WO2013172342A1 - 有機非線形光学化合物を含むポリマー組成物 - Google Patents

有機非線形光学化合物を含むポリマー組成物 Download PDF

Info

Publication number
WO2013172342A1
WO2013172342A1 PCT/JP2013/063416 JP2013063416W WO2013172342A1 WO 2013172342 A1 WO2013172342 A1 WO 2013172342A1 JP 2013063416 W JP2013063416 W JP 2013063416W WO 2013172342 A1 WO2013172342 A1 WO 2013172342A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
nonlinear optical
compound
formula
Prior art date
Application number
PCT/JP2013/063416
Other languages
English (en)
French (fr)
Inventor
士吉 横山
和広 山本
マーク スプリング アンドリュー
前田 大輔
小澤 雅昭
啓祐 大土井
Original Assignee
国立大学法人九州大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日産化学工業株式会社 filed Critical 国立大学法人九州大学
Priority to JP2014515635A priority Critical patent/JP6066353B2/ja
Priority to US14/401,302 priority patent/US20150133588A1/en
Publication of WO2013172342A1 publication Critical patent/WO2013172342A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3613Organic materials containing Sulfur
    • G02F1/3614Heterocycles having S as heteroatom
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3615Organic materials containing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Definitions

  • the present invention relates to a polymer composition containing an organic nonlinear optical compound used for optical information processing such as an optical switch, optical modulation, and optical communication, and more specifically, a composition in which an organic nonlinear optical compound is dispersed in a polymer matrix. And an optical material formed from the composition.
  • the nonlinear optical material is a material that exhibits a polarization response proportional to a higher-order term of the electric field of light, that is, second-order harmonic generation (SHG) or first-order.
  • SHG second-order harmonic generation
  • Those that produce a second-order nonlinear optical effect such as the Pockels effect, which is the electro-optical effect, are considered to be applied to light sources, optical switches, optical modulation, and the like.
  • lithium niobate and potassium dihydrogen phosphate have been put into practical use and widely used as inorganic nonlinear optical materials.
  • organic nonlinear optical materials having advantages such as high nonlinear optical performance, inexpensive material cost, and high mass productivity have attracted attention over these inorganic materials, and active research and development for practical application has been conducted. It has been broken.
  • a method for manufacturing a device using an organic material a method using a single crystal of a compound having nonlinear optical characteristics (nonlinear optical compound), a vapor deposition method, and an LB film method are known. Furthermore, there are a method of introducing a structure having nonlinear optical properties into the main chain or side chain of a polymer compound, a method of dispersing a nonlinear optical compound in a polymer matrix, and the like.
  • a film can be formed by a casting method, a dip method, a spin coating method, and the like, so that processing is easy.
  • the nonlinear optical compound in the method of dispersing the nonlinear optical compound in the polymer matrix, the nonlinear optical compound needs to be dispersed in a high concentration without being aggregated and to be optically uniform.
  • a push-pull type ⁇ -conjugated compound having an electron-donating functional group at one end of the ⁇ -conjugated chain and an electron-withdrawing functional group at the other end is known.
  • Disperse Red 1 (DR1) having a diethylamino group as an electron donating group and a nitro group as an electron withdrawing group in azobenzene as a ⁇ -conjugated chain.
  • PMMA polymethyl methacrylate
  • Patent Document 1 a polymer having a high glass transition temperature such as polycarbonate, polyimide, polysulfone or the like is used.
  • a functional dye such as a fluorescent dye or a nonlinear optical dye can be optically and uniformly dispersed at a high concentration.
  • a molecular matrix has been reported (Patent Document 2).
  • Non-patent Document 1 a norbornene imide polymer is known as a highly transparent polymer having a high glass transition temperature (Non-patent Document 1).
  • the present invention provides a polymer matrix capable of suppressing the orientational relaxation of the organic nonlinear optical compound, a composition containing the polymer matrix and the organic nonlinear optical compound, and a composition obtained using the composition.
  • An object is to provide an optical material.
  • the present inventors have suppressed the orientation relaxation of the organic nonlinear optical compound by combining a norbornene imide polymer having a specific unit structure with the organic nonlinear optical compound.
  • the present invention has been completed.
  • this invention relates to the composition containing the norbornene imide polymer which has a structural unit represented by Formula [1] as a 1st viewpoint, and an organic nonlinear optical compound.
  • R 1 represents an alkyl group having 1 to 12 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • the said organic nonlinear optical compound is related with the composition as described in a 1st viewpoint which is a compound which has a furan ring represented by Formula [2].
  • R 8 and R 9 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a haloalkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 10 carbon atoms
  • represents a bond.
  • the said organic nonlinear optical compound is related with the composition as described in a 2nd viewpoint which is a compound represented by Formula [3].
  • R 2 and R 3 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted carbon atom
  • R 4 to R 7 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or a carbon atom.
  • R 8 and R 9 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a haloalkyl group having 1 to 5 carbon atoms, or 6 to 10 carbon atoms.
  • the aryl group of , Ar represents a divalent organic group represented by the formula [4] or Formula [5].)
  • R 10 to R 15 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted carbon atom
  • the varnish containing the composition as described in any one among a 1st viewpoint thru
  • the present invention relates to an electro-optical element including the composition according to any one of the first aspect to the fourth aspect.
  • an 8th viewpoint it is related with the optical switching element containing the composition as described in any one of a 1st viewpoint thru
  • the present invention relates to an organic nonlinear optical material using the composition according to any one of the first aspect to the fourth aspect.
  • the composition of the present invention can suppress orientation relaxation of the organic nonlinear optical compound by combining a norbornene imide polymer having a specific unit structure and the organic nonlinear optical compound.
  • the composition of the present invention is dissolved in a solvent to form a varnish, and can be easily molded. Therefore, the optical material having high handleability can be suitably used in the field of optoelectronic materials. It is done.
  • the organic nonlinear optical material of the present invention has a large nonlinear optical constant, and can form an optical device that can be easily molded.
  • FIG. 1 is a diagram showing the 1 H NMR spectrum of N-cyclohexyl-exo-norbornene-5,6-dicarboximide obtained in Synthesis Example 3.
  • FIG. 2 is a diagram showing the results of a temperature durability test in Example 3.
  • composition of the present invention is a composition comprising a norbornene imide polymer having a structural unit represented by the following formula [1] and an organic nonlinear optical compound.
  • a norbornene imide polymer having a structural unit represented by the following formula [1] and an organic nonlinear optical compound.
  • the average molecular weight of the norbornene imide polymer having a structural unit represented by the following formula [1] used in the present invention is not particularly limited, but the weight average molecular weight is 10,000 to 1,000,000. preferable.
  • the weight average molecular weight in this invention is a measured value by gel permeation chromatography (polystyrene conversion).
  • R 1 represents an optionally substituted alkyl group having 1 to 12 carbon atoms, or an optionally substituted aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 12 carbon atoms may have a branched structure or a cyclic structure, and may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, n-octyl, n-decyl, n-dodecyl, 1-adamantyl Group, benzyl group, phenethyl group and the like.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the substituent of the alkyl group having 1 to 12 carbon atoms include hydroxy groups; halogen atoms such as fluoro, chloro, bromo, and iodo groups.
  • Examples of the substituent for the aryl group having 6 to 10 carbon atoms include alkyl groups such as methyl group and ethyl group; hydroxyalkyl groups such as hydroxymethyl group; hydroxy groups; alkoxy groups such as methoxy group and octyloxy group; And halogen atoms such as a group, a chloro group, a bromo group, and an iodo group.
