WO2016060147A1 - 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法 - Google Patents

導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法 Download PDF

Info

Publication number
WO2016060147A1
WO2016060147A1 PCT/JP2015/078987 JP2015078987W WO2016060147A1 WO 2016060147 A1 WO2016060147 A1 WO 2016060147A1 JP 2015078987 W JP2015078987 W JP 2015078987W WO 2016060147 A1 WO2016060147 A1 WO 2016060147A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
wiring
wiring pattern
conductive film
color
Prior art date
Application number
PCT/JP2015/078987
Other languages
English (en)
French (fr)
Inventor
山口 義隆
一央 岩見
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP18165701.6A priority Critical patent/EP3367220A1/en
Priority to KR1020177010248A priority patent/KR101896395B1/ko
Priority to CN201580055789.3A priority patent/CN106796470B/zh
Priority to EP15850592.5A priority patent/EP3208696A4/en
Publication of WO2016060147A1 publication Critical patent/WO2016060147A1/ja
Priority to US15/487,673 priority patent/US10475175B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/60Systems using moiré fringes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30121CRT, LCD or plasma display

Definitions

  • the present invention relates to a conductive film used in a three-dimensional shape, a display device including the conductive film, and a method for evaluating a wiring pattern of the conductive film.
  • a conductive film installed on a display unit of a display device such as a mobile phone (hereinafter also referred to as a display), for example, a conductive film for an electromagnetic wave shield, a conductive film for a touch panel, or the like can be given (for example, Patent Documents). 1-5).
  • Patent Document 1 relating to the application of the present applicant, for example, a first pattern such as a pixel arrangement pattern of a display (for example, a black matrix (hereinafter also referred to as BM) pattern) and a second pattern such as an electromagnetic shielding pattern, for example.
  • the second pattern generated by the second pattern data in which the relative distance between the spectrum peaks of the two-dimensional Fourier spectrum (2DFFTSp) of each pattern data of the pattern exceeds a predetermined spatial frequency, for example, 8 cm ⁇ 1.
  • the automatic selection is disclosed.
  • Patent Document 2 relating to the application of the present applicant, as a transparent conductive film having a mesh pattern including a plurality of polygonal meshes, a predetermined spatial frequency, for example, human visual response characteristics is maximum with respect to the center-of-gravity spectrum of each mesh.
  • a transparent conductive film in which a mesh pattern is formed such that the average intensity on the band side higher than the spatial frequency corresponding to 5% of the response is higher than the average intensity on the band side lower than the predetermined spatial frequency. is doing.
  • Patent Document 2 it is possible to reduce the noise granularity due to the pattern, greatly improve the visibility of the observation object, and provide a transparent conductive film having stable current-carrying performance even after cutting. .
  • Patent Document 3 relating to the applicant's application, in the conductive pattern composed of a rhombus-shaped mesh made of fine metal wires, by limiting the ratio of the lengths of the two diagonal lines of the rhombus of each mesh opening to a predetermined range, in Patent Document 4, in the mesh pattern of fine metal lines, the fine metal lines limit the inclination angle with respect to the arrangement direction of the pixels of the display device to a predetermined range. In Patent Document 5, the diamond-shaped mesh pattern of fine metal lines is used. By limiting the apex angle of the rhombus at the opening of each mesh to a predetermined range, moire is less likely to occur even when attached to a display panel, and it is possible to produce at a high yield. .
  • the conductive films disclosed in Patent Documents 1 to 5 have a planar shape, and when superimposed on the flat display surface of the display, moire due to interference between the wiring pattern of the conductive film and the BM pattern of the display is eliminated.
  • the conductive film having a planar shape with a high visibility of the moire has a three-dimensional shape, for example, a corresponding three-sided curved side and a flat central portion between the sides.
  • Patent Document 1 since the moire frequency is controlled only from the frequency information of the BM pattern of the display and the conductive film wiring pattern, the intensity of the moiré perception of a person who is affected not only by the frequency but also by the intensity In some cases, moire is visually recognized, and the visibility of moire is not sufficiently improved. Further, in Patent Document 2, regarding the center-of-gravity spectrum of each mesh of the mesh pattern of the transparent conductive film, the noise feeling of the mesh pattern itself of the transparent conductive film that can be visually felt by humans by considering the response characteristics of human vision. However, there is a problem in that it does not lead to improving the visibility of moire.
  • the present invention solves the above-mentioned problems of the prior art, and moire or noise (graininess) when a three-dimensional conductive film is used by being placed on a flat or three-dimensional display surface of a display device. It is an object of the present invention to provide a conductive film capable of suppressing the visibility of moire and noise (granularity), a display device including the conductive film, and a method for evaluating a wiring pattern of the conductive film. .
  • the present invention uses a three-dimensional conductive film having a three-dimensional wiring pattern as an electrode for a touch panel by placing it on a planar shape of a display unit of a display device or similarly overlapping a three-dimensional display surface.
  • An object of the present invention is to provide a conductive film, a display device including the conductive film, and a wiring pattern evaluation and determination method for the conductive film.
  • the conductive film according to the first aspect of the present invention is a conductive film installed on a display unit of a display device, and the conductive film is a three-dimensional transparent substrate. And two wiring parts having a three-dimensional shape arranged on both sides or one side of the transparent substrate, and at least one wiring part of the two wiring parts has a plurality of openings made of a plurality of fine metal wires.
  • the display unit has a mesh-like wiring pattern arranged, and the display unit is arranged in a pixel arrangement pattern of pixels including a plurality of sub-pixels that emit light of at least three different colors. It is installed in the display unit so that the wiring pattern of the two wiring parts and the pixel arrangement pattern of the display unit are overlapped.
  • the projected wiring pattern when projecting on a vertical plane includes a regular mesh pattern or a random mesh pattern with irregularities added to the regular pattern.
  • the evaluation index of moire caused by the interference with the projected pixel arrangement pattern when projecting the pixel arrangement pattern on the same plane is below the evaluation threshold value.
  • the first peak frequency and the first peak intensity of the plurality of first spectrum peaks of the two-dimensional Fourier spectrum of the transmittance image data of the combined wiring pattern, and the projected pixel array pattern of each color when a plurality of colors of light are respectively lit.
  • Second peak frequency and second peak intensity of a plurality of second spectral peaks of the two-dimensional Fourier spectrum of the brightness image data From the moiré frequency and intensity calculated for each color from the moiré intensity at the first intensity threshold or higher of the moiré intensity at each moiré frequency below the frequency threshold defined according to the display resolution of the display unit. Each of them is calculated from the evaluation value of the moire of each color obtained by applying human visual response characteristics according to the observation distance.
  • the conductive film according to the second aspect of the present invention is a conductive film installed on a display unit of a display device, and the conductive film is a three-dimensional transparent substrate. And two wiring parts having a three-dimensional shape arranged on both sides or one side of the transparent substrate, and at least one wiring part of the two wiring parts has a plurality of openings made of a plurality of fine metal wires.
  • the display unit has a mesh-like wiring pattern arranged, and the display unit is arranged in a pixel arrangement pattern of pixels including a plurality of sub-pixels that emit light of at least three different colors. It is installed in the display unit so that the wiring pattern of the two wiring parts and the pixel arrangement pattern of the display unit are overlapped.
  • the projected wiring pattern when projecting onto a vertical plane is a composite wiring pattern including at least a mesh-like irregular wiring pattern with an opening having a polygonal shape and irregularity.
  • the noise evaluation index caused by the interference with the projected pixel array pattern is less than or equal to the evaluation threshold, and the noise evaluation index is, from the viewpoint, the transmittance image data of the composite wiring pattern.
  • a pixel including a plurality of subpixels that emit light of a plurality of different colors is in one direction and a direction perpendicular to the one direction. It is characterized by comprising a display unit arranged in a repeated pixel arrangement pattern and the conductive film of the first or second aspect installed on the display unit.
  • the conductive film wiring pattern evaluation method is installed on the display unit of the display device on both sides of the three-dimensional transparent substrate, or A method for evaluating a conductive film having two wiring portions having a three-dimensional shape arranged on one side, wherein at least one wiring portion of the two wiring portions has a plurality of openings made of a plurality of fine metal wires.
  • the display unit is arranged in a pixel arrangement pattern of pixels including a plurality of sub-pixels that emit light of at least three different colors, and the conductive film is 2
  • the wiring pattern of two wiring parts having a three-dimensional shape is installed in the display unit so that the wiring pattern of one wiring part and the pixel arrangement pattern of the display unit are superimposed.
  • the transmittance image data of the composite wiring pattern obtained by superimposing the regular wiring patterns is obtained, and the pixel arrangement pattern of each color of the display unit is projected onto the same plane.
  • the brightness image data of the projected pixel array pattern of each color is acquired, and at the viewpoint, the two-dimensional Fourier transform is performed on the transmittance image data of the composite wiring pattern and the brightness image data of the projected pixel array pattern to transmit the composite wiring pattern.
  • the first peak frequency and the first peak intensity of the plurality of first spectral peaks of the two-dimensional Fourier spectrum of the rate image data, and for each color The second peak frequency and the second peak intensity of the plurality of second spectrum peaks of the two-dimensional Fourier spectrum of the brightness image data of the projected pixel array pattern of each color of the plurality of colors are calculated, and the calculated first peak of the wiring pattern
  • the frequency and intensity of the moire of each color of each of the plurality of colors are calculated from the frequency and the first peak intensity and the second peak frequency and the second peak intensity of each subpixel arrangement pattern of each of the plurality of colors, and the calculated moire of each color is calculated.
  • a moire having a frequency lower than the frequency threshold specified according to the display resolution of the display unit and an intensity higher than the first intensity threshold is selected, and the selected moire frequency for each color is selected.
  • the moire intensity is applied to the human visual response characteristics according to the observation distance to obtain the moire evaluation value for each color, and each color obtained
  • a moire evaluation index is calculated from each moire evaluation value, and a mesh shape before projection of at least one wiring portion of two wiring portions constituting a composite wiring pattern in which the calculated moire evaluation index is a predetermined value or less
  • a conductive film having a wiring pattern of 1 is evaluated.
  • the evaluation method of the wiring pattern of the electroconductive film which concerns on the 5th aspect of this invention is installed on the display unit of a display apparatus, the both sides of the transparent base
  • the display unit is arranged in a pixel arrangement pattern of pixels including a plurality of sub-pixels that emit light of at least three different colors, and the conductive film is 2
  • the wiring pattern of two wiring parts having a three-dimensional shape is installed in the display unit so that the wiring pattern of one wiring part and the pixel arrangement pattern of the display unit are superimposed.
  • the transmittance image data of a mesh-like irregular wiring pattern that is at least included in the projected wiring pattern and that has a polygonal opening and is given irregularities is obtained.
  • the transmittance image data of the composite wiring pattern including the wiring pattern and projects the pixel array pattern of each color of the display unit onto the same plane to obtain the brightness image data of the projected pixel array pattern of each color.
  • two-dimensional Fourier transform is performed on the transmittance image data of the combined wiring pattern and the brightness image data of the projected pixel array pattern, and a plurality of first values of the two-dimensional Fourier spectrum of the transmittance image data of the combined wiring pattern are obtained.
  • the second peak frequency and the second peak intensity of the plurality of second spectrum peaks of the two-dimensional Fourier spectrum of the data are calculated, and the calculated first peak frequency and first peak intensity of the combined wiring pattern and each of the plurality of colors are calculated.
  • the noise frequency and intensity of each color of the plurality of colors are calculated, and from the calculated noise frequency and intensity of each color, the display unit Select noise with a frequency below the frequency threshold specified according to the display resolution and an intensity above the first intensity threshold, and observe the human visual response characteristics for the noise intensity at the selected noise frequency of each color.
  • the display surface of the display unit has a three-dimensional shape
  • the pixel array pattern has a three-dimensional shape.
  • the projected wiring pattern is composed of one or two regular wiring patterns.
  • the regular wiring pattern is a regular rhombic wiring pattern having a rhombus shape of the opening, and the evaluation threshold is ⁇ 3.17 is preferred.
  • the projected wiring pattern is composed of one or two irregular wiring patterns, or an irregular wiring pattern and a regular wiring pattern, and the regular wiring pattern has a rule that the shape of the opening is a rhombus. It is preferable that the irregular wiring pattern has irregularity equal to or less than the irregularity threshold with respect to the rhombic shape of the regular wiring pattern.
  • the evaluation threshold is ⁇ 2.80, the irregularity threshold is 10%, and the irregular wiring pattern is more than 0% and not more than 10% with respect to the rhombic pitch of the regular wiring pattern. It is preferable to impart irregularity.
  • the evaluation threshold is ⁇ 2.80, the irregularity threshold is 3.0%, and the irregular wiring pattern is more than 0% with respect to the rhombus angle of the regular wiring pattern. It is preferable to give an irregularity of 0% or less.
  • the projected wiring pattern is composed of one or two irregular wiring patterns, or an irregular wiring pattern and a regular wiring pattern, and the regular wiring pattern has a polygonal opening shape. It is a regular polygonal wiring pattern, and the irregular wiring pattern is a wavy wiring pattern in which irregularities are given by making the polygonal sides of the regular wiring pattern into wavy lines within the amplitude threshold. It is preferable.
  • the evaluation threshold is ⁇ 3.00, and the amplitude threshold is preferably 2.0% or more and 20% or less of the pitch of the regular polygonal wiring pattern.
  • the polygon is preferably a rhombus.
  • the projected wiring pattern of the two wiring portions is composed of two irregular wiring patterns. Moreover, it is preferable that the projected wiring pattern of the two wiring portions is composed of an irregular wiring pattern and a regular wiring pattern.
  • at least one wiring part of the two wiring parts includes an electrode part and a non-electrode part, one wiring pattern of the electrode part and the non-electrode part is an irregular wiring pattern, and the other wiring pattern is A regular wiring pattern is preferable.
  • the wiring pattern of one wiring part of the two wiring parts is an irregular wiring pattern, and the wiring pattern of the other wiring part is made of indium tin oxide, and the projected wiring pattern of the two wiring parts is It is preferable to consist of only one irregular wiring pattern.
  • the plurality of first spectral peaks have peak intensities equal to or higher than a first threshold selected from the plurality of spectral peaks obtained by two-dimensional Fourier transform of the transmittance image data of the combined wiring pattern.
  • the plurality of second spectral peaks are peak intensities equal to or higher than a second threshold selected from the plurality of spectral peaks obtained by two-dimensional Fourier transform of the brightness image data of the projected pixel array pattern. It is preferable that it has.
  • the moire frequency corresponding to each color is given as a difference between the first peak frequency and the second peak frequency corresponding to each color
  • the moire intensity corresponding to each color is the first peak intensity and the first peak frequency corresponding to each color. It is preferably given as the product of two peak intensities.
  • the moire evaluation value is preferably obtained by weighting the moire frequency and intensity by convolution integral with a visual transfer function corresponding to the observation distance as a visual response characteristic.
  • the visual transfer function VTF is preferably given by the following formula (1).
  • VTF 5.05e -0.138k (1-e 0.1k ) (1)
  • k ⁇ du / 180
  • k is a spatial frequency (cycle / deg) defined by a solid angle, and is expressed by the above equation (1)
  • u is a spatial frequency (cycle / mm) defined by a length
  • d is defined by the observation distance (mm).
  • the moire evaluation index is preferably calculated for each color by using the largest evaluation value among a plurality of moire evaluation values weighted according to the observation distance with respect to one moire frequency.
  • the moire evaluation index is the largest sum value among the sum values of a plurality of colors obtained by summing the largest evaluation value selected for one moire frequency for all the frequencies of each moire. Preferably there is.
  • the first intensity threshold is ⁇ 4.5 in common logarithm
  • the frequency threshold is a spatial frequency obtained with the resolution of the display unit
  • the moire selected to act on the visual response characteristics Preferably, the moire has a strength of -3.8 or more.
  • the spatial frequency obtained with the resolution of the display unit is preferably the highest frequency of moire given by 1000 / Pd cycle / mm when the display pixel pitch of the display unit is Pd ⁇ m.
  • the display unit preferably has a three-dimensional shape, and the pixel array pattern has a three-dimensional shape on the display surface.
  • the evaluation threshold is preferably ⁇ 2.80.
  • the projected wiring pattern of the two wiring portions is composed of two irregular wiring patterns.
  • the projected wiring pattern of the two wiring parts is composed of an irregular wiring pattern and a regular polygonal wiring pattern in which the shape of the opening is a polygon.
  • At least one wiring part of the two wiring parts includes an electrode part and a non-electrode part, one wiring pattern of the electrode part and the non-electrode part is an irregular wiring pattern, and the other wiring pattern is It is preferable that the opening is a regular wiring pattern having a polygonal shape.
