膜の膜厚を算出する、請求項1に記載の非水電解質デバイス用セパレータの製造方法。
  11.  前記工程(v)において、500~2000cm-1の波数域に存在する吸収ピークの吸光度Aに対する3800~4200cm-1の波数域から選択される特定の波数における吸光度Bの比に基づいて前記エポキシ樹脂多孔質膜の平均孔径を算出する、請求項1に記載の非水電解質デバイス用セパレータの製造方法。
  12.  前記工程(v)において、1607cm-1に存在する吸収ピークの吸光度Aに対する4000cm-1における吸光度Bの比に基づいて前記エポキシ樹脂多孔質膜の平均孔径を算出する、請求項11に記載の非水電解質デバイス用セパレータの製造方法。
  13.  エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を調製する工程(i)と、
     エポキシ樹脂シートが得られるように、前記エポキシ樹脂組成物の硬化体をシート状に切削する又は前記エポキシ樹脂組成物のシート状成形体を硬化させる工程(ii)と、
     ハロゲンフリーの溶剤を用いて前記エポキシ樹脂シートから前記ポロゲンを除去してエポキシ樹脂多孔質膜とする工程(iii)と、
     前記エポキシ樹脂多孔質膜に赤外線を照射して前記エポキシ樹脂多孔質膜の赤外線吸収特性を測定する工程(iv)と、
     前記赤外線吸収特性に基づいて前記エポキシ樹脂多孔質膜の膜厚及び/又は平均孔径を算出する工程(v)と、を含む、エポキシ樹脂多孔質膜の製造方法。
     
PCT/JP2013/003208 2012-05-22 2013-05-20 非水電解質蓄電デバイス用セパレータの製造方法、及びエポキシ樹脂多孔質膜の製造方法 WO2013175762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13794631.5A EP2854198A4 (en) 2012-05-22 2013-05-20 METHOD FOR PRODUCING A SEPARATOR FOR A WATER-FREE ELECTROLYTE ENERGY STORAGE DEVICE AND METHOD FOR PRODUCING A POROUS EPOXY RESIN MEMBRANE
KR1020147035757A KR20150013865A (ko) 2012-05-22 2013-05-20 비수전해질 축전 디바이스용 세퍼레이터의 제조 방법 및 에폭시 수지 다공질막의 제조 방법
US14/387,739 US20150076741A1 (en) 2012-05-22 2013-05-20 Method for producing separator for nonaqueous electrolyte electricity storage devices and method for producing porous epoxy resin membrane
CN201380026686.5A CN104335391A (zh) 2012-05-22 2013-05-20 非水电解质蓄电装置用隔膜的制造方法及环氧树脂多孔膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-116997 2012-05-22
JP2012116997 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013175762A1 true WO2013175762A1 (ja) 2013-11-28

Family

ID=49623472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003208 WO2013175762A1 (ja) 2012-05-22 2013-05-20 非水電解質蓄電デバイス用セパレータの製造方法、及びエポキシ樹脂多孔質膜の製造方法

Country Status (6)

