WO2013024840A1 - 高屈折率クラッド材料及び電気光学ポリマー光導波路 - Google Patents

高屈折率クラッド材料及び電気光学ポリマー光導波路 Download PDF

Info

Publication number
WO2013024840A1
WO2013024840A1 PCT/JP2012/070627 JP2012070627W WO2013024840A1 WO 2013024840 A1 WO2013024840 A1 WO 2013024840A1 JP 2012070627 W JP2012070627 W JP 2012070627W WO 2013024840 A1 WO2013024840 A1 WO 2013024840A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
core
formula
hydrogen atom
Prior art date
Application number
PCT/JP2012/070627
Other languages
English (en)
French (fr)
Inventor
士吉 横山
和広 山本
圭 安井
小澤 雅昭
啓祐 大土井
Original Assignee
国立大学法人九州大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日産化学工業株式会社 filed Critical 国立大学法人九州大学
Priority to US14/238,965 priority Critical patent/US9594189B2/en
Priority to JP2013529017A priority patent/JP6108468B2/ja
Publication of WO2013024840A1 publication Critical patent/WO2013024840A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • G02B1/048Light guides characterised by the cladding material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3611Organic materials containing Nitrogen
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3613Organic materials containing Sulfur
    • G02F1/3614Heterocycles having S as heteroatom
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0018Electro-optical materials