  • the wiring pattern of one wiring part of the two wiring parts is an irregular wiring pattern, and the wiring pattern of the other wiring part is made of indium tin oxide, and the projected wiring pattern of the two wiring parts is It is preferable to consist of only one irregular wiring pattern.
  • the plurality of first spectral peaks have peak intensities equal to or higher than a first threshold selected from the plurality of spectral peaks obtained by two-dimensional Fourier transform of the transmittance image data of the combined wiring pattern.
  • the plurality of second spectral peaks are peak intensities equal to or higher than a second threshold selected from the plurality of spectral peaks obtained by two-dimensional Fourier transform of the brightness image data of the projected pixel array pattern. It is preferable that it has.
  • the frequency and intensity of noise corresponding to each color are obtained by a convolution operation of the first peak frequency and first peak intensity and the second peak frequency and second peak intensity corresponding to each color.
  • the noise frequency corresponding to each color is given as a difference between the first peak frequency and the second peak frequency corresponding to each color
  • the noise intensity corresponding to each color is the first peak intensity corresponding to each color. It is preferably given as the product of two peak intensities.
  • the noise evaluation value is preferably obtained by weighting the frequency and intensity of noise with a visual transfer function corresponding to an observation distance as a visual response characteristic by convolution integration.
  • the visual transfer function VTF is preferably given by the above formula (1).
  • the noise evaluation index is preferably calculated for each color using the largest evaluation value among a plurality of noise evaluation values weighted according to the observation distance with respect to one noise frequency.
  • the noise evaluation index is the largest sum value among a plurality of color sum values obtained by summing the largest evaluation value selected for one noise frequency for all noise frequencies for each color. Preferably there is.
  • the first intensity threshold is preferably ⁇ 4.5 in common logarithm.
  • the frequency threshold value may be a spatial frequency obtained with the resolution of the display unit, that is, a spatial frequency corresponding to the reciprocal of one pixel pitch.
  • the spatial frequency obtained with the resolution of the display unit is preferably the highest noise frequency given by 1000 / Pd cycle / mm when the display pixel pitch of the display unit is Pd ⁇ m.
  • the brightness image data of the projected pixel array pattern of each color is displayed on the display screen of the display unit when light of a plurality of colors is individually lit.
  • Normalized brightness data obtained by normalizing brightness image data obtained by converting captured image data of the color obtained by capturing an image of the displayed pixel array pattern of each color to a brightness value is obtained from the pixel array pattern. It is preferable that it is converted into a projected pixel array pattern.
  • the image of the pixel arrangement pattern of each color displayed on the display screen of the display unit may be displayed on the display unit when a plurality of colors of light are lit alone with the maximum intensity that can be set for each color. preferable.
  • the imaged image data of the pixel arrangement pattern of each color of red, green, and blue was imaged with white balance adjusted to white of the Macbeth chart. Image data is preferred.
  • the brightness image data of the image of the projected pixel array pattern of each color of the plurality of colors is the pixel array pattern of the color displayed on the display screen of the display unit when the light of each color of the plurality of colors is lit alone in the display unit.
  • the brightness value measured is standardized by the product of the resolution of the display unit and the area having the mask image value. Is obtained by converting the pixel array pattern into a projected pixel array pattern, and the brightness image data is standardized so that the brightness of the display unit of the reference display device is 1.0. Preferably there is.
  • the measured brightness values are obtained by displaying each color of red, green and blue independently and measuring with a spectrometer. It is a brightness value obtained from the spectral spectrum data of each color of green and blue, and the mask image is preferably an image obtained by binarizing captured image data captured by a microscope.
  • two wiring parts are each formed in the surface of the both sides of a transparent base
  • the transparent substrate is used as the first transparent substrate
  • the other wiring portion of the two wiring portions is preferably formed on the other surface side of the first transparent substrate and on one surface of the second transparent substrate.
  • the two wiring portions are respectively formed on one side of the transparent substrate via an insulating layer.
  • the evaluation value is obtained for each of a plurality of colors in at least two viewpoints of front observation and oblique observation, and the evaluation index is the largest evaluation value among the obtained evaluation values of each color in at least two viewpoints. It is preferably a value.
  • the pixel array pattern is preferably a black matrix pattern.
  • the present invention when a conductive film having a three-dimensional shape is used by being superimposed on a planar shape or a three-dimensional display surface of a display device, moire or noise (graininess) is caused. It can be suppressed and the visibility of moire and noise (granularity) can be greatly improved. That is, according to a preferred embodiment of the present invention, the frequency analysis of the projected wiring pattern in a state in which the three-dimensional wiring pattern of the three-dimensional conductive film is projected onto a plane perpendicular to the viewpoint and the projected pixel array pattern of the display device.
  • the moire or noise evaluation value for each color is calculated from the moire or noise frequency / intensity for each color of a plurality of colors, and the moire or noise calculated from the calculated moire or noise evaluation value for each color is obtained. Since the numerical value of the evaluation index is limited so as to be excellent in visibility, it is possible to eliminate image quality failure due to the occurrence of moire or noise and obtain excellent visibility.
  • FIG. 2 is a schematic explanatory diagram illustrating an example of a partial pixel arrangement pattern of the display unit of the display device illustrated in FIG. 1. It is a fragmentary sectional view which shows typically an example of the electroconductive film which concerns on the 1st Embodiment of this invention integrated in the display apparatus shown in FIG. (A) and (B) respectively project the three-dimensional wiring pattern of the wiring portion of the three-dimensional conductive film shown in FIG. 3 and a plane perpendicular to the viewpoint to the predetermined three-dimensional wiring pattern. It is a top view which shows typically an example of the projected wiring pattern of a planar shape.
  • FIG. 1 shows a display device having a three-dimensional conductive film and a flat display unit, and a projected conductive film having a flat shape in which the display device is projected onto a plane perpendicular to a predetermined viewpoint.
  • FIGS. 5A and 5B schematically illustrate an example of the pixel array pattern of the planar display unit shown in FIG. 5A and the projected pixel array pattern of the planar projection display unit shown in FIG. FIG.
  • FIG. 5C is a partially enlarged view of the pixel arrangement pattern shown in FIG. 5A, and shows only one subpixel.
  • (A), (C), (E) and (B), (D), and (F) are the three-dimensional wiring pattern of the wiring portion of the three-dimensional conductive film shown in FIG. It is a top view which shows typically another example of the planar shape projection wiring pattern which projected the three-dimensional shape wiring pattern on the plane perpendicular
  • (A) and (B) are each a display device according to another embodiment of the present invention having a three-dimensional conductive film and a display unit, and projecting the display device to a plane perpendicular to a predetermined viewpoint.
  • FIG. 9C is a partially enlarged view of the pixel arrangement pattern shown in FIG. 9A, and shows only one sub-pixel.
  • A) and (B) are each a display device according to another embodiment of the present invention having a three-dimensional conductive film and a display unit, and projecting the display device to a plane perpendicular to a predetermined viewpoint.
  • FIGS. 10A and 10B are other examples of the pixel array pattern of the planar display unit shown in FIG. 10A and the projected pixel array pattern of the planar display unit shown in FIG.
  • FIG. 11C is a partially enlarged view of the pixel array pattern shown in FIG. 11A, and shows only one sub-pixel. It is a typical fragmentary sectional view of an example of the electroconductive film which concerns on the 2nd Embodiment of this invention. It is a typical fragmentary sectional view of an example of the electroconductive film which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 It is a top view which shows typically the rhombus fixed wiring pattern with the regularity of the wiring part of the electroconductive film shown in FIG. It is a top view which shows typically an example of the wiring pattern to which the irregularity was provided with respect to the fixed form wiring pattern shown in FIG. It is a top view which shows typically another example of the wiring pattern to which the irregularity was provided with respect to the fixed form wiring pattern shown in FIG. It is a top view which shows typically an example of the wavy wiring pattern which wavy the metal fine wire of the wiring part of the electroconductive film shown in FIG. It is explanatory drawing for demonstrating the wavy line of the metal fine wire which comprises the wavy wiring pattern of the wiring part of the electroconductive film shown in FIG.
  • FIG. 1 It is a top view which shows typically an example of the synthetic
  • FIG. 28 is a schematic explanatory diagram of an example of a dot cutout image showing seed points (dots) generated at an arbitrary interval in one plane region in order to generate a Voronoi polygon forming the random mesh pattern shown in FIG. 27.
  • FIG. 14 It is a top view which shows typically an example of the synthetic
  • (A) is a schematic diagram which shows an example of the structure of the mesh wiring pattern (mesh pattern) shown in FIG. 14,
  • (B) is a schematic diagram which shows an example of the structure of the pixel arrangement pattern of the display unit shown in FIG.
  • (C) is an example of a graph of the transmittance (T) of the mesh wiring pattern in the present invention
  • (D) is an example of a graph of the intensity (I) of the representative subpixel of the display unit
  • (E) and (F) are examples of a graph of the mesh wiring pattern and the transmittance (T) of the representative sub-pixel of the display unit in the prior art, respectively.
  • (A) And (B) is a schematic explanatory drawing showing an example of a part pixel arrangement pattern of the display unit to which the electroconductive film which concerns on this invention is applied, respectively
  • (B) is a pixel of (A). It is the elements on larger scale of an arrangement pattern.
  • FIG. 1 A schematic explanatory diagrams showing an example of a structural unit of a pixel arrangement pattern in which at least one of the shapes and periods of three subpixels applied to the present invention is different.
  • A) And (B) is explanatory drawing which shows typically an example of the dispersion
  • (A1) to (H2) are schematic diagrams showing an example of a repeating unit of 2 ⁇ 2 pixels of the representative sub-pixels of the pixel arrangement pattern of the display units having different resolutions, shapes, and intensities. It is a flowchart which shows an example of the wiring evaluation method of the electroconductive film which concerns on this invention.
  • FIG. 36 is a graph showing frequency peak positions of a pixel arrangement pattern of the display unit shown in FIG.
  • (A) is a graph explaining the frequency peak position of an input pattern image
  • (B) is a graph explaining calculation of the peak intensity of a frequency peak position.
  • (A) and (B) are the graph which represents an example of the intensity
  • FIG. 35 is a schematic explanatory diagram schematically showing the moire frequency and the intensity of moire generated by the interference between the pixel array pattern shown in FIG. 35A1 and the wiring pattern shown in FIG. It is a flowchart which shows an example of the wiring evaluation method of the electroconductive film which concerns on this invention.
  • (A) And (B) is a figure which shows the intensity
  • (A) And (B) is a schematic plan view schematically showing a planar wiring pattern in a planar state of a conductive film optimized in a planar state and a projected wiring pattern projected onto a three-dimensional shape in a use surface state. is there. It is a schematic diagram of the moire visually recognized with the electroconductive film with the projection wiring pattern of the three-dimensional shape of the use condition shown to FIG. 47 (B).
  • the conductive film which concerns on this invention has a three-dimensional shape and is installed on a planar shape of a display device or a three-dimensional display unit.
  • the conductive film for touchscreens of a three-dimensional shape is demonstrated as a representative example.
  • the present invention is not limited to this, and at least one of the three-dimensional wiring patterns arranged on both sides of the three-dimensional transparent substrate or the insulating layer on one side has a predetermined shape.
  • Any conductive film may be used as long as it has a wiring portion having a wiring pattern composed of (openings) and is installed on a display unit having various emission intensities of the display device.
  • a conductive film for electromagnetic wave shielding may be used.
  • the display unit of the display device on which the conductive film according to the present invention is superimposed is not particularly limited.
  • a liquid crystal display LCD: Liquid Crystal Display
  • a plasma display PDP: Plasma Display Panel
  • Organic EL (Light-Emitting) Diode OLED
  • Organic EL Display OELD: Organic Electro-Luminescence Display
  • Organic EL Display OELD: Organic Electro-Luminescence -Luminescence
  • FIG. 1 is a schematic cross-sectional view of a display device according to a first embodiment of the present invention in which a three-dimensional conductive film of the present invention is incorporated.
  • the projection capacitive touch panel incorporating the conductive film of the present invention will be described as a representative example, it goes without saying that the present invention is not limited to this.
  • the display device 40 includes a planar display unit 30 capable of displaying a color image and / or a monochrome image, and the conductive film 10 according to the first embodiment of the present invention.
  • 42 (the arrow Z1 direction side) has a touch panel 44 that detects a contact position, and a housing 46 that houses the display unit 30 and the touch panel 44. The user can access the touch panel 44 through a large opening provided on one surface of the housing 46 (arrow Z1 direction side).
  • the touch panel 44 includes a conductive film 10, a cover member 48 laminated on one surface (arrow Z ⁇ b> 1 direction side) of the conductive film 10, and a flexible substrate 52 electrically connected to the conductive film 10 via a cable 50. And a detection control unit 54 disposed on the flexible substrate 52.
  • the conductive film 10 is bonded to one surface (arrow Z1 direction side) of the display unit 30 via an adhesive layer 56.
  • the conductive film 10 has one main surface side (first wiring portion 16a side: see FIG. 3) facing the observation side, and the other main surface side (second wiring portion 16b side: see FIG. 3). It is arranged on the display screen so as to face the screen.
  • the cover member 48 exhibits a function as the input surface 42 by covering one surface of the conductive film 10.
  • the material of the cover member 48 may be glass or a resin film, for example. You may make it closely_contact
  • the flexible substrate 52 is a flexible electronic substrate. In the illustrated example, it is fixed to the inner wall of the side surface of the housing 46, but the arrangement position may be variously changed.
  • the detection control unit 54 captures a change in capacitance between the contact body 58 and the conductive film 10 when the contact body 58 that is a conductor contacts (or approaches) the input surface 42, and detects the contact position.
  • An electronic circuit for detecting (or a proximity position) is configured.
  • FIG. 2 is a plan view schematically illustrating an example of a pixel arrangement pattern of a part of the display unit of the display device illustrated in FIG.
  • the display unit 30 includes a plurality of pixels 32 arranged in a matrix to form a predetermined pixel arrangement pattern 38.
  • One pixel 32 includes three subpixels (a red subpixel 32r, a green subpixel 32g, and a blue subpixel 32b) arranged in the horizontal direction.
  • One sub-pixel has a rectangular shape that is vertically long in the vertical direction.
  • the horizontal arrangement pitch of pixels 32 (horizontal pixel pitch Ph) and the vertical arrangement pitch of pixels 32 (vertical pixel pitch Pv) are substantially the same.
  • a shape configured by one pixel 32 and a black matrix (BM) 34 (pattern material) surrounding the one pixel 32 is a square.
  • the aspect ratio of one pixel 32 is not 1, but the length in the horizontal direction (horizontal)> the length in the vertical direction (vertical).
  • the pixel array pattern constituted by the sub-pixels 32r, 32g and 32b of each of the plurality of pixels 32 is defined by the BM pattern 38 of the BM 34 surrounding the sub-pixels 32r, 32g and 32b. Since the moiré and noise generated when the display unit 30 and the conductive film 10 are superimposed are generated by interference between the BM pattern 38 of the BM 34 of the display unit 30 and the wiring pattern 24 of the conductive film 10,
  • the BM pattern 38 is an inverted pattern of the pixel array pattern, but is treated here as representing a similar pattern.
  • the wiring pattern 24 of the conductive film 10 (the combined wiring pattern of the wiring patterns 24a and 24b). ) Is optimized in terms of the visibility of moiré and noise with respect to the BM (pixel array) pattern 38 in the state of the projected wiring pattern 23 having a planar shape projected onto a plane perpendicular to the viewpoint a. Spatial frequency interference between the arrangement period of the pixels 32 and the wiring arrangement of the thin metal wires 14 of the conductive film 10 is weakened, and the generation of moire or noise is suppressed, and the visibility of moire and noise is excellent. Become.
  • the visibility of moire / noise refers to the extent that moire / noise cannot be visually recognized.
  • the display unit 30 shown in FIG. 2 may be configured by a display panel such as a liquid crystal panel, a plasma panel, an organic EL panel, or an inorganic EL panel, and the light emission intensity may be different depending on the resolution. .
  • a display unit (hereinafter also referred to as a display) 30 of the display device 40 on which the conductive film 10 of the present invention is superimposed has at least three different colors, for example, three colors of red, green and blue.
  • Each subpixel (color filter) 32r is arranged by a pixel arrangement pattern (hereinafter also referred to as a BM pattern) 38 of pixels including a plurality of subpixels that emit light of a plurality of colors and includes light emission intensity (luminance).
