WO2022239333A1 - 給気モジュール - Google Patents
給気モジュール Download PDFInfo
- Publication number
- WO2022239333A1 WO2022239333A1 PCT/JP2022/004757 JP2022004757W WO2022239333A1 WO 2022239333 A1 WO2022239333 A1 WO 2022239333A1 JP 2022004757 W JP2022004757 W JP 2022004757W WO 2022239333 A1 WO2022239333 A1 WO 2022239333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hollow fiber
- air supply
- fiber membrane
- supply module
- polytetrafluoroethylene
- Prior art date
Links
- 239000012528 membrane Substances 0.000 claims abstract description 165
- 239000012510 hollow fiber Substances 0.000 claims abstract description 151
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 108
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 108
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 96
- 239000007788 liquid Substances 0.000 claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 58
- 239000007789 gas Substances 0.000 claims description 42
- 230000004927 fusion Effects 0.000 claims description 31
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 6
- 238000000034 method Methods 0.000 description 34
- 238000012360 testing method Methods 0.000 description 29
- 239000000843 powder Substances 0.000 description 28
- 239000011148 porous material Substances 0.000 description 27
- 238000001816 cooling Methods 0.000 description 26
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 20
- 229920005989 resin Polymers 0.000 description 19
- 239000011347 resin Substances 0.000 description 19
- 239000000126 substance Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 238000000465 moulding Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 238000011049 filling Methods 0.000 description 9
- 238000001125 extrusion Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 238000010583 slow cooling Methods 0.000 description 6
- 238000007720 emulsion polymerization reaction Methods 0.000 description 5
- 239000010687 lubricating oil Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000004382 potting Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 2
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/36—Polytetrafluoroethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/237—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
- B01F23/2376—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
- B01F23/23761—Aerating, i.e. introducing oxygen containing gas in liquids
- B01F23/237611—Air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/20—Specific housing
- B01D2313/206—Specific housing characterised by the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/22—Membrane contactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/04—Characteristic thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2101/00—Mixing characterised by the nature of the mixed materials or by the application field
- B01F2101/305—Treatment of water, waste water or sewage
Definitions
- the present disclosure relates to air supply modules.
- This application claims priority based on Japanese application No. 2021-80631 filed on May 11, 2021, and incorporates all the descriptions described in the above Japanese application.
- the air supply module is used not only for filtration applications in solid-liquid separators, but also for air supply modules that remove gases such as oxygen dissolved in liquids, and air supply systems that supply gases to liquids.
- gases such as oxygen dissolved in liquids
- air supply systems that supply gases to liquids.
- gas-dissolved water made by dissolving gas in pure water for cleaning applications in the field of electronic device manufacturing and home appliances
- hydrogen water made by dissolving hydrogen gas in pure water and carbonated water made by dissolving carbon dioxide gas for beverages. It is known to manufacture air supply systems such as
- An air supply module for air supply or degassing, or an air supply module including these, for example, includes a suction device for sucking gas from the air supply module and a gas supply device for supplying gas to the air supply module.
- An air supply module for air supply and deaeration has been proposed (see Patent Document 1).
- An air supply module is an air supply module capable of supplying gas to a liquid to be supplied to the inside of a hollow fiber membrane, and includes a housing containing a fluororesin as a main component, a polytetrafluoro A plurality of the hollow fiber membranes containing ethylene or modified polytetrafluoroethylene as a main component, and the hollow fiber membrane has a porosity K [%], an average thickness T1 [mm], and an average outer diameter D2 [mm]. satisfies the relationship of the following formula (1). K/(T1 ⁇ D2 ⁇ 100) ⁇ 2.0 (1)
- FIG. 1 is a schematic cross-sectional view of an air supply module of one embodiment of the present disclosure
- FIG. FIG. 2 is a schematic perspective view showing a hollow fiber membrane according to one embodiment of the present disclosure
- FIG. 3 is a cross-sectional view of the hollow fiber membrane of FIG. 2 taken along the line AA.
- the present disclosure has been made based on such circumstances, and aims to provide an air supply module that can be made compact and has excellent air supply performance and chemical resistance.
- the air supply module according to one aspect of the present disclosure can be made compact and has excellent air supply performance and chemical resistance.
- An air supply module is an air supply module capable of supplying gas to a liquid to be supplied to the inside of a hollow fiber membrane, and includes a housing containing fluororesin as a main component and polytetrafluoroethylene. or a plurality of the hollow fiber membranes containing modified polytetrafluoroethylene as a main component, and the hollow fiber membrane has a porosity K [%], an average thickness T1 [mm], and an average outer diameter D2 [mm] , satisfies the relationship of the following formula (1). K/(T1 ⁇ D2 ⁇ 100) ⁇ 2.0 (1)
- the air supply module includes a plurality of hollow fiber membranes whose porosity K [%], average thickness T1 [mm], and average outer diameter D2 [mm] satisfy the relationship of the above formula (1), High air supply performance and water pressure resistance can be achieved, and miniaturization can be achieved. In addition, it has excellent chemical resistance by providing a hollow fiber membrane mainly composed of polytetrafluoroethylene or modified polytetrafluoroethylene and a housing mainly composed of fluororesin.
- the “main component” refers to a component having the highest content ratio in terms of mass, for example, a component having a content ratio of 50% by mass or more, preferably 70% by mass or more, and more preferably 95% by mass or more.
- porosity refers to the ratio of the total volume of pores to the total volume of the hollow fiber membrane, and can be obtained by measuring the density according to ASTM-D-792.
- the dry mass and water mass of the sample are measured in units of 0.0001 g, and the volume of the sample is obtained from the difference between them.
- the volume of the resin constituting the sample was calculated from the dry mass, assuming that the true specific gravity of polytetrafluoroethylene (PTFE) is 2.17 g/cm 3 .
- the ratio of the void volume obtained by subtracting the resin volume from the sample volume to the sample volume is expressed as a percentage and taken as the porosity.
- the porosity can be measured by the following procedure.
- the length (L) of the hollow fiber membrane whose porosity is to be measured is measured in units of 1 mm.
- the weight (W) of the hollow fiber membrane is measured with an electronic balance in units of 0.0001 g. Then, based on the above measured values, the porosity [%] is calculated by the following formula.
- ⁇ indicates the true specific gravity of polytetrafluoroethylene, which is 2.17 [g/cm 3 ].
- the "average thickness" of the hollow fiber membrane can be obtained by dividing (average outer diameter - average inner diameter) by 2.
- average outer diameter refers to the average value of the outer diameters of arbitrary two points.
- the cross section of the hollow fiber membrane is elliptical, the diameters of the minor axis and the major axis are measured at two points, and the average value is taken as the average outer diameter.
- the cross section of the hollow fiber membrane is an irregular cross section other than a general circle or an ellipse, the edge information of the outer diameter of the cross section is extracted and approximated to a circle, and the obtained inner circumference is divided by the circumference ratio.
- the value be the average outer diameter.
- the above-mentioned "average inner diameter” refers to the average value of inner diameters at two arbitrary points.
- the average outer diameter can be measured by the following procedure. First, the hollow fiber membrane is sliced in a plane perpendicular to the length direction and observed with an electron microscope so that the entire cross section is within the visual field. The outer diameter is measured at two positions (positions with a phase difference of about 90 degrees) that are substantially diagonal to the cross section, and the average value is defined as the average outer diameter (D2).