  • R 1 examples include cyclohexyl group, 4-hydroxycyclohexyl group, n-octyl group, 1-adamantyl group, phenyl group, 4-tolyl group, 4-hydroxymethylphenyl group, 4-hydroxyphenyl group, Examples include 2,3,4,5,6-pentafluorophenyl group.
  • the structural unit represented by the formula [1] may be a cis isomer or a trans isomer.
  • the norbornene imide polymer used in the present invention is a norbornene imide polymer having the structural unit represented by the formula [1], it has other structural units other than the structural unit represented by the formula [1]. Also good. Examples of other structural units include structural units such as norbornene, cyclobutene, cyclopentene, cyclooctene, cyclododecene, and 1,5-cyclooctadiene. When the other structural units are included, the structural unit represented by the formula [1] is desirably 50 to 99 mol% with respect to the entire polymer.
  • the norbornene imide polymer is more preferably a polymer composed only of the structural unit represented by the formula [1] because the effects of the present invention are easily exhibited. Therefore, the norbornene imide polymer used in the present invention desirably has a structural unit represented by the formula [1] at 50 to 100 mol%.
  • the manufacturing method of the norbornene imide polymer which has a structural unit represented by Formula [1] can be obtained, for example, by subjecting a norbornene imide monomer to a polymerization reaction in a solvent in the presence of a metal complex such as a ruthenium catalyst.
  • the norbornene imide polymer can be obtained from Macromol. Chem. Phys. 2002, 203, 1811-1818.
  • norbornene imide monomers may be used alone or in combination of two or more.
  • the ratio of each of these monomers is not particularly limited and can be appropriately adjusted according to the structure of the target polymer.
  • the norbornene imide polymer having the structural unit represented by the formula [1] is a structural unit other than the structural unit represented by the formula [1] (norbornene, cyclobutene, cyclopentene, cyclooctene, cyclododecene. , 1,5-cyclooctadiene, etc.).
  • a norbornene imide polymer in addition to the norbornene imide monomer, a norbornene imide polymer can be obtained by using a monomer constituting a structural unit other than the structural unit represented by the formula [1] as another monomer.
  • the amount of other monomers is in the range of 1 to 50 mol% with respect to the total monomers used to obtain the norborneneimide polymer having the structural unit represented by the formula [1] used in the present invention. These monomers can be used.
  • the above other monomers one kind may be used alone, and two kinds or more may be used in any combination. Further, the ratio is not particularly limited, and can be adjusted according to the structure of the target norbornene imide polymer.
  • the metal complex used in the polymerization reaction is not particularly limited, and can be arbitrarily selected from various known metal complexes for polymerization. Among them, a ruthenium catalyst such as a Grubbs catalyst (first generation Grubbs catalyst, second generation Grubbs catalyst) is preferable.
  • the metal complex can be used in a molar ratio of 5 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 times the monomer as a raw material.
  • the solvent used in the polymerization reaction is not particularly limited as long as it does not inhibit the polymerization reaction, and examples thereof include halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, and chlorobenzene.
  • a solvent may be used individually by 1 type and may mix and use 2 or more types by arbitrary combinations.
  • the temperature during the polymerization reaction is not particularly limited, but is ⁇ 50 to 100 ° C. Preferably, it is ⁇ 50 to 60 ° C. Although there is no restriction
  • the polymerization reaction time is 10 minutes to 10 hours, although it varies depending on the type of monomer and metal complex used, the temperature and pressure during polymerization, and the like. Preferably, it is 20 minutes to 5 hours.
  • the obtained norbornene imide polymer is collected by an arbitrary method, and post-treatment such as washing is performed as necessary.
  • Examples of the method for recovering the norbornene imide polymer from the reaction solution include a method such as reprecipitation.
  • the organic nonlinear optical compound used in the present invention is a ⁇ -conjugated compound having an electron-donating group at one end of the ⁇ -conjugated chain and an electron-withdrawing group at the other end, and preferably has a high molecular hyperpolarizability ⁇ .
  • the electron donating group include a dialkylamino group
  • examples of the electron withdrawing group include a cyano group, a nitro group, and a fluoroalkyl group.
  • the organic nonlinear optical compound used in the present invention includes a compound having a furan ring represented by the formula [2].
  • R 8 and R 9 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a haloalkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • represents a bond.
  • the organic nonlinear optical compound is preferably a compound represented by the following formula [3].
  • R 2 and R 3 may each independently have a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a substituent. Represents a good aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may have a branched structure or a cyclic structure, and may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, n-octyl, n-decyl, 1-adamantyl, benzyl, A phenethyl group etc. are mentioned.
  • Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, xylyl group, and naphthyl group.
  • Examples of the substituent include amino group; hydroxy group; alkoxycarbonyl group such as methoxycarbonyl group and tert-butoxycarbonyl group; trimethylsilyloxy group, tert-butyldimethylsilyloxy group, tert-butyldiphenylsilyloxy group, and triphenylsilyl.
  • Examples thereof include silyloxy groups such as oxy groups; halogen atoms such as fluoro groups, chloro groups, bromo groups, and iodo groups.
  • R 4 to R 7 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or 2 to 2 carbon atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms include those exemplified for the above R 2 and R 3 .
  • Examples of the alkoxy group having 1 to 10 carbon atoms include groups in which the alkyl group having 1 to 10 carbon atoms is bonded through an oxygen atom.
  • Examples of the alkylcarbonyloxy group having 2 to 11 carbon atoms include groups in which the alkyl group having 1 to 10 carbon atoms is bonded via a carbonyloxy group.
  • Examples of the aryloxy group having 4 to 10 carbon atoms include phenoxy group, naphthalen-2-yloxy group, furan-3-yloxy group, and thiophen-2-yloxy group.
  • Examples of the arylcarbonyloxy group having 5 to 11 carbon atoms include benzoyloxy group, 1-naphthoyloxy group, furan-2-carbonyloxy group, thiophene-3-carbonyloxy group and the like.
  • Examples of the silyloxy group having an alkyl group having 1 to 6 carbon atoms and / or a phenyl group include a trimethylsilyloxy group, a tert-butyldimethylsilyloxy group, a tert-butyldiphenylsilyloxy group, and a triphenylsilyloxy group.
  • Examples of the halogen atom include a fluoro group, a chloro group, a bromo group, and an iodo group.
  • R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a haloalkyl group having 1 to 5 carbon atoms, or a carbon atom. Represents an aryl group of formula 6-10.
  • the alkyl group having 1 to 5 carbon atoms may have a branched structure or a cyclic structure, and may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Examples thereof include an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, a neopentyl group, and a cyclopentyl group.
  • the haloalkyl group having 1 to 5 carbon atoms may have a branched structure or a cyclic structure, and includes a fluoromethyl group, a trifluoromethyl group, a bromodifluoromethyl group, a 2-chloroethyl group, a 2-bromoethyl group, 1 , 1-difluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 2-chloro-1,1,2-trifluoroethyl group, pentafluoroethyl group 3-bromopropyl group, 2,2,3,3-tetrafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group, 1,1,1,3,3,3-hexa Fluoropropan-2-yl group, 3-bromo-2-methylpropyl group, 2,2,3,3-tetrafluorocyclopropyl group, 4-
  • Ar represents a divalent organic group represented by the following formula [4] or formula [5].
  • R 10 to R 15 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a substituent.
  • examples of the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 10 carbon atoms, and the substituent include those exemplified for the above R 2 and R 3 .
  • the content of the organic nonlinear optical compound is usually 1 to 150 parts by mass with respect to 100 parts by mass of the norborneneimide polymer having the structural unit represented by the above formula [1], preferably Is 10 to 100 parts by mass.
  • the content of the organic nonlinear optical compound is 1 part by mass or more, it becomes easy to obtain a sufficient nonlinear optical effect, and when it is 150 parts by mass or less, film formation is facilitated, and the mechanical strength of the material is further reduced. Hateful.