  • BM pattern pixel arrangement pattern
  • 32g, and 32b are not particularly limited as long as the luminance (lightness) of the conductive film 10 can be taken into consideration in the evaluation of the moire / noise visibility.
  • the display unit 30 has a repetition period and intensity (shape, size) of sub-pixels (color filters), that is, a sub-pixel arrangement pattern (sub-pixel shape and size, period)), such as RGB, as in the past.
  • a display unit having a BM pattern that is the same for all the colors and can be represented by the G subpixel 32g may be used.
  • the display unit 30 may be a display having a BM pattern that is not the same in a plurality of colors, that is, includes different sub-pixel arrangement patterns for at least two colors, like the OELD described above.
  • the display of the display device targeted by the present invention may be a display with high emission intensity such as a high-resolution smartphone or tablet terminal, or a low-resolution desktop personal computer or television (TV).
  • a display with low emission intensity may be used, or a display with medium emission intensity such as a medium resolution notebook may be used.
  • the display device of the present invention is basically configured as described above.
  • FIG. 3 is a schematic partial sectional view showing an example of a planar partial cross section of the conductive film according to the first embodiment of the present invention shown in FIG. 4A and 4B are respectively a three-dimensional wiring pattern of the wiring portion of the three-dimensional conductive film shown in FIG. 3 and a plane perpendicular to the predetermined viewpoint of the three-dimensional wiring pattern. It is a top view which shows typically an example of the projected wiring pattern of the planar shape projected on. 5A and 5B are explanatory diagrams for explaining the projection from the three-dimensional wiring pattern shown in FIG. 4A to the planar projected wiring pattern shown in FIG. 4B.
  • a display device having a three-dimensional conductive film and a planar display unit shown in FIG.
  • FIG. 1 a projection conductive film having a planar shape which is a projection of the display device onto a plane perpendicular to a predetermined viewpoint.
  • FIG. 5C is a partially enlarged view of the pixel arrangement pattern shown in FIG. 5A, and shows only one sub-pixel.
  • 7 (A), (C), (E) and (B), (D), (F) are respectively the three-dimensional wiring patterns of the wiring portions of the three-dimensional conductive film shown in FIG.
  • FIG. 6 is a plan view schematically showing an example of a projected wiring pattern having a planar shape.
  • the conductive film 10 of this embodiment is installed on a display unit of a display device.
  • the conductive film 10 is superior to the black matrix (BM) of the display unit in terms of suppressing the generation of moire / noise.
  • the conductive film 10 is visible to the BM pattern when superimposed on the BM pattern.
  • the conductive film 10 is formed on a transparent substrate 12 and one surface (upper surface in FIG. 3) of the transparent substrate 10, and is composed of a plurality of metal fine wires (hereinafter referred to as metal fine wires) 14, and includes a first electrode.
  • a first protective layer 20a bonded via a first adhesive layer 18a so as to cover the metal thin wire 14 over substantially the entire surface of the first wiring portion 16a, and the transparent substrate 10
  • the second wiring portion (electrode) 16b that is formed on the other surface (the lower surface in FIG. 3) and includes a plurality of thin metal wires 14 and serves as the second electrode portion, and the second wiring portion 16b.
  • a second protective layer 20b bonded to the entire surface via the second adhesive layer 18b.
  • the transparent substrate 12 is made of a material having insulating properties and high translucency, and examples thereof include materials such as resin, glass, and silicon.
  • the resin include PET (Polyethylene terephthalate), PMMA (Polymethyl methacrylate), PP (Polypropylene), PS (Polystyrene) and the like.
  • the metal thin wire 14 is not particularly limited as long as it is a metal thin wire having high conductivity, and examples thereof include a wire made of gold (Au), silver (Ag), or copper (Cu).
  • the line width of the fine metal wire 14 is preferably narrower from the viewpoint of visibility, but may be, for example, 30 ⁇ m or less.
  • the line width of the fine metal wire 14 is preferably 0.1 ⁇ m or more and 15 ⁇ m or less, more preferably 1 ⁇ m or more and 9 ⁇ m or less, and further preferably 2 ⁇ m or more and 7 ⁇ m or less.
  • the wiring portion 16 (16a, 16b) has a plurality of fine metal wires 14 having wiring patterns 24 (24a, 24b) formed by mesh wirings 21 (21a, 21b) arranged in a mesh shape. Specifically, as shown in FIGS. 4A and 4B, the wiring pattern 24 (24a, 24b) has an opening (cell) having a predetermined shape formed by intersecting a plurality of fine metal wires 14 with each other. ) 22 (22a, 22b) are arranged in a mesh pattern.
  • the wiring portion 16 (16a and 16b) is formed as shown in FIGS. 4A and 4B, and FIGS. 7A, 7C, 7E, 7B, 7D and 7F.
  • a wiring layer 28 (28a and 28b) having a mesh-shaped wiring pattern 24 (24a and 24b) formed of fine metal wires 14 and openings (cells) 22 (22a and 22b) between the adjacent fine metal wires 14.
  • the wiring patterns 24a and 24b are projected patterns 23 when projected onto a plane perpendicular to a predetermined viewpoint (a: see FIG. 5B).
  • the wiring pattern 27 shown in FIG. 4A is a regular pattern 23 having rhombus-shaped openings 22.
  • the first protective layer 20a is adhered to substantially the entire surface of the wiring layer 28a including the first wiring portion 16a by the first adhesive layer 18a so as to cover the fine metal wires 14 of the first wiring portion 16a.
  • the second protective layer 20b is adhered to substantially the entire surface of the wiring layer 28b formed of the second wiring portion 16b by the second adhesive layer 18b so as to cover the fine metal wires 14 of the second wiring portion 16b.
  • examples of the material of the adhesive layer 18 include a wet laminate adhesive, a dry laminate adhesive, or a hot melt adhesive, but the first adhesive layer 18a.
  • the material of and the material of the second adhesive layer 18b may be the same or different.
  • the protective layer 20 (the first protective layer 20a and the second protective layer 20b) is made of a material having high translucency including resin, glass, and silicon, like the transparent substrate 12, but the first protective layer 20a
  • the material and the material of the second protective layer 20b may be the same or different.
  • Both the refractive index n1 of the first protective layer 20a and the refractive index n2 of the second protective layer 20b are preferably equal to or close to the refractive index n0 of the transparent substrate 12.
  • the relative refractive index nr1 of the transparent substrate 12 with respect to the first protective layer 20a and the relative refractive index nr2 of the transparent substrate 12 with respect to the second protective layer 20b are both close to 1.
  • the refractive index in this specification means a refractive index in light having a wavelength of 589.3 nm (sodium D-line).
  • ISO 14782: 1999 (corresponding to JIS K 7105) is an international standard.
  • nr1 (n1 / n0)
  • nr2 (n2 / n0)
  • the relative refractive index nr1 and the relative refractive index nr2 may be in the range of 0.86 to 1.15, more preferably 0.91 to 1.08.
  • the moire / The visibility of noise can be further improved and improved.
  • the conductive film 10 is installed and used in a predetermined convex three-dimensional shape on the display unit 30 of the display device 40.
  • the conductive film 10 is installed in a predetermined three-dimensional shape on the display unit 30, the three-dimensional wiring pattern 27 shown in FIG. (24).
  • the display device 40 in which the conductive film 10 is installed in a predetermined three-dimensional shape on the display unit 30 is placed on a plane perpendicular to one viewpoint indicated by an arrow a. When projected, as shown in FIG.
  • the projection display device 40 a in a state in which the conductive film 10 is installed in a planar shape as the projection conductive film 10 a on the display unit 30 is obtained.
  • the three-dimensional wiring pattern 27 shown in FIG. 4A in plan view is converted into a planar projection wiring pattern 23 in the planar projection conductive film 10a as shown in FIG. 4B. You can see.
  • the projection from the planar display unit 30 of the display device 40 to the planar display unit 30 of the projection display device 40a is an identity projection ( Map) and does not change. Therefore, the BM pattern 38 of the display unit 30 before projection shown in FIG. 6A is the same as the BM pattern 38 of the display unit 30 after projection shown in FIG. 6B.
  • the BM pattern 38 is a pattern in which sub-pixels such as the G sub-pixel 32g as shown in FIG. 6C are arranged.
  • the G sub-pixel 32g of the four pixels 32 shown in FIG. 6C is the four sub-pixels in the center of the BM pattern 38 of the planar display unit 30 shown in FIG.
  • the combined wiring pattern of the regular projected wiring pattern 23 of the planar shape of one or both of the wiring portions 16a and 16b of the planar projected conductive film 10a of the planar projected display device 40a is: , Which is superior to the black matrix (BM) pattern (BM pattern 38) 34 of the display unit 30 in terms of suppressing the occurrence of moire, that is, the moire evaluation index is a predetermined threshold at which moire is not visually recognized. It can be called the following synthetic wiring pattern. Although details will be described later, in a planar projection fixed wiring pattern, the combined wiring pattern can be said to be a wiring pattern that falls within a predetermined range of ⁇ 3.17 or less.
  • planar projected conductive film 10a in the planar projected display device 40a is a composite wiring that is optimized in terms of moiré visibility with respect to the BM pattern 38 when superimposed on the planar BM pattern 38. It can be said that it is a planar conductive film having a projected wiring pattern 23 to be a pattern.
  • the three-dimensional wiring pattern 24 shown in FIG. 4A has the planar shape rule shown in FIG. It is clear that there is irregularity with respect to the typical rhombic projected wiring pattern 23. As a result, if the projected regular wiring pattern 23 having the planar shape shown in FIG. 4B is optimized in terms of the moire visibility when the combined wiring pattern is used, the three-dimensional shape shown in FIG. It is clear that the wiring pattern 24 is more suitable in terms of moire visibility when it is a composite wiring pattern.
  • the conductive film 10 in the display device 40 is a composite wiring pattern optimized in terms of moiré visibility with respect to the BM pattern 38 even when the conductive film 10 is superimposed on the BM pattern 38 in a three-dimensional shape. It can be said that this is a three-dimensional conductive film having a three-dimensional wiring pattern 24.
  • the composite wiring pattern including the planar projected standard wiring pattern projected from the three-dimensional wiring pattern is the BM pattern of the display unit.
  • moiré is not visually recognized. It can be said that it is excellent in terms.
  • the conductive film 10 is three-dimensional so as to have a wiring pattern 24 finished in a three-dimensional shape previously set on the display unit 30 with respect to one viewpoint indicated by an arrow a in FIG. It may be formed into a shape, and before use, it is a planar shape having a projected wiring pattern 23 having a planar shape projected onto a plane perpendicular to the viewpoint a, and is installed on the display unit 30 during use.
  • the one view point indicated by the arrow a in FIG. 5B may be flexible to be deformed into a three-dimensional shape so as to become the wiring pattern 24.
  • the transparent substrate 12 of the conductive film 10 is made of a flexible material such as a resin. Material is preferred. On the other hand, when it is formed in advance in a three-dimensional shape, a resin material or a material such as glass or silicon may be used.
  • the conductive film of the present invention has a combined wiring pattern including a planar projected wiring pattern 23 obtained by projecting the three-dimensional shaped wiring pattern 24 of the three-dimensional shaped conductive film 10 onto a plane perpendicular to one viewpoint a.
  • the moire evaluation index generated by the interference with the BM pattern 38 at one viewpoint a falls within a range below a predetermined threshold at which moire is not visually recognized. The optimization of the range and the visibility of moire will be described later.
  • the conductive film 10 includes a curved portion 13a that is curved at a predetermined curvature and a curved portion 13a on both sides at the corresponding side edge portions of the display surface of the display unit 30.
  • the three-dimensional shape having a plane portion 13b parallel to the display surface of the display unit 30 is formed between the two, but the three-dimensional shape of the conductive film 10 is not limited to this, and the display surface of the display unit 30 Any three-dimensional shape may be used as long as the shape corresponds to the above shape. In the example shown in FIG.
  • the three-dimensional shape in the direction perpendicular to the paper surface is not shown, but the side edges corresponding to the direction perpendicular to the paper surface may be provided with curved portions 13a. Conversely, a similar cross-sectional shape may be used in the direction perpendicular to the paper surface.
  • the display surface of the display unit 30 is preferably rectangular, but is not particularly limited, and may be an ellipse, a circle, or other shapes.
  • FIGS. 5A and 5B one viewpoint for observing the display surface of the display unit 30 on which the three-dimensional conductive film 10 is installed is as shown in FIGS. 5A and 5B.
  • a viewpoint a indicated by an arrow a for observing a surface the present invention is not limited to this, and the viewpoint may be observed from a viewpoint different from the viewpoint a.
  • the viewpoint which observes the curved part 13a of the conductive film 10 which has the same three-dimensional shape as the front may be sufficient.
  • the three-dimensional wiring pattern 24 having a mesh shape formed by the openings 22 between the adjacent fine metal wires 14 is, for example, the three-dimensional wiring pattern 27 shown in FIG. Is projected onto a plane perpendicular to the viewpoint a to form a projected wiring pattern 23 having a planar shape as shown in FIG.
  • the three-dimensional shape Also in the wiring pattern 24, moire is not visually recognized or difficult to be visually recognized due to interference with the BM pattern 38.
  • the conductive film and the wiring pattern are described as the three-dimensional shape.
  • the conductive film is described as a planar projected conductive film
  • the wiring pattern is described as a planar projected wiring pattern.
  • the conductive portion 16 of the projected conductive film 10a has a planar projected wiring pattern 23 (see FIG. 4B) in which a plurality of fine metal wires 14 are arranged in a mesh shape.
  • the mesh shape of the opening 22 is a rhombus, but the present invention is not limited to this, and the projected wiring in which the visibility of moire is optimized with respect to a predetermined BM pattern 38 to be described later.
  • the pattern 23 can be configured, any polygonal shape having at least three sides may be used, and the same mesh shape or different mesh shapes may be used. For example, regular triangles, isosceles triangles, etc.
  • Examples thereof include the same or different polygons such as triangles, squares, parallelograms, rectangles such as rectangles, pentagons, hexagons (including regular hexagons), and the like. That is, as long as the projected wiring pattern is optimized for the moiré visibility with respect to the predetermined BM pattern 38, even the projected wiring pattern constituted by the arrangement of the regular openings 22 has different shapes of the openings 22.
  • a projected wiring pattern randomized by the arrangement of Further, the projected wiring pattern 23 (wiring pattern 24) may have a break (break) as will be described later.
  • the shape of the mesh-like wiring pattern having such a break the shape of the mesh-like wiring pattern of the conductive film described in Japanese Patent Application No. 2012-276175 related to the application of the present applicant can be applied.
  • the projected wiring pattern 23 is a regular rhombic shaped regular wiring pattern, but the present invention is not limited to this, and the regular regular projected wiring pattern 23 is irregular (random). ),
  • the pitch or angle of the rhombus shape of the opening 22 may be given irregularity that is equal to or less than a predetermined threshold value, and the rhombus-shaped side of the opening 22 is within a predetermined amplitude threshold value. It is also possible to give irregularity to the shape of the side by making the wavy line.
  • the moire in order to improve the visibility of the moire (the moire is not visually recognized), the moire is not visually recognized or is hardly visually recognized as the evaluation index of the moire of the composite wiring pattern including the regular fixed projection wiring pattern 23.
  • a predetermined threshold represented without being visually recognized
  • the evaluation index is less than or equal to a predetermined threshold value and less than or equal to a predetermined threshold value where noise is not visually recognized. Details will be described later. It may be Mel so.
  • the three-dimensional wiring pattern 27a shown in FIG. 7A becomes a planar wiring pattern 23a shown in FIG. 7B when projected onto a plane perpendicular to the viewpoint a.
  • the planar wiring pattern 23a has a predetermined shape with respect to the shape of the openings (cells) 22 of the regular projected wiring pattern 23 shown in FIG.
  • the irregularity is given below the threshold, for example, 10% or less, specifically, more than 0% and 10% or less.
  • the irregularity is not limited to the pitch of the cells 22 but may be relative to the angle of the cells 22.
  • the three-dimensional wiring pattern 27b shown in FIG. 7C becomes the planar wiring pattern 23b shown in FIG. 7D when projected onto a plane perpendicular to the viewpoint a.
  • the planar wiring pattern 23b has a side of the cell 22 of the regular projective wiring pattern 23 shown in FIG. 4A, that is, the metal thin wire 14 constituting the mesh within a predetermined amplitude threshold, Is changed to a wavy line having an amplitude in the range of 2.0% to 20% of the cell pitch (made wavy).
  • the three-dimensional wiring pattern 27c shown in FIG. 7F becomes a planar wiring pattern 23c shown in FIG. 7E when projected onto a plane perpendicular to the viewpoint a.
