WO2013147187A1 - 複合中空糸膜及び中空糸膜モジュール - Google Patents

複合中空糸膜及び中空糸膜モジュール Download PDF

Info

Publication number
WO2013147187A1
WO2013147187A1 PCT/JP2013/059595 JP2013059595W WO2013147187A1 WO 2013147187 A1 WO2013147187 A1 WO 2013147187A1 JP 2013059595 W JP2013059595 W JP 2013059595W WO 2013147187 A1 WO2013147187 A1 WO 2013147187A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
porous
layer
composite hollow
Prior art date
Application number
PCT/JP2013/059595
Other languages
English (en)
French (fr)
Inventor
規孝 柴田
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201380028619.7A priority Critical patent/CN104321132A/zh
Priority to US14/386,981 priority patent/US9694313B2/en
Priority to KR1020147026611A priority patent/KR20140134684A/ko
Priority to EP13769353.7A priority patent/EP2832425A4/en
Publication of WO2013147187A1 publication Critical patent/WO2013147187A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/027Nonporous membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Definitions

  • the present invention relates to a polyolefin-based degassing composite hollow fiber for degassing dissolved gas, in which a porous non-porous homogeneous layer having gas permeability is excellent in water resistance, while the outer surface made of a porous material has hydrophilicity Relates to the membrane.
  • carbonated water is used to rinse the surface of the object to be cleaned without charging the object to be cleaned or the nozzle. That is, when ultrapure water is used for cleaning, the object to be cleaned may be charged due to friction with the object to be cleaned due to its high insulating property. In some cases, the circuit may be destroyed. In order to prevent this, carbonated water in which carbon dioxide gas is dissolved in ultrapure water to improve conductivity is used. As a method for producing carbonated water, a method is often used in which dissolved gas in ultrapure water is degassed using a gas permeable hollow fiber membrane gas permeable membrane module, and then a predetermined gas is dissolved using the gas permeable membrane module. It has been.
  • Patent Document 1 As a gas permeable hollow fiber membrane, Patent Document 1 exemplifies a material using linear low density polyethylene as a material for a homogeneous membrane. Patent Document 2 exemplifies a gas permeable hollow fiber membrane made of TPX (polymethylpentene, PMP) having a non-porous outer surface.
  • TPX polymethylpentene
  • an ethylene-vinyl alcohol polymer composite membrane for gas separation membranes comprising an ethylene-vinyl alcohol polymer and an amine compound (Patent Document 3) is used. Illustrated. Moreover, as a method for expressing the hydrophilicity of the film surface, a hydrophilic method using a surfactant is exemplified (Patent Document 4).
  • the gas-permeable hollow fiber membrane described in Patent Document 2 has the merit that the non-porous homogeneous layer itself is easily swelled because it is composed of an ethylene-vinyl alcohol polymer and an amine compound, and is easy to adapt to water. Can not solve the problem of condensed water.
  • an aqueous solution or suspension containing a specific surfactant is applied to the surface, so that the effect of wettability is brought about, but not only is not permanent, but the surfactant is contained in the porous support layer. As a result, there was a problem that the gas permeability was lowered.
  • the pores of the porous layer are blocked with a solution when immersed in a solution of a hydrophilic polymer, and the polymer used for hydrophilization is an ethylene vinyl alcohol copolymer. Further, there is a problem that the surface of the non-porous homogeneous layer is also covered, and the function as a gas permeable membrane is lost due to the high gas barrier property of the polymer.
  • the present invention provides the following degassing composite hollow fiber membrane as means for solving the above problems.
  • a composite hollow fiber membrane having a non-porous homogeneous layer having gas permeability and a porous support layer that supports the homogeneous layer
  • the non-porous homogeneous layer is hydrophobic
  • the porous support layer is A composite hollow fiber membrane, wherein the polyolefin-based resin constituting the resin contains a hydrophilic additive.
  • (2) The composite hollow fiber membrane according to the above (1), wherein the water absorption by the JIS K7029 test method is 2% or more.
  • a composite hollow fiber membrane according to claim 1. The composite hollow fiber membrane according to (4), wherein the content of the hydrophilic additive of the polyolefin resin forming the porous support layer is 0.025 to 5% by mass relative to the mass of the polyolefin resin. .
  • the porous support layer in the region sandwiching the non-porous homogeneous layer is made porous while maintaining the characteristics required for the gas-dissolving (degassing) composite hollow fiber membrane. It is possible to reduce the condensation of water in the support layer, thereby obtaining stable gas dissolution / deaeration performance.
  • the composite hollow fiber membrane of the present invention is a composite hollow fiber having a non-porous homogeneous layer that transmits gas and a hydrophilic porous support layer that supports the homogeneous layer, that is, a porous support layer having a hydrophilic additive. It is a membrane.
  • the hydrophilic additive to be added to the polyolefin resin constituting the porous support layer used in the present invention may be a hydrophilic compound, and can be made into a master batch by melt mixing with the base resin in an extruder. It is preferably a compound that is solid or semi-solid at normal temperature.
  • the hydrophilic additive is preferably a compound known as a hydrophilic surfactant. More specifically, the hydrophilic surfactant includes a group of nonionic surfactants such as fatty acid glyceride, alkoxylated alkylphenol, polyoxyalkylene fatty acid ester, alkylpolyoxyethylene alcohol, polyoxyethylene alkyl ether, and fatty acid amide.
  • R1- Hydrophilic segment
  • R1 is straight-chain alkyl or branched-chain alkyl having 10 to 100 carbon atoms, preferably having 22 to 40 carbon atoms.
  • the hydrophilic segment is composed of single or oligomer units derived from ethylene oxide, propylene oxide, ethylene glycol, epichlorohydrin, acrylic acid, methacrylic acid, ethyleneimine, caprolactone, vinyl alcohol, and vinyl acetate. It is preferable that the structure is repeated 10 to 10.
  • R1- (OCH 2 CH 2) x -OH ( Formula 2)
  • x is a number from 2 to 10.
  • R1 is the same as defined in Formula 1 above.
  • Two or more kinds of compounds having these structures can be used in combination.
  • the average of the number of (OCH 2 CH 2 ) groups added to the alkyl group R 1 in the entire mixture is used as x.
  • One example is CH 3 CH 2 (CH 2 CH 2 ) 13 CH 2 CH 2 (OCH 2 CH 2 ) 2.5 OH.
  • the addition number 2.5 of ethylene oxide, CH 3 CH 2 (CH 2 CH 2) 13 CH 2 CH 2 a by a known measurement method such as FT-IR as a reference (OCH 2 CH 2) group This is an average value obtained for the additional number.
  • hydrophilic additives include Techsurf (trademark) 15560 (manufactured by Techmer TM PM), Unitox (trademark) 480 (manufactured by Baker Hudges inc), Unitox (trademark) 550 (manufactured by Baker Hudges inc) , Etc.
  • Techsurf TM 15560 manufactured by Techmer TM PM
  • Unitox TM 480 manufactured by Baker Hudges inc
  • Unitox (trademark) 550 manufactured by Baker Hudges inc
  • Etc Etc.
  • those selected from the group consisting of Techsurf TM 15560, Unithox TM 480 and Unitox TM 550 are particularly preferred.
  • the hydrophilic additive is about 0.01 to about 10% by mass, preferably about 0.025 to about 5% by mass, and particularly about the mass (solid content) of the polyolefin-based resin forming the porous support layer. Kneading at about 0.1 to about 3% by weight is preferred.
  • the hydrophilicity provided by the hydrophilic additive is stable without loss of performance, even after a continuous time. In particular, even in a porous support layer having a relatively small pore size of 0.1 ⁇ m or less such as a gas permeable membrane, it is possible to stabilize the gas permeation performance by spontaneously discharging condensed water, so that hydrophilicity Addition of additives is effective.
  • the hollow fiber membrane has “hydrophilicity” refers to a state in which a dilute aqueous solution such as water or physiological saline or an alcohol-containing aqueous solution is infiltrated on the surface of the hollow fiber membrane or the hollow fiber membrane. .
  • a dilute aqueous solution such as water or physiological saline or an alcohol-containing aqueous solution
  • Materials that soak up water or dilute aqueous solutions can be classified as hydrophilic.
  • the method for measuring hydrophilicity is by measuring its vertical wicking capacity.
  • the hollow fiber membrane is hydrophilic”. More preferably, the water absorption is 4% or more.
  • the degassing composite hollow fiber membrane of the present invention has a non-porous homogeneous layer having gas permeability.
  • the non-porous homogeneous layer having gas permeability is hydrophobic.
  • permeate gas or “gas permeable” means a property of transmitting only gas without transmitting liquid or the like.
  • non-porous means a solid having no pores and filled with resin.
  • the non-porous homogeneous layer is preferably made of a hydrophobic polymer.
  • the hydrophobic polymer as used herein refers to a polymer that does not contain a block composed of a hydrophilic functional group such as a sulfone group or a hydroxyl group or a hydrophilic repeating unit such as ethylene oxide in the repeating unit.
  • the polymer (hereinafter abbreviated as polymer A) used in the homogeneous layer is preferably a polymer (polyolefin resin) obtained mainly from olefin.