  • composition and varnish> When the composition of the present invention is used as a nonlinear optical material, it is generally used in the form of a thin film.
  • the composition of the present invention is dissolved in an appropriate organic solvent to form a varnish, and the varnish is converted into an appropriate substrate (for example, a silicon / silicon dioxide-coated substrate, a silicon nitride substrate, a metal, For example, on a substrate such as a substrate coated with aluminum, molybdenum, chromium, etc., a glass substrate, a quartz substrate, an ITO substrate, or a film (eg, a resin film such as a triacetyl cellulose film, a polyester film, or an acrylic film).
  • a wet coating method in which a film is formed by coating by spin coating, flow coating, roll coating, slit coating, spin coating following the slit, ink jet coating, printing, or the like is preferable.
  • the solvent used for preparing the varnish dissolves the norbornene imide polymer having the structural unit represented by the above formula [1] and the organic nonlinear optical compound, and dissolves the additives described below that are added as desired.
  • the type and structure thereof are not particularly limited.
  • Examples of preferred organic solvents include tetrahydrofuran, methyltetrahydrofuran, 1,4-dioxane, diethylene glycol dimethyl ether, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl acetate, cyclohexanol, 1,2-dichloroethane, chloroform, toluene, chlorobenzene, xylene, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, chlorobenzene, propylene glycol methyl ether and the like can be mentioned. These solvent can be used individually by 1 type or in combination of 2 or more types.
  • the solid content in the varnish is, for example, 0.5 to 30% by mass, and for example, 5 to 30% by mass.
  • the solid content mentioned here means the mass obtained by removing the solvent from the varnish.
  • the prepared varnish is preferably used after being filtered using a filter having a pore diameter of about 0.2 ⁇ m.
  • an antioxidant such as hydroquinone, an ultraviolet absorber such as benzophenone, a rheology modifier such as a silicone oil or a surfactant, and a silane coupling. It may contain an adhesion aid such as an agent, a polymer matrix cross-linking agent, a compatibilizer, a curing agent, a pigment, a storage stabilizer, an antifoaming agent, and the like.
  • the composition of the present invention is applicable as a material for various conventionally proposed electro-optical elements.
  • a typical electro-optical element is an optical switching element (optical communication element) such as a Mach-Zehnder optical modulator.
  • an optical switching element after applying the composition of the present invention on a substrate such as glass or plastic, the light is processed by lithography using light or electron beam, wet and dry etching, or nanoimprinting, etc.
  • An optical waveguide structure capable of transmission is used.
  • an optical waveguide structure is formed by applying and laminating on a material having a refractive index lower than that of the composition, but the present composition is not limited to this structure and can be applied to other optical waveguide structures.
  • a Mach-Zehnder type optical modulator which is a typical optical switching element
  • light propagating by applying a high-frequency voltage to both or one of the branched optical waveguide structures to develop electro-optical characteristics and changing the refractive index This causes a phase change.
  • the electro-optical element here is not limited to phase and intensity modulation, and can be used for a polarization conversion element, a demultiplexing and multiplexing element, for example.
  • the present composition can be used for applications such as an electric field sensor for detecting a change in electric field as a change in refractive index, in addition to a communication element.
  • a poling treatment is required to develop the second-order nonlinear optical characteristics of a material (for example, a thin film) produced using the composition.
  • the poling process is a state in which a predetermined electric field is applied in a state where the material is heated to a temperature lower than the glass transition temperature of the material by about 25 ° C., preferably about 10 ° C. or lower and below the melting point, and the electric field is maintained.
  • the nonlinear optical compound molecules are oriented by cooling the material. By this operation, the material can exhibit macroscopic nonlinear optical characteristics.
  • the glass transition of the composition containing the norbornene imide polymer as a matrix and the organic nonlinear optical compound is a matrix.
  • the reaction solution was allowed to stand overnight to precipitate crystals, and an off-white solid was isolated by filtration under reduced pressure.
  • the obtained compound was recrystallized twice with chlorobenzene.
  • the obtained compound was a mixture of an endo isomer and an exo isomer, and was heated at 250 ° C. for 1 hour in a nitrogen atmosphere to isomerize the endo isomer to the exo isomer. After cooling to 120 ° C., chlorobenzene was added and sufficiently stirred until uniform. Furthermore, the crystal
  • Synthesis Example 3 Synthesis of N-cyclohexyl-exo-norbornene-5,6-dicarboximide [9] 26.6 g (0.10 mol) of n-cyclohexylamine obtained in Synthesis Example 2 and 4.7 g (57 mmol) of sodium acetate anhydrous [manufactured by Kanto Chemical Co., Ltd.] are acetic anhydride [manufactured by Kanto Chemical Co., Inc.]. It was dissolved in 94.3 g (0.92 mol) and refluxed at 140 ° C. for 2 hours. Thereafter, the reaction solution was put in a freezer to be completely solidified. The solid was filtered and washed with an excess amount of ion exchange water.
  • the obtained norbornene imide polymer A had a weight average molecular weight Mw of 28,000 and a polydispersity Mw / Mn (number average molecular weight) measured by polystyrene conversion by GPC of 1.1.
  • Synthesis Example 5 Polymerization 2 of N-cyclohexyl-exo-norbornene-5,6-dicarboximide [9] The same operation as in Synthesis Example 4 was carried out except that the amount of the Grubbs first generation catalyst was changed to 2.8 mg (3.39 ⁇ 10 ⁇ 6 mol) to obtain the norbornene imide polymer B as the target product (yield rate) 90%).
  • the obtained norbornene imide polymer B had a weight average molecular weight Mw measured in terms of polystyrene by GPC of 147,000 and a polydispersity Mw / Mn of 1.1.
  • Example 1 Measurement of glass transition temperature Differential scanning was performed on the glass transition temperature of a sample obtained by mixing 50 parts by mass of the synthesized norbornene imide polymers A and B and 100 parts by mass of the nonlinear optical compound shown in the reference example. Measured with a calorimeter. The obtained results are shown in Table 1.
  • Example 2 Measurement of electro-optic constants 60 mg of norbornene imide polymers A and B and 30 mg of the nonlinear optical compound synthesized in the reference example were mixed in a mixed solvent of 1 mL of deuterated chloroform and 1 mL of 1,2-dichloroethane, and 1 at 50 ° C. Stir for hours.
  • This stirred solution was filtered with a filter having a pore size of 0.20 ⁇ m, and then spin-coated on the ITO substrate.
  • This sample was baked in an oven at 120 ° C. for 24 hours under vacuum to obtain a polymer thin film.
  • gold was deposited to a thickness of 100 nm by a sputtering method to form an upper electrode.
  • PMMA polymethyl methacrylate
  • a measurement sample was similarly prepared.
  • the electro-optic constant of the prepared sample was measured using a semiconductor laser having a wavelength of 1.31 ⁇ m as a light source.
  • Table 2 shows the value of the electro-optic constant r 33 obtained from each sample, together with the temperature at which the electric field alignment treatment was performed, the applied voltage, and the thickness of the sample.
  • Example 3 Temperature endurance test A temperature endurance test was performed on the sample of which electro-optic constant was measured in Example 2. The sample was held at 85 ° C., and the relaxation characteristics of the electro-optic constant from immediately after polling to 500 hours later were measured.
  • FIG. 2 shows the rate of change (r 33 / r 33 (0)) from the initial value (r 33 (0)) of the electro-optic constant r 33 of the norbornene imide polymer B as a function of time.
  • PMMA is used as a matrix polymer under the above conditions, it is known that the retention rate decreases to nearly 0% within a few hours, but in the norbornene imide polymer B of the present invention, after 500 hours have passed. 70% of the initial value is retained. That is, it can be seen that by using the norbornene imide polymer B, the relaxation of the alignment of the nonlinear optical compound is greatly suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】 有機非線形光学化合物の配向緩和を抑制することができる高分子マトリクスを提供し、この高分子マトリクスと有機非線形光学化合物を含有する組成物、及び該組成物を用いて得られる光学材料を提供すること。 【解決手段】 式[1]で表される構造単位を有するノルボルネンイミドポリマーと、有機非線形光学化合物とを含む組成物。 (式中、R1は、置換基を有していてもよい炭素原子数1~12のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。)