  • the planar wiring pattern 23c is a cell composed of Voronoi polygons determined according to a Voronoi diagram (Voronoi division method) with reference to a plurality of seed points generated at a plurality of positions at arbitrary intervals in one plane region.
  • the noise evaluation index falls within a predetermined threshold value or less when superimposed on the BM pattern 38.
  • the display unit 30 of the display device 40 has a planar shape.
  • the present invention is not limited to this, and may be a three-dimensional display unit.
  • the display unit may have a shape.
  • FIG. 8A is a schematic cross-sectional view showing a display device according to another embodiment of the present invention having a conductive film and a display unit each having a convex three-dimensional shape
  • FIG. 9 is a schematic cross-sectional view showing a projection display device that has a projection conductive unit having a planar shape and a projection display unit, which is obtained by projecting the display device shown in FIG. 8A onto a plane perpendicular to the viewpoint.
  • both the conductive film 10 and the display unit 30a have a convex three-dimensional shape, and the display surface has a predetermined convex three-dimensional shape on the display unit 30a.
  • a conductive film 10 having a predetermined convex three-dimensional shape is installed. Therefore, the display device 40b differs from the display device 40 shown in FIG. 5A in that the shape of the display unit 30a is a three-dimensional shape, but the shape of the conductive film 10 installed on the display unit 30a. Is the same in that it has the same three-dimensional shape as FIG. However, when the display device 40b is projected onto a plane perpendicular to the viewpoint a, the display device 40b is a projection display device 40c that includes the planar projection conductive film 10a and the projection display unit 30b.
  • the conductive film 10 has the three-dimensional shape shown in FIGS. 4A, 7A, 7C, and 7E in plan view.
  • the wiring patterns 27, 27a, 27b and 27c can be provided.
  • FIG. 8B in the state projected onto the plane perpendicular to the viewpoint a, the projected conductive film 10a has a planar shape as in FIG. 5B, and FIG. 7B, projection wiring patterns 23, 23a, 23b and 23c having a planar shape shown in FIGS. 7B, 7D and 7F can be provided.
  • the three-dimensional BM pattern 38a of the display unit 30a before projection shown in FIG. 9A has the planar shape of the projection display unit 30b after projection shown in FIG.
  • the projected BM pattern 38b is obtained.
  • the G sub-pixel 32g of the four pixels 32 shown in FIG. 9C is a central plane of the convex three-dimensional BM pattern 38a of the convex three-dimensional display unit 30a shown in FIG. 9A. Or it is a subpixel of 4 pixels of the part close
  • the three-dimensional wiring pattern 24 (27, 27a, 27b and 27c) shown in FIGS. 4A, 7A, 7C and 7E and FIG.
  • the planar projected wiring pattern 23 or 23c shown in FIG. 4B or FIG. An evaluation index of moire or noise when the projected BM pattern 38b having a planar shape shown in (B) is superimposed is obtained, and a conductive film having a three-dimensional wiring pattern 24 that is equal to or lower than the evaluation threshold is used as the conductive film of the present invention. It can be evaluated as an adhesive film.
  • FIG. 10A is a schematic cross-sectional view showing a display device according to another embodiment of the present invention, each having a three-dimensional conductive film and a display unit
  • FIG. 10A is a schematic sectional drawing which shows the projection display apparatus which has the projection conductive film of a planar shape and the projection display unit which projected the display apparatus shown to FIG. 10 (A) on the plane perpendicular
  • the display device 40d shown in FIG. 10A is different from the display device 40b shown in FIG. 8A in that it has a concave shape, but the conductive film 10b also has a display unit 30c.
  • the display device 40d is a projection display device 40e that includes the projection conductive film 10c having a planar shape and the projection display unit 30d when projected onto a plane perpendicular to the viewpoint a.
  • the three-dimensional display unit 30c of the display device 40d shown in FIG. 10A is projected onto a plane perpendicular to the viewpoint a, as shown in FIG. It becomes the display unit 30d.
  • the three-dimensional BM pattern 38c of the display unit 30c before projection shown in FIG. 11A has a planar shape of the projection display unit 30d after projection shown in FIG.
  • the projected BM pattern 38d is obtained.
  • the G sub-pixel 32g of the four pixels 32 shown in FIG. 11C is the central plane or plane of the concave three-dimensional BM pattern 38c of the concave three-dimensional display unit 30a shown in FIG.
  • the wiring portions 16 (16 a and 16 b) on both the upper side and the lower side of the transparent substrate 12 are electrode portions each including a plurality of fine metal wires 14.
  • the present invention is not limited to this, and at least one of the first and second wiring portions 16a and 16b may be constituted by an electrode portion and a non-electrode portion (dummy electrode portion).
  • FIG. 12 is a schematic partial cross-sectional view showing an example of a conductive film according to the second embodiment of the present invention. Note that the three-dimensional wiring pattern of the conductive film of the second embodiment is the same as the three-dimensional wiring pattern of the conductive film of the first embodiment described above, so the description thereof is omitted here. .
  • the conductive film 11 of the second embodiment includes a first electrode portion 17a and a dummy electrode portion 26 formed on one surface of the transparent substrate 12 (upper side in FIG. 12).
  • 1 wiring part 16a, 2nd wiring part 16b which consists of the 2nd electrode part 17b formed in the other side (lower side of Drawing 12) of transparent substrate 12, and it consists of the 1st electrode part 17a and dummy electrode part 26
  • the first protective layer 20a bonded to the substantially entire surface of the first wiring portion 16a via the first adhesive layer 18a, and the substantially entire surface of the second wiring portion 16b including the second electrode portion 17b via the second adhesive layer 18b. And a second protective layer 20b adhered thereto.
  • the first electrode portion 17 a and the dummy electrode portion 26 are each composed of a plurality of fine metal wires 14, and both are formed as a wiring layer 28 a on one surface (the upper side in FIG. 12) of the transparent substrate 12.
  • the second electrode portion 17b is composed of a plurality of fine metal wires 14, and is formed as a wiring layer 28b on the other surface (lower side in FIG. 12) of the transparent substrate 12.
  • the dummy electrode portion 26 is formed on one surface of the transparent base 12 (upper side in FIG. 12), but the other (lower side in FIG. 12) as in the illustrated example. ) Of the second electrode portion 17b formed on the surface of the second electrode portion 17b.
  • the dummy electrode portion 26 is disposed at a predetermined interval from the first electrode portion 17a and is in a state of being electrically insulated from the first electrode portion 17a.
  • the second electrode portion formed on one surface (the upper side in FIG. 12) of the transparent substrate 12 and on the other surface (the lower side in FIG. 12) of the transparent substrate 12. Since the dummy electrode portion 26 composed of the plurality of thin metal wires 14 corresponding to the plurality of thin metal wires 14b of 17b is formed, the scattering by the thin metal wires on one surface (the upper side in FIG. 12) of the transparent substrate 12 is controlled. Electrode visibility can be improved.
  • the first electrode portion 17 a and the dummy electrode portion 26 of the wiring layer 28 a have a metal thin wire 14 and a mesh-like wiring pattern 24 a formed by the opening 22.
  • the second electrode portion 17b of the wiring layer 28b has a mesh-like wiring pattern 24b formed by the fine metal wires 14 and the opening portions 22 in the same manner as the first electrode portion 17a.
  • the transparent substrate 12 is made of an insulating material, and the second electrode portion 17b is in a state of being electrically insulated from the first electrode portion 17a and the dummy electrode portion 26.
  • the 1st, 2nd electrode parts 17a and 17b and the dummy electrode part 26 can be similarly formed with the material similar to the wiring part 16 of the electroconductive film 10 shown in FIG. 3, respectively.
  • the first protective layer 20a is formed by the first adhesive layer 18a and the dummy so as to cover the respective thin metal wires 14 of the first electrode portion 17a and the dummy electrode portion 26 of the first wiring portion 16a.
  • the wiring layer 28a composed of the electrode part 26 is bonded to substantially the entire surface.
  • the second protective layer 20b is formed on the substantially entire surface of the wiring layer 28b including the second electrode portion 17b by the second adhesive layer 18b so as to cover the fine metal wires 14 of the second electrode portion 17b of the second wiring portion 16b. It is glued.
  • the first and second adhesive layers 18a and 18b and the first and second protective layers 20a and 20b of the conductive film 11 shown in FIG. 12 are the same as the conductive film 10 shown in FIG. Description is omitted.
  • the second wiring part 16b including the second electrode part 17b does not have a dummy electrode part, but the present invention is not limited to this, and the second wiring part 16b.
  • the metal wire is in a state electrically spaced from the first electrode portion 17a and electrically insulated from the second electrode portion 17b at a position corresponding to the first electrode portion 17a of the first wiring portion 16a.
  • a dummy electrode portion consisting of 14 may be arranged.
  • the dummy electrode portion 26a is provided in the first wiring portion 16a, and the dummy electrode portion is provided in the second wiring portion 16b.
  • each mesh wiring of the 2nd electrode part 17b of the 1st electrode part 17a and the 2nd wiring part 16b can be arranged correspondingly, one side (for example, the upper side or the lower side of Drawing 12) of transparent substrate 12 Scattering by fine metal wires can be controlled, and electrode visibility can be improved.
  • wiring portions 16 (16a and 16b) are formed on both the upper and lower sides of the transparent substrate 12, respectively.
  • the present invention is not limited to this, and a plurality of films on one surface (upper surface in FIG. 13) of the transparent substrate 12 like the conductive film 11A of the third embodiment of the present invention shown in FIG.
  • a structure in which a wiring portion 16 made of a thin metal wire 14 is formed, and two conductive film elements each having a protective layer 20 bonded thereto are bonded to the substantially entire surface of the wiring portion 16 with an adhesive layer 18 so as to cover the thin metal wire 14. It is also good.
  • FIG. 13 includes a lower transparent substrate 12b in FIG. 13 and a plurality of fine metal wires 14 formed on the upper surface of the transparent substrate 12b.
  • 2 wiring part 16b, 2nd protective layer 20b adhere
  • the wiring pattern 24 (24a and 24b) made of the thin wire 14 has a three-dimensional shape.
  • the wiring pattern 24 is a projected wiring pattern having a planar shape projected onto a plane, such as the projected wiring patterns 23, 23a, 23b, or 23c, in the following description. A description will be given assuming that the wiring pattern has such a planar shape.
  • one or both of the wiring patterns 24a and 24b has regularity in which a plurality of diamond-shaped openings 22 having the same shape are regularly repeated as shown in FIG. It is preferable that the wiring pattern has a diamond shape, that is, a so-called fixed wiring pattern 25.
  • the fixed wiring pattern 25 is a partially enlarged view of the projected wiring pattern 23 shown in FIG.
  • the one or both of the wiring patterns 24 are parallel four sides having a predetermined angle stored in plan view and different pitches (and therefore sizes) as shown in FIG.
  • An irregular wiring pattern to which irregularities in which a plurality of openings 22 having a shape are continuously connected in two directions forming a predetermined angle is given, a so-called random pattern 25a (see FIG. 7B). There may be.
  • the random pattern 25a is a partially enlarged view of the projected wiring pattern 23a shown in FIG.
  • the random pattern 25a shown in FIG. 15 has a predetermined range of irregularity (randomness) with the angle preserved with respect to the rhombus-shaped pitch of the opening 22 of the fixed wiring pattern 25 as shown in FIG. ).
  • the predetermined range of irregularity imparted with the angle preserved with respect to the rhombus shape of the opening 22 of the standard wiring pattern 25 is more than 0% and 10% or less. It is more preferably 2% to 10%, still more preferably 2% to 8%.
  • the irregularity imparted to the rhombic pitch of the openings 22 of the regular fixed wiring pattern 25 is not particularly limited as long as it satisfies the above range.
  • the irregularity distribution may be a normal distribution or a uniform distribution.
  • one or both of the wiring patterns 24 are parallel to each other, as shown in FIG. 16, in which one of two sides facing each other in plan view is inclined with respect to the other.
  • saved may be sufficient.
  • the wiring pattern 24 has irregularities in which the angles of the mesh shape of the plurality of adjacent openings 22 are different, and as a result, the irregularities are rectangles having different pitches or side lengths. It has a wiring pattern, so-called random pattern 25b.
  • the random pattern 25b shown in FIG. 16 is obtained by giving a predetermined range of irregularity (randomness) to the rhombus-shaped angle of the opening 22 of the fixed wiring pattern 25 as shown in FIG. is there.
  • the predetermined range of irregularity given to the rhombus-shaped angle of the opening 22 of the fixed wiring pattern 25 is preferably more than 0% and 3% or less, and 0.2 % To 3% is more preferable, and 0.5% to 3% is more preferable.
  • the irregularity imparted to the rhombus-shaped angle of the opening 22 of the regular fixed wiring pattern 25 is not particularly limited as long as it satisfies the above range.
  • the irregularity distribution may be a normal distribution or a uniform distribution.
  • one or both of the wiring patterns 24, as shown in FIG. 17, are sides constituting the opening 22 having a polygonal shape, that is, a diamond shape in the illustrated example, that is, It may be a wiring pattern to which irregularities are imparted by forming a plurality of fine metal wires 14 into wavy lines, that is, a random pattern 25c randomized by making the fine metal wires 14 into wavy lines.
  • the random pattern 25c is a partially enlarged view of the projected wiring pattern 23b shown in FIG.
  • the center line of the wavy metal thin wire 14 is polygonal, and the opening 22 having a rhombus shape in the illustrated example is continuously connected in two predetermined directions where the metal thin wire 14 intersects. It is a wiring pattern.
  • the random pattern 25c shown in FIG. 17 has a wiring pattern in which irregularities are imparted to the mesh shape of the adjacent openings 22 by making the fine metal wires 14 wavy, so-called random patterns 25c. .
  • the random pattern 25c shown in FIG. 17 blurs the fine metal wires 14 constituting the standard wiring pattern 25 as shown in FIG. 14 by making them wavy lines, thereby giving irregularity (randomness) within a predetermined range to the mesh. It has been granted.
  • the wiring pattern 24 By making the wiring pattern 24 in this way a random pattern 25c having a mesh as a wavy line and imparting randomness, the moire intensity can be attenuated.
  • the mesh wiring 21 is constituted by a wavy metal thin wire 14 as shown in FIG.
  • FIG. 18 shows two wavy lines L1 and L2 of the thin metal wire 14 extending in one direction for the purpose of explaining the wavy lines.
  • Such wavy lines L1 and L2 shown in FIG. 18 are obtained by deforming the straight lines L1 and L2 of the thin metal wires 14 of the regular wiring pattern 25 having regularity shown in FIG. 14 into a wavy shape, and are randomly shown in FIG. It can be said that the wavy lines L1 and L2 of the fine metal wires 14 of the pattern 25c are arranged with a phase difference in the extending direction. As shown in FIG.
  • the wavy lines L1 and L2 can be expressed or approximated by a trigonometric function, for example, a sine wave, where the amplitude of the sine wave is defined as A 0 , the wavelength as ⁇ , and the phase as ⁇ . it can.
  • the amplitude A 0 corresponds to a coefficient of a sine wave.
  • the wavelength ⁇ corresponds to the length of the period.
  • the phase ⁇ corresponds to a drawing start point shift (shift) amount between the adjacent wavy lines L1 and L2.
  • the randomness (irregularity) of the wavy lines of the fine metal wires 14 expressed in this way is the ratio of the amplitude A 0 , the wavelength ⁇ , and the phase ⁇ to the pitch p of the regular wiring pattern 25 having regularity shown in FIG. %).
  • a diamond mesh pattern of 100 ⁇ m is given a wavelength ⁇ , a phase (for each line) ⁇ , an amplitude (for each wavelength) A 0 , and 10% randomness, 90 to 110 ⁇ m, 90 to 110 ⁇ m, It varies in the range of 0 to 10 ⁇ m.
  • random pattern 25c obtained thin metal wires 14 with a wavy line with respect to fixed wiring patterns 25 having regularity shown in FIG 14, the randomness, the amplitude A 0 of the wavy line in the amplitude threshold It is preferable to satisfy 20% or less, more preferably 2.0% or more and 20% or less. It can be said that the conductive film 10 having the random pattern 25c satisfying the randomness is excellent in the moire visibility in which the moire is not visually recognized when superimposed on the BM pattern 38 of the display unit 30.
  • the randomness of the wavy line is not particularly limited as long as it satisfies the above-described range, and may be anything.
  • the conductive film 10 of the present invention has the BM pattern 38 of the display unit 30 when the projected wiring pattern is the combined wiring pattern 24 of the upper and lower wiring patterns 24a and 24b.