- the heat of fusion of the hollow fiber membrane is preferably 30 J/g or more and 45 J/g or less.
- the heat of fusion of the hollow fiber membrane is within the above range, it is possible to obtain a hollow fiber membrane having a high degree of crystallinity and a pore size and porosity within a better range.
- the amount of heat of fusion of the hollow fiber membrane is measured using a differential scanning calorimeter, and is the amount of heat absorbed between 296°C and 343°C in the third step of measurement with the differential scanning calorimeter.
- the heat of fusion of the hollow fiber membrane is a first step of heating from room temperature to 245°C at a rate of 50°C/min and then heating from 245°C to 365°C at a rate of 10°C/min; After cooling from 365 ° C. to 350 ° C. at a rate of -10 ° C./min and holding, after cooling from 350 ° C. to 330 ° C. at a rate of -10 ° C./min, from 330 ° C.
- the hollow fiber membrane preferably has an average outer diameter D2 of 0.70 mm or less, an average inner diameter D1 of 0.32 mm or less, a water pressure resistance of 0.3 MPa or more, and a porosity K of 30% or more.
- the average outer diameter, average inner diameter, water pressure resistance and porosity K of the hollow fiber membrane are within the above ranges, a bundle of hollow fiber membranes having a thin and fine diameter and high water pressure resistance and porosity is constituted. Therefore, the air supply performance can be improved while the size of the air supply module can be reduced.
- the above “average inner diameter” refers to the average value of the inner diameter of any two points.
- the average inner diameter can be measured by the following procedure. First, the hollow fiber membrane is sliced in a plane perpendicular to the length direction and observed with an electron microscope so that the entire cross section is within the visual field. The inner diameter is measured at two positions (positions with a phase difference of about 90 degrees) that are substantially diagonal to the cross section, and the average value is defined as the average inner diameter (D1).
- the above-mentioned “water pressure resistance” means the pressure at which water begins to leak from the other side when water pressure is applied to one side of the membrane, and is also called water leakage pressure.
- the water pressure resistance is measured according to JIS-L1092 (2009). Specifically, the lumen of the hollow fiber membrane was filled with water, and the water pressure into the lumen was continuously increased at a rate of 100 kPa/min. Water pressure.
- the pure water after the air supply treatment can maintain a dissolved oxygen concentration of 8 ppm or more per minute.
- the maximum flow rate per unit is preferably 0.035 mL/(cm 2 ⁇ min) or more with respect to the unit inner surface area of the hollow fiber membrane.
- the air supply module maintains the dissolved oxygen concentration of 8 ppm or more in the pure water after the air supply treatment. While supplying air, a large flow rate can be flowed, and the air supply effect is more excellent.
- the "inner surface area” means the inner surface area of the hollow fiber membrane.
- the main component of the casing is preferably tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, polytetrafluoroethylene, tetrafluoroethylene/hexafluoropropylene copolymer, or a combination thereof. Chemical resistance and mechanical strength can be improved by using these fluororesins as the main component of the housing.
- An air supply module is an air supply module capable of supplying gas to a liquid to be supplied into hollow fiber membranes. It comprises a housing and a plurality of hollow fiber membranes.
- the hollow fiber membrane wall can allow gas to permeate while suppressing liquid leakage.
- the air supply module can be applied in any field of application. For example, cleaning water for semiconductors, electronic devices, medical applications, food and beverage manufacturing, industrial waste liquids, river water, lake water, pool water, public bath water, purification and neutralization, drinking water, industrial water, etc. It can be used in a variety of applications, such as processing applications, enrichment of specific gases by permeation of liquids with gases such as oxygen, ozone, carbon dioxide, nitrogen and hydrogen.
- the air supply module is an integrated type in which the air supply module is fixed in various devices, etc., and a membrane member having a housing and a plurality of hollow fiber membranes are independent of each other, and the membrane member is inserted into the housing. It can be used in any type of replaceable cartridge type used as a
- FIG. 1 shows an air supply module 3 for supplying air as an example of an air supply module according to an embodiment of the present disclosure.
- the air supply module 3 includes a membrane member 2 having a plurality of hollow fiber membranes 1 aligned in one direction, and a tubular casing 11 that houses the membrane member 2 .
- the air supply module 3 is of a type that permeates a gas through the hollow fiber membranes 1 and supplies the liquid to be supplied into the hollow fiber membranes 1 .
- the membrane member 2 includes a first sealing portion 4 that holds one end of the plurality of hollow fiber membranes 1 and a second sealing portion 5 that holds the other end of the plurality of hollow fiber membranes 1. have In the first sealing portion 4 and the second sealing portion 5, a potting agent is filled between the hollow fiber membranes 1 and between the bundle of hollow fiber membranes and the inner surface of the housing.
- the main component of the potting agent is resin, rubber or elastomer.
- the potting agent is not particularly limited, but examples thereof include epoxy resins, urethane resins, ultraviolet curable resins, fluororesins, silicone resins, polyamide resins, and polyolefin resins such as polyethylene and polypropylene.
- fluororesins and silicone resins have good performance as adhesives for hollow fiber membranes whose main component is polytetrafluoroethylene or modified polytetrafluoroethylene (modified PTFE) and housings whose main component is fluororesin. It is preferable from the viewpoint of having
- the air supply module 3 is mounted on a cylindrical housing 11 and one end of the housing 11, and is provided with an engaging structure for engaging the gas supply port 9 and the first sealing portion 4.
- the second sleeve 14 provided with an engagement structure for engaging the gas discharge port 19 and the second sealing portion 5 and the end portion of the housing 11 on the side of the second sleeve 14 are sealed so that the liquid supply port 7 is
- a second cap 15 may be provided.
- the air supply module 3 has a liquid supply port 7 to which raw water is supplied in the S1 direction on one end face, and a liquid that has passed through the plurality of hollow fiber membranes 1 on the other end face. It has a liquid discharge port 8 that discharges in the S2 direction.
- a side surface of the housing 11 is provided with a gas supply port 9 through which gas is supplied in the direction P1 and a gas discharge port 19 through which gas is discharged in the direction P2.
- the positions and orientations of the gas supply port 9 and the gas discharge port 19 are not particularly limited, and can be configured according to the state in which the air supply module 3 is installed.
- the raw water supplied from the liquid supply port 7 into the hollow fiber membrane 1 is supplied into the housing 11 . Then, the liquid after the gas supply process is discharged from the liquid discharge port 8 provided on the side surface near the other end of the housing 11 .
- the air supply module 3 has excellent chemical resistance by being provided with a housing mainly composed of fluororesin and a plurality of hollow fiber membranes mainly composed of polytetrafluoroethylene or modified polytetrafluoroethylene. Therefore, the type of raw water is not particularly limited, and various liquids such as pure water, drinking water, chemical solutions, and waste water can be used depending on the purpose.
- the gas supplied from the gas supply port 9 is sucked from the wall surface of the hollow fiber membrane 1 toward the gas discharge port 19, and is supplied to the liquid supplied into the hollow fiber membrane 1 at the gas discharge port 19. discharged from the tip.
- Examples of the gas to be supplied include air, oxygen, carbon dioxide, hydrogen, ozone, nitrogen, hydrogen sulfide, and ammonia.
- the main component of the housing 11 is fluorine resin. Since the housing 11 is mainly composed of fluororesin, it has excellent chemical resistance.
- the fluorine resin is preferably a tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, polytetrafluoroethylene, a tetrafluoroethylene/hexafluoropropylene copolymer, or a combination thereof. Chemical resistance and mechanical strength can be improved by using these fluororesins as the main component of the housing 11 .
- the air supply module 3 when pure water having a dissolved oxygen concentration of 0.6 ppm or less is supplied to the inside of the hollow fiber membrane and air is permeated at a pressure of 10 kPa, the pure water after the air supply process has dissolved oxygen.
- the maximum flow rate per minute that can maintain the concentration of 8 ppm or more is preferably 0.035 mL/(cm 2 ⁇ min) or more with respect to the unit inner surface area of the hollow fiber membrane 1 .
- the maximum flow rate per minute at which the pure water after the air supply process can maintain a dissolved oxygen concentration of 8 ppm or more is within the above range, so that high-concentration gas can be efficiently supplied to the liquid. It can supply air well, and the effect of supplying air is better.
- the hollow fiber membrane 1 of FIGS. 2 and 3 is mainly composed of polytetrafluoroethylene or modified polytetrafluoroethylene. Since polytetrafluoroethylene and modified polytetrafluoroethylene are fluororesins with excellent chemical resistance and solvent resistance, the selectivity of the types of liquid and gas supplied to the air supply module 3 is improved. In addition, since polytetrafluoroethylene and modified polytetrafluoroethylene are highly hydrophobic fluororesins, leakage of liquid from the hollow fiber membrane 1 can be suppressed and gas permeability can be improved.
- Modified polytetrafluoroethylene is a small amount of hexafluoropropylene (HFP), alkyl vinyl ether (AVE), chlorotrifluoroethylene (CTFE), etc., preferably 1/50 (molar ratio) or less with respect to tetrafluoroethylene. It refers to polytetrafluoroethylene that has been processed.
- the lower limit of the average outer diameter D2 of the hollow fiber membrane 1 is not particularly limited, it is preferably 0.1 mm, more preferably 0.2 mm.
- the upper limit of the average outer diameter D2 of the hollow fiber membrane 1 is preferably 0.70 mm, more preferably 0.4 mm. If the average outer diameter D2 is less than the lower limit, the pressure loss may increase. Conversely, if the average outer diameter D2 exceeds the upper limit, the membrane area that can be accommodated in the housing 11 is reduced, or the pressure resistance is lowered, which may cause rupture due to internal pressure or buckling due to external pressure. .
- the lower limit of the average inner diameter D1 of the hollow fiber membrane 1 is not particularly limited, it is preferably 0.05 mm, more preferably 0.1 mm.
- the upper limit of the average inner diameter D1 of the hollow fiber membrane is preferably 0.32 mm, more preferably 0.2 mm. If the average inner diameter D1 is less than the lower limit, the pressure loss may increase. Conversely, if the average inner diameter D1 exceeds the upper limit, the pressure resistance will be low, and there is a risk of rupture due to internal pressure or buckling due to external pressure.
- the lower limit of the average thickness T1 of the hollow fiber membrane 1 is preferably 0.01 mm, more preferably 0.02 mm.
- the upper limit of the average thickness T1 of the hollow fiber membrane 1 is preferably 0.20 mm, more preferably 0.10 mm. If the average thickness T1 is less than the lower limit, the pressure resistance becomes low, and there is a risk of rupture due to internal pressure or buckling due to external pressure. Conversely, if the average thickness T1 exceeds the upper limit, the gas permeability may decrease.
- the lower limit of the porosity K of the hollow fiber membrane 1 is preferably 30%, more preferably 40%.
- the upper limit of the porosity K of the hollow fiber membrane 1 is not particularly limited, but is preferably 80%, more preferably 70%. If the porosity K of the hollow fiber membrane 1 is less than the above lower limit, the gas permeability may become low, and the air supply performance of the hollow fiber membrane 1 may deteriorate. If the porosity K of the hollow fiber membrane 1 exceeds the above upper limit, the mechanical strength of the hollow fiber membrane 1 is lowered, and there is a possibility that the durability may be lowered and the membrane may be broken due to internal pressure, such as rupture.
- the porosity K [%], the average thickness T1 [mm], and the average outer diameter D2 [mm] of the hollow fiber membrane 1 satisfy the relationship of the following formula (1).
- the air supply module has high air supply performance. And water pressure resistance can be realized, and miniaturization can be achieved. If K/(T1 ⁇ D2 ⁇ 100) is less than 2.0, the air supply performance or water pressure resistance of the air supply module may be lowered, and miniaturization may be difficult.
- the lower limit of the average pore size of the hollow fiber membrane 1 is preferably 3.0 nm, more preferably 5.0 nm.
- the upper limit of the average pore size of the hollow fiber membrane 1 is preferably 50.0 nm, more preferably 40.0 nm. If the average pore size is less than the lower limit, air supply performance may be insufficient. Conversely, if the average pore size exceeds the upper limit, the water pressure resistance is lowered, and liquid such as water containing impurities such as surfactants may leak out.
- the average pore size is measured by the bubble point method (ASTM F316-86, JISK3832) using a pore size distribution analyzer or the like, according to the following procedure.
- the relationship between the differential pressure applied to the membrane and the flow rate of air permeating the membrane is measured using a pore size distribution analyzer or the like when the membrane is dry and when the membrane is wet with a liquid.
- the value of d (nm) represented by P is the average pore diameter.
- the pore diameter of the hollow fiber membrane can also be measured by the bubble point method using a porometer that performs liquid-liquid phase substitution.
- PTFE which is the main component of the hollow fiber membrane, is a hydrophobic resin
- the pore diameter of the hollow fiber membrane can be determined using the Washburn equation using a pure water injection type porosimeter, which has the same principle as a mercury injection type porosimeter. can also be measured.
- the water pressure resistance of the hollow fiber membranes 1 is preferably 0.3 MPa or more, more preferably 1.0 MPa or more. Since the water pressure resistance of the hollow fiber membranes 1 is within the above range, liquid can be supplied to the air supply module 3 at high pressure. By allowing the liquid to flow through the air supply module 3 at a high pressure, bubbling does not occur in the liquid even if the pressure of the air supply gas is increased, so it is possible to produce a dissolved gas liquid with a higher concentration.
- the upper limit of the heat of fusion of the hollow fiber membrane 1 is preferably 45 J/g, more preferably 42 J/g.
- the lower limit of the heat of fusion of the hollow fiber membrane 1 is preferably 30 J/g, more preferably 33 J/g. If the heat of fusion of the hollow fiber membrane 1 exceeds the upper limit, the pore size may increase. On the other hand, if the heat of fusion of the hollow fiber membrane 1 is less than the lower limit, the porosity may decrease.
- the heat of fusion of the hollow fiber membrane 1 is within the above range, it is possible to obtain the hollow fiber membrane 1 having a high degree of crystallinity and a pore size and a porosity within a better range.
- the amount of heat of fusion of the hollow fiber membrane 1 is the amount of heat of fusion from 296° C. to 343° C. in the third step after the first to third steps.
- the hollow fiber membrane has a heat of fusion of 30.0 J/g or more and 45.0 J/g or less from 296° C. to 343° C. in the third step after the first step to the third step.