Description

有機非線形光学化合物を含むポリマー組成物
 本発明は、光スイッチ、光変調などの光情報処理、光通信などに用いられる有機非線形光学化合物を含むポリマー組成物に関し、詳細には有機非線形光学化合物を高分子マトリクス中に分散させた組成物並びに該組成物から形成される光学材料に関する。
 近年、光情報処理、光通信などの分野において、蛍光色素を含有する材料や非線形光学材料を用いた種々の光電子素子の開発が進められている。これらのうち非線形光学材料とは、光の電界の2乗や3乗あるいはそれ以上の高次の項に比例する分極応答を示す材料であって、第2次高調波発生(SHG)や1次の電気光学効果であるポッケルス効果といった2次の非線形光学効果を生じるものは、光源、光スイッチ、光変調などの応用が考えられている。
 従来、無機非線形光学材料としてニオブ酸リチウム、リン酸二水素カリウムが実用化され、広く用いられている。しかしながら近年、これらの無機材料に対し、高い非線形光学性能、安価な材料コスト、高い量産性等の優位性を有する、有機非線形光学材料が注目され、実用化に向けての活発な研究開発が行われている。
 有機材料を用いてデバイスを作製する方法としては、非線形光学特性を有する化合物(非線形光学化合物)の単結晶を用いる方法、また、蒸着法やLB膜法が知られている。さらには非線形光学特性を有する構造を高分子化合物の主鎖又は側鎖に導入する方法、或いは非線形光学化合物を高分子マトリクス中に分散させる方法などがある。特に高分子系においては、キャスト法、ディップ法、スピンコート法などにより成膜できるため、加工が容易である。
 これらのうち、高分子マトリクス中に非線形光学化合物を分散させる方法においては、非線形光学化合物が凝集せず高濃度に分散され、光学的に均一になることが必要とされる。
 ここで使用する非線形光学化合物としては、π共役鎖の一方の端に電子供与性官能基、他方の端に電子吸引性官能基を有する、プッシュ-プル型のπ共役系化合物が知られている。例えば、π共役鎖としてのアゾベンゼンに、電子供与性基であるジエチルアミノ基及び電子吸引性基であるニトロ基を有する、Disperse Red 1(DR1)などである。
 しかしながら、このような分子は双極子モーメントが大きいため分子間相互作用が大きく、媒体への溶解性ないしは分散性が悪く、高分子マトリクスとして一般に用いられているポリメタクリル酸メチル(PMMA)等へ高濃度で分散させることが困難であった。また、PMMAのガラス転移温度は100℃程度と低く、PMMAを高分子マトリクスとして用いた有機非線形光学化合物の配向は室温でも次第に緩和し、その特性が経時で低下してしまうという欠点がある。
 このため、PMMAの代替となる高分子マトリクスの探索が活発に行われ、ポリカーボネートやポリイミド、ポリスルフォン等のガラス転移温度の高い高分子を用いることが報告されている(特許文献1)。
 また、上述したように、PMMA以外の高分子マトリクスの使用が種々検討されているが、これらの高分子マトリクスとDR1等の非線形光学化合物との相溶性も決してよいとは言えるものではなかった。すなわち、非線形光学特性を高めるために非線形光学化合物を高濃度で添加すると、それらが凝集化あるいは結晶化してしまったり、また低濃度であっても加熱や経時により凝集化あるいは結晶化が起こってしまったりするという問題があった。
 そこで、高分子マトリクスとしてビフェニレン骨格を有する特定の分岐高分子化合物、すなわちハイパーブランチポリマーを採用することにより、蛍光色素や非線形光学色素等の機能性色素を高濃度で光学的に均一に分散できる高分子マトリクスが報告されている(特許文献2)。
 また、ガラス転移温度が高く、透明性の高いポリマーとして、ノルボルネンイミドポリマーが知られている(非特許文献1)。
特開平6-202177号公報 特開2010-139994号公報
Macromol.Chem.Phys.2002,203,1811
 上述より、種々の高分子マトリクスが報告されているが、依然として有機非線形光学化合物の配向緩和を抑制することができる高分子マトリクスが求められている。
 そこで、本発明は、有機非線形光学化合物の配向緩和を抑制することができる高分子マトリクスを提供し、この高分子マトリクスと有機非線形光学化合物を含有する組成物、及び該組成物を用いて得られる光学材料を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、特定の単位構造を有するノルボルネンイミドポリマーと有機非線形光学化合物とを組み合わせることにより、該有機非線形光学化合物の配向緩和を抑制することができることを見出し、本発明を完成させた。
 すなわち、本発明は、第1観点として、式[1]で表される構造単位を有するノルボルネンイミドポリマーと、有機非線形光学化合物とを含む組成物に関する。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は、置換基を有していてもよい炭素原子数1~12のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。)
 第2観点として、前記有機非線形光学化合物が、式[2]で表されるフラン環を有する化合物である、第1観点に記載の組成物に関する。
Figure JPOXMLDOC01-appb-C000006
(式中、R8、R9は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、●は結合手を表す。)
 第3観点として、前記有機非線形光学化合物が、式[3]で表される化合物である、第2観点に記載の組成物に関する。
Figure JPOXMLDOC01-appb-C000007
(式中、R2、R3は、それぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表し、R4~R7は、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数4~10のアリールオキシ基、炭素原子数5~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表し、R8、R9は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、Arは式[4]又は式[5]で表される二価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000008
(式中、R10~R15は、それぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。)
 第4観点として、前記有機非線形光学化合物の含有量が、前記ノルボルネンイミドポリマー100質量部に対して1~150質量部である、第1観点乃至第3観点のうち何れか一項に記載の組成物に関する。
 第5観点として、第1観点乃至第4観点のうち何れか一項に記載の組成物を含むワニスに関する。
 第6観点として、第5観点に記載のワニスから作製される薄膜に関する。
 第7観点として、第1観点乃至第4観点のうち何れか一項に記載の組成物を含む電気光学素子に関する。
 第8観点として、第1観点乃至第4観点のうち何れか一項に記載の組成物を含む光スイッチング素子に関する。
 第9観点として、第1観点乃至第4観点のうち何れか一項に記載の組成物を用いた有機非線形光学材料に関する。
 本発明の組成物は、特定の単位構造を有するノルボルネンイミドポリマーと有機非線形光学化合物とを組み合わせることにより、該有機非線形光学化合物の配向緩和を抑制することができる。
 また本発明の組成物は、溶媒に溶解してワニス形態と為し、簡単に成形可能であることから、ハンドリング性の高い光学材料として、光電子材料分野において好適に用いることができるという効果が得られる。
 さらに本発明の有機非線形光学材料は、大きな非線形光学定数を有し、簡単に成形できる光学デバイスを形成することが可能となる。
図1は、合成例3で得られたN-シクロヘキシル-エキソ-ノルボルネン-5,6-ジカルボキシイミドの1H NMRスペクトルを示す図である。 図2は、実施例3における温度耐久試験の結果を示す図である。
 本発明の組成物は、下記式[1]で表される構造単位を有するノルボルネンイミドポリマーと有機非線形光学化合物とを含む組成物である。
 以下、本発明についてさらに詳しく説明する。