  • a regular wiring pattern having a regular polygonal opening (cell) 22 optimized in terms of moire visibility for example, a regular rhombus cell 22 is provided. Even if it is not optimized in terms of the visibility of the regular wiring pattern 25 or moire, it has irregularity with respect to the regular polygonal shape of the cell 22 of the regular wiring pattern, for example, the rhombus shape.
  • the irregularity (randomness) is given to only the pitch while preserving the angle with respect to the polygonal shape (for example, rhombus) of the cell 22 of the standard wiring pattern 25, for example.
  • it may be given to an angle, or a polygonal side, for example, a rhombus side (the metal fine wire 14 constituting this side) may be given by wavy lines.
  • the wiring pattern composed of the polygonal openings (cells) 22 optimized in terms of moiré visibility with respect to the BM pattern having a predetermined lightness is defined as the composite wiring pattern 24,
  • One or two or more groups of regular wiring patterns in which moire is not perceived by human vision with respect to the BM pattern 38 having a predetermined brightness, or random wiring patterns to which irregularities are given (hereinafter simply referred to as random patterns) Say.
  • the fixed wiring pattern 25 is the composite wiring pattern 24, a polygon (for example, a moiré visibility optimized with respect to a predetermined lightness (lightness image data) of the BM pattern 38 of the display unit 30 (for example, , Rhombus) wiring pattern.
  • the standard wiring pattern 25 is composed of the composite image data of the composite wiring pattern 24 obtained from the transmittance image data, and the brightness image data of the BM pattern 38 of each color when a plurality of colors of light of the display 40 are turned on.
  • the wiring pattern is such that the required moire evaluation index is a predetermined evaluation threshold value or less, and preferably a common logarithm is ⁇ 3.17 or less.
  • the composite wiring pattern 24 is a wiring pattern in which the standard wiring pattern 25 is overlapped using one or both of the upper and lower wiring patterns 24a and 24b.
  • the predetermined wiring pattern 25 itself can be superimposed on the display screen of the display 40 having a predetermined light emission intensity to sufficiently suppress the occurrence of moire and improve the visibility. It can be said that this is a polygonal (for example, rhombus) wiring pattern that is optimized with respect to the BM pattern 38 in terms of moire visibility.
  • the random patterns 25a, 25b, and 25c were all optimized by imparting irregularities to the fixed wiring pattern, whether or not they were optimized in terms of moiré visibility.
  • It is a wiring pattern of a polygon (for example, a parallelogram).
  • These random patterns 25a, 25b, and 25c are composed of the composite image data of the composite wiring pattern 24 obtained from the transmittance image data of the standard wiring pattern to which randomness is not imparted (before imparting), and a plurality of colors of the display 40
  • the moiré evaluation index obtained from the lightness image data of the BM pattern 38 of each color when each of the lights is turned on is equal to or less than a predetermined evaluation threshold value, preferably ⁇ 2.80 or less in common logarithm, more preferably ⁇ 3.17.
  • This is a wiring pattern.
  • the standard wiring pattern before imparting randomness is the standard wiring pattern 25 optimized in terms of moire visibility.
  • the evaluation threshold value of the moire evaluation index required for the composite wiring pattern 24 composed of the random patterns 25a, 25b, or 25c due to the randomization of the composite wiring pattern 24 is the composite wiring pattern composed of the standard wiring pattern 25. It can be set to -2.80, which is lower than the evaluation threshold of the evaluation index of moire required for 24, -2.80, and imparts irregularity close to optimization as a state before randomization Qualification can be made suitable for In this way, a predetermined irregularity is imparted to the pitch or angle of the cells 22, for example, to the optimized standard wiring (mesh) pattern in a qualified state close to optimization. Alternatively, a robust wiring pattern can be generated by giving a predetermined irregularity by forming a wavy line on the side of the cell 22 (the metal thin wire 14).
  • the qualifying state is close to optimization in terms of moiré visibility.
  • the reason for imparting the predetermined irregularity is that the qualification state close to optimization, particularly preferably, the optimized standard wiring pattern is already sufficiently or sufficiently good in image quality, but irregularity (randomness) This is because the image quality can be further improved, and all of them can be satisfied.
  • a break may be formed on the side (mesh wiring 21) of the metal thin wire 14 constituting the opening 22.
  • the shape of the mesh-like wiring pattern having such a break the shape of the mesh-like wiring pattern of the conductive film described in Japanese Patent Application No. 2012-276175 related to the application of the present applicant can be applied.
  • the plurality of fine metal wires 14 of the first wiring portion 16a on the upper side (observation side) of the transparent substrate 12 are also second (display side) second.
  • the plurality of fine metal wires 14 of the wiring portion 16b are also projected wiring patterns in the fixed wiring pattern 25 shown in FIGS. 4B and 14, or FIGS. 7B and 15, FIG. 16, FIG. 7D.
  • random patterns 25a, 25b, or 25c with irregularities shown in FIG. 17 are provided as wiring patterns 24a and 24b, respectively. That is, when the plurality of fine metal wires 14 in both the wiring portions 16a and 16b both have the regular wiring pattern 25 shown in FIG. 14 as the wiring patterns 24a and 24b, as shown in FIG.
  • a combined wiring pattern 24 is formed by superimposing the wiring patterns 24a and 24b.
  • a plurality of fine metal wires 14 constituting the upper wiring pattern 24a are indicated by bold lines and a plurality of metals constituting the lower wiring pattern 24b.
  • the thin line 14 is shown by a thin line, the width of the thick line and the thin line does not represent the line width of the metal thin line 14, and may be the same or different.
  • both of the plurality of fine metal wires 14 have any one of the random patterns 25a, 25b, and 25c shown in FIGS. 15 to 17 as the wiring patterns 24a and 24b, respectively, FIG.
  • a composite wiring pattern 24 to which irregularity is imparted by superimposing the upper and lower wiring patterns 24a and 24b to which irregularity is imparted is configured.
  • the first and second wiring portions 16a and 16b are respectively connected to the fixed wiring pattern 25 and the non-standard wiring pattern 25 as shown in FIGS.
  • it is composed of a plurality of fine metal wires having any one of random patterns 25a, 25b and 25c to which regularity is given
  • the present invention is not limited to this, and at least one of the wiring portions 16 of any one of them.
  • FIG. 15 to FIG. 17 it is only necessary to have a plurality of fine metal wires having any one of random patterns 25a, 25b and 25c to which irregularity is imparted (randomized).
  • the first and second wiring portions 16a and 16b may be configured by a plurality of fine metal wires having different wiring patterns.
  • the first wiring portion 16a on the upper side of the transparent substrate 12 is made of a plurality of metals having random patterns 25a, 25b, and 25c shown in FIGS. 15, 16, and 17, respectively.
  • the second wiring portion 16b on the lower side of the transparent substrate 12 is constituted by a plurality of fine metal wires 14 having regular regular wiring patterns 25 shown in FIG.
  • the wiring portion 16a may be composed of a plurality of fine metal wires 14 having a fixed wiring pattern 25 and the second wiring portion 16b may be composed of a plurality of thin metal wires 14 having any of random patterns 25a, 25b and 25c.
  • irregularity can be imparted to the combined wiring pattern by superimposing any of the random patterns 25a, 25b, and 25c to which the irregularity is imparted and the regular wiring pattern 25.
  • a combined wiring pattern of different wiring patterns is formed by superimposing any one of the random patterns 25a, 25b, and 25c and the regular wiring pattern 25, but as two random patterns having different irregularities, For example, random patterns 25a and 25b, random patterns 25b and 25c, or random patterns 25c and 25a with different types of irregularities may be formed. Furthermore, two random patterns having the same kind of irregularity as the random patterns having different irregularities, and different in irregularity size (size), for example, one or both of the pitch and the angle of the cells 22 Alternatively, two random patterns having at least one of the amplitude, wavelength (period), and phase of the wavy line when the cell 22 is turned into wavy lines may be used.
  • the other is composed of a plurality of fine metal wires 14 having random patterns 25a to which irregularities are given as shown in FIG. 15, and the conductive film of the second embodiment of the present invention as shown in FIG. 11 may be adopted.
  • the first wiring portion 16a on the upper side of the transparent substrate 12 is divided into an electrode portion 17a and two dummy electrode portions 26 on both sides thereof by breaking (break), and the two dummy electrode portions 26 are 15 comprises a plurality of fine metal wires 14 having a random pattern 25a shown in FIG. 15, and the electrode portion 17a comprises a plurality of fine metal wires 14 having a fixed wiring pattern 25 shown in FIG.
  • breaking (break) breaking
  • the two dummy electrode portions 26 may be configured by a plurality of fine metal wires 14 having either of the random patterns 25b and 25c instead of the random pattern 25a.
  • the electrode portion 17a may be configured by a plurality of fine metal wires 14 having a random pattern different in irregularity (type, size, etc.) from the random pattern of the two dummy electrode portions 26 instead of the fixed wiring pattern 25. good.
  • both the first wiring part 16a and the second wiring part 16b are constituted by a plurality of fine metal wires 14.
  • one wiring portion is configured by a patterned wiring made of a transparent conductive film such as ITO (Indium Tin Oxide) instead of the plurality of thin metal wires 14.
  • ITO Indium Tin Oxide
  • a plurality of regular fixed wiring patterns 25 having one of the first wiring portion 16a and the second wiring portion 16b are provided.
  • a patterned wiring made of ITO may be used. Further, as shown in FIG.
  • one of the first wiring portion 16a and the second wiring portion 16b is divided into an electrode portion 17a and two dummy electrode portions 26 on both sides thereof by a break (break), and the electrode portions 17a and 16b
  • a break break
  • ITO patterned wiring made of ITO
  • a conductive film having a random mesh pattern may be provided.
  • the random mesh pattern used in the present embodiment can be defined as an irregular pattern having at least two different opening shapes and having at least two vertexes.
  • the noise visually recognized by the display and the random mesh pattern is quantified, and the noise is not visually recognized in the combination in which the quantitative value is equal to or less than the threshold value. Therefore, in this embodiment, the random mesh pattern can be defined as described above, but it is necessary to quantify the BM pattern and the random mesh pattern of the display and quantify the noise that is visually recognized from these quantified values. .
  • a transmittance image is created assuming an irregular mesh pattern having a plurality of different features.
  • a convolution operation is performed between the fast Fourier transform (FFT) spectrum obtained from the transmittance image and the FFT spectrum obtained from the display.
  • FFT fast Fourier transform
  • the integrated value obtained by applying the visual transfer function to the obtained calculation result corresponds to the noise visibility quantitative value
  • the noise visibility quantitative value and the noise simulation image are obtained.
  • one or both of the wiring patterns 24a and 24b has, as shown in FIG. 27, openings formed by a plurality of fine metal wires formed of random polygons.
  • the wiring pattern to which irregularity is given that is, the random mesh pattern 25d may be used.
  • the random mesh pattern 25d is a wiring pattern with excellent noise visibility, but the shape of the opening 22 formed by the metal thin wire 14 is two or more different types of opening shapes, and the number of vertices is 2. Any random mesh pattern may be used as long as it has a random polygon shape of more than types.
  • the random mesh pattern 25d is a partially enlarged view of the projected wiring pattern 23c shown in FIG.
  • the wiring pattern 24 has a random mesh pattern 25d as shown in FIG. 27 as the wiring patterns 24a and 24b.
  • the random mesh pattern 25d which is a wiring pattern with irregularities shown in FIG. 27, has a plurality of seeds existing at a plurality of positions at arbitrary intervals in one plane region 100 as shown in FIG. It has a wiring shape having an opening 22 made of a Voronoi polygon determined according to a Voronoi diagram (Voronoi division method) with respect to the point p.
  • FIG. 28 shows a plurality of dots generated at a plurality of positions randomly selected at arbitrary intervals in one plane region 100 in order to generate the Voronoi polygon forming the random mesh pattern shown in FIG.
  • a dot cutout image with the seed point p is shown.
  • the random mesh pattern 25d shown in FIG. 27 there are a plurality of random polygonal regions surrounding the plurality of seed points p shown in FIG. 28 according to the Voronoi diagram (Voronoi division method), that is, a plurality of Voronoi polygonal regions Each is defined.
  • a plurality of Voronoi polygon regions partitioned by the Voronoi diagram indicate that the seed point p is an aggregate of points that are the closest points.
  • the Euclidean distance is used as the distance function, but various functions may be used.
  • a random mesh pattern used in the present invention a random mesh pattern having openings 22 made of Delaunay triangles determined according to the Delaunay diagram (Delaunay triangulation method) with reference to a plurality of seed points shown in FIG.
  • a mesh pattern (not shown) may be used.
  • the Delaunay triangulation method is a method of defining a triangular region by connecting adjacent seed points among a plurality of seed points p. Thereby, for example, a plurality of Delaunay triangular regions each having one of a plurality of seed points as vertices can be defined.
  • the random mesh pattern used in the present invention is not limited to the random mesh pattern having the shape of the opening (cell) such as the Voronoi polygon or Delaunay triangle, and any random mesh pattern may be used. It may be a thing. For example, it may be a random mesh pattern or the like in which the pitch or angle of a regular regular pattern of regular polygons such as rhombus is randomized by several percent, for example, 10% or less.
  • the conductive film 10 of the present invention is the combined wiring pattern 24 of the upper and lower wiring patterns 24a and 24b, a predetermined brightness (brightness) of the BM pattern 38 of the display unit 30 is obtained.
  • Image data having a random mesh pattern optimized in terms of noise visibility.
  • the random mesh pattern optimized in terms of noise visibility with respect to the BM pattern having the predetermined brightness is the noise with respect to the BM pattern 38 having the predetermined brightness when the composite wiring pattern 24 is used. Is one or two or more groups of rhombus wiring patterns that are not perceived by human vision.
  • the random mesh pattern 25d shown in FIG. 27 is the composite wiring pattern 24, the random mesh pattern optimized in terms of noise visibility with respect to the predetermined brightness (brightness image data) of the BM pattern of the display unit.
  • the composite image data of the composite wiring pattern 24 in which the transmittance image data of the random mesh pattern 25d is superimposed as the upper and lower wiring patterns 24a and 24b, and the light of a plurality of colors of the display are respectively turned on.
  • This is a random mesh pattern in which the noise evaluation index obtained from the brightness image data of the BM pattern of each color is equal to or less than the predetermined evaluation threshold value.
  • the display unit can suppress generation and improve visibility.
  • a break may be formed in the side (mesh wiring 21) of the metal thin wire 14 constituting the opening 22.
  • the plurality of fine metal wires 14 of the first wiring portion 16a on the upper side (observation side) of the transparent substrate 12 are also second (display side) second.
  • the plurality of fine metal wires 14 in the wiring portion 16b also have random mesh patterns 25d with irregularities shown in FIG. 27 as the wiring patterns 24a and 24b, respectively.
  • the combined wiring pattern 24 to which irregularity due to the superposition of the applied wiring patterns 24a and 24b is added is configured.
  • the plurality of fine metal wires 14 constituting the upper wiring pattern 24a are indicated by thick lines
  • the plurality of fine metal wires 14 constituting the lower wiring pattern 24b are indicated by fine lines.
  • the width of the thick line and the thin line does not represent the line width of the metal thin line 14, and may be the same or different.
  • the first and second wiring portions 16a and 16b are both composed of a plurality of fine metal wires having a random mesh pattern 25d with irregularities as shown in FIG.
  • the present invention is not limited to this, and has a plurality of fine metal wires having a random mesh pattern 25d to which the irregularity shown in FIG. Just do it.
  • all or a part of the fine metal wires of the upper or lower wiring portion 16 (wiring portion 16a or 16b) of the conductive film is constituted by the random mesh pattern 25d to which irregularity is imparted (randomized).
  • the mesh-like wiring pattern synthesized by superimposing the wiring patterns of both wiring parts 16 can be randomized, and the light transmitted through the mesh-like wiring pattern can be randomized, and the interference between the wiring pattern and the display can be achieved. Noise visibility due to can be improved.
  • the first and second wiring portions 16a and 16b may be composed of a plurality of fine metal wires having different wiring patterns.
  • the first wiring portion 16a on the upper side of the transparent substrate 12 is composed of a plurality of fine metal wires 14 having random mesh patterns 25d to which irregularities shown in FIG.
  • the lower second wiring portion 16b is composed of a plurality of fine metal wires 14 having a regular fixed wiring pattern 25 composed of rhombus-shaped openings shown in FIG.
  • the first wiring portion 16a may be constituted by a plurality of fine metal wires 14 having a fixed wiring pattern 25
  • the second wiring portion 16b may be constituted by a plurality of fine metal wires 14 having a random mesh pattern 25d.
  • irregularity can be imparted to the combined wiring pattern by overlapping the random mesh pattern 25d and the regular fixed wiring pattern 25.
  • the pattern 25d may be used, or the electrode pattern of the electrode portion 17 shown in FIG. 26 may be replaced with the fixed wiring pattern 25 shown in FIG. 14 after changing to the fixed wiring pattern 25 shown in FIG.
  • a random mesh pattern 25d shown in Fig. 27 may be used.
  • one wiring portion is replaced with ITO (Indium Tin Oxide) instead of the plurality of thin metal wires 14.
  • You may comprise by the wiring patterned by transparent conductive films, such as tin (tin dope indium oxide).
  • tin tin dope indium oxide
  • a pattern made of ITO is used instead of the plurality of thin metal wires 14 having one regular fixed pattern 25b of the first wiring portion 16a and the second wiring portion 16b.
  • a simplified wiring may be used.
  • one of the first wiring portion 16a and the second wiring portion 16b is divided into the electrode portion 17a and the two dummy electrode portions 26 on both sides thereof by breakage (break), and the electrode portion 17a and the dummy electrode are separated.
  • one of the portions 26 is composed of a plurality of fine metal wires 14 having a random mesh pattern
  • a patterned wiring made of ITO is used instead of the plurality of fine metal wires 14 constituting the other wiring portion. Also good.
  • the conductive films 10, 11 and 11A of the first, second and third embodiments of the present invention described above are, for example, the touch panel (44: see FIG. 1) of the display unit 30 (display) schematically shown in FIG. ), But at least one viewpoint, for example, viewpoint a, when both the conductive film and the display unit are projected onto a plane perpendicular to viewpoint a, the pixel arrangement (BM of each color depending on the light emission intensity of the display) )
  • a wiring pattern optimized in terms of moire visibility for example, a regular standard wiring pattern, or irregularity with respect to this standard wiring pattern.
  • Have irregular wiring (random) pattern assigned, or have random wiring (random mesh) pattern optimized for noise visibility Than is.
  • a fixed wiring pattern, a random pattern, or a random mesh pattern means that the light of each color of a plurality of sub-pixels of the display is lit independently at least in one viewpoint with respect to the BM pattern of the color.
  • a combined wiring pattern refers to a group of one or more mesh wiring patterns (for example, a fixed wiring pattern, a random pattern, and a random mesh pattern) in which moire or noise is not perceived by human vision.
  • an optimized wiring pattern (for example, a fixed wiring pattern, a random pattern, a random mesh pattern) is a color that is most likely to cause moiré or noise when a plurality of colors of light, for example, RGB alone is lit, for example,
  • a BM pattern having the highest lightness value in other words, a group of wiring patterns in which moiré or noise is not perceived by human vision when a combined wiring pattern is used for a BM pattern having the worst value.
  • an order is assigned from a wiring pattern that is least perceived to a wiring pattern that is hardly perceived. It is also possible to determine one wiring pattern in which the most moire or noise is not perceived.
  • the reason for using the brightness value of the BM pattern of each color depending on the light emission intensity of the display in optimizing the moire visibility or noise visibility of the mesh wiring pattern is, for example, that a conductive film is used.
  • 31A is a mesh wiring pattern having a line width and an average pitch of fine metal wires as shown in FIG. 31A, and the display is a BM in which one pixel as shown in FIG. 31A is represented by one sub-pixel.
  • the transmittance data of the mesh wiring pattern is the same as that of Patent Document 1 as shown in FIGS. 31 (C) and 31 (E).
  • the portion corresponding to the line width of the fine metal wire is non-transparent and can be 0, and between the fine metal wires can be 1.0 because it is transparent.
  • the BM of the display is 0 because it is non-transmissive, but the sub-pixel (color filter) transmits light, but the intensity of the light, for example, the lightness value, as shown in FIG. Varies depending on the emission intensity of the light.
  • the display subpixel (color filter) array pattern that is, the BM pattern transmittance data, which is a target in the prior art as in Patent Document 1, is a display subpixel.
  • the (color filter) is treated as 1.0 for transmission and 0 for non-transmission in the BM of the display, so the light emission intensity of the display is not considered.
  • the emission intensity is strong like a high-resolution smartphone
  • the visible moire or noise becomes strong
  • the emission intensity is low
  • the visible moire or noise also becomes weak.
  • the moire or noise evaluation index that is, the quantitative value, obtained for displays with different emission intensities, and the moire or noise visibility cannot be correctly evaluated.
  • the moiré of the wiring pattern applicable to various displays having different light emission intensities is evaluated by standardizing the light emission intensities of other displays based on the light emission intensity of the reference display. Visibility or noise visibility can be optimized.
  • a wiring pattern optimized in terms of moire visibility is optimized as a composite wiring pattern.
  • Polygon for example, a rhombus-shaped wiring pattern, or a polygon or rhombus of a qualified state close to optimization, for example, a polygon (rhombus) pitch or angle of an opening (cell) of a rhombus-shaped wiring pattern This is a randomized version given a predetermined irregularity or by making the sides of a polygon (rhombus) wavy.
  • the wiring (mesh) pattern to which the irregularity is imparted to the pitch preserves the angles of a plurality of adjacent openings, and can be said to be a random pattern having different pitches.
  • the wiring pattern to which the property is given can be said to be a random pattern in which the angles and pitches of the plurality of adjacent openings or the lengths of the sides are different, and the wiring pattern to which the irregularity is given by the wavy line is determined by the center line of the wavy line It can be said that the shape of a plurality of adjacent polygons defined is the same random pattern as the shape of the opening of the standard wiring pattern.
  • a wiring pattern that is optimized in terms of noise visibility as a combined wiring pattern with respect to a BM (pixel array) pattern in which each of a plurality of colors is individually lit is an optimized multiple.
  • a rectangular mesh-like irregular wiring (random mesh) pattern is an optimized multiple.
  • the visibility of the moire of the regular wiring pattern with respect to the brightness value of the BM pattern of each color, which is essential in the present invention, and the visibility of the moire of the irregular (random) wiring pattern, and the noise visibility The optimization of the property will be described later.
  • the conductive film of the present invention is basically configured as described above.
  • the BM pattern of the display applicable to the present invention and the light emission intensity thereof are not particularly limited, and may be any conventionally known BM pattern of the display and the light emission intensity thereof.
  • FIG. 32 (A) and ( B), as shown in FIGS. 33 (A), (B) and (C) the periods and intensities of RGB colors such as OLEDs may be different, or FIG. 2 and FIG. 34 (A).
  • RGB sub-pixels having the same shape, and those with large intensity variations within the sub-pixels, and those with the smallest intensity variation within the sub-pixels and the highest intensity G sub-pixel (channel) are considered. What is necessary is just to be good, and especially a high intensity
  • FIG. 32A is a schematic explanatory view schematically showing an example of a pixel arrangement pattern of a display unit to which the conductive film of the present invention is applied, and a partial enlarged view of a part thereof.
  • the display unit 30a has a plurality of pixels 32 arranged in a matrix to form a predetermined pixel arrangement pattern.
  • one pixel 32 includes three subpixels (a red subpixel 32r, a green subpixel 32g, and a blue subpixel 32b) arranged in the horizontal direction.
  • the pixel arrangement pattern of the display unit has a shape in which a plurality of pixels in one pixel, in the illustrated example, at least two subpixels out of three subpixels have different shapes, or a plurality (3
  • the period of the subpixel arrangement pattern formed by the arrangement of each subpixel is different for at least two of the subpixels, or a plurality of (three) subpixels in one pixel are aligned in one direction. It is necessary to satisfy one of three conditions.
  • the period of the subpixel arrangement pattern that is, the period of the subpixel (color filter) includes the period of the subpixel in one pixel.
  • the sub-pixel 32r has a rhombus shape that is vertically long in the y (vertical) direction in the figure, and is arranged on the left side of the square pixel 32 in the figure. Is formed in a circular shape and arranged on the lower right side of the pixel 32 in the drawing, and the sub-pixel 32b is formed in a rectangular shape (square shape) and arranged on the upper right side of the pixel 32 in the drawing.
  • the display unit 30 shown in FIGS. 32A and 32B corresponds to a case where the pixel arrangement pattern 38 has three subpixels 32r, 32g, and 32b in one pixel having different shapes and different intensities.
  • the horizontal arrangement pitch (horizontal pixel pitch Ph) of the pixels 32 and the vertical arrangement pitch (vertical pixel pitch Pv) of the pixels 32 are substantially the same, and can be represented by the pixel pitch Pd. That is, a pixel area region composed of an area composed of three subpixels 32r, 32g, and 32b of one pixel 32 and a black matrix (BM) 34 (pattern material) surrounding these subpixels 32r, 32g, and 32b. 36 is a square. Since the pixel area 36 corresponds to one pixel 32, the pixel area 36 is also referred to as a pixel below.
  • the pixel pitch Pd horizontal and vertical pixel pitches Ph and Pv
  • the shapes of the sub-pixels 32r, 32g, and 32b in one pixel are a rhombus, a circle, and a square, respectively, but the present invention is not limited to this, and as shown in FIG.
  • the pixel arrangement pattern 38 may be the same. Alternatively, it may be subpixels (color filters) 32r, 32g, and 32b having an aperture shape called a pin tile structure shown in FIGS. 33A to 33C, and includes these subpixels 32r, 32g, and 32b. It may have a pixel array pattern.
  • the three sub-pixels 32r, 32g, and 32b of the pixel 32 may have different shapes (the shape is rectangular but the size is different). This case corresponds to a case where the strengths are different. In this case, it can be said that the periods of the sub-pixels are the same. That is, in the example shown in FIG. 33A, a pixel array pattern 38a is formed by using three subpixels 32r, 32g, and 32b having different shapes as one pixel, and each of the three subpixels 32r, 32g, and 32b is formed. The sub-pixel array pattern has the same period as the pixel array pattern 38a. In the present invention, the difference in the shape of the subpixel is defined to include not only the case where the shape of the subpixel is different but also the case where the size of the subpixel is different.
  • the repetition period of the subpixel 32g and the subpixels 32r and 32b may be different.
  • the period of the sub-pixel 32g is half of the period of the sub-pixels 32r and 32b.
  • the intensity of the sub-pixels is the same. That is, in the example shown in FIG. 33B, a pixel array pattern 38b is formed by using four subpixels of two subpixels 32g and subpixels 32r and 32b as one pixel 32, and each of the subpixels 32r and 32b.
  • the sub-pixel array pattern has the same period as the pixel array pattern 38a, but the sub-pixel array pattern of the sub-pixel 32g has half the period of the pixel array pattern 38a.
  • the sub-pixel 32g and the sub-pixels 32r and 32b may have different repetition periods (sub-pixel pattern periods) and shapes (both shape and size). This case corresponds to a case where the period and the intensity of the sub-pixel are different. That is, in the example shown in FIG. 33C, as in the example shown in FIG. 33C, the four subpixels of the two subpixels 32g and the subpixels 32r and 32b are set as one pixel 32, and the pixel arrangement pattern 38c is formed, and the period of each subpixel array pattern of the subpixels 32r and 32b is the same as the period of the pixel array pattern 38a, but the period of the subpixel array pattern of the subpixel 32g is the pixel array pattern. It becomes half of the period of 38a.
  • FIG. 34A shows a BM structure of pixels composed of RGB subpixels having the same shape with large intensity variations in the GBR subpixel
  • FIG. 34B shows the same BM structure with small intensity variations in the GBR subpixel.
  • the BM structure of a pixel composed of RGB sub-pixels having a shape is shown, and the wiring pattern of the conductive film can be designed by considering only the strongest G sub-pixel.
  • the resolution and intensity of a 2 ⁇ 2 pixel BM of a display that can be used in the present invention are shown in FIGS. 35A1 to 35H2.
  • Each of the BMs shown in FIGS. 35A1 to 35H2 has a different resolution, shape, or intensity (lightness).
  • FIGS. 35A1 to 35H2 has a different resolution, shape, or intensity (lightness).
  • 35A1 to 35H2 only the G channel (G subpixel) is shown, and the B channel (B subpixel) and the R channel (R subpixel) are not shown.
  • 35A1 and 35A2 each have a resolution of 149 dpi and a BM structure number No. represented by four G subpixels each having a strip shape bent to the left in the center in the figure.
  • 1 shows the BM structure, and shows that the strength when normalized with the strength of the reference display is 0.5 (64) and 1.0 (128), respectively, and was used in the examples described later.
  • 35 (B1) and 35 (B2) both have a resolution of 222 dpi and a BM structure number No. represented by four G subpixels in the shape of a band that is vertically continuous in the figure.
  • 2 shows the BM structure, and shows that the strength when normalized with the strength of the reference display is 0.5 (64) and 1.0 (128), respectively, and was used in the examples described later.
  • 35 (C1) and 35 (C2) both have a resolution of 265 dpi and a BM structure number No. represented by four flat G subpixels arranged in the horizontal direction in the figure.
  • BM condition number No. Corresponding to 5 and 7.
  • 35 (D1) and (D2) both have a resolution of 265 dpi and a BM structure number No. represented by four thin G-shaped sub-pixels arranged in the vertical direction in the figure. 4 (265 dpi v2) BM structure, indicating that the strength when normalized with the strength of the reference display is 0.5 (64) and 1.0 (128), respectively.
  • BM condition number No. It corresponds to 11 and 13.
  • 35 (G1) and 35 (G2) both have a resolution of 384 dpi and are represented by BM structure number Nos. Represented by four G subpixels in the shape of small triangles arranged in the direction of the four sides in the figure. 7 (265 dpi v2) BM structure, indicating that the intensity when normalized with the intensity of the reference display is 0.5 (64) and 1.0 (128), respectively.
  • BM structure number Nos Represented by four rectangular G subpixels arranged in the vertical direction in the figure. 8 shows the BM structure, and shows that the strength when normalized with the strength of the reference display is 0.5 (64) and 1.0 (128), respectively, and was used in the examples described later.
  • display LP101WX1 (SL) (n3) (made by LG Display) used in the Example can be mentioned, for example.
  • the wiring pattern 24 is Regular pattern wiring pattern that is optimized as a composite wiring pattern in terms of noise visibility with respect to the lightness value of the BM (pixel array) pattern 38 including RGB sub-pixel array patterns, and irregularities in the standard wiring pattern Is a random pattern or a random mesh pattern to which the spatial frequency between the arrangement period and intensity of the pixels 32 of the display unit 30 and the wiring arrangement of the metal thin wires 14 of the conductive film 10, 11 or 11A is reduced.
  • the occurrence of moire and / or noise is suppressed with little or no interference. It made.
  • the pixel arrangement pattern of a display used when optimizing moire and / or noise is a plurality of colors, for example, RGB individual subpixel arrangement patterns, for example, the shape of subpixels, and repetition frequency.
  • the light intensity of the pixel arrangement pattern of the display for example, the lightness value (lightness image data) is used.
  • intensity and frequency there is no need to clearly separate RGB because it only matters what intensity the subpixels (indicating a single channel) are arranged. .
  • the worst value at the time of single RGB lighting may be used. Therefore, in order to design a regular fixed wiring pattern, a random pattern in which irregularities are added to the fixed wiring pattern, or a random mesh pattern, which is optimal for a display, an evaluation index of moire or noise, that is, a quantitative value is used. When the value is calculated, the worst value at the time of single RGB lighting may be used.
  • FIG. 16 is a flowchart illustrating an example of a method for evaluating a conductive film according to an embodiment of the present invention.
  • the method for evaluating a wiring pattern of a conductive film first, brightness image data of a BM (pixel array) pattern at the time of single lighting of each of a plurality of colors (for example, RGB) of a display unit of a display device is acquired. Moreover, the transmittance
  • FFT fast Fourier transform
  • a moire (frequency / intensity) for each color having a frequency equal to or lower than the frequency and a predetermined intensity is selected.
  • human visual response characteristics are applied to the moire intensity at each moire frequency for each selected color according to the observation distance to obtain an evaluation value for each color moire.
  • An evaluation index (quantitative value) of moire is calculated from the evaluation value.
  • the rhombus wiring pattern constituting the composite wiring pattern where the calculated moire evaluation index satisfies a preset condition is evaluated as a standard wiring pattern optimized so that the moire is not visually recognized.
  • Random pattern pitch random pattern, angle random pattern, wavy random pattern with regularity and given irregularity in a predetermined range It is intended to determine Te.
  • FFT is generally used for the frequency / intensity of moire, but depending on the method of use, the frequency / intensity of the object changes greatly, so the following procedure is defined.
  • One of the upper and lower wiring portions 16a and 16b of the conductive film is composed of a plurality of fine metal wires 14 having a polygonal wiring pattern, and the other wiring portion has a polygonal wiring pattern such as ITO.
