WO2013146098A1 - 撮像モジュール、および撮像モジュールの製造方法 - Google Patents
撮像モジュール、および撮像モジュールの製造方法 Download PDFInfo
- Publication number
- WO2013146098A1 WO2013146098A1 PCT/JP2013/055730 JP2013055730W WO2013146098A1 WO 2013146098 A1 WO2013146098 A1 WO 2013146098A1 JP 2013055730 W JP2013055730 W JP 2013055730W WO 2013146098 A1 WO2013146098 A1 WO 2013146098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- solid
- imaging device
- imaging module
- state
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000000034 method Methods 0.000 title claims description 12
- 239000000758 substrate Substances 0.000 claims abstract description 112
- 238000002844 melting Methods 0.000 claims abstract description 17
- 230000008018 melting Effects 0.000 claims abstract description 17
- 238000003384 imaging method Methods 0.000 claims description 122
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 238000012790 confirmation Methods 0.000 description 17
- 239000011521 glass Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000005304 optical glass Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/1469—Assemblies, i.e. hybrid integration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14618—Containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14685—Process for coatings or optical elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/57—Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
Definitions
- the present invention relates to an imaging module using a solid-state imaging device and a method for manufacturing the imaging module.
- imaging devices using a solid-state imaging device such as a CCD (charge-coupled device) have been widely used.
- a solid-state imaging device photoelectric conversion device
- CCD charge-coupled device
- Such an imaging apparatus is used for in-vehicle use, information communication terminal use, medical use, and the like, and is required to be reduced in size and thickness.
- Patent Document 1 describes a configuration using optical glass as a substrate. Specifically, this will be described with reference to FIG. FIG. 7 is a diagram illustrating a configuration described in Patent Document 1.
- a TAB tape 102 having a plurality of copper leads formed on an insulating sheet is bonded to an optical glass 101, and at a position facing the opening 106.
- a photoelectric conversion device in which an optical glass 101 and a CCD 112 are arranged is described.
- Patent Document 2 describes a configuration in which a substrate and an image sensor are flip-chip connected. Specifically, this will be described with reference to FIG. FIG. 8 is a diagram showing the configuration described in Patent Document 2. As shown in FIG. As shown in FIG. 8, Patent Document 2 describes a camera module 202 in which a wiring pattern 213 formed on one surface of a translucent substrate 210 and an image sensor 211 are flip-chip connected via bumps 216. Yes.
- Japanese Patent Publication Japanese Patent Laid-Open No. 7-99214 (published on April 11, 1995)” Japanese Patent Publication “JP 2001-203913 (published July 27, 2001)”
- glass is used as the translucent substrate 210. Since glass is a brittle material, there is a limit to thinning it, and as a result, thinning is hindered.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to reduce the size and thickness of an image while eliminating the cause of image defects due to dust and the like adhering to the image sensor. It is to realize modules and the like.
- an imaging module includes a solid-state imaging device having a light receiving portion and an electrode pad, a wiring pattern, and a flip-chip connection between the wiring pattern and the electrode pad.
- a substrate provided with an opening, an anisotropic conductive film affixed to the substrate for connecting the substrate and the solid-state imaging device, and provided in the opening
- a transparent member that transmits light received by the light receiving portion, and the opening is formed by melting the substrate and the anisotropic conductive film.
- the anisotropic conductive film in the edge portion is characterized by being in a molten form maintaining and curing state, which is a cured state after melting.
- An imaging module manufacturing method is an imaging module manufacturing method in which a solid-state imaging device having an electrode pad is mounted on a substrate on which a wiring pattern is formed. A step of attaching a conductive film, a step of forming an opening by melting the cut portion of the substrate to which the anisotropic conductive film is attached, and a translucent member disposed in the opening. Flip the wiring pattern of the substrate and the electrode pad of the solid-state image sensor via bumps so that the light transmitted through the translucent member can be received by the light-receiving portion of the solid-state image sensor And a step of chip connection.
- the imaging module according to the present invention has a solid-state imaging device having a light receiving portion and an electrode pad, a wiring pattern, and the wiring pattern and the electrode pad are flip-chip connected.
- a substrate provided with an opening; an anisotropic conductive film affixed to the substrate for connecting the substrate and the solid-state imaging device; and provided in the opening.
- a light-transmitting member that transmits light received by the light-receiving unit, and the opening is formed by melting the substrate and the anisotropic conductive film, and the edge of the opening is
- the said anisotropic conductive film is the structure which is a molten form maintenance hardening state which is the state hardened
- the method for manufacturing an imaging module according to the present invention includes a step of attaching an anisotropic conductive film to a substrate, and opening the substrate on which the anisotropic conductive film is attached by melting a cut portion.
- the apparatus can be reduced in size and thickness.
- FIG. 1 shows an imaging module according to an embodiment of the present invention, in which (a) is a top view of the imaging module and (b) is a cross-sectional view taken along line AA ′ of (a). It is a figure for demonstrating the semi-hardened part of the anisotropic conductive film in the said image pick-up element. It is a figure for demonstrating the position shift confirmation part in the said image sensor, (a) is a top view of an image sensor, (b) is the figure which expanded the position shift confirmation part of (a). It is a figure which shows the state which looked at the said image pick-up element from the direction opposite to Fig.3 (a).
- Imaging module 1 [1. Configuration of imaging module) One embodiment of the present invention will be described below with reference to FIGS.
- the imaging module 1 according to the present embodiment is provided and used in various imaging devices.
- FIG. 1A and 1B are diagrams showing a configuration of an imaging module 1 according to the present embodiment.
- FIG. 1A is a top view of the imaging module 1
- FIG. 1B is a diagram showing a cross section taken along line AA ′ in FIG. is there.
- the side of the flexible substrate 2 on which the solid-state imaging device 3 is disposed is the lower side, and the opposite side is the upper side. Therefore, the state seen from BB in FIG. 1B is the state seen from above, and the state seen from CC is the state seen from below.
- an imaging module 1 has anisotropic conductive as a connecting member between a flexible substrate 2 and a solid-state imaging device 3 on a flexible substrate 2 having an opening 5 at the center.
- a film 8 is pasted.
- the solid-state image sensor 3 is flip-chip bonded (FCB) to the terminals of the flexible substrate 2 through bumps 7 provided on the electrodes (electrode pads 13) of the solid-state image sensor 3.
- a wiring pattern 11 is formed on the flexible substrate 2.
- the bump 7 is made of, for example, gold.
- the solid-state image sensor 3 is arranged so as to cover the opening 5 of the flexible substrate 2.
- the glass 4 is disposed in the opening 5 of the flexible substrate 2 so as to cover the pixel area (light receiving unit 12) of the solid-state imaging device 3.
- the contact surface between the flexible substrate 2 and the solid-state imaging device 3 is sealed with an anisotropic conductive film 8, and the flexible substrate 2 and the glass 4 are sealed with a reinforcing resin 9.
- the opening 5 is formed by melting a cut portion of the flexible substrate 2 with a laser or the like. Thereby, the edge part of the opening part 5 of the flexible substrate 2 is in a semi-cured state (melted form maintaining cured state) in which the anisotropic conductive film 8 is melted and solidified. That is, the flexible substrate 2 with the anisotropic conductive film 8 attached thereto is cut.
- the edge portion of the opening 5 of the flexible substrate 2 and the long side portion of the outer shape of the flexible substrate 2 are in a semi-cured state (the anisotropic conductivity in FIG. 2).
- Film semi-cured part 8 ).
- the length X on the short side of the outer shape of the solid-state imaging device 3 is substantially the same as the length Y on the short side of the flexible substrate 2.
- (the length X on the short side of the outer shape of the solid-state imaging device 3) / (the length Y on the short side of the flexible substrate 2) is 0.9 or more.
- a positional deviation confirmation unit 6 In addition, at least two portions of the outer shape portion of the wiring pattern 11 corresponding to the corners of the solid-state image pickup device 3 are cut out into a rectangular shape to form a positional deviation confirmation unit 6. In this embodiment, it is cut out by 100 ⁇ m ⁇ . The details of the positional deviation confirmation unit 6 will be described later.
- the flexible substrate 2 is provided with an external terminal with one end extended in one direction.
- FIGS. 3A and 3B are diagrams for explaining the details of the positional deviation confirmation unit 6.
- FIG. 3A is a top view of the imaging module 1
- FIG. 3B is an enlarged view of the positional deviation confirmation unit 6.
- FIG. 4 is a diagram illustrating a state in which the imaging module 1 is viewed from the solid-state imaging device 3 side.
- the misalignment confirmation unit 6 is in a state in which the corners of the wiring pattern 11 are cut out in a rectangular shape, and the corners of the solid-state imaging device 3 protrude from the cut out area.
- the area of the protruding portion (confirmation region 10) of the solid-state imaging device 3 varies depending on the positional relationship between the flexible substrate 2 and the solid-state imaging device 3. Therefore, by comparing the area of the confirmation region 10 when the flexible substrate 2 and the solid-state imaging device 3 are in the correct positional relationship with the measured area of the confirmation region 10, the flexible substrate 2 and the solid-state imaging device 3 are compared. It can be confirmed whether or not there is a deviation in the arrangement.
- FIG. 5 is a diagram showing the positional relationship between the electrodes of the wiring pattern 11 and the bumps 7.
- the bumps 7 are indicated by black circles. As shown in FIG. 5, the bumps 7 are arranged at the terminal portions of the wiring pattern 11.
- FIG. 6 is a flowchart showing the flow of the manufacturing method of the imaging module 1.
- the flexible substrate 2 on which the wiring pattern 11 is formed is received (S1).
- the anisotropic conductive film 8 is stuck on the received flexible substrate 2 (S2).
- the anisotropic conductive film 8 is an ACF (anisotropic conductive film), an NCF (nonconductive film), or the like.
- the opening 5 is formed by processing the flexible substrate 2 with the anisotropic conductive film 8 attached thereto while melting it with a laser or the like (S3). More specifically, the processing for forming the opening 5 in which the pixel area of the solid-state imaging device 3 is disposed is performed while melting with a laser or the like. Further, the cutting line including the resin injection part for injecting the resin for fixing the glass 4 and reinforcing the fixation between the glass 4 and the flexible substrate 2 is also performed while being melted by a laser or the like.
- the curing reaction of the anisotropic conductive film 8 proceeds in the vicinity of the processed part (about 20 ⁇ m). Therefore, when the solid-state imaging device 3 in the next process is flip-chip connected to the terminals of the flexible substrate 2, the anisotropic conductive film 8 between the solid-state imaging device 3 and the flexible substrate 2 is pressed and heated. So that the semi-cured portion of the anisotropic conductive film 8 (anisotropic conductive film semi-cured portion 8 ′) plays a role like a dam and does not protrude from the flexible substrate 2 can do.
- the width of the solid-state imaging device 3 and the flexible substrate 2 is substantially the same.
- a reinforcing resin is required around the solid-state image sensor 3.
- the widths of the solid-state imaging device 3 and the flexible substrate 2 are substantially the same, the region where the resin can be applied is limited. Therefore, in the conventional technology, it has been difficult to manufacture the imaging module 1 in which the reliability of the connection between the flexible substrate 2 and the solid-state imaging device 3 is ensured while the imaging module 1 is downsized.
- the anisotropic conductive film 8 is attached to the flexible substrate 2, the anisotropic conductive film 8 is melted and cured at the time of laser cutting for forming the outer shape of the flexible substrate 2.
- a dam can be formed.
- This dam portion is completely cured before the connection portion by heat (for example, 200 ° C.) when the solid-state imaging device 3 is flip-chip mounted on the flexible substrate 2. Thereby, it can prevent that the anisotropic conductive film 8 of a connection part is discharged
- the imaging module 1 that is reduced in size and that ensures the reliability of the connection between the solid-state imaging device 3 and the flexible substrate 2.
- anisotropic conductive film 8 is pasted on the flexible substrate 2 in advance, it leads to a reduction in man-hours for manufacturing the imaging module 1 and a reduction in cost can be achieved.
- a resin dull portion (not shown) in part.
- the stability of injection of the liquid resin can be improved.
- even if there is an excess in the injected liquid resin it can be retained in the resin dummies, and can be prevented from protruding outside the flexible substrate 2.
- a position of a resin dull part providing in four corners of the glass 4 can be considered, for example.
- bumps 7 are formed on the electrode pads of the solid-state imaging device 3 (S4).
- the solid-state imaging device 3 in which the bump 7 is formed on the electrode pad is flip-chip connected to the terminal of the flexible substrate 2 having the opening 5 (S5).
- the bump trace 7 ′ is confirmed from the back surface of the solid-state imaging device 3, that is, from the upper side of the imaging module 1.
- the area of the confirmation region 10 that is the corner of the solid-state imaging device 3 is confirmed (S6).
- an inspection method when a semiconductor chip such as the solid-state imaging device 3 and a substrate such as the flexible substrate 2 are flip-chip connected by a conductive connecting member such as an anisotropic conductive film 8 is X It was done by wire transmission technique and electrical property inspection with jigs. This is because the connecting portion cannot be seen, and thus the positional deviation between the bump position of the semiconductor chip and the terminal position of the substrate is confirmed by an X-ray transmission method. However, when the semiconductor chip is irradiated with X-rays, dark current increases and causes deterioration of the element, so the confirmed sample is discarded. After that, electrical property inspection was performed with a jig. For this reason, a tool for performing electrical property inspection is required, which has been a factor in increasing costs.
- a portion of the wiring pattern 11 corresponding to the corner of the outer shape of the solid-state imaging device 3 is cut into a rectangular shape, and the area of the region where the outer shape of the solid-state imaging device 3 protrudes is used. The positional deviation between the terminal and the bump 7 of the portable terminal 3 is confirmed.
- the imaging module 1 can be manufactured through the above steps.
- the anisotropic conductive film 8 that is a conductive connection member for connecting the solid-state imaging device 3 and the flexible substrate 2 to the flexible substrate 2 in advance.
- the opening 5 serving as the pixel area of the solid-state image pickup device 3 is pasted and processed while being melted. Then, the flexible substrate 2 and the solid-state imaging device 3 are flip-chip connected.
- the edge portion (about 20 ⁇ m) of the opening 5 processed while being melted is in a semi-cured state due to the progress of the curing reaction of the anisotropic conductive film 8 which is a connecting member. Therefore, when the solid-state imaging device 3 in the next step is flip-chip connected to the flexible substrate 2, the anisotropic conductive film 8 between the solid-state imaging device 3 and the flexible substrate 2 is discharged by being pressurized and heated. However, the semi-cured anisotropic conductive film semi-cured portion 8 ′ functions like a dam, and the discharged anisotropic conductive film 8 is not discharged outside the flexible substrate 2. As a result, the cause of image defects and the like can be removed.
- the imaging module 1 can be configured with the short side lengths of the flexible substrate 2 and the solid-state imaging device 3 being substantially the same, and the imaging module 1 that is reduced in size and thickness can be provided.
- the imaging module according to the present invention is a substrate on which a solid-state imaging device having a light receiving portion and an electrode pad and a wiring pattern are formed and the wiring pattern and the electrode pad are flip-chip connected.
- a substrate provided with an opening, an anisotropic conductive film affixed to the substrate for connecting the substrate and the solid-state imaging device, and the light receiving unit provided in the opening.
- the conductive conductive film is characterized by being in a molten form maintaining and curing state, which is a cured state after melting.
- An imaging module manufacturing method is an imaging module manufacturing method in which a solid-state imaging device having an electrode pad is mounted on a substrate on which a wiring pattern is formed. A step of attaching a conductive film, a step of forming an opening by melting the cut portion of the substrate to which the anisotropic conductive film is attached, and a translucent member disposed in the opening. Flip the wiring pattern of the substrate and the electrode pad of the solid-state image sensor via bumps so that the light transmitted through the translucent member can be received by the light-receiving portion of the solid-state image sensor And a step of chip connection.
- the anisotropic conductive film at the edge portion of the opening is in a melted form maintaining and curing state. Therefore, when the substrate and the solid-state image sensor are flip-chip connected, even if the anisotropic conductive film between the substrate and the solid-state image sensor is discharged by pressurization and heating, the above melted form is maintained and cured.
- the part which becomes has a role like a dam and can prevent the discharged anisotropic conductive film from being discharged to a solid-state imaging device or the like.
- the substrate and the solid-state image sensor are connected by flip chip connection, the device can be made smaller and thinner.
- the length of the short side of the outer shape of the solid-state imaging device may be 90% or more of the length of the short side of the outer shape of the substrate.
- the size of the outer shape of the substrate can be made substantially the same as the size of the outer shape of the solid-state imaging device. Thereby, further miniaturization of the apparatus can be enabled.
- the substrate may be a flexible printed circuit board.
- the contact surface between the substrate and the solid-state imaging device may be sealed with resin.
- the contact between the substrate and the solid-state imaging device can be further strengthened.
- an external terminal may be provided in a region where one end of the substrate is extended in one direction.
- the external terminal of the substrate can be bent and used for assembly.
- the wiring pattern is formed in a rectangular region, and at least two of the four corners of the rectangular region may be cut off.
- a part of the outer shape of the solid-state imaging device protrudes from the cut-off portion of the rectangular region where the wiring pattern is formed.
- the method for manufacturing an imaging module according to the present invention may include a step of confirming bump traces on the substrate after the flip chip connection step.
- a small solid-state imaging module formed using a solid-state imaging device such as an information communication terminal camera, an in-vehicle camera, or a medical camera.
- Imaging Module 2 Flexible Board (Flexible Printed Circuit Board) 3 Solid-state imaging device 4 Glass (translucent member) DESCRIPTION OF SYMBOLS 5 Opening part 6 Position shift confirmation part 7 Bump 8 Anisotropic conductive film 9 Reinforcement resin 10 Confirmation area 11 Wiring pattern 12 Light-receiving part 13 Electrode pad
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Wire Bonding (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
映像不良等の原因を除去しつつ、小型化・薄型化を実現する。撮像モジュール(1)では、固体撮像素子(3)とフレキシブル基板(2)とがフリップチップ接続されているとともに、フレキシブル基板2に設けられた開口部(5)が、フレキシブル基板(2)およびフレキシブル基板(2)に貼付された異方性導電性フィルム(8)を溶融することにより形成されている。
Description
本発明は、固体撮像素子を用いた撮像モジュールおよびその撮像モジュールの製造方法に関する。
近年、CCD(charge-coupled device)等の固体撮像素子(光電変換素子)を用いた撮像装置が広く使用されている。このような撮像装置は、車載用、情報通信端末用、医療用などに用いられており、小型化・薄型化が求められている。
そこで、例えば特許文献1には、光学ガラスを基板として用いる構成が記載されている。具体的に、図7を参照して説明する。図7は、特許文献1に記載された構成を示す図である。図7に示すように、特許文献1には、光学ガラス101に、絶縁シート上に複数の銅リードが形成されたTABテープ102が接着されているとともに、開口部106を挟んで対向する位置に、光学ガラス101とCCD112とが配置されている光電変換装置が記載されている。
また、特許文献2には、基板と撮像素子とをフリップチップ接続する構成が記載されている。具体的に、図8を参照して説明する。図8は、特許文献2に記載された構成を示す図である。図8に示すように、特許文献2には、透光性基板210の一面に形成された配線パターン213と撮像素子211とがバンプ216を介してフリップチップ接続されたカメラモジュール202が記載されている。
しかしながら、上記従来の構成では、以下の問題を生じる。特許文献1に記載された構成では、製造時に、TABテープ102の開口端面からバリ、切りくず、樹脂粉等が発生し、それらのダストがCCD固体撮像素子の受光面上に落下して、映像不良等の原因となる可能性がある。
また、特許文献2の構造では、透光性基板210としてガラスが用いられている。ガラスは脆弱材料であるため、薄くするには限界があり、結果的に薄型化を阻害してしまう。
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、撮像素子にゴミ等が付着することにより映像不良等が起こる原因を除去しつつ、小型化・薄型化可能な撮像モジュール等を実現することにある。
上記課題を解決するために、本発明に係る撮像モジュールは、受光部と電極パッドとを有する固体撮像素子と、配線パターンが形成されているとともに、該配線パターンと上記電極パッドとがフリップチップ接続されている基板であって、開口部が設けられている基板と、上記基板と上記固体撮像素子とを接続するために該基板に貼付された異方性導電性フィルムと、上記開口部に設けられ、上記受光部が受光する光を透過する透光性部材と、を備え、上記開口部は、上記基板および上記異方性導電性フィルムを溶融することにより形成されており、上記開口部の縁部分の上記異方性導電性フィルムが、溶融後、硬化した状態である溶融形態維持硬化状態となっていることを特徴としている。
また、本発明に係る撮像モジュールの製造方法は、配線パターンが形成された基板上に、電極パッドを有する固体撮像素子が実装された撮像モジュールの製造方法であって、上記基板に異方性導電性フィルムを貼付する工程と、上記異方性導電性フィルムが貼付された上記基板を、切断部分を溶融させることにより開口部を形成する工程と、上記開口部に、透光性部材を配置する工程と、上記固体撮像素子の受光部に上記透光性部材を介して透過した光を受光できるように、上記基板の配線パターンと、上記固体撮像素子の上記電極パッドとをバンプを介してフリップチップ接続する工程と、を含むことを特徴としている。
以上のように、本発明に係る撮像モジュールは、受光部と電極パッドとを有する固体撮像素子と、配線パターンが形成されているとともに、該配線パターンと上記電極パッドとがフリップチップ接続されている基板であって、開口部が設けられている基板と、上記基板と上記固体撮像素子とを接続するために該基板に貼付された異方性導電性フィルムと、上記開口部に設けられ、上記受光部が受光する光を透過する透光性部材と、を備え、上記開口部は、上記基板および上記異方性導電性フィルムを溶融することにより形成されており、上記開口部の縁部分の上記異方性導電性フィルムが、溶融後、硬化した状態である溶融形態維持硬化状態となっている構成である。
また、本発明に係る撮像モジュールの製造方法は、基板に異方性導電性フィルムを貼付する工程と、上記異方性導電性フィルムが貼付された上記基板を、切断部分を溶融させることにより開口部を形成する工程と、上記開口部に、透光性部材を配置する工程と、上記固体撮像素子の受光部に上記透光性部材を介して透過した光を受光できるように、上記基板の配線パターンと、上記固体撮像素子の上記電極パッドとをバンプを介してフリップチップ接続する工程と、含む方法である。
これにより、基板と固体撮像素子とをフリップチップ接続するときに、基板と固体撮像素子との間にある異方性導電性フィルムが、加圧、加熱により排出されても、溶融形態維持硬化状態となっている部分がダムのような役割をはたし、排出された異方性導電性フィルムが固体撮像素子等に排出されてしまうことを防止することができるという効果を奏する。
また、フリップチップ接続により、基板と固体撮像素子とを接続しているので、装置の小型化・薄型化を実現できるという効果を奏する。
したがって、映像不良等の原因を除去しつつ、小型化・薄型化可能な撮像モジュール等を実現することができるという効果を奏する。
〔1.撮像モジュールの構成〕
本発明の一実施の形態について図1から図6に基づいて説明すれば、以下のとおりである。本実施の形態に係る撮像モジュール1は、様々な撮像装置に備えられて、用いられるものである。
本発明の一実施の形態について図1から図6に基づいて説明すれば、以下のとおりである。本実施の形態に係る撮像モジュール1は、様々な撮像装置に備えられて、用いられるものである。
図1は、本実施の形態にかかる撮像モジュール1の構成を示す図であり、(a)は撮像モジュール1の上面図、(b)は(a)のA-A´における断面を示す図である。なお、本実施の形態では、フレキシブル基板2の固体撮像素子3が配置されている側を下側、その反対を上側とする。よって、図1(b)のBBから見た状態が上から見た状態、CCから見た状態が下から見た状態となる。
図1に示すように、本実施の形態に係る撮像モジュール1は、中央に開口部5が設けられたフレキシブル基板2に、フレキシブル基板2と固体撮像素子3との接続部材として異方性導電性フィルム8が貼り付けられている。固体撮像素子3は、固体撮像素子3の電極(電極パッド13)に設けられたバンプ7を介してフレキシブル基板2の端子にフリップチップ接続(FCB:flip-chip bonding)されている。また、フレキシブル基板2には、配線パターン11が形成されている。バンプ7は、例えば金からなる。なお、フレキシブル基板2を、上面側(固体撮像素子3が配置されている側と反対側)から見た場合、バンプ7の痕であるバンプ痕7´を確認することができる。
また、固体撮像素子3は、フレキシブル基板2の開口部5を覆うように配置されている。
また、フレキシブル基板2の開口部5には、固体撮像素子3の画素エリア(受光部12)を覆うようにガラス4が配置されている。フレキシブル基板2と固体撮像素子3との接触面は異方性導電性フィルム8により、フレキシブル基板2とガラス4とは補強樹脂9により封止されている。
また、後述するように、開口部5は、フレキシブル基板2の切断部分をレーザ等により溶融させることにより形成されている。これにより、フレキシブル基板2の開口部5の縁部分は、異方性導電性フィルム8が溶融して固まった状態である半硬化状態(溶融形態維持硬化状態)となっている。すなわち、異方性導電性フィルム8が張り付けられた状態のフレキシブル基板2が切断される。
具体的には、図2に示すように、フレキシブル基板2の開口部5の縁部分、およびフレキシブル基板2の外形の長辺部分が半硬化状態となっている(図2の異方性導電性フィルム半硬化部分8)。
また、固体撮像素子3の外形の短辺側の長さXは、フレキシブル基板2の短辺側の長さYとほぼ同じとなっている。本実施の形態では、(固体撮像素子3の外形の短辺側の長さX)/(フレキシブル基板2の短辺側の長さY)が0.9以上である。
また、配線パターン11の外形部分における、固体撮像素子3の隅と対応する部分のうち、少なくとも2ヶ所が矩形にくり抜かれ、位置ズレ確認部6となっている。本実施の形態では、100μm□でくり抜かれている。なお、位置ズレ確認部6の詳細については後述する。
さらに、フレキシブル基板2には、一端が1方向に延長されて外部端子が設けられている。
〔2.位置ズレ確認部6の詳細〕
次に、位置ズレ確認部6の詳細について、図3、4を参照して説明する。図3は、位置ズレ確認部6の詳細を説明するための図であり、(a)は撮像モジュール1の上面図、(b)は位置ズレ確認部6を拡大した図である。図4は、撮像モジュール1を、固体撮像素子3の側から見た状態を示す図である。
次に、位置ズレ確認部6の詳細について、図3、4を参照して説明する。図3は、位置ズレ確認部6の詳細を説明するための図であり、(a)は撮像モジュール1の上面図、(b)は位置ズレ確認部6を拡大した図である。図4は、撮像モジュール1を、固体撮像素子3の側から見た状態を示す図である。
図3(b)に示すように、位置ズレ確認部6は、配線パターン11の隅が矩形にくり抜かれ、くり抜かれた領域に固体撮像素子3の隅がはみ出している状態である。この固体撮像素子3のはみ出している部分(確認領域10)の面積は、フレキシブル基板2と固体撮像素子3との位置関係により変わってくる。よって、フレキシブル基板2と固体撮像素子3とが正しい位置関係にある場合の確認領域10の面積と、測定した確認領域10の面積とを比較することにより、フレキシブル基板2と固体撮像素子3との配置にズレがないか否かを確認することができる。
〔3.配線パターン11の端子とバンプ7との位置関係〕
次に、配線パターン11の端子とバンプ7との位置関係について、図5を参照して説明する。図5は、配線パターン11の電極とバンプ7との位置関係を示す図である。
次に、配線パターン11の端子とバンプ7との位置関係について、図5を参照して説明する。図5は、配線パターン11の電極とバンプ7との位置関係を示す図である。
図5では、バンプ7を黒丸で示している。図5に示すように、バンプ7は、配線パターン11の端子部分に配置されている。
〔4.撮像モジュール1の製造方法〕
次に、撮像モジュール1の製造方法について、図6を参照して説明する。図6は、撮像モジュール1の製造方法の流れを示すフローチャートである。
次に、撮像モジュール1の製造方法について、図6を参照して説明する。図6は、撮像モジュール1の製造方法の流れを示すフローチャートである。
まず、配線パターン11が形成されたフレキシブル基板2を受け入れる(S1)。次に、受け入れたフレキシブル基板2に異方性導電性フィルム8を貼付する(S2)。異方性導電性フィルム8は、ACF(anisotropic conductive film)、NCF(non conductive film)等である。
そして、異方性導電性フィルム8が貼付されたフレキシブル基板2に対し、レーザ等により溶融させながら加工することにより開口部5を形成する(S3)。より詳細には、固体撮像素子3の画素エリアが配置される開口部5を形成するための加工をレーザ等で溶融させながら行う。また、ガラス4を固定するとともにガラス4とフレキシブル基板2との固定を補強するための樹脂を注入する樹脂注入部を含めた切断線の加工も、レーザ等で溶融させながら行う。
溶融させながら加工することにより、加工部の近傍(約20um)は、異方性導電性フィルム8の硬化反応が進む。そのため、次工程の固体撮像素子3をフレキシブル基板2の端子にフリップチップ接続する時に、加圧、加熱されることにより固体撮像素子3とフレキシブル基板2との間にある異方性導電性フィルム8が排出されても、異方性導電性フィルム8の半硬化部分(異方性導電性フィルム半硬化部分8´)がダムのような役割を果たして、フレキシブル基板2の外にはみ出さないようにすることができる。
サイズを小さくするために、固体撮像素子3のサイズとほぼ同サイズが望まれる撮像モジュール1では、固体撮像素子3とフレキシブル基板2との幅がほぼ同一となる。この場合、固体撮像素子3とフレキシブル基板2との接続の信頼性を確保するために、固体撮像素子3の周囲に補強のための樹脂が必要になる。
しかしながら、固体撮像素子3とフレキシブル基板2との幅がほぼ同一の場合、上記樹脂を塗布できる領域が限られてしまう。よって、従来技術では、撮像モジュール1の小型化を図りつつ、フレキシブル基板2と固体撮像素子3との接続の信頼性を確保した撮像モジュール1を作製することは困難であった。
本実施の形態では、フレキシブル基板2に異方性導電性フィルム8を貼り付けているため、フレキシブル基板2の外形を形成するレーザ切断時に、異方性導電性フィルム8が溶融、硬化することによりダムを形成することができる。
このダムの部分は、固体撮像素子3をフレキシブル基板2にフリップチップするときの熱(例えば、200℃)により、接続部分より先に完全に硬化する。これにより、接続部分の異方性導電性フィルム8が外部へ排出されることを防止することができる。
これにより、小型化を図るとともに、固体撮像素子3とフレキシブル基板2との接続の信頼性も確保された撮像モジュール1を実現することができる。
また、フレキシブル基板2に予め異方性導電性フィルム8を貼り付けているため、撮像モジュール1を作製するための工数の削減にもつながり、コストの低減も図ることができる。
また、レーザで加工処理を行う際に、一部に樹脂ダマリ部(図示せず)を設けることが望ましい。これにより、液体樹脂の注入の安定性を高めることができる。また、注入した液体樹脂に余分が生じたとしても、樹脂ダマリ部に滞留させることができ、フレキシブル基板2の外にはみ出してしまうことを防止することができる。なお、樹脂ダマリ部の位置としては、例えば、ガラス4の4隅に設けることが考えられる。
一方、固体撮像素子3では、固体撮像素子3の電極パッドにバンプ7を形成する(S4)。
そして、電極パッド上にバンプ7を形成した固体撮像素子3を、開口部5を有するフレキシブル基板2の端子とフリップチップ接続する(S5)。
フリップチップ接続後、固体撮像素子3の裏面、すなわち撮像モジュール1の上側からバンプ痕7´を確認し、さらに、フレキシブル基板2の、少なくとも2ヶ所の位置ズレ確認部6において、配線パターン11からはみ出た固体撮像素子3の隅である確認領域10の面積を確認する(S6)。
従来、固体撮像素子3のような半導体チップとフレキシブル基板2のような基板とを、異方性導電性フィルム8のような導電性を有する接続部材によりフリップチップ接続したときの検査手法は、X線透過手法と冶具による電気特性検査により行っていた。これは、接続部が見えないため、半導体チップのバンプ位置と基板の端子位置との位置ズレの確認をX線透過手法により行うことである。しかし、半導体チップにX線を照射すると暗電流が増えて素子劣化の原因となるので、確認したサンプルは廃棄処分となる。その後、冶具による電気特性検査を行っていた。このため、電気特性検査を行うための冶工具が必要となりコストアップの要因となっていた。
そこで、本願発明者が検討を重ねた結果、フレキシブル基板2に対し固体撮像素子3をフリップチップ接続したときに、固体撮像素子3を搭載したフレキシブル基板2の裏面のバンプ位置に対応する位置にバンプ痕が確認できれば、安定した接続が行われていることを見出した。よって、バンプ痕7´を確認することにより、フリップチップ接続が適切に行われているか否かを確認することができる。
また、フレキシブル基板2と固体撮像素子3とのサイズがほぼ等しい場合、フレキシブル基板2の端子と固体撮像素子3のバンプ7との位置ズレを確認する方法が従前はなかった。これは、基板上に位置ズレ確認マークを設けたとしても、接続部材の排出により位置ズレ確認マークが認識できないためである。
そこで、本実施形態では、配線パターン11の、固体撮像素子3の外形の隅に対応する部分を矩形にくり抜き、固体撮像素子3の外形がはみ出ている領域の面積を用いて、フレキシブル基板2の端子と携帯端末3のバンプ7との位置ズレを確認している。
これにより、確実に、フレキシブル基板2の端子と携帯端末3のバンプ7との位置ズレを確認することができ、コストを低減することができる。
以上の工程により、撮像モジュール1を製造することができる。
〔5.本実施形態による効果〕
以上のように、本実施の形態に係る撮像モジュール1は、固体撮像素子3とフレキシブル基板2との接続する、導電性を有する接続部材である異方性導電性フィルム8を予めフレキシブル基板2に貼り、固体撮像素子3の画素エリアとなる開口部5を、溶融させながら加工して形成する。そして、フレキシブル基板2と固体撮像素子3とをフリップチップ接続する。
以上のように、本実施の形態に係る撮像モジュール1は、固体撮像素子3とフレキシブル基板2との接続する、導電性を有する接続部材である異方性導電性フィルム8を予めフレキシブル基板2に貼り、固体撮像素子3の画素エリアとなる開口部5を、溶融させながら加工して形成する。そして、フレキシブル基板2と固体撮像素子3とをフリップチップ接続する。
これにより、溶融させながら加工した開口部5の縁部分(約20um)は、接続部材である異方性導電性フィルム8の硬化反応が進み半硬化状態となる。よって、次工程の固体撮像素子3をフレキシブル基板2にフリップチップ接続するときに、加圧、加熱されて固体撮像素子3とフレキシブル基板2との間にある異方性導電性フィルム8が排出されても、半硬化状態となった異方性導電性フィルム半硬化部分8´がダムのような役割を果たし、排出された異方性導電性フィルム8がフレキシブル基板2の外部へ排出されない。よって、映像不良等の原因を取り除くことができる。
また、フレキシブル基板2と固体撮像素子3との短辺の長さがほぼ同じサイズで撮像モジュール1を構成することができ、小型化・薄型化した撮像モジュール1を提供することができる。
また、本発明は次のように表現する事もできる。すなわち、本発明に係る撮像モジュールは、受光部と電極パッドとを有する固体撮像素子と、配線パターンが形成されているとともに、該配線パターンと上記電極パッドとがフリップチップ接続されている基板であって、開口部が設けられている基板と、上記基板と上記固体撮像素子とを接続するために該基板に貼付された異方性導電性フィルムと、上記開口部に設けられ、上記受光部が受光する光を透過する透光性部材と、を備え、上記開口部は、上記基板および上記異方性導電性フィルムを溶融することにより形成されており、上記開口部の縁部分の上記異方性導電性フィルムが、溶融後、硬化した状態である溶融形態維持硬化状態となっていることを特徴としている。
また、本発明に係る撮像モジュールの製造方法は、配線パターンが形成された基板上に、電極パッドを有する固体撮像素子が実装された撮像モジュールの製造方法であって、上記基板に異方性導電性フィルムを貼付する工程と、上記異方性導電性フィルムが貼付された上記基板を、切断部分を溶融させることにより開口部を形成する工程と、上記開口部に、透光性部材を配置する工程と、上記固体撮像素子の受光部に上記透光性部材を介して透過した光を受光できるように、上記基板の配線パターンと、上記固体撮像素子の上記電極パッドとをバンプを介してフリップチップ接続する工程と、含むことを特徴としている。
上記の構成または方法によれば、開口部の縁部分の異方性導電性フィルムが溶融形態維持硬化状態となっている。よって、基板と固体撮像素子とをフリップチップ接続するときに、基板と固体撮像素子との間にある異方性導電性フィルムが、加圧、加熱により排出されても、上記溶融形態維持硬化状態となっている部分がダムのような役割をはたし、排出された異方性導電性フィルムが固体撮像素子等に排出されてしまうことを防止することができる。
また、フリップチップ接続により、基板と固体撮像素子とを接続しているので、装置の小型化・薄型化を実現できる。
したがって、映像不良等の原因を除去しつつ、小型化・薄型化可能な撮像モジュール等を実現することができる。
本発明に係る撮像モジュールでは、上記固体撮像素子の外形の短辺の長さが、上記基板の外形の短辺の長さの9割以上であってもよい。
上記の構成によれば、基板の外形のサイズを、固体撮像素子の外形のサイズとほぼ同じとすることができる。これにより、装置のさらなる小型化を可能にすることができる。
本発明に係る撮像モジュールでは、上記基板は、フレキシブルプリント回路基板であってもよい。
本発明に係る撮像モジュールでは、上記基板と上記固体撮像素子との接触面が、樹脂により封止されているものであってもよい。
上記の構成によれば、樹脂により封止されるので、上記基板と上記固体撮像素子との接触をより強固にすることができる。
本発明に係る撮像モジュールでは、上記基板の一端が一方向に延長された領域に外部端子を備えていてもよい。
上記の構成によれば、基板の外部端子を折り曲げて組み立てに用いることができる。
本発明に係る撮像モジュールでは、上記配線パターンは矩形状の領域に形成されており、該矩形状の領域の4隅のうち、少なくとも2隅が、切り落とされていてもよい。
上記の構成によれば、配線パターンが形成された矩形の領域のうち、切り落とされた部分に、固体撮像素子の外形の一部がはみ出ることになる。
そして、固体撮像素子と配線パターンとの接触位置が正しい場合の、上記はみ出る面積を用いれば、固体撮像素子と配線パターンとの接触位置が正しいか否かを確認することができる。
本発明に係る撮像モジュールの製造方法では、上記フリップチップ接続する工程の後、上記基板のバンプ痕を確認する工程を含んでいてもよい。
上記の方法によれば、パンプ痕を確認することにより、フリップチップ接続が正しく行われているか否かを確認することができる。
本発明は上述した実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
情報通信端末用カメラ、車載用カメラ、医療用カメラなどの固体撮像素子を用いて形成される小型の固体撮像モジュールに好適である。
1 撮像モジュール
2 フレキシブル基板(フレキシブルプリント回路基板)
3 固体撮像素子
4 ガラス(透光性部材)
5 開口部
6 位置ズレ確認部
7 バンプ
8 異方性導電性フィルム
9 補強樹脂
10 確認領域
11 配線パターン
12 受光部
13 電極パッド
2 フレキシブル基板(フレキシブルプリント回路基板)
3 固体撮像素子
4 ガラス(透光性部材)
5 開口部
6 位置ズレ確認部
7 バンプ
8 異方性導電性フィルム
9 補強樹脂
10 確認領域
11 配線パターン
12 受光部
13 電極パッド
Claims (8)
- 受光部と電極パッドとを有する固体撮像素子と、
配線パターンが形成されているとともに、該配線パターンと上記電極パッドとがフリップチップ接続されている基板であって、開口部が設けられている基板と、
上記基板と上記固体撮像素子とを接続するために該基板に貼付された異方性導電性フィルムと、
上記開口部に設けられ、上記受光部が受光する光を透過する透光性部材と、を備え、
上記開口部は、上記基板および上記異方性導電性フィルムを溶融することにより形成されており、
上記開口部の縁部分の上記異方性導電性フィルムが、溶融後、硬化した状態である溶融形態維持硬化状態となっていることを特徴とする撮像モジュール。 - 上記固体撮像素子の外形の短辺の長さが、上記基板の外形の短辺の長さの9割以上であることを特徴とする請求項1に記載の撮像モジュール。
- 上記基板は、フレキシブルプリント回路基板であることを特徴とする請求項1または2に記載の撮像モジュール。
- 上記基板と上記固体撮像素子との接触面が、樹脂により封止されていることを特徴とする請求項1~3のいずれか1項に記載の撮像モジュール。
- 上記基板の一端が一方向に延長された領域に外部端子を備えていることを特徴とする請求項1~4のいずれか1項に記載の撮像モジュール。
- 上記配線パターンは矩形状の領域に形成されており、該矩形状の領域の4隅のうち、少なくとも2隅が、切り落とされていることを特徴とする請求項1~5のいずれか1項に記載の撮像モジュール。
- 配線パターンが形成された基板上に、電極パッドを有する固体撮像素子が実装された撮像モジュールの製造方法であって、
上記基板に異方性導電性フィルムを貼付する工程と、
上記異方性導電性フィルムが貼付された上記基板を、切断部分を溶融させることにより開口部を形成する工程と、
上記開口部に、透光性部材を配置する工程と、
上記固体撮像素子の受光部に上記透光性部材を介して透過した光を受光できるように、上記基板の配線パターンと、上記固体撮像素子の上記電極パッドとをバンプを介してフリップチップ接続する工程と、を含むことを特徴とする撮像モジュールの製造方法。 - 上記フリップチップ接続する工程の後、上記基板のバンプ痕を確認する工程を含むことを特徴とする請求項7に記載の撮像モジュールの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380017040.0A CN104247019B (zh) | 2012-03-26 | 2013-03-01 | 摄像模块和摄像模块的制造方法 |
US14/387,123 US20150084147A1 (en) | 2012-03-26 | 2013-03-01 | Image pickup module and method for manufacturing image pickup module |
US14/959,027 US9761630B2 (en) | 2012-03-26 | 2015-12-04 | Method for manufacturing image pickup module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012070176A JP5389970B2 (ja) | 2012-03-26 | 2012-03-26 | 撮像モジュール、および撮像モジュールの製造方法 |
JP2012-070176 | 2012-03-26 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/387,123 A-371-Of-International US20150084147A1 (en) | 2012-03-26 | 2013-03-01 | Image pickup module and method for manufacturing image pickup module |
US14/959,027 Division US9761630B2 (en) | 2012-03-26 | 2015-12-04 | Method for manufacturing image pickup module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146098A1 true WO2013146098A1 (ja) | 2013-10-03 |
Family
ID=49259373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/055730 WO2013146098A1 (ja) | 2012-03-26 | 2013-03-01 | 撮像モジュール、および撮像モジュールの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20150084147A1 (ja) |
JP (1) | JP5389970B2 (ja) |
CN (1) | CN104247019B (ja) |
TW (1) | TWI547167B (ja) |
WO (1) | WO2013146098A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6158663B2 (ja) * | 2013-09-27 | 2017-07-05 | 新明和工業株式会社 | 垂直式荷受台昇降装置 |
CN107644846B (zh) * | 2016-07-21 | 2020-01-03 | 许志行 | 可携式电子装置及其影像获取模块 |
CN107644883B (zh) * | 2016-07-21 | 2019-12-31 | 许志行 | 可携式电子装置及其影像获取模块 |
CN107302650B (zh) * | 2017-06-26 | 2020-06-19 | 信利光电股份有限公司 | 一种底座的制作方法及摄像头模组及电子设备 |
CN107454289A (zh) * | 2017-07-28 | 2017-12-08 | 中国科学院长春光学精密机械与物理研究所 | 应用于工业相机电路板的优化设计方法 |
TWI657305B (zh) * | 2018-05-04 | 2019-04-21 | 致伸科技股份有限公司 | 攝像模組之組裝方法 |
CN110505372B (zh) * | 2018-05-18 | 2021-03-09 | 致伸科技股份有限公司 | 摄像模块的组装方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001177081A (ja) * | 1999-12-15 | 2001-06-29 | Toshiba Corp | 半導体装置 |
JP2007189049A (ja) * | 2006-01-13 | 2007-07-26 | Sony Corp | 半導体装置及び半導体装置の検査方法、並びに半導体装置の検査装置 |
JP2011082458A (ja) * | 2009-10-09 | 2011-04-21 | Olympus Corp | 撮像ユニットの実装構造および製造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3207319B2 (ja) | 1993-05-28 | 2001-09-10 | 株式会社東芝 | 光電変換装置及びその製造方法 |
DE69408558T2 (de) * | 1993-05-28 | 1998-07-23 | Toshiba Ave Kk | Verwendung einer anisotropischen leitfähigen Schicht für die Verbindung von Anschlussleitern einer Leiterplatte mit den elektrischen Anschlusskontakten einer photoelektrischen Umwandlungsvorrichtung und Verfahren zur Montage dieser Vorrichtung |
US6011294A (en) * | 1996-04-08 | 2000-01-04 | Eastman Kodak Company | Low cost CCD packaging |
JPH1084014A (ja) * | 1996-07-19 | 1998-03-31 | Shinko Electric Ind Co Ltd | 半導体装置の製造方法 |
US6492738B2 (en) * | 1999-09-02 | 2002-12-10 | Micron Technology, Inc. | Apparatus and methods of testing and assembling bumped devices using an anisotropically conductive layer |
JP2001203913A (ja) | 2000-01-21 | 2001-07-27 | Sony Corp | 撮像装置、カメラモジュール及びカメラシステム |
US6784409B2 (en) * | 2000-03-28 | 2004-08-31 | Canon Kabushiki Kaisha | Electronic device with encapsulant of photo-set resin and production process of same |
US20040061799A1 (en) * | 2002-09-27 | 2004-04-01 | Konica Corporation | Image pickup device and portable terminal equipped therewith |
TWI239685B (en) * | 2003-05-13 | 2005-09-11 | Jsr Corp | Flaky probe, its manufacturing method and its application |
TWI241018B (en) | 2003-12-19 | 2005-10-01 | Chipmos Technologies Inc | Method for manufacturing wafer level image sensor package with chip on glass configuration and structure of the same |
JP2005217337A (ja) * | 2004-02-02 | 2005-08-11 | Matsushita Electric Ind Co Ltd | 光学デバイス |
TW200631151A (en) | 2005-02-24 | 2006-09-01 | Jet Tech Ltd | Apparatus and method for bonding anisotropic conductive film using laser beam |
TWI274949B (en) | 2005-07-08 | 2007-03-01 | Ind Tech Res Inst | Display module |
WO2007055142A1 (en) * | 2005-11-11 | 2007-05-18 | Semiconductor Energy Laboratory Co., Ltd. | Layer having functionality, method for forming flexible substrate having the same, and method for manufacturing semiconductor device |
EP2131450B1 (en) * | 2007-03-12 | 2013-08-07 | Senju Metal Industry Co., Ltd | Anisotropic electroconductive material |
WO2008132802A1 (ja) * | 2007-04-13 | 2008-11-06 | Panasonic Corporation | 固体撮像装置およびその製造方法 |
JP5281943B2 (ja) * | 2009-04-01 | 2013-09-04 | 浜松ホトニクス株式会社 | 固体撮像装置 |
US8633441B2 (en) * | 2009-09-02 | 2014-01-21 | Asm Assembly Automation Ltd | Die bonding process incorporating infrared vision system |
JP5535570B2 (ja) * | 2009-10-13 | 2014-07-02 | ルネサスエレクトロニクス株式会社 | 固体撮像装置の製造方法 |
-
2012
- 2012-03-26 JP JP2012070176A patent/JP5389970B2/ja not_active Expired - Fee Related
-
2013
- 2013-03-01 CN CN201380017040.0A patent/CN104247019B/zh not_active Expired - Fee Related
- 2013-03-01 WO PCT/JP2013/055730 patent/WO2013146098A1/ja active Application Filing
- 2013-03-01 US US14/387,123 patent/US20150084147A1/en not_active Abandoned
- 2013-03-11 TW TW102108543A patent/TWI547167B/zh not_active IP Right Cessation
-
2015
- 2015-12-04 US US14/959,027 patent/US9761630B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001177081A (ja) * | 1999-12-15 | 2001-06-29 | Toshiba Corp | 半導体装置 |
JP2007189049A (ja) * | 2006-01-13 | 2007-07-26 | Sony Corp | 半導体装置及び半導体装置の検査方法、並びに半導体装置の検査装置 |
JP2011082458A (ja) * | 2009-10-09 | 2011-04-21 | Olympus Corp | 撮像ユニットの実装構造および製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104247019A (zh) | 2014-12-24 |
CN104247019B (zh) | 2017-09-01 |
TWI547167B (zh) | 2016-08-21 |
JP5389970B2 (ja) | 2014-01-15 |
US9761630B2 (en) | 2017-09-12 |
TW201342906A (zh) | 2013-10-16 |
US20160086986A1 (en) | 2016-03-24 |
US20150084147A1 (en) | 2015-03-26 |
JP2013201389A (ja) | 2013-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013146098A1 (ja) | 撮像モジュール、および撮像モジュールの製造方法 | |
US7443028B2 (en) | Imaging module and method for forming the same | |
CN107872922B (zh) | 印刷电路板、电子设备以及印刷电路板的制造方法 | |
JP2008219854A (ja) | 光学デバイス,光学デバイスウエハおよびそれらの製造方法、ならびに光学デバイスを搭載したカメラモジュールおよび内視鏡モジュール | |
KR20160108664A (ko) | 반도체 패키지 및 그 제조 방법 | |
EP2790218A1 (en) | Imaging module and imaging unit | |
JP2009088510A (ja) | ガラスキャップモールディングパッケージ及びその製造方法、並びにカメラモジュール | |
JP2005101711A (ja) | 固体撮像装置およびその製造方法 | |
JP2012064883A (ja) | 撮像装置および撮像装置の製造方法 | |
JP6021618B2 (ja) | 撮像装置、内視鏡及び撮像装置の製造方法 | |
TW201635648A (zh) | 異向導電性膜及連接結構體 | |
JP2013219468A (ja) | 撮像モジュール | |
US8179686B2 (en) | Mounted structural body and method of manufacturing the same | |
JP2018137276A (ja) | プリント回路板およびその製造方法、並びに電子機器 | |
JP2005292242A (ja) | 撮像装置および撮像装置の製造方法 | |
JP2010034668A (ja) | 固体撮像装置およびそれを備えた電子機器 | |
US11342259B2 (en) | Electronic module, electronic device, manufacturing method for electronic module, and manufacturing method for electronic device | |
JP2014108282A (ja) | 撮像装置、内視鏡及び撮像装置の製造方法 | |
WO2008072491A1 (ja) | Icチップ実装パッケージ及びその製造方法 | |
JP6929658B2 (ja) | プリント回路板の製造方法、プリント回路板、および電子機器 | |
JP2006245359A (ja) | 光電変換装置及びその製造方法 | |
JP2005051535A (ja) | 撮像装置およびその製造方法 | |
JPWO2010070779A1 (ja) | 異方性導電樹脂、基板接続構造及び電子機器 | |
JP3712584B2 (ja) | 固体撮像装置及びその製造方法 | |
JP2012023667A (ja) | 固体撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13769061 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14387123 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13769061 Country of ref document: EP Kind code of ref document: A1 |