- a porous hollow fiber membrane having minute pores can be obtained. Therefore, the hollow fiber membrane 1 is porous, has an average outer diameter of 0.70 mm or less, an average inner diameter of 0.32 mm or less, and has a high porosity K and high water pressure resistance, which could not be obtained with the conventional technology. .
- the polytetrafluoroethylene for molding that has been generally used in the past has a heat of fusion of less than 30 J/g in the third step after passing through the first step to the third step. Therefore, it is considered that the heat of fusion of the hollow fiber membrane of this resin is less than 30 J/g. It is believed that such a resin is used as a result of considering moldability such as molding and paste extrusion molding and the strength of the molded product. For example, in paste extrusion, polytetrafluoroethylene having a heat of fusion of 20 J/g or less or about 25 J/g is used depending on the molding dimensions and the like, in order to achieve uniform qualities such as molding dimensions and mechanical strength.
- the hollow fiber membrane 1 differs from conventional hollow fiber membranes in that the heat of fusion range from 296° C. to 343° C. in the third step is 30.0 J/g or more and 45.0 J/g or less. Due to this difference, the deformability is higher than that of conventional hollow fiber membranes, and the impact absorption and deformation adhesion are significantly superior. Furthermore, the stretching step can provide a porous hollow fiber membrane having a fine pore size and a high porosity.
- the lower limit of the isopropanol bubble point of the hollow fiber membrane 1 is preferably 500 kPa, more preferably 1000 kPa.
- the upper limit of the isopropanol bubble point of the hollow fiber membrane 1 is not particularly limited. If the isopropanol bubble point of the hollow fiber membranes 1 is less than the lower limit, the hollow fiber membranes 1 may have insufficient liquid retention.
- "Isopropanol bubble point" is a value measured in accordance with ASTM-F316-86 using isopropanol, indicating the minimum pressure required to push liquid out of the pores, and an index corresponding to the average pore diameter. is.
- the lower limit of the filling rate of the hollow fiber membranes 1 in the air supply module 3 is preferably 30%, more preferably 40%.
- the upper limit of the filling rate of the hollow fiber membrane 1 is preferably 70%, more preferably 60%. If the filling rate of the hollow fiber membranes 1 is less than the lower limit, the air supply performance of the air supply module 3 may decrease. Conversely, if the filling rate of the hollow fiber membranes 1 exceeds the upper limit, the hollow fiber membranes 1 may collapse when the housing 11 is filled with the hollow fiber membranes 1, or it may be difficult to fill the housing. sexuality may occur.
- the air supply module 3 has excellent air supply performance due to the filling rate of the hollow fiber membranes 1 having high porosity and bubble point being 30% or more and 70% or less.
- the “filling rate of the hollow fiber membranes” refers to the packing density of the hollow fiber membranes 1 packed in the housing 11, and with respect to the length direction of the hollow fiber membranes 1 packed in the housing 11, It is the ratio (%) of the total cross-sectional area occupied by each hollow fiber membrane 1 obtained from the outer diameter of each filled hollow fiber membrane 1 to the lumen cross-sectional area of the housing 11 perpendicular to the vertical axis.
- the hollow fiber membrane 1 may contain other fluororesins and additives within a range that does not impair the desired effects of the present disclosure.
- the additives include inorganic fillers, metal powders, metal oxide powders, metal sulfide powders, etc. for improving wear resistance, preventing cold flow, and facilitating void formation.
- the method for producing the hollow fiber membrane includes, for example, a molding step of molding particles of polytetrafluoroethylene or modified polytetrafluoroethylene into a tubular shape, and a step of molding the tubular molded product to a temperature higher than the melting point of polytetrafluoroethylene or modified polytetrafluoroethylene. It is preferable to have a sintering step of heating to , a step of cooling the molten resin, and a stretching step of stretching the nonporous tubular molded article to make it porous. In this way, the hollow fiber membrane is formed by stretching after molding, whereby a porous hollow fiber membrane can be formed while reducing the diameter of the pores of the hollow fiber membrane.
- the hollow fiber membrane is made of polytetrafluoroethylene or modified polytetrafluoroethylene having a heat of fusion from 296° C. to 343° C. in the third step of 30.0 J/g or more and 45.0 J/g or less. It is obtained by melting to eliminate inter-particle gaps and then slowly cooling. That is, a step of heating and melting the polytetrafluoroethylene or modified polytetrafluoroethylene above its melting point, and a step of cooling the melted resin, or / and holding at 313 ° C. or higher and lower than 321 ° C. for 10 minutes or more. including the step of
- Polytetrafluoroethylene or modified polytetrafluoroethylene with a heat of fusion of 30.0 J / g or more and 45.0 J / g or less is, for example, polytetrafluoroethylene with a heat of fusion of less than 30.0 J / g, gamma rays, X rays , a method of irradiating with ionizing radiation such as ultraviolet rays or electron beams, a method of utilizing a decomposition reaction by heating, or the like.
- the molding step powder of polytetrafluoroethylene or modified polytetrafluoroethylene produced by emulsion polymerization or the like is molded into a tubular shape to obtain a tubular molded product.
- the raw material polytetrafluoroethylene or modified polytetrafluoroethylene particles are powders composed of fine particles of polytetrafluoroethylene or modified polytetrafluoroethylene.
- Polytetrafluoroethylene or modified polytetrafluoroethylene disperser which is an emulsion in which fine particles of polytetrafluoroethylene or modified polytetrafluoroethylene (polytetrafluoroethylene or modified polytetrafluoroethylene powder) are dispersed in a liquid (dispersion medium) John can also be used as a powder of raw polytetrafluoroethylene or modified polytetrafluoroethylene.
- the powder of polytetrafluoroethylene or modified polytetrafluoroethylene includes, for example, polytetrafluoroethylene or modified polytetrafluoroethylene which is a powder composed of fine particles of polytetrafluoroethylene or modified polytetrafluoroethylene and is produced by emulsion polymerization.
- polytetrafluoroethylene or modified polytetrafluoroethylene which is a powder composed of fine particles of polytetrafluoroethylene or modified polytetrafluoroethylene and is produced by emulsion polymerization.
- fluoroethylene fine powder and polytetrafluoroethylene or modified polytetrafluoroethylene molding powder produced by suspension polymerization are examples of fluoroethylene fine powder and polytetrafluoroethylene or modified polytetrafluoroethylene molding powder produced by suspension polymerization.
- polytetrafluoroethylene or modified polytetrafluoroethylene powder is formed into a tubular shape to obtain a tubular molded product having a predetermined shape and size
- a known method for forming a membrane from the powder for example, a raw material powder is used.
- a method of blending an extrusion aid and extruding the paste into a tubular shape after mixing, or a method of molding using polytetrafluoroethylene or modified polytetrafluoroethylene dispersion, etc., and drying and removing the dispersion medium (casting method). is mentioned.
- Polytetrafluoroethylene or modified polytetrafluoroethylene usually has a high melt viscosity, making it difficult to melt extrude and to prepare a solution thereof. Therefore, the above method is generally employed. be.
- the tubular molded article is heated to the melting point of polytetrafluoroethylene or modified polytetrafluoroethylene or higher to obtain a nonporous tubular molded article.
- Hollow fiber membranes produced by compressing polytetrafluoroethylene particles or modified polytetrafluoroethylene particles produced by emulsion polymerization or the like have pores and voids due to interstices between particles and extruding aids. By completely melting the fluoroethylene or modified polytetrafluoroethylene powder, these pores and voids are eliminated or substantially continuous voids are minimized. As a result, a non-porous tubular molded article is produced.
- a non-porous film-like molded product means a film having almost no pores penetrating through the film, and specifically, a film having a Gurley second of 5000 seconds or more is preferable.
- a film having a Gurley second of 5000 seconds or more is preferable.
- it is preferably heated at a temperature higher than the melting point of the raw material, or The heating temperature is preferably 450° C. or less in order to suppress the decomposition and modification of the resin.
- This cooling causes crystals to form in the polytetrafluoroethylene or modified polytetrafluoroethylene, which can saturate the crystallinity of the polytetrafluoroethylene or modified polytetrafluoroethylene resin before the next stretching step. Therefore, the reproducibility of the pore size can be increased in the production of the porous membrane.
- the lower the cooling rate or the longer the constant temperature treatment time the higher the degree of crystallinity and the heat of fusion.
- the higher the cooling rate or the shorter the constant temperature treatment time the lower the crystallinity and the heat of fusion tends to be lower.
- the heat of fusion of the hollow fiber membrane depends on the amount of crystals produced, and the amount of crystals produced is affected by the cooling rate. Therefore, in order to obtain the heat of fusion in the above range, cooling is performed by slow cooling (slow cooling) or/and cooling including holding at 310° C. or higher and lower than 325° C. for 10 minutes or longer. Slow cooling is preferably carried out at a cooling rate of -3.0°C/min or less, more preferably -2.0°C/min or less.
- the step of holding at 310° C. or higher and lower than 325° C. for 10 minutes or more may be performed during cooling after the sintering step, or may be carried out by heating and holding in the above temperature range after cooling.
- the heat of fusion of the polytetrafluoroethylene powder or granules adjusted to the above range may be used as it is.
- a mixture of two or more polytetrafluoroethylene powders or granules, at least one of which has a heat of fusion within the above range may be used.
- a porous hollow fiber membrane can be obtained by stretching the nonporous tubular molded product.
- stretching may be performed only in the axial direction, or in both the axial direction and the circumferential direction (radial expansion direction).
- the stretching ratio in the axial direction can be, for example, 3 times or more and 10 times or less, and the stretching ratio in the circumferential direction can be, for example, 2 times or more and 4 times or less.
- the size and shape of the pores of the hollow fiber membrane can be adjusted by adjusting the drawing conditions such as drawing temperature and drawing rate.
- first yield point the general yield point that first appears on the load-elongation curve
- second 2 yield point the next inflection point that appears before breaking
- a hollow fiber membrane having excellent air supply performance and chemical resistance can be manufactured.
- the gas supply module is configured to perfuse liquid into the hollow fiber membranes and supply gas to the liquid.
- the air supply module may be in the form of supplying gas to the liquid to be perfused.
- the air supply module has the same air supply performance regardless of whether it is in the form of supplying liquid into the hollow fiber membranes or in the form of supplying gas into the hollow fiber membranes.
- This sample is heated and cooled under the following conditions. After heating from room temperature to 245° C. at a rate of 50° C./min, it is heated from 245° C. to 365° C. at a rate of 10° C./min (first step). Next, after cooling from 365 ° C. to 350 ° C. at a rate of -10 ° C./min and holding, cooling from 350 ° C. to 330 ° C. at a rate of -10 ° C./min, and further at a rate of -1 ° C./min. Cool from 330° C. to 305° C. (second step). Next, after cooling from 305° C. to 245° C. at a rate of ⁇ 50° C./min, heating from 245° C. to 365° C. at a rate of 10° C./min (third step).
- a heat flux differential scanning calorimeter DSC-60A manufactured by Shimadzu Corporation was used with a sampling time of 0.5 seconds/time to determine the amount of heat absorbed and the amount of heat generated.
- the endothermic amount in the first step was obtained by integrating the section from 303°C to 353°C, the heat release amount in the second step from 318°C to 309°C, and the endothermic amount in the third step from 296°C to 343°C. value.
- the amount of heat absorbed in this third step is defined as the amount of heat of fusion.
- IPA isopropanol
- PTFE fine powder shown below which is a raw material powder, was used as a raw material.
- the PTFE fine powder used here is made of PTFE particles (primary particles) having a particle size of 0.15 ⁇ m to 0.35 ⁇ m produced by emulsion polymerization of tetrafluoroethylene (emulsion polymerization product). It is a powder granulated to several hundred ⁇ m to several thousand ⁇ m.
- the raw material resins used in 2 are as follows.
- Test no. 1 F208 manufactured by Daikin Industries, Ltd.: modified PTFE
- Test no. 2 CD-123E manufactured by AGC was irradiated with 1.0 kGy of ⁇ -rays: homo-PTFE
- Table 1 shows the heat of fusion of each raw material in the third step.
- the obtained PTFE powder was molded into a tube under the following conditions.
- a paste extrusion method or a ram extrusion method described in "Fluororesin Handbook (written by Takaomi Satokawa, Nikkan Kogyo Shimbun)" can be used as a method for molding into a tubular shape.
- the paste extrusion method described above was used.
- 23 parts by mass of a liquid lubricant (“Solvent Naphtha", manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is mixed with PTFE powder, pressed into a cylindrical shape with a preforming machine, and then extruded into a coil shape with an extruder.
- Test no. 1 used an extruder with a cylinder diameter of 40 mm, a mandrel diameter of 10 mm, a die diameter of 1.0 mm, a core pin diameter of 0.5 mm, and a reduction ratio of 2000.
- Test no. 2 used an extruder with a cylinder diameter of 30 mm, a mandrel diameter of 10 mm, a die diameter of 0.8 mm, a core pin diameter of 0.4 mm, and a reduction ratio of 1667.
- the resulting nonporous tubular molded article was stretched under the following conditions to obtain a porous tubular molded article. Stretching was performed at 170° C. with a chuck width of 10 mm, a stretching speed of 500 mm/min, and a tensile tester (Autograph AG500 with a constant temperature bath manufactured by Shimadzu Corporation). The average outer diameter and average inner diameter were obtained by measuring arbitrary two points, and the average thickness was obtained from the formula (average outer diameter - average inner diameter)/2 at arbitrary two points. Table 1 shows the axial draw ratio of the hollow fiber membrane of each test number, and Table 2 shows the average outer diameter D2, the average inner diameter D1 and the average thickness T1.
- ⁇ Hollow fiber membrane Test No. 3 (comparative example)> A liquid lubricant (solvent naphtha manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is mixed with the PTFE powder shown below, which is a raw material powder, and the mixture is pressed and then paste-extruded into a tubular shape to produce a tubular molded body. At that time, 19 parts by mass of a liquid lubricant was blended. The extrudate was heated to 200° C. to dry off the liquid lubricant to obtain an unsintered tube. After that, it was stretched in the longitudinal direction at 280.degree. Test no.
- Table 1 shows the temperature of the die used in the extrusion molding in 3 and the axial draw ratio in the drawing step, and Table 2 shows the average outer diameter D2, the average inner diameter D1 and the average thickness T1.
- Test no. As the raw material resin of No. 3, CD123E (homo PTFE) manufactured by AGC was used. Also, test no. Table 1 shows the amount of heat of fusion in the third step of the raw material resin of No. 3.
- Table 1 shows the extrusion conditions for the hollow fiber membrane of No. 3.
- Table 2 shows the porosity K, isopropanol bubble point and average pore diameter measurement results, 0.3 MPa water pressure resistance test results, and K/(T1 ⁇ D2 ⁇ 100) calculation results.
- Air Supply Module Test No. 11 to Test No. 14 (Hollow fiber membrane Test No. 1 to Test No. 3)> Test no. 1 to test No. 3 (air supply module test No. 11 to test No. 14) were produced.
- the filling rate of the hollow fiber membrane was set to 40%, and two types of sizes, large and small, were produced for the inner diameter and effective length of the body.
- Four types of air supply modules with different numbers of enclosed hollow fiber membranes were produced.
- these air supply modules used a housing containing a fluororesin as a main component.
- Table 3 shows the housing volume of the air supply module, the number of enclosed hollow fiber membranes, and the filling rate. The volume of the housing was obtained by calculating the product of the internal cross-sectional area of the trunk and the effective length.
- the main component is polytetrafluoroethylene or modified polytetrafluoroethylene
- the hollow fiber membrane has a porosity K [%], an average thickness T1 [mm], and an average outer diameter D2 [mm] of K Test No. satisfying /(T1 ⁇ D2 ⁇ 100) ⁇ 2.0.
- 11 to No. Thirteen air supply modules have been shown to provide high throughput modules.
- No. 1 with a high value of K/(T1 ⁇ D2 ⁇ 100).
- No. 2 hollow fiber membrane had very high throughput per internal surface area.
- the 14 air supply modules had poor throughput per internal surface area.
- test no. No. 14 air supply modules have the same internal volume. The maximum flow rate of pure water with a dissolved oxygen concentration of 8 ppm or higher was also very low compared to the 12 air supply modules.
- the air supply module was shown to have excellent air supply performance and chemical resistance. Therefore, the air supply module can be suitably used as an air supply device for semiconductor manufacturing processes, wastewater treatment, beverage and food manufacturing processes, chemical liquid manufacturing processes, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本出願は、2021年5月11日出願の日本出願第2021-80631号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
K/(T1×D2×100)≧2.0 ・・・(1)
近年、給気モジュールは、半導体、食品、医薬、廃水処理等、多様な用途に採用されており、コンパクト化、かつ給気性能及び耐薬品性の向上が求められている。
本開示の一態様に係る給気モジュールは、コンパクト化が図れるとともに、給気性能及び耐薬品性に優れる。
最初に本開示の実施態様を列記して説明する。
K/(T1×D2×100)≧2.0 ・・・(1)
気孔率[%]={1-樹脂のみの体積[cm3]÷中空糸膜全体積[cm3]}×100
={1-(W[g]÷ρ[g/cm3])÷(π(D22[mm2]-D12[mm2])×L[mm]÷1000)}×100
ここで、「ρ」はポリテトラフルオロエチレンの真比重を示し、2.17[g/cm3]である。
以下、本開示の各実施形態に係る給気モジュールについて図面を参照しつつ詳説する。
本開示の他の一態様に係る給気モジュールは、中空糸膜内に供給される液体に気体を給気可能な給気モジュールである。筐体と、複数本の中空糸膜とを備える。上記中空糸膜壁は、液体の漏れを抑制しつつも、気体を透過させることができる。当該給気モジュールは、どのような分野の用途にも適用することができる。例えば、半導体、電子デバイス、医薬用途の洗浄水、食品や飲料の製造、産業廃液、河川水、湖水、プールの水、公衆浴場の水等の浄化や中和、飲料水や工業用水等の水処理用途、液体に対する酸素、オゾン、二酸化炭素、窒素、水素等の気体の透過による特定の気体の富化機能など、種々の用途に利用できる。
図2及び図3の中空糸膜1は、ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンを主成分とする。ポリテトラフルオロエチレン及び変性ポリテトラフルオロエチレンは耐薬品性及び耐溶剤性に優れたフッ素樹脂であるため、当該給気モジュール3に供給される液体及び気体の種類の選択性が向上する。また、ポリテトラフルオロエチレン及び変性ポリテトラフルオロエチレンは疎水性が高いフッ素樹脂であるため、中空糸膜1からの液体の漏れが抑制されるとともに、気体の透過性を向上できる。
K/(T1×D2×100)≧2.0 ・・・(1)
上記中空糸膜1の気孔率K[%]、平均厚さT1[mm]及び平均外径D2[mm]が上記式(1)の関係を満たすことにより、当該給気モジュールは高い給気性能及び耐水圧性を実現できるとともに、小型化を図ることができる。K/(T1×D2×100)が2.0未満の場合、当該給気モジュールは給気性能又は耐水圧が低下したり、小型化を図ることが困難となるおそれがある。
他の方法として、液・液相置換を行なうポロメータを用いたバブルポイント法によっても中空糸膜の孔径を測定することができる。また、中空糸膜の主成分であるPTFEは疎水性樹脂であるため、中空糸膜の孔径は、水銀圧入タイプのポロシメータと同様の原理である純水圧入タイプのポロシメータにより、Washburnの式を用いて測定することもできる。
次に、上記中空糸膜の製造方法の例について説明する。上記中空糸膜の製造方法は、例えばポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの粒子をチューブ状に成形する成形工程、上記チューブ状成形品をポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの融点以上に加熱する焼結工程、溶融された樹脂を冷却する工程、及び無孔質チューブ状成形品を延伸して多孔質化する延伸工程を有することが好ましい。このように、上記中空糸膜は、成形後に延伸して形成することにより、上記中空糸膜の孔の小径化を図りつつ多孔質の中空糸膜を形成することができる。
成形工程では乳化重合等により製造されたポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの粉末をチューブ状に成形してチューブ状成形品を得る。原料のポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの粒子とは、ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの微細粒子からなる粉体である。このポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの微細粒子(ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレン粉末)を液体(分散媒)に分散した乳液であるポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンディスパージョンも、原料のポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの粉末として用いることができる。ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの粉末としては、例えば、ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの微細粒子からなる粉体であり乳化重合により製造されるポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンファインパウダーや懸濁重合により製造されるポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンモールディングパウダーを挙げることができる。
焼結工程では、上記チューブ状成形品をポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの融点以上に加熱して無孔質チューブ状成形品を得る。乳化重合等により製造されたポリテトラフルオロエチレン粒子又は変性ポリテトラフルオロエチレン粒子を押し固めた中空糸膜は、粒子の間隙や押出助剤の抜けに起因する孔や空隙が存在するが、ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの粉末を完全溶融することにより、これらの孔や空隙は消滅するか、実質的に連続する空隙が極小化する。その結果、無孔質チューブ状成形品が作製される。無孔質の膜状成形品とは、膜を貫通する孔がほとんど無い膜を意味するが、具体的には、ガーレー秒が5000秒以上の膜が好ましい。ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの粉末の溶融を完全にしてガーレー秒の大きい無孔質膜状成形品を作製するために、原料の融点より高い温度で加熱されることが好ましく、又樹脂の分解や変性を抑制するために加熱温度は、450℃以下の温度が好ましい。
上記焼結工程後は、ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンを徐冷により冷却する工程を行うことが好ましい。冷却工程では、ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの融点以上に昇温した後ゆっくりと結晶融点以下へ徐冷する方法や、ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの融点よりもやや低い温度で一定時間加熱する方法(以下、「定温処理」と言うことがある)が行われる。この冷却により、ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレン中に結晶が生成され、次の延伸工程前に、ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンの樹脂の結晶化度を飽和させることができるので、多孔質膜の製造において孔径の再現性をより高くすることができる。なお、結晶化プロセスでは冷却速度が低いほどあるいは定温処理時間が長いほど結晶化度が高まり融解熱量が高くなる傾向がある。一方、冷却速度が高いほどあるいは定温処理時間が短いほど結晶化度は低くなり、融解熱量が低くなる傾向がある。
延伸工程では、このようにして得られた無孔質チューブ状成形品を延伸して多孔質化する。多孔質の中空糸膜は、上記無孔質チューブ状成形品を、延伸することにより得ることができる。延伸工程では、軸方向のみ又は、軸方向と周方向(径膨張方向)に延伸をしても良い。軸方向における延伸率としては例えば3倍以上10倍以下とすることができ、周方向における延伸率としては例えば2倍以上4倍以下とすることができる。上記中空糸膜は、延伸温度、延伸率等の延伸条件を調節することにより、空孔の大きさや形状を調節することができる。
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
まず、以下の実施例、比較例において行った物性値の測定方法について説明する。
サンプルを10mgから20mgを採り、必要に応じてアルミセルにPTFEを封止する。ここで、PTFEは可能な限り収縮変形できるようにフリーな状態に保つことが重要であるので、セルを潰さないか、潰し切らないようにする。
50℃/分の速度で室温から245℃まで加熱した後に、10℃/分の速度で245℃から365℃まで加熱する(第1ステップ)。
次に、-10℃/分の速度で365℃から350℃まで冷却して保持した後に、-10℃/分の速度で350℃から330℃まで冷却後、さらに-1℃/分の速度で330℃から305℃まで冷却する(第2ステップ)。
次に、-50℃/分の速度で305℃から245℃まで冷却後、10℃/分の速度で245℃から365℃まで加熱する(第3ステップ)。
サンプルの乾燥質量と水中質量を測定し、これらの差よりサンプルの体積を求めた。又、PTFEの真比重を2.17g/cm3として、乾燥質量より、サンプルを構成する樹脂の体積を算出した。サンプルの体積から樹脂の体積を除いた空隙体積と、サンプルの体積の比を%表示し、気孔率とした。
中空糸膜をイソプロピルアルコール容器に浸漬・含浸し、管壁の孔内をイソプロピルアルコールで充満した後、浸漬状態で中空糸膜の一方の端面の内側より徐々に空気圧を負荷したときに、初めて気泡が反対側の端面から出てくるときの圧力を、バブルポイントとした。この時の測定最大圧力は500kPaとした。
純水圧入タイプのポロシメータにより、Washburnの式を用いて測定した。
中空糸膜の内腔を水で満たし、内腔への水圧を100kPa/分の速度で0.3MPaまで連続的に高めていき、中空糸膜の外表面からの水滴として漏れを観察した。
[原料粉末の調製]
原料粉末である下記に示すPTFEファインパウダーを原料とした。ここで使用されるPTFEファインパウダーとは、テトラフルオロエチレンを乳化重合して生成した粒径が0.15μm~0.35μmのPTFE粒子(一次粒子)からなるもの(乳化重合品)を乾燥し、数百μm~数千μmに造粒した粉体である。
試験No.1(ダイキン工業社製F208:変性PTFE)
試験No.2(AGC社製CD-123Eに1.0kGyのγ線を照射:ホモPTFE)
各原料の第3ステップの融解熱量を表1に示す。
得られたPTFEの粉末を下記の条件でチューブ状に成形した。チューブ状に成型する方法としては、例えば「フッ素樹脂ハンドブック(里川孝臣著、日刊工業新聞社)」に記載のペースト押出法やラム押出法を用いることができる。試験No.1及び試験No.2については、上記ペースト押出法を用いた。PTFEの粉末に液状潤滑剤(「ソルベントナフサ」、富士フィルム和光純薬社製)を23質量部混合して、予備成型機で円筒状に押し固めた後に、押出機を用いてとぐろ状に押し出すことにより成形した。シリンダーとダイス温度は50℃とした。試験No.1は、シリンダー径40mm、マンドレル径10mm、ダイス径1.0mm、コアピン径0.5mm、リダクションレシオ(reduction ratio:縮小断面積比)2000の押出機を用いた。試験No.2は、シリンダー径30mm、マンドレル径10mm、ダイス径0.8mm、コアピン径0.4mm、リダクションレシオ1667の押出機を用いた。
乾燥工程では、200℃の熱風循環恒温槽で液体潤滑剤を乾燥させた。
上記チューブ状成形品を連続延伸焼結機により、PTFE又は変性PTFEの融点以上である炉温度420℃で加熱し、延伸倍率0.9倍で焼結して、半透明の無孔質チューブを得た。
上記半透明の無孔質チューブをとぐろに巻いた状態で、熱風循環恒温槽に入れ350℃で5分間以上加熱し、連続して300℃以下まで-1℃/分以下の冷却速度で徐冷した。
延伸工程では、得られた無孔質チューブ状成形品を以下の条件で延伸し、多孔質化チューブ状成形品を得た。引張試験機(島津製作所製の恒温槽付きオートグラフAG500)にて、チャック幅10mm、延伸速度500mm/分、170℃で延伸を行った。なお、平均外径と平均内径は任意の2点を測定して平均値を求め、平均厚さは、任意の2点における(平均外径-平均内径)/2の数式より求めた。
各試験番号の中空糸膜の軸方向延伸倍率を表1に示し、平均外径D2、平均内径D1及び平均厚さT1を表2に示す。
原料粉末である下記に示すPTFE粉末に液状潤滑剤(富士フィルム和光純薬製ソルベントナフサ)を混合して押し固めた後に、チューブ状にペースト押出成形を行い、チューブ状成形体を作製する。その際、液状潤滑剤を19質量部配合した。その押出成形品を200℃に加熱し液体潤滑剤を乾燥除去し、未焼結チューブを得た。その後、連続延伸焼結機を用いて長手方向に280℃で延伸して多孔質化した後に380℃に焼結を行うことにより、多孔質のチューブ状成形体を作製した。試験No.3における押出成形で用いたダイスの温度、延伸工程での軸方向延伸倍率を表1に示し、平均外径D2、平均内径D1及び平均厚さT1を表2に示す。試験No.3の原料樹脂としては、AGC社製CD123E(ホモPTFE)を用いた。また、試験No.3の原料樹脂の第3ステップの融解熱量を表1に示す。
試験No.1~試験No.3の中空糸膜を備える給気モジュール(給気モジュール 試験No.11~試験No.14)を作製した。これらの給気モジュールにおいては、中空糸膜の充填率を40%とし、胴内径と有効長は大小二種類のサイズで作製した。中空糸膜の封入本数が異なる4種類の給気モジュールを作製した。また、これらの給気モジュールは、フッ素樹脂を主成分とする筐体を用いた。給気モジュールの筐体容積、中空糸膜の封入本数及び充填率を表3に示す。筐体容積は、胴部内断面積と有効長との積を算出することにより求めた。
25℃の室温で、上記給気モジュールの中空糸の内腔に溶存酸素濃度0.6ppmの純水を透過させながら、ゲージ圧力10kPaの空気をスイープ(sweep)させながら中空糸膜の外面に接触させ、給気モジュールの給気性能評価を行った。この時、純水流量を0.5ml/分から徐々に高めていき、給気処理後の純水が溶存酸素濃度8ppm以上を維持できる毎分当たりの最大の流量を、毎分当たりの8ppm達成最大流量とした。溶存酸素濃度8ppm以上を維持できる毎分当たりの最大の流量と上記給気モジュールの単位内表面積当たりの溶存酸素濃度8ppm以上を維持できる毎分当たりの最大の流量を表3に示す。
2 膜部材
3 給気モジュール
4 第1封止部
5 第2封止部
7 液体供給口
8 液体排出口
9 気体供給口
19 気体排出口
11 筐体
12 第1スリーブ
13 第1キャップ
14 第2スリーブ
15 第2キャップ
Claims (5)
- 中空糸膜の内部に供給される液体に気体を給気可能な給気モジュールであって、
フッ素樹脂を主成分とする筐体と、
ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレンを主成分とする複数本の上記中空糸膜と
を備え、
上記中空糸膜の気孔率K[%]、平均厚さT1[mm]及び平均外径D2[mm]が、下記式(1)の関係を満たす給気モジュール。
K/(T1×D2×100)≧2.0 ・・・(1) - 上記中空糸膜の融解熱量が30J/g以上45J/g以下である請求項1に記載の給気モジュール。
- 上記中空糸膜の平均外径D2が0.70mm以下、平均内径D1が0.32mm以下、耐水圧が0.3MPa以上、かつ気孔率Kが30%以上である請求項1又は請求項2に記載の給気モジュール。
- 溶存酸素濃度0.6ppm以下の純水を上記中空糸膜の内部に供給し、圧力10kPaで空気を透過させた場合に、給気処理後の純水が溶存酸素濃度8ppm以上を維持できる毎分当たりの最大の流量が、上記中空糸膜の単位内表面積に対して0.035mL/(cm2・分)以上である請求項1から請求項3のいずれか1項に記載の給気モジュール。
- 上記筐体の主成分が、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体又はこれらの組み合わせである請求項1から請求項4のいずれか1項に記載の給気モジュール。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280032009.3A CN117222469A (zh) | 2021-05-11 | 2022-02-07 | 供气模块 |
US18/289,561 US20240246038A1 (en) | 2021-05-11 | 2022-02-07 | Aeration module |
JP2023520783A JPWO2022239333A1 (ja) | 2021-05-11 | 2022-02-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021080631 | 2021-05-11 | ||
JP2021-080631 | 2021-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022239333A1 true WO2022239333A1 (ja) | 2022-11-17 |
Family
ID=84029073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/004757 WO2022239333A1 (ja) | 2021-05-11 | 2022-02-07 | 給気モジュール |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240246038A1 (ja) |
JP (1) | JPWO2022239333A1 (ja) |
CN (1) | CN117222469A (ja) |
WO (1) | WO2022239333A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10501733A (ja) * | 1994-06-22 | 1998-02-17 | エフエルエス・ミリエ・アクティーゼルスカブ | 物質移動方法および装置 |
JP2000246064A (ja) * | 1999-02-26 | 2000-09-12 | Sumitomo Electric Ind Ltd | 気体溶解モジュール |
JP2003311140A (ja) * | 2002-04-22 | 2003-11-05 | Dainippon Ink & Chem Inc | 液体の微小添加量制御装置及びこれを用いたガス溶解水製造装置とガス溶解水の製造方法 |
JP2019166474A (ja) * | 2018-03-23 | 2019-10-03 | 住友電気工業株式会社 | 濾過モジュール及び中空糸膜製造方法 |
WO2020084930A1 (ja) * | 2018-10-24 | 2020-04-30 | 住友電工ファインポリマー株式会社 | 中空糸膜及び中空糸膜モジュール |
-
2022
- 2022-02-07 WO PCT/JP2022/004757 patent/WO2022239333A1/ja active Application Filing
- 2022-02-07 JP JP2023520783A patent/JPWO2022239333A1/ja active Pending
- 2022-02-07 US US18/289,561 patent/US20240246038A1/en active Pending
- 2022-02-07 CN CN202280032009.3A patent/CN117222469A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10501733A (ja) * | 1994-06-22 | 1998-02-17 | エフエルエス・ミリエ・アクティーゼルスカブ | 物質移動方法および装置 |
JP2000246064A (ja) * | 1999-02-26 | 2000-09-12 | Sumitomo Electric Ind Ltd | 気体溶解モジュール |
JP2003311140A (ja) * | 2002-04-22 | 2003-11-05 | Dainippon Ink & Chem Inc | 液体の微小添加量制御装置及びこれを用いたガス溶解水製造装置とガス溶解水の製造方法 |
JP2019166474A (ja) * | 2018-03-23 | 2019-10-03 | 住友電気工業株式会社 | 濾過モジュール及び中空糸膜製造方法 |
WO2020084930A1 (ja) * | 2018-10-24 | 2020-04-30 | 住友電工ファインポリマー株式会社 | 中空糸膜及び中空糸膜モジュール |
Also Published As
Publication number | Publication date |
---|---|
CN117222469A (zh) | 2023-12-12 |
CN117222469A9 (zh) | 2024-01-09 |
US20240246038A1 (en) | 2024-07-25 |
JPWO2022239333A1 (ja) | 2022-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7290209B2 (ja) | 中空糸膜及び中空糸膜モジュール | |
JP5008850B2 (ja) | 四フッ化エチレン樹脂成形体、延伸四フッ化エチレン樹脂成形体、それらの製造方法、並びに、複合体、フィルター、衝撃変形吸収材及びシール材 | |
TWI712448B (zh) | 膜蒸餾用多孔質膜及膜蒸餾用模組之運轉方法 | |
US7717405B2 (en) | Hollow fiber membrane contact apparatus and process | |
US5238735A (en) | Microporous shaped article and process for preparation thereof | |
JP6306183B2 (ja) | 膜蒸留装置及び疎水性多孔質膜 | |
US5695545A (en) | Degassing liquids: apparatus and method | |
JP5068168B2 (ja) | フッ化ビニリデン系樹脂中空糸多孔膜 | |
CN111093948B (zh) | 用于制备基于氟的树脂的多孔膜的方法 | |
JPWO2013147187A1 (ja) | 複合中空糸膜及び中空糸膜モジュール | |
JP2004149637A (ja) | 微多孔膜及びその製造方法並びに用途 | |
WO2022239333A1 (ja) | 給気モジュール | |
TWI621653B (zh) | Ptfe/pfsa摻合膜 | |
EP4454738A1 (en) | Hollow fiber membrane module and hollow fiber membrane for module | |
WO2023120589A1 (ja) | 中空糸膜モジュール及びモジュール用中空糸膜 | |
WO2011027878A1 (ja) | フッ化ビニリデン系樹脂多孔膜およびその製造方法 | |
JP2001002815A (ja) | 微多孔性膜及びその製造方法 | |
JPH10202074A (ja) | 非対称構造フッ素樹脂チューブ及びこのチューブの製造法及びこのチューブを用いた脱気方法及び脱気装置 | |
JP2014104445A (ja) | 中空糸膜の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22807040 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280032009.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18289561 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023520783 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22807040 Country of ref document: EP Kind code of ref document: A1 |