  • the transmittance image data of the combined wiring pattern of both wiring patterns is represented by the transmittance image data of a polygonal wiring pattern formed by one of the plurality of thin metal wires 14.
  • this case is also treated as the transmittance image data of the combined wiring pattern of both polygonal wiring patterns.
  • the present invention it is only necessary to consider the case where the display screen of the display unit of the display device is observed from the front viewpoint a as one viewpoint.
  • the present invention is not limited to this and is observed from at least one viewpoint. As long as the visibility of the moiré can be improved, it may be observed from any viewpoint.
  • imaging is performed by lighting a BM (pixel array) pattern having RGB three colors as sub-pixels for each color.
  • step S10 display BM data projected onto a plane perpendicular to the viewpoint a is created.
  • FIG. 37 shows details of the method of creating the display BM data performed in step S10.
  • FIG. 37 is a flowchart showing an example of details of a method of creating display BM data in the conductive film evaluation method of the present embodiment.
  • step S30 the display is imaged by the microscope. That is, in step S30, the display screen of the display unit of the display device (the image of the subpixel arrangement pattern of each color) is captured for each color of RGB. At this time, as shown in FIGS.
  • step S30 first, the display unit 30 of the display device 40 is turned on independently for each of the RGB colors. At this time, it is preferable to maximize the brightness within a range that can be achieved by changing the setting of the light emitting side (display device 40).
  • an image of the subpixel is taken under the subpixel lighting state of each of the RGB colors.
  • the sub-pixels (RGB color filters) 32r, 32g, 32b of the pixel array pattern 38 (38a-38c) of the display unit 30 as shown in FIGS. 2, 32B and 33A-33C.
  • Each transmitted light is photographed using a microscope. In imaging, it is preferable to adjust the white balance of the microscope to the white of the Macbeth chart.
  • the target display and the microscope, lens, and camera used for imaging are not particularly limited.
  • the display is LP101WX1 (SL) (n3) (manufactured by LG Display), and the microscope is STM6 (Olympus).
  • UMPlanFI10x (Olympus) can be used for the lens, and QIC-F-CLR-12-C (QIMAGING) can be used for the camera.
  • LP101WX1 (SL) (n3) is used as a display, only the G channel is lit at the maximum (MAX) intensity, Olympus STM6 is used as the microscope, and the objective lens is manufactured by the same company.
  • the imaging conditions may be an exposure time of 12 ms, a gain of 1.0, and a white balance (G, R, B) of (1.00, 2.17, 1.12).
  • G, R, B white balance
  • the captured image is preferably subjected to shading correction.
  • an image of one pixel of the G channel subpixel shown in FIG. 38A can be acquired.
  • LP101WX1 (SL) (n3) is preferably used as a display reference.
  • the BM pattern of the display LP101WX1 (SL) (n3) has the BM pattern shown in FIGS. 15A1 and 15A2.
  • 35 (A1) and (A2) show the pattern of only the G channel, the same applies to the RB channel.
  • An image of one pixel of each sub-pixel of the RB channel can be captured in the same manner as an image of one pixel of the G-channel sub-pixel.
  • RGB subpixel (BM) input data can be created using a spectrometer as follows. 1.
  • step S32 brightness is measured.
  • the G channel sub-pixels of the display unit 30 are lit in a single color, and several pixels in the plane portion of the central portion of the display surface of the display unit 30, for example, 4 to 16 G sub-pixels are measured with a spectrometer.
  • spectral spectrum data as shown in FIG. 38B can be obtained.
  • spectral data can be obtained in the same manner as the G subpixel.
  • the brightness is measured using a spectrometer USB2000 + manufactured by Ocean Optics, a diffusion plate (CC-3-UV-S manufactured by the same company) is used at the tip of the spectrometer fiber, and the integration time is 250 ms.
  • step S34 the microscope captured image obtained in step S10 is masked and binarized, and a mask image is created from the image data of the captured image.
  • the mask image creation method calculates the average value of the pixel size of the lighting BM with respect to the G channel of the captured image data, obtains the mask data using the value as a threshold value, and obtains the mask image. create.
  • This threshold is an average value of only the G channel of the image for one pixel of the captured image.
  • a mask image is created from the image data of the captured image as in the case of the G channel.
  • step (1) brightness data normalized by an area having a value of resolution ⁇ mask image is given to the obtained mask image to obtain input data. That is, the above 2. 1 of the (0, 1) mask data of the mask image obtained in 1 above.
  • the spectral data obtained in step (1) is multiplied by the XYZ color matching function shown in FIG. For example, when generating the input data of the G subpixel, the product (G of the spectral data G of G shown in FIG. 38B) and spectral data Y of lightness Y of the XYZ color matching function shown in FIG.
  • the calculated brightness value (brightness data) Y is proportional to the number of pixels (resolution) included in the sensor of the spectrometer and the aperture area of the sub-pixel (area having the value of the mask image).
  • XAperture area that is, the area having a value of resolution ⁇ mask image is normalized and given. This is because the macro brightness can be considered as the aperture area of the subpixel ⁇ the number of pixels included in the sensor when the subpixel is considered as a set of infinitely small light sources.
  • step S36 since the resolution of the microscope image and the necessary input data (12700 dpi) are different, the input data of the RGB sub-pixels obtained in step S34 is respectively scaled (reduced) by the bicubic method,
  • step S38 normalization is performed so that the display brightness of this embodiment is 1.0, and display BM data (standardized brightness image data) is created as 2 pixel ⁇ 2 pixel input data shown in FIG. .
  • display BM data can be acquired. Since the display BM data obtained in this way is standardized lightness image data standardized by the lightness of the reference display, it can be compared in absolute value when compared with other displays.
  • the display BM data obtained by projecting the display BM data acquired in this way onto a plane perpendicular to the viewpoint a can be acquired.
  • the input data of 2 pixels ⁇ 2 pixels is repeatedly copied by an integer multiple close to 20000 pix ⁇ 20000 pix for moiré evaluation. It is preferable to create normalized brightness image data as input data.
  • the RGB subpixel input data obtained in step S34 is set to a high resolution of 12700 dpi by bilinear interpolation without creating 2 pixel ⁇ 2 pixel input data, and the image size is 109 pix (pixel). It may be converted to ⁇ 109 pix (pixel) by the bicubic method. If the resolution of the imaging optical system is known, these can be calculated accordingly.
  • a standardized lightness image having an image size of 109 pix ⁇ 109 pix and resolution of 12700 dpi is repeatedly copied for each RGB color by an integer multiple (183 times) close to the image size of 20000 pix ⁇ 20000 pix, and the standard as input data for moire evaluation Brightness image data may be created.
  • the method of acquiring the display BM data (standardized lightness image data) representing the RGB lightness pixel information by capturing the RGB subpixel array pattern of the display unit 30 is performed using the above-described spectrometer.
  • the method is not limited to the method of measuring the spectral spectrum and converting the brightness using the measured spectral spectrum data, and may directly convert the captured image data to the brightness value of each color (RGB).
  • the conversion from the captured image to the brightness value is performed using the following conversion formula (2) when the red image data is R, the green image data is G, the blue image data is B, and the brightness value is Y.
  • Y (brightness value) is calculated, and R, G, B color filter images (brightness ratio images) are created.
  • Y 0.300R + 0.590G + 0.110B (2)
  • a composite mesh pattern image (transmittance image data) of the upper and lower mesh wiring patterns 24a and 24b projected onto a plane perpendicular to the viewpoint a is created.
  • the transmittance image data of the composite wiring pattern is created by setting the value of the transmittance image data of the wiring pattern using the transparent conductive film to 1.0 over the entire surface.
  • transmittance image data of the projected composite mesh pattern is created.
  • transmittance image data of projected regular polygons for example, rhombus fixed wiring pattern 25 (metal thin wire 14) (see FIG. 14) is created.
  • composite transmittance data of a composite wiring (mesh) pattern in a state where the upper and lower mesh wiring patterns 24a and 24b are overlapped is created. If at least one of the composite mesh pattern and the transmittance image data of the mesh-like wiring patterns 24a and 24b is prepared or stored in advance, it is acquired from the prepared or stored. You may do it. The following description will be made using a regular rhombic fixed wiring pattern 25 as a typical example of the fixed wiring pattern.
  • the regular rhombus mesh pattern 25 is a rhombus pattern in which the fine metal wires 14 serving as the wiring are inclined at a predetermined angle with respect to the horizontal line, for example, an angle of less than 45 ° [deg]. .
  • the resolution is, for example, 25400 dpi
  • the size of the transmittance image data is defined, for example, the BM pattern
  • the pixel size is close to 20000 pix ⁇ 20000 pix, and is an integer multiple of a size that can be cut out periodically (eg, 109 pix ⁇ 109 pix). In this way, it is possible to create transmittance image data with a prescribed size.
  • step S10 two-dimensional processing is performed on each of the normalized lightness image data of the sub-pixel created in procedure 1 (step S10) and the transmittance image data of the composite mesh pattern created in procedure 2 (step S12).
  • a fast Fourier transform (2DFFT (base 2)) is performed, and the spatial frequency and peak spectrum intensity of the spectrum peak are calculated. That is, as shown in FIG. 16, in step S14, first, the brightness image data of the subpixel arrangement pattern (BM pattern) of each color of the BM pattern 38 and the transmittance image data of the composite mesh pattern for each color of RGB.
  • 2DFFT image size is 20000 pix ⁇ 20000 pix
  • 2DFFT is performed on the moiré evaluation lightness image data obtained in step S10 to obtain a peak frequency and a peak intensity thereof.
  • the peak intensity is handled as an absolute value of the Fourier spectrum. This is repeated for each of the RGB colors.
  • the absolute value of the spectrum intensity is expressed in the common logarithm, it is preferable to use only a value greater than ⁇ 2.2 (log 10 (intensity)> ⁇ 2.2).
  • FIG. 40A shows an example of intensity characteristics of the two-dimensional Fourier spectrum of the lightness image data of G color (subpixel arrangement pattern) obtained in this way.
  • 2DFFT is performed on each transmittance image data of the composite mesh pattern thus created, and peak frequencies and peak intensities of a plurality of spectrum peaks of the two-dimensional Fourier spectrum of each transmittance image data of the composite mesh pattern are calculated.
  • the peak intensity is handled as an absolute value.
  • strength, and the spectrum intensity of BM differ from the thing of a front.
  • the synthetic mesh pattern for example, if the viewpoint is shifted by 30 °, the amount of deviation between the upper mesh pattern and the lower mesh pattern may be shifted in consideration of the substrate thickness (for example, PET: 100 ⁇ m).
  • the spectral intensity of the BM may be 0.9 times that of the frontal intensity.
  • FIGS. 40A and 40B show the two-dimensional Fourier spectra of the lightness image data of the G color (subpixel array pattern) and the transmittance image data of the composite mesh pattern of the BM pattern 38, respectively. It is a figure which shows an intensity
  • the white portion has a high intensity and shows a spectral peak. Therefore, from the results shown in FIGS. The peak frequency and peak intensity of each spectrum peak are calculated for each of the brightness data of the BM pattern 38 and the synthesized mesh pattern when lighting each color depending on the pixel arrangement pattern.
  • the upper position, that is, the peak position represents the peak frequency
  • the intensity of the two-dimensional Fourier spectrum at the peak position is the peak intensity.
  • the peak frequency and intensity of each spectral peak of each sub-pixel arrangement pattern of the BM pattern 38 and the synthesized mesh pattern are calculated and acquired in the same manner as described below. Below, it demonstrates collectively.
  • the brightness data of the BM pattern 38 (sub-pixel arrangement pattern of each color) when each color is turned on is simply referred to as each sub-pixel arrangement pattern of the BM pattern 38 as represented by the brightness data
  • the composite mesh pattern The transmittance image data is simply referred to as a composite mesh pattern as represented by the transmittance image data.
  • a frequency peak is obtained from the basic frequency of each subpixel arrangement pattern of the BM pattern 38 and the synthesized mesh pattern.
  • the peak frequency depends on the reciprocal of the image size.
  • the frequency peak position can be expressed by combining independent two-dimensional fundamental frequency vector components a and b. Therefore, as a matter of course, the obtained peak positions are in a lattice shape.
  • FIG. 42 (A) the position on the frequency coordinate fxfy of the spectrum peak of each subpixel arrangement pattern and the synthesized mesh pattern of the BM pattern 38, that is, the peak position is the reciprocal of the pattern pitch (1 / p ( Pitch) is given as the position of the lattice point on the frequency coordinate fxfy having the lattice interval.
  • FIG. 41 is a graph showing the frequency peak position in the case of the G subpixel array pattern of the BM pattern 38 when the G color is lit, but the same can be obtained in the case of the composite mesh pattern.
  • the peak position is obtained in the acquisition of the above peak frequency, so the intensity (absolute value) of the two-dimensional Fourier spectrum possessed by the peak position is acquired.
  • the obtained peak intensity is preferably normalized by the image area (image size). For example, it is preferable to standardize with the above-described image size (Perseval's theorem).
  • the moiré space is obtained from the peak frequency and peak intensity of the brightness data of the BM pattern 38 and the combined mesh pattern obtained in the procedure 3 (step 14) at the time of single lighting of each color.
  • calculate frequency and intensity That is, as shown in FIG. 16, in step S16, moiré is determined for each color from the peak frequency and peak intensity of the two-dimensional Fourier spectrum of each RGB color of the BM pattern 38 and mesh pattern calculated in step S14. Calculate the frequency and intensity.
  • the peak intensity and the moire intensity are treated as absolute values.
  • the spatial frequency and intensity of the moire can be calculated by convolution of the peak frequency and peak intensity of the RGB sub-pixel arrangement pattern and the peak frequency and peak intensity of the mesh pattern 24.
  • moire is essentially the product of image data (transmittance image data and brightness image data) of the composite mesh pattern of the conductive film 10 and the sub-pixel arrangement pattern of the BM pattern 38 when each color is lit alone. Therefore, in the frequency space, the convolution integral (convolution) of both is performed. However, in steps S14 and S16, the peak frequency and peak intensity of the two-dimensional Fourier spectrum of both the sub-pixel arrangement pattern and the composite mesh pattern of each color of the BM pattern 38 are calculated. The difference (absolute value of the difference) between the frequency peaks of both the pixel array pattern and the synthesized mesh pattern is obtained, the obtained difference is set as the moire frequency, and the product of two sets of vector intensities obtained by combining the two is obtained. The obtained product can be used as the moire intensity (absolute value). The frequency of moire and the intensity of moire are obtained for each color of RGB.
  • this corresponds to the relative distance between the peak positions on the frequency coordinates of the respective frequency peaks.
  • the moire intensity at the determined moire frequency is weak, the moire is not visually recognized. Therefore, a moire having a predetermined value larger than that which can be considered to be weak, for example, an intensity of ⁇ 4.5 or more. It is preferable to handle only moiré.
  • the display resolution since the display resolution is determined, the highest frequency that can be displayed on the display is determined with respect to the resolution. For this reason, moire having a frequency higher than the highest frequency is not displayed on the display, and thus does not need to be an object of evaluation in the present invention. Therefore, the maximum frequency of moire can be defined in accordance with the display resolution.
  • the maximum frequency of moire to be considered in the present invention can be 1000 / Pd (cycle / mm) when the pixel pitch of the pixel arrangement pattern of the display is Pd ( ⁇ m).
  • the moire to be evaluated (quantified) in the present invention is the frequency of the moire.
  • Moire having a frequency of a maximum moire frequency of 1000 / Pd or less specified according to the display resolution (for example, 151 dpi in the present embodiment), with a moire intensity of ⁇ 4.5 or more. is there.
  • the reason why moire with a moire intensity of ⁇ 4.5 or more is targeted is that a large number of moire with an intensity of less than ⁇ 4.5 is generated, and when the sum is taken, the moire that cannot be originally seen is scored. Because it becomes.
  • a threshold value of ⁇ 4.5 or more is set from the empirical visibility limit.
  • step S16 moire is quantified using the frequency and intensity of moire for each sub-pixel of each RGB color calculated in procedure 4 (step S16), and a quantitative value serving as an evaluation index for moire is obtained. That is, as shown in FIG. 16, in step S18, a visual transfer function (VTF: Visual Transfer Function) is convoluted with the spectrum peak for moire evaluation remaining in step S16 and quantified.
  • VTF Visual Transfer Function
  • VTF Visual Transfer Function
  • VTF Visual Transfer Function
  • FIG. 44 shows the moire frequency and the moire intensity thus obtained.
  • 44 is a schematic explanatory diagram schematically showing the frequency of moire generated by the interference between the pixel array pattern shown in FIG. 15A and the regular wiring pattern shown in FIG. 14 and the intensity of moire. It can also be said that the result of convolution integration of the intensity characteristics of the two-dimensional Fourier spectrum shown in (B) and (B).
  • the frequency of moire is represented by the position of the vertical and horizontal axes
  • the intensity of moire is represented by gray (achromatic color) shading. Show.
  • step S18 the frequency and intensity (absolute value) of the moiré for each subpixel of each RGB color obtained in step S16 is expressed by the following equation (1).
  • a human visual response characteristic (VTF) equivalent to an observation distance of 750 mm representing an example of the visual response characteristic is applied, that is, convolution integration is performed, and a plurality of moire evaluation values for each color are calculated.
  • VTF human visual response characteristic
  • a VTF equivalent to an observation distance of 750 mm is substituted for moire scoring.
  • VTF 5.05e -0.138k (1-e 0.1k ) (1)
  • k ⁇ du / 180
  • k is a spatial frequency (cycle / deg) defined by a solid angle, and is expressed by the above equation (1)
  • u is a spatial frequency (cycle / mm) defined by a length
  • d is defined by the observation distance (mm).
  • the visual transfer function represented by the above equation (1) is called a Dooley-Shaw function, and is referred to as a reference (RPDooley, R. Shaw: Noise Perception in Electrophotography, J. Appl. Photogr. Eng., 5, 4 (1979 ), pp. 190-196.).
  • the evaluation image in RGB display is preferable to evaluate the evaluation image in RGB display as the worst value is calculated.
  • the quantitative value of moire which is an evaluation index of moire, is obtained by quantifying conventional moire and noise.
  • noise can be defined as a state where there is a lot of moire. Therefore, in the present invention, if there is a peak at a single frequency, it is determined as moire, and if there are a plurality of peaks near the single frequency, it can be determined as noise.
  • the above moire evaluation index is for observing the conductive film 10 laminated on the display screen of the display unit 30 of the display 40 from the front of the display screen, but the present invention is not limited to this, and the front
  • an evaluation index of moire when observing from an oblique direction may be obtained.
  • the RGB intensity of the display 40 during oblique observation is calculated as 90% of the brightness during frontal observation, and the process returns to step S14 and again for each color.
  • the peak frequency / intensity of the Fourier spectrum is calculated. Thereafter, steps S16 to S18 are repeated in the same manner to calculate an evaluation index of moire during oblique observation.
  • the moire evaluation index for front observation and oblique observation when the moire evaluation index for front observation and oblique observation is calculated, the larger value (worst value) of the moire evaluation indices for front observation and oblique observation is used for the moire evaluation. It is calculated as an evaluation index.
  • the moire evaluation index during the front observation or the oblique observation becomes the moire evaluation index used for the moire evaluation as it is.
  • step 6 the wiring pattern is evaluated based on the moire evaluation index (quantitative value: worst value) calculated in step 5 (step S24). That is, as shown in FIG. 16, in step S20, if the common logarithmic value of the moire evaluation index of the synthetic mesh pattern obtained in step S18 is less than or equal to a predetermined evaluation threshold, each component constituting the synthetic mesh pattern
  • the diamond-shaped fixed mesh pattern is evaluated as a diamond-shaped fixed mesh pattern optimized for application to the conductive film 10 of the present invention, and the optimized diamond-shaped fixed mesh pattern 25 shown in FIG. 14 is used. Set as.
  • each rhombus fixed mesh pattern constituting the composite mesh pattern is randomized, It evaluates that it is the rhombus fixed mesh pattern suitable for the randomization used as the random pattern optimized to apply to the conductive film 10, and sets it as the qualified rhombus fixed mesh pattern.
  • the reason why the value of the moire evaluation index is limited to a common logarithm and equal to or lower than a predetermined evaluation threshold is that when the optimized rhombus fixed mesh pattern 25 is used as a wiring pattern if it is larger than the predetermined evaluation threshold.
  • 25b and 25c are used as wiring patterns, it is visually recognized that there is moire caused by the interference between the superimposed wiring pattern and each sub-pixel arrangement pattern of the BM pattern, and the visually recognized moire deteriorates for the user who sees it. This is because even a little will be worrisome. This is because when the value of the moire evaluation index is equal to or lower than a predetermined evaluation threshold, it is not a concern even if deterioration is recognized.
  • the predetermined evaluation threshold is, specifically, the line width of the fine metal wire 14 of the regular mesh pattern 25, the shape of the opening 22 and its size (pitch, etc.) according to the properties of the conductive film and the display device. ), The angle, the phase angle (rotation angle, deviation angle) of the wiring patterns of the two wiring layers, etc., and the shape, size (pitch, etc.) and arrangement angle of the BM pattern 38, etc.
  • the common logarithm is preferably ⁇ 3.17 (true number 10 ⁇ 3.17 ) or less.
  • the evaluation index of moire has a value of, for example, a common logarithm of ⁇ 3.17 (a real number of 10 ⁇ 3.17 ) or less.
  • the common logarithm is ⁇ 2.80 (the true number is 10 ⁇ ). 2.80) or less and even preferably, -3.17 (more preferably at 10 -3.17) the following antilogarithm in common logarithm, in common logarithm -4.00 (antilogarithm 10-4 0.000 ) or less is most preferable.
  • the evaluation index of the moire is, for example, in common logarithm -2.80 but preferably not more than (10 -2.80 true number) in common logarithm -3.17 (true number 10 -3.17 ) or less, and most preferably -4.00 (logarithm of 10 -4.00 ) or less in common logarithm.
  • a moire evaluation index is calculated with a simulation sample and an actual sample, and then at least A mesh-like random pattern 25a or 25b in which randomness that is equal to or less than a predetermined threshold is given to the pitch or angle of the cell 22 for one fixed mesh pattern 25, or the side of the cell 22 is made wavy to be equal to or less than a predetermined threshold
  • the mesh pattern 25c to which randomness is imparted is used to construct a synthetic mesh pattern to which randomness is imparted, and three sensory evaluators create a synthetic mesh pattern by overlaying the regular mesh pattern 25 (no randomness imparting) ) And randomized composite messages
  • each color of RGB three colors of the superimposed composite mesh pattern and BM pattern with the display turned on This is because the moiré visibility caused by the interference with the sub-pixel arrangement pattern is at or above a level that does not matter even if slight degradation is observed.
  • the moire evaluation index is set to a preferable range, and when the randomness is not given, the common logarithm is ⁇ 3.17. (True number is 10 ⁇ 3.17 ) or less, and in the case of imparting randomness, the common logarithm is specified to be ⁇ 2.80 (true number 10 ⁇ 2.80 ) or less.
  • a plurality of optimized mesh patterns 25 can be obtained when randomness is not given and when given, but the common logarithmic value of the moire evaluation index is small
  • the evaluation index of the array is specified as a common logarithm of ⁇ 3.17 or less
  • the specified regular mesh pattern 25 is determined as the optimized wiring pattern of the conductive film of the present invention. And evaluated.
  • step S20 when the rhombus qualified regular mesh pattern is set in the procedure 6 (step S20), irregularity is given to the set qualified regular mesh pattern as the procedure 7.
  • step S22 for example, a predetermined range with respect to the pitch and angle of the diamond-shaped cell 22 of the cell 22 of the qualified fixed mesh (wiring) pattern 25 shown in FIG. Wiring patterns 25a, 25b, and 25c shown in FIGS. 15, 16, and 17 obtained by giving irregularities of FIG. It determines and evaluates as a wiring pattern of the electroconductive film of this invention.
  • the predetermined irregularity in step S22 can be given as follows. First, in the qualified wiring pattern 25 shown in FIG. 14, a predetermined range of irregularity is given to the diamond-shaped pitch of the cell 22 to create a parallelogram random pattern 25a shown in FIG. The case will be described. In other words, in the rhombus shape of the regular wiring pattern 25 having regularity shown in FIG. 14, a predetermined distance with respect to the rhombus-shaped pitch p is obtained by moving the rhombus parallel to the opposite two sides while maintaining parallelism. Thus, it is possible to obtain a parallelogram wiring pattern 25a with randomness shown in FIG.
  • the irregularity is a distribution of the pitch of the parallelogram to which irregularity is imparted with respect to the pitch of the rhombus before the irregularity is imparted in the regular wiring pattern 25 having regularity.
  • it is defined by a ratio of an average value according to a normal distribution or a uniform distribution.
  • the predetermined limited range of irregularity defined above is preferably more than 0% and 10% or less, more preferably 2% to 10%, and still more preferably. 2% to 8% is preferable.
  • the reason for limiting the irregularity to the predetermined limited range is that if it is within this limited range, the occurrence of moire can be suppressed and the visibility of moire can be improved, and the overlapping BM Even if the pattern is slightly changed, the occurrence of moire can be suppressed, and the performance with excellent moire visibility can be maintained. This is because the effect cannot be obtained. Giving a predetermined range of irregularity to the cell pitch of the regular regular mesh pattern can be performed as described above.
  • the qualifying wiring pattern 25 shown in FIG. 14 when a predetermined range of irregularity is given to the rhombus-shaped angle of the cell 22, the rectangular random pattern 25 b shown in FIG. 16 is created. Will be described.
  • the rhombus-shaped angle is obtained by inclining one side of two opposite sides of the rhombus by a predetermined angle so as not to be parallel to the other side.
  • By applying a predetermined irregularity to ⁇ , it is possible to obtain the random wiring pattern 25b with the randomness shown in FIG.
  • the angle formed by the two opposing sides changes, and parallelism is not maintained, so the rhombus shape of the opening changes to a quadrangle.
  • the angle of the rhombus before and after the provision of irregularity for example, the angle formed by adjacent sides, Or, the angle formed by the sides of the rhombus intersecting one straight line changes.
  • the angle ⁇ changes randomly
  • the diamond pitch p also changes according to the change of the angle ⁇ . That is, it can be said that the rhombus angle ⁇ is changed randomly, and as a result, the pitch p is also changed according to the change of the angle ⁇ .
  • the irregularity is the ratio of the average value according to the normal distribution of the square pitch to which the irregularity is imparted to the diamond pitch before the irregularity is imparted in the regular wiring pattern 25. Defined by
  • the predetermined limited range of irregularity defined above is preferably more than 0% and 3% or less, more preferably 0.2% to 3%, Preferably, it is 0.5% to 3%.
  • the reason for limiting the irregularity to the predetermined limited range is that if it is within this limited range, the occurrence of moire can be suppressed and the visibility of moire can be improved, and the overlapping BM Even if the pattern is slightly changed, the occurrence of moire can be suppressed, and the performance with excellent moire visibility can be maintained. This is because the effect cannot be obtained.
  • the irregularity within a predetermined range with respect to the cell angle of the regular regular mesh pattern can be imparted as described above.
  • the rhombus-shaped sides of the cell 22 are wavy, thereby giving a predetermined range of irregularity to the rhombus shape of the cell 22.
  • a case where the wavy random wiring pattern 25c shown in FIG. 14 the metal thin wire 14 constituting the side of the cell 22 is deformed into the shape of a wavy line having a predetermined amplitude A 0 , a predetermined wavelength ⁇ , and a predetermined phase ⁇ .
  • the wavy random pattern 25c with the randomness shown in FIG. 17 can be obtained.
  • the center line of the wavy line of the fine metal wire 14 constituting the wavy random pattern 25c shown in FIG. 17 coincides with the straight line of the fine metal wire 14 of the fixed wiring pattern 25 shown in FIG. Accordingly, the opening (cell) formed by the center line of the wavy random pattern 25c coincides with the rhombic cell 22 of the regular wiring pattern 25 shown in FIG. 14, and therefore the cell 22 of the wavy random pattern 25c. It can be said that each side of the diamond-shaped cell 22 is a wavy line.
  • the irregularity is a wavy line to which irregularity is imparted with respect to the rhombus shape of the cell 22 of the rhomboid regular wiring pattern 25, that is, the pitch of the rhombus shape before the irregularity is imparted. It is defined by the ratio (%) of the wavy line amplitude A 0 , wavelength ⁇ , and phase ⁇ of the randomized random pattern 25c.
  • the predetermined limited range of irregularities as defined above, the amplitude A 0 of the wavy line is less than 20% 2.0% or more pitch diamond cell 22 of the random wiring pattern 25 of the rhombic Is preferred.
  • the reason for limiting the irregularity to the predetermined limited range is that the generation of moire can be further suppressed and the visibility of moire can be further improved as long as it is within the limited range. Even if the BM pattern to be changed is slightly changed, the generation of moire can be suppressed and the performance with excellent moire visibility can be maintained. This is because the above effect cannot be obtained.
  • the provision of the predetermined irregularity in step S20 can be performed as described above.
  • the method for evaluating the wiring pattern of the conductive film of the present invention is completed, and the evaluated standard wiring pattern and random wiring pattern can be evaluated and determined as the wiring pattern of the conductive film of the present invention.
  • the conductive film of the present invention having an excellent standardized wiring pattern that is optimized and a wiring pattern that is optimized by adding irregularities can be manufactured.
  • an optimized standard wiring pattern is evaluated with respect to a predetermined BM pattern, and irregularities within the predetermined range described above are included in the qualified standard wiring pattern with respect to the predetermined BM pattern.
  • the occurrence of moire can be suppressed and the visibility of moire can be improved, and when the irregular pattern is further imparted to the optimized standard wiring pattern within the predetermined range described above.
  • Generation of moire can be further suppressed and visibility of moire can be further improved, and even when a superimposed BM pattern is slightly changed, generation of moire can be suppressed and visibility of moire can be suppressed. It is possible to maintain excellent performance.
  • FIG. 45 is a flowchart showing an example of a method for evaluating a conductive film according to another embodiment of the present invention.
  • the conductive film evaluation method of the present embodiment shown in FIG. 45 evaluates the fixed wiring pattern by obtaining the evaluation method of the conductive film of the above-described embodiment shown in FIG. 16 and the moire evaluation index.
  • a point that evaluates the random mesh pattern by obtaining the noise evaluation index creates a composite wiring pattern of the fixed wiring pattern, and the randomness is given after the evaluation by the moire evaluation index, whereas the random mesh pattern is
  • the BM data creation step of the display in step S10 is exactly the same, and the two-dimensional fast Fourier transform (2DFFT) spectrum of the BM pattern and composite wiring pattern in step S14.
  • the calculation steps are similar, and there are similar parts in other parts. In, the same parts, and a detailed description thereof is omitted.
  • the method for evaluating a wiring pattern of a conductive film first, brightness image data of a BM (pixel array) pattern at the time of single lighting of each of a plurality of colors (for example, RGB) of a display unit of a display device is acquired. Also, the irregular wiring pattern used on one of the upper and lower sides of the conductive film and the wiring pattern used on the other are generated, their transmittance data is obtained, and the transmittance data of those combined wiring patterns is obtained. To do.
  • the wiring pattern used for the other may be an irregular wiring pattern or a regular wiring pattern.
  • noise frequency / intensity obtained by frequency analysis using fast Fourier transform (FFT) between the transmittance data of the composite wiring pattern and the BM pattern.
  • FFT fast Fourier transform
  • step S10 in order to handle the display quantitatively, transmittance image data (BM data) of the display is created.
  • BM data transmittance image data
  • the method of creating the display BM data performed in step S10 has a difference between the evaluation of moire and the evaluation of noise.
  • step S24 transmittance image data of a composite wiring pattern including a random mesh pattern is created.
  • a transmittance image (data) of the random mesh pattern 25d used as at least one of the upper and lower wiring patterns 24a and 24b is created.
  • the procedure first, as shown in FIG. 28 described above, it is preferable to generate dots at a plurality of positions randomly selected at arbitrary intervals in the plane region 100 to form a plurality of seed points p.
  • a random mesh pattern 25d having a Voronoi polygon determined based on a Voronoi diagram (Voronoi division method) as an opening 22 based on the obtained dot data of a plurality of seed points is created.
  • the method for creating the random mesh pattern may be any Delaunay triangle.
  • the transmittance image data of the combined wiring pattern in a state in which the two are superimposed from the transmittance image data of the two random mesh patterns 25d is created.
  • the transmittance image data of the other wiring pattern is separately obtained, and both are superimposed from the transmittance image data of both.
  • the transmittance image data of the combined wiring pattern in the combined state is created.
  • the other wiring pattern is a wiring pattern of a transparent conductive film such as ITO
  • the transmittance data value of the combined wiring pattern is created with the value of the transmittance data as 1.0.
  • the transmittance image data of the other wiring pattern of the composite wiring pattern, the random mesh pattern