<式[1]で表される構造単位を有するノルボルネンイミドポリマー>
 本発明に用いる下記式[1]で表される構造単位を有するノルボルネンイミドポリマーの平均分子量は特に限定されるものではないが、重量平均分子量が10,000~1,000,000であることが好ましい。
 なお、本発明における重量平均分子量とは、ゲル浸透クロマトグラフィー(ポリスチレン換算)による測定値である。
Figure JPOXMLDOC01-appb-C000009
 上記式[1]中、R1は、置換基を有していてもよい炭素原子数1~12のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。
 ここで炭素原子数1~12のアルキル基としては、分岐構造、環状構造を有していてもよく、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、1-アダマンチル基、ベンジル基、フェネチル基等が挙げられる。
 炭素原子数6~10のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記炭素原子数1~12のアルキル基の置換基としては、ヒドロキシ基;フルオロ基、クロロ基、ブロモ基、ヨード基等のハロゲン原子が挙げられる。
 上記炭素原子数6~10のアリール基の置換基としては、メチル基、エチル基等のアルキル基;ヒドロキシメチル基等のヒドロキシアルキル基;ヒドロキシ基;メトキシ基、オクチルオキシ基等のアルコキシ基;フルオロ基、クロロ基、ブロモ基、ヨード基等のハロゲン原子が挙げられる。
 R1の具体的な例としては、シクロヘキシル基、4-ヒドロキシシクロヘキシル基、n-オクチル基、1-アダマンチル基、フェニル基、4-トリル基、4-ヒドロキシメチルフェニル基、4-ヒドロキシフェニル基、2,3,4,5,6-ペンタフルオロフェニル基等が挙げられる。
 また、式[1]で表される構造単位は、シス体であってもトランス体であってもよい。
 本発明に用いられるノルボルネンイミドポリマーは、式[1]で表される構造単位を有するノルボルネンイミドポリマーであるので、式[1]で表される構造単位以外のその他の構造単位を有していてもよい。その他の構造単位としては、ノルボルネン、シクロブテン、シクロペンテン、シクロオクテン、シクロドデセン、1,5-シクロオクタジエン等の構造単位を挙げることができる。上記その他の構造単位を有する場合、ポリマー全体に対して、式[1]で表される構造単位が50~99モル%であることが望ましい。
 一方、上記ノルボルネンイミドポリマーは、式[1]で表される構造単位のみからなるポリマーであることが、本発明の効果を発現させやすいためより好ましい。したがって、本発明に用いられるノルボルネンイミドポリマーは、式[1]で表される構造単位を50~100モル%で有することが望ましい。
<式[1]で表される構造単位を有するノルボルネンイミドポリマーの製造方法>
 上記式[1]で表される構造単位を有するノルボルネンイミドポリマーは、例えば、ノルボルネンイミドモノマーをルテニウム触媒などの金属錯体の存在下、溶媒中で重合反応を行うことによって得られる。
 なお、前記ノルボルネンイミドポリマーは、Macromol.Chem.Phys.2002,203,1811-1818の記載に従い合成することができる。
 上記式[1]で表される構造単位を有するノルボルネンイミドポリマーの製造において、ノルボルネンイミドモノマーは一種単独で使用してもよいし、又は二種以上を組み合わせて用いることもできる。二種以上を用いる場合には、それら各モノマーの比率は特に制限されず、目的とするポリマーの構造に応じて適宜調整することができる。
 また、上述の通り、上記式[1]で表される構造単位を有するノルボルネンイミドポリマーは、上記式[1]で表される構造単位以外の構造単位(ノルボルネン、シクロブテン、シクロペンテン、シクロオクテン、シクロドデセン、1,5-シクロオクタジエン等)を有していてもよい。その場合、ノルボルネンイミドモノマーに加え、その他モノマーとして、上記式[1]で表される構造単位以外の構造単位を構成するモノマーを用いて、ノルボルネンイミドポリマーを得ることができる。
 その他のモノマーを用いる場合には、本発明に用いられる式[1]で表される構造単位を有するノルボルネンイミドポリマーを得るために用いる全モノマーに対して、1~50モル%の範囲で、その他のモノマーを用いることができる。
 上記その他のモノマーについても、一種を単独で用いても良く、二種以上を任意の組み合わせで使用してもよい。また、その比率も特に制限されず、目的とするノルボルネンイミドポリマーの構造に応じて調整することができる。
 上記重合反応で用いる金属錯体は特に制限されず、公知の各種の重合用金属錯体の中から、任意に選択して使用することができる。中でも、グラブス触媒(第1世代グラブス触媒、第2世代グラブス触媒)などのルテニウム触媒が好ましい。
 金属錯体は、原料であるモノマーに対して、5×10-3~1×10-2倍のモル比で使用することができる。
 上記重合反応に用いられる溶媒としては、重合反応を阻害しないものであれば、特に限定されないが、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素類などが挙げられる。なお、溶媒は一種を単独で用いても良く、二種以上を任意の組み合わせで混合して用いてもよい。
 重合反応時の温度に特に制限はないが、-50~100℃である。好ましくは、-50~60℃である。重合反応時の圧力にも特に制限はないが、通常は常圧で行う。
 重合反応の時間は、使用するモノマーや金属錯体の種類、重合時の温度や圧力等によっても異なるが、10分~10時間である。好ましくは20分~5時間である。
 重合反応の終了後、得られたノルボルネンイミドポリマーを任意の方法で回収し、必要に応じて洗浄等の後処理を行う。反応溶液からノルボルネンイミドポリマーを回収する方法としては、再沈殿等の方法が挙げられる。
<有機非線形光学化合物>
 本発明に用いられる有機非線形光学化合物は、π共役鎖の一方の端に電子供与性基、他方の端に電子吸引基を有するπ共役系化合物であり、分子超分極率βの大きいものが望ましい。電子供与性基としてはジアルキルアミノ基、電子吸引基としては、シアノ基、ニトロ基、フルオロアルキル基を挙げることができる。
 中でも、本発明において用いられる有機非線形光学化合物としては、式[2]で表されるフラン環を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 上記式中、R8、R9は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、●は結合手を表す。
 上記有機非線形光学化合物は、具体的には下記式[3]で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記式[3]中、R2、R3は、それぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。
 ここで炭素原子数1~10のアルキル基としては、分岐構造、環状構造を有していてもよく、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基、1-アダマンチル基、ベンジル基、フェネチル基等が挙げられる。
 炭素原子数6~10のアリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。
 上記置換基としては、アミノ基;ヒドロキシ基;メトキシカルボニル基、tert-ブトキシカルボニル基等のアルコキシカルボニル基;トリメチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基、トリフェニルシリルオキシ基等のシリルオキシ基;フルオロ基、クロロ基、ブロモ基、ヨード基等のハロゲン原子が挙げられる。
 上記式[3]中、R4~R7は、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数4~10のアリールオキシ基、炭素原子数5~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表す。
 ここで炭素原子数1~10のアルキル基としては、例えば、前記R2、R3にて例示したものが挙げられる。