  • a polyolefin polymer obtained by using only olefin, a polyolefin copolymer of olefin and another monomer, or a modified resin thereof may be used.
  • OBC olefin block copolymer
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE linear very low density polyethylene
  • reactor TPO soft polymethylpentene, and the like.
  • additives such as antioxidants, ultraviolet absorbers, lubricants, antiblocking agents, colorants, flame retardants, etc. are added to the polyolefin resin constituting the homogeneous layer without impairing the object of the present invention. Can be added in a range.
  • the porous support layer is not particularly limited as long as it is compatible with the polymer constituting the non-porous homogeneous layer and can form a porous structure (hereinafter abbreviated as polymer B).
  • the polymer B is made of a polyolefin resin or contains a polyolefin resin.
  • the polyolefin resin is contained in an amount of at least 50% by mass, more preferably 70% by mass or more, and still more preferably 90% by mass or more based on the mass of the polymer B.
  • As the polyolefin resin high-density polyethylene, polypropylene, polymethylpentene, or the like is preferable.
  • porous means a state in which a large number of pores having an average pore diameter of 0.01 ⁇ m to 0.5 ⁇ m are arranged in a network.
  • the size of the pores of the porous support layer is not limited as long as sufficient gas permeability and mechanical strength are satisfied.
  • the porous body can be obtained by stretching the stretching temperature T below the Vicat softening point of the polymer B in the stretching step.
  • the porosity of the porous support layer is preferably 30 to 80% by volume with respect to 100% by volume of the entire porous support layer. When the porosity is 30% by volume or more, excellent gas permeability is easily obtained. When the porosity is 80% by volume or less, mechanical strength such as pressure resistance is improved.
  • the porous support layer may contain an antioxidant, an ultraviolet absorber, a lubricant, an antiblocking agent, a colorant, a flame retardant, etc., if necessary, as long as the purpose of the present invention is not impaired.
  • An additive may be added.
  • the composite hollow fiber membrane of the present invention can be obtained by a multilayer composite spinning process and a stretched porous process.
  • the form of the composite membrane constituting the hollow fiber membrane may be a two-layer composite membrane of a non-porous homogeneous layer having gas permeability and a porous support layer, or a non-porous homogeneous membrane having gas permeability. It may be a three-layer composite membrane in which the layers are sandwiched between porous support layers. In particular, it is preferably composed of a composite film having three or more layers.
  • the position of the non-porous homogeneous layer having gas permeability in the composite membrane of three or more layers is preferably disposed within the range of 1/10 to 1/3 from the inside of the hollow fiber membrane.
  • the potting resin is impregnated from the outer peripheral direction of the membrane to produce an anchor effect. Since the non-porous homogeneous layer has a non-porous structure, the potting resin will not be impregnated on the inside, and the more the area embedded in the potting resin, the more the membrane will be bent due to pressure fluctuations in the vicinity of the potting part. Can be prevented from being damaged.
  • the non-porous homogeneous layer polymer is welded in the stretching step when the support layer polymer is made porous. It is not preferable because the inner support layer polymer is dragged to cause defects. Further, if the area is 1/3 or more, the embedding area by the potting resin is reduced, and it is damaged due to the influence of bending or the like, which is not preferable.
  • the thickness of the composite hollow fiber membrane is not particularly limited, but the outer diameter of the hollow fiber membrane is preferably 100 to 2000 ⁇ m. If the outer diameter of the hollow fiber membrane is 100 ⁇ m or more, a gap between the hollow fiber membranes can be easily obtained at the time of manufacturing the hollow fiber membrane module, and the potting resin can easily enter between the hollow fiber membranes. If the outer diameter of the hollow fiber membrane is 2000 ⁇ m or less, the size of the entire module can be reduced even when a hollow fiber membrane module using a large number of hollow fiber membranes is manufactured. As a result, the volume of the potting process portion is also reduced, and it is easy to suppress a decrease in dimensional accuracy due to the shrinkage of the potting resin during the potting process.
  • the film thickness of the hollow fiber membrane is preferably 10 to 200 ⁇ m. If thickness is 10 micrometers or more, mechanical strength will improve. Further, if the thickness is 200 ⁇ m or less, it is easy to suppress the volume efficiency of the membrane when the composite hollow fiber membrane is too thick and built into the membrane module.
  • the thickness of the homogeneous layer is preferably 0.5 to 10 ⁇ m. If the thickness is less than 0.5 ⁇ m, it is easily affected by pinholes due to partial porosity at the fusion interface with the porous support layer, and in addition, a decrease in pressure resistance due to thinning is extremely undesirable. When the thickness is 10 ⁇ m or more, the gas permeation performance is significantly lowered due to the increase in thickness, and the performance as a gas permeable membrane cannot be sufficiently obtained.
  • the present composite hollow fiber membrane can be produced, for example, by a method having the following 1) spinning step and 2) stretching step.
  • 1) Spinning step For example, in the case of the present composite hollow fiber membrane having a three-layer structure, a composite nozzle base in which the outermost layer nozzle portion, the intermediate layer nozzle portion and the innermost layer nozzle portion are arranged concentrically is used. Molten polymer B is supplied to the outermost layer nozzle portion and innermost layer nozzle portion, and molten polymer A is supplied to the intermediate layer nozzle portion. Then, the polymer A and the polymer B are extruded from the respective nozzle portions, and are cooled and solidified in an unstretched state while appropriately adjusting the extrusion speed and the winding speed.
  • a hollow fiber membrane precursor having a three-layer structure in which an unstretched homogeneous layer precursor is sandwiched between two unstretched porous support layer precursors in a non-porous state is obtained.
  • the discharge temperature of the polymer A and the polymer B may be in a state where they can be sufficiently melted and spun.
  • the unstretched hollow fiber membrane precursor obtained by melt spinning is preferably subjected to constant length heat treatment (annealing) at a temperature equal to or lower than the melting point before stretching.
  • the constant length heat treatment is preferably performed at 105 to 140 ° C. for 8 to 16 hours for polyethylene.
  • the temperature is 105 ° C. or higher, it is easy to obtain the present composite hollow fiber membrane with good quality. If temperature is 120 degrees C or less, sufficient elongation will be easy to be obtained, the stability at the time of extending
  • the hollow fiber membrane precursor is stretched under conditions that satisfy the following requirements (i) and (ii).
  • the relationship between the stretching temperature T (° C.) and the melting point Tm (° C.) of the polymer A is Tm ⁇ 20 ⁇ T ⁇ Tm + 40.
  • the stretching temperature T is not higher than the Vicat softening point of the polymer B.
  • the stretching temperature T is Tm ⁇ 20 (° C.) or higher, the porous support layer precursor can be easily made porous, and the composite hollow fiber membrane having excellent gas permeability can be easily obtained.
  • the stretching temperature T is Tm + 40 (° C.) or less, it is easy to suppress the occurrence of defects such as pinholes due to the disorder of the molecules.
  • the stretching temperature T is equal to or lower than the Vicat softening point of the polymer B, the porous support layer precursor can be easily made porous, and the composite hollow fiber membrane having excellent gas permeability can be easily obtained.
  • the stretching step it is preferable to perform cold stretching before stretching (hot stretching) performed at the stretching temperature T. That is, two-stage stretching in which hot stretching is performed subsequent to cold stretching, or multi-stage stretching in which hot stretching is divided into two or more multi-stages subsequent to cold stretching is preferable.
  • Cold stretching is stretching that causes structural cracking of the film at a relatively low temperature and generates microcracking.
  • the temperature of cold drawing is preferably carried out at a relatively low temperature within a range from 0 ° C. to a temperature lower than Tm ⁇ 20 ° C.
  • the stretching is preferably slow stretching. If it is low speed drawing, it becomes easy to make it porous while suppressing the yarn diameter from becoming too thin during drawing.
  • the porosity of the entire hollow fiber membrane is more preferably 30% or more from the viewpoint of gas permeation performance, and more preferably 55% or less from the viewpoint of strength retention, with the entire hollow fiber membrane being 100%.
  • the draw ratio varies depending on the types of polymer A and polymer B to be used, but the final ratio (total draw ratio) with respect to the unstretched hollow fiber membrane precursor is preferably 2 to 5 times.
  • the total draw ratio is 2 times or more, the porosity of the porous support layer is improved, and excellent gas permeability is easily obtained. If the total draw ratio is 5 times or less, the breaking elongation of the composite hollow fiber membrane is improved.
