WO2013146056A1 - 導電性フィルム、それを備える表示装置及び導電性フィルムのパターンの決定方法 - Google Patents
導電性フィルム、それを備える表示装置及び導電性フィルムのパターンの決定方法 Download PDFInfo
- Publication number
- WO2013146056A1 WO2013146056A1 PCT/JP2013/055287 JP2013055287W WO2013146056A1 WO 2013146056 A1 WO2013146056 A1 WO 2013146056A1 JP 2013055287 W JP2013055287 W JP 2013055287W WO 2013146056 A1 WO2013146056 A1 WO 2013146056A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- moire
- wiring pattern
- frequency
- intensity
- pattern
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/60—Systems using moiré fringes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0274—Optical details, e.g. printed circuits comprising integral optical means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0094—Shielding materials being light-transmitting, e.g. transparent, translucent
- H05K9/0096—Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04112—Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
Definitions
- the present invention relates to a conductive film, a display device including the conductive film, and a method for determining a pattern of the conductive film.
- a conductive film installed on a display unit of a display device for example, a conductive film for an electromagnetic wave shield, a conductive film for a touch panel, or the like can be given (for example, see Patent Documents 1 and 2). ).
- Patent Document 1 relating to the application of the present applicant, for example, a first pattern such as a pixel arrangement pattern of a display (for example, a black matrix (hereinafter also referred to as BM) pattern) and a second pattern such as an electromagnetic shielding pattern, for example.
- the second pattern generated by the second pattern data in which the relative distance between the spectrum peaks of the two-dimensional Fourier spectrum (2DFFTSp) of each pattern data of the pattern exceeds a predetermined spatial frequency, for example, 8 cm ⁇ 1.
- the automatic selection is disclosed.
- any one or more of the rotation angle, the pitch, and the pattern width of the second pattern data is changed to create a new one.
- Patent Document 1 it is possible to automatically select an electromagnetic wave shield pattern that can suppress the occurrence of moire and can avoid an increase in surface resistivity and deterioration in transparency.
- Patent Document 2 relating to the application of the present applicant, as a transparent conductive film having a mesh pattern including a plurality of polygonal meshes, a predetermined spatial frequency, for example, human visual response characteristics is maximum with respect to the center-of-gravity spectrum of each mesh.
- the mesh pattern is formed so that the average intensity on the spatial frequency band side higher than the spatial frequency corresponding to 5% of the response is larger than the average intensity on the spatial frequency band side lower than the predetermined spatial frequency.
- a conductive film is disclosed. In this way, in Patent Document 2, it is possible to reduce the noise granularity due to the pattern, greatly improve the visibility of the observation object, and provide a transparent conductive film having stable current-carrying performance even after cutting. .
- Patent Document 1 discloses a technique for providing a wiring pattern with excellent visibility by controlling a moire frequency only from frequency information of a BM (black matrix) / wiring pattern of a display when generating a wiring pattern of a conductive film.
- BM black matrix
- Patent Document 1 discloses a technique for providing a wiring pattern with excellent visibility by controlling a moire frequency only from frequency information of a BM (black matrix) / wiring pattern of a display when generating a wiring pattern of a conductive film.
- Patent Document 1 when the technique disclosed in Patent Document 1 is applied to a conductive film for a touch panel, it is pressed by a person's finger or the like, so that a slight distortion occurs between the BM / wiring patterns, and the moire due to strength is promoted to be visually recognized. There is also a problem that the visibility of moire is not sufficiently improved.
- Patent Document 2 regarding the center-of-gravity spectrum of each mesh of the mesh pattern of the transparent conductive film, an average intensity in a medium to high spatial frequency band higher than a predetermined spatial frequency, in which the response characteristic of human vision rapidly decreases, is obtained.
- the noise feeling visually felt by humans is reduced, but the noise feeling of the mesh pattern of the transparent conductive film itself is reduced.
- moire generated between the BM pattern of the display and the mesh pattern of the transparent conductive film is suppressed, and the visibility of the moire cannot be improved.
- the present invention eliminates the above-mentioned problems of the prior art, suppresses the generation of moire, and can greatly improve visibility, a display device including the same, and a method for determining the pattern of the conductive film
- the purpose is to provide.
- a transparent conductive film having wiring is used as an electrode for a touch panel, the generation of moiré that causes a large image quality problem when the conductive film is visually recognized by being superimposed on the black matrix of a display unit of a display device.
- An object of the present invention is to provide a conductive film that can be suppressed and display visibility on a touch panel can be significantly improved, a display device including the conductive film, and a method for determining a pattern of the conductive film.
- a conductive film is a conductive film installed on a display unit of a display device, and includes a transparent substrate and at least one surface of the transparent substrate. And a conductive portion made of a plurality of fine metal wires, and the conductive portion is formed in a mesh shape by a plurality of fine metal wires, and a plurality of openings arranged in a rhombus with irregularities
- the wiring pattern is superimposed on the pixel arrangement pattern of the display unit, and the wiring pattern includes peak frequencies and peak intensities of a plurality of spectrum peaks of the two-dimensional Fourier spectrum of the transmittance image data, and A module calculated from the peak frequency and peak intensity of a plurality of spectral peaks of the two-dimensional Fourier spectrum of the transmittance image data of the pixel array pattern.
- the rhomboid shape of the rhombic wiring pattern having a predetermined value or less is provided with a predetermined range of irregularity determined according to the width of the thin metal wire.
- a display device includes a display unit and the conductive film according to the first aspect that is installed on the display unit.
- the determination method of the wiring pattern of the electroconductive film which concerns on the 3rd aspect of this invention is installed on the display unit of a display apparatus, and is formed in mesh shape by several metal fine wire.
- the peak frequency and peak intensity of the peak, and the two-dimensional Fourier spectrum of the transmittance image data of the pixel arrangement pattern Calculate the frequency frequency and intensity information of the moire from the peak frequency and peak intensity of the wiring pattern thus calculated and the peak frequency and peak intensity of the pixel array pattern.
- the frequency and intensity of the moire are calculated by applying human visual response characteristics to the frequency information and intensity information of the obtained moire, and the moire frequency corresponds to the visual response characteristics with respect to the obtained moire frequency and intensity.
- the sum of the moiré intensities that fall within a predetermined frequency range determined in advance is compared with a predetermined value, and when the sum of the moiré intensities is less than the predetermined value, the wiring pattern is set as the wiring pattern of the conductive film, and the moiré strength When the sum of the values exceeds a predetermined value, the wiring pattern transmittance image data is changed to the new wiring pattern transmittance image data. Steps for calculating peak frequency and peak intensity, calculating moire frequency information and intensity information, calculating moire frequency and intensity, and comparing the sum of moire intensity with a predetermined value are the sum of moire intensity.
- the rhombus wiring pattern is set as the wiring pattern of the conductive film, and the rhombus shape of the set rhombus wiring pattern is set.
- a predetermined range of irregularity determined according to the width of the fine metal wire is given, and the rhombic wiring pattern to which the irregularity is given is determined as the wiring pattern of the conductive film.
- the irregularity is irregular when the direction imparting irregularity to the rhombus shape is a direction parallel to or perpendicular to the side of the rhombus.
- the irregularity is predetermined. The range is 2% to 20%, and when the width of the fine metal wire is more than 3 ⁇ m, the predetermined range of irregularity is preferably 2% to 10%.
- the direction of imparting irregularity to the rhombus shape is a direction parallel to the side of the rhombus
- the rhombus pitch is preserved before and after the provision of irregularity
- the direction of imparting irregularity to the rhombus shape is a direction perpendicular to the side of the rhombus
- it is preferable that the angle of the rhombus is preserved before and after the provision of irregularity.
- the predetermined frequency range is that the moire frequency is 3 cycles / mm or less
- the optimization order is attached to the wiring pattern having the moire frequency of 3 cycles / mm or less
- the moire frequency is 1.8.
- the sum of the moiré intensities of the wiring patterns added to the optimization order is 0 or less in common logarithm under the condition that the wiring patterns are not added to the optimization order.
- the moire frequency information is given by the difference between the peak frequency of the wiring pattern and the peak frequency of the pixel array pattern
- the moire intensity information is given by the product of the peak intensity of the wiring pattern and the peak intensity of the pixel array pattern. It is preferred that
- the frequency and intensity of the moire are preferably obtained by convolving a visual transfer function as a visual response characteristic with the frequency information and intensity information of the moire, and the visual transfer function is expressed by a Dooley-Shaw function.
- the function is preferably a function in which the attenuation of the sensitivity of the low frequency component is eliminated.
- the peak intensity is preferably an average value of the intensity in a plurality of pixels around the peak position, and is preferably normalized by the transmittance image data of the wiring pattern and the pixel array pattern.
- the pixel array pattern is preferably a black matrix pattern.
- the moire frequency information the difference between the peak frequencies of the wiring pattern peak frequency and the pixel array pattern peak frequency is obtained, and as the moire intensity information, the wiring pattern peak intensity and the pixel array pattern peak intensity are calculated.
- the product of two sets of vector strengths is preferably determined.
- the occurrence of moire can be suppressed and the visibility can be greatly improved. That is, in the present invention, the moiré frequency / intensity is calculated from the moiré frequency / intensity obtained by the frequency analysis of the pixel arrangement pattern of the display device and the wiring pattern of the conductive film, and the calculated moiré intensity / frequency is determined by visibility. Since the numerical values are limited so as to be excellent, it is possible to eliminate image quality disturbance due to the occurrence of moire and to obtain excellent visibility.
- a conductive film when used as an electrode for a touch panel, it is possible to suppress moiré that becomes a large image quality obstacle when the conductive film is visually recognized by being superimposed on a black matrix of a display unit of a display device.
- the visibility of the above display can be greatly improved.
- (A) is a schematic explanatory drawing showing an example of the pixel arrangement pattern of the display unit to which the conductive film which concerns on this invention is applied
- (B) is the electroconductivity superimposed on the pixel arrangement pattern of (A).
- (C) is the elements on larger scale of the pixel arrangement pattern of (A).
- (B) is a figure which shows the intensity
- FIG. 7 is a schematic explanatory diagram illustrating an example of an optimized wiring pattern determined by the wiring pattern determination method illustrated in FIG. 6.
- (A), (B), and (C) are the figures showing the wiring pattern of an Example and a comparative example, respectively.
- (A), (B), and (C) are the figures showing the wiring pattern of an Example and a comparative example, respectively.