 炭素原子数1~10のアルコキシ基としては、例えば、上記炭素原子数1~10のアルキル基が酸素原子を介して結合する基が挙げられる。
 炭素原子数2~11のアルキルカルボニルオキシ基としては、例えば、上記炭素原子数1~10のアルキル基がカルボニルオキシ基を介して結合する基が挙げられる。
 炭素原子数4~10のアリールオキシ基としては、フェノキシ基、ナフタレン-2-イルオキシ基、フラン-3-イルオキシ基、チオフェン-2-イルオキシ基等が挙げられる。
 炭素原子数5~11のアリールカルボニルオキシ基としては、ベンゾイルオキシ基、1-ナフトイルオキシ基、フラン-2-カルボニルオキシ基、チオフェン-3-カルボニルオキシ基等が挙げられる。
 炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基としては、トリメチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基、トリフェニルシリルオキシ基等が挙げられる。
 ハロゲン原子としては、フルオロ基、クロロ基、ブロモ基、ヨード基等が挙げられる。
 上記式[2]及び式[3]中、R8、R9は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表す。
 ここで炭素原子数1~5のアルキル基としては、分岐構造、環状構造を有していてもよく、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基等が挙げられる。
 炭素原子数1~5のハロアルキル基としては、分岐構造、環状構造を有していてもよく、フルオロメチル基、トリフルオロメチル基、ブロモジフルオロメチル基、2-クロロエチル基、2-ブロモエチル基、1,1-ジフルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、2-クロロ-1,1,2-トリフルオロエチル基、ペンタフルオロエチル基、3-ブロモプロピル基、2,2,3,3-テトラフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル基、3-ブロモ-2-メチルプロピル基、2,2,3,3-テトラフルオロシクロプロピル基、4-ブロモブチル基、パーフルオロペンチル基、パーフルオロシクロペンチル基等が挙げられる。
 炭素原子数6~10のアリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。
 上記式[3]中、Arは下記式[4]又は式[5]で表される二価の有機基を表す。
Figure JPOXMLDOC01-appb-C000012
 上記式[4]及び式[5]中、R10~R15は、それぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。
 ここで炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基、及び置換基については、前記R2、R3にて例示したものが挙げられる。
 本発明の組成物において、有機非線形光学化合物の含有量は、上記式[1]で表される構造単位を有するノルボルネンイミドポリマー100質量部に対して、通常、1~150質量部であり、好ましくは10~100質量部である。
 有機非線形光学化合物の含有量を1質量部以上とすることで十分な非線形光学効果を得やすくなり、また150質量部以下とすることで成膜しやすく、さらに材料の機械的な強度が低下しにくい。
<組成物並びにワニス>
 本発明の組成物を非線形光学材料として使用する場合、一般に薄膜の形態として使用する。前記薄膜の作製方法としては、本発明の組成物を適当な有機溶媒に溶解してワニスの形態とし、該ワニスを適当な基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金属、例えば、アルミニウム、モリブデン、クロムなどが被覆された基板、ガラス基板、石英基板、ITO基板等)やフィルム(例えば、トリアセチルセルロースフィルム、ポリエステルフィルム、アクリルフィルム等の樹脂フィルム)等の基材上に、回転塗布、流し塗布、ロール塗布、スリット塗布、スリットに続いた回転塗布、インクジェット塗布、印刷などによって塗布することによって成膜する湿式塗布法が好ましい。
 ここでワニス調製に用いられる溶媒は、前記式[1]で表される構造単位を有するノルボルネンイミドポリマー及び有機非線形光学化合物を溶解し、且つ所望により添加される後述の添加剤などを溶解するものであり、斯様な溶解能を有する溶媒であれば、その種類及び構造などは特に限定されるものでない。
 好ましい有機溶媒の例としては、テトラヒドロフラン、メチルテトラヒドロフラン、1,4-ジオキサン、ジエチレングリコールジメチルエーテル、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、酢酸エチル、シクロヘキサノール、1,2-ジクロロエタン、クロロホルム、トルエン、クロロベンゼン、キシレン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、クロロベンゼン、プロピレングリコールメチルエーテル等が挙げられる。これらの溶媒は、一種単独で、又は二種以上の組合せで使用することができる。
 これら溶媒の中でも、シクロペンタノン、1,2-ジクロロエタン、クロロホルム等が、式[1]で表される構造単位を有するノルボルネンイミドポリマーの溶解性が高く、塗膜性が良好という観点より好ましい。
 上記ワニスにおける固形分は、例えば0.5~30質量%であり、又、例えば5~30質量%である。ここで言うところの固形分とは、前記ワニスから溶媒を除いた質量を意味する。
 而して、調製されたワニスは、孔径が0.2μm程度のフィルタなどを用いて濾過した後、使用することが好ましい。
 なお、上記ワニスは、本発明の効果を損なわない限りにおいて、必要に応じて、ハイドロキノン等の酸化防止剤、ベンゾフェノン等の紫外線吸収剤、シリコーンオイル、界面活性剤等のレオロジー調整剤、シランカップリング剤等の接着補助剤、高分子マトリクスの架橋剤、相溶化剤、硬化剤、顔料、保存安定剤、消泡剤等を含有することができる。
<電気光学素子、光スイッチング素子>
 本発明の組成物は、従来提案されている種々の電気光学素子の材料として適用可能である。
 電気光学素子の代表的なものとして、マッハツェンダー型光変調器などの光スイッチング素子(光通信素子)が挙げられる。光スイッチング素子においては、本発明の組成物をガラス、プラスチック等の基材上に塗布後、光又は電子線によるリソグラフィー法、ウェット及びドライエッチング法、あるいはナノインプリント法などで加工することで、光を伝送可能な光導波路構造とする。通常組成物より屈折率の小さい材料上に塗布、積層することで光導波路構造を形成するが、この構造に限定されず他の光導波路構造にも本組成物は適用可能である。
 代表的な光スイッチング素子であるマッハツェンダー型光変調器においては、分岐した光導波路構造の両方あるいは一方に高周波電圧を印加して電気光学特性を発現させ、屈折率を変化させることで伝搬する光の位相変化を生じさせる。この位相変化によって分岐、合波後の光強度を変化させることで光の高速な変調が可能となる。
 またここでいう電気光学素子は、位相、強度変調だけに限定されず、例えば偏光変換素子や分波及び合波素子などにも使用できる。
 さらに本組成物は通信素子用途以外にも、電界の変化を屈折率の変化として検出する電界センサー等の用途にも使用できる。
<有機非線形光学材料>
 本発明において、前記組成物を用いて作製された材料(例えば薄膜)の2次の非線形光学特性を発現させるためには、ポーリング処理を必要とする。ポーリング処理とは、材料のガラス転移温度よりおよそ25℃低い温度、好ましくはおよそ10℃低い温度以上、溶融点以下の温度に材料を加熱した状態で所定電界を印加し、その電界を維持した状態で材料を冷却することで非線形光学化合物分子を配向させる操作である。この操作により材料は巨視的な非線形光学特性を発現することができる。
 本発明においても、単に組成物を薄膜化しただけでは、非線形光学化合物分子の配向はランダムとなっていることから、マトリクスである上記ノルボルネンイミドポリマーと有機非線形光学化合物とを含む組成物のガラス転移温度よりおよそ25℃低い温度、好ましくはおよそ10℃低い温度以上(上記組成物がガラス転移温度を示さない場合にはおよそ120℃以上)、溶融点以下の温度に加熱し、ポーリング処理を行い、非線形光学特性を発現させる。