  • heat setting is performed in a state where the porous hollow fiber membrane is slightly relaxed under a constant length or within a range of 40% or less. It is preferable.
  • the heat setting temperature is preferably not less than the stretching temperature and not more than the melting temperature. Since the composite hollow fiber membrane described above has a non-porous homogeneous layer formed of polymer A and a porous support layer formed of polymer B, it has excellent solvent resistance and gas permeability. ing. It also has excellent low elution properties.
  • the hollow fiber membrane module of the present invention is a module comprising the composite hollow fiber membrane described above.
  • the hollow fiber membrane module of the present invention has the same form as a known hollow fiber membrane module except that the present composite hollow fiber membrane is used.
  • a hollow fiber membrane module of a known form in which several hundreds of the present composite hollow fiber membranes are bundled and inserted into a cylindrical housing, and the composite hollow fiber membranes are sealed with a sealing material (potting resin). It is done.
  • the filling rate of the hollow fiber membrane with respect to the potting processed part volume is preferably about 20 to 60%.
  • a raw solution containing dissolved gas is supplied to the inside (primary side) of the hollow fiber membrane, and the outside (secondary side) of the hollow fiber membrane is reduced in pressure,
  • the dissolved gas can be passed through the membrane by a driving force proportional to the partial pressure difference of the dissolved gas, and the dissolved gas can be discharged to the outside of the hollow fiber membrane.
  • the outside of the hollow fiber membrane can be the primary side and the inside of the hollow fiber membrane can be the secondary side.
  • a plurality of hollow fiber membrane modules can be connected in series to deaerate the target chemical solution to a predetermined deaeration level, or a plurality of the hollow fiber membrane modules can be connected in parallel to deaerate a large amount of chemical solution.
  • Tm melting point
  • DSC differential scanning calorimeter
  • melt flow rate (MFR) The melt flow rate (MFR 2.16) (g / 10 min) was determined by measuring the mass of the resin extruded in a strand shape for 10 minutes under a load of 2.16 kg at 190 ° C. according to ASTM D1238 E condition.
  • hydrophilic additive Techsurf (trademark) 15560 (polyoxyethylene alkyl ether: CH 3 CH 2 (CH 2 CH 2 ) 13 CH 2 CH 2 (OCH 2 CH) manufactured by BASF 2 )
  • High-density polyethylene (trade name Suntech HD B161, MFR 1.35 g / 10 min, density 0.963 g / cm 3 , melting point 130 ° C.) compounded in advance with 2% by mass Using.
  • the molten polymer B is supplied to the outermost layer nozzle portion and the innermost layer nozzle portion, the molten polymer A is supplied to the intermediate layer nozzle portion, and polymer A / polymer B / polymer A is supplied from the outermost layer to 12/1/2. Then, the polyethylene was spun at a winding speed of 135 m / min to obtain an unstretched hollow fiber membrane precursor.
  • a homogeneous layer precursor was concentrically arranged in three layers sandwiched between two porous support layer precursors.
  • the unstretched hollow fiber was annealed at 108 ° C.
  • the film was stretched 1.25 times at 23 ⁇ 2 ° C., and subsequently stretched 4.4 times in a heating furnace at 70 ° C., followed by a relaxation process of 0.4 times in a heating furnace at 100 ° C.
  • This multilayer composite hollow fiber membrane had a three-layer structure in which a homogeneous layer (non-porous thin film) was sandwiched between two porous support layers.
  • the hollow fiber membrane precursor was annealed at 108 ° C. for 8 hours. Next, the film was stretched 1.25 times at 23 ⁇ 2 ° C., and subsequently heat-stretched in a heating furnace at 100 ° C. until the total stretched amount was 4.4 times, and the two porous support layer precursors were made porous. Turned into. Thereafter, a relaxation step of 0.4 times is provided in a heating furnace at 100 ° C., and finally, the molding is performed so that the total draw ratio (magnification with respect to the unstretched hollow fiber membrane precursor) is 4 times. A hollow fiber membrane was obtained.
  • the produced composite hollow fiber membrane had an inner diameter of 161 ⁇ m, an outer diameter of 263 ⁇ m, and a film thickness of 49.4 ⁇ m, and the non-porous homogeneous layer was located at about 1/8 of the film thickness from the inside.
  • the gas permeable composite hollow fiber membrane had a three-layer structure in which a homogeneous layer was sandwiched between two porous support layers.
  • the porosity of the gas permeable composite hollow fiber membrane was 64.5% by volume, with the entire composite hollow fiber membrane being 100% by volume.
  • the oxygen permeation rate (Q O2 ) at room temperature (25 ° C.) was 0.10 m / hr ⁇ Mpa
  • the nitrogen permeation rate (Q N2 ) was 0.035 m / hr ⁇ Mpa.
  • the separation factor (Q O2 / Q N2 ) was 2.8.
  • IPA isopropyl alcohol
  • Example 2 Homopolypropylene (Nippon Polypro Co., Ltd.) pre-compounded with 2% by mass of hydrophilic additive Techsurf TM 15560 as a polymer to be supplied to the innermost layer and outermost layer (both porous support layers) of the three-layer composite nozzle Manufactured, trade name: FY6H).
  • the polymer material supplied to the intermediate layer (non-porous homogeneous layer) of this nozzle contains 80% by mass of particles made of an ethylene-propylene copolymer having a particle size of about 0.1 ⁇ m to 0.2 ⁇ m.
  • Example 1 Used was a finely dispersed polymer composition (trade name: Zeras # 7025, manufactured by Mitsubishi Chemical Corporation) having a sea-island structure in which is uniformly dispersed in polypropylene and made by multistage polymerization. Using these, melt spinning was performed at a discharge port temperature of 220 ° C. and a winding speed of 180 m / min. The discharge amount ratio was the same as in Example 1.
  • the obtained hollow fiber was annealed at 140 ° C. for 10 minutes, continuously stretched at room temperature (23 ⁇ 2 ° C.) with a total draw ratio of 120%, and subsequently heated in a heating furnace heated to 120 ° C. Thermal stretching was performed until the total stretching ratio reached 340%, and relaxation heat setting was performed in a heating furnace heated to 130 ° C. so that the total stretching ratio was 300%.
  • the porosity of the entire hollow fiber membrane was 27% by volume with the entire hollow fiber membrane being 100% by volume, the inner diameter was 125 ⁇ m, the total membrane thickness was 26 ⁇ m, the middle The layer thickness was 1 ⁇ m.
  • the non-porous homogeneous layer was located about 1/8 of the film thickness from the inside.
  • SEM scanning electron microscope
  • the oxygen permeation rate (Q O2 ) was 0.034 m / hr ⁇ Mpa and the nitrogen permeation rate (Q N2 ) was 0.008 m / hr at room temperature (20 ° C.).
  • -It was Mpa and the separation factor ( QO2 / QN2 ) was 4.2.
  • the hydrophilicity was kept high at 6.5%.
  • a hollow fiber membrane module was prepared using the prepared gas permeable composite hollow fiber membrane. The operation was performed by flowing water at 30 ° C. inside the hollow fiber membrane and blowing carbon dioxide from the outside of the hollow fiber membrane to generate carbonated water. Three months later, the invasion of water that seems to be condensed water was confirmed. Even if condensed water was produced, the dissolved carbon dioxide concentration did not decrease and stable operation was possible.
  • Example 1 Comparative example 1 except that only the high-density polyethylene Suntech B161 (MFR 1.35 g / 10 min, density 0.963 g / cm 3 , melting point 130 ° C.) was used without adding a hydrophilic additive to the polymer used for the support layer. As well as. As a result of evaluating the membrane performance of the composite hollow fiber membrane thus obtained, the non-porous homogeneous layer was located at about 1/8 of the thickness from the inside. When observed with a scanning electron microscope (SEM), pores having a pore diameter of about 0.01 ⁇ m are densely present on the entire inner and outer surfaces (porous support layer), and in the intermediate layer portion (homogeneous layer). No pores were observed.
  • SEM scanning electron microscope
  • the oxygen permeation rate (Q O2 ) at room temperature (23 ⁇ 2 ° C.) was 0.11 m / hr ⁇ Mpa
  • the nitrogen permeation rate (Q N2 ) was 0.039 m / hr.
  • -It was Mpa
  • the separation factor ( QO2 / QN2 ) was 2.8. Since the separation factor 2.8 of the polymer used for the thin film layer was maintained, no leakage occurred even when isopropyl alcohol (IPA) was passed. When the water absorption was measured, the hydrophobicity was as high as 0.3%.
  • a hollow fiber membrane module was prepared using the prepared gas permeable composite hollow fiber membrane.
  • the operation was performed by flowing water at 30 ° C. inside the hollow fiber membrane and blowing carbon dioxide from the outside of the hollow fiber membrane to generate carbonated water. Three months later, the invasion of water that seems to be condensed water was confirmed. The dissolved carbon dioxide concentration gradually decreased immediately before the increase of condensed water, and decreased to 50% or less of the initial value.
  • the gas permeable composite hollow fiber membrane of the present invention includes degassing of a target liquid containing water vapor or water as a main component, such as carbon dioxide dissolution for carbonated water production and carbonated springs, and separation of methane gas from biogas. Very useful for gas dissolution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