Country Link
US (1) US20150076741A1 (ja)
EP (1) EP2854198A4 (ja)
JP (1) JP2014001373A (ja)
KR (1) KR20150013865A (ja)
CN (1) CN104335391A (ja)
WO (1) WO2013175762A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001373A (ja) * 2012-05-22 2014-01-09 Nitto Denko Corp 非水電解質蓄電デバイス用セパレータの製造方法、及びエポキシ樹脂多孔質膜の製造方法
CN104548966A (zh) * 2014-12-23 2015-04-29 天津工业大学 一种抗菌聚酰胺纳滤复合膜及制备方法
CN113699692A (zh) * 2020-05-21 2021-11-26 株式会社东芝 纤维片的制造方法以及纤维片的制造装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398096B2 (ja) * 2014-03-05 2018-10-03 三菱瓦斯化学株式会社 樹脂構造体、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板
JP6268144B2 (ja) * 2015-11-13 2018-01-24 住友化学株式会社 非水電解液二次電池用セパレータフィルム製造方法および非水電解液二次電池用セパレータフィルム洗浄装置
CN106450106B (zh) * 2016-10-15 2019-12-06 中国科学院近代物理研究所 汽车用锂电池隔膜及其制备方法
US10615417B2 (en) * 2017-05-15 2020-04-07 Millibatt, Inc. Electrolyte material, battery assembly, and production method
JP6879898B2 (ja) * 2017-12-25 2021-06-02 住友化学株式会社 非水電解液二次電池用セパレータフィルム製造方法および非水電解液二次電池用セパレータフィルム洗浄装置
JP7234654B2 (ja) * 2019-01-28 2023-03-08 株式会社リコー 電極及びその製造方法、電極素子、非水電解液蓄電素子
CN111864164A (zh) * 2019-04-25 2020-10-30 Sk新技术株式会社 用于二次电池的隔膜和使用其的电化学装置
CN116438689A (zh) * 2020-08-19 2023-07-14 米莉巴特有限公司 三维折叠电池组及其制造方法
WO2023038908A1 (en) * 2021-09-07 2023-03-16 University Of Rochester Methods for preparing porous separators for electrochemical cells

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824303A (ja) 1981-08-03 1983-02-14 Teijin Ltd 耐酸化性複合半透膜
JPH01180208A (ja) 1988-01-11 1989-07-18 Toray Ind Inc 複合半透膜の製造方法およびその膜
JP2000030683A (ja) 1998-06-26 2000-01-28 Celgard Llc 電池セパレ―タ―用ポリプロピレン微孔質膜
JP2000071309A (ja) * 1998-09-01 2000-03-07 Teijin Ltd フィルムの製造方法
JP2001192487A (ja) 2000-01-13 2001-07-17 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
WO2006064700A1 (ja) * 2004-12-17 2006-06-22 Kaneka Corporation ポリイミド多層接着フィルムおよびその製造方法
JP2010077358A (ja) * 2008-09-29 2010-04-08 Nitto Denko Corp エポキシ樹脂多孔質膜及びその製造方法
JP2010099654A (ja) * 2008-09-26 2010-05-06 Nitto Denko Corp 複合半透膜及びその製造方法
JP2010121122A (ja) * 2008-10-23 2010-06-03 Nitto Denko Corp 熱硬化性樹脂多孔シートの製造方法、熱硬化性樹脂多孔シート、及びそれを用いた複合半透膜
JP4940367B1 (ja) * 2011-06-13 2012-05-30 日東電工株式会社 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
WO2012172788A1 (ja) * 2011-06-13 2012-12-20 日東電工株式会社 エポキシ樹脂多孔質膜、非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス、複合半透膜及びそれらの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631408A (en) * 1984-09-24 1986-12-23 Kollmorgen Technologies Corporation Method of simultaneously determining gauge and orientation of polymer films
JP3858101B2 (ja) * 1997-05-01 2006-12-13 東セロ株式会社 延伸フィルム製造設備、及び製造方法
JP4426157B2 (ja) * 2002-07-19 2010-03-03 オムロン株式会社 多孔質形成性光硬化型樹脂組成物および多孔質樹脂硬化物
JP2011243682A (ja) * 2010-05-17 2011-12-01 Yokogawa Electric Corp 放熱機構
CN102971367B (zh) * 2010-06-30 2014-11-12 日东电工株式会社 热固性树脂多孔片的制造方法及使用该多孔片的复合分离膜
CN104335391A (zh) * 2012-05-22 2015-02-04 日东电工株式会社 非水电解质蓄电装置用隔膜的制造方法及环氧树脂多孔膜的制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824303A (ja) 1981-08-03 1983-02-14 Teijin Ltd 耐酸化性複合半透膜
JPH01180208A (ja) 1988-01-11 1989-07-18 Toray Ind Inc 複合半透膜の製造方法およびその膜
JP2000030683A (ja) 1998-06-26 2000-01-28 Celgard Llc 電池セパレ―タ―用ポリプロピレン微孔質膜
JP2000071309A (ja) * 1998-09-01 2000-03-07 Teijin Ltd フィルムの製造方法
JP2001192487A (ja) 2000-01-13 2001-07-17 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
WO2006064700A1 (ja) * 2004-12-17 2006-06-22 Kaneka Corporation ポリイミド多層接着フィルムおよびその製造方法
JP2010099654A (ja) * 2008-09-26 2010-05-06 Nitto Denko Corp 複合半透膜及びその製造方法
JP2010077358A (ja) * 2008-09-29 2010-04-08 Nitto Denko Corp エポキシ樹脂多孔質膜及びその製造方法
JP2010121122A (ja) * 2008-10-23 2010-06-03 Nitto Denko Corp 熱硬化性樹脂多孔シートの製造方法、熱硬化性樹脂多孔シート、及びそれを用いた複合半透膜
JP4940367B1 (ja) * 2011-06-13 2012-05-30 日東電工株式会社 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
WO2012172788A1 (ja) * 2011-06-13 2012-12-20 日東電工株式会社 エポキシ樹脂多孔質膜、非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス、複合半透膜及びそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2854198A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001373A (ja) * 2012-05-22 2014-01-09 Nitto Denko Corp 非水電解質蓄電デバイス用セパレータの製造方法、及びエポキシ樹脂多孔質膜の製造方法
CN104548966A (zh) * 2014-12-23 2015-04-29 天津工业大学 一种抗菌聚酰胺纳滤复合膜及制备方法
CN113699692A (zh) * 2020-05-21 2021-11-26 株式会社东芝 纤维片的制造方法以及纤维片的制造装置
CN113699692B (zh) * 2020-05-21 2023-09-12 株式会社东芝 纤维片的制造方法以及纤维片的制造装置

Also Published As

Publication number Publication date
CN104335391A (zh) 2015-02-04
JP2014001373A (ja) 2014-01-09
EP2854198A1 (en) 2015-04-01
EP2854198A4 (en) 2016-01-27
US20150076741A1 (en) 2015-03-19
KR20150013865A (ko) 2015-02-05

Similar Documents

Publication Publication Date Title
WO2013175762A1 (ja) 非水電解質蓄電デバイス用セパレータの製造方法、及びエポキシ樹脂多孔質膜の製造方法
JP5934580B2 (ja) エポキシ樹脂多孔質膜、非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス、複合半透膜及びそれらの製造方法
JP4940367B1 (ja) 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
WO2012172789A1 (ja) 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
US20140106235A1 (en) Separator for nonaqueous electrolyte electricity storage devices and nonaqueous electrolyte electricity storage device
JP2013020957A (ja) 非水電解質蓄電デバイス及びその製造方法
WO2012172784A1 (ja) 非水電解質蓄電デバイス用セパレータの製造方法および非水電解質蓄電デバイスの製造方法
WO2012172783A1 (ja) 非水電解質蓄電デバイス用セパレータの製造方法、及び非水電解質蓄電デバイスの製造方法
WO2012172786A1 (ja) 非水電解質蓄電デバイス用セパレータの製造方法および非水電解質蓄電デバイスの製造方法
JP2015170394A (ja) 蓄電デバイス用セパレータとその製造方法、及びそれを用いた蓄電デバイス
JP2013020958A (ja) 非水電解質蓄電デバイス及びその製造方法
JP2015168694A (ja) エポキシ樹脂多孔質膜、それを用いた蓄電デバイス用セパレータ及びそれらの製造方法
WO2012172787A1 (ja) 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
JP6405187B2 (ja) 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
JP2015084297A (ja) 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
JP2013020956A (ja) 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
JP2015170393A (ja) 蓄電デバイス用セパレータとその製造方法、及びそれを用いた蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387739

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147035757

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013794631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013794631

Country of ref document: EP