Definitions

  • the present invention relates to an optical waveguide containing an organic nonlinear optical compound used for optical switches, optical information processing such as optical modulation, optical communication, and the like.
  • Nonlinear optical materials such as lithium niobate and potassium dihydrogen phosphate have been widely used as nonlinear optical materials exhibiting this effect.
  • Nonlinear optical materials have attracted attention, and studies for their practical use have been activated.
  • polymer materials having extremely high electro-optic properties compared to conventional inorganic materials are highly expected for the realization of ultra-high speed modulation devices and low power consumption device technologies.
  • These polymer materials uniformly disperse the organic nonlinear optical compound in the polymer matrix, or bind to the polymer side chain, and orient the compound molecules to develop the electro-optical characteristics.
  • the nonlinear optical compound a push-pull type compound having an electron donating property for one of the ⁇ -conjugated chains and an electron attractive property for the other is used.
  • a polymer material is applied on a substrate having an alignment film on the surface, and the substrate orientation of the alignment film is used, or a polymer material heated near or above the glass transition temperature is used.
  • An electric field poling method for aligning by applying a voltage by a corona discharge of a pair of electrodes or air is known. Among these, the electric field poling method is preferable from the viewpoint of the simplicity of the apparatus and the high degree of orientation of the nonlinear optical compound.
  • the optical waveguide required when using a nonlinear optical material in a light propagation type device is a laminated layer in which a polymer core containing a nonlinear optical compound and a cladding having a lower refractive index than the core are formed above and below or around the polymer core. Formed as a structure.
  • the electrical resistivity of the core portion tends to decrease.
  • the clad portion tends to have a relatively higher electrical resistivity than the core portion, and as a result, an efficient voltage cannot be applied to the core portion, and sufficient electro-optical characteristics cannot be exhibited.
  • Patent Document 1 reports a method of adding a polymer compound having an alkylammonium group to the clad material to reduce the resistance value of the clad part and improve the poling efficiency.
  • the inventors of the present invention incorporated a nonlinear optical compound that has been included only in the core portion so far into the cladding portion, so that the resistance value of the cladding can be reduced.
  • the inventors have found that the resistance can be made extremely lower than the resistance value, and have completed the present invention.
  • the present invention relates, as a first aspect, to a cladding material for an optical waveguide, characterized by containing a polymer compound having a triarylamine structure and a nonlinear optical compound.
  • the present invention relates to the cladding material according to the first aspect, wherein the nonlinear optical compound is a compound having a tricyano-bonded furan ring.
  • the compound which has the said tricyano bond furan ring is related with the clad material as described in a 2nd viewpoint which is a compound represented by following formula (1).
  • R 1 and R 2 each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms).
  • R 3 to R 6 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or an alkylcarbonyloxy group having 2 to 11 carbon atoms.
  • the high molecular compound containing the said triarylamine structure is related with the clad material as described in a 1st viewpoint which has a repeating unit represented by Formula (2) or Formula (3).
  • Ar 2 to Ar 4 each independently represents any divalent organic group represented by the following formulas (4) to (8),
  • Z 1 and Z 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or any monovalent organic represented by the following formulas (9) to (12)
  • R 15 to R 18 each independently represents a hydrogen atom, a carbon atom number of 1 to 5 represents an alkyl group, a hydroxyalkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or a halogen atom.
  • R 19 to R 52 each independently represents a hydrogen atom, a carbon atom number of 1 to 5 represents an alkyl group, a
  • Haloalkyl group, phenyl group, OR 77 , COR 77 , COOR 77 , or NR 77 R 78 group (in these formulas, R 77 and R 78 are each independently a hydrogen atom, an alkyl having 1 to 5 carbon atoms) Group, a hydroxyalkyl group having 1 to 5 carbon atoms, a haloalkyl group having 1 to 5 carbon atoms, or a phenyl group.)
  • the said repeating unit is related with the clad material as described in a 4th viewpoint represented by Formula (13).
  • the present invention relates to the cladding material according to the fifth aspect, wherein Z 1 is a monovalent organic group represented by the formula (9), and Z 2 is a hydrogen atom.
  • Z 1 is a monovalent organic group represented by the formula (9)
  • Z 2 is a hydrogen atom.
  • an optical waveguide comprising a core and a clad having a refractive index smaller than that of the core surrounding the entire outer periphery thereof, wherein the clad is any one of the first aspect to the sixth aspect.
  • the present invention relates to an optical waveguide made of a material.
  • the present invention relates to the optical waveguide according to the seventh aspect, wherein the core includes a nonlinear optical compound having a tricyano-bonded furan ring represented by the formula (1) or a derivative thereof.
  • R 1 and R 2 each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms).
  • R 3 to R 6 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or an alkylcarbonyloxy group having 2 to 11 carbon atoms.
  • the method for manufacturing an optical waveguide according to the eighth aspect comprising a core and a clad surrounding the core and having a smaller refractive index than the core, Forming a lower cladding using the cladding material according to any one of the first to sixth aspects; Forming a core containing a nonlinear optical compound having a tricyano-bonded furan ring represented by the formula (1) according to the eighth aspect or a derivative thereof on the lower clad; and Forming a top clad on the core using the clad material according to any one of the first aspect to the sixth aspect; Before and / or after the step of forming the upper clad, comprising a step of subjecting the nonlinear optical compound or derivative thereof contained in the core to a polarization orientation treatment,
  • the present invention relates to a method for manufacturing the optical waveguide.
  • the method for manufacturing an optical waveguide according to the eighth aspect comprising a core and a clad surrounding the core and having a refractive index smaller than that of the core, Forming a lower cladding using the cladding material according to any one of the first to sixth aspects; A resist layer that is sensitive to ultraviolet rays is formed on the lower clad, and the surface of the resist layer is irradiated and developed with ultraviolet light through a photomask to form a core mask pattern.
  • the present invention relates to a method of manufacturing a ridge type optical waveguide.
  • the eleventh aspect relates to the manufacturing method according to the ninth aspect or the tenth aspect, wherein the polarization orientation treatment is an electric field application treatment using an electrode.
  • the polarization orientation treatment is an electric field application treatment using an electrode.
  • the high molecular compound which has a repeating unit represented by Formula (2) or Formula (3).
  • Ar 2 to Ar 4 each independently represents any divalent organic group represented by the following formulas (4) to (8), In 2), Z 1 and Z 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or any monovalent organic represented by the following formulas (9) to (12) Represents a group (provided that Z 1 and Z 2 do not simultaneously become the alkyl group), and in formula (3), R 15 to R 18 each independently represents a hydrogen atom (provided that R 15 to R 18 is not a hydrogen atom at the same time.) Or represents a hydroxyalkyl group having 1 to 5 carbon atoms.) (Wherein R 19 to R 52 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an epoxy group, a carboxyl group, a hydroxy group, an alkoxy group having 1 to 5 carbon atoms, or a halogen atom) Represents an atom.) (Wherein R 53 to R 76 are
  • the present invention relates to the polymer compound according to the twelfth aspect, in which the repeating unit is represented by the formula (13). (In the formula, Z 1 and Z 2 represent the same meaning as described above.) As a fourteenth aspect, the present invention relates to the polymer compound according to the thirteenth aspect, wherein Z 1 is a monovalent organic group represented by the formula (9), and the Z 2 is a hydrogen atom.
  • the clad material of the present invention has a very low resistivity, it can be used as a clad for an optical waveguide to form an optical waveguide capable of simply and efficiently applying an electric field to the core portion.
  • FIG. 1 is a process diagram showing a manufacturing process of a ridge type optical waveguide manufactured in an example.
  • FIG. 2 is a diagram showing a conceptual diagram of the shape of the ridge type optical waveguide manufactured in the example.
  • the present invention is directed to a cladding material for an optical waveguide, which contains a polymer compound containing a triarylamine structure and a nonlinear optical compound.
  • the present invention is also directed to an optical waveguide manufactured using the cladding material and a method of manufacturing the optical waveguide.
  • the present invention will be described in more detail.
  • the polymer compound containing a triarylamine structure used in the present invention is not particularly limited, but is preferably represented by the following formula (2) or formula (3) containing a triarylamine skeleton as a branch point. It is a high molecular compound which has a repeating unit.
  • Ar 2 to Ar 4 each independently represents any divalent organic group represented by the formulas (4) to (8).
  • R 19 to R 52 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an epoxy group, a carboxyl group, a hydroxy group, or 1 to 5 represents an alkoxy group or a halogen atom.
  • the alkyl group having 1 to 5 carbon atoms may have a branched structure or a cyclic structure, and may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Examples thereof include an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, a neopentyl group, and a cyclopentyl group.
  • the alkoxy group having 1 to 5 carbon atoms may have a branched structure or a cyclic structure, and is a methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Ar 2 to Ar 4 are preferably a substituted or unsubstituted phenylene group represented by the formula (4), and particularly preferably a phenylene group in which all of R 19 to R 22 represent hydrogen atoms.
  • Z 1 and Z 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or any monovalent group represented by the following formulas (9) to (12) Represents an organic group. However, Z 1 and Z 2 do not simultaneously become the alkyl group. Examples of the alkyl group having 1 to 5 carbon atoms include the same groups as those described above for R 19 to R 52 .
  • R 53 to R 76 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, A haloalkyl group having 1 to 5 carbon atoms, a phenyl group, an OR 77 , COR 77 , COOR 77 , or NR 77 R 78 group;
  • R 77 and R 78 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, or a haloalkyl group having 1 to 5 carbon atoms.
  • alkyl group having 1 to 5 carbon atoms examples include the same groups as those described above for R 19 to R 52 .
  • the hydroxyalkyl group having 1 to 5 carbon atoms may have a branched structure or a cyclic structure, and is a hydroxymethyl group, a 2-hydroxyethyl group, a 2-hydroxypropyl group, or a 1-hydroxypropan-2-yl. Group, 2-hydroxycyclopropyl group, 4-hydroxybutyl group, 5-hydroxypentyl group, 1-hydroxycyclopentyl group and the like.
  • the haloalkyl group having 1 to 5 carbon atoms may have a branched structure or a cyclic structure, such as a fluoromethyl group, a trifluoromethyl group, a bromodifluoromethyl group, a 2-chloroethyl group, a 2-bromoethyl group, 1 , 1-difluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2, -tetrafluoroethyl group, 2-chloro-1,1,2-trifluoroethyl group, pentafluoroethyl Group, 3-bromopropyl group, 2,2,3,3-tetrafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group, 1,1,1,3,3,3- Hexafluoropropan-2-yl group, 3-bromo-2-methylpropyl group, 2,2,3,3-tetrafluorocyclopropyl
  • Z 1 and Z 2 are each independently preferably a hydrogen atom, a 2-thienyl group, a 3-thienyl group, or a substituted or unsubstituted phenyl group represented by the formula (9).
  • Z 1 and Z 2 Any one of 2 is a hydrogen atom and the other is a hydrogen atom, a 2-thienyl group, a 3-thienyl group, or a substituted or unsubstituted phenyl group represented by the formula (9), particularly any of R 53 to R 57
  • One of these is more preferably a hydroxyalkoxyphenyl group of a hydroxyalkoxy group.
  • R 15 to R 18 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, or a 1 to 5 carbon atom.
  • examples of the alkyl group having 1 to 5 carbon atoms, the alkoxy group having 1 to 5 carbon atoms, and the halogen atom include the same groups as those described above for R 19 to R 52 .
  • Examples of the hydroxyalkyl group having 1 to 5 carbon atoms are the same as those described above for R 53 to R 76 .
  • the polymer compound containing a triarylamine structure preferably has at least one repeating unit among the four structures represented by the following formula (14).
  • the high molecular compound which has a repeating unit represented by the said Formula (2) or Formula (3) ie, the high molecular compound which preferably has a repeating unit represented by the said Formula (13), and said Formula (14)
  • the high molecular compound which has at least 1 among the repeating units represented by these is also the object of this invention.
  • the polymer compound targeted by the present invention is a polymer compound having a repeating unit represented by the formula (2) or formula (3), and the polymer compound is represented by the formula (2).
  • Ar 2 to Ar 4 are each independently any divalent organic group represented by formulas (4) to (8) (formulas (4) to (8)).
  • R 19 to R 52 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an epoxy group, a carboxyl group, a hydroxy group, an alkoxy group having 1 to 5 carbon atoms, or a halogen atom.
  • Z 1 and Z 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or the above formulas (9) to (12).
  • R 53 ⁇ R 76 are each independently, Atom (provided that, R 53 ⁇ R 57, R 58 ⁇ R 64, R 65 ⁇ R 67, or R 68 ⁇ R 76 are not hydrogen atoms at the same time.), Or hydroxy having 1-5 carbon atoms
  • R 15 to R 18 are each independently a hydrogen atom (wherein R 15 to R 18 are not simultaneously hydrogen atoms), or a hydroxyalkyl having 1 to 5 carbon atoms.
  • the average molecular weight of the polymer compound containing a triarylamine structure used in the present invention is not particularly limited, but the weight average molecular weight is preferably 1,000 to 2,000,000.
  • the weight average molecular weight of the polymer compound is 1,000 or more, when used as a cladding material, the film quality when a thin film is formed can be made more uniform, and when it is 2,000,000 or less, the solvent It becomes easy to handle without significantly lowering its solubility in
  • the weight average molecular weight is more preferably 2,000 to 1,000,000.
  • the weight average molecular weight in this invention is a measured value by gel permeation chromatography (polystyrene conversion).
  • the polymer compound can be obtained by polycondensation of a triarylamine compound and an aldehyde compound under acidic conditions.
  • aldehyde compound used for the production of the polymer compound containing the triarylamine structure examples include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-methylbutyraldehyde, 3-methyl -2-Saturated aliphatic aldehydes such as butenal and hexylaldehyde; heterocyclic aldehydes such as thiophene aldehyde; benzaldehyde, tolylaldehyde, hydroxymethylbenzaldehyde, trifluoromethylbenzaldehyde, phenylbenzaldehyde, salicylaldehyde, anisaldehyde, (2 -Hydroxyethoxy) benzaldehyde, terephthalaldehyde, acetylbenzalde
  • Examples of the acid catalyst used in the production of the polymer compound include mineral acids such as sulfuric acid, phosphoric acid and perchloric acid; organic sulfonic acids such as p-toluenesulfonic acid and p-toluenesulfonic acid monohydrate; Carboxylic acids such as formic acid and oxalic acid can be used.
  • the amount of the acid catalyst used is variously selected depending on the kind thereof, but is usually 0.001 to 10,000 parts by mass, preferably 0.01 to 1,000 parts by mass with respect to 100 parts by mass of the triarylamine compound. Part, more preferably 0.1 to 100 parts by weight.
  • the above condensation reaction can be carried out without a solvent, but is usually carried out using a solvent. Any solvent that does not inhibit the reaction can be used.
  • cyclic ethers such as tetrahydrofuran (THF) and 1,4-dioxane; N, N-dimethylformamide (DMF), N, N— Amides such as dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP); Ketones such as isobutyl methyl ketone and cyclohexanone; Halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene And aromatic hydrocarbons such as benzene, toluene and xylene. These solvents can be used alone or in combination of two or more. In particular, cyclic ethers are preferred.
  • the reaction temperature during the condensation is usually 40 to 200 ° C.
  • the reaction time is variously selected depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
  • the polymer compound obtained as described above has a weight average molecular weight of usually 1,000 to 2,000,000, preferably 2,000 to 1,000,000 as described above.
  • the nonlinear optical compound used in the present invention is a ⁇ -conjugated compound having an electron-donating group at one end of the ⁇ -conjugated chain and an electron-withdrawing group at the other end, and preferably has a high molecular hyperpolarizability ⁇ .
  • the electron donating group include a dialkylamino group
  • examples of the electron withdrawing group include a cyano group, a nitro group, and a fluoroalkyl group.
  • the nonlinear optical compound used in the present invention includes a nonlinear optical compound having a tricyano-bonded furan ring, and specifically, a compound represented by the following formula (1) is preferable.
  • R 1 and R 2 each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an aryl having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may have a branched structure or a cyclic structure, and includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, n-octyl, n-decyl, 1-adamantyl, benzyl, A phenethyl group etc.
  • Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, xylyl group, and naphthyl group.
  • Examples of the substituent include amino group; hydroxy group; alkoxycarbonyl group such as methoxycarbonyl group and tert-butoxycarbonyl group; trimethylsilyloxy group, tert-butyldimethylsilyloxy group, tert-butyldiphenylsilyloxy group, and triphenylsilyl.
  • Silyloxy groups such as oxy groups; halogen atoms and the like.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or 2 to 2 carbon atoms.
  • examples of the alkyl group having 1 to 10 carbon atoms include the same ones as described above.
  • the alkoxy group having 1 to 10 carbon atoms may have a branched structure or a cyclic structure, and is a methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group.
  • the alkylcarbonyloxy group having 2 to 11 carbon atoms may have a branched structure or a cyclic structure, and may be an acetoxy group, propionyloxy group, butyryloxy group, isobutyryloxy group, cyclopropanecarbonyloxy group, penta Noyloxy, 2-methylbutanoyloxy, 3-methylbutanoyloxy, pivaloyloxy, hexanoyloxy, 3,3-dimethylbutanoyloxy, cyclopentanecarbonyloxy, heptanoyloxy, cyclohexane
  • Examples include carbonyloxy group, n-nonanoyloxy group, n-undecanoyloxy group, 1-adamantanecarbonyloxy group, phenylacetoxy group, 3-phenylpropanoyloxy group and the like.
  • Examples of the aryloxy group having 6 to 10 carbon atoms include phenoxy group, naphthalen-2-yloxy group, furan-3-yloxy group, and thiophen-2-yloxy group.
  • Examples of the arylcarbonyloxy group having 7 to 11 carbon atoms include benzoyloxy group, 1-naphthoyloxy group, furan-2-carbonyloxy group, thiophene-3-carbonyloxy group and the like.
  • silyloxy group having an alkyl group having 1 to 6 carbon atoms and / or a phenyl group examples include silyloxy groups such as a trimethylsilyloxy group, a tert-butyldimethylsilyloxy group, a tert-butyldiphenylsilyloxy group, and a triphenylsilyloxy group. Is mentioned.
  • halogen atom are the same as those described for R 19 to R 52 above.
  • R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a haloalkyl group having 1 to 5 carbon atoms, or a 6 to 10 carbon atom.
  • Examples of the alkyl group having 1 to 5 carbon atoms include the same groups as those described above for R 19 to R 52 .
  • Examples of the haloalkyl group having 1 to 5 carbon atoms include the same groups as those described above for R 53 to R 76 .
  • the aryl group having 6 to 10 carbon atoms include the same groups as those described above for R 1 and R 2 .
  • R 7 and R 8 a methyl group-methyl group, a methyl group-trifluoromethyl group, and a trifluoromethyl group-phenyl group are preferable.
  • Ar 1 represents a divalent organic group represented by the following formula (Ar 1 -a) or formula (Ar 1 -b).
  • R 9 to R 14 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms.
  • Specific examples of the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 10 carbon atoms, and the substituent include those exemplified above.
  • Non-patent Document 1 Chem. Mater. 2001, 13, 3043-3050.
  • the molecular hyperpolarizability ⁇ can be further increased by converting the dialkylanilino site, which is an electron donating group in the above structure, into various structures (Non-Patent Document 2: J. Polym. Sci. Part). A. 2011, Vol. 49, p47).
  • the blending ratio of the polymer compound containing a triarylamine structure and the nonlinear optical compound is appropriately adjusted so as to have a resistance value lower than the resistance value of the core described later.
  • the compounding amount of the nonlinear optical compound is 0.1 to 50 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the molecular compound.
  • a crosslinking agent, a surfactant, a leveling agent, an antioxidant, a light stabilizer and the like can be blended within a range that does not affect the performance of the optical waveguide as a clad material.
  • isocyanates including blocked isocyanates.
  • general-purpose isocyanates for example, Coronate (registered trademark) 2507, 2513, AP staple (manufactured by Nippon Polyurethane Industry Co., Ltd.), Takenate (registered trademark) B-882N, B-830, B -815N, B-842N, B-846N, B-870N, B-874N (Mitsui Chemicals, Inc.), Barnock (registered trademark) D-500, D-550, B3- 867 (above, manufactured by DIC Corporation), Duranate (registered trademark) MF-B60X, MF-K60X (above, manufactured by Asahi Kasei Chemicals Corporation), Elastron (registered trademark) BN-P17, BN-04, BN-08, BN-44, BN-45 (above, manufactured by Daiichi Kogy
  • the optical waveguide of the present invention is an optical waveguide comprising a core and a clad having a refractive index smaller than that of the core surrounding the entire outer periphery, wherein the clad includes the above-described triarylamine structure and a nonlinear optical compound It is formed from the clad material containing these.
  • the core may be formed of a material having a refractive index larger than that of the formed cladding.
  • the core preferably contains an organic nonlinear optical compound exhibiting a second-order nonlinear optical effect in a form dispersed in a polymer matrix or in a form bound to a side chain of the polymer compound.
  • the organic nonlinear optical compound is preferably a nonlinear optical compound having a tricyano-bonded furan ring represented by the formula (1), for example.
  • the nonlinear optical compound When the nonlinear optical compound is dispersed in the polymer matrix, the nonlinear optical compound needs to be uniformly dispersed at a high concentration in the matrix. Therefore, the polymer matrix has high compatibility with the nonlinear optical compound. It is preferable to show. In view of being used as a core of an optical waveguide, it is preferable to have excellent transparency and moldability.
  • a polymer matrix material include resins such as polymethyl methacrylate, polycarbonate, polystyrene, silicone resin, epoxy resin, polysulfone, polyethersulfone, and polyimide.
  • a method for dispersing in a polymer matrix there is a method in which a nonlinear optical compound and a matrix material are dissolved in an organic solvent or the like at an appropriate ratio, and applied to a substrate and dried to form a thin film.
  • the side chain of the polymer compound when the nonlinear optical compound is bonded to the side chain of the polymer compound, the side chain of the polymer compound must have a functional group capable of forming a covalent bond with the nonlinear optical compound,
  • Such functional groups include isocyanate groups, hydroxy groups, carboxyl groups, epoxy groups, amino groups, allyl halide groups, acyl halide groups, and the like. These functional groups can form a covalent bond with a hydroxy group or the like of a nonlinear optical compound having a tricyano-bonded furan ring represented by the above formula (1).
  • the core is bonded to the unit structure of the polymer matrix and the nonlinear polymer compound in order to adjust the content of the nonlinear optical compound.
  • the unit structure of the polymer compound may be in the form of copolymerization.
  • the blending ratio of the nonlinear optical compound in the core is appropriately adjusted in order to increase the electro-optical characteristics.
  • the blending amount of the nonlinear optical compound is 1 to 1,000 masses per 100 parts by mass of the polymer compound. Part, more preferably 10 to 100 parts by weight.
  • the optical waveguide of the present invention is Forming a lower cladding using the aforementioned cladding material; Forming a core containing a nonlinear optical compound having a tricyano-bonded furan ring represented by the formula (1) or a derivative thereof on the lower clad; and Forming an upper clad on the core using the clad material described above, Before and / or after the step of forming the upper cladding, the nonlinear optical compound or its derivative contained in the core is manufactured by polarization orientation treatment.
  • the step (3) is carried out following the step (1) without going through the step (2).
  • a thin film to be a lower clad is formed using the clad material.
  • the above clad material is appropriately dissolved or dispersed in an organic solvent to form a varnish (film forming material), which is spin coated, blade coated, dip coated, roll coated, bar coated And a method of coating and drying on an appropriate substrate using a coating method such as a die coating method, an ink jet method, and a printing method (such as relief printing, relief printing, flat plate, and screen printing).
  • a coating method such as a die coating method, an ink jet method, and a printing method (such as relief printing, relief printing, flat plate, and screen printing).
  • the spin coating method is preferable.
  • the method for drying the solvent is not particularly limited.
  • the solvent may be evaporated in a suitable atmosphere, that is, in an inert gas such as air or nitrogen, in a vacuum, or the like using a hot plate or an oven. Thereby, a thin film having a uniform film formation surface can be obtained.
  • the drying temperature is not particularly limited as long as the solvent can be evaporated, but the drying temperature is preferably 40 to 250 ° C.
  • the organic solvent used for the film forming material is not particularly limited as long as it can dissolve and disperse the clad material.
  • organic solvents include aromatic hydrocarbons such as toluene, p-xylene, o-xylene, m-xylene, ethylbenzene and styrene; aliphatic hydrocarbons such as n-hexane and n-heptane.
  • Halogenated hydrocarbons such as chlorobenzene, orthodichlorobenzene, chloroform, dichloromethane, dibromomethane, 1,2-dichloroethane; acetone, ethyl methyl ketone, isopropyl methyl ketone, isobutyl methyl ketone, butyl methyl ketone, diacetone alcohol, diethyl Ketones such as ketone, cyclopentanone, cyclohexanone; esters such as ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, ethyl lactate, ⁇ -butyrolactone; N, N-dimethylformamide, N, N-dimethyl Amides such as cetamide, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone; methanol, ethanol, propanol,
  • the substrate for forming the lower clad is not particularly limited, but a substrate having excellent flatness is preferable.
  • a metal substrate, a silicon substrate, a transparent substrate, etc. are mentioned, It can select suitably by the form of an optical waveguide.
  • the metal substrate include gold, silver, copper, platinum, aluminum, chromium, and the like
  • the transparent substrate include substrates such as glass and plastic (polyethylene terephthalate).
  • a known electrode can be used as the electrode.
  • the lower electrode may be a metal vapor deposition layer or a transparent electrode layer.
  • Preferred examples of the metal to be deposited include gold, silver, copper, platinum, aluminum, and chromium.
  • preferable examples of the transparent electrode layer include indium tin oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide, and the like.
  • a resist layer that is sensitive to ultraviolet rays is formed on the lower clad, and a mask pattern of the core is formed on the surface of the resist layer by a photolithography method in which ultraviolet light is irradiated and developed through a photomask.
  • the resist layer is not particularly limited as long as it is a material capable of exposing and developing a micropattern by the photolithography method, and the solvent used in the process does not elute the lower clad, but it is a positive type or a negative type. Photoresist materials are preferred. A mercury lamp, KrF laser, ArF laser or the like is used as a light source for pattern formation.
  • the core pattern is transferred to the lower clad by dry etching using a gas using the mask pattern of the core of the resist layer as a mask.
  • dry etching reactive ion etching using a gas species appropriately selected from the etching characteristics of the resist and the lower cladding, usually CHF 3 , O 2 , Ar, CF 4, etc. is preferably used.
  • the resist layer used for the mask is removed with a solvent.
  • a core including a nonlinear optical compound having a tricyano-bonded furan ring represented by the formula (1) or a derivative thereof is formed on the lower clad on which the core pattern is formed.
  • the nonlinear optical compound having a tricyano-bonded furan ring represented by the formula (1) and the polymer matrix material are mixed in an appropriate organic solvent at an appropriate ratio.
  • a method of forming a thin film by dissolving and forming a varnish form on a substrate, or having a derivative of a nonlinear optical compound having a tricyano-bonded furan ring represented by the above formula (1) in the side chain A method of forming a thin film by dissolving a polymer compound in a suitable organic solvent to form a varnish and coating and drying on a substrate can be mentioned.
  • the varnish application method drying conditions, and organic solvent, those mentioned in the above-mentioned ⁇ (1) Step of forming lower clad> can be used. Note that an organic solvent that does not dissolve the lower clad is selected so that the lower clad is not eluted when the core is formed.
  • the polarization alignment treatment is performed by an electric field poling method in which an electric field is applied to the nonlinear optical compound contained in the core.
  • the polarization alignment treatment is performed at a temperature near or above the glass transition temperature of the core, and the polarization of the nonlinear optical compound is aligned in the electric field application direction by applying an electric field, and the alignment is maintained even after the temperature is returned to room temperature.
  • electro-optical characteristics can be imparted to the core and the optical waveguide.
  • an electric field a method of applying a DC voltage between electrodes arranged above and below the laminated structure or a method using corona discharge to the core surface is used. Is preferred.
  • the apparatus and conditions used for sample preparation and physical property analysis are as follows.
  • GPC gel permeation chromatography
  • Equipment HLC-8220GPC manufactured by Tosoh Corporation Column: Showa Denko KF-804L + KF-805L Column temperature: 40 ° C
  • Solvent tetrahydrofuran (THF)
  • Detector RI
  • 1 H NMR spectrum apparatus JNM-ECA700 manufactured by JEOL Ltd.
  • Solvent CDCl 3 Internal standard: Tetramethylsilane (3) Differential scanning calorimeter Device: DSC 204F1 Phoenix (registered trademark) manufactured by NETZSCH Temperature increase rate: 30 ° C / min Measurement temperature: 25-300 ° C (4) Spin coater: MS-A100 manufactured by Mikasa Co., Ltd. (5) Hot plate device: ND-2 manufactured by AS ONE Corporation (6) Refractive index device: Multi-angle of incidence spectroscopic ellipsometer VASE manufactured by JA Woollam Japan (7) Resistivity Power supply: HSA4052 manufactured by NF Circuit Design Block Co., Ltd. Measuring device: 8340A type digital super high resistance / micro ammeter manufactured by ADC Co., Ltd.
  • Example 1 Synthesis of polymer compound (1) having triarylamine structure Triphenylamine [manufactured by Tokyo Chemical Industry Co., Ltd.] 8.52 g (34.7 mmol) in a 100 mL reaction flask in a nitrogen atmosphere, 4- (2-hydroxyethoxy) benzaldehyde [manufactured by Tokyo Chemical Industry Co., Ltd.] 11.54 g (69.5 mmol), p-toluenesulfonic acid monohydrate [manufactured by Junsei Chemical Co., Ltd.] 1.32 g (6.95 mmol) And 20 g of 1,4-dioxane was added and dissolved.
  • the temperature was raised to 85 ° C., and stirring was performed to initiate polymerization. After reacting for 5 hours and 30 minutes, the solution was cooled to room temperature, and 60 g of tetrahydrofuran and 4.72 g (77.7 mmol) of 28 mass% ammonia aqueous solution were added and stirred. This reaction solution was dropped into 500 g of methanol to perform reprecipitation. The deposited pale yellow solid was vacuum-dried, dissolved in 67 g of tetrahydrofuran, and re-precipitated by dropping it into a mixed solution of 4.72 g of 28% by mass aqueous ammonia, 450 g of methanol, and 50 g of ion-exchanged water.
  • the obtained colorless solid was dried to obtain 6.88 g of a polymer compound (1) having a repeating unit of the following [A].
  • the polymer compound (1) had a weight average molecular weight Mw measured in terms of polystyrene by GPC of 32,800, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 3.70.
  • Example 2 Synthesis of polymer compound (2) having triarylamine structure Triphenylamine [manufactured by Tokyo Chemical Industry Co., Ltd.] 10.0 g (40.8 mmol), 3- (2-hydroxyethoxy) benzaldehyde [manufactured by Tokyo Chemical Industry Co., Ltd.] 13.6 g (81.5 mmol), p-toluenesulfonic acid monohydrate [manufactured by Junsei Chemical Co., Ltd.] 0.78 g (4.08 mmol) And 24 g of 1,4-dioxane was added and dissolved. The temperature was raised to 85 ° C., and stirring was performed to initiate polymerization.
  • the obtained colorless solid was dried to obtain 7.90 g of a polymer compound (2) having a repeating unit of the following [B].
  • the polymer compound (2) had a weight average molecular weight Mw measured in terms of polystyrene by GPC of 17,000 and a dispersity: Mw / Mn of 2.54.
  • the temperature was raised to 85 ° C., and stirring was performed to initiate polymerization. After reacting for 3 hours and 30 minutes, the solution was cooled to room temperature, and 63 g of tetrahydrofuran and 1.49 g (24.5 mmol) of 28 mass% ammonia aqueous solution were added and stirred. This reaction solution was dropped into 400 g of methanol to perform reprecipitation. The deposited pale yellow solid was vacuum-dried, dissolved in 63 g of tetrahydrofuran, and dropped into a mixed solution of 1.49 g of 28 mass% ammonia aqueous solution, 400 g of methanol, and 100 g of ion-exchanged water for reprecipitation.
  • the obtained colorless solid was dried to obtain 5.58 g of a polymer compound (3) having the following two repeating units [C].
  • the polymer compound (3) had a weight average molecular weight Mw of 12,600 and a dispersity: Mw / Mn of 2.10.
  • the temperature was raised to 85 ° C., and stirring was performed to initiate polymerization. After reacting for 70 minutes, the solution was cooled to room temperature, 120 g of tetrahydrofuran, and 8.95 g (147 mmol) of 28 mass% aqueous ammonia solution were added and stirred. This reaction solution was added dropwise to 560 g of methanol to perform reprecipitation. The precipitated pale yellow solid was vacuum-dried, dissolved in 220 g of tetrahydrofuran, and dropped into a mixed solution of 28% by mass ammonia aqueous solution 8.95 g, methanol 400 g, and ion-exchanged water 200 g for reprecipitation.
  • the obtained colorless solid was dried to obtain 17.6 g of a polymer compound (4) having the following two repeating units [D].
  • the polymer compound (4) had a weight average molecular weight Mw of 28,000 and a dispersity: Mw / Mn of 4.14 as measured by polystyrene conversion by GPC.
  • the mixture was stirred at 70 ° C. for 8 hours and allowed to cool to room temperature.
  • the reaction solution was diluted by adding 43 g of tetrahydrofuran, this solution was added dropwise to 930 g of methanol to perform reprecipitation, and the resulting pale yellow solid was collected by filtration. This was dissolved again in 140 g of tetrahydrofuran, and added dropwise to 900 g of methanol for reprecipitation.
  • the obtained pale yellow solid was vacuum-dried at 40 ° C. for 6 hours to obtain 23.4 g of a polymer compound (5) having the following two repeating units [E].
  • the polymer compound (5) had a weight average molecular weight Mw of 22,400 and a degree of dispersion: Mw / Mn of 3.18, as measured by GPC based on polystyrene.
  • the temperature was raised to 85 ° C., and stirring was performed to initiate polymerization. After reacting for 3 hours, the solution was cooled to room temperature, and 60 g of tetrahydrofuran and 2.98 g (49.2 mmol) of 28 mass% aqueous ammonia solution were added and stirred. This reaction solution was added dropwise to 440 g of methanol to perform reprecipitation. The precipitated pale yellow solid was vacuum-dried, dissolved in 60 g of THF, and re-precipitated by adding dropwise to a mixed solution of 2.98 g of 28% by mass aqueous ammonia, 400 g of methanol, and 100 g of ion-exchanged water.
  • This polymer compound (6) had a weight average molecular weight Mw measured in terms of polystyrene by GPC of 63,000, and a degree of dispersion: Mw / Mn was 9.34.
  • Example 5 ⁇ Crack resistance of polymer compound having triarylamine structure>
  • the polymer compound (1) obtained in Example 1 was dissolved in cyclohexanone so as to be 20% by mass, and 2,4-tolylene diisocyanate so as to be 10% by mass with respect to the polymer compound (1). [Tokyo Chemical Industry Co., Ltd.] was added. A film was formed on a glass substrate by a spin coating method, and was cured by heat treatment at 150 ° C. for 10 minutes. The film thickness of the obtained film was 2.39 ⁇ m. When observed under a microscope, it was confirmed that a uniform film without cracks was obtained.
  • Example 6 The polymer compound (2) obtained in Example 2 was dissolved in cyclohexanone so as to be 20% by mass, and 2,4-tolylene diisocyanate so as to be 10% by mass with respect to the polymer compound (2). [Tokyo Chemical Industry Co., Ltd.] was added. A film was formed on a glass substrate by a spin coating method, and was cured by heat treatment at 150 ° C. for 10 minutes. The film thickness of the obtained film was 3.00 ⁇ m. When observed under a microscope, it was confirmed that a uniform film without cracks was obtained.
  • Example 7 The polymer compound (3) obtained in Example 3 was dissolved in cyclohexanone so as to be 20% by mass. This solution was formed on a glass substrate by spin coating and dried at 150 ° C. for 10 minutes. The film thickness of the obtained film was 2.51 ⁇ m. When observed under a microscope, it was confirmed that a uniform film without cracks was obtained.
  • Example 8 The polymer compound (4) obtained in Example 4 was dissolved in cyclohexanone so as to be 20% by mass. This solution was formed on a glass substrate by spin coating and dried at 150 ° C. for 10 minutes. The film thickness of the obtained film was 2.28 ⁇ m. When observed under a microscope, it was confirmed that a uniform film without cracks was obtained.
  • Comparative Example 1 The polymer compound (5) obtained in Comparative Synthesis Example 1 was dissolved in propylene glycol monomethyl ether acetate so as to be 30% by mass. This solution was formed on a glass substrate by spin coating and dried at 150 ° C. for 10 minutes. The film thickness of the obtained film was 4.81 ⁇ m. When observed under a microscope, the occurrence of cracks was confirmed.
  • Comparative Example 2 The polymer compound (6) obtained in Comparative Synthesis Example 2 was dissolved in cyclohexanone so as to be 20% by mass. This solution was formed on a glass substrate by spin coating and dried at 150 ° C. for 10 minutes. The film thickness obtained was 2.37 ⁇ m. When observed under a microscope, the occurrence of cracks was confirmed.
  • Example 9 ⁇ Measurement of resistance value of clad material> 0.51 g of the polymer compound (1) having a triarylamine structure obtained in Example 1 and 0.06 g of a blocked isocyanate [manufactured by Asahi Kasei Chemicals Corporation, Duranate (registered trademark) MF-K60X] were added to cyclopentanone 2 0.03 g of the nonlinear optical compound synthesized in Synthesis Example 1 was mixed with the solution dissolved in .4 g and stirred.
  • a blocked isocyanate manufactured by Asahi Kasei Chemicals Corporation, Duranate (registered trademark) MF-K60X
  • This solution was filtered through a filter having a pore size of 0.20 ⁇ m, and then spin-coated on an ITO glass substrate (film thickness 150 nm, surface resistance 10 ⁇ / ⁇ : manufactured by Mitani Vacuum Industries, Ltd.). Thereafter, it was heated on a hot plate at 150 ° C. for 30 minutes, and dried and crosslinked. The obtained cured film had a thickness of 1.7 ⁇ m.
  • gold was deposited as a top electrode with a thickness of 100 nm by a sputtering method to obtain a resistance measurement sample (1).
  • Example 3 A sample for resistance value measurement (2) was prepared in the same manner as in Example 9 except that the nonlinear optical compound was not blended. The obtained cured film had a thickness of 1.7 ⁇ m.
  • Example 10 Production of clad / core laminated film 0.51 g of polymer compound (1) having a triarylamine structure obtained in Example 1 and blocked isocyanate [Duranate (registered trademark) manufactured by Asahi Kasei Chemicals Corporation] MF-K60X] 0.06 g dissolved in cyclopentanone 2.4 g was mixed with 0.03 g of the nonlinear optical compound synthesized in Synthesis Example 1 and stirred. This solution was filtered through a filter having a pore size of 0.20 ⁇ m and spin-coated on an ITO glass substrate. Thereafter, it was heated on a hot plate at 150 ° C. for 30 minutes, dried and crosslinked to form a clad.
  • the electro-optic constant in this clad / core laminated film is determined using a semiconductor laser having a wavelength of 1.31 ⁇ m as a light source.
  • a semiconductor laser having a wavelength of 1.31 ⁇ m as a light source.
  • r1 is an actual electro-optic constant obtained in the clad / core laminated structure
  • r2 is a thickness of a clad containing a nonlinear optical compound and a polymer compound (1) having a triarylamine structure.
  • ridge type optical waveguide device was manufactured by the manufacturing process shown in FIG. First, a 5 nm chromium layer and then a 100 nm gold layer were formed on the silicon substrate 1 by vacuum deposition to form the lower electrode 2 (FIG. 1: (a)). On the lower electrode 2, the lower clad 3 was formed using the material used for the clad formation in the above ⁇ Measurement of electro-optic constant>.
  • Example 1 0.51 g of the polymer compound (1) having a triarylamine structure obtained in Example 1 and 0.06 g of blocked isocyanate [manufactured by Asahi Kasei Chemicals Corporation, Duranate (registered trademark) MF-K60X] were added to cyclopenta 0.03 g of the nonlinear optical compound synthesized in Synthesis Example 1 is mixed with the solution dissolved in 2.4 g of non-mixed material and stirred. This solution is filtered through a filter having a pore size of 0.20 ⁇ m, and then spin-coated on the lower electrode 2. did. Thereafter, the mixture was heated on a hot plate at 150 ° C.
  • FIG. 1: (a) Photoresist 4 [manufactured by Nippon Zeon Co., Ltd., ZPN1150-90] is formed on the clad 3 (FIG. 1: (b)), and exposed and developed through a 4 ⁇ m-wide linear mask to develop a ridge-type lead. A waveguide pattern was formed (FIG. 1: (c)). Using this resist pattern as a mask, the pattern was transferred to the lower cladding 3 by reactive ion etching using CHF 3 gas. The height of the ridge (indicated by H in the figure) at this time was about 500 nm (FIG. 1: (d)).
  • the core is formed on the upper part using the material used for forming the core in the above ⁇ Measurement of electro-optic constant>. 5 was formed. That is, a solution obtained by dissolving 0.45 g of the polymer having the repeating unit shown in [H] obtained in Synthesis Example 2 in 2.6 g of cyclopentanone was spin-coated, and dried at 80 ° C. under reduced pressure for 6 hours. The core 5 was produced (FIG. 1: (f)). Furthermore, the upper clad 6 was formed on the core 5 with the same material and method as the lower clad 3 (FIG.
  • a photoresist solvent acetone / ethanol mixed solvent
  • the shape of the produced optical waveguide 8 (core / cladding) is shown in FIG.
  • the lower electrode 2 and the upper electrode 7 are omitted.
  • D1, D2, and D3 indicate the thickness of the lower cladding, the thickness of the core, and the thickness of the upper cladding, respectively
  • H indicates the height of the ridge portion
  • W indicates the waveguide width.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

【課題】十分な配向特性を有し、電気光学素子製造に適するべく製造工程が簡便であり、しかも大きな電気光学特性により消費電力の低減化が可能であり、さらに薄膜化・積層化が可能な光導波路並びにその材料を提供すること。 【解決手段】トリアリールアミン構造を含む高分子化合物と非線形光学化合物とを含有することを特徴とする、光導波路のクラッド材料並びに該クラッド材料を用いて作製した光導波路。

Description

高屈折率クラッド材料及び電気光学ポリマー光導波路
 本発明は、光スイッチ、光変調などの光情報処理、光通信などに用いられる有機非線形光学化合物を含む光導波路に関するものである。
 光変調器、光スイッチなどのデバイスは、非線形光学効果、中でも電界によって屈折率が変化する電気光学効果を利用したものである。従来、この効果を示す非線形光学材料として、ニオブ酸リチウム、リン酸二水素カリウム等の無機材料が広く用いられてきたが、より高度な非線形光学性能及び製造コスト低減等の要求を満たすため、有機非線形光学材料が注目を集め、その実用化に向けた検討が活発化してきている。
 特に従来の無機材料に比べ極めて高い電気光学特性を有する高分子材料の開発は、超高速変調デバイスの実現や低消費電力デバイス技術に向けた期待が高まっている。これらの高分子材料は、有機非線形光学化合物を高分子マトリクスに均一に分散、あるいは高分子側鎖に結合させ、化合物分子を配向させて電気光学特性を発現させる。非線形光学化合物はπ共役鎖の一方に電子供与性、他方に電子吸引性のプッシュ・プル型の化合物が用いられる。
 その手法としては、配向膜を表面に有する基板上に高分子材料を塗布し、配向膜の基板配向性を利用する方法、あるいは、ガラス転移温度付近又はそれ以上に加熱した状態の高分子材料を、一対の電極又は空気のコロナ放電による電圧印加によって配向させる電界ポーリング法などが知られている。このうち、電界ポーリング法は、装置の簡便さ、非線形光学化合物の配向度合いの高さの観点から好ましい。
 非線形光学材料を光伝搬型デバイスで用いる際に必要な光導波路は、非線形光学化合物を含む高分子コア部と、その上下或いは周囲に、コア部よりも屈折率の低いクラッド部が形成された積層構造として形成される。コア部に含まれる非線形光学化合物の非線形性能が高くなればなるほど、コア部の電気抵抗率は低くなる傾向にある。これにより、クラッド部はコア部よりも相対的に電気抵抗率が高くなりやすく、この結果、コア部に効率的な電圧印可ができず、十分な電気光学特性が発現できない。
 この問題を解決するため、特許文献1には、クラッド材料にアルキルアンモニウム基を有する高分子化合物を添加することにより、クラッド部の抵抗値を低下させ、ポーリング効率を向上させる方法が報告されている。
特許第3477863号明細書
 上述に提案された方法では、依然として十分な配向特性が得られていなかった。また、電気光学素子製造に適するべく製造工程が簡便であり、しかも素子の消費電力低減化に寄与する大きな電気光学特性が得られ、薄膜化・積層化が可能である高分子クラッド材料、並びにそれを用いた光導波路の開発が望まれていた。
 本発明者らは上記目的を達成するため、鋭意検討を重ねた結果、これまでコア部のみに含まれていた非線形光学化合物をクラッド部にも配合することにより、クラッドの抵抗値をコア部の抵抗値に比べて極めて低くすることができることを見出し、本発明を完成させた。
 すなわち本発明は、第1観点として、トリアリールアミン構造を含む高分子化合物と非線形光学化合物とを含有することを特徴とする、光導波路のクラッド材料に関する。
 第2観点として、前記非線形光学化合物が、トリシアノ結合フラン環を有する化合物である、第1観点に記載のクラッド材料に関する。
 第3観点として、前記トリシアノ結合フラン環を有する化合物が、下記式(1)で表される化合物である、第2観点に記載のクラッド材料に関する。
Figure JPOXMLDOC01-appb-C000013
(式中、R、Rは、それぞれ独立して、水素原子、置換基を有していても良い炭素原子数1~10のアルキル基、又は炭素原子数6~10のアリール基を表し、R~Rは、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数6~10のアリールオキシ基、炭素原子数7~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表し、R、Rは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、Arは下記式(Ar-a)又は式(Ar-b)で表される二価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000014
(式中、R~R14は、それぞれ独立して、水素原子、置換基を有していても良い炭素原子数1~10のアルキル基、又は炭素原子数6~10のアリール基を表す。)
 第4観点として、前記トリアリールアミン構造を含む高分子化合物が、式(2)又は式(3)で表される繰り返し単位を有する、第1観点に記載のクラッド材料に関する。
Figure JPOXMLDOC01-appb-C000015
(式(2)及び式(3)中、Ar~Arは、それぞれ独立して、下記式(4)~(8)で表される何れかの二価の有機基を表し、式(2)中、Z及びZは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、又は下記式(9)~(12)で表される何れかの一価の有機基を表し(ただし、Z及びZが同時に前記アルキル基となることはない。)、式(3)中、R15~R18は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のヒドロキシアルキル基、炭素原子数1~5のアルコキシ基、又はハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000016
(式中、R19~R52は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、エポキシ基、カルボキシル基、ヒドロキシ基、炭素原子数1~5のアルコキシ基、又はハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000017
(式中、R53~R76は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5のアルキル基、炭素原子数1~5のヒドロキシアルキル基、炭素原子数1~5のハロアルキル基、フェニル基、OR77、COR77、COOR77、又はNR7778基(これらの式中、R77及びR78は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のヒドロキシアルキル基、炭素原子数1~5のハロアルキル基、又はフェニル基を表す。)を表す。)
 第5観点として、前記繰り返し単位が式(13)で表される、第4観点に記載のクラッド材料に関する。
Figure JPOXMLDOC01-appb-C000018
(式中、Z及びZは、前記と同じ意味を表す。)
 第6観点として、前記Zが、前記式(9)で表される一価の有機基であり、前記Zが水素原子である、第5観点に記載のクラッド材料に関する。
 第7観点として、コアと、その外周全体を取り囲む前記コアよりも屈折率の小さいクラッドからなる光導波路であって、前記クラッドが第1観点乃至第6観点のうち何れか一項に記載のクラッド材料より形成されてなる、光導波路に関する。
 第8観点として、前記コアが、式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物又はその誘導体を含む、第7観点に記載の光導波路に関する。
Figure JPOXMLDOC01-appb-C000019
(式中、R、Rは、それぞれ独立して、水素原子、置換基を有していても良い炭素原子数1~10のアルキル基、又は炭素原子数6~10のアリール基を表し、R~Rは、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数6~10のアリールオキシ基、炭素原子数7~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表し、R、Rは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、Arは下記式(Ar-a)又は式(Ar-b)で表される二価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000020
(式中、R~R14は、それぞれ独立して、水素原子、置換基を有していても良い炭素原子数1~10のアルキル基、又は炭素原子数6~10のアリール基を表す。)
 第9観点として、コアと、前記コアの周囲を取り囲み前記コアより屈折率の小さいクラッドとを有する第8観点に記載の光導波路の製造方法であって、
下部クラッドを第1観点乃至第6観点のうち何れか一項に記載のクラッド材料を用いて形成する工程、
前記下部クラッド上に第8観点に記載の式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物又はその誘導体を含むコアを形成する工程、及び、
前記コア上に第1観点乃至第6観点のうち何れか一項に記載のクラッド材料を用いて上部クラッドを形成する工程を含み、
上部クラッドを形成する工程の前及び/又は後に、前記コアに含まれる非線形光学化合物又はその誘導体を分極配向処理する工程を含む、
該光導波路を製造する方法に関する。
 第10観点として、コアと、前記コアの周囲を取り囲み前記コアより屈折率の小さいクラッドとを有する第8観点に記載の光導波路の製造方法であって、
下部クラッドを第1観点乃至第6観点のうち何れか一項に記載のクラッド材料を用いて形成する工程、
前記下部クラッド上に、紫外線に対し感光性を有するレジスト層を形成し、前記レジスト層の表面に、フォトマスクを介して紫外光を照射・現像して、コアのマスクパターンを形成し、該マスクパターンをマスクとして前記下部クラッドにコアパターンを転写し、レジスト層を除去する工程、
下部クラッド上に第8観点に記載の式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物又はその誘導体を含むコアを形成する工程、及び、
前記コア上に第1観点乃至第6観点のうち何れか一項に記載のクラッド材料を用いて上部クラッドを形成する工程を含み、
上部クラッドを形成する工程の前及び/又は後に、前記コアに含まれる非線形光学化合物又はその誘導体を分極配向処理する工程を含む、
リッジ型光導波路を製造する方法に関する。
 第11観点として、前記分極配向処理が、電極による電界印加処理であることを特徴とする、第9観点又は第10観点に記載の製造方法に関する。
 第12観点として、式(2)又は式(3)で表される繰り返し単位を有する高分子化合物に関する。
Figure JPOXMLDOC01-appb-C000021
(式(2)及び式(3)中、Ar~Arは、それぞれ独立して、下記式(4)~(8)で表される何れかの二価の有機基を表し、式(2)中、Z及びZは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、又は下記式(9)~(12)で表される何れかの一価の有機基を表し(ただし、Z及びZが同時に前記アルキル基となることはない。)、式(3)中、R15~R18は、それぞれ独立して、水素原子(ただし、R15~R18が同時に水素原子となることはない。)、又は炭素原子数1~5のヒドロキシアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000022
(式中、R19~R52は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、エポキシ基、カルボキシル基、ヒドロキシ基、炭素原子数1~5のアルコキシ基、又はハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000023
(式中、R53~R76は、それぞれ独立して、水素原子(ただし、R53~R57、R58~R64、R65~R67、又はR68~R76が同時に水素原子となることはない。)、又は炭素原子数1~5のヒドロキシアルキル基、OR77、COR77、COOR77、又はNR7778基(これらの式中、R77及びR78は、それぞれ独立して、水素原子(ただし、R77及びR78が同時に水素原子となることはない。)、又は炭素原子数1~5のヒドロキシアルキル基を表す。)を表す。)
 第13観点として、前記繰り返し単位が式(13)で表される、第12観点に記載の高分子化合物に関する。
Figure JPOXMLDOC01-appb-C000024
(式中、Z及びZは、前記と同じ意味を表す。)
 第14観点として、前記Zが、前記式(9)で表される一価の有機基であり、前記Zが水素原子である、第13観点に記載の高分子化合物に関する。
 本発明のクラッド材料は、非常に低い抵抗率を有することから、光導波路のクラッドとして用いることにより、コア部への簡便かつ効率的な電場印加が可能な光導波路を形成することができる。
図1は、実施例において製造したリッジ型光導波路の作製プロセスを示す工程図を示す図である。 図2は、実施例において製造したリッジ型光導波路形状の概念図を示す図である。
 本発明は、トリアリールアミン構造を含む高分子化合物と非線形光学化合物とを含有することを特徴とする、光導波路のクラッド材料を対象とする。また本発明は前記クラッド材料を用いて作製した光導波路、並びに該光導波路を製造する方法を対象とする。
 以下、本発明についてさらに詳しく説明する。
[クラッド材料]
<トリアリールアミン構造を含む高分子化合物>
 本発明において用いられる、トリアリールアミン構造を含む高分子化合物は特に限定されるものではないが、好ましくはトリアリールアミン骨格を分岐点として含有する下記式(2)又は式(3)で表される繰り返し単位を有する高分子化合物である。
Figure JPOXMLDOC01-appb-C000025
 上記式(2)及び式(3)において、Ar~Arは、それぞれ独立して、式(4)~(8)で表される何れかの二価の有機基を表す。
Figure JPOXMLDOC01-appb-C000026
 上記式(4)~(8)中、R19~R52は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、エポキシ基、カルボキシル基、ヒドロキシ基、炭素原子数1~5のアルコキシ基、又はハロゲン原子を表す。
 ここで炭素原子数1~5のアルキル基としては、分岐構造、環状構造を有していても良く、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基等が挙げられる。
 炭素原子数1~5のアルコキシ基としては、分岐構造、環状構造を有していても良く、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、シクロペンチルオキシ基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 上記Ar~Arは、中でも式(4)で表される置換又は非置換のフェニレン基が好ましく、特にR19~R22が全て水素原子を表すところのフェニレン基が好ましい。
 上記式(2)において、Z及びZは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、又は下記式(9)~(12)で表される何れか一価の有機基を表す。ただし、Z及びZが同時に前記アルキル基となることはない。
 ここで炭素原子数1~5のアルキル基としては、前記R19~R52にて挙げたものと同じものが挙げられる。
Figure JPOXMLDOC01-appb-C000027
 上記式(9)~(12)中、R53~R76は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5のアルキル基、炭素原子数1~5のヒドロキシアルキル基、炭素原子数1~5のハロアルキル基、フェニル基、OR77、COR77、COOR77、又はNR7778基を表す。これらの式中、R77及びR78は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のヒドロキシアルキル基、炭素原子数1~5のハロアルキル基、又はフェニル基を表す。
 ここで炭素原子数1~5のアルキル基としては、前記R19~R52にて挙げたものと同じものが挙げられる。
 炭素原子数1~5のヒドロキシアルキル基としては、分岐構造、環状構造を有していても良く、ヒドロキシメチル基、2-ヒドロキシエチル基、2-ヒドロキシプロピル基、1-ヒドロキシプロパン-2-イル基、2-ヒドロキシシクロプロピル基、4-ヒドロキシブチル基、5-ヒドロキシペンチル基、1-ヒドロキシシクロペンチル基等が挙げられる。
 炭素原子数1~5のハロアルキル基としては、分岐構造、環状構造を有していても良く、フルオロメチル基、トリフルオロメチル基、ブロモジフルオロメチル基、2-クロロエチル基、2-ブロモエチル基、1,1-ジフルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2,-テトラフルオロエチル基、2-クロロ-1,1,2-トリフルオロエチル基、ペンタフルオロエチル基、3-ブロモプロピル基、2,2,3,3-テトラフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル基、3-ブロモ-2-メチルプロピル基、2,2,3,3-テトラフルオロシクロプロピル基、4-ブロモブチル基、パーフルオロペンチル基、パーフルオロシクロペンチル基等が挙げられる。
 ハロゲン原子としては、前記R19~R52にて挙げたものと同じものが挙げられる。
 上記Z及びZは、それぞれ独立して水素原子、2-チエニル基、3-チエニル基、又は式(9)で表される置換又は非置換のフェニル基が好ましく、特に、Z及びZの何れか一方が水素原子で、他方が水素原子、2-チエニル基、3-チエニル基、又は式(9)で表される置換又は非置換のフェニル基、特にR53~R57の何れか1つがヒドロキシアルコキシ基のヒドロキシアルコキシフェニル基がより好ましい。
 上記式(3)中、R15~R18は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のヒドロキシアルキル基、炭素原子数1~5のアルコキシ基、又はハロゲン原子を表す。
 ここで炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、及びハロゲン原子としては、前記R19~R52にて挙げたものと同じものが挙げられる。
 炭素原子数1~5のヒドロキシアルキル基としては、前記R53~R76にて挙げたものと同じものが挙げられる。
 本発明において、上記トリアリールアミン構造を含む高分子化合物は、中でも下記式(14)で表される4つの構造のうちの少なくとも1つの繰り返し単位を有することが望ましい。
Figure JPOXMLDOC01-appb-C000028
 なお、上記式(2)又は式(3)で表される繰り返し単位を有する高分子化合物、すなわち好ましくは上記式(13)で表される繰り返し単位を有する高分子化合物、並びに上記式(14)で表される繰り返し単位のうち少なくとも1つを有する高分子化合物も、本発明の対象である。
 具体的には、本発明の対象とする高分子化合物は、前記式(2)又は式(3)で表される繰り返し単位を有する高分子化合物であって、該高分子化合物は、式(2)及び式(3)中、Ar~Arは、それぞれ独立して、前記式(4)~(8)で表される何れかの二価の有機基(式(4)~(8)中、R19~R52は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、エポキシ基、カルボキシル基、ヒドロキシ基、炭素原子数1~5のアルコキシ基、又はハロゲン原子を表す。)を表し;式(2)中、Z及びZは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、又は前記式(9)~(12)で表される何れかの一価の有機基(式(9)~(12)中、R53~R76は、それぞれ独立して、水素原子(ただし、R53~R57、R58~R64、R65~R67、又はR68~R76が同時に水素原子となることはない。)、又は炭素原子数1~5のヒドロキシアルキル基、OR77、COR77、COOR77、又はNR7778基(これらの式中、R77及びR78は、それぞれ独立して、水素原子(ただし、R77及びR78が同時に水素原子となることはない。)、又は炭素原子数1~5のヒドロキシアルキル基を表す。)を表す。)を表し(ただし、Z及びZが同時に前記アルキル基となることはない。);式(3)中、R15~R18は、それぞれ独立して、水素原子(ただし、R15~R18が同時に水素原子となることはない。)、又は炭素原子数1~5のヒドロキシアルキル基を表すものである。
 ここで、各基の具体例は前述したものが挙げられる。
 本発明に用いる上記トリアリールアミン構造を含む高分子化合物の平均分子量は特に限定されるものではないが、重量平均分子量が1,000~2,000,000であることが好ましい。当該高分子化合物の重量平均分子量が1,000以上であると、クラッド材として用いる際、薄膜を形成したときの膜質をより均一にすることができ、2,000,000以下であると、溶媒に対する溶解性が著しく低下せずに、取り扱いが容易となる。重量平均分子量はより好ましくは2,000~1,000,000である。
 尚、本発明における重量平均分子量とは、ゲル浸透クロマトグラフィー(ポリスチレン換算)による測定値である。
<トリアリールアミン構造を含む高分子化合物の製造>
 上記高分子化合物は、トリアリールアミン化合物と、アルデヒド化合物とを、酸性条件下で重縮合することによって得られる。
 上記トリアリールアミン構造を含む高分子化合物の製造に用いられるアルデヒド化合物としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-メチルブチルアルデヒド、3-メチル-2-ブテナール、ヘキシルアルデヒド等の飽和脂肪族アルデヒド類;チオフェンアルデヒド等のヘテロ環式アルデヒド類;ベンズアルデヒド、トリルアルデヒド、ヒドロキシメチルベンズアルデヒド、トリフルオロメチルベンズアルデヒド、フェニルベンズアルデヒド、サリチルアルデヒド、アニスアルデヒド、(2-ヒドロキシエトキシ)ベンズアルデヒド、テレフタルアルデヒド、アセチルベンズアルデヒド、ホルミル安息香酸、ホルミル安息香酸メチル、アミノベンズアルデヒド、N,N-ジメチルアミノベンズアルデヒド、N,N-ジフェニルアミノベンズアルデヒド、ナフチルアルデヒド、アントリルアルデヒド等の芳香族アルデヒド類などが挙げられる。
 また、上記高分子化合物の製造時に用いられる酸触媒としては、硫酸、リン酸、過塩素酸等の鉱酸類;p-トルエンスルホン酸、p-トルエンスルホン酸一水和物等の有機スルホン酸類;ギ酸、シュウ酸等のカルボン酸類などを用いることができる。
 酸触媒の使用量は、その種類によって種々選択されるが、通常、トリアリールアミン化合物100質量部に対して、0.001~10,000質量部、好ましくは、0.01~1,000質量部、より好ましくは、0.1~100質量部である。
 上記の縮合反応は、無溶媒でも行えるが、通常溶媒を用いて行われる。溶媒としては反応を阻害しないものであれば全て使用することができ、たとえば、テトラヒドロフラン(THF)、1,4-ジオキサン等の環状エーテル類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)等のアミド類;イソブチルメチルケトン、シクロヘキサノン等のケトン類;塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類などが挙げられる。これら溶媒は、それぞれ単独で、又は2種以上混合して用いることができる。特に、環状エーテル類が好ましい。
 縮合時の反応温度は通常40~200℃である。反応時間は反応温度によって種々選択されるが、通常30分間から50時間程度である。
 以上のようにして得られる高分子化合物の重量平均分子量は、前述のとおり、通常1,000~2,000,000、好ましくは2,000~1,000,000である。
<非線形光学化合物>
 本発明に用いられる非線形光学化合物は、π共役鎖の一方の端に電子供与性基、他方の端に電子吸引性基を有するπ共役系化合物であり、分子超分極率βの大きいものが望ましい。電子供与性基としてはジアルキルアミノ基、電子吸引性基としては、シアノ基、ニトロ基、フルオロアルキル基を挙げることができる。
 中でも、本発明において用いられる非線形光学化合物としては、トリシアノ結合フラン環を有する非線形光学化合物が挙げられ、具体的には下記式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 上記式(1)中、R、Rは、それぞれ独立して、水素原子、置換基を有していても良い炭素原子数1~10のアルキル基、又は炭素原子数6~10のアリール基を表す。
 ここで炭素原子数1~10のアルキル基としては、分岐構造、環状構造を有していても良く、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基、1-アダマンチル基、ベンジル基、フェネチル基等が挙げられる。
 炭素原子数6~10のアリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。
 上記置換基としては、アミノ基;ヒドロキシ基;メトキシカルボニル基、tert-ブトキシカルボニル基等のアルコキシカルボニル基;トリメチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基、トリフェニルシリルオキシ基等のシリルオキシ基;ハロゲン原子などが挙げられる。
 上記式(1)中、R~Rは、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数6~10のアリールオキシ基、炭素原子数7~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表す。
 ここで炭素原子数1~10のアルキル基としては、前記と同じものが挙げられる。
 炭素原子数1~10のアルコキシ基としては、分岐構造、環状構造を有していても良く、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、1-アダマンチルオキシ基、ベンジルオキシ基、フェネトキシ基等が挙げられる。
 炭素原子数2~11のアルキルカルボニルオキシ基としては、分岐構造、環状構造を有していても良く、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、シクロプロパンカルボニルオキシ基、ペンタノイルオキシ基、2-メチルブタノイルオキシ基、3-メチルブタノイルオキシ基、ピバロイルオキシ基、ヘキサノイルオキシ基、3,3-ジメチルブタノイルオキシ基、シクロペンタンカルボニルオキシ基、ヘプタノイルオキシ基、シクロヘキサンカルボニルオキシ基、n-ノナノイルオキシ基、n-ウンデカノイルオキシ基、1-アダマンタンカルボニルオキシ基、フェニルアセトキシ基、3-フェニルプロパノイルオキシ基等が挙げられる。
 炭素原子数6~10のアリールオキシ基としては、フェノキシ基、ナフタレン-2-イルオキシ基、フラン-3-イルオキシ基、チオフェン-2-イルオキシ基等が挙げられる。
 炭素原子数7~11のアリールカルボニルオキシ基としては、ベンゾイルオキシ基、1-ナフトイルオキシ基、フラン-2-カルボニルオキシ基、チオフェン-3-カルボニルオキシ基等が挙げられる。
 炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基としては、トリメチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基、トリフェニルシリルオキシ基等のシリルオキシ基が挙げられる。
 ハロゲン原子としては、前記R19~R52にて挙げたものと同じものが挙げられる。
 上記式(1)中、R、Rは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表す。
 ここで炭素原子数1~5のアルキル基としては、前記R19~R52にて挙げたものと同じものが挙げられる。
 炭素原子数1~5のハロアルキル基としては、前記R53~R76にて挙げたものと同じものが挙げられる。
 炭素原子数6~10のアリール基としては、前記R、Rにて挙げたものと同じものが挙げられる。
 またR、Rの具体的な組合せとしては、メチル基-メチル基、メチル基-トリフルオロメチル基、トリフルオロメチル基-フェニル基が好ましい。
 上記式(1)中、Arは下記式(Ar-a)又は式(Ar-b)で表される二価の有機基を表す。
Figure JPOXMLDOC01-appb-C000030
 上記式中、R~R14は、それぞれ独立して、水素原子、置換基を有していても良い炭素原子数1~10のアルキル基、又は炭素原子数6~10のアリール基を表す。
 なお、炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基、並びに置換基の具体例は上記に例示したものが挙げられる。
 本発明に用いられる非線形光学化合物に該当する化合物として、発達したπ共役鎖と非常に強い電子吸引性基であるトリシアノヘテロ環構造を持ち、極めて強い分子超分極率βを有する非線形光学化合物として、以下のような化合物が報告されている(非特許文献1:Chem.Mater.2001,13,3043-3050)。
Figure JPOXMLDOC01-appb-C000031
 さらに、上記構造において電子供与性基であるジアルキルアニリノ部位を種々の構造に変換することによって、分子超分極率βを更に大きくすることが出来る(非特許文献2:J.Polym.Sci.Part A.2011,Vol.49,p47)。
Figure JPOXMLDOC01-appb-C000032
<配合割合>
 本発明のクラッド材料において、トリアリールアミン構造を含む高分子化合物と非線形光学化合物との配合割合は、後述のコアの抵抗値よりも低い抵抗値となるように適宜調整されるが、通常、高分子化合物100質量部に対して、非線形光学化合物の配合量は0.1~50質量部であり、より好ましくは0.5~10質量部である。
<その他配合可能な成分>
 本発明のクラッド材料には、光導波路のクラッド材料としての性能に影響を及ばさない範囲において、架橋剤、界面活性剤、レベリング剤、酸化防止剤、光安定化剤等を配合することができる。
 架橋剤としては、汎用のものを使用することができるが、イソシアネート類(ブロックイソシアネートを含む)を用いることが好ましい。
 汎用のイソシアネート類としては、例えば、コロネート(登録商標)2507、同2513、同APステープル(以上、日本ポリウレタン工業(株)製)、タケネート(登録商標)B-882N、同B-830、同B-815N、同B-842N、同B-846N、同B-870N、同B-874N(以上、三井化学(株)製)、バーノック(登録商標)D-500、同D-550、同B3-867(以上、DIC(株)製)、デュラネート(登録商標)MF-B60X、同MF-K60X(以上、旭化成ケミカルズ(株)製)、エラストロン(登録商標)BN-P17、同BN-04、同BN-08、同BN-44、同BN-45(以上、第一工業製薬(株)製)等が挙げられる。
 これら架橋剤は、単独で用いても、2種以上を組合わせて用いても良い。
[光導波路]
 本発明の光導波路は、コアと、その外周全体を取り囲む前記コアよりも屈折率の小さいクラッドからなる光導波路であって、前記クラッドが前述のトリアリールアミン構造を含む高分子化合物と非線形光学化合物とを含有するクラッド材料より形成されてなることを特徴とするものである。
<コア>
 本発明の光導波路において、コアは、形成したクラッドの屈折率よりも大きな屈折率を有する材料で形成されていれば良い。
 例えばコアは、二次の非線形光学効果を示す有機非線形光学化合物が、高分子マトリクス中に分散した形態で含まれてなるか、或いは高分子化合物の側鎖に結合した形態で含むものであることが好ましい。
 上記有機非線形光学化合物としては、例えば前記式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物であることが好ましい。
 前記非線形光学化合物を高分子マトリクス中に分散させる場合、該非線形光学化合物をマトリクス中に高濃度で且つ均一に分散させる必要があることから、高分子マトリクスとしては該非線形光学化合物と高い相溶性を示すことが好ましい。また、光導波路のコアとして用いられることからみて、優れた透明性と成形性を持つことが好ましい。
 こうした高分子マトリクス材料としては、例えば、ポリメタクリル酸メチル、ポリカーボネート、ポリスチレン、シリコーン系樹脂、エポキシ系樹脂、ポリスルホン、ポリエーテルスルホン、ポリイミド等の樹脂が挙げられる。
 高分子マトリクス中に分散させる手法としては、非線形光学化合物とマトリクス材料を適切な比率で有機溶媒等に溶解させ、基板上に塗布・乾燥して薄膜を形成する方法が挙げられる。
 また、高分子化合物の側鎖に非線形光学化合物を結合させる場合には、高分子化合物の側鎖に、非線形光学化合物との間に共有結合を形成できる官能基を有している必要があり、こうした官能基としては、イソシアネート基、ヒドロキシ基、カルボキシル基、エポキシ基、アミノ基、ハロゲン化アリル基、ハロゲン化アシル基等が挙げられる。
 これらの官能基は、上記前記式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物のヒドロキシ基等と共有結合を形成することが出来る。
 なお、高分子化合物の側鎖に非線形光学化合物を結合させる場合、非線形光学化合物の含有量を調整するために、コアは、前述の高分子マトリクスの単位構造と、非線形高分子化合物を結合させた高分子化合物の単位構造とがいわば共重合してなる形態にあって良い。
 上記コアにおける非線形光学化合物の配合割合は、電気光学特性を大きくする必要から適宜調整されるが、通常、高分子化合物100質量部に対して、非線形光学化合物の配合量は1~1,000質量部であり、より好ましくは10~100質量部である。
[光導波路の製造方法]
 本発明の光導波路は、
下部クラッドを前述のクラッド材料を用いて形成する工程、
前記下部クラッド上に前記式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物又はその誘導体を含むコアを形成する工程、及び、
前記コア上に前述のクラッド材料を用いて上部クラッドを形成する工程を含み、
上部クラッドを形成する工程の前及び/又は後に、前記コアに含まれる非線形光学化合物又はその誘導体を分極配向処理する工程を含みて、製造される。
 より具体的には、例えばリッジ型の光導波路を製造する場合、下記工程を経て製造される。またスラブ型の光導波路を製造する場合には、工程(2)を経ずに、工程(1)に続いて工程(3)が実施される。
(1)下部クラッドを前記クラッド材料を用いて形成する工程、
(2)前記下部クラッド上に、紫外線に対し感光性を有するレジスト層を形成し、前記レジスト層の表面に、フォトマスクを介して紫外光を照射・現像して、コアパターンを形成し、該コアパターンをマスクとして前記下部クラッドにコアパターンを転写し、レジスト層を除去する工程、
(3)下部クラッド上に前記式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物又はその誘導体を含むコアを形成する工程、及び、
(4)前記コア上に前記クラッド材料を用いて上部クラッドを形成する工程。
 そして、(4)工程の前及び/又は後に、下記(5)工程を含む。
(5)前記コアに含まれる非線形光学化合物又はその誘導体を分極配向処理する工程。
 以下、光導波路の製造方法について、詳述する。
<(1)下部クラッドを形成する工程>
 まず前記クラッド材料を用いて、下部クラッドとなる薄膜を形成する。
 具体的には、前述のクラッド材料を適宜有機溶媒に溶解又は分散させてワニス(膜形成材料)の形態とし、これをスピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凸版、平板、スクリーン印刷等)等の塗布方法を用いて適当な基板上に塗布・乾燥する方法が挙げられる。上記塗布方法の中でもスピンコート法が好ましい。スピンコート法を用いる場合には、単時間で塗布することができるために、揮発性の高い溶液であっても利用でき、また、均一性の高い塗布を行うことができるという利点がある。
 溶媒の乾燥法としては、特に限定されるものではなく、例えば、ホットプレートやオーブンを用いて、適切な雰囲気下、すなわち大気、窒素等の不活性ガス、真空中等で蒸発させれば良い。これにより、均一な成膜面を有する薄膜を得ることが可能である。乾燥温度は、溶媒を蒸発させることができれば特に限定されないが、40~250℃で行うことが好ましい。
 ここで膜形成材料に用いる有機溶媒としては、クラッド材料を溶解・分散させることができる溶媒であれば特に限定されない。
 このような有機溶媒の具体例としては、トルエン、p-キシレン、o-キシレン、m-キシレン、エチルベンゼン、スチレン等の芳香族炭化水素類;n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;クロロベンゼン、オルトジクロロベンゼン、クロロホルム、ジクロロメタン、ジブロモメタン、1,2-ジクロロエタン等のハロゲン化炭化水素類;アセトン、エチルメチルケトン、イソプロピルメチルケトン、イソブチルメチルケトン、ブチルメチルケトン、ジアセトンアルコール、ジエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、乳酸エチル、γ-ブチロラクトン等のエステル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン等のアミド類;メタノール、エタノール、プロパノール、イソプロパノール、アリルアルコール、ブタノール、イソブタノール、tert-ブタノール、ペンタノール、2-メチルブタノール、2-メチル-2-ブタノール、シクロヘキサノール、2-メチルペンタノール、オクタノール、2-エチルヘキサノール、ベンジルアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール等のアルコール類;エチレングリコール、プロピレングリコール、ヘキシレングリコール、トリメチレングリコール、ジエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール等のグリコール類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコ-ルモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ブチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル等のグリコールエーテル類;1,3-ジメチル-2-イミダゾリジノン;ジメチルスルホキシドなどが挙げられる。これらの有機溶媒は、単独で用いても、2種以上を組合わせて用いても良い。
 また、下部クラッドを形成する基板としては、特に限定されないが、平坦性の優れたものが好ましい。例えば、金属基板、シリコン基板、透明基板等が挙げられ、光導波路の形態によって適宜選択可能である。金属基板の好ましい例としては、金、銀、銅、白金、アルミ、クロム等が挙げられ、透明基板の好ましい例としては、ガラスやプラスチック(ポリエチレンテレフタレート等)等の基板が挙げられる。
 また、基板と下部クラッドの間に下部電極を配する場合、電極には公知の電極を用いることができる。下部電極としては金属蒸着層や透明電極層であって良い。蒸着する金属の好ましい例としては、金、銀、銅、白金、アルミ、クロム等が挙げられる。また、透明電極層の好ましい例としては、インジウムスズ酸化物(ITO)、フッ素ドープスズ酸化物(FTO)、アンチモンドープスズ酸化物等が挙げられる。
<(2)コアパターンを転写する工程>
 次に、下部クラッド上に、紫外線に対し感光性を有するレジスト層を形成し、前記レジスト層の表面に、フォトマスクを介して紫外光を照射・現像するフォトリソグラフィー法によって、コアのマスクパターンを形成する。
 ここでレジスト層としては、上記フォトリソグラフィー法によって微小パターンが感光・現像できる材料で、該工程で使用する溶媒が前記下部クラッドを溶出しない材料であれば特に限定されないが、ポジ型又はネガ型のフォトレジスト材料が好ましい。パターン形成の光源には、水銀ランプ、KrFレーザ、ArFレーザ等が用いられる。
 次に、レジスト層のコアのマスクパターンをマスクとして、ガスを用いたドライエッチングをすることにより、下部クラッドにコアパターンを転写する。このドライエッチングには、レジストと下部クラッドのエッチング特性から適宜選択されるガス種、通常、CHF、O、Ar、CF等を用いた反応性イオンエッチングが好ましく用いられる。
 ドライエッチング後、マスクに用いたレジスト層を溶媒により除去する。
<(3)コアを形成する工程>
 次に、コアパターンを形成した下部クラッド上に、前記式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物又はその誘導体を含むコアを形成する。
 具体的には、前述の<コア>において説明したように、前記式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物と高分子マトリクス材料を、適切な比率で適当な有機溶媒に溶解させてワニスの形態とし、基板上に塗布・乾燥して薄膜を形成する方法、或いは、上記前記式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物の誘導体を側鎖に有する高分子化合物を適当な有機溶媒に溶解させてワニスの形態とし、基板上に塗布・乾燥して薄膜を形成する方法が挙げられる。
 上記ワニスの塗布方法や乾燥条件、有機溶媒は前述の<(1)下部クラッドを形成する工程>で挙げたものを使用可能である。
 なお、コア形成時に下部クラッドを溶出させないように、有機溶媒は下部クラッドを溶解しないものを選択する。
<(4)上部クラッドを形成する工程>
 そして前記クラッド材料を用いて、<(1)下部クラッドを形成する工程>と同様に上部クラッドとなる薄膜を形成する。
<(5)分極配向処理する工程>
 上部クラッドを形成する前及び/又は後に、コアに含まれる非線形光学化合物に対して電界を印加する電界ポーリング法によって、分極配向処理を行う。分極配向処理は、コアのガラス転移温度付近又はそれ以上の温度において行われ、電界印加によって非線形光学化合物の分極を電界印加方向に配向させ、温度を常温に戻した後もその配向を保持することによって、コア及び光導波路に電気光学特性を付与することができる。
 電界印加には、積層構造上下に配した電極間への直流電圧印加方法や、コア表面へのコロナ放電を利用した方法が用いられるが、配向処理の簡便さや均一性から、電極による電界印加処理が好ましい。
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
(1)GPC(ゲル浸透クロマトグラフィー)
 装置:東ソー(株)製 HLC-8220GPC
 カラム:昭和電工(株)製 KF-804L + KF-805L
 カラム温度:40℃
 溶媒:テトラヒドロフラン(THF)
 検出器:RI
(2)H NMRスペクトル
 装置:日本電子(株)製 JNM-ECA700
 溶媒:CDCl
 内部標準:テトラメチルシラン
(3)示差走査熱量計
 装置:NETZSCH製 DSC 204F1 Phoenix(登録商標)
 昇温速度:30℃/分
 測定温度:25~300℃
(4)スピンコーター
 装置:ミカサ(株)製 MS-A100
(5)ホットプレート
 装置:アズワン(株)製 ND-2
(6)屈折率
 装置:ジェー・エー・ウーラム・ジャパン製 多入射角分光エリプソメーターVASE
(7)抵抗率
 電源装置:(株)エヌエフ回路設計ブロック製 HSA4052
 測定装置:(株)エーディーシー製 8340A型デジタル超高抵抗/微小電流計
[実施例1]トリアリールアミン構造を有する高分子化合物(1)の合成
 窒素雰囲気にて100mL反応フラスコにトリフェニルアミン[東京化成工業(株)製]8.52g(34.7mmol)、4-(2-ヒドロキシエトキシ)ベンズアルデヒド[東京化成工業(株)製]11.54g(69.5mmol)、p-トルエンスルホン酸一水和物[純正化学(株)製]1.32g(6.95mmol)を仕込み、1,4-ジオキサン20gを加えて溶解させた。85℃に昇温し、撹拌を行って重合を開始した。5時間30分間反応を行った後、溶液を室温まで冷却し、テトラヒドロフラン60g、28質量%アンモニア水溶液4.72g(77.7mmol)を加えて撹拌を行った。この反応液をメタノール500gに滴下して再沈殿を行った。析出した淡黄色固体を真空乾燥したのち、テトラヒドロフラン67gに溶解し、28質量%アンモニア水溶液4.72g、メタノール450g、及びイオン交換水50gの混合液に滴下して再沈殿を行った。得られた無色固体を乾燥して、下記[A]の繰り返し単位を有する高分子化合物(1)6.88gを得た。この高分子化合物(1)のGPCによるポリスチレン換算で測定される重量平均分子量Mwは32,800、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は3.70であった。
Figure JPOXMLDOC01-appb-C000033
[実施例2]トリアリールアミン構造を有する高分子化合物(2)の合成
 窒素雰囲気にて100mL反応フラスコにトリフェニルアミン[東京化成工業(株)製]10.0g(40.8mmol)、3-(2-ヒドロキシエトキシ)ベンズアルデヒド[東京化成工業(株)製]13.6g(81.5mmol)、p-トルエンスルホン酸一水和物[純正化学(株)製]0.78g(4.08mmol)を仕込み、1,4-ジオキサン24gを加えて溶解させた。85℃に昇温し、撹拌を行って重合を開始した。3時間30分間反応を行った後、溶液を室温まで冷却し、テトラヒドロフラン70g、28質量%アンモニア水溶液9.90g(163mmol)を加えて撹拌を行った。この反応液をメタノール510gに滴下して再沈殿を行った。析出した淡黄色固体を真空乾燥したのち、テトラヒドロフラン60gに溶解し、28質量%アンモニア水溶液9.90g、メタノール450g、及びイオン交換水50gの混合液に滴下して再沈殿を行った。得られた無色固体を乾燥して、下記[B]の繰り返し単位を有する高分子化合物(2)7.90gを得た。この高分子化合物(2)のGPCによるポリスチレン換算で測定される重量平均分子量Mwは17,000、分散度:Mw/Mnは2.54であった。
Figure JPOXMLDOC01-appb-C000034
[実施例3]トリアリールアミン構造を有する高分子化合物(3)の合成
 窒素雰囲気にて100mL反応フラスコにジフェニルメチルアミン[東京化成工業(株)製]3.00g(16.4mmol)、トリフェニルアミン[東京化成工業(株)製]2.01g(8.19mmol)、4-(2-ヒドロキシエトキシ)ベンズアルデヒド[東京化成工業(株)製]8.16g(49.11mmol)、p-トルエンスルホン酸一水和物[純正化学(株)製]0.47g(2.46mmol)を仕込み、1,4-ジオキサン13gを加えて溶解させた。85℃に昇温し、撹拌を行って重合を開始した。3時間30分間反応を行った後、溶液を室温まで冷却し、テトラヒドロフラン63g、28質量%アンモニア水溶液1.49g(24.5mmol)を加えて撹拌を行った。この反応液をメタノール400gに滴下して再沈殿を行った。析出した淡黄色固体を真空乾燥したのち、テトラヒドロフラン63gに溶解し、28質量%アンモニア水溶液1.49g、メタノール400g、及びイオン交換水100gの混合液に滴下して再沈殿を行った。得られた無色固体を乾燥して、下記[C]の2種の繰り返し単位を有する高分子化合物(3)5.58gを得た。この高分子化合物(3)のGPCによるポリスチレン換算で測定される重量平均分子量Mwは12,600、分散度:Mw/Mnは2.10であった。
Figure JPOXMLDOC01-appb-C000035
[実施例4]トリアリールアミン構造を有する高分子化合物(4)の合成
 窒素雰囲気にて100mL反応フラスコにジフェニルメチルアミン[東京化成工業(株)製]9.00g(49.1mmol)、トリフェニルアミン[東京化成工業(株)製]6.02g(24.6mmol)、3-(2-ヒドロキシエトキシ)ベンズアルデヒド[東京化成工業(株)製]24.5g(147mmol)、p-トルエンスルホン酸一水和物[純正化学(株)製]1.40g(7.37mmol)を仕込み、1,4-ジオキサン39.5gを加えて溶解させた。85℃に昇温し、撹拌を行って重合を開始した。70分間反応を行った後、溶液を室温まで冷却し、テトラヒドロフラン120g、28質量%アンモニア水溶液8.95g(147mmol)を加えて撹拌を行った。この反応液をメタノール560gに滴下して再沈殿を行った。析出した淡黄色固体を真空乾燥したのち、テトラヒドロフラン220gに溶解し、28質量%アンモニア水溶液8.95g、メタノール400g、及びイオン交換水200gの混合液に滴下して再沈殿を行った。得られた無色固体を乾燥して、下記[D]の2種の繰り返し単位を有する高分子化合物(4)17.6gを得た。この高分子化合物(4)のGPCによるポリスチレン換算で測定される重量平均分子量Mwは28,000、分散度:Mw/Mnは4.14であった。
Figure JPOXMLDOC01-appb-C000036
[比較合成例1]トリアリールアミン構造を持たない高分子化合物(5)の合成
 還流塔を付した300mLの反応フラスコに、ビニルナフタレン[新日鐵化学(株)製]37.0g(0.240mol)、メタクリル酸グリシジル[東京化成工業(株)製]8.53g(0.060mol)を入れ、ジメチルアセトアミド68gを加えて溶解させた。これに2,2’-アゾビスイソ絡酸ジメチル[和光純薬工業(株)製]1.11g(4.80 mmol)を加え、フラスコ内を窒素置換した。70℃にて8時間撹拌を行い、室温まで放冷した。反応溶液にテトラヒドロフラン43gを加えて希釈し、この溶液をメタノール930gに滴下して再沈殿を行い、得られた淡黄色固体を濾過により回収した。これをテトラヒドロフラン140gに再度溶解し、メタノール900gに滴下して再沈殿を行った。得られた淡黄色固体を40℃にて6時間真空乾燥して、下記[E]の2種の繰り返し単位を有する高分子化合物(5)23.4gを得た。この高分子化合物(5)のGPCによるポリスチレン換算で測定される重量平均分子量Mwは22,400、分散度:Mw/Mnは3.18であった。
Figure JPOXMLDOC01-appb-C000037
[比較合成例2]トリアリールアミン構造を有し架橋部位を持たない高分子化合物(6)の合成
窒素雰囲気にて50mL反応フラスコにジフェニルメチルアミン[東京化成工業(株)製]2.00g(10.9mmol)、トリフェニルアミン[東京化成工業(株)製]1.34g(5.46mmol)、ベンズアルデヒド[東京化成工業(株)製]3.47g(32.7mmol)、p-トルエンスルホン酸一水和物[純正化学(株)製]0.31g(1.64mmol)を仕込み、1,4-ジオキサン7gを加えて溶解させた。85℃に昇温し、撹拌を行って重合を開始した。3時間反応を行った後、溶液を室温まで冷却し、テトラヒドロフラン60g、28質量%アンモニア水溶液2.98g(49.2mmol)を加えて撹拌を行った。この反応液をメタノール440gに滴下して再沈殿を行った。析出した淡黄色固体を真空乾燥したのち、THF60gに溶解し、28質量%アンモニア水溶液2.98g、メタノール400g、及びイオン交換水100gの混合液に滴下して再沈殿を行った。得られた無色固体を乾燥して、下記[F]の2種の繰り返し単位を有する高分子化合物(6)2.96gを得た。この高分子化合物(6)のGPCによるポリスチレン換算で測定される重量平均分子量Mwは63,000、分散度:Mw/Mnは9.34であった。
Figure JPOXMLDOC01-appb-C000038
[合成例1]非線形光学化合物の合成
 トリシアノ結合フラン環を有する非線形光学化合物として、下記[G]に示す化合物を用いた。本化合物は、X.Zhangら、Tetrahedron.lett.,51,p5823(2010)に開示される方法に準じて合成した。
Figure JPOXMLDOC01-appb-C000039
<トリアリールアミン構造を有する高分子化合物の耐クラック性>
[実施例5]
 実施例1で得られた高分子化合物(1)を、20質量%となるようにシクロヘキサノンに溶解し、高分子化合物(1)に対して10質量%となるように2,4-トリレンジイソシアネート[東京化成工業(株)製]を加えた。スピンコート法によりガラス基板に成膜し、150℃で10分間熱処理を行い硬化させた。得られた膜の膜厚は2.39μmであった。顕微鏡観察を行ったところ、クラックのない均一な膜が得られたことが確認された。
[実施例6]
 実施例2で得られた高分子化合物(2)を、20質量%となるようにシクロヘキサノンに溶解し、高分子化合物(2)に対して10質量%となるように2,4-トリレンジイソシアネート[東京化成工業(株)製]を加えた。スピンコート法によりガラス基板に成膜し、150℃で10分間熱処理を行い硬化させた。得られた膜の膜厚は3.00μmであった。顕微鏡観察を行ったところ、クラックのない均一な膜が得られたことが確認された。
[実施例7]
 実施例3で得られた高分子化合物(3)を、20質量%となるようにシクロヘキサノンに溶解させた。この溶液をガラス基板上にスピンコート法により成膜し、150℃で10分間乾燥した。得られた膜の膜厚は2.51μmであった。顕微鏡観察を行ったところ、クラックのない均一な膜が得られたことが確認された。
[実施例8]
 実施例4で得られた高分子化合物(4)を、20質量%となるようにシクロヘキサノンに溶解させた。この溶液をガラス基板上にスピンコート法により成膜し、150℃で10分間乾燥した。得られた膜の膜厚は2.28μmであった。顕微鏡観察を行ったところ、クラックのない均一な膜が得られたことが確認された。
[比較例1]
 比較合成例1で得られた高分子化合物(5)を、30質量%となるようにプロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液をガラス基板上にスピンコート法により成膜し、150℃で10分間乾燥した。得られた膜の膜厚は4.81μmであった。顕微鏡観察を行ったところ、クラックの発生が確認された。
[比較例2]
 比較合成例2で得られた高分子化合物(6)を、20質量%となるようにシクロヘキサノンに溶解させた。この溶液をガラス基板上にスピンコート法により成膜し、150℃で10分間乾燥した。得られた膜の膜厚は2.37μmであった。顕微鏡観察を行ったところ、クラックの発生が確認された。
<トリアリールアミン構造を有する高分子化合物の屈折率測定>
 高分子化合物(1)~(6)を10質量%となるようにシクロヘキサノンに溶解させた。この溶液をシリコン基板上にスピンコート法により成膜し、150℃で10分間乾燥した。得られた膜の633nmにおける屈折率を、分光エリプソメトリーにより測定した。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000040
<クラッド材料の抵抗値の測定>
[実施例9]
 実施例1で得られたトリアリールアミン構造を有する高分子化合物(1)0.51g及びブロックイソシアネート[旭化成ケミカルズ(株)製、デュラネート(登録商標)MF-K60X]0.06gをシクロペンタノン2.4gに溶解させた溶液に、合成例1で合成した非線形光学化合物0.03gを混合して撹拌した。この溶液を孔径0.20μmのフィルタで濾過後、ITOガラス基板(膜厚150nm、表面抵抗10Ω/□:三谷真空工業(株)製)上にスピンコートした。その後150℃のホットプレートで30分間加熱し、乾燥及び架橋を行った。得られた硬化膜の膜厚は1.7μmであった。この上に金をスパッタリング法により100nmの厚さで上部電極として成膜し、抵抗値測定用サンプル(1)とした。
[比較例3]
 非線形光学化合物を配合しなかった以外は実施例9と同様に操作し、抵抗値測定用サンプル(2)を併せて作製した。得られた硬化膜の膜厚は1.7μmであった。
 上記各抵抗値測定用サンプルをヒーター上に設置し、20℃及び130℃において120Vの電圧を印加し電流値を測定することで抵抗率を算出した。得られた結果を表2に示す。
 表2に示すように、非線形光学化合物の添加により20℃及び130℃双方で抵抗率が大きく低下した。
Figure JPOXMLDOC01-appb-T000041
<電気光学定数の測定>
 クラッドの抵抗率の低下によるコアの電界配向処理への効果確認のため、クラッド上に電気光学特性を有するコアを積層して電界配向処理を施し、電気光学定数の測定を行った。
[合成例2]コア材料の合成
 コアには、高分子化合物側鎖にトリシアノ結合フラン環を有する非線形光学化合物が結合した、下記[H]に示す繰り返し単位を有するポリマーを用いた。本ポリマーは、X.Piaoら、J.Polym.Sci.A,49,p47(2011)に開示される方法に準じて合成した。得られたポリマーのUV-Visスペクトルから求めたポリマー中の非線形光学化合物(下記[H]中のR部分)の割合は、40質量%であった。
Figure JPOXMLDOC01-appb-C000042
 なお、上記[H]に示す繰り返し単位を有するポリマーで形成したコアの抵抗率を、前記<クラッド材料の抵抗値の測定>に倣って測定したところ、3.5×1011[Ω・m](20℃、100V)、2.7×10[Ω・m](130℃、100V)であった。すなわち、実施例9に示したクラッドの抵抗率よりも、該コアの抵抗率が高くなり、電界配向処理時にコアへの電圧印可が効率的に行えることが期待される。
[実施例10]クラッド/コア積層膜の作製
 実施例1で得られたトリアリールアミン構造を有する高分子化合物(1)0.51g及びブロックイソシアネート[旭化成ケミカルズ(株)製、デュラネート(登録商標)MF-K60X]0.06gをシクロペンタノン2.4gに溶解させた溶液に、合成例1で合成した非線形光学化合物0.03gを混合して撹拌した。この溶液を孔径0.20μmのフィルタで濾過後、ITOガラス基板にスピンコートした。その後150℃のホットプレートで30分間加熱し、乾燥及び架橋を行い、クラッドとした。
 この上に、合成例2で得られた上記[H]に示す繰り返し単位を有するポリマー0.45gを、シクロペンタノン2.6gに溶解させた溶液をスピンコートし、減圧下、80℃で6時間乾燥させ、コアを作製した。
 さらにコア上に、金をスパッタリング法により100nmの厚さで上部電極として成膜した。
 このクラッド/コア積層膜における電気光学定数を、波長1.31μmの半導体レーザを光源として、C.C.Tengら、Appl.Phys.Lett.56,p1734(1990)及びY.Shutoら、J.Appl.Phys.77,p4632(1995)に記載の手法に準じて測定した。具体的には、ヒーター上に試料を設置し、コアのガラス転移温度付近である130℃まで加熱した後、電極間に電圧を300Vまで印加し電界配向処理を行いながら、電気光学定数を測定した。電気光学定数が最大値を示した段階で温度を室温(およそ25℃)にまで降温させた後、電圧印加を解除し、測定値が安定した段階をもって、この試料の電気光学定数とした。得られた結果を表3に示す。
 表中のr1はクラッド/コア積層構造で得られた実測での電気光学定数であり、r2は非線形光学化合物とトリアリールアミン構造を有する高分子化合物(1)を含むクラッドの厚みを考慮して、上記[H]に示す繰り返し単位を有するポリマーで形成されたコアに変調電圧がすべて印加されているとして算出した電気光学定数である。
 今回用いた上記[H]に示す繰り返し単位を有するポリマーは、単体で100pm/Vの電気光学定数を示すため、表3に示す結果(r2=94pm/V)より、非線形光学化合物を導入したクラッドを用いることにより、積層構造においてもコアに効率的に電圧が印加されていることがわかる。
Figure JPOXMLDOC01-appb-T000043
<リッジ型光導波路の作製>
 図1に示す作製プロセスによりリッジ型光導波路素子を作製した。
 まずシリコン基板1上に5nmのクロム層、ひきつづき100nmの金層を真空蒸着により成膜し下部電極2とした(図1:(a))。
 下部電極2上に、前記<電気光学定数の測定>にてクラッドの形成に用いた材料を用いて下部クラッド3を形成した。すなわち、実施例1で得られたトリアリールアミン構造を有する高分子化合物(1)0.51g及びブロックイソシアネート[旭化成ケミカルズ(株)製、デュラネート(登録商標)MF-K60X]0.06gをシクロペンタノン2.4gに溶解させた溶液に、合成例1で合成した非線形光学化合物0.03gを混合して撹拌し、この溶液を孔径0.20μmのフィルタで濾過後、下部電極2上にスピンコートした。その後150℃のホットプレートで30分間加熱し、乾燥及び架橋を行い、下部クラッド3を作製した(図1:(a))。
 クラッド3の上にフォトレジスト4[日本ゼオン(株)製、ZPN1150-90]を成膜し(図1:(b))、4μm幅の直線状マスクを通し露光、現像することでリッジ型導波路パターンを形成した(図1:(c))。
 このレジストパターンをマスクとして、CHFガスによる反応性イオンエッチングにより、下部クラッド3にパターンを転写した。このときのリッジ(図中、Hで表示)の高さは500nm程度とした(図1:(d))。
 フォトレジストをフォトレジスト溶媒(アセトン/エタノール混合溶媒)にて除去後(図1:(e))、この上部に前記<電気光学定数の測定>にてコアの形成に用いた材料を用いてコア5を形成した。すなわち、合成例2で得られた上記[H]に示す繰り返し単位を有するポリマー0.45gをシクロペンタノン2.6gに溶解させた溶液をスピンコートし、減圧下、80℃で6時間乾燥させ、コア5を作製した(図1:(f))。
 さらに、下部クラッド3と同じ材料、手法にて、コア5上に上部クラッド6を形成した(図1:(g))。
 そして、上部クラッド6上に金を真空蒸着し、上部電極7として形成した(図1:(h))。
 最後にシリコン基板を結晶面にそってへき開することで光入出射端面とし、リッジ型光導波路とした。
 作製した光導波路8(コア/クラッド)の形状を図2に示す。なお図2においては、下部電極2及び上部電極7を省略した。
 図2中、D1、D2、D3はそれぞれ下部クラッドの厚さ、コアの厚さ、上部クラッドの厚さを示し、Hはリッジ部の高さ、Wは導波路幅を示す。
1・・・基板
2・・・下部電極
3・・・下部クラッド
4・・・フォトレジスト
5・・・コア
6・・・上部クラッド
7・・・上部電極
8・・・光導波路
D1・・・下部クラッドの厚さ
D2・・・コアの厚さ
D3・・・上部クラッドの厚さ
H・・・リッジ部の高さ
W・・・導波路幅

Claims (14)

  1. トリアリールアミン構造を含む高分子化合物と非線形光学化合物とを含有することを特徴とする、光導波路のクラッド材料。
  2. 前記非線形光学化合物が、トリシアノ結合フラン環を有する化合物である、請求項1に記載のクラッド材料。
  3. 前記トリシアノ結合フラン環を有する化合物が、下記式(1)で表される化合物である、請求項2に記載のクラッド材料。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、Rは、それぞれ独立して、水素原子、置換基を有していても良い炭素原子数1~10のアルキル基、又は炭素原子数6~10のアリール基を表し、R~Rは、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数6~10のアリールオキシ基、炭素原子数7~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表し、R、Rは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、Arは下記式(Ar-a)又は式(Ar-b)で表される二価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~R14はそれぞれ独立して水素原子、置換基を有していても良い炭素原子数1~10のアルキル基、又は炭素原子数6~10のアリール基を表す。)
  4. 前記トリアリールアミン構造を含む高分子化合物が、式(2)又は式(3)で表される繰り返し単位を有する、請求項1に記載のクラッド材料。
    Figure JPOXMLDOC01-appb-C000003
    (式(2)及び式(3)中、Ar~Arは、それぞれ独立して、下記式(4)~(8)で表される何れかの二価の有機基を表し、式(2)中、Z及びZは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、又は下記式(9)~(12)で表される何れかの一価の有機基を表し(ただし、Z及びZが同時に前記アルキル基となることはない。)、式(3)中、R15~R18は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のヒドロキシアルキル基、炭素原子数1~5のアルコキシ基、又はハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R19~R52は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、エポキシ基、カルボキシル基、ヒドロキシ基、炭素原子数1~5のアルコキシ基、又はハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R53~R76は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5のアルキル基、炭素原子数1~5のヒドロキシアルキル基、炭素原子数1~5のハロアルキル基、フェニル基、OR77、COR77、COOR77、又はNR7778基(これらの式中、R77及びR78は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のヒドロキシアルキル基、炭素原子数1~5のハロアルキル基、又はフェニル基を表す。)を表す。)
  5. 前記繰り返し単位が式(13)で表される、請求項4に記載のクラッド材料。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Z及びZは、前記と同じ意味を表す。)
  6. 前記Zが、前記式(9)で表される一価の有機基であり、前記Zが水素原子である、請求項5に記載のクラッド材料。
  7. コアと、その外周全体を取り囲む前記コアよりも屈折率の小さいクラッドからなる光導波路であって、前記クラッドが請求項1乃至請求項6のうち何れか一項に記載のクラッド材料より形成されてなる、光導波路。
  8. 前記コアが、式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物又はその誘導体を含む、請求項7に記載の光導波路。
    Figure JPOXMLDOC01-appb-C000007
    (式中、R、Rは、それぞれ独立して、水素原子、置換基を有していても良い炭素原子数1~10のアルキル基、又は炭素原子数6~10のアリール基を表し、R~Rは、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数6~10のアリールオキシ基、炭素原子数7~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表し、R、Rは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、Arは下記式(Ar-a)又は式(Ar-b)で表される二価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、R~R14はそれぞれ独立して水素原子、置換基を有していても良い炭素原子数1~10のアルキル基、又は炭素原子数6~10のアリール基を表す。)
  9. コアと、前記コアの周囲を取り囲み前記コアより屈折率の小さいクラッドとを有する請求項8に記載の光導波路の製造方法であって、
    下部クラッドを請求項1乃至請求項6のうち何れか一項に記載のクラッド材料を用いて形成する工程、
    前記下部クラッド上に請求項8に記載の式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物又はその誘導体を含むコアを形成する工程、及び、
    前記コア上に請求項1乃至請求項6のうち何れか一項に記載のクラッド材料を用いて上部クラッドを形成する工程を含み、
    上部クラッドを形成する工程の前及び/又は後に、前記コアに含まれる非線形光学化合物又はその誘導体を分極配向処理する工程を含む、
    該光導波路を製造する方法。
  10. コアと、前記コアの周囲を取り囲み前記コアより屈折率の小さいクラッドとを有する請求項8に記載の光導波路の製造方法であって、
    下部クラッドを請求項1乃至請求項6のうち何れか一項に記載のクラッド材料を用いて形成する工程、
    前記下部クラッド上に、紫外線に対し感光性を有するレジスト層を形成し、前記レジスト層の表面に、フォトマスクを介して紫外光を照射・現像して、コアのマスクパターンを形成し、該マスクパターンをマスクとして前記下部クラッドにコアパターンを転写し、レジスト層を除去する工程、
    下部クラッド上に請求項8に記載の式(1)で表されるトリシアノ結合フラン環を有する非線形光学化合物又はその誘導体を含むコアを形成する工程、及び、
    前記コア上に請求項1乃至請求項6のうち何れか一項に記載のクラッド材料を用いて上部クラッドを形成する工程を含み、
    上部クラッドを形成する工程の前及び/又は後に、前記コアに含まれる非線形光学化合物又はその誘導体を分極配向処理する工程を含む、
    リッジ型光導波路を製造する方法。
  11. 前記分極配向処理が、電極による電界印加処理であることを特徴とする、請求項9又は請求項10に記載の製造方法。
  12. 式(2)又は式(3)で表される繰り返し単位を有する高分子化合物。
    Figure JPOXMLDOC01-appb-C000009
    (式(2)及び式(3)中、Ar~Arは、それぞれ独立して、下記式(4)~(8)で表される何れかの二価の有機基を表し、式(2)中、Z及びZは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、又は下記式(9)~(12)で表される何れかの一価の有機基を表し(ただし、Z及びZが同時に前記アルキル基となることはない。)、式(3)中、R15~R18は、それぞれ独立して、水素原子(ただし、R15~R18が同時に水素原子となることはない。)、又は炭素原子数1~5のヒドロキシアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000010
    (式中、R19~R52は、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、エポキシ基、カルボキシル基、ヒドロキシ基、炭素原子数1~5のアルコキシ基、又はハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000011
    (式中、R53~R76は、それぞれ独立して、水素原子(ただし、R53~R57、R58~R64、R65~R67、又はR68~R76が同時に水素原子となることはない。)、又は炭素原子数1~5のヒドロキシアルキル基、OR77、COR77、COOR77、又はNR7778基(これらの式中、R77及びR78は、それぞれ独立して、水素原子(ただし、R77及びR78が同時に水素原子となることはない。)、又は炭素原子数1~5のヒドロキシアルキル基を表す。)を表す。)
  13. 前記繰り返し単位が式(13)で表される、請求項12に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000012
    (式中、Z及びZは、前記と同じ意味を表す。)
  14. 前記Zが、前記式(9)で表される一価の有機基であり、前記Zが水素原子である、請求項13に記載の高分子化合物。
PCT/JP2012/070627 2011-08-15 2012-08-13 高屈折率クラッド材料及び電気光学ポリマー光導波路 WO2013024840A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/238,965 US9594189B2 (en) 2011-08-15 2012-08-13 High refractive index cladding material and electro-optical polymer optical waveguide
JP2013529017A JP6108468B2 (ja) 2011-08-15 2012-08-13 高屈折率クラッド材料及び電気光学ポリマー光導波路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-177559 2011-08-15
JP2011177559 2011-08-15

Publications (1)

Publication Number Publication Date
WO2013024840A1 true WO2013024840A1 (ja) 2013-02-21

Family

ID=47715157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070627 WO2013024840A1 (ja) 2011-08-15 2012-08-13 高屈折率クラッド材料及び電気光学ポリマー光導波路

Country Status (3)

Country Link
US (1) US9594189B2 (ja)
JP (1) JP6108468B2 (ja)
WO (1) WO2013024840A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172342A1 (ja) * 2012-05-14 2013-11-21 国立大学法人九州大学 有機非線形光学化合物を含むポリマー組成物
JP2014044272A (ja) * 2012-08-24 2014-03-13 National Institute Of Information & Communication Technology 光導波路及びその製造方法
WO2016035823A1 (ja) * 2014-09-02 2016-03-10 国立大学法人九州大学 低抵抗クラッド材料及び電気光学ポリマー光導波路
JP5930124B2 (ja) * 2013-12-11 2016-06-08 住友大阪セメント株式会社 電気光学素子
WO2019039530A1 (ja) 2017-08-24 2019-02-28 国立研究開発法人情報通信研究機構 電気光学ポリマー層を含む非線形光学用積層体及びその製造方法
JP2019174748A (ja) * 2018-03-29 2019-10-10 住友大阪セメント株式会社 光デバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115960093A (zh) * 2021-10-09 2023-04-14 香港城市大学深圳研究院 一种光学发色团化合物及含其的复合材料、薄膜和光电集成器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118461A (ja) * 1992-10-01 1994-04-28 Naoya Ogata 有機非線形光学材料
JP2001255566A (ja) * 2000-03-10 2001-09-21 Showa Denko Kk フォトリフラクティブ材料組成物及びこれを用いたフォトリフラクティブ素子及びホログラム
JP2010066325A (ja) * 2008-09-08 2010-03-25 Sumitomo Electric Ind Ltd 非線形光学化合物、非線形光学材料及び非線形光学素子
JP2010139994A (ja) * 2008-12-15 2010-06-24 Kyushu Univ 機能性色素を含有する光学材料
WO2011065395A1 (ja) * 2009-11-25 2011-06-03 日産化学工業株式会社 カーボンナノチューブ分散剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3477863B2 (ja) 1994-12-14 2003-12-10 三菱化学株式会社 非線形光学用積層体及び光導波路素子
JP3426785B2 (ja) * 1995-05-11 2003-07-14 花王株式会社 第4級アンモニウム塩の製造法
JPH10333195A (ja) * 1997-05-27 1998-12-18 Showa Denko Kk フォトリフラクティブ材料組成物
TW583499B (en) * 2001-05-17 2004-04-11 Daikin Ind Ltd Nonlinear optical material comprising fluorine-containing polymer
JP2003049132A (ja) * 2001-08-06 2003-02-21 Nitto Denko Corp 表面保護シート
US7919755B2 (en) * 2006-09-27 2011-04-05 Anis Rahman Dendrimer based electro-optic sensor
US20100096603A1 (en) * 2008-10-20 2010-04-22 Nitto Denko Corporation Optical devices responsive to near infrared laser and methods of modulating light
CN103124924A (zh) * 2010-08-05 2013-05-29 日东电工株式会社 对整个可见光谱的多重激光波长响应的光折变组合物
KR101858576B1 (ko) * 2012-11-12 2018-05-16 삼성전자주식회사 광굴절 고분자 복합체, 상기 광굴절 고분자 복합체를 포함하는 광굴절 소자 및 홀로그램 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118461A (ja) * 1992-10-01 1994-04-28 Naoya Ogata 有機非線形光学材料
JP2001255566A (ja) * 2000-03-10 2001-09-21 Showa Denko Kk フォトリフラクティブ材料組成物及びこれを用いたフォトリフラクティブ素子及びホログラム
JP2010066325A (ja) * 2008-09-08 2010-03-25 Sumitomo Electric Ind Ltd 非線形光学化合物、非線形光学材料及び非線形光学素子
JP2010139994A (ja) * 2008-12-15 2010-06-24 Kyushu Univ 機能性色素を含有する光学材料
WO2011065395A1 (ja) * 2009-11-25 2011-06-03 日産化学工業株式会社 カーボンナノチューブ分散剤

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172342A1 (ja) * 2012-05-14 2013-11-21 国立大学法人九州大学 有機非線形光学化合物を含むポリマー組成物
JPWO2013172342A1 (ja) * 2012-05-14 2016-01-12 国立大学法人九州大学 有機非線形光学化合物を含むポリマー組成物
JP2014044272A (ja) * 2012-08-24 2014-03-13 National Institute Of Information & Communication Technology 光導波路及びその製造方法
JP5930124B2 (ja) * 2013-12-11 2016-06-08 住友大阪セメント株式会社 電気光学素子
CN105829957A (zh) * 2013-12-11 2016-08-03 住友大阪水泥股份有限公司 电光元件
WO2016035823A1 (ja) * 2014-09-02 2016-03-10 国立大学法人九州大学 低抵抗クラッド材料及び電気光学ポリマー光導波路
JPWO2016035823A1 (ja) * 2014-09-02 2017-06-15 国立大学法人九州大学 低抵抗クラッド材料及び電気光学ポリマー光導波路
WO2019039530A1 (ja) 2017-08-24 2019-02-28 国立研究開発法人情報通信研究機構 電気光学ポリマー層を含む非線形光学用積層体及びその製造方法
US11194225B2 (en) 2017-08-24 2021-12-07 National Institute Of Information And Communications Technology Laminate for non-linear optics containing electro-optic polymer layer and method for producing same
JP2019174748A (ja) * 2018-03-29 2019-10-10 住友大阪セメント株式会社 光デバイス
CN110320597A (zh) * 2018-03-29 2019-10-11 住友大阪水泥股份有限公司 光器件
JP7035718B2 (ja) 2018-03-29 2022-03-15 住友大阪セメント株式会社 光デバイス

Also Published As

Publication number Publication date
JPWO2013024840A1 (ja) 2015-03-05
US9594189B2 (en) 2017-03-14
JP6108468B2 (ja) 2017-04-05
US20140199038A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP6108468B2 (ja) 高屈折率クラッド材料及び電気光学ポリマー光導波路
US11634610B2 (en) Siloxane polymer compositions and their use
JP4501391B2 (ja) 架橋性含フッ素芳香族プレポリマー及びその用途
WO2016035823A1 (ja) 低抵抗クラッド材料及び電気光学ポリマー光導波路
JP6311703B2 (ja) 組成物、パターンが形成された基板の製造方法、並びに膜及びその形成方法
JP2013199659A (ja) 硬化物、硬化膜及びその用途
TWI576667B (zh) A partially hydrolyzed condensate, a dialing agent, a negative photosensitive resin composition, a hardened film, a partition wall, and an optical element
CN108884355B (zh) 固化膜形成组合物
JP6150157B2 (ja) 非線形光学活性コポリマー
TW201506073A (zh) 膜形成用組成物
JP5388026B2 (ja) 機能性色素を含有する光学材料
KR101996262B1 (ko) 차단성 수지 조성물, 광경화 차단막의 제조방법 및 전자소자
US20100159217A1 (en) Negative-type photosensitive resin composition, method for forming patterns, and electronic parts
JP6900951B2 (ja) 硬化膜形成組成物
WO2013172342A1 (ja) 有機非線形光学化合物を含むポリマー組成物
WO2024070915A1 (ja) 樹脂、組成物、光架橋物、パターンおよびそれを備えた電子デバイス
US20230094840A1 (en) Polyimide resin, photosensitive resin composition, resin film, and electronic device
KR102092800B1 (ko) 감광성 수지 조성물, 그로부터 형성된 경화막, 및 상기 경화막을 갖는 전자 장치
TW202307027A (zh) 硬化性組合物、硬化膜及其應用、硬化膜的製造方法、以及聚合物
TW202302700A (zh) 感光性樹脂、負型感光性樹脂組合物、經圖案化之硬化膜之製造方法及含有羧基之樹脂
CN115951559A (zh) 一种感光性树脂组合物及其制备方法和固化膜及其应用
JP2022108813A (ja) 保護膜形成用組成物
JP2021092758A (ja) ネガ型感光性樹脂組成物及び硬化膜の製造方法
KR20220170240A (ko) 폴리아믹산, 이로부터 형성된 폴리이미드 및 폴리이미드 필름
JP2004220905A (ja) 有機el素子用絶縁膜および有機el素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14238965

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12823841

Country of ref document: EP

Kind code of ref document: A1