- a conductive film and a method for determining a pattern of a conductive film according to the present invention will be described in detail with reference to preferred embodiments shown in the accompanying drawings.
- the conductive film according to the present invention will be described using a conductive film for a touch panel as a representative example.
- the present invention is not limited to this, and a liquid crystal display (LCD) or a plasma display (PDP) : Any type of conductive film installed on the display unit of a display device such as Plasma Display Panel), organic EL display (OELD), inorganic EL display, etc.
- a conductive film or the like may be used.
- FIG.1 and FIG.2 is the top view which shows typically an example of the electroconductive film which concerns on the 1st Embodiment of this invention, respectively, and its typical fragmentary sectional view.
- the conductive film 10 of this embodiment is installed on a display unit of a display device, and suppresses the occurrence of moire with respect to a black matrix (BM) of the display unit.
- BM black matrix
- a conductive film having a wiring pattern that is optimized in terms of moiré visibility with respect to the BM pattern when superposed on the BM pattern. 10 is formed on one surface (the upper surface in FIG.
- metal thin wires a metal thin wire 14 is formed on substantially the entire surface of the conductive portion 16. It has the protective layer 20 adhere
- the transparent substrate 12 is made of a material having insulating properties and high translucency, and examples thereof include materials such as resin, glass, and silicon.
- the resin include PET (Polyethylene Terephthalate), PMMA (Polymethyl methacrylate), PP (polypropylene), PS (polystyrene) and the like.
- the conductive portion 16 includes a fine metal wire 14 and a mesh-shaped wiring pattern 24 formed by openings 22 between adjacent fine metal wires 14.
- the metal thin wire 14 is not particularly limited as long as it is a metal thin wire having high conductivity, and examples thereof include a wire made of gold (Au), silver (Ag), or copper (Cu).
- the line width of the fine metal wire 14 is preferably narrower from the viewpoint of visibility, but may be, for example, 30 ⁇ m or less.
- the line width of the fine metal wire 14 is preferably 0.1 ⁇ m or more and 15 ⁇ m or less, more preferably 1 ⁇ m or more and 9 ⁇ m or less, and further preferably 2 ⁇ m or more and 7 ⁇ m or less.
- the conductive part 16 has a wiring pattern 24 in which a plurality of fine metal wires 14 are arranged in a mesh shape.
- the mesh shape of the opening 22 is a rhombus provided with a predetermined irregularity, but the present invention is not limited to the illustrated example, and moiré visibility with respect to a predetermined BM pattern described later.
- the rhombus is a rhombus that is randomized with a predetermined irregularity imparted to the optimized rhombus wiring pattern.
- the material of the adhesive layer 18 examples include a wet laminate adhesive, a dry laminate adhesive, and a hot melt adhesive.
- the protective layer 20 is made of a highly translucent material containing resin, glass, and silicon.
- the refractive index n1 of the protective layer 20 is preferably equal to or close to the refractive index n0 of the transparent substrate 12. In this case, the relative refractive index nr1 of the transparent substrate 12 with respect to the protective layer 20 is close to 1.
- the refractive index in this specification means a refractive index in light having a wavelength of 589.3 nm (sodium D-line).
- ISO 14782: 1999 (corresponding to JIS K 7105) is an international standard.
- the relative refractive index nr1 may be in the range of 0.86 to 1.15, more preferably 0.91 to 1.08.
- FIG. 3 is a schematic partial cross-sectional view showing an example of a conductive film according to the second embodiment of the present invention.
- the top view of the electroconductive film of the 2nd embodiment shown in FIG. 3 is the same as the top view of the electroconductive film of the 1st embodiment shown in FIG. 1, it abbreviate
- the conductive film 11 of the second embodiment includes a first conductive portion 16a and a dummy electrode portion 26 formed on one surface of the transparent substrate 12 (upper side in FIG. 3), a transparent
- the second conductive portion 16b formed on the other surface (lower side of FIG. 3) of the base 12 is bonded to substantially the entire surface of the first conductive portion 16a and the first dummy electrode portion 26a via the first adhesive layer 18a.
- the first protective layer 20a and the second protective layer 20b bonded to the substantially entire surface of the second conductive portion 16b via the second adhesive layer 18b.
- the first conductive portion 16 a and the dummy electrode portion 26 are each composed of a plurality of fine metal wires 14, both of which are formed on one surface (the upper side in FIG. 3) of the transparent substrate 12,
- the part 16b is composed of a plurality of fine metal wires 14, and is formed on the other surface (lower side in FIG. 3) of the transparent substrate 12.
- the dummy electrode portion 26 is formed on one surface (the upper side in FIG. 3) of the transparent substrate 12 like the first conductive portion 16a, but the other (the lower side in FIG. 3) as in the illustrated example. ) Of the second conductive portion 16b formed on the surface of the second conductive portion 16b.
- the dummy electrode portion 26 is disposed at a predetermined interval from the first conductive portion 16a and is in a state of being electrically insulated from the first conductive portion 16a.
- the second conductive portion formed on one surface (the upper side in FIG. 3) of the transparent substrate 12 and the other surface (the lower side in FIG. 3) of the transparent substrate 12. Since the dummy electrode portion 26 composed of the plurality of fine metal wires 14 corresponding to the plurality of fine metal wires 14b of 16b is formed, the scattering by the fine metal wires on one surface (the upper side in FIG. 3) of the transparent substrate 12 is controlled. Electrode visibility can be improved.
- the first conductive portion 16 a and the dummy electrode portion 26 have a metal thin wire 14 and a mesh-like wiring pattern 24 by the opening 22.
- the second conductive portion 16b has a mesh-like wiring pattern 24 composed of the fine metal wires 14 and the openings 22 like the first conductive portion 16a.
- the transparent substrate 12 is made of an insulating material, and the second conductive portion 16b is in a state of being electrically insulated from the first conductive portion 16a and the dummy electrode portion 26.
- the 1st, 2nd electroconductive part 16a, 16b and the dummy electrode part 26 can each be formed similarly with the material similar to the electroconductive part 16 of the electroconductive film 10 shown in FIG.
- the first protective layer 20a is adhered to substantially the entire surface of the first conductive portion 16a and the dummy electrode portion 26 by the first adhesive layer 18a so as to cover the respective thin metal wires 14 of the first conductive portion 16a and the dummy electrode portion 26.
- the second protective layer 20b is bonded to substantially the entire surface of the second conductive portion 16b by the second adhesive layer 18b so as to cover the fine metal wires 14 of the second conductive portion 16b.
- the first adhesive layer 18a and the second adhesive layer 18b can be formed of the same material as the adhesive layer 18 of the conductive film 10 shown in FIG. 2, respectively, but the material of the first adhesive layer 18a
- the material of the second adhesive layer 18b may be the same or different.
- the first protective layer 20a and the second protective layer 20b can be formed in the same manner with the same material as the protective layer 20 of the conductive film 10 shown in FIG.
- the material of the second protective layer 20b may be the same or different.
- the refractive index n2 of the first protective layer 20a and the refractive index n3 of the second protective layer 20b are both set to the refractive index n0 of the transparent substrate 12 as in the protective layer 20 of the conductive film 10 of the first embodiment. It is equal to or close to this value.
- the relative refractive index nr2 of the transparent substrate 12 with respect to the first protective layer 20a and the relative refractive index nr3 of the transparent substrate 12 with respect to the second protective layer 20b are both values close to 1.
- the definitions of the refractive index and the relative refractive index are as defined in the first embodiment.
- the relative refractive index nr2 and the relative refractive index nr3 may be in the range of 0.86 or more and 1.15 or less, more preferably 0.91 or more and 1.08, similarly to the relative refractive index nr1 described above. It is as follows.
- the conductive film 10 of the first embodiment of the present invention and the conductive film 11 of the second embodiment described above are, for example, on the touch panel of the display unit 30 (display unit) schematically shown in part in FIG.
- the pixel arrangement pattern of the display unit 30, that is, a black matrix (hereinafter also referred to as BM) pattern is optimized in terms of moiré visibility, and irregularity is imparted (randomized). It has a diamond-shaped wiring pattern.
- the rhombus wiring pattern optimized in terms of moiré visibility with respect to the BM (pixel array) pattern means that moiré is not perceived by human vision with respect to a predetermined BM pattern 1 or 2
- the above-mentioned group of rhombus wiring patterns is referred to.
- a wiring pattern that is optimized in terms of moiré visibility with respect to a BM (pixel array) pattern and is given irregularity (randomization) is an optimization as described above.
- the randomized wiring pattern is given a predetermined irregularity in a predetermined direction, for example, in a direction parallel to and perpendicular to the rhombus sides of the wiring pattern. Note that optimization of the moire visibility of the wiring pattern and provision of irregularity to a predetermined BM pattern, which are essential in the present invention, will be described later.
- the conductive film of the present invention is basically configured as described above.
- FIG. 4 is a schematic explanatory view schematically showing an example of a partial pixel arrangement pattern of a display unit to which the conductive film of the present invention is applied.
- the display unit 30 includes a plurality of pixels 32 arranged in a matrix to form a predetermined pixel arrangement pattern.
- One pixel 32 includes three subpixels (a red subpixel 32r, a green subpixel 32g, and a blue subpixel 32b) arranged in the horizontal direction.
- One sub-pixel has a rectangular shape that is vertically long in the vertical direction.
- the horizontal arrangement pitch of pixels 32 (horizontal pixel pitch Ph) and the vertical arrangement pitch of pixels 32 (vertical pixel pitch Pv) are substantially the same.
- a shape configured by one pixel 32 and a black matrix (BM) 34 (pattern material) surrounding the one pixel 32 is a square.
- the aspect ratio of one pixel 32 is not 1, but the length in the horizontal direction (horizontal)> the length in the vertical direction (vertical).
- the pixel arrangement pattern constituted by the sub-pixels 32r, 32g and 32b of each of the plurality of pixels 32 is defined by the BM pattern 38 of the BM 34 surrounding the sub-pixels 32r, 32g and 32b, respectively.
- the moire generated when the display unit 30 and the conductive film 10 or 11 are overlapped is caused by the interference between the BM pattern 38 of the BM 34 of the display unit 30 and the wiring pattern 24 of the conductive film 10 or 11.
- the BM pattern 38 is an inverted pattern of the pixel array pattern, but is treated here as representing a similar pattern.
- the wiring pattern 24 of the conductive film 11 is a BM (pixel array) pattern.