 気体透過能を有する非多孔質均質層と、該均質層を支持する多孔質支持層とを有する複合中空糸膜において、非多孔質均質層が疎水性であり、多孔質支持層を構成するポリオレフィン系樹脂が親水性添加剤を含むことを特徴とする複合中空糸膜により、親水性でかつ水蒸気透過性が高く、多孔質内における凝結水による気体透過性能の低下という問題を解決しうる脱気用複合中空糸膜を提供することができた。

Description

複合中空糸膜及び中空糸膜モジュール
 本発明は、多孔質からなる外表面が親水性を有しながら、気体透過能を有する非多孔質均質層が耐水性に優れる、溶存ガスを脱気するためのポリオレフィン系脱気用複合中空糸膜に関する。
 半導体用シリコン基板、液晶用ガラス基板、フォトマスク用石英基板などの電子材料の表面から、微粒子、有機物、金属などを除去するために、特定のガスをガス溶解装置で超純水に溶解し、更に必要に応じて微量の薬品を添加して調製した機能性洗浄水が、高濃度薬液に代わって使用されるようになってきている。機能性洗浄水に用いられる特定のガスとしては、炭酸ガス、水素ガス、酸素ガス、オゾンガスのほか、希ガスなどの不活性ガスなどがある。炭酸ガスや水素ガスを溶解させる方法が種々検討されている。
 特に、炭酸水は、被洗浄物やノズルを帯電させずに被洗浄物表面をすすぐために用いられている。即ち、超純水を洗浄に用いると、その絶縁性の高さから、洗浄物との摩擦によって被洗浄物が帯電することがあり、帯電により、例えば、被洗浄物に微細な回路パターンがある場合など、その回路が破壊されてしまうことがある。これを防ぐために、超純水に炭酸ガスを溶解させて導電性を高めた炭酸水が用いられている。
 炭酸水の製法としては、超純水中の溶存気体を気体透過中空糸膜の気体透過膜モジュールを用いて脱気し、その後所定の気体を気体透過膜モジュールを用いて溶解する手法が多く用いられている。
 気体透過中空糸膜として、特許文献1には、均質膜の素材として線状低密度ポリエチレンを用いたものが例示されている。
 特許文献2には、非多孔質の外表面を有するTPX(ポリメチルペンテン、PMP)からなる気体透過中空糸膜が例示されている。
 気体分離用途では、その分離対象となるガス中に水蒸気が含まれると、脱気の対象液から透過した水蒸気が膜の表面の多孔質支持層で凝結し気体透過能を下げることがあり、定期的なドレン水の排水や高温の気体による気体透過膜の乾燥を要していた(特許文献5)。
 混合ガスと膜表面との親和性を発現するための適度な疎水性と、一方で水蒸気に対して経時的に分離性能が低下しないようにするための親水性という、相反する性能を持ち合わせることが要求される。
 たとえば水に対して親和性の高い非多孔質の気体分離膜としては、エチレン-ビニルアルコール系重合体およびアミン化合物からなるガス分離膜用エチレン-ビニルアルコール系重合体複合膜(特許文献3)が例示されている。
 また、膜表面の親水性を発現させる方法としては、界面活性剤による親水化手法が例示されている(特許文献4)。
特開平11-47565号公報 特開2010-155207号公報 特公平06-96102号公報 特開昭63-277251号公報 特開2009-219997号公報
 特許文献1に記載の直鎖状低密度ポリエチレンは、気体透過係数が低いので、実用上有効な溶存ガスの透過流量を得るためには、0.3μm以下の極めて薄い膜とする必要がある。しかしながら、このような薄い均質層を形成すると機械的強度が低下し、さらにはピンホールが発生し易い。また、脱気の対象水のリークを防ぐために多孔質支持層の孔径は極めて小さく、疎水性であるため、多孔質内で水蒸気が凝結すると気体透過性能が低下するという問題があった。
 特許文献2に記載の気体透過中空糸膜は、非多孔質均質層そのものがエチレン-ビニルアルコール系重合体およびアミン化合物からなるために膨潤しやすく、水に馴染みやすいというメリットはあるが水蒸気透過性が高くなるため凝結水の問題を解消できない。
 特許文献3の方法では、特定の界面活性剤を含む水溶液または懸濁液を表面へ適用するため湿潤性の効果がもたらされるが、永続性がないだけでなく多孔質支持層中に界面活性剤が残存することで気体透過性を低下させるなどの問題があった。
 特許文献4の方法では、親水性高分子の溶液中に浸漬させたときに多孔質層の孔を溶液により塞いでしまうことと親水化に使用するポリマーがエチレンビニルアルコール共重合体であるために、非多孔質均質層表面をも被覆してしまい、そのポリマーのガスバリヤー性の高さから気体透過膜としての機能を喪失するという問題があった。
 本発明は上記課題を解決するための手段として以下の脱気用複合中空糸膜を提供する。
(1)気体透過能を有する非多孔質均質層と、該均質層を支持する多孔質支持層とを有する複合中空糸膜において、非多孔質均質層が疎水性であり、多孔質支持層を構成するポリオレフィン系樹脂が親水性添加剤を含むことを特徴とする複合中空糸膜。
(2)JIS K7029試験法による吸水率が2%以上あることを特徴とする上記(1)記載の複合中空糸膜。
(3)多孔質支持層を構成するポリオレフィン系樹脂に含まれる親水性添加剤が、ポリオキシエチレンアルキルエーテルであることを特徴とする上記(1)または(2)記載の複合中空糸膜。
(4)多孔質支持層を形成するポリオレフィン系樹脂に含まれる親水性添加剤が、式:R1-(OCH2CH2)x-OH(式中、R1は、炭素原子数が10個~100個の直鎖アルキル又は分岐鎖アルキルであり、かつ、xは2~10である)で表されることを特徴とする上記(1)~(3)のいずれか一に記載の複合中空糸膜。
(5)多孔質支持層を形成するポリオレフィン系樹脂の親水性添加剤の含有量が、ポリオレフィン系樹脂の質量に対し、0.01~10質量%である上記(1)~(3)のいずれか一に記載の複合中空糸膜。
(6)多孔質支持層を形成するポリオレフィン系樹脂の親水性添加剤の含有量が、ポリオレフィン系樹脂の質量に対し、0.025~5質量%である上記(4)記載の複合中空糸膜。
 本発明によれば、気体溶解用(脱気用)複合中空糸膜に求められる特性を維持しつつ、非多孔質均質層を挟む領域の多孔質支持層の親水性を上げることで、多孔質支持層での水の凝結を低減させ、それにより安定的な気体溶解・脱気性能を得ることが可能となる。
(複合中空糸膜)
 本発明の複合中空糸膜は、気体を透過する非多孔質均質層と、該均質層を支持する親水性多孔質支持層、すなわち親水性添加剤を有する多孔質支持層とを有する複合中空糸膜である。
(親水性添加剤)
 本発明で使用する多孔質支持層を構成するポリオレフィン系樹脂に添加する親水性添加剤としては、親水性を有する化合物であればよく、押出機でベースとなる樹脂に溶融混合によるマスターバッチ化可能な常温で固体または半固形の化合物であることが好ましい。親水性添加剤は好ましくは、親水性界面活性剤として知られている化合物である。
 より具体的には、親水性界面活性剤としては脂肪酸グリセライド、アルコキシ化アルキルフェノール、ポリオキシアルキレン脂肪酸エステル、アルキルポリオキシエチレンアルコール、ポリオキシエチレンアルキルエーテル、脂肪酸アミド等の非イオン性界面活性剤の群、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、特殊アニオン等の界面活性剤の群、ポリエチレングリコール、ビニルアルコールとエチレンとの共重合体、及びポリエーテルブロックアミド共重合体などの疎水性セグメントと当該疎水性セグメントより繰り返し単位の多い親水性セグメントを有するブロック共重合体の群から適宜に選択した化合物があげられる。これらは単独であるいは混合物で用いることが出来る。これらのなかでは、その他のイオン性含有物の影響を受けにくい点で、非イオン界面活性剤が好ましい。さらには非イオン界面活性剤の中でも、ベースとなるポリオレフィン樹脂と混練可能なポリオキシエチレンアルキルエーテルからなる親水性添加剤が好ましい。
 親水性添加剤として、以下の構造式を有するものが更に好ましい。
R1-(親水性セグメント)   (式1)
 上式中、R1は、炭素原子数が10個~100個の直鎖アルキルまたは分岐鎖アルキルであり、炭素原子数が22から40のものが好ましい。
 また親水性セグメントは、エチレンオキサイド、プロピレンオキサイド、エチレングリコール、エピクロロヒドリン、アクリル酸、メタクリル酸、エチレンイミン、カプロラクトン、ビニルアルコール、酢酸ビニル由来の単一またはオリゴマー単位からなり、その単位が2~10繰り返されて構成されているものが好ましい。
 より好ましくは、以下の構造式を有するものがあげられる。
R1-(OCH2CH2)x-OH   (式2)
 上式中、xは2~10の数である。R1は上記式1の定義と同じである。
 これらの構造の化合物は、2種類以上混合して用いることも出来る。2種類以上のポリオキシエチレンアルキルエーテルの混合物を用いる場合は、混合物全体のアルキル基R1に対する(OCH2CH2)基の付加数の平均をxとして用いる。一例として、CH3CH2(CH2CH213CH2CH2(OCH2CH22.5OHがあげられる。この場合における、エチレンオキサイドの付加数2.5は、CH3CH2(CH2CH213CH2CH2を基準としてFT-IR等の公知の測定方法で(OCH2CH2)基の付加数を求めた平均的な値である。
 親水性添加剤の好ましい具体的な例としては、Techsurf(商標)15560(Techmer PM社製)、Unithox(商標)480(Baker Hudges inc社製)、Unithox(商標)550(Baker Hudges inc社製)、等が挙げられる。これらの中でも、Techsurf(商標)15560、Unithox(商標)480及びUnithox(商標)550からなる群から選択されるものが特に好ましい。
 親水性添加剤は、多孔質支持層を形成するポリオレフィン系樹脂の(固形分)質量に対して約0.01ないし約10質量%、好ましくは約0.025ないし約5質量%、及び特には約0.1ないし約3質量%で混錬することが好ましい。親水性添加剤により供された親水性は、継続した時間後でさえも、性能を損なうことがなく安定である。特に気体透過膜のような0.1μm以下の比較的小さな孔径を有する多孔質支持層においても凝結した水が自然排出されることで気体透過性能を安定化することが可能であるため、親水性添加剤の添加は有効である。
 本明細書において、中空糸膜が「親水性を有する」とは、水又は生理食塩水やアルコール含有水溶液等の希薄水溶液が、その中空糸膜若しくは中空糸膜の表面上で浸潤する状態を指す。水又は希薄水溶液を吸い上げる材料は、親水性として分類することができる。親水性を測定するための方法は、その垂直吸い上げ能力を測定することによるものである。本発明に関しては、JIS K7209において2%以上の吸水率を有する能力を示す場合には、「中空糸膜が親水性」であるとする。吸水率が4%以上であることが更に好ましい。
(均質層)
 本発明の脱気用複合中空糸膜は、気体透過能を有する非多孔質の均質層を有する。本発明において、気体透過能を有する非多孔質均質層は疎水性である。
 本明細書において「気体を透過する」あるいは「気体透過性」とは、液体などを透過することなく気体のみを透過する特性を意味する。
 本明細書において「非多孔質」とは、孔が無く内部が樹脂で詰まった中実のことを意味する。
 非多孔質均質層は、疎水性ポリマーからなることが好ましい。ここでいう疎水性ポリマーとは、繰り返し単位内にスルホン基や水酸基などの親水性官能基やエチレンオキサイドなどの親水性の繰り返し単位からなるブロックを含まないポリマーを言う。均質層に用いるポリマー(以下ポリマーAと略記)は、オレフィンを主体として得た重合体(ポリオレフィン系樹脂)であることが好ましい。オレフィンのみを用いて得たポリオレフィン重合体であってもよいし、オレフィンと他のモノマーのポリオレフィン共重合体であってもよいし、それらの変性樹脂であってもよい。その具体例としては、オレフィンブロックコポリマー(OBC)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、直鎖状超低密度ポリエチレン(VLDPE)、リアクターTPO、軟質ポリメチルペンテン等が挙げられる。
 均質層を構成するポリオレフィン系樹脂には、必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、着色剤、難燃化剤等の添加物を、本発明の目的を損なわない範囲で添加できる。
(多孔質支持層)
 多孔質支持層は、非多孔質均質層を構成するポリマーと相溶性があり、多孔質構造を形成可能な材料であれば特に限定され無い(以下、ポリマーBと略記)。ポリマーBは、ポリオレフィン系樹脂からなるかあるいはポリオレフィン樹脂を含む。ポリマーBの質量に対して、ポリオレフィン系樹脂を少なくとも50質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%以上含む。
 ポリオレフィン系樹脂としては、高密度ポリエチレンあるいは、ポリプロピレン、ポリメチルペンテンなどが好ましい。
 本明細書において「多孔質」とは、平均孔径で0.01μm~0.5μmの孔が網目状に多数配されている状態を意味する。ただし、多孔質支持層の細孔の大きさは限定されず、充分な気体透過性と機械的強度が満足される大きさであればよい。
 多孔質体は、後述するように、延伸工程において延伸温度TをポリマーBのビカット軟化点以下で延伸することにより得ることができる。多孔質支持層の空孔率は、多孔質支持層全体100体積%に対して、30~80体積%が好ましい。空孔率が30体積%以上であれば、優れた気体透過性が得られやすい。空孔率が80体積%以下であれば、耐圧性等の機械的強度が向上する。
 また、ポリマーAとポリマーBは、成形性の点から溶融特性を合わせることが好ましいため、それぞれのMFR(メルトフローレート:ヒーターで加熱された円筒容器内で一定量の合成樹脂を、定められた温度で加熱・加圧し、容器底部に設けられた開口部(ノズル)から10分間あたりに押出された樹脂量を測定するポリマーの流動性の評価手法)の差が小さければ小さいほど成形性が向上するので好ましい。
 また、多孔質支持層には、本発明の目的を損なわない範囲内であれば、必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、着色剤、難燃化剤等の添加物が添加されていてもよい。
(複合中空糸膜及びその製法)
 本発明の複合中空糸膜は、多層複合紡糸工程と延伸多孔質化工程により得ることができる。
 中空糸膜を構成する複合膜の形態としては、気体透過性能を有する非多孔質均質層と多孔質支持層との二層複合膜であってもよいし、気体透過性能を有する非多孔質均質層が多孔質支持層で挟まれた三層複合膜であってもよい。特に三層以上の複合膜からなることが好ましい。
 三層以上の複合膜における気体透過能を有する非多孔質均質層の位置は、中空糸膜の内側から1/10~1/3の範囲内に配置することが好ましい。モジュールに加工した際には、膜の外周方向からポッティング樹脂が含浸しアンカー効果を生じる。非多孔質均質層は非多孔質構造なのでポッティング樹脂がそれより内側に含浸していくことはなく、ポッティング樹脂に包埋されている領域が多いほどポッティング部近傍における圧力変動に伴う屈曲などによる膜の破損を防止することができる。また、非多孔質均質層の内側の支持層の厚みを膜厚の1/10以下の領域にすると、支持層ポリマーを多孔化する際の延伸工程において非多孔質均質層ポリマーが溶着している内層の支持層ポリマーに引きずられて欠陥を生じる為に好ましくない。また、1/3以上の領域にするとポッティング樹脂による包埋領域が少なくなり屈曲などの影響を受けて破損するため好ましくない。
 本複合中空糸膜の太さは特に限定されないが、中空糸膜外径が100~2000μmであることが好ましい。中空糸膜外径が100μm以上であれば、中空糸膜モジュールの製造時に中空糸膜間の隙間を充分に取りやすく、中空糸膜間にポッティング用樹脂を侵入させやすくなる。中空糸膜外径が2000μm以下であれば、多数本の中空糸膜を用いた中空糸膜モジュールを製造したときにも、モジュール全体のサイズを小さくできる。これにより、ポッティング加工部の容積も小さくなるので、ポッティング加工時のポッティング用樹脂の収縮による寸法精度の低下を抑制しやすい。中空糸膜の膜厚は、10~200μmが好ましい。厚さが10μm以上であれば、機械的強度が向上する。さらに厚さが200μm以下であれば、本複合中空糸膜の糸外径が太くなりすぎて、膜モジュールへ内蔵する際の膜の容積効率が低くなることを抑制しやすい。
 均質層の厚さは、0.5~10μmが好ましい。0.5μよりも薄くなると多孔質支持層との融着界面の部分多孔化によるピンホールなどの影響を受けやすく、加えて薄膜化による耐圧性の低下が著しく好ましくない。10μm以上では、肉厚化による気体透過性能の低下が著しく気体透過膜としての性能を十分に出すことができないので好ましくない。
 本複合中空糸膜は、例えば、下記1)紡糸工程及び2)延伸工程を有する方法により製造できる。
1)紡糸工程:例えば、3層構造の本複合中空糸膜であれば、最外層ノズル部、中間層ノズル部及び最内層ノズル部が、同心円状に配された複合ノズル口金を用いる。最外層ノズル部及び最内層ノズル部には、溶融状態のポリマーBを供給し、中間層ノズル部には、溶融状態のポリマーAを供給する。そして、それら各ノズル部からポリマーA及びポリマーBを押し出し、押出速度と巻取速度を適宜調節しつつ未延伸状態で冷却固化する。これにより、未延伸の均質層前駆体が、非多孔質状態である2つの未延伸の多孔質支持層前駆体に挟まれた3層構造を有する中空糸膜前駆体が得られる。
 ポリマーA及びポリマーBの吐出温度は、それらが充分に溶融して紡糸できる状態であればよい。
2)延伸工程:溶融紡糸して得た未延伸の中空糸膜前駆体は、延伸前に前記融点以下で定長熱処理(アニール処理)することが好ましい。
 定長熱処理は、ポリエチレンでは105~140℃で、8~16時間行うことが好しい。温度が105℃以上であれば、品質の良好な本複合中空糸膜が得られやすい。温度が120℃以下であれば、充分な伸度が得られやすく、延伸時の安定性が向上し、高倍率での延伸が容易になる。また、処理時間が8時間以上であれば、品質の良好な本複合中空糸膜が得られやすい。
 中空糸膜前駆体は、下記(i)及び(ii)の要件を満たす条件で延伸する。
 (i)延伸温度T(℃)と、ポリマーAの融点Tm(℃)との関係が、Tm-20≦T≦Tm+40である。
 (ii)延伸温度Tが、ポリマーBのビカット軟化点以下である。
 延伸温度Tが、Tm-20(℃)以上であれば、多孔質支持層前駆体の多孔質化が容易になり、優れた気体透過性を有する本複合中空糸膜が得られやすい。延伸温度TがTm+40(℃)以下であれば、分子に乱れが生じてピンホール等の欠陥が生じることを抑制しやすい。
 また、延伸温度TがポリマーBのビカット軟化点以下であれば、多孔質支持層前駆体の多孔質化が容易になり、優れた気体透過性を有する本複合中空糸膜が得られやすい。
 延伸工程は、前記延伸温度Tで行う延伸(熱延伸)の前に、冷延伸を行うことが好ましい。すなわち、冷延伸に引続き熱延伸を行う2段延伸、又は冷延伸に引続き、熱延伸を2段以上の多段に分割して行う多段延伸が好ましい。
 冷延伸は、比較的低い温度下で膜の構造破壊を起させ、ミクロなクラッキングを発生させる延伸である。冷延伸の温度は、0℃から、Tm-20℃よりも低い温度までの範囲内の比較的低温下で行うことが好ましい。
 延伸は、低速延伸が好ましい。低速延伸であれば、延伸時に糸径が細くなりすぎることを抑制しつつ多孔質化することが容易になる。
 中空糸膜全体の空孔率は、中空糸膜全体を100%として、気体透過性能の観点から30%以上であればより好ましく、強度保持の観点から55%以下であればより好ましい。
 延伸倍率は、用いるポリマーA及びポリマーBの種類によっても異なるが、未延伸の中空糸膜前駆体に対する最終的な倍率(総延伸倍率)を2~5倍とすることが好ましい。総延伸倍率が2倍以上であれば、多孔質支持層の空孔率が向上し、優れた気体透過性が得られやすい。総延伸倍率が5倍以下であれば、本複合中空糸膜の破断伸度が向上する。
 さらに、前記延伸により得られた中空糸膜の寸法安定性を向上させるため、該多孔質中空糸膜を定長下、又は、40%以下の範囲内で少し弛緩させた状態で熱セットを行うことが好ましい。
 熱セットを効果的に行うためには、熱セット温度は延伸温度以上、融点温度以下であることが好ましい。
 以上説明した本複合中空糸膜は、ポリマーAにより形成した非多孔質の均質層と、ポリマーBにより形成した多孔質支持層を有しているため、優れた耐溶剤性と気体透過性を兼ね備えている。また、優れた低溶出性も有している。
(中空糸膜モジュール)
 本発明の中空糸膜モジュールは、前述した本複合中空糸膜を具備するモジュールである。本発明の中空糸膜モジュールは、本複合中空糸膜を用いる以外は、公知の中空糸膜モジュールと同様の形態が用いられる。例えば、本複合中空糸膜を数百本束ねて筒状のハウジングに挿入し、それら本複合中空糸膜を封止材(ポッティング用樹脂)で封止した公知の形態の中空糸膜モジュールが挙げられる。
 またポッティング加工部容積に対する中空糸膜の充填率が20~60%程度であることが好ましい。
 本発明の複合中空糸膜を用いた脱気方法としては、中空糸膜の内側(一次側)に溶存ガスを含む原溶液を供給し、中空糸膜の外側(二次側)を減圧とし、溶存ガスの分圧差に比例した駆動力により溶存ガスを膜透過させ、中空糸膜の外側に溶存ガスを排出することができる。また、この逆に中空糸膜の外側を一次側とし、中空糸膜の内側を二次側とすることもできる。さらには中空糸膜モジュールを複数本直列につないで対象薬液を所定の脱気水準に脱気することもできるし、また複数本並列につないで多量の薬液の脱気を行うこともできる。
 以下、本発明を実施例に基づいてさらに詳しく説明する。なお、各物性は以下の方法より測定した。
[融点(Tm)]
 融点(Tm)の測定には、セイコー電子工業製の示差走査型熱量計(DSC)を用いた。具体的には、約5mgの試料を200℃で5分間融解し、40℃まで10℃/minの速度で降温して結晶化し、その後更に10℃/minで200℃まで昇温して融解した時の融解ピーク温度及び融解終了温度により融点を求めた。
[メルトフローレート(MFR)]
 ASTM D1238のE条件に従い、190℃における2.16kg荷重での10分間にストランド状に押し出される樹脂の質量を測定することによりメルトフローレート(MFR2.16)(g/10min)を求めた。
[密度]
 JIS K7112に準拠して、190℃で2.16kg荷重におけるMFR測定時に得られるストランドを100℃で1時間熱処理し、1時間かけて室温まで徐冷したサンプルを、密度勾配管を用いて測定した。
[吸水率]
JIS K7209「プラスチック-吸水率の求め方」のA法に準拠し23℃、蒸留水に24時間浸漬させたときの飽和水分量を測定した。
(実施例1)
 ポリマーA(均質層形成用)として、メタロセン系触媒により製造された低密度ポリエチレン(商品名「Harmolex NF324A」、日本ポリエチ社製、MFR:1.0g/10分、密度:0.906g/cm3、融点Tm:120℃、Mw/Mn=3.0)を用いた。
 多孔質支持層(内層と外層)には、BASF社製親水性添加剤Techsurf(商標)15560(ポリオキシエチレンアルキルエーテル:CH3CH2(CH2CH213CH2CH2(OCH2CH22.5OH〕を60重量%含有する水溶液〕2質量%を事前にコンパウンドした高密度ポリエチレン(商品名サンテックHD B161、MFR1.35g/10min、密度0.963g/cm3、融点130℃)を用いた。
 最外層ノズル部、中間層ノズル部及び最内層ノズル部が、同心円状に配された複合ノズル口金を用いた。最外層ノズル部及び最内層ノズル部に溶融状態のポリマーBを供給し、中間層ノズル部に溶融状態のポリマーAを供給し、最外層からポリマーA/ポリマーB/ポリマーAを12/1/2の比率になるように吐出し、それらポリエチレンを、巻取速度135m/分で紡糸して、未延伸の中空糸膜前駆体を得た。該中空糸膜前駆体は、均質層前駆体が、2つの多孔質支持層前駆体で挟まれた3層が同心円状に配されていた。
 この未延伸中空糸を108℃でアニール処理した。次いで、23±2℃で1.25倍延伸し、引き続き70℃の加熱炉中で4.4倍の延伸を行った上で、100℃の加熱炉中で0.4倍の緩和工程を実施し、最終的に総延伸倍率が4倍になるように成形して総延伸量が4倍になるまで熱延伸を行い、複合中空糸膜を得た。この多層複合中空糸膜は、均質層(非多孔質薄膜)が二つの多孔質支持層で挟まれた三層構造であった。
延伸工程:
 前記中空糸膜前駆体を、108℃で8時間アニール処理した。次いで、23±2℃で1.25倍延伸し、引き続き100℃の加熱炉中で、総延伸量が4.4倍になるまで熱延伸を行い、2つの多孔質支持層前駆体を多孔質化した。その後、100℃の加熱炉中で0.4倍の緩和工程を設け、最終的に総延伸倍率(未延伸の中空糸膜前駆体に対する倍率)が4倍になるように成形し、気体透過複合中空糸膜を得た。作成した複合中空糸膜は、内径は161μm、外径263μm、膜厚49.4μmとなっており非多孔質均質層は、内側から膜厚の約1/8の位置にあった。
 該気体透過複合中空糸膜は、均質層が2つの多孔質支持層に挟まれた3層構造であった。該気体透過複合中空糸膜の空孔率は複合中空糸膜全体を100体積%として64.5体積%であった。
 複合中間糸膜の空気透過速度を測定したところ、室温(25℃)における酸素透過速度(QO2)は0.10m/hr・Mpa、窒素透過速度(QN2)は0.035m/hr・Mpaであり、分離係数(QO2/QN2)は2.8であった。薄膜層に用いたポリマーの分離係数2.8が維持されているためにイソプロピルアルコール(IPA)を通液してもリークを生じなかった。
 吸水率を測定したところ、5.7%と親水性が高く保持されていた。
 さらに、作成した気体透過複合中空糸膜を使用して中空糸膜モジュールを作成した。中空糸膜の内側に30℃の水を流し、中空糸膜の外側から二酸化炭素を吹き込んで炭酸水を生成するようにして運転した。3ヶ月後には凝結水と思われる水の侵出を確認した。凝結水を生じても溶存炭酸ガス濃度は低下することなく安定した運転が可能であった。
(実施例2)
 三層複合ノズルの最内層及び最外層(いずれも多孔質支持体層)に供給するポリマーとして、親水性添加剤Techsurf(商標)15560 2質量%を事前にコンパウンドしたホモポリプロピレン(日本ポリプロ(株)製、商品名:FY6H)を用いた。
 またこのノズルの中間層(非多孔質均質層)に供給するポリマー素材としては、粒径が約0.1μm~0.2μmのエチレン-プロピレン共重合体からなる粒子を80質量%含み、この粒子が均一にポリプロピレン中に分散した海島構造を有し多段重合により作られた微分散構造重合体組成物(三菱化学社製、商品名:Zeras#7025)を用いた。これらを用い、吐出口温度220℃、巻取り速度180m/minで溶融紡糸を行った。吐出量比は、実施例1と同様に行った。
 得られた中空糸を140℃で10分間アニール処理をし、連続して常温(23±2℃)下で総延伸倍率が120%の延伸を行い、引き続き120℃に加熱された加熱炉中で総延伸倍率が340%になるまで熱延伸を行い、更に130℃に加熱された加熱炉中で総延伸倍率が300%になるように緩和熱セットを行った。
 このようにして得られた複合中空糸膜の膜性能を評価した結果、中空糸膜全体の空孔率は中空糸膜全体を100体積%として27体積%、内径125μm、膜総厚26μm、中間層の膜厚1μmであった。非多孔質均質層は、内側から膜厚の約1/8の位置にあった。
 走査型電子顕微鏡(SEM)にて観察したところ、内・外表面(多孔質支持体層)には全面に孔径約0.01μmの細孔が密に存在し、中間層部分(均質層)には、細孔がみられなかった。
 三層複合中空糸膜の空気透過速度を測定したところ、室温(20℃)で酸素透過速度(QO2)は0.034m/hr・Mpa、窒素透過速度(QN2)は0.008m/hr・Mpaであり、分離係数(QO2/QN2)は4.2であった。
 吸水率を測定したところ、6.5%と親水性が高く保持されていた。
 さらに、作成した気体透過複合中空糸膜を使用して中空糸膜モジュールを作成した。中空糸膜の内側に30℃の水を流し、中空糸膜の外側から二酸化炭素を吹き込んで炭酸水を生成するようにして運転した。3ヶ月後には凝結水と思われる水の侵出を確認した。凝結水を生じても溶存炭酸ガス濃度は低下することなく安定した運転が可能であった。
(比較例)
 支持層に用いたポリマーに親水性添加剤を添加しないで高密度ポリエチレン サンテックB161(MFR1.35g/10min、密度0.963g/cm3、融点130℃)のみを用いたこと以外は、実施例1と同様に行った。
 このようにして得られた複合中空糸膜の膜性能を評価した結果、非多孔質均質層は、内側から膜厚の約1/8の位置にあった。
 走査型電子顕微鏡(SEM)にて観察したところ、内・外表面(多孔質支持体層)には全面に孔径約0.01μmの細孔が密に存在し、中間層部分(均質層)には、細孔がみられなかった。
 複合中間糸膜の空気透過速度を測定したところ、室温(23±2℃)における酸素透過速度(QO2)は0.11m/hr・Mpa、窒素透過速度(QN2)は0.039m/hr・Mpaであり、分離係数(QO2/QN2)は2.8であった。薄膜層に用いたポリマーの分離係数2.8が維持されているためにイソプロピルアルコール(IPA)を通液してもリークを生じなかった。
 吸水率を測定したところ、0.3%と疎水性が高かった。
 さらに、作成した気体透過複合中空糸膜を使用して中空糸膜モジュールを作成した。中空糸膜の内側に30℃の水を流し、中空糸膜の外側から二酸化炭素を吹き込んで炭酸水を生成するようにして運転した。3ヶ月後には凝結水と思われる水の侵出を確認した。凝結水の増加の直前から溶存炭酸ガス濃度が徐々に低下して来て、当初の50%以下に低下した。
 本発明の気体透過複合中空糸膜は、炭酸水製造や炭酸泉のための二酸化炭素溶解や、バイオガスからのメタンガスの分離などの水蒸気を含むかあるいは水を主成分とする対象液の脱気・気体溶解に非常に有用である。

Claims (6)

  1.  気体透過能を有する非多孔質均質層と、該均質層を支持する多孔質支持層とを有する複合中空糸膜において、非多孔質均質層が疎水性であり、多孔質支持層を構成するポリオレフィン系樹脂に親水性添加剤を含むことを特徴とする複合中空糸膜。
  2.  JIS K7209試験法による吸水率が2%以上あることを特徴とする請求項1記載の複合中空糸膜。
  3.  多孔質支持層を構成するポリオレフィン系樹脂に含まれる親水性添加剤が、ポリオキシエチレンアルキルエーテルであることを特徴とする請求項1または2記載の複合中空糸膜。
  4.  多孔質支持層を構成するポリオレフィン系樹脂に含まれる親水性添加剤が、式:R1-(OCH2CH2)x-OH(式中、R1は、炭素原子数が10個~100個の直鎖アルキル又は分岐鎖アルキルであり、かつ、xは2~10である)で表されることを特徴とする請求項1~3のいずれか一項に記載の複合中空糸膜。
  5.  多孔質支持層を構成するポリオレフィン系樹脂の親水性添加剤の含有量が、ポリオレフィン系樹脂の質量に対し、0.01~10質量%である請求項1~4のいずれか一項に記載の複合中空糸膜。
  6.  多孔質支持層を構成するポリオレフィン系樹脂の親水性添加剤の含有量が、ポリオレフィン系樹脂の質量に対し、0.025~5質量%である請求項5に記載の複合中空糸膜。
PCT/JP2013/059595 2012-03-30 2013-03-29 複合中空糸膜及び中空糸膜モジュール WO2013147187A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380028619.7A CN104321132A (zh) 2012-03-30 2013-03-29 复合中空纤维膜及中空纤维膜组件
US14/386,981 US9694313B2 (en) 2012-03-30 2013-03-29 Composite hollow fiber membrane and hollow fiber membrane module
KR1020147026611A KR20140134684A (ko) 2012-03-30 2013-03-29 복합 중공사막 및 중공사막 모듈
EP13769353.7A EP2832425A4 (en) 2012-03-30 2013-03-29 HOLLOW FIBER COMPOSITE MEMBRANE AND HOLLOW FIBER MEMBRANE MODULE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-080258 2012-03-30
JP2012080258 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147187A1 true WO2013147187A1 (ja) 2013-10-03

Family

ID=49260428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059595 WO2013147187A1 (ja) 2012-03-30 2013-03-29 複合中空糸膜及び中空糸膜モジュール

Country Status (6)

Country Link
US (1) US9694313B2 (ja)
EP (1) EP2832425A4 (ja)
JP (1) JPWO2013147187A1 (ja)
KR (1) KR20140134684A (ja)
CN (1) CN104321132A (ja)
WO (1) WO2013147187A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202575A (ja) * 2012-03-29 2013-10-07 Mitsubishi Rayon Co Ltd 脱気用複合中空糸膜及び中空糸膜モジュール
WO2017115769A1 (ja) * 2015-12-28 2017-07-06 東レ株式会社 中空糸膜モジュールおよびその運転方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120053B2 (en) * 2010-09-29 2015-09-01 Mitsubishi Rayon Co., Ltd. Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module
US10661576B2 (en) * 2015-01-20 2020-05-26 Hewlett-Packard Development Company, L.P. Liquid-gas separator
US11117090B2 (en) 2018-11-26 2021-09-14 Palo Alto Research Center Incorporated Electrodialytic liquid desiccant dehumidifying system
KR102171098B1 (ko) * 2020-02-27 2020-10-28 한국과학기술원 광물 탄산화 시스템 및 이를 이용한 광물 탄산화 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858105A (ja) * 1981-09-30 1983-04-06 Kuraray Co Ltd 複合分離膜
JPS63277251A (ja) 1987-05-08 1988-11-15 Fuji Photo Film Co Ltd 微孔性膜の製造方法
JPH01147565A (ja) 1987-12-04 1989-06-09 Konica Corp 多色画像形成装置
JPH0696102B2 (ja) 1990-03-08 1994-11-30 旭化成工業株式会社 復水の処理方法
JPH06335623A (ja) * 1993-05-28 1994-12-06 Dainippon Ink & Chem Inc 脱気膜および脱気方法
JPH1028852A (ja) * 1996-07-15 1998-02-03 Mitsubishi Rayon Co Ltd ポリオレフィン多孔質中空糸膜の親水化方法
JP2007152238A (ja) * 2005-12-06 2007-06-21 Mitsubishi Rayon Eng Co Ltd 中空糸膜モジュールの製造方法
JP2008272696A (ja) * 2007-05-02 2008-11-13 Mitsubishi Rayon Eng Co Ltd 脱気用複合中空糸膜及びその製造方法
JP2009219997A (ja) 2008-03-14 2009-10-01 Kurita Water Ind Ltd ガス溶解水の製造方法及び装置
JP2010155207A (ja) 2008-12-26 2010-07-15 Kuraray Co Ltd ガス分離膜用エチレン−ビニルアルコール系重合体複合膜

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367999A (en) * 1965-10-22 1968-02-06 Owens Illinois Inc Method of making polyethylene surface hydrophilic and ink receptive by adding oxidized polyethylene
JPS5858105B2 (ja) 1979-02-01 1983-12-23 朝日金属精工株式会社 鉄塔昇降用墜落防止装置
US5254143A (en) * 1990-07-09 1993-10-19 Dainippon Ink And Chemical, Inc. Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
US5373972A (en) * 1991-11-15 1994-12-20 Jsp Partners, L.P. Preservative-free sterile fluid dispensing system
JPH0696102A (ja) 1992-09-11 1994-04-08 Fujitsu Ltd 再来患者受付処理における受診科内容設定方式
TW408161B (en) * 1997-04-30 2000-10-11 Mitsubishi Rayon Co Ink degassing hollow film, ink degassing method, ink degassing apparatus
JP2974999B2 (ja) 1998-04-10 1999-11-10 三菱レイヨン株式会社 膜型人工肺
JP2975000B2 (ja) * 1998-04-10 1999-11-10 三菱レイヨン株式会社 人工肺用複合中空糸膜
US6225388B1 (en) * 1998-08-31 2001-05-01 Kimberly-Clark Worldwide, Inc. Biodegradable thermoplastic composition with improved wettability
EP1710584B1 (en) * 2003-12-22 2010-07-07 Seikagaku Corporation Method of measuring lipoarabinomannan and application thereof
JP2006088114A (ja) * 2004-09-27 2006-04-06 Asahi Kasei Chemicals Corp 親水性多孔膜
JP2006282841A (ja) * 2005-03-31 2006-10-19 Nippon Sheet Glass Co Ltd ラベル用シート及びラベル
US20100068264A1 (en) * 2006-07-12 2010-03-18 University Of South Florida Niosome-hydrogel drug delivery system
JP5393971B2 (ja) * 2007-11-02 2014-01-22 三菱レイヨン株式会社 脱気用複合中空糸膜
KR20100093080A (ko) * 2007-12-21 2010-08-24 미쓰비시 가가꾸 가부시키가이샤 섬유 복합체
CN101480583B (zh) * 2008-12-30 2011-11-09 天邦膜技术国家工程研究中心有限责任公司 一种新型聚醚酰亚胺中空纤维膜的制备方法
WO2011136121A1 (ja) * 2010-04-27 2011-11-03 花王株式会社 容器入り水系組成物
JP5444156B2 (ja) * 2010-07-30 2014-03-19 日本板硝子株式会社 水蒸気透過防止多孔膜、通気構造及びケース
US9120053B2 (en) * 2010-09-29 2015-09-01 Mitsubishi Rayon Co., Ltd. Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module
CN102151497B (zh) * 2011-01-26 2012-11-14 华南理工大学 一种亲水与疏水复合式水蒸汽透过膜及其制备方法与应用
US20140335396A1 (en) * 2011-09-26 2014-11-13 Asahi Kasei E-Materials Corporation Microporous Membrane

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858105A (ja) * 1981-09-30 1983-04-06 Kuraray Co Ltd 複合分離膜
JPS63277251A (ja) 1987-05-08 1988-11-15 Fuji Photo Film Co Ltd 微孔性膜の製造方法
JPH01147565A (ja) 1987-12-04 1989-06-09 Konica Corp 多色画像形成装置
JPH0696102B2 (ja) 1990-03-08 1994-11-30 旭化成工業株式会社 復水の処理方法
JPH06335623A (ja) * 1993-05-28 1994-12-06 Dainippon Ink & Chem Inc 脱気膜および脱気方法
JPH1028852A (ja) * 1996-07-15 1998-02-03 Mitsubishi Rayon Co Ltd ポリオレフィン多孔質中空糸膜の親水化方法
JP2007152238A (ja) * 2005-12-06 2007-06-21 Mitsubishi Rayon Eng Co Ltd 中空糸膜モジュールの製造方法
JP2008272696A (ja) * 2007-05-02 2008-11-13 Mitsubishi Rayon Eng Co Ltd 脱気用複合中空糸膜及びその製造方法
JP2009219997A (ja) 2008-03-14 2009-10-01 Kurita Water Ind Ltd ガス溶解水の製造方法及び装置
JP2010155207A (ja) 2008-12-26 2010-07-15 Kuraray Co Ltd ガス分離膜用エチレン−ビニルアルコール系重合体複合膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832425A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202575A (ja) * 2012-03-29 2013-10-07 Mitsubishi Rayon Co Ltd 脱気用複合中空糸膜及び中空糸膜モジュール
WO2017115769A1 (ja) * 2015-12-28 2017-07-06 東レ株式会社 中空糸膜モジュールおよびその運転方法
JP6191790B1 (ja) * 2015-12-28 2017-09-06 東レ株式会社 中空糸膜モジュールおよびその運転方法
US11141698B2 (en) 2015-12-28 2021-10-12 Toray Industries, Inc. Hollow fiber membrane module and method for operating same

Also Published As

Publication number Publication date
EP2832425A1 (en) 2015-02-04
JPWO2013147187A1 (ja) 2015-12-14
US20150059576A1 (en) 2015-03-05
KR20140134684A (ko) 2014-11-24
US9694313B2 (en) 2017-07-04
CN104321132A (zh) 2015-01-28
EP2832425A4 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP6347398B2 (ja) 複合中空糸膜及び中空糸膜モジュール
WO2013147187A1 (ja) 複合中空糸膜及び中空糸膜モジュール
KR100805977B1 (ko) 다층 미다공막
KR101699296B1 (ko) 폴리비닐리덴 플루오라이드로 제조된 소수성 오존 안정성 막
JP5680057B2 (ja) 微多孔膜、かかる膜の製造方法、およびバッテリーセパレーターフィルムとしてのかかる膜の使用
KR101409712B1 (ko) 불화비닐리덴계 수지로 이루어지는 다공막 및 그 제조 방법
US7635513B1 (en) Heat resistant microporous film
JP5283379B2 (ja) ポリオレフィン微多孔膜及びその製造方法
JP5393971B2 (ja) 脱気用複合中空糸膜
JP5500765B2 (ja) 脱気用複合中空糸膜及びその製造方法
KR101536836B1 (ko) 폴리에틸렌 다공질 중공사막, 정수기용 카트리지 및 중공사막 모듈
JPH07121340B2 (ja) 中空繊維膜
WO2016104791A1 (ja) ポリオレフィン樹脂組成物およびポリオレフィン微多孔膜の製造方法
KR20160081612A (ko) 다공성 pvdf 중공사막 및 이의 제조방법
JP6370021B2 (ja) 脱気複合中空糸膜及び中空糸膜モジュール
JP4778410B2 (ja) 脱気用複合中空糸膜
CN114828990B (zh) 分离膜和分离膜的制造方法
JP5885123B2 (ja) 脱気用複合中空糸膜及び中空糸膜モジュール
WO2022239333A1 (ja) 給気モジュール
CN117414710A (zh) 一种脱气用pmp中空纤维膜及其制备方法和应用
JP2014104445A (ja) 中空糸膜の製造方法
JP2014136120A (ja) 等圧調剤デバイス
JP2012183522A (ja) ポリフッ化ビニリデン系多孔質膜の親水化方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013519666

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14386981

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147026611

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013769353

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE