WO2013154297A1 - 히터 승강형 기판 처리 장치 - Google Patents

히터 승강형 기판 처리 장치 Download PDF

Info

Publication number
WO2013154297A1
WO2013154297A1 PCT/KR2013/002773 KR2013002773W WO2013154297A1 WO 2013154297 A1 WO2013154297 A1 WO 2013154297A1 KR 2013002773 W KR2013002773 W KR 2013002773W WO 2013154297 A1 WO2013154297 A1 WO 2013154297A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
heater
substrate
processing apparatus
substrate processing
Prior art date
Application number
PCT/KR2013/002773
Other languages
English (en)
French (fr)
Inventor
양일광
송병규
김경훈
김용기
신양식
Original Assignee
주식회사 유진테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유진테크 filed Critical 주식회사 유진테크
Priority to JP2015500369A priority Critical patent/JP5996084B2/ja
Priority to CN201380019312.0A priority patent/CN104246978B/zh
Priority to US14/385,511 priority patent/US9644895B2/en
Publication of WO2013154297A1 publication Critical patent/WO2013154297A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • F27D2007/066Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation

Definitions

  • the present invention relates to a substrate processing apparatus, and more particularly, to a substrate processing apparatus for controlling a temperature of a substrate by raising and lowering a heater.
  • a selective epitaxy process involves deposition reactions and etching reactions. Deposition and etching reactions occur simultaneously at relatively different reaction rates for the polycrystalline and epitaxial layers.
  • an epitaxial layer is formed on the single crystal surface while the existing polycrystalline and / or amorphous layer is deposited on at least one second layer.
  • the deposited polycrystalline layer is generally etched at a faster rate than the epitaxial layer.
  • a net selective process results in the deposition of epitaxy material and the deposition of limited or unrestricted polycrystalline material.
  • a selective epitaxy process can result in the formation of an epilayer of silicon containing material on the single crystal silicon surface without deposits remaining on the spacers.
  • Selective epitaxy processes generally have some disadvantages. To maintain selectivity during this epitaxy process, the chemical concentration and reaction temperature of the precursor must be adjusted and adjusted throughout the deposition process. If not enough silicon precursor is supplied, the etching reaction is activated, which slows down the overall process. In addition, harm can occur to the etching of substrate features. If not enough corrosion precursor is supplied, the deposition reaction may reduce the selectivity of forming single and polycrystalline materials across the substrate surface. In addition, conventional selective epitaxy processes generally require high reaction temperatures, such as about 800 ° C., about 1,000 ° C., or higher. Such high temperatures are undesirable during the manufacturing process due to possible uncontrolled nitriding reactions and thermal budgets on the substrate surface.
  • An object of the present invention is to raise and lower the heater to control the temperature of the substrate.
  • a chamber providing an internal space in which a process is performed on a substrate;
  • a heating plate fixedly installed in the chamber and on which the substrate is placed;
  • a heater spaced apart from a lower portion of the heating plate and heating the heating plate;
  • an elevating module for elevating the heater.
  • the substrate processing apparatus may further include a discharge plate disposed around the heating plate and positioned below the entrance passage of the substrate formed in the chamber.
  • the substrate processing apparatus may further include a plurality of support bars installed under the discharge plate to support the discharge plate.
  • the discharge plate may be fixed to the inner wall of the chamber to support the heating plate.
  • the substrate processing apparatus may further include an auxiliary discharge plate spaced apart from the discharge plate and fixed to an inner wall of the chamber.
  • a support shaft connected to a lower portion of the heater and supporting the heater;
  • a lower fixing ring fixed to the lower portion of the support shaft;
  • the substrate processing apparatus includes an upper fixing ring fixed to the lower wall of the chamber; And a bellows connected to the upper fixing ring and the lower fixing ring and maintaining the vacuum in the chamber internal space.
  • the substrate processing apparatus includes a support shaft connected to a lower portion of the heater and supporting the heater; A driving unit for elevating the support shaft; The controller may further include a controller controlling the driving unit according to a heating temperature input to the heater to adjust a separation distance between the heating plate and the heater.
  • the substrate processing apparatus may further include a plurality of lift pins fixed to an upper surface of the heating plate to support the substrate placed thereon.
  • the substrate processing apparatus may include: a chamber body having an upper portion open and a passage through which the substrate enters and exits on one side; A chamber cover for closing an open upper portion of the chamber body; And it may further include an exhaust port formed on the side wall of the chamber body.
  • the substrate processing apparatus may include: a chamber body having an upper portion open and a passage through which the substrate enters and exits on one side; A chamber cover for closing an open upper portion of the chamber body; A lower port connected to an open lower portion of the chamber body; And an exhaust port formed in the lower port.
  • the substrate processing apparatus may include: a chamber body having an upper portion open and a passage through which the substrate enters and exits on one side; A chamber cover for closing an open upper portion of the chamber body; A gas supply port formed at an upper portion of the chamber cover and supplying a first gas; An antenna installed to surround the outer side of the chamber cover and generating a plasma from the first gas by forming a magnetic field in the chamber cover; And a spray ring fixedly installed between the chamber body and the chamber cover to supply a second gas.
  • a first shower head installed above the spray ring and having a plurality of first spray holes; And a second shower head positioned below the spray ring and having a plurality of second spray holes.
  • the temperature of the substrate may be controlled by lifting and lowering the heater.
  • FIG. 1 is a view schematically showing a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing a state in which the heater shown in FIG. 1 is lowered.
  • FIG 3 is a schematic view of a substrate processing apparatus according to another embodiment of the present invention.
  • the oxide film removal process (cleaning process) is described as an example, but the present invention can be applied to various substrate processing processes including a deposition process.
  • the plasma generation process described in the embodiment has been described using an inductively coupled plasma (ICP) process as an example, it may be applied by various plasma processes, and various targets other than the substrate W described in the embodiment may be applied. It can be applied to.
  • ICP inductively coupled plasma
  • the substrate processing apparatus 100 includes a chamber body 1 and a chamber cover 2, and a process for the substrate W is performed therein.
  • the chamber body 1 has an open shape at the top and has a passage 8 formed at one side.
  • the substrate W enters into the chamber through a passage 8 formed at one side of the chamber body 1.
  • the gate valve 5 is installed outside the passage 8, and the passage 8 can be opened or closed by the gate valve 5.
  • the chamber body 1 may have a structure opened downward through the through hole 31 formed in the bottom surface.
  • Lift pin 15 may be integrally installed on the upper end of the heating plate 10, it is preferable to include a plurality of lift pins (15) to stably support the substrate (W).
  • the lift pins 15 maintain the spacing between the substrate W and the heating plate 10 at a constant height, and the spacing between the substrate W and the heating plate 10 according to the height of the lift pin 15. Can be changed.
  • Heating plate 10 is connected to the lower end of the lift pin 15, the lift pins 15 support the substrate (W) placed on the top stably.
  • the heating plate 10 transmits heat supplied from the heater 20 spaced apart from the lower portion to the substrate (W).
  • the heating plate 10 may be wider than the area of the heater 20 to uniformly transfer heat supplied from the heater 20 to the substrate W, and may have a circular disk shape corresponding to the shape of the substrate W.
  • the heating plate 10 is a material excellent in thermal conductivity, and a material with little deformation at high temperatures is suitable.
  • the heating plate 10 may be made of quartz or a material coated with quartz.
  • the heater 20 is spaced apart from the bottom of the heating plate 10 and heats the substrate W through the heating plate 10.
  • the heater 20 generates heat by receiving current from an external power source (not shown), and a lifting module is installed below the heater 20.
  • the lifting module lifts and lowers the heater 20, and the heating temperature of the substrate W may be adjusted according to the lifting and lowering of the heater 20.
  • the heating temperature can be set higher by increasing the output of the heater 20.
  • the heating temperature of the heater 20 is easily lowered due to the heat remaining in the heater 20. Can't. For this reason, it takes a waiting time for cooling the heater 20, and there is a problem that the process time is delayed.
  • the above-described method corresponds to a case where the first heating temperature and the second heating temperature are satisfied in one chamber, but when the first heating and the second heating are performed through separate chambers, the substrate W moves. There arises a problem that the possibility of contamination of the substrate (W) and travel time due to.
  • the heating temperature of the substrate W can be easily and quickly adjusted by adjusting the distance between the heating plate 10 (or the substrate W) and the heater 20 by elevating the heater 20 through the driving unit 40.
  • the heat transfer amount transferred from the heater 20 to the heating plate 10 (or the substrate W) may be explained through a principle inversely proportional to the separation distance. In the present embodiment, it is described that the heater 20 is raised or lowered. Alternatively, the heating plate 10 or the lift pin 15 may be elevated to adjust the separation distance, thereby adjusting the heating temperature of the substrate W. Easy to adjust
  • the lifting module is positioned below the heater 20, and includes a support shaft 30, a lower fixing ring 37, and a driving unit 40 to lift the heater 20.
  • the support shaft 30 is located at the lower end of the heater 20 and stably supports the heater 20.
  • the support shaft 30 may be cylindrical and may move up and down with the heater 20.
  • the lower fixing ring 37 is installed at the lower end of the support shaft 30, and may have a ring shape surrounding the lower end of the support shaft 30.
  • the lower fixing ring 37 moves up and down by the driving unit 40, and the support shaft 30 and the heater 20 also move up and down together by the lifting up and down of the lower fixing ring 37.
  • the driving unit 40 may be a motor for transmitting power, and the lower fixing ring 37 may be elevated by the rotation of the motor.
  • the driving unit may lift and lower the lower fixing ring 37 by using various methods for elevating the rail or elevator shaft and the lower fixing ring 37 as well as the motor.
  • the driving unit 40 is connected to the controller 150, the controller 150 controls the driving unit 40 in accordance with the heating temperature input to the heater 20 to lift the heater 20.
  • FIGS. 1 and 2 is a view schematically showing a state in which the heater shown in FIG. 1 is lowered.
  • the heater 20 is spaced apart from the bottom of the heating plate 10, and the distance between the heater 20 and the heating plate 10 is d 1 , and The temperature is T. At this time, the heat transfer amount transferred to the heating plate 10 is Q 1 , the substrate (W) may be a primary process in a state heated to a constant heating temperature.
  • the heater 20 descends through the driving unit 40, and the heater 20 and the heating plate 10 are separated from each other.
  • the heat energy transmitted to the heating plate 10 by the lowering of the heater 20 while the preset heating temperature of the preset heater 20 is maintained equal to T is Q 2.
  • the substrate W may be a secondary process at a heating temperature lower than the primary process. In this case, the heating temperature can be lowered easily and quickly through the lowering of the heater 20.
  • the heater 20 is raised through the driving unit 40, and the distance between the heater 20 and the heating plate 10 is d 2 (> d 1).
  • the heat energy transmitted to the heating plate 10 by the rise of the heater 20 while the predetermined heat generation temperature of the heater 20 is kept equal to T may be Q 2 (> Q 1 ). have.
  • the substrate W may be a secondary process at a heating temperature higher than the primary process.
  • the temperature T of the heater 20 can be increased, and when the secondary heating temperature is significantly larger than the primary heating temperature, the output of the heater 20 is increased.
  • the raising method may be effective, but when the secondary heating temperature is not significantly greater than the primary heating temperature, the method of adjusting the heating temperature by raising and lowering the heater 20 may be performed in terms of the time required to adjust the temperature or the heating temperature. It may be advantageous in terms of uniformity.
  • the discharge plate 13 is provided on the side surface of the lower end of the heating plate (10).
  • the discharge plate 13 may be made of quartz and installed along the circumference of the heating plate 10.
  • the discharge plate 13 is fixed to the inner wall of the chamber body 1 is located in the lower portion of the passage (8), the discharge plate 13 may have a circular ring shape.
  • the unreacted gas or reaction product described later is moved toward the discharge port 55 along the discharge hole 14 formed in the inner circumferential surface of the discharge plate 13 after the cleaning process is completed.
  • it is installed spaced apart below the discharge plate 13, it may further include an auxiliary discharge plate 17 of a circular ring shape.
  • the support bar 18 is installed under the discharge plate 13, and supports the battery plate 13 and the auxiliary discharge plate 17.
  • Support bar 18 may be a plurality, it may be a quartz material.
  • an insulation plate (not shown) for protecting the chamber main body by approaching the bottom of the chamber main body while the heater 20 moves up and down may be installed around the lifting part of the heater.
  • the inside of the substrate processing apparatus 100 may further include a bellows 120 to process the substrate W to maintain an internal atmosphere in a vacuum state and to block an atmosphere outside the substrate processing apparatus 100.
  • the bellows 120 may be connected to one side of the upper side of the lower fixing ring 37 and one side of the lower side of the upper fixing ring 34 installed at the lower portion of the through hole 31 formed in the bottom surface of the chamber body 1.
  • the bellows 120 is preferably formed in an annular shape, and is a compressible and extensible member, and is positioned between the upper fixing ring 34 and the lower fixing ring 37 while wrapping the support shaft 30.
  • a chamber cover 2 is provided at an upper portion of the substrate processing apparatus 100.
  • the chamber cover 2 closes the chamber body 2 with the upper portion open to make an inner space for the process for the substrate W.
  • the housing 4 may be further included along the outer surface of the chamber cover 2.
  • the chamber cover 2 may include a plasma generator to make the source gas (H 2 or N 2 ) in a radical state.
  • the plasma generator may preferably use an ICP antenna 70.
  • the ICP antenna 70 is connected to an RF generator through an input line (not shown), and a matcher (not shown) may be provided between the ICP antenna 70 and the high frequency power source.
  • a matcher (not shown) may be provided between the ICP antenna 70 and the high frequency power source.
  • the supplied high frequency current is supplied to the ICP antenna 70.
  • the ICP antenna 70 converts a high frequency current into a magnetic field, and generates a plasma from a source gas supplied inside the substrate processing apparatus.
  • the source gas flows into the internal space of the substrate processing apparatus 100 from the gas supply port 63 formed at the upper portion of the chamber cover 2.
  • Source gas (hydrogen or nitrogen) supplied from the first gas storage tank 60 is primarily introduced through a block plate 80.
  • the block plate 80 is fixed to the ceiling surface of the chamber cover 2, the source gas is filled in the space formed between the chamber cover 2 and the block plate 80, the gas injection formed on the lower surface of the block plate 80 It diffuses through the holes 81.
  • the cleaning process for the substrate W may be a dry etching process using hydrogen (H * ) and NF 3 gas in a radical state that has undergone a plasma process, thereby forming silicon formed on the surface of the substrate (W).
  • the etching process can be performed on the oxide film.
  • the primarily diffused hydrogen H 2 is changed into hydrogen H * in the radical state through the ICP antenna 70 and passes through the first shower head 83.
  • the first shower head 83 is sikimyeo diffusion material in the state of hydrogen radicals (H *) with a plurality of injection holes 84, and moves the hydrogen (H *) is spread evenly in the lower direction.
  • Injection ring 66 is installed between the chamber cover (2) and the chamber body (1).
  • the injection ring 66 may be made of aluminum and fixedly installed at the lower end of the chamber cover 2.
  • the injection ring 66 includes an injection hole 68, and receives the second gas from the second gas storage tank 65 through the injection hole 68 to allow the second gas to flow into the substrate processing apparatus 100. do.
  • the introduced gas may be nitrogen fluoride (NF 3 ).
  • Nitrogen fluoride (NF 3 ) introduced through the injection port 68 meets the hydrogen (H * ) in the radical state between the first showerhead 83 and the second showerhead (87), thereby the following reaction (1)
  • Nitrogen fluoride is reduced to produce an intermediate product such as NH x F y (x, y being any integer).
  • the intermediate product passes over the substrate W through a second showerhead 87 located below the spray ring 66.
  • the second shower head 87 has a plurality of injection holes 88, like the first shower head 83, and the hydrogen H * and the injection ring 66 in the radical state passing through the first shower head 83. Re-diffusion of nitrogen fluoride (NF 3 ) introduced through) to move the intermediate product on the substrate (W).
  • NF 3 nitrogen fluoride
  • the intermediate product is highly reactive with the silicon oxide film (SiO 2 ), when the intermediate product reaches the surface of the silicon substrate, the intermediate product selectively reacts with the silicon oxide film to react with the reaction product ((NH 4 ) 2 SiF 6 ) Is generated.
  • the reaction product is pyrolyzed to form a pyrolysis gas and evaporates as shown in the following Reaction Equation (3), and as a result, the silicon oxide film may be removed from the substrate surface.
  • the pyrolysis gas includes a fluorine-containing gas such as HF gas or SiF 4 gas.
  • the cleaning process includes a reaction process for producing a reaction product and a heating process for pyrolyzing the reaction product, and the reaction process and the heating process may be performed together in a chamber.
  • the internal space of the substrate processing apparatus 100 is a place where a process is performed, and maintains a vacuum atmosphere at a state lower than atmospheric pressure during the process.
  • the exhaust port 90 is formed on one side of the chamber body 1 to exhaust the reaction by-products and unreacted gases. The reaction products are discharged by the exhaust pump 50 connected to the exhaust port 90.
  • the discharge plate and the auxiliary discharge plate are respectively installed around the heating plate, the support bar 18 supports the discharge plate and the auxiliary discharge plate.
  • the discharge plate and the auxiliary discharge plate each have through holes, and the reaction by-product and unreacted gas flow through the through holes to the exhaust port.
  • the reaction by-products and the unreacted gas are radicals and reactive gases in the reaction zone, unreacted radical generating gas, by-products when plasmatizing, carrier gas, and the like, and are sucked by the exhaust pump 50 to exhaust the exhaust line. Can be discharged through (not shown).
  • the present invention can be applied to various substrate processing processes including a deposition process.
  • plasma generation process described in the embodiment has been described using an inductively coupled plasma (ICP) process as an example, it may be applied by various plasma processes, and various targets other than the substrate W described in the embodiment may be applied. It can be applied to.
  • ICP inductively coupled plasma
  • the exhaust port 90 may be located at one side of the chamber body 1, and as shown in FIG. 3, it may be located at the center of the chamber body 1.
  • the lower port 110 may be connected to the open lower portion of the chamber body 1.
  • An exhaust port 90 may be formed at one side of the lower port 90, and as described above, the unreacted gas and the reaction product may be forcedly exhausted through the exhaust pump 50 connected to the exhaust port 90. .
  • the present invention can be applied to various types of semiconductor manufacturing equipment and manufacturing methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

본 발명의 일 실시예에 의하면, 기판 처리 장치는, 기판에 대한 공정이 이루어지는 내부공간을 제공하는 챔버; 상기 챔버의 내부에 고정 설치되며, 상부에 상기 기판이 놓쳐지는 히팅 플레이트; 상기 히팅 플레이트의 하부에 이격 설치되며, 상기 히팅 플레이트를 가열하는 히터; 및 상기 히터를 승강하는 승강 모듈을 포함한다.

Description

히터 승강형 기판 처리 장치
본 발명은 기판 처리 장치에 관한 것으로, 더욱 상세하게는 히터를 승강하여 기판의 온도를 제어하는 기판 처리 장치에 관한 것이다.
통상적인 선택적 에피택시 프로세스(selective epitaxy process)는 증착 반응 및 식각 반응을 수반한다. 증착 및 식각 반응은 다결정층 및 에피택셜 층에 대해 비교적 상이한 반응 속도로 동시에 발생한다. 증착 프로세스 중에, 적어도 하나의 제2층상에, 기존의 다결정층 및/또는 비결정층이 증착되는 동안, 에피택셜 층은 단결정 표면상에 형성된다. 그러나 증착된 다결정층은 일반적으로 에피택셜 층보다 빠른 속도로 식각된다. 따라서, 부식 가스의 농도를 변화시킴으로써, 네트 선택적 프로세스(net selective process)가 에피택시 재료의 증착 및 제한된 또는 제한되지 않은 다결정 재료의 증착을 가져온다. 예를 들어, 선택적 에피택시 프로세스는, 증착물이 스페이서 상에 남아있지 않으면서 단결정 실리콘 표면상에 실리콘 함유 재료의 에피층(epilayer)의 형성을 가져올 수 있다.
선택적 에피택시 프로세스는 일반적으로 몇 가지 단점을 가진다. 이러한 에피택시 프로세스 중에 선택성을 유지시키기 위해, 전구체의 화학적 농도 및 반응 온도가 증착 프로세스에 걸쳐서 조절 및 조정되어야 한다. 충분하지 않은 실리콘 전구체가 공급되면, 식각 반응이 활성화되어 전체 프로세스가 느려진다. 또한, 기판 피처의 식각에 대해 해가 일어날 수 있다. 충분하지 않은 부식액 전구체가 공급되면, 증착 반응은 기판 표면에 걸쳐서 단결정 및 다결정 재료를 형성하는 선택성(selectivity)이 감소할 수 있다. 또한, 통상적인 선택적 에피택시 프로세스는 약 800℃, 약 1,000℃, 또는 그보다 높은 온도와 같은 높은 반응 온도를 일반적으로 요구한다. 이러한 높은 온도는 기판 표면에 대한 가능한 통제되지 않은 질화 반응 및 열 예산(thermal budge) 이유로 인해 제조 프로세스 중에 바람직하지 않다.
본 발명의 목적은 히터를 승강하여 기판의 온도를 제어하는 데 있다.
본 발명의 다른 목적들은 다음의 상세한 설명과 도면으로부터 보다 명확해질 것이다.
본 발명의 일 실시예에 의하면, 기판에 대한 공정이 이루어지는 내부공간을 제공하는 챔버; 상기 챔버의 내부에 고정 설치되며, 상부에 상기 기판이 놓여지는 히팅 플레이트; 상기 히팅 플레이트의 하부에 이격 설치되며, 상기 히팅 플레이트를 가열하는 히터; 및 상기 히터를 승강하는 승강 모듈을 포함한다.
상기 기판 처리 장치는 상기 히팅 플레이트의 둘레에 설치되며 상기 챔버에 형성된 상기 기판의 출입 통로의 하부에 위치하는 배출 플레이트를 더 포함할 수 있다.
상기 기판 처리 장치는 상기 배출 플레이트의 하부에 설치되어 상기 배출 플레이트를 지지하는 복수의 지지바를 더 포함할 수 있다.
상기 배출 플레이트는 상기 챔버의 내벽에 고정 설치되어 상기 히팅 플레이트를 지지할 수 있다.
상기 기판 처리 장치는 상기 배출 플레이트의 하부에 이격설치되어 상기 챔버의 내벽에 고정 설치되는 보조 배출 플레이트를 더 포함할 수 있다.
상기 히터의 하부에 연결되며, 상기 히터를 지지하는 지지축; 상기 지지축의 하부에 고정 설치되는 하부 고정링; 및 상기 하부 고정링을 승강하는 구동부를 더 포함할 수 있다.
상기 기판 처리 장치는 상기 챔버의 하부벽에 고정되는 상부 고정링; 및 상기 상부 고정링과 상기 하부 고정링에 연결되며, 상기 챔버 내부공간을 진공상태를 유지하는 벨로우즈를 더 포함할 수 있다.
상기 기판 처리 장치는, 상기 히터의 하부에 연결되며 상기 히터를 지지하는 지지축; 상기 지지축을 승강하는 구동부; 그리고 상기 히터에 입력된 가열온도에 따라 상기 구동부를 제어하여 상기 히팅 플레이트와 상기 히터의 이격거리를 조절하는 제어기를 더 포함할 수 있다.
상기 기판 처리 장치는 상기 히팅 플레이트의 상부면에 고정 설치되어 상부에 놓여진 상기 기판을 지지하는 복수의 리프트핀을 더 포함할 수 있다.
상기 기판 처리 장치는, 상부가 개방되며, 일측에 상기 기판이 출입하는 통로가 형성되는 챔버본체; 상기 챔버본체의 개방된 상부를 폐쇄하는 챔버덮개; 및 상기 챔버본체의 측벽에 형성되는 배기포트를 더 포함할 수 있다.
상기 기판 처리 장치는, 상부가 개방되며, 일측에 상기 기판이 출입하는 통로가 형성되는 챔버본체; 상기 챔버본체의 개방된 상부를 폐쇄하는 챔버덮개; 상기 챔버본체의 개방된 하부에 연결된 하부포트; 및 상기 하부포트에 형성되는 배기포트를 더 포함할 수 있다.
상기 기판 처리 장치는, 상부가 개방되며, 일측에 상기 기판이 출입하는 통로가 형성되는 챔버본체; 상기 챔버본체의 개방된 상부를 폐쇄하는 챔버덮개; 상기 챔버덮개의 상부에 형성되며, 제1 가스를 공급하는 가스공급구; 상기 챔버덮개의 외측을 감싸도록 설치되며, 상기 챔버덮개 내부에 자기장을 형성하여 상기 제1 가스로부터 플라즈마를 생성하는 안테나; 및 상기 챔버본체와 상기 챔버덮개의 사이에 고정 설치되며, 제2 가스를 공급하는 분사링을 더 포함할 수 있다.
상기 분사링의 상부에 설치되며, 복수의 제1 분사홀들을 가지는 제1 샤워헤드; 및 상기 분사링의 하부에 위치하며, 복수의 제2 분사홀들을 가지는 제2 샤워헤드를 더 포함할 수 있다.
본 발명의 일 실시예에 의하면 히터를 승강하여 기판의 온도를 제어할 수 있다.
도 1은 본 발명의 일 실시예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 2는 도 1에 도시한 히터가 하강한 모습을 개략적으로 나타내는 도면이다.
도 3은 본 발명의 다른 실시예에 따른 기판처리장치를 개략적으로 나타내는 도면이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도 1 및 도 2를 참고하여 더욱 상세히 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.
한편, 이하에서 산화막 제거 공정(세정공정)을 예로 들어 설명하고 있으나, 본 발명은 증착공정을 포함하는 다양한 기판 처리 공정에 응용될 수 있다. 또한, 실시예에서 설명하는 플라즈마 생성공정은 ICP(inductively coupled plasma) 방식의 공정을 예로 들어 설명하고 있으나, 다양한 플라즈마 공정에 의해 응용될 수 있으며, 실시예에서 설명하는 기판(W)외에 다양한 피처리체에도 응용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다. 도 1에 도시한 바와 같이, 기판 처리 장치(100)는 챔버본체(1)와 챔버덮개(2)를 포함하며, 기판(W)에 대한 공정이 내부에서 이루어진다. 챔버본체(1)는 상부가 개방된 형상이며, 일측에 형성된 통로(8)를 가진다. 기판(W)은 챔버본체(1)의 일측에 형성된 통로(8)를 통해 챔버의 내부로 출입한다. 게이트밸브(5)는 통로(8)의 외부에 설치되며, 통로(8)는 게이트밸브(5)에 의해 개방되거나 폐쇄될 수 있다. 또한, 챔버본체(1)는 바닥면에 형성된 관통공(31)을 통해 하부로 개방된 구조를 가질 수 있다.
기판(W)은 통로(8)를 통해 기판처리장치(100) 내부로 이동하여 기판(W)을 지지하는 리프트핀(15) 위에 놓여진다. 리프트핀(15)은 히팅 플레이트(10)의 상단부에 일체형으로 설치될 수 있으며, 기판(W)을 안정적으로 지지하기 위해 복수개의 리프트핀(15)들을 포함하는 것이 바람직하다. 또한, 리프트핀(15)들은 기판(W)과 히팅 플레이트(10) 사이의 간격을 일정높이로 유지하며, 리프트핀(15)의 높이에 따라 기판(W)과 히팅 플레이트(10) 사이의 간격은 변화될 수 있다.
히팅 플레이트(10)는 리프트핀(15)의 하단부에 연결되며, 리프트핀들(15)은 상부에 놓여진 기판(W)을 안정적으로 지지한다. 또한, 히팅 플레이트(10)는 하부에 이격되어 위치하는 히터(20)로부터 공급받은 열을 기판(W)에 전달한다. 히팅 플레이트(10)는 히터(20)에서 공급받은 열을 기판(W)에 균일하게 전달시키기 위해 히터(20)의 면적보다 더 넓고, 기판(W)의 형상과 대응되는 원형 디스크 형상일 수 있다. 또한, 히팅 플레이트(10)는 열전도율이 우수한 재료이며, 고온에 변형이 적은 재료가 적합하다. 바람직하게는 히팅 플레이트(10)는 석영 또는 석영을 코팅한 재질일 수 있다.
히터(20)는 히팅 플레이트(10)의 하부에 이격되어 위치하며, 히팅 플레이트(10)를 통해 기판(W)에 열을 가한다. 히터(20)는 외부전원(도시안함)으로부터 전류를 공급받아 발열하며, 히터(20)의 하부에는 승강모듈이 설치된다. 승강모듈은 히터(20)를 승강하며, 기판(W)의 가열온도는 히터(20)의 승강에 따라 조절될 수 있다.
1차 가열온도보다 높은 2차 가열온도로 기판(W)을 가열하는 경우, 히터(20)의 출력을 높임으로써 가열온도를 높게 설정할 수 있다. 그러나, 1차 가열온도보다 낮은 2차 가열온도로 기판(W)을 가열하는 경우, 히터(20)의 출력을 낮추더라도 히터(20)에 잔존하는 열로 인해 히터(20)의 가열온도를 쉽게 낮출 수 없다. 이로 인해, 히터(20)를 냉각하기 위한 대기시간이 소요되며, 이로 인해 공정시간이 지연되는 문제가 있다.
또한, 위에서 설명한 방법은 하나의 챔버 내에서 1차 가열온도 및 2차 가열온도를 만족하는 경우에 해당하나, 별도의 챔버를 통해 1차 가열 및 2차 가열이 이루어질 경우, 기판(W)의 이동으로 인한 기판(W)의 오염가능성 및 이동시간이 소요되는 문제가 발생한다.
따라서, 구동부(40)를 통해 히터(20)를 승강하여 히팅 플레이트(10)(또는 기판(W))와 히터(20)의 이격거리를 조절하여 기판(W)의 가열온도를 쉽고 빠르게 조절할 수 있으며, 이는 히터(20)로부터 히팅 플레이트(10)(또는 기판W))에 전달되는 열전달량은 이격거리에 반비례한 원리를 통해 설명될 수 있다. 본 실시예에서는 히터(20)를 승강하는 것으로 설명하고 있으나, 이와 달리, 히팅 플레이트(10) 또는 리프트핀(15)을 승강하여 이격거리를 조절할 수 있으며, 이를 통해 기판(W)의 가열온도를 쉽게 조절할 수 있다.
승강모듈은 히터(20)의 하부에 위치하며, 히터(20)를 승강시키기 위해 지지축(30)과 하부 고정링(37) 및 구동부(40)를 포함한다. 지지축(30)은 히터(20)의 하단부에 위치하며, 히터(20)를 안정적으로 지지한다. 지지축(30)은 원통형일 수 있으며, 히터(20)와 함께 상하로 이동할 수 있다. 지지축(30)의 하단부에는 하부 고정링(37)이 설치되며, 지지축(30)의 하단부를 감싸는 링(ring) 형태일 수 있다. 하부 고정링(37)은 구동부(40)에 의해 승강하며, 하부 고정링(37)의 승강에 의해 지지축(30) 및 히터(20)도 함께 승강한다. 구동부(40)는 동력을 전달하는 모터일 수 있으며, 하부 고정링(37)은 모터의 회전에 의해 승강 할 수 있다. 한편, 구동부가 하부 고정링(37)을 승강하는 방법은 모터뿐만 아니라, 레일 또는 엘리베이터 샤프트 및 하부 고정링(37)을 승강하기 위한 다양한 방법을 사용할 수 있다. 또한, 구동부(40)는 제어기(150)와 연결되며, 제어기(150)는 히터(20)에 입력된 가열온도에 따라 구동부(40)를 제어하여 히터(20)를 승강한다.
히터(20)를 승강함으로서 기판(W)의 가열온도를 조절하는 과정을 도 1 및 도 2를 참고하여 설명하기로 한다. 도 2는 도 1에 도시한 히터가 하강한 상태를 개략적으로 나타내는 도면이다.
도 1에 도시한 바와 같이, 히터(20)는 히팅 플레이트(10)의 하부에 이격되어 위치하며, 히터(20)와 히팅 플레이트(10)의 이격된 거리가 d1이고, 히터(20)의 온도는 T이다. 이때, 히팅 플레이트(10)에 전달되는 열전달량은 Q1이며, 기판(W)은 일정한 가열온도로 가열된 상태에서 1차 공정이 이루어질 수 있다.
이후, 1차 공정보다 낮은 가열온도에서 2차 공정을 진행할 경우, 도 2에 도시한 바와 같이, 히터(20)는 구동부(40)를 통해 하강하며, 히터(20)와 히팅 플레이트(10)의 거리를 d2(<d1)로 이격시킴으로써 기설정된 히터(20)의 발열온도가 T와 동일하게 유지된 상태에서 히터(20)의 하강에 의해 히팅 플레이트(10)에 전달된 열에너지는 Q2(<Q1)가 될 수 있다. 이때, 기판(W)은 1차 공정보다 낮은 가열온도에서 2차 공정이 이루어질 수 있다. 이 경우, 히터(20)의 하강을 통해 가열온도를 쉽고 빠르게 낮출 수 있다.
반대로, 1차 공정보다 높은 가열온도에서 2차 공정을 진행할 경우, 히터(20)는 구동부(40)를 통해 상승하며, 히터(20)와 히팅 플레이트(10)의 거리를 d2(>d1)로 이격시킴으로써 기설정된 히터(20)의 발열온도가 T와 동일하게 유지된 상태에서 히터(20)의 상승에 의해 히팅 플레이트(10)에 전달된 열에너지는 Q2(>Q1)가 될 수 있다. 이때, 기판(W)은 1차 공정보다 높은 가열온도에서 2차 공정이 이루어질 수 있다. 반면, 앞서 설명한 바와 같이, 히터(20)의 출력을 높임으로써 히터(20)의 온도 T를 증가시킬 수 있으며, 2차 가열온도가 1차 가열온도보다 상당히 큰 경우, 히터(20)의 출력을 높이는 방법이 효과적일 수 있으나, 2차 가열온도가 1차 가열온도보다 상당히 크지 않은 경우, 히터(20)의 승강을 통해 가열온도를 조절하는 방법이 온도를 조절하는 데 소요되는 시간 측면에서나 가열온도의 균일성 측면에서 유리할 수 있다.
또한, 도 1에 도시한 바와 같이, 히팅 플레이트(10)의 하단부의 측면에는 배출 플레이트(13)가 설치된다. 배출 플레이트(13)는 석영 재질 일 수 있으며, 히팅 플레이트(10)의 둘레를 따라 설치된다. 또한, 배출 플레이트(13)는 챔버본체(1)의 내벽에 고정 설치되어 통로(8)의 하부에 위치하며, 배출 플레이트(13)는 원형링 형상일 수 있다. 후술하는 미반응가스 또는 반응생성물은 세정공정을 마친 후에, 배출 플레이트(13)의 내주면에 형성된 배출홀(14)을 따라 배출포트(55) 방향으로 이동된다. 또한, 배출 플레이트(13)의 하부에 이격되어 설치되며, 원형링 형상의 보조 배출 플레이트(17)를 더 포함될 수 있다. 또한, 지지바(18)는 배출 플레이트(13)의 하부에 설치되며, 배츨 플레이트(13)와 보조 배출 플레이트(17)를 지지한다. 지지바(18)는 복수개일 수 있으며, 석영 재질일 수 있다. 뿐만 아니라, 히터(20)가 승강하면서 챔버본체 바닥면에 근접함으로써 챔버 본체를 보호하기 위한 단열판(도시안함)이 히터의 승강부 주변에 설치될 수 있다.
기판처리장치(100)의 내부는 기판(W)을 처리하는데 있어서, 내부 분위기를 진공상태로 유지하고 기판처리장치(100) 외부의 분위기를 차단하기 위해 벨로우즈(120)를 더 포함할 수 있다. 벨로우즈(120)는 하부 고정링(37)의 상부의 일측과 챔버본체(1)의 바닥면에 형성된 관통공(31)의 하부에 설치된 상부 고정링(34)의 하부의 일측과 연결될 수 있다. 벨로우즈(120)는 환형으로 형성되는 것이 바람직하며, 압축 및 신장가능한 부재로써, 지지축(30)을 감싼 상태로 상부고정링(34)과 하부고정링(37) 사이에 위치한다.
도 1에 도시하는 바와 같이 기판처리장치(100)의 상부에는 챔버덮개(2)가 설치된다. 챔버덮개(2)는 상부가 개방된 챔버본체(2)를 폐쇄하여 기판(W)에 대한 공정을 진행하기 위한 내부공간을 만든다. 챔버덮개(2)의 외면을 따라 하우징(4)을 더 포함할 수 있다. 챔버덮개(2)의 내부에는 소스가스(H2 또는 N2)를 라디컬 상태로 만들기 위해 플라즈마 발생장치를 포함할 수 있다. 플라즈마 발생장치는 바람직하게는 ICP 안테나(70)를 이용할 수 있다.
ICP 안테나(70)는 입력라인(도시안함)을 통해 고주파 전원(RF generator)에 연결되며, ICP 안테나(70)와 고주파 전원 사이에는 정합기(도시안함)가 제공될 수 있다. 고주파 전원을 통해 고주파 전류를 공급하면, 공급된 고주파 전류는 ICP 안테나(70)에 공급된다. ICP 안테나(70)는 고주파 전류를 자기장으로 변환하며, 기판처리장치의 내부에 공급된 소스가스로부터 플라즈마를 생성한다.
소스가스는 챔버덮개(2)의 상부에 형성되는 가스공급구(63)으로부터 기판처리장치(100) 내부 공간으로 유입된다. 제1 가스 저장탱크(60)로부터 공급된 소스가스(수소 또는 질소)는 1차적으로 블록 플레이트(block plate)(80)를 통해 유입된다. 블록 플레이트(80)는 챔버덮개(2)의 천정면에 고정되며, 소스가스는 챔버덮개(2)와 블록 플레이트(80) 사이에 형성된 공간에 채워진 후 블록 플레이트(80)의 하면에 형성된 가스 분사홀들(81)을 통해 확산된다.
예를 들어, 기판(W)에 대한 세정 공정은 플라즈마 공정을 거친 라디칼 상태의 수소(H*)와 NF3 가스를 사용하는 건식 에칭 공정일 수 있으며, 이를 통해 기판(W)의 표면에 형성된 실리콘 산화막에 대한 에칭 공정을 진행할 수 있다. 앞서 상술한 바와 같이, 1차적으로 확산된 수소(H2)는 ICP 안테나(70)를 통해 라디칼 상태의 수소(H*)로 변화되며, 제1 샤워헤드(83)를 통과한다. 제1 샤워헤드(83)는 복수개의 분사홀(84)들을 통해 라디칼 상태의 수소(H*)를 재확산시키며, 수소(H*)는 하부방향으로 고르게 퍼져 이동한다.
분사링(66)은 챔버덮개(2)와 챔버본체(1) 사이에 설치된다. 분사링(66)은 알루미늄 재질일 수 있으며, 챔버덮개(2)의 하단부에 고정 설치된다. 또한, 분사링(66)은 분사구(68)를 포함하며, 분사구(68)를 통해 제2 가스 저장탱크(65)로부터 제2 가스를 공급받아 기판처리장치(100) 내부로 제2 가스가 유입된다. 유입된 가스는 불화질소(NF3) 일 수 있다. 분사구(68)를 통해 유입된 불화질소(NF3)는 제1 샤워헤드(83)와 제2 샤워헤드(87) 사이에서 라디칼 상태의 수소(H*)와 만나며, 이로 인해 아래 반응식(1)과 같이 불화질소가 환원되어 NHxFy(x,y는 임의의 정수)와 같은 중간 생성물이 생성된다.
Figure PCTKR2013002773-appb-I000001
중간 생성물은 분사링(66)의 하부에 위치한 제2 샤워헤드(87)를 통과하여 기판(W)상으로 이동한다. 제2 샤워헤드(87)는 제1 샤워헤드(83)와 같이 복수개의 분사홀(88)을 가지며, 제1 샤워헤드(83)를 통과한 라디칼 상태의 수소(H*)와 분사링(66)을 통해 유입된 불화질소(NF3)를 재확산하여 중간생성물을 기판(W)상으로 이동시킨다.
중간 생성물은 실리콘 산화막(SiO2)과 반응성이 높기 때문에, 중간 생성물이 실리콘 기판의 표면에 도달하면 실리콘 산화막과 선택적으로 반응하여 아래 반응식(2)과 같이 반응 생성물((NH4)2SiF6)이 생성된다.
Figure PCTKR2013002773-appb-I000002
이후, 기판(W)을 100도 이상으로 가열하면 아래 반응식(3)과 같이 반응 생성물이 열분해하여 열분해 가스가 되어 증발되므로, 결과적으로 기판 표면으로부터 실리콘 산화막이 제거될 수 있다. 아래 반응식(3)과 같이 , 열분해 가스는 HF 가스나 SiF4 가스와 같이 불소를 함유하는 가스가 포함된다.
Figure PCTKR2013002773-appb-I000003
위와 같이, 세정 공정은 반응 생성물을 생성하는 반응 공정 및 반응 생성물을 열분해하는 히팅 공정을 포함하며, 반응 공정 및 히팅 공정은 챔버 내에서 함께 이루어질 수 있다.
또한, 기판처리장치(100)의 내부공간은 공정이 이루어지는 곳으로서, 공정이 진행되는 동안 대기압보다 낮은 상태의 진공 분위기를 유지된다. 또한, 앞서 설명한 세정공정이 진행된 후, 반응부산물 및 미반응가스들을 배기하기 위해 챔버본체(1)의 일측면부에는 배기포트(90)가 형성된다. 배기포트(90)에 연결된 배기펌프(50)에 의해 반응 생성물들은 배출된다.
앞서 설명한 바와 같이, 배출 플레이트와 보조 배출 플레이트는 히팅 플레이트의 둘레에 각각 설치되며, 지지바(18)는 배출 플레이트와 보조 배출 플레이트을 지지한다. 배출 플레이트와 보조 배출 플레이트는 각각 관통홀들을 가지며, 반응 부산물 및 미반응가스는 관통홀들을 통해 배기포트로 이동한다. 반응 부산물 및 미반응가스는 앞서 설명한 바와 같이, 반응영역 내부의 라디칼과 반응성 가스, 미반응 라디칼 생성가스, 플라즈마화할 때의 부생성물, 캐리어 가스 등이며, 배기펌프(50)에 의해 흡입되어 배기라인(도시안함)을 통해 배출될 수 있다.
본 발명을 바람직한 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 바람직한 실시예에 한정되지 않는다.
이하, 본 발명의 실시예를 첨부된 도 3을 참고하여 더욱 상세히 설명한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다. 이하에서는 앞서 설명한 실시예와 구별되는 내용에 대해서만 설명하기로 하며, 이하에서 생략된 설명은 앞서 설명한 내용으로 대체될 수 있다.
한편, 이하에서 산화막 제거 공정(세정공정)을 예로 들어 설명하고 있으나, 본 발명은 증착공정을 포함하는 다양한 기판 처리 공정에 응용될 수 있다. 또한, 실시예에서 설명하는 플라즈마 생성공정은 ICP(inductively coupled plasma) 방식의 공정을 예로 들어 설명하고 있으나, 다양한 플라즈마 공정에 의해 응용될 수 있으며, 실시예에서 설명하는 기판(W)외에 다양한 피처리체에도 응용될 수 있다.
도 3은 본 발명의 다른 실시예에 따른 기판처리장치를 개략적으로 나타내는 도면이다. 도 1에 도시한 바와 같이, 배기포트(90)는 챔버본체(1)의 일측면에 위치 할 수 있으며, 도 3에 도시한 바와 같이, 챔버본체(1)의 중앙부에 위치할 수 있다. 하부포트(110)는 챔버본체(1)의 개방된 하부에 연결될 수 있다. 하부포트(90)의 일측면에는 배기포트(90)가 형성될 수 있으며, 앞서 설명한 바와 같이 배기포트(90)에 연결된 배기펌프(50)를 통해 미반응가스 및 반응 생성물을 강제 배기시킬 수 있다.
본 발명을 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예에 한정되지 않는다.
본 발명은 다양한 형태의 반도체 제조설비 및 제조방법에 응용될 수 있다.

Claims (13)

  1. 기판에 대한 공정이 이루어지는 내부공간을 제공하는 챔버;
    상기 챔버의 내부에 고정 설치되며, 상부에 상기 기판이 놓여지는 히팅 플레이트;
    상기 히팅 플레이트의 하부에 이격 설치되며, 상기 히팅 플레이트를 가열하는 히터; 및
    상기 히터를 승강하는 승강 모듈을 포함하는, 기판 처리 장치.
  2. 제1항에 있어서,
    상기 기판 처리 장치는 상기 히팅 플레이트의 둘레에 설치되는 배출 플레이트를 더 포함하며,
    상기 배출 플레이트는 상기 챔버에 형성된 상기 기판의 출입 통로의 하부에 위치하는, 기판 처리 장치.
  3. 제2항에 있어서,
    상기 기판 처리 장치는 상기 배출 플레이트의 하부에 설치되어 상기 배출 플레이트를 지지하는 복수의 지지바를 더 포함하는, 기판 처리 장치.
  4. 제2항에 있어서,
    상기 배출 플레이트는 상기 챔버의 내벽에 고정 설치되어 상기 히팅 플레이트를 지지하는, 기판 처리 장치.
  5. 제2항에 있어서,
    상기 기판 처리 장치는 상기 배출 플레이트의 하부에 이격설치되어 상기 챔버의 내벽에 고정 설치되는 보조 배출 플레이트를 더 포함하는, 기판 처리 장치.
  6. 제1항에 있어서,
    상기 기판 처리 장치는,
    상기 히터의 하부에 연결되며, 상기 히터를 지지하는 지지축;
    상기 지지축의 하부에 고정 설치되는 하부 고정링; 및
    상기 하부 고정링을 승강하는 구동부를 더 포함하는, 기판 처리 장치.
  7. 제6항에 있어서,
    상기 기판 처리 장치는,
    상기 챔버의 하부벽에 고정되는 상부 고정링; 및
    상기 상부 고정링과 상기 하부 고정링에 연결되며, 상기 챔버 내부공간을 진공상태를 유지하는 벨로우즈를 더 포함하는, 기판 처리 장치.
  8. 제1항에 있어서,
    상기 기판 처리 장치는,
    상기 히터의 하부에 연결되며, 상기 히터를 지지하는 지지축;
    상기 지지축을 승강하는 구동부;
    상기 히터에 입력된 가열온도에 따라 상기 구동부를 제어하여 상기 히팅 플레이트와 상기 히터의 이격거리를 조절하는 제어기를 더 포함하는, 기판 처리 장치.
  9. 제1항에 있어서,
    상기 기판 처리 장치는,
    상기 히팅 플레이트의 상부면에 고정 설치되어 상부에 놓여진 상기 기판을 지지하는 복수의 리프트핀을 더 포함하는, 기판 처리 장치.
  10. 제1항에 있어서,
    상기 기판 처리 장치는,
    상부가 개방되며, 일측에 상기 기판이 출입하는 통로가 형성되는 챔버본체;
    상기 챔버본체의 개방된 상부를 폐쇄하는 챔버덮개; 및
    상기 챔버본체의 측벽에 형성되는 배기포트를 더 포함하는, 기판 처리 장치.
  11. 제1항에 있어서,
    상기 기판 처리 장치는,
    상부가 개방되며, 일측에 상기 기판이 출입하는 통로가 형성되는 챔버본체;
    상기 챔버본체의 개방된 상부를 폐쇄하는 챔버덮개;
    상기 챔버본체의 개방된 하부에 연결된 하부포트; 및
    상기 하부포트에 형성되는 배기포트를 더 포함하는, 기판 처리 장치.
  12. 제1항에 있어서,
    상기 기판 처리 장치는,
    상부가 개방되며, 일측에 상기 기판이 출입하는 통로가 형성되는 챔버본체;
    상기 챔버본체의 개방된 상부를 폐쇄하는 챔버덮개;
    상기 챔버덮개의 상부에 형성되며, 제1 가스를 공급하는 가스공급구;
    상기 챔버덮개의 외측을 감싸도록 설치되며, 상기 챔버덮개 내부에 자기장을 형성하여 상기 제1 가스로부터 플라즈마를 생성하는 안테나; 및
    상기 챔버본체와 상기 챔버덮개의 사이에 고정 설치되며, 제2 가스를 공급하는 분사링을 더 포함하는, 기판 처리 장치.
  13. 제12항에 있어서,
    상기 분사링의 상부에 설치되며, 복수의 제1 분사홀들을 가지는 제1 샤워헤드; 및
    상기 분사링의 하부에 위치하며, 복수의 제2 분사홀들을 가지는 제2 샤워헤드를 더 포함하는, 기판 처리 장치.
PCT/KR2013/002773 2012-04-10 2013-04-03 히터 승강형 기판 처리 장치 WO2013154297A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015500369A JP5996084B2 (ja) 2012-04-10 2013-04-03 ヒータ昇降型基板処理装置
CN201380019312.0A CN104246978B (zh) 2012-04-10 2013-04-03 加热器可提升型基板处理装置
US14/385,511 US9644895B2 (en) 2012-04-10 2013-04-03 Heater moving type substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0037299 2012-04-10
KR20120037299A KR101312592B1 (ko) 2012-04-10 2012-04-10 히터 승강형 기판 처리 장치

Publications (1)

Publication Number Publication Date
WO2013154297A1 true WO2013154297A1 (ko) 2013-10-17

Family

ID=49327821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002773 WO2013154297A1 (ko) 2012-04-10 2013-04-03 히터 승강형 기판 처리 장치

Country Status (6)

Country Link
US (1) US9644895B2 (ko)
JP (1) JP5996084B2 (ko)
KR (1) KR101312592B1 (ko)
CN (1) CN104246978B (ko)
TW (1) TWI523135B (ko)
WO (1) WO2013154297A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849865A (zh) * 2014-01-09 2016-08-10 株式会社Eugene科技 基板处理装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792332B1 (de) 2013-04-18 2015-03-11 Amann Girrbach AG Anordnung mit zumindest einem zu sinternden Werkstück
EP2792985B1 (de) * 2013-04-18 2014-11-26 Amann Girrbach AG Sintervorrichtung
KR101557016B1 (ko) * 2013-10-17 2015-10-05 주식회사 유진테크 기판 처리장치
TWI569346B (zh) * 2014-01-16 2017-02-01 尤金科技有限公司 基板處理裝置及加熱器之溫度調整方法
TWI662621B (zh) 2015-11-10 2019-06-11 聯華電子股份有限公司 半導體元件及其製作方法
CN107958861A (zh) * 2017-12-07 2018-04-24 德淮半导体有限公司 用于制造半导体装置的设备
TWI685059B (zh) * 2018-12-11 2020-02-11 財團法人國家實驗研究院 半導體反應裝置與方法
KR102253808B1 (ko) * 2019-01-18 2021-05-20 주식회사 유진테크 기판 처리 장치
KR102404571B1 (ko) * 2019-11-05 2022-06-07 피에스케이 주식회사 기판 처리 장치
KR102516340B1 (ko) * 2020-09-08 2023-03-31 주식회사 유진테크 기판 처리 장치 및 기판 처리 장치의 운용 방법
KR102580654B1 (ko) * 2021-09-10 2023-09-20 (주)디바이스이엔지 기판 처리장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020017363A1 (en) * 2000-03-24 2002-02-14 Seiyo Nakashima Substrate processing apparatus and substrate processing method
KR20060053855A (ko) * 2004-07-29 2006-05-22 니혼 에이 에스 에무 가부시키가이샤 듀얼 챔버 플라즈마 처리 장치
KR20100013592A (ko) * 2008-07-31 2010-02-10 주식회사 케이씨텍 원자층 증착 장치
KR20110081691A (ko) * 2010-01-08 2011-07-14 세메스 주식회사 높이 조절이 가능한 히터를 구비한 유기금속 화학 기상 증착 장치
KR20110084616A (ko) * 2010-01-18 2011-07-26 엘아이지에이디피 주식회사 화학기상증착장치 및 화학기상증착장치에 포함된 서셉터의 온도제어방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215619A (en) * 1986-12-19 1993-06-01 Applied Materials, Inc. Magnetic field-enhanced plasma etch reactor
JP3165938B2 (ja) * 1993-06-24 2001-05-14 東京エレクトロン株式会社 ガス処理装置
JP3208008B2 (ja) * 1994-05-24 2001-09-10 東京エレクトロン株式会社 処理装置
US5854468A (en) * 1996-01-25 1998-12-29 Brooks Automation, Inc. Substrate heating apparatus with cantilevered lifting arm
US6307184B1 (en) * 1999-07-12 2001-10-23 Fsi International, Inc. Thermal processing chamber for heating and cooling wafer-like objects
JP2002313730A (ja) 2001-04-10 2002-10-25 Hitachi Kokusai Electric Inc 基板処理装置
JP2002317269A (ja) 2001-04-18 2002-10-31 Hitachi Ltd 半導体装置の製造方法
JP4330315B2 (ja) * 2002-03-29 2009-09-16 東京エレクトロン株式会社 プラズマ処理装置
CN100495655C (zh) * 2003-09-03 2009-06-03 东京毅力科创株式会社 气体处理装置和散热方法
WO2007013605A1 (ja) * 2005-07-28 2007-02-01 Tokyo Electron Limited 基板処理方法および基板処理装置
JP2007059782A (ja) 2005-08-26 2007-03-08 Tokyo Electron Ltd スペーサー部材およびプラズマ処理装置
CN101271869B (zh) * 2007-03-22 2015-11-25 株式会社半导体能源研究所 发光器件的制造方法
JP5822823B2 (ja) * 2009-04-21 2015-11-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 膜厚不均一性および粒子性能を改善するcvd装置
CN102460650B (zh) * 2009-06-24 2014-10-01 佳能安内华股份有限公司 真空加热/冷却装置及磁阻元件的制造方法
US20120055916A1 (en) * 2010-03-01 2012-03-08 Sokudo Co., Ltd. Method and system for thermal treatment of substrates
JP5597463B2 (ja) * 2010-07-05 2014-10-01 東京エレクトロン株式会社 基板処理装置及び基板処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020017363A1 (en) * 2000-03-24 2002-02-14 Seiyo Nakashima Substrate processing apparatus and substrate processing method
KR20060053855A (ko) * 2004-07-29 2006-05-22 니혼 에이 에스 에무 가부시키가이샤 듀얼 챔버 플라즈마 처리 장치
KR20100013592A (ko) * 2008-07-31 2010-02-10 주식회사 케이씨텍 원자층 증착 장치
KR20110081691A (ko) * 2010-01-08 2011-07-14 세메스 주식회사 높이 조절이 가능한 히터를 구비한 유기금속 화학 기상 증착 장치
KR20110084616A (ko) * 2010-01-18 2011-07-26 엘아이지에이디피 주식회사 화학기상증착장치 및 화학기상증착장치에 포함된 서셉터의 온도제어방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849865A (zh) * 2014-01-09 2016-08-10 株式会社Eugene科技 基板处理装置

Also Published As

Publication number Publication date
CN104246978A (zh) 2014-12-24
JP2015517202A (ja) 2015-06-18
US9644895B2 (en) 2017-05-09
TWI523135B (zh) 2016-02-21
JP5996084B2 (ja) 2016-09-21
TW201342510A (zh) 2013-10-16
CN104246978B (zh) 2017-09-01
KR101312592B1 (ko) 2013-09-30
US20150044622A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
WO2013154297A1 (ko) 히터 승강형 기판 처리 장치
WO2014168331A1 (ko) 기판처리장치
WO2015057023A1 (ko) 기판 처리장치
WO2013019062A2 (ko) 에피택셜 공정을 위한 반도체 제조설비
WO2012096529A2 (ko) 반도체 제조에 사용되는 분사부재 및 그것을 갖는 플라즈마 처리 장치
WO2011129492A1 (ko) 가스 분사 유닛 및 이를 이용한 박막 증착 장치 및 방법
WO2013019063A2 (ko) 에피택셜 공정을 위한 반도체 제조설비
WO2013019064A2 (ko) 에피택셜 공정을 위한 반도체 제조설비
WO2012050321A2 (ko) 3차원 구조의 메모리 소자를 제조하는 방법 및 장치
WO2013073886A1 (ko) 위상차를 갖는 반응가스를 공급하는 기판 처리 장치
WO2013073889A1 (ko) 보조가스공급포트를 포함하는 기판 처리 장치
KR101614275B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법 및 기판 처리 장치
WO2013019061A2 (ko) 에피택셜 공정을 위한 반도체 제조설비
WO2012176996A2 (ko) 반도체 제조에 사용되는 분사부재 및 그것을 갖는 기판 처리 장치
WO2015083884A1 (ko) 기판 처리 장치
WO2014123310A1 (en) Substrate support and substrate treating apparatus having the same
WO2012134070A2 (ko) 가스 주입 장치, 원자층 증착장치 및 이 장치를 이용한 원자층 증착방법
WO2014112747A1 (ko) 기판처리장치
WO2016171452A1 (ko) 기판처리장치 및 챔버 세정방법
WO2013115471A1 (ko) 측방배기 방식 기판처리장치
WO2014157835A1 (ko) 기판처리장치
WO2013191414A1 (ko) 기판처리장치
WO2013122311A1 (ko) 기판 처리 모듈 및 이를 포함하는 기판 처리 장치
WO2015072661A1 (ko) 반응 유도 유닛 및 기판 처리 장치 그리고 박막 증착 방법
WO2015083883A1 (ko) 기판 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500369

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14385511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775641

Country of ref document: EP

Kind code of ref document: A1