 以下、実施例を挙げて、本発明を更に詳しく説明するが、本発明は、これら実施例に限定されるものでない。なお、実施例で用いた各測定装置等は以下のとおりである。
(1)GPC(ゲル浸透クロマトグラフィー)
 装置:日本分光(株)製 LC-2000
 カラム:昭和電工(株)製 Shodex(登録商標) GPC K-804L & K-805L
 溶媒:クロロホルム
 検出器:UV(254nm)
 検量線:標準ポリスチレン
(2)1H NMRスペクトル
 装置:日本電子(株)製 JNM-LA400
 溶媒:CDCl3
 内部標準:テトラメチルシラン(0.00ppm)
(3)示差走査熱量計
 装置:エスアイアイ・ナノテクノロジー(株)製 DSC6220
 測定条件:窒素雰囲気下
 昇温速度:10℃/分(30-270℃)
<ノルボルネンイミドポリマーの合成>
[合成例1]エキソ-ノルボルネン-5,6-ジカルボン酸無水物[7]の合成
Figure JPOXMLDOC01-appb-C000013
 o-ジクロロベンゼン100mLに、無水マレイン酸[東京化成工業(株)製]94.1g(0.96mol)を溶解し、173℃で、この溶液にジシクロペンタジエン[東京化成工業(株)製]63.4g(0.48mol)を滴下した。その後、この溶液を183℃で1.5時間還流し、室温まで冷却した。反応終了後、反応溶液を一晩静置して結晶を析出させ、灰色がかった白色の固形物を減圧ろ過により単離した。得られた化合物をクロロベンゼンで二度再結晶した。
 得られた化合物は、エンド体とエキソ体との混合物であり、窒素雰囲気下250℃で1時間加熱し、エンド体からエキソ体への異性化を行った。120℃まで冷却後、クロロベンゼンを加えて均一になるまで十分に撹拌した。さらに室温まで冷却することでエキソ体の結晶を析出させた。析出した白色の結晶性固体を減圧ろ過し、ヘキサンで洗浄して、60℃で真空乾燥することでエキソ-ノルボルネン-5,6-ジカルボン酸無水物を得た(得率80%)。
[合成例2]n-シクロヘキシルアミン酸[8]の合成
Figure JPOXMLDOC01-appb-C000014
 上記合成例1より得られたエキソ-ノルボルネン-5,6-ジカルボン酸無水物100g(0.61mol)をトルエン200mLに溶解した。この溶液を撹拌しながら、シクロヘキシルアミン[東京化成工業(株)製]60.9g(0.61mol)を滴下し、50℃で1時間加熱した。20分後沈殿が起き、析出する沈殿物のために溶液の粘度が向上したので、僅かにトルエンを加えた。その後、沈殿物をろ過し、過剰のトルエンで洗浄して、n-シクロヘキシルアミン酸を得た(得率72%)。
[合成例3]N-シクロヘキシル-エキソ-ノルボルネン-5,6-ジカルボキシイミド[9]の合成
Figure JPOXMLDOC01-appb-C000015
 上記合成例2で得られたn-シクロヘキシルアミン酸26.6g(0.10mol)、及び無水酢酸ナトリウム[関東化学(株)製]4.7g(57mmol)を無水酢酸[関東化学(株)製]94.3g(0.92mol)に溶解し、140℃で2時間還流した。その後、反応溶液を冷凍庫に入れて完全に固化させた。
 固形物をろ過して、過剰量のイオン交換水で洗浄した。ろ液の水層は、クロロホルムで抽出し、溶媒を留去して、ろ別した固形物と併せた。灰色がかった白色の固体を、60℃で一晩減圧乾燥し、その後白色固体になるまで数回メタノールで再結晶し、N-シクロヘキシル-エキソ-ノルボルネン-5,6-ジカルボキシイミドを得た(得率65%)。得られた化合物は、150℃で昇華性を示した。
 得られた化合物の1H NMRスペクトルを図1に示す。
[合成例4]N-シクロヘキシル-エキソ-ノルボルネン-5,6-ジカルボキシイミド[9]の重合
Figure JPOXMLDOC01-appb-C000016
 上記合成例3より得られたN-シクロヘキシル-エキソ-ノルボルネン-5,6-ジカルボキシイミド0.5g(2mmol)を、窒素雰囲気下で無水ジクロロメタン10mLに溶解し、室温で10分間撹拌した。この溶液にグラブス第1世代触媒[Aldrich社製]17mg(2.04×10-5mol)をジクロロメタン0.5mLに溶解させた溶液を少量ずつ加えた。この反応溶液を室温で1時間撹拌した。その後、重合はエチルビニルエーテル2mLを添加して停止させた。この反応混合物をメタノールに添加しポリマーを沈殿させた。ろ別した沈殿物をクロロホルム-メタノールでさらに2回再沈殿させ、60℃で一晩減圧乾燥して目的物であるノルボルネンイミドポリマーAを得た(得率94%)。
 得られたノルボルネンイミドポリマーAのGPCによるポリスチレン換算で測定される重量平均分子量Mwは28,000、多分散度Mw/Mn(数平均分子量)は1.1であった。
[合成例5]N-シクロヘキシル-エキソ-ノルボルネン-5,6-ジカルボキシイミド[9]の重合2
 グラブス第1世代触媒の使用量を2.8mg(3.39×10-6mol)に変更した以外は合成例4と同様に操作し、目的物であるノルボルネンイミドポリマーBを得た(得率90%)。
 得られたノルボルネンイミドポリマーBのGPCによるポリスチレン換算で測定される重量平均分子量Mwは147,000、多分散度Mw/Mnは1.1であった。
[参考例]非線形光学化合物の合成
 ポリマーに導入する非線形光学化合物として、下記の化合物[11]を用いた。本化合物は、X.Zhangら、Tetrahedron.lett.,51,p5823(2010)に開示される手法と同様な手法により合成した。
Figure JPOXMLDOC01-appb-C000017
[実施例1]ガラス転移温度の測定
 合成したノルボルネンイミドポリマーA及びB、並びに、該ポリマー100質量部に対し参考例に示す非線形光学化合物を50質量部混合した試料のガラス転移温度を、示差走査熱量計によって測定した。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000018
[実施例2]電気光学定数の測定
 ノルボルネンイミドポリマーA及びB 60mg並びに参考例で合成した非線形光学化合物30mgを、重クロロホルム1mL及び1,2-ジクロロエタン1mLの混合溶媒に混合し、50℃で1時間撹拌した。
 撹拌したこの溶液を孔径0.20μmのフィルタで濾過後、ITO基板上にスピンコートした。この試料を真空下でオーブンにて120℃、24時間焼成し、ポリマー薄膜とした。この上に金をスパッタリング法により100nmの厚さで成膜し、上部電極とした。
 また比較のため、市販のポリメタクリル酸メチル(PMMA)[和光純薬工業(株)製]をマトリクスポリマーとし、同様に測定試料を作製した。
 作製した試料の電気光学定数を、波長1.31μmの半導体レーザーを光源として、C.C.Tengら、Appl.Phys.Lett.56,p1734(1990)及びY.Shutoら、J.Appl.Phys.77,p4632(1995)に開示される手法と同様の手法によって測定した。表2に各試料から得られた電気光学定数r33の値を、電界配向処理を行った温度、印加電圧、試料の膜厚とともに示す。PMMAでは非線形光学化合物濃度(マトリクスポリマー及び非線形光学化合物の混合物中の非線形光学化合物の濃度)25質量%以上では非線形光学化合物の凝集により、電気光学定数の減少が見られるのに対し、ノルボルネンイミドポリマーA及びBでは非線形光学化合物濃度33質量%で大きな電気光学定数を示した。
Figure JPOXMLDOC01-appb-T000019
[実施例3]温度耐久試験
 実施例2において電気光学定数を測定した試料について温度耐久試験を行った。試料を85℃に保持し、ポーリング直後から500時間後までの電気光学定数の緩和特性を測定した。図2にノルボルネンイミドポリマーBの電気光学定数r33の初期値(r33(0))からの変化率(r33/r33(0))を時間の関数として示す。
 一般的に上記条件下では、PMMAをマトリクスポリマーとして使用した場合、数時間でほぼ保持率が0%近くまで低下することが知られているが、本発明のノルボルネンイミドポリマーBでは500時間経過後において初期値の70%が保持されている。すなわち、ノルボルネンイミドポリマーBを使用することにより、非線形光学化合物の配向緩和が大幅に抑制されていることがわかる。

Claims (9)

  1.  式[1]で表される構造単位を有するノルボルネンイミドポリマーと、有機非線形光学化合物とを含む組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、置換基を有していてもよい炭素原子数1~12のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。)
  2.  前記有機非線形光学化合物が、式[2]で表されるフラン環を有する化合物である、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R8、R9は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、●は結合手を表す。)
  3.  前記有機非線形光学化合物が、式[3]で表される化合物である、請求項2に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R2、R3は、それぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表し、R4~R7は、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数4~10のアリールオキシ基、炭素原子数5~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表し、R8、R9は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、Arは式[4]又は式[5]で表される二価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R10~R15は、それぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。)
  4.  前記有機非線形光学化合物の含有量が、前記ノルボルネンイミドポリマー100質量部に対して1~150質量部である、請求項1乃至請求項3のうち何れか一項に記載の組成物。
  5.  請求項1乃至請求項4のうち何れか一項に記載の組成物を含むワニス。
  6.  請求項5に記載のワニスから作製される薄膜。
  7.  請求項1乃至請求項4のうち何れか一項に記載の組成物を含む電気光学素子。
  8.  請求項1乃至請求項4のうち何れか一項に記載の組成物を含む光スイッチング素子。
  9.  請求項1乃至請求項4のうち何れか一項に記載の組成物を用いた有機非線形光学材料。
PCT/JP2013/063416 2012-05-14 2013-05-14 有機非線形光学化合物を含むポリマー組成物 WO2013172342A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014515635A JP6066353B2 (ja) 2012-05-14 2013-05-14 有機非線形光学化合物を含むポリマー組成物
US14/401,302 US20150133588A1 (en) 2012-05-14 2013-05-14 Polymer composition containing organic nonlinear optical compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-111048 2012-05-14
JP2012111048 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172342A1 true WO2013172342A1 (ja) 2013-11-21

Family

ID=49583747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063416 WO2013172342A1 (ja) 2012-05-14 2013-05-14 有機非線形光学化合物を含むポリマー組成物

Country Status (3)

Country Link
US (1) US20150133588A1 (ja)
JP (1) JP6066353B2 (ja)
WO (1) WO2013172342A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069925A1 (ja) * 2017-10-02 2019-04-11 国立大学法人九州大学 有機非線形光学化合物を含む架橋ポリマー組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698602B (zh) * 2021-09-22 2022-05-17 同济大学 一种二维半导体共轭高分子材料及其制备与在超快激光防护中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084323A (ja) * 2001-09-14 2003-03-19 Toshiba Corp 非線形光学材料、非線型光学材料用樹脂組成物、非線形光学材料の製造方法、およびそれを用いた光デバイス
JP2010066325A (ja) * 2008-09-08 2010-03-25 Sumitomo Electric Ind Ltd 非線形光学化合物、非線形光学材料及び非線形光学素子
JP2010139994A (ja) * 2008-12-15 2010-06-24 Kyushu Univ 機能性色素を含有する光学材料
WO2013024840A1 (ja) * 2011-08-15 2013-02-21 国立大学法人九州大学 高屈折率クラッド材料及び電気光学ポリマー光導波路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8846955B2 (en) * 2009-08-24 2014-09-30 National Institute Of Information And Communications Technology Second-order nonlinear optical compound and nonlinear optical element comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084323A (ja) * 2001-09-14 2003-03-19 Toshiba Corp 非線形光学材料、非線型光学材料用樹脂組成物、非線形光学材料の製造方法、およびそれを用いた光デバイス
JP2010066325A (ja) * 2008-09-08 2010-03-25 Sumitomo Electric Ind Ltd 非線形光学化合物、非線形光学材料及び非線形光学素子
JP2010139994A (ja) * 2008-12-15 2010-06-24 Kyushu Univ 機能性色素を含有する光学材料
WO2013024840A1 (ja) * 2011-08-15 2013-02-21 国立大学法人九州大学 高屈折率クラッド材料及び電気光学ポリマー光導波路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARMANDO PINEDA CONTRERAS ET AL.: "Synthesis of High-Tg Polymers by Ring-Opening Metathesis Polymerization of N-Cycloalkylnorbornene Dicarboximide", MACROMOL. CHEM. PHYS., vol. 203, no. 12, 30 August 2002 (2002-08-30), pages 1811 - 1818 *
FENG YU ET AL.: "An Enhanced Host-Guest Electro- Optical Polymer System Using Poly (norbornene- dicarboximdes) via ROMP", JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 51, no. 6, 15 March 2013 (2013-03-15), pages 1278 - 1284 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069925A1 (ja) * 2017-10-02 2019-04-11 国立大学法人九州大学 有機非線形光学化合物を含む架橋ポリマー組成物
JPWO2019069925A1 (ja) * 2017-10-02 2020-11-05 国立大学法人九州大学 有機非線形光学化合物を含む架橋ポリマー組成物
JP7079941B2 (ja) 2017-10-02 2022-06-03 国立大学法人九州大学 有機非線形光学化合物を含む架橋ポリマー組成物

Also Published As

Publication number Publication date
US20150133588A1 (en) 2015-05-14
JP6066353B2 (ja) 2017-01-25
JPWO2013172342A1 (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
Yuan et al. Disubstituted polyacetylenes containing photopolymerizable vinyl groups and polar ester functionality: polymer synthesis, aggregation-enhanced emission, and fluorescent pattern formation
JP6150157B2 (ja) 非線形光学活性コポリマー
KR102411032B1 (ko) 액정 표시 소자, 액정 배향막, 및 액정 배향 처리제
CN101671250A (zh) 降冰片烯单体、聚降冰片烯衍生物、含该衍生物的液晶取向膜和含该膜的液晶显示器
KR102300975B1 (ko) 지환기 도입 비선형 광학 활성 코폴리머
JP6498711B2 (ja) 液晶組成物
KR102022878B1 (ko) 광배향성을 갖는 열경화성 조성물, 경화막, 컬러 필터, 액정 표시 소자, 고체 촬상 소자, 패턴화 위상차판 및 광 디바이스
JP2015129210A (ja) ブロックカルボン酸型光配向材料
CN113544184B (zh) 膜形成用组合物、硬化膜、液晶取向膜及相位差膜
TWI701320B (zh) 液晶組成物
Liu et al. Copper-catalyzed Huisgen cycloaddition reactions used to incorporate NLO chromophores into high Tg side-chain polymers for electro-optics
TW202102556A (zh) 聚合物組成物及單層相位差材
TW202102557A (zh) 聚合物組成物及單層相位差材
JP6066353B2 (ja) 有機非線形光学化合物を含むポリマー組成物
JP5388026B2 (ja) 機能性色素を含有する光学材料
JP2014101425A (ja) 籠型シルセスキオキサン、架橋籠型シルセスキオキサン、およびそれを有する光学素子
KR20130131663A (ko) 벤질리딘 프탈이미드 단량체, 이의 제조 방법, 이를 포함하는 중합체, 이를 포함하는 광배향막 및 이를 포함하는 위상차 필름
TWI458755B (zh) 液晶配向劑、使用該液晶配向劑製造的液晶配向膜、以及含有該液晶配向膜的液晶顯示元件
JP7079941B2 (ja) 有機非線形光学化合物を含む架橋ポリマー組成物
KR20140103447A (ko) 벤질리딘 프탈이미드 단량체, 이의 제조 방법, 이를 포함하는 중합체, 이를 포함하는 광배향막 및 이를 포함하는 위상차 필름
KR20180065185A (ko) 자가-치유가 가능한 폴리실세스퀴옥산 및 이를 이용한 하이브리드 필름
JP2018087152A (ja) 重合性液晶化合物、位相差フィルム、並びに該位相差フィルムを含む偏光板及び光学ディスプレイ
WO2007100369A2 (en) Non-linear optical device material composition
WO2023145943A1 (ja) 非線形光学活性コポリマーを含む組成物
EP1751466A2 (en) Non-linear optical device material composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14401302

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13791301

Country of ref document: EP

Kind code of ref document: A1