- 38 is optimized in terms of moiré visibility, and is randomized. Therefore, the spatial frequency between the arrangement period of the pixels 32 and the wiring arrangement of the thin metal wires 14 of the conductive film 10 or 11 is reduced. There is no interference, the generation of moire is suppressed, and the moire visibility is excellent.
- the display unit 30 shown in FIG. 4 may be configured by a display panel such as a liquid crystal panel, a plasma panel, an organic EL panel, or an inorganic EL panel.
- FIG. 5 a projection capacitive touch panel incorporating the conductive film 11 according to the second embodiment of the present invention will be described as a representative example of the display device 40, but the present invention is not limited thereto. It goes without saying that it is not limited.
- the display device 40 includes a display unit 30 (see FIG. 3) that can display a color image and / or a monochrome image, and a touch panel that detects a contact position from the input surface 42 (arrow Z1 direction side). 44 and a housing 46 that accommodates the display unit 30 and the touch panel 44. The user can access the touch panel 44 through a large opening provided on one surface of the housing 46 (arrow Z1 direction side).
- the touch panel 44 has a cover member 48 laminated on one surface (arrow Z1 direction side) of the conductive film 11 and a conductive film via a cable 50. 11, a flexible substrate 52 electrically connected to 11, and a detection control unit 54 disposed on the flexible substrate 52.
- the conductive film 11 is bonded to one surface (arrow Z1 direction side) of the display unit 30 through an adhesive layer 56.
- the conductive film 11 is arranged on the display screen with the other main surface side (second conductive portion 16b side) facing the display unit 30.
- the cover member 48 functions as the input surface 42 by covering one surface of the conductive film 11. Further, by preventing direct contact with the contact body 58 (for example, a finger or a stylus pen), it is possible to suppress the generation of scratches and the adhesion of dust, and to stabilize the conductivity of the conductive film 11. Can do.
- the contact body 58 for example, a finger or a stylus pen
- the material of the cover member 48 may be glass or a resin film, for example. You may make it closely_contact
- the flexible substrate 52 is an electronic substrate having flexibility. In the illustrated example, it is fixed to the inner wall of the side surface of the housing 46, but the arrangement position may be variously changed.
- the detection control unit 54 captures a change in capacitance between the contact body 58 and the conductive film 11 when the contact body 58 that is a conductor contacts (or approaches) the input surface 42, and the contact position An electronic circuit for detecting (or a proximity position) is configured.
- the display device to which the conductive film of the present invention is applied is basically configured as described above.
- FIG. 6 is a flowchart showing an example of a method for determining the wiring pattern of the conductive film of the present invention.
- the method for determining the wiring pattern of the conductive film according to the present invention includes a moire obtained by frequency analysis using fast Fourier transform (FFT) between the BM (pixel array) pattern of the display unit of the display device and the wiring pattern of the conductive film.
- FFT fast Fourier transform
- Calculate the frequency / intensity of the moiré from the frequency / intensity empirically determine the frequency / intensity of the moiré that is not visible, and determine the frequency / intensity of the moiré that is not visually recognized.
- the strength is determined empirically, and a wiring pattern that satisfies these conditions is determined as a wiring pattern that is optimized so that moire is not visually recognized.
- FFT is generally used for the frequency / intensity of moire, but depending on the method of use, the frequency / intensity of the object changes greatly, so the following procedure is defined.
- transmittance image data of a BM pattern and a wiring pattern is created. That is, as shown in FIG. 6, in step S10, the transmittance image data of the BM pattern 38 (BM34) (see FIG. 4) of the display unit 30 of the display device 40 shown in FIG.
- the transmittance image data 62 (metal thin wire 14) (see FIG. 7B) is created and acquired.
- the transmittance image data of the BM pattern 38 and the transmittance image data of the wiring pattern 62 are prepared or stored in advance, they may be acquired from the prepared or stored. .
- the BM pattern 38 of the display unit 30 includes, for example, three RGB sub-pixels 32r, 32g, and 32b per pixel 32 as shown in FIG. 7A and FIG.
- the transmittance image data of the R and B channels is preferably zero.
- the image data of the BM 34 that is, the transmittance image data of the BM pattern 38, has a rectangular opening (sub-pixels 32r, 32g, and 32b) of the BM 34 as shown in FIG.
- the BM pattern may be any BM pattern that does not have a rectangular opening, and a BM pattern having an arbitrary BM opening may be designated and used.
- it is not limited to a simple rectangular shape, it may have a rectangular opening with a notch, or it may have a belt-like opening bent at a predetermined angle, or a curved belt-like opening It may also have a bowl-shaped opening.
- the wiring pattern 62 of the conductive film 60 can be a square lattice in which the fine metal wires 14 serving as wiring are inclined by 45 ° [deg].
- the sizes of the transmittance image data of the BM pattern 38 and the wiring pattern 62 are defined, for example, 4096 (pixels) ⁇ 4096 (pixels).
- the images of the BM pattern 38 and the wiring pattern 62 are folded in all directions (eight directions) as shown in FIG. flip) processing is preferably performed.
- 2DFFT base 2
- 2DFFT base 2DFFT
- step S12 2DFFT (base 2) processing is performed on each transmittance image data of the BM pattern 38 and the wiring pattern 62 created in step S10, and the BM pattern 38 and the wiring pattern 62 are obtained.
- the peak frequency and peak intensity of a plurality of spectral peaks of the two-dimensional Fourier spectrum of each transmittance image data are calculated.
- the peak intensity is handled as an absolute value.
- FIGS. 9A and 9B are diagrams showing the intensity characteristics of the two-dimensional Fourier spectrum of the transmittance image data of the BM pattern 38 and the wiring pattern 62, respectively.
- the white portion has high intensity and shows a spectrum peak. Therefore, from the results shown in FIGS. 9A and 9B, the BM pattern 38 and the wiring pattern 62 For each, the peak frequency and peak intensity of each spectral peak are calculated. That is, the position on the frequency coordinate of the spectrum peak in the intensity characteristics of the two-dimensional Fourier spectrum of the BM pattern 38 and the wiring pattern 62 shown in FIGS. 9A and 9B, that is, the peak position represents the peak frequency. The intensity of the two-dimensional Fourier spectrum at the position is the peak intensity.
- the peak frequency and intensity of each spectrum peak of the BM pattern 38 and the wiring pattern 62 are calculated and acquired as follows.
- the peak is calculated by obtaining the frequency peak from the basic frequency of the BM pattern 38 and the wiring pattern 62.
- the transmittance image data for performing 2DFFT processing is a discrete value, and the peak frequency depends on the reciprocal of the image size.
- the frequency peak position can be expressed by combining independent two-dimensional fundamental frequency vector components a and b bars. Therefore, as a matter of course, the obtained peak positions are in a lattice shape.
- 10 is a graph showing the frequency peak position in the case of the BM pattern 38, the wiring pattern 62 can be obtained in the same manner.
- the peak position is obtained in the acquisition of the above peak frequency, so the intensity (absolute value) of the two-dimensional Fourier spectrum possessed by the peak position is acquired.
- the peak position extends over a plurality of pixels (pixels).
- the intensity (Sp) characteristic of the two-dimensional Fourier spectrum is represented by a curve (analog value) shown in FIG. 11A, the intensity characteristic of the same two-dimensional Fourier spectrum that has been digitally processed is shown in FIG. )
- the peak P of the intensity of the two-dimensional Fourier spectrum shown in FIG. 11A spans two pixels in the corresponding FIG. 11B. .
- the spectral intensities of the plurality of pixels in the area including the plurality of pixels around the peak position are higher than a plurality of points, for example, in the area of 5 ⁇ 5 pixels. It is preferable that the average value of the five spectral intensities of the pixels from the top is the peak intensity (absolute value).
- the obtained peak intensity is preferably normalized by the image size. In the example described above, it is preferable to standardize 8192 ⁇ 8192 (Perseval's theorem).
- step S14 frequency information and intensity information of moire are calculated from the peak frequency and peak intensity of both two-dimensional Fourier spectra of the BM pattern 38 and the wiring pattern 62 calculated in step S12.
- the peak intensity and moire intensity information are handled as absolute values.
- moire originally occurs by multiplication of the transmittance image data of the wiring pattern 62 and the BM pattern 38, and therefore, convolution integration (convolution) of both is performed in the frequency space.
- the difference (absolute value of the difference) between the respective frequency peaks is obtained.
- the obtained difference can be used as moire frequency information, a product of two sets of vector intensities obtained by combining the two can be obtained, and the obtained product can be used as moire intensity information (absolute value).
- the difference between the frequency peaks of the two-dimensional Fourier spectrum intensity characteristics of both the BM pattern 38 and the wiring pattern 62 shown in FIGS. 9A and 9B is the intensity of the two-dimensional Fourier spectrum of both. In the intensity characteristic obtained by superimposing the characteristics, this corresponds to the relative distance between the peak positions on the frequency coordinates of the respective frequency peaks.
- a plurality of differences between frequency peaks that are values of the relative distances that is, a plurality of frequency information of moire are obtained. Become.
- the frequency information of the moire to be obtained becomes large, and the calculation process takes time.
- only those having strong peak intensities may be selected in advance from the spectral peaks of the second two-dimensional Fourier spectrum. In that case, since only the difference between the selected peaks is obtained, the calculation time can be shortened.
- FIG. 12 shows the moire frequency information and the moire intensity information thus obtained.
- FIG. 12 is a schematic explanatory view schematically showing the frequency information of moire generated by the interference between the pixel arrangement pattern shown in FIG. 7A and the wiring pattern shown in FIG. 7B and the intensity information of moire. It can also be said that the result of convolution integration of the intensity characteristics of the two-dimensional Fourier spectrum shown in FIGS. 9 (A) and 9 (B).
- the moire frequency information is represented by the positions of the vertical and horizontal axes
- the moire intensity information is represented by gray (achromatic) shades, and the smaller the color, the smaller the color, and the larger the white. It is shown that.
- step S16 the human standard visual response characteristic shown in FIG. 13 is applied to the frequency information and intensity information (absolute value) of the moire obtained in step S14. That is, the frequency and intensity (absolute value) of the moire are calculated by multiplication. That is, the obtained moire frequency / intensity information is convoluted with a visual transfer function (VTF) representing an example of human standard visual response characteristics shown in FIG.
- VTF visual transfer function
- a Dooley show function at an observation distance of 300 mm is used as a standard human visual response characteristic under a clear vision state.
- the Dooley-show function is a kind of visual transfer function (VTF) and is a representative function that imitates the standard visual response characteristics of human beings. Specifically, this corresponds to the square value of the contrast ratio characteristic of luminance.
- the horizontal axis of the graph is the spatial frequency (unit: cycle / mm), and the vertical axis is the VTF value (unit is dimensionless).
- the VTF value is constant (equal to 1) in the range of 0 to 1.0 cycle / mm, and the VTF value tends to gradually decrease as the spatial frequency increases. That is, this function functions as a low-pass filter that cuts off the medium to high spatial frequency band.
- the actual human visual response characteristic has a value smaller than 1 in the vicinity of 0 cycle / mm, which is a so-called band-pass filter characteristic.
- the attenuation of the sensitivity of the low frequency component is eliminated by setting the VTF value to 1 even in an extremely low spatial frequency band. Thereby, the effect which suppresses the periodicity resulting from the repeating arrangement
- step S18 the frequency of the moire obtained in step S16 and the intensity (absolute value) are within a predetermined frequency range determined according to the standard visual response characteristics. Find the sum of the moiré intensities (absolute values). That is, the VTF is convolved after integration, and an order for optimization is added to the moire frequency and intensity.
- the VTF is convolved and integrated (step S18) and then converted into a density, and the common logarithm is used for the intensity.
- the following conditions are empirically set in order to efficiently rank the moiré visibility. That is, the moire intensity at this time is converted into a density.
- the patterns to be ordered are 1.
- the wiring pattern 62 in which the sum of the moire intensities is 0 or less in common logarithm (1 or less in the true number) is optimized wiring pattern of the present invention.
- Set as 24 the sum of the moiré strengths was obtained with simulation samples and actual samples, and when three researchers evaluated the sum of the wiring patterns 62 and the moiré strength, the sum of the moiré strengths was commonly used.
- step S20 the sum of the moire intensities obtained in step S18 is compared with a predetermined value, and whether the sum of the moire intensities is a predetermined value, for example, ⁇ 40 or more. Determine whether.
- the process proceeds to step S22, and the transmittance image data of the wiring pattern 62 is updated to the transmittance image data of the new wiring pattern.
- the new wiring pattern to be updated may be prepared in advance or may be newly created.
- any one or more of the rotation angle, pitch, and pattern width of the wiring pattern transmittance image data may be changed, and the shape and size of the opening of the wiring pattern may be changed. You may make it do. Further, they may be given randomness.
- step 12 calculation of the peak frequency and peak intensity in step 12
- step 14 calculation of frequency information and intensity information of moire in step 14
- step 16 calculation of frequency and intensity of moire in step 16
- step 18 calculation of sum of moire intensity in step 18;
- the steps of comparing the sum of moire intensity in step 20 with a predetermined value and updating the transmittance image data of the wiring pattern in step 22 are repeated until the sum of moire intensity reaches a predetermined value or more.
- step S24 the wiring pattern 62 is set as a rhombus optimized wiring pattern 64 shown in FIG.
- step S26 irregularities within a predetermined range determined in accordance with the width of the thin metal wire 14 with respect to the rhombus shape of the rhombus optimized wiring pattern 64 set in step S24.
- the applied wiring pattern is determined as the wiring pattern 24 of the conductive film 10 or 11 of the present invention.
- the predetermined irregularity in step S26 can be given as follows. First, in the rhombus shape of the optimized wiring pattern 64 shown in FIG. 14, one rhombus is formed along the direction parallel to the side of the rhombus, in the illustrated example, along the arrow direction A or the vertical direction, and the arrow direction B. A predetermined irregularity is imparted by moving the line in parallel with a predetermined distance.
- the direction giving the irregularity is said to be the direction A parallel to the side of the rhombus
- the diamond-shaped pitch is preserved before and after the irregularity is imparted. Therefore, this type can be said to be a pitch random pattern in which the rhombus is randomly deformed while maintaining the parallelogram since the pitch of the rhombus is preserved and the angle changes randomly.
- the case where one line constituting the rhombus is moved in the direction B perpendicular to the side of the rhombus is referred to as the direction B perpendicular to the side of the rhombus.
- the rhombus angle ⁇ is preserved before and after the irregularity is imparted. Therefore, this type can be said to be a pitch storage pattern in which the pitch of the rhombus changes randomly and the angle is preserved, so that the pitch of the rhombus is randomly deformed and the angle is kept constant.
- the irregularity is when the direction in which the irregularity is imparted to the rhombus shape is the direction A parallel to the rhombus side or the direction B perpendicular to the rhombus shape. , Defined as the ratio of the average value according to the normal distribution of the pitch of the diamond with the irregularity to the pitch of the diamond with the irregularity.
- the predetermined limited range of irregularity defined above is 2% to 20%, and when the width of the fine metal wire is more than 3 ⁇ m, The predetermined limited range of irregularity is preferably 2% to 10%.
- the predetermined limited range of irregularity is more preferably 2% to 10% when the width of the fine metal wire is 3 ⁇ m or less, and the width of the fine metal wire is 3 ⁇ m. In the case of exceeding, it is more preferably 2% to 8%.
- the reason for limiting the irregularity to the predetermined limited range is that the generation of moire can be further suppressed and the visibility of moire can be further improved as long as it is within the limited range. Even if the BM pattern to be changed is slightly changed, the generation of moire can be suppressed and the performance with excellent moire visibility can be maintained. This is because the above effect cannot be obtained.
- the provision of the predetermined irregularity in step S26 can be performed as described above.
- the method for determining the wiring pattern of the conductive film of the present invention is completed and can be determined as the wiring pattern 24 of the conductive film 10 or 11 of the present invention.
- the present invention has an optimized and irregularly provided wiring pattern that suppresses the generation of moire even when superimposed on the BM pattern of the display unit of the display device, is excellent in the visibility of moire.
- a conductive film can be produced.
- the optimized wiring pattern optimized for a predetermined BM pattern is further provided with irregularity within the predetermined range described above, the occurrence of moire is further suppressed and the visibility of moire is improved. Even when the BM pattern to be superimposed is slightly changed, generation of moire can be suppressed and performance with excellent moire visibility can be maintained.
- a wiring pattern 24 provided with irregularity is created with respect to the rhombus optimized wiring pattern 64 shown in FIG. 14, and this is superimposed on the BM pattern 38 shown in FIG. evaluated.
- the rhombus-optimized wiring pattern 64 shown in FIG. 14 has a rhombus angle of 30 ° and a pitch of 200 ⁇ m, and the fine metal wire 14 has a line width of 2 ⁇ m and 4 ⁇ m.
- the line width of the fine metal wires 14 is 4 ⁇ m, the rhombus angle is 30 °, the pitch is 200 ⁇ m, and the irregularity direction shown in FIG. Is a pitch-preserving wiring pattern having a direction A (pitch storage) and a random pitching wiring pattern having an irregularity direction of 2% shown in FIG.
- the wiring patterns were prepared and pasted on the display screen of the display unit 30 having the BM 34 described above.
- the display unit 30 was confirmed using a commercially available liquid crystal display (resolution: approximately 150 dpi, 10.1 inch 1280x800) and four types of displays having the same specifications. Under the condition that the display unit 30 is controlled to display white (maximum luminance), the three researchers conducted sensory evaluations on the visibility of moire. The observation distance from the display screen was set to 300 mm, and the room illuminance was set to 300 lx.
- Examples 2 to 5 and Comparative Examples 1 and 2 were exactly the same as Example 1 except that the irregularities were changed to 4%, 6%, 8%, 10%, 20%, and 40%, respectively.
- save wiring pattern of the direction A with 4% irregularity of Example 2 and the pitch random wiring pattern of the direction B are shown to FIG. 15 (B) and FIG. 16 (B), respectively.
- the pitch preserving wiring pattern in the direction A and the pitch random wiring pattern in the direction B in which the irregularity of the comparative example 2 is 40% are shown in FIGS. 15C and 16C, respectively.
- the two types of wiring patterns thus produced were respectively pasted on the display screen of the display unit 30 to evaluate the possibility of moire. The results are also shown in Table 1.
- Example 11 two types of wiring patterns were prepared in exactly the same manner as in Example 1 except that the line width was changed to 2 ⁇ m. Further, as Examples 12 to 16 and Comparative Example 11, line widths were respectively obtained. 2 ⁇ m, and the irregularity was changed to 4%, 6%, 8%, 10%, 20%, and 40%, respectively. Each of the images was pasted on the display screen of the display unit 30 to evaluate the moire. The results are shown in Table 2.
- Conductive film 10, 11, 60 Conductive film 12 Transparent support 14 Metal fine wire (metal fine wire) 16, 16a, 16b Conductive portions 18, 18a, 18b Adhesive layers 20, 20a, 20b Protective layer 22 Openings 24, 62, 64 Wiring pattern 26 Dummy electrode portion 30 Display units 32, 32r, 32g, 32b Pixel 34 Black matrix ( BM) 38 BM pattern 40 Display device 44 Touch panel
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Human Computer Interaction (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
なお、特許文献1では、上述の相対距離が所定の空間周波数を超えていない場合には、第2のパターンデータの回転角度、ピッチ、パターン幅のいずれか1つ以上を変化させて、新たな第2のパターンデータを生成することを、上述の相対距離が所定の空間周波数を超えるまで繰り返すことも開示している。
こうして、特許文献1では、モアレの発生を抑止でき、表面抵抗率の増大や透明性の劣化をも回避することができる電磁波シールドパターンを自動的に選定できるようにしている。
こうして、特許文献2では、パターンに起因するノイズ粒状感を低減可能であり、観察対象物の視認性を大幅に向上できるとともに、断裁後にも安定した通電性能を有する透明導電膜を提供できるとしている。
本発明は、特に、配線を有する透明導電性フィルムをタッチパネル用電極として用いる場合、表示装置の表示ユニットのブラックマトリクスに導電性フィルムを重畳して視認する際に大きな画質障害となるモアレの発生を抑止でき、タッチパネル上の表示の視認性を大幅に向上させることができる導電性フィルム、それを備える表示装置及び導電性フィルムのパターンの決定方法を提供することを目的とする。
また、菱形形状に不規則性を付与する方向が菱形の辺に平行な方向である場合、不規則性の付与の前後において菱形のピッチは保存され、
菱形形状に不規則性を付与する方向が菱形の辺に垂直な方向である場合、不規則性の付与の前後において菱形の角度が保存されることが好ましい。
また、モアレの周波数情報は、配線パターンのピーク周波数と画素配列パターンのピーク周波数との差分で与えられ、モアレの強度情報は、配線パターンのピーク強度と画素配列パターンのピーク強度との積で与えられることが好ましい。
また、ピーク強度は、ピーク位置周辺の複数画素内の強度の平均値であることが好ましく、また、配線パターン及び画素配列パターンの透過率画像データで規格化されたものであることが好ましい。
また、画素配列パターンは、ブラックマトリックスパターンであることが好ましい。
また、モアレの周波数情報として、配線パターンのピーク周波数と画素配列パターンのピーク周波数とのピーク周波数同士の差分を求め、モアレの強度情報として、配線パターンのピーク強度と画素配列パターンのピーク強度との2組のベクトル強度の積を求めるのが好ましい。
即ち、本発明においては、表示装置の画素配列パターン及び導電性フィルムの配線パターンの周波数解析により得られるモアレ周波数/強度からモアレの周波数/強度を算出し、算出したモアレの強度・周波数を視認性に優れるように数値限定しているので、モアレの発生による画質障害を無くし、優れた視認性を得ることができる。
特に、本発明によれば、導電性フィルムをタッチパネル用電極として用いる場合、表示装置の表示ユニットのブラックマトリクスに導電性フィルムを重畳して視認する際の大きな画質障害となるモアレを抑止でき、タッチパネル上の表示の視認性を大幅に向上させることができる。
以下では、本発明に係る導電性フィルムについて、タッチパネル用の導電性フィルムを代表例として説明するが、本発明は、これに限定されず、液晶ディスプレイ(LCD:Liquid Crystal Display)やプラズマディスプレイ(PDP:Plasma Display Panel)や有機ELディスプレイ(OELD:Organic ElectroLuminescence Display)や無機ELディスプレイ等の表示装置の表示ユニット上に設置される導電性フィルムであれば、どのようなものでも良く、例えば、電磁波シールド用の導電性フィルム等であっても良いのはもちろんである。
これらの図に示すように、本実施形態の導電性フィルム10は、表示装置の表示ユニット上に設置されるもので、表示ユニットのブラックマトリックス(BM:Black Matrix)に対してモアレの発生の抑止の点で優れた配線パターン、特に、BMパターンに重畳した際にBMパターンに対してモアレの視認性の点で最適化された配線パターンを持つ導電性フィルムであり、透明基体12と、透明基体10の一方の面(図2中上側の面)に形成され、複数の金属製の細線(以下、金属細線という)14からなる導電部16と、導電部16の略全面に、金属細線14を被覆するように、接着層18を介して接着された保護層20とを有する。
導電部16は、金属細線14と、隣接する金属細線14間の開口部22によるメッシュ形状の配線パターン24とを有する。金属細線14は、導電性の高い金属製の細線であれば特に制限的ではなく、例えば、金(Au)、銀(Ag)又は銅(Cu)の線材等からなるものを挙げることができる。金属細線14の線幅は、視認性の点からは細い方が好ましいが、例えば、30μm以下であれば良い。なお、タッチパネル用途では、金属細線14の線幅は0.1μm以上15μm以下が好ましく、1μm以上9μm以下がより好ましく、2μm以上7μm以下がさらに好ましい。
保護層20は、透明基体12と同様に、樹脂、ガラス、シリコンを含む透光性が高い材料からなる。保護層20の屈折率n1は、透明基体12の屈折率n0に等しいか、これに近い値であるのが好ましい。この場合、保護層20に対する透明基体12の相対屈折率nr1は1に近い値となる。
相対屈折率nr1の範囲をこの範囲に限定して、透明基体12と保護層20との部材間の光の透過率を制御することにより、モアレの視認性をより向上させ、改善することができる。
図3は、本発明の第2の実施形態に係る導電性フィルムの一例を示す模式的部分断面図である。なお、図3に示す本第2の実施形態の導電性フィルムの平面図は、図1に示す本第1の実施形態の導電性フィルムの平面図と同様であるのでここでは省略する。
本実施形態の導電性フィルム11においては、透明基体12の一方(図3の上側)の面にも、透明基体12の他方(図3の下側)の面に形成されている第2導電部16bの複数の金属細線14に対応する複数の金属細線14からなるダミー電極部26を形成しているので、透明基体12の一方(図3の上側)の面での金属細線による散乱を制御することができ、電極視認性を改善することができる。
なお、第1、第2導電部16a、16b及びダミー電極部26は、それぞれ図2に示す導電性フィルム10の導電部16と同様の材料で同様に形成することができる。
また、第2保護層20bは、第2導電部16bの金属細線14を被覆するように、第2接着層18bによって第2導電部16bの略全面に接着されている。
ここで、第1接着層18a及び第2接着層18bは、それぞれ図2に示す導電性フィルム10の接着層18と同様の材料で同様に形成することができるが、第1接着層18aの材質と第2接着層18bの材質とは、同一であってもよいし、異なってもよい。
また、第1保護層20a及び第2保護層20bは、それぞれ図2に示す導電性フィルム10の保護層20と同様の材料で同様に形成することができるが、第1保護層20aの材質と第2保護層20bの材質とは、同一であってもよいし、異なってもよい。
ここで、相対屈折率nr2及び相対屈折率nr3は、上述した相対屈折率nr1と同様に、0.86以上1.15以下の範囲にあればよく、より好ましくは、0.91以上1.08以下である。
なお、相対屈折率nr2、及び相対屈折率nr3の範囲をこの範囲に限定することにより、相対屈折率nr1の範囲の限定と同様に、モアレの視認性をより向上させることができる。
なお、本発明において必須となる、所定のBMパターンに対する配線パターンのモアレ視認性の最適化及び不規則性の付与については、後述する。
本発明の導電性フィルムは、基本的に以上のように構成される。
図4にその一部を示すように、表示ユニット30には、複数の画素32がマトリクス状に配列されて所定の画素配列パターンが構成されている。1つの画素32は、3つの副画素(赤色副画素32r、緑色副画素32g及び青色副画素32b)が水平方向に配列されて構成されている。1つの副画素は垂直方向に縦長とされた長方形状とされている。画素32の水平方向の配列ピッチ(水平画素ピッチPh)と画素32の垂直方向の配列ピッチ(垂直画素ピッチPv)は略同じとされている。つまり、1つの画素32とこの1つの画素32を囲むブラックマトリクス(BM)34(パターン材)にて構成される形状(網掛けにて示す領域36を参照)は正方形となっている。また、1つの画素32のアスペクト比は1ではなく、水平方向(横)の長さ>垂直方向(縦)の長さとなっている。
なお、図4に示す表示ユニット30は、液晶パネル、プラズマパネル、有機ELパネル、無機ELパネル等の表示パネルで構成されてもよい。
本発明の導電性フィルムが適用される表示装置は、基本的に以上のように構成される。
図6は、本発明の導電性フィルムの配線パターンの決定方法の一例を示すフローチャートである。
なお、ここでは、BMパターン38及び配線パターン62の透過率画像データのサイズを規定し、例えば、4096(画素)×4096(画素)とした。また、後述する手順2のFFT処理時の周期のアーティファクトを防ぐ、若しくは低減するため、BMパターン38及び配線パターン62の各画像は、図8に示すように、全方向(8方向)に折り返し(flip)処理を行うのが好ましい。折り返し処理を行った後の新しい画像サイズは、図8中の点線で囲まれた4画像分の領域内の画像(一辺8192(画素)=4096(画素)×2)とするのが好ましい。
ここで、図9(A)及び(B)は、それぞれBMパターン38及び配線パターン62の各透過率画像データの2次元フーリエスペクトルの強度特性を示す図である。
なお、図9(A)及び(B)において、白い部分は強度が高く、スペクトルピークを示しているので、図9(A)及び(B)に示す結果から、BMパターン38及び配線パターン62のそれぞれについて、各スペクトルピークのピーク周波数及びピーク強度とを算出する。即ち、図9(A)及び(B)にそれぞれ示すBMパターン38及び配線パターン62の2次元フーリエスペクトルの強度特性におけるスペクトルピークの周波数座標上の位置、即ちピーク位置がピーク周波数を表し、そのピーク位置における2次元フーリエスペクトルの強度がピーク強度となる。
まず、ピーク周波数の取得において、ピークの算出には、BMパターン38及び配線パターン62の基本周波数から周波数ピークを求める。これは、2DFFT処理を行う透過率画像データは離散値であるため、ピーク周波数が、画像サイズの逆数に依存してしまうからである。周波数ピーク位置は、図10に示すように、独立した2次元基本周波数ベクトル成分aバー及びbバーを元に組み合わせて表すことができる。したがって、当然ながら、得られるピーク位置は格子状となる。なお、図10は、BMパターン38の場合の周波数ピーク位置を示すグラフであるが、配線パターン62も、同様にして求めることができる。
ここで、得られたピーク強度は、画像サイズで規格化するのが好ましい。上述した例では、8192×8192で規格化しておくのが好ましい(パーセバルの定理)。
実空間においては、モアレは、本来、配線パターン62とBMパターン38との透過率画像データの掛け算によって起こるため、周波数空間においては、両者の畳み込み積分(コンボリューション)を行うことになる。しかしながら、ステップS12において、BMパターン38及び配線パターン62の両2次元フーリエスペクトルのピーク周波数及びピーク強度が算出されているので、両者のそれぞれの周波数ピーク同士の差分(差の絶対値)を求め、求められた差分をモアレの周波数情報とし、両者の組み合わせた2組のベクトル強度の積を求め、求められた積をモアレの強度情報(絶対値)とすることができる。
なお、BMパターン38及び配線パターン62の両2次元フーリエスペクトルのスペクトルピークは、それぞれ複数存在するので、その相対距離の値である周波数ピーク同士の差分、即ちモアレの周波数情報も複数求められることになる。したがって、両2次元フーリエスペクトルのスペクトルピークが多数存在すると、求めるモアレの周波数情報も多数となり、計算処理に時間がかかることになる。このような場合は、予め第両2次元フーリエスペクトルのスペクトルピークにおいて、それぞれピーク強度が強いもののみを選定しておいてもよい。その場合は、選定されたピーク同士の差分のみを求めることになるので、計算時間を短縮することができる。
図12においては、モアレの周波数情報は、縦横軸の位置によって表され、モアレの強度情報は、グレー(無彩色)濃淡で表され、色が濃いほど小さく、色が薄い、即ち白いほど大きくなることを示している。
具体的には、まず、図6に示すように、ステップS16において、ステップS14で得られたモアレの周波数情報及び強度情報(絶対値)に図13に示す人間の標準視覚応答特性を作用させて、即ち掛けてモアレの周波数及び強度(絶対値)を算出する。即ち、得られたモアレの周波数・強度情報に、図13に示す人間の標準視覚応答特性の一例を表す視覚伝達関数(VTF;Visual Transfer Function)を畳み込む。この視覚伝達関数は、ドゥーリー・ショー(Dooley Shaw)関数を基本とし、低周波成分の感度の減衰を無くすようにするものである。
なお、実際の人間の視覚応答特性は、0cycle/mm近傍で1より小さい値になっており、いわゆるバンドパスフィルタの特性を有する。しかしながら、本実施形態において、図13に例示するように、極めて低い空間周波数帯域であってもVTFの値を1にすることで、低周波成分の感度の減衰を無くすようにしている。これにより、配線パターン62の繰り返し配置に起因する周期性を抑制する効果が得られる。
序列を付ける対象となるパターンは、
1.モアレの空間周波数が3cycle/mm以内のデータのみを用いて序列を付ける。
2.空間周波数1.8cycle/mm以下において、モアレの強度が-5以上のパターンは序列に加えない。
3.空間周波数1.8cycle/mm~3cycle/mmにおいて、モアレの強度が-3.7以上のパターンは序列に加えない。
なお、多数の配線パターン62について、シミュレーションサンプル及び実サンプルでモアレの強度の和を求め、3名の研究員が配線パターン62とモアレの強度の和とを評価したところ、モアレの強度の和が常用対数で-4以下(真数で10-4以下)では、官能評価でもモアレは全く視認されず優(++)であり、その強度の和が常用対数で-4超-2.5以下(真数で10-4超10-2.5以下)では、官能評価でモアレはほぼ視認されず良(+)であり、その強度の和が常用対数で-2.5超0以下(真数で10-2.5超1以下)では、官能評価でモアレはわずかに視認されるが気にならない程度で可(+-)であるが、その強度の和が、常用対数で0超(真数で1超)では、官能評価でモアレが視認されて不良(使用不可)であった。
したがって、本発明では、モアレの強度の和を、常用対数で0以下(真数で1以下)に限定する。
ここで、更新される新たな配線パターンは、予め準備されたものであっても、新たに作成されたものであっても良い。なお、新たに作成され場合には、配線パターンの透過率画像データの回転角度、ピッチ、パターン幅のいずれか1つ以上を変化させても良いし、配線パターンの開口部の形状やサイズを変更するようにしても良い。更には、これらにランダム性を持たせても良い。
次に、図6に示すように、ステップS26において、ステップS24で設定された菱形の最適化配線パターン64の菱形形状に対して、金属細線14の幅に応じて定まる所定範囲の不規則性を付与し、得られた配線パターンを、本発明の導電性フィルム10又は11の配線パターン24として決定する。
まず、図14に示す最適化配線パターン64の菱形形状において、菱形の辺に平行な方向、図示例では、矢印方向A、又は垂直な方向、矢印方向Bに沿って、菱形を構成する1本の線を所定距離平行に移動させることにより、所定の不規則性を付与する。
一方、菱形を構成する1本の線を菱形の辺に垂直な方向Bに移動させる場合を、不規則性を付与する方向が菱形の辺に垂直な方向Bであると言い、この場合には、不規則性の付与の前後において菱形の角度θが保存される。したがって、このタイプは、菱形のピッチがランダムに変化し、角度が保存されるので、菱形のピッチをランダムに変形させ、角度を一定に保つピッチ保存パターンであるということができる。
本発明においては、金属細線の幅が3μm以下である時、上記で定義される不規則性の所定の限定範囲は、2%~20%であり、金属細線の幅が3μm超である時、不規則性の所定の限定範囲は、2%~10%であるのが好ましい。また、上述のピッチランダムパターンにおいて、不規則性の所定の限定範囲は、金属細線の幅が3μm以下である場合には、2%~10%であるのがより好ましく、金属細線の幅が3μm超である場合には、2%~8%であるのがより好ましい。
ステップS26における所定の不規則性を付与は、以上のように行うことができる。
その結果、表示装置の表示ユニットのBMパターンに重畳してもモアレの発生が抑止され、モアレの視認性に優れた、最適化された上で不規則性が付与された配線パターンを持つ本発明の導電性フィルムを作製することができる。
本発明においては、所定のBMパターンに対して最適化した最適化配線パターンを、更に、上述した所定範囲内で不規則性を付与するので、モアレの発生が更に抑止され、モアレの視認性に更に優れたものとすることができ、重畳するBMパターン少し変化した場合であっても、モアレの発生を抑止することができ、モアレの視認性に優れた性能を維持することができる。
図14に示す菱形の最適化配線パターン64に対して不規則性を付与した配線パターン24を作成し、これを図7(A)に示すBMパターン38に重畳して、モアレの視認性を官能評価した。
図14に示す菱形の最適化配線パターン64の菱形の角度は30°、ピッチは200μmであり、金属細線14の線幅は、2μmのものと、4μmのものを使用した。
BM34として、図7(A)に示すBMパターン38を持つBM(168 v8 h32)を使用した。
モアレが顕在化しなかった場合を「A」評価、モアレが視認されたが問題のないレベルであった場合を「B」評価、モアレが顕在化した場合を「C」評価とした。そして、各研究員による評価の平均をもって、モアレの評価結果とした。
その結果を表1に示す。
こうしてそれぞれ作製された2種の配線パターンを、上記表示ユニット30の表示画面上にそれぞれ貼り付けて、モアレを可能評価した。
それらの結果も表1に示す。
それらの結果を表2に示す。
以上から、本発明の効果は明らかである。
12 透明支持体
14 金属製の細線(金属細線)
16、16a、16b 導電部
18、18a、18b 接着層
20、20a、20b 保護層
22 開口部
24、62、64 配線パターン
26 ダミー電極部
30 表示ユニット
32、32r、32g、32b 画素
34 ブラックマトリクス(BM)
38 BMパターン
40 表示装置
44 タッチパネル
Claims (15)
- 表示装置の表示ユニット上に設置される導電性フィルムであって、
透明基体と、
該透明基体の少なくとも一方の面に形成され、複数の金属細線からなる導電部と、
を有し、
前記導電部は、前記複数の金属細線によりメッシュ状に形成された、複数の開口部を配列した、不規則性が付与された菱形の配線パターンを有し、
前記配線パターンは、前記表示ユニットの画素配列パターンに重畳されており、
前記配線パターンは、その透過率画像データの2次元フーリエスペクトルの複数のスペクトルピークのピーク周波数及びピーク強度と、前記画素配列パターンの透過率画像データの2次元フーリエスペクトルの複数のスペクトルピークのピーク周波数及びピーク強度とからそれぞれ算出されるモアレの周波数情報及び強度情報に人間の視覚応答特性を作用させて得られたモアレの周波数及び強度に対し、該モアレの周波数が前記視覚応答特性に応じて定まる所定の周波数範囲に入る前記モアレの強度の和が所定値以下である菱形の配線パターンの菱形形状に対して、前記金属細線の幅に応じて定まる所定範囲の不規則性を付与したものであることを特徴とする導電性フィルム。 - 前記不規則性は、前記菱形形状に前記不規則性を付与する方向が菱形の辺に平行な方向又は垂直な方向である時、前記不規則性が付与される前の菱形のピッチに対する、前記不規則性が付与された菱形のピッチの正規分布に従う平均値の割合で定義され、
前記金属細線の幅が3μm以下である時、前記不規則性の前記所定範囲は、2%~20%であり、前記金属細線の幅が3μm超である時、前記不規則性の前記所定範囲は、2%~10%である請求項1に記載の導電性フィルム。 - 前記菱形形状に前記不規則性を付与する方向が菱形の辺に平行な方向である場合、前記不規則性の付与の前後において菱形のピッチは保存され、
前記菱形形状に前記不規則性を付与する方向が菱形の辺に垂直な方向である場合、前記不規則性の付与の前後において菱形の角度が保存される請求項1又は2に記載の導電性フィルム。 - 前記所定の周波数範囲は、前記モアレの周波数が3サイクル/mm以下であり、
前記モアレの周波数が3サイクル/mm以下の前記配線パターンに対して最適化の序列を付け、かつ前記モアレの周波数が1.8サイクル/mm以下において前記モアレの強度が常用対数で-5以上の前記配線パターン及び前記モアレの周波数が1.8サイクル/mm超、3サイクル/mm以下において前記モアレの強度が常用対数で-3.7以上の前記配線パターンを、前記最適化の序列に加えない条件の下で、前記最適化の序列に加えられた前記配線パターンの前記モアレの強度の和が常用対数で0以下である請求項1~3のいずれか1項に記載の導電性フィルム。 - 前記モアレの周波数情報は、前記配線パターンの前記ピーク周波数と前記画素配列パターンの前記ピーク周波数との差分で与えられ、前記モアレの強度情報は、前記配線パターンの前記ピーク強度と前記画素配列パターンの前記ピーク強度との積で与えられる請求項1~4のいずれか1項に記載の導電性フィルム。
- 前記モアレの周波数及び強度は、前記モアレの周波数情報及び強度情報に、前記視覚応答特性として視覚伝達関数を畳み込み積分を行うことによって求められる請求項1~5のいずれか1項に記載の導電性フィルム。
- 前記ピーク強度は、前記ピーク位置周辺の複数画素内の強度の平均値である請求項1~6のいずれか1項に記載の導電性フィルム。
- 前記ピーク強度は、前記配線パターン及び前記画素配列パターンの前記透過率画像データで規格化されたものである請求項1~7のいずれか1項に記載の導電性フィルム。
- 前記画素配列パターンは、前記ブラックマトリックスパターンである請求項1~8のいずれか1項に記載の導電性フィルム。
- 表示ユニットと、
この表示ユニットの上に設置される、請求項1~9のいずれか1項に記載の導電性フィルムとを備えることを特徴とする表示装置。 - 表示装置の表示ユニット上に設置され、複数の金属細線によりメッシュ状に形成された、複数の開口部を配列した、不規則性が付与された菱形の配線パターンを有する導電性フィルムの配線パターンの決定方法であって、
所定の配線パターンの透過率画像データと、前記配線パターンが重畳される、前記表示ユニットの画素配列パターンの透過率画像データとを取得し、
前記配線パターンの透過率画像データ及び前記画素配列パターンの透過率画像データに対して2次元フーリエ変換を行い、前記配線パターンの透過率画像データの2次元フーリエスペクトルの複数のスペクトルピークのピーク周波数及びピーク強度と、前記画素配列パターンの透過率画像データの2次元フーリエスペクトルの複数のスペクトルピークのピーク周波数及びピーク強度とを算出し、
こうして算出された前記配線パターンの前記ピーク周波数及び前記ピーク強度と前記画素配列パターンの前記ピーク周波数及び前記ピーク強度とからそれぞれモアレの周波数情報及び強度情報を算出し、
得られた前記モアレの周波数情報及び強度情報に人間の視覚応答特性を作用させてモアレの周波数及び強度を算出し、
得られた前記モアレの周波数及び強度に対し、該モアレの周波数が前記視覚応答特性に応じて定まる所定の周波数範囲に入る前記モアレの強度の和と所定値とを比較し、
前記モアレの強度の和が前記所定値超であるとき、前記配線パターンの透過率画像データを新たな配線パターンの透過率画像データに変更して、前記ピーク周波数及びピーク強度の算出、前記モアレの周波数情報及び強度情報の算出、前記モアレの周波数及び強度の算出、及び前記モアレの強度の和と所定値との比較の各ステップを前記モアレの強度の和が前記所定値以下になるまで繰り返し、
前記モアレの強度の和が前記所定値以下であるとき、菱形の配線パターンを前記導電性フィルムの配線パターンとして設定し、
設定された菱形の配線パターンの菱形形状に対して、前記金属細線の幅に応じて定まる所定範囲の不規則性を付与し、不規則性が付与された菱形の配線パターンを前記導電性フィルムの配線パターンとして決定することを特徴とする導電性フィルムの配線パターンの決定方法。 - 前記不規則性は、前記菱形形状に前記不規則性を付与する方向が菱形の辺に平行な方向又は垂直な方向である時、前記不規則性が付与される前の菱形のピッチに対する、前記不規則性が付与された菱形のピッチの正規分布に従う平均値の割合で定義され、
前記金属細線の幅が3μm以下である時、前記不規則性の前記所定範囲は、2%~20%であり、前記金属細線の幅が3μm超である時、前記不規則性の前記所定範囲は、2%~10%である請求項11に記載の導電性フィルムの配線パターンの決定方法。 - 前記菱形形状に前記不規則性を付与する方向が菱形の辺に平行な方向である場合、前記不規則性の付与の前後で菱形のピッチは保存され、
前記菱形形状に前記不規則性を付与する方向が菱形の辺に垂直な方向である場合、前記不規則性の付与の前後で菱形の角度が保存される請求項11又は12記載の導電性フィルムの配線パターンの決定方法。 - 前記所定の周波数範囲は、前記モアレの周波数が3サイクル/mm以下であり、
前記モアレの周波数が3サイクル/mm以下の前記配線パターンに対して最適化の序列を付け、かつ前記モアレの周波数が1.8サイクル/mm以下において前記モアレの強度が常用対数で-5以上の前記配線パターン及び前記モアレの周波数が1.8サイクル/mm超、3サイクル/mm以下において前記モアレの強度が常用対数で-3.7以上の前記配線パターンを、前記最適化の序列に加えない条件の下で、前記最適化の序列に加えられた前記配線パターンの前記モアレの強度の和が常用対数で0以下である請求項11~13のいずれか1項に記載の導電性フィルムの配線パターンの決定方法。 - 前記モアレの周波数情報として、前記配線パターンの前記ピーク周波数と前記画素配列パターンの前記ピーク周波数とのピーク周波数同士の差分を求め、
前記モアレの強度情報として、前記配線パターンの前記ピーク強度と前記画素配列パターンの前記ピーク強度との2組のベクトル強度の積を求める請求項11~14のいずれか1項に記載の導電性フィルムの配線パターンの決定方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380018466.8A CN104206044B (zh) | 2012-03-30 | 2013-02-28 | 导电性膜、显示装置及导电性膜的配线图案的决定方法 |
KR1020147027319A KR101701941B1 (ko) | 2012-03-30 | 2013-02-28 | 도전성 필름, 그것을 구비하는 표시 장치 및 도전성 필름의 패턴 결정 방법 |
EP13769947.6A EP2833707B1 (en) | 2012-03-30 | 2013-02-28 | Conductive film, display device equipped with same, and method for determining pattern of conductive film |
US14/500,308 US9791712B2 (en) | 2012-03-30 | 2014-09-29 | Conductive film, display device equipped with same, and method for determining pattern of conductive film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-082706 | 2012-03-30 | ||
JP2012082706A JP5779535B2 (ja) | 2012-03-30 | 2012-03-30 | 導電性フイルム、それを備える表示装置及び導電性フイルムのパターンの決定方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/500,308 Continuation US9791712B2 (en) | 2012-03-30 | 2014-09-29 | Conductive film, display device equipped with same, and method for determining pattern of conductive film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146056A1 true WO2013146056A1 (ja) | 2013-10-03 |
Family
ID=49259331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/055287 WO2013146056A1 (ja) | 2012-03-30 | 2013-02-28 | 導電性フィルム、それを備える表示装置及び導電性フィルムのパターンの決定方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9791712B2 (ja) |
EP (1) | EP2833707B1 (ja) |
JP (1) | JP5779535B2 (ja) |
KR (1) | KR101701941B1 (ja) |
CN (1) | CN104206044B (ja) |
TW (1) | TWI587185B (ja) |
WO (1) | WO2013146056A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050785A1 (ja) * | 2012-09-27 | 2014-04-03 | 富士フイルム株式会社 | 導電性フィルム並びにそれを備えるタッチパネル及び表示装置 |
WO2016060155A1 (ja) * | 2014-10-15 | 2016-04-21 | 富士フイルム株式会社 | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
WO2016060147A1 (ja) * | 2014-10-15 | 2016-04-21 | 富士フイルム株式会社 | 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法 |
WO2016060142A1 (ja) * | 2014-10-15 | 2016-04-21 | 富士フイルム株式会社 | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
JP2016082214A (ja) * | 2014-10-15 | 2016-05-16 | 富士フイルム株式会社 | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
WO2016158850A1 (ja) * | 2015-03-31 | 2016-10-06 | 富士フイルム株式会社 | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107844224B (zh) * | 2011-01-18 | 2021-10-22 | 富士胶片株式会社 | 显示装置及显示装置的制造方法 |
JP6001089B2 (ja) * | 2012-12-18 | 2016-10-05 | 富士フイルム株式会社 | 表示装置及び導電性フイルムのパターンの決定方法 |
JP6463133B2 (ja) * | 2013-02-05 | 2019-01-30 | 富士フイルム株式会社 | 導電性フイルムを備える表示装置 |
JP5805127B2 (ja) * | 2013-03-26 | 2015-11-04 | 富士フイルム株式会社 | タッチパネル及び表示装置 |
KR101834248B1 (ko) * | 2013-08-30 | 2018-03-05 | 후지필름 가부시키가이샤 | 도전성 필름, 그것을 구비하는 터치 패널 및 표시 장치, 및 도전성 필름의 평가 방법 |
JP6503728B2 (ja) * | 2013-12-26 | 2019-04-24 | 大日本印刷株式会社 | 表示装置 |
JP6248758B2 (ja) * | 2014-03-31 | 2017-12-20 | 大日本印刷株式会社 | タッチパネルセンサ部材、タッチパネル及び画像表示装置 |
JP6265021B2 (ja) * | 2014-04-18 | 2018-01-24 | 大日本印刷株式会社 | タッチパネルセンサ、タッチパネル装置および表示装置 |
JP6231432B2 (ja) * | 2014-05-02 | 2017-11-15 | 富士フイルム株式会社 | 導電性フイルム、それを備える表示装置及び導電性フイルムの評価方法 |
JP2016014929A (ja) * | 2014-06-30 | 2016-01-28 | 富士フイルム株式会社 | 導電性フイルム、これを備える表示装置及び導電性フイルムの評価方法 |
JP6307372B2 (ja) | 2014-07-03 | 2018-04-04 | 富士フイルム株式会社 | 導電性フイルム、これを備える表示装置及び導電性フイルムの評価方法 |
WO2016031483A1 (ja) | 2014-08-29 | 2016-03-03 | 富士フイルム株式会社 | タッチセンサフィルムの製造方法、タッチセンサフィルムおよびタッチパネル |
JP2016126480A (ja) * | 2014-12-26 | 2016-07-11 | 大日本印刷株式会社 | タッチパネルセンサ |
KR102329810B1 (ko) | 2015-04-14 | 2021-11-22 | 삼성디스플레이 주식회사 | 메시 형태의 전극 패턴 및 전극 패턴의 형성 방법, 그리고 전극 패턴을 포함하는 터치 패널 |
JP6388558B2 (ja) * | 2015-05-29 | 2018-09-12 | 富士フイルム株式会社 | 導電性フィルム、タッチパネルセンサー、および、タッチパネル |
JP6511382B2 (ja) * | 2015-10-16 | 2019-05-15 | 富士フイルム株式会社 | 導電性フィルム、及びこれを備える表示装置 |
USD878060S1 (en) * | 2017-09-06 | 2020-03-17 | Jaguar Land Rover Limited | Template for a vehicle |
WO2019189187A1 (ja) | 2018-03-27 | 2019-10-03 | 富士フイルム株式会社 | 導電性部材、導電性フィルム、表示装置、及びタッチパネル |
WO2019189201A1 (ja) | 2018-03-27 | 2019-10-03 | 富士フイルム株式会社 | 導電性部材、導電性フィルム、表示装置、及びタッチパネル |
JP7015271B2 (ja) * | 2018-05-21 | 2022-02-02 | 富士フイルム株式会社 | 導電性部材、導電性フィルム、これを備える表示装置、タッチパネル、導電性部材の配線パターンの作製方法、及び導電性フィルムの配線パターンの作製方法 |
TW202327164A (zh) * | 2021-10-04 | 2023-07-01 | 日商大日本印刷股份有限公司 | 配線基板、模組及圖像顯示裝置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009117683A (ja) | 2007-11-08 | 2009-05-28 | Fujifilm Corp | 電磁波シールドフィルムの製造装置、電磁波シールドフィルムの製造方法及びパターン生成方法 |
JP2009252868A (ja) * | 2008-04-03 | 2009-10-29 | Bridgestone Corp | 光透過性電磁波シールド材及びその製造方法 |
JP2010079140A (ja) * | 2008-09-29 | 2010-04-08 | Fujimori Kogyo Co Ltd | ディスプレイ用光学フィルム及びディスプレイ |
WO2011007757A1 (ja) * | 2009-07-13 | 2011-01-20 | Yoshida Kenji | 裸眼立体ディスプレイ用パララックスバリア、裸眼立体ディスプレイおよび裸眼立体ディスプレイ用パララックスバリアの設計方法 |
JP2011210888A (ja) * | 2010-03-29 | 2011-10-20 | Fujifilm Corp | パターン生成方法及びパターン生成プログラム |
JP2011216379A (ja) | 2010-03-31 | 2011-10-27 | Fujifilm Corp | 透明導電膜 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11121978A (ja) * | 1997-10-14 | 1999-04-30 | Dainippon Printing Co Ltd | 電磁波遮蔽板 |
JP2002043790A (ja) * | 2000-07-19 | 2002-02-08 | Fuji Photo Film Co Ltd | 電磁波遮断性フイルム及び光学フィルターとその製造方法 |
US7847753B2 (en) * | 2005-04-01 | 2010-12-07 | Nissha Printing Co., Ltd. | Transparent antenna for display, translucent member for display with an antenna and housing component with an antenna |
US7656357B2 (en) * | 2005-04-01 | 2010-02-02 | Nissha Printing Co., Ltd. | Transparent antenna for vehicle and vehicle glass with antenna |
KR100725538B1 (ko) * | 2005-06-27 | 2007-06-08 | 삼성전자주식회사 | 모아레 패턴이 발생하지 않는 스크린간의 주파수 비율 및각도 차이 설정방법 |
CN102334091B (zh) * | 2009-02-26 | 2016-01-06 | 3M创新有限公司 | 触摸屏传感器和具有低可见度的覆盖微图案的图案化基材 |
US20110026125A1 (en) * | 2009-07-29 | 2011-02-03 | Cheng-Chieh Chang | Transparent conductive film structure and display device |
US8599150B2 (en) * | 2009-10-29 | 2013-12-03 | Atmel Corporation | Touchscreen electrode configuration |
US9031310B2 (en) | 2010-03-31 | 2015-05-12 | Fujifilm Corporation | Conductive film manufacturing method, conductive film, and recording medium |
WO2011148429A1 (ja) * | 2010-05-28 | 2011-12-01 | 信越ポリマー株式会社 | 透明導電膜及びこれを用いた導電性基板 |
JP2012047779A (ja) * | 2010-08-24 | 2012-03-08 | Toray Advanced Film Co Ltd | ディスプレイ用フィルター |
JP2012053344A (ja) * | 2010-09-02 | 2012-03-15 | Sony Corp | 表示装置 |
JP5795746B2 (ja) * | 2012-03-30 | 2015-10-14 | 富士フイルム株式会社 | 導電性フイルム、それを備える表示装置及び導電性フイルムのパターンの決定方法 |
-
2012
- 2012-03-30 JP JP2012082706A patent/JP5779535B2/ja active Active
-
2013
- 2013-02-27 TW TW102107056A patent/TWI587185B/zh active
- 2013-02-28 EP EP13769947.6A patent/EP2833707B1/en not_active Not-in-force
- 2013-02-28 CN CN201380018466.8A patent/CN104206044B/zh active Active
- 2013-02-28 KR KR1020147027319A patent/KR101701941B1/ko active IP Right Grant
- 2013-02-28 WO PCT/JP2013/055287 patent/WO2013146056A1/ja active Application Filing
-
2014
- 2014-09-29 US US14/500,308 patent/US9791712B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009117683A (ja) | 2007-11-08 | 2009-05-28 | Fujifilm Corp | 電磁波シールドフィルムの製造装置、電磁波シールドフィルムの製造方法及びパターン生成方法 |
JP2009252868A (ja) * | 2008-04-03 | 2009-10-29 | Bridgestone Corp | 光透過性電磁波シールド材及びその製造方法 |
JP2010079140A (ja) * | 2008-09-29 | 2010-04-08 | Fujimori Kogyo Co Ltd | ディスプレイ用光学フィルム及びディスプレイ |
WO2011007757A1 (ja) * | 2009-07-13 | 2011-01-20 | Yoshida Kenji | 裸眼立体ディスプレイ用パララックスバリア、裸眼立体ディスプレイおよび裸眼立体ディスプレイ用パララックスバリアの設計方法 |
JP2011210888A (ja) * | 2010-03-29 | 2011-10-20 | Fujifilm Corp | パターン生成方法及びパターン生成プログラム |
JP2011216379A (ja) | 2010-03-31 | 2011-10-27 | Fujifilm Corp | 透明導電膜 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050785A1 (ja) * | 2012-09-27 | 2014-04-03 | 富士フイルム株式会社 | 導電性フィルム並びにそれを備えるタッチパネル及び表示装置 |
JP2014071544A (ja) * | 2012-09-27 | 2014-04-21 | Fujifilm Corp | 導電性フィルム並びにそれを備えるタッチパネル及び表示装置 |
CN106796470A (zh) * | 2014-10-15 | 2017-05-31 | 富士胶片株式会社 | 导电性膜、具备此膜的显示装置以及导电性膜的配线图案的评估方法 |
CN106796471B (zh) * | 2014-10-15 | 2019-10-01 | 富士胶片株式会社 | 导电性膜、具备此膜的显示装置及导电性膜的评价方法 |
CN106796469A (zh) * | 2014-10-15 | 2017-05-31 | 富士胶片株式会社 | 导电性膜、具备此膜的显示装置以及导电性膜的评估方法 |
JP2016081257A (ja) * | 2014-10-15 | 2016-05-16 | 富士フイルム株式会社 | 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法 |
JP2016082037A (ja) * | 2014-10-15 | 2016-05-16 | 富士フイルム株式会社 | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
JP2016082214A (ja) * | 2014-10-15 | 2016-05-16 | 富士フイルム株式会社 | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
WO2016060155A1 (ja) * | 2014-10-15 | 2016-04-21 | 富士フイルム株式会社 | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
TWI689849B (zh) * | 2014-10-15 | 2020-04-01 | 日商富士軟片股份有限公司 | 導電性膜、具備此膜的顯示裝置以及導電性膜的評估方法 |
TWI679656B (zh) * | 2014-10-15 | 2019-12-11 | 日商富士軟片股份有限公司 | 導電性膜、具備該導電性膜的顯示裝置及導電性膜的評價方法 |
CN106796471A (zh) * | 2014-10-15 | 2017-05-31 | 富士胶片株式会社 | 导电性膜、具备所述导电性膜的显示装置及导电性膜的评价方法 |
CN106796470B (zh) * | 2014-10-15 | 2019-10-01 | 富士胶片株式会社 | 导电性膜、具备此膜的显示装置以及导电性膜的评估方法 |
WO2016060142A1 (ja) * | 2014-10-15 | 2016-04-21 | 富士フイルム株式会社 | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
KR20170058400A (ko) * | 2014-10-15 | 2017-05-26 | 후지필름 가부시키가이샤 | 도전성 필름, 이것을 구비하는 표시 장치 및 도전성 필름의 평가 방법 |
KR101889799B1 (ko) | 2014-10-15 | 2018-08-20 | 후지필름 가부시키가이샤 | 도전성 필름, 이것을 구비하는 표시 장치 및 도전성 필름의 평가 방법 |
WO2016060147A1 (ja) * | 2014-10-15 | 2016-04-21 | 富士フイルム株式会社 | 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法 |
CN106796469B (zh) * | 2014-10-15 | 2019-08-27 | 富士胶片株式会社 | 导电性膜、具备此膜的显示装置以及导电性膜的评估方法 |
KR101975304B1 (ko) | 2015-03-31 | 2019-05-07 | 후지필름 가부시키가이샤 | 도전성 필름, 이것을 구비하는 표시 장치 및 도전성 필름의 평가 방법 |
US10649605B2 (en) | 2015-03-31 | 2020-05-12 | Fujifilm Corporation | Conductive film, and display device having the same |
US10437399B2 (en) | 2015-03-31 | 2019-10-08 | Fujifilm Corporation | Conductive film, display device having the same, and method of evaluating conductive film |
KR20170128394A (ko) * | 2015-03-31 | 2017-11-22 | 후지필름 가부시키가이샤 | 도전성 필름, 이것을 구비하는 표시 장치 및 도전성 필름의 평가 방법 |
JP2016194827A (ja) * | 2015-03-31 | 2016-11-17 | 富士フイルム株式会社 | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
WO2016158850A1 (ja) * | 2015-03-31 | 2016-10-06 | 富士フイルム株式会社 | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20140129335A (ko) | 2014-11-06 |
EP2833707A1 (en) | 2015-02-04 |
JP2013214545A (ja) | 2013-10-17 |
CN104206044A (zh) | 2014-12-10 |
EP2833707B1 (en) | 2017-08-30 |
EP2833707A4 (en) | 2015-12-09 |
CN104206044B (zh) | 2017-05-10 |
JP5779535B2 (ja) | 2015-09-16 |
US9791712B2 (en) | 2017-10-17 |
TW201342156A (zh) | 2013-10-16 |
US20150015980A1 (en) | 2015-01-15 |
TWI587185B (zh) | 2017-06-11 |
KR101701941B1 (ko) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5779535B2 (ja) | 導電性フイルム、それを備える表示装置及び導電性フイルムのパターンの決定方法 | |
JP5795746B2 (ja) | 導電性フイルム、それを備える表示装置及び導電性フイルムのパターンの決定方法 | |
JP6001089B2 (ja) | 表示装置及び導電性フイルムのパターンの決定方法 | |
JP6463133B2 (ja) | 導電性フイルムを備える表示装置 | |
JP6038294B2 (ja) | 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価及び決定方法 | |
JP6307468B2 (ja) | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 | |
WO2016002791A1 (ja) | 導電性フイルム、これを備える表示装置及び導電性フイルムの評価方法 | |
JP2016194827A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13769947 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013769947 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013769947 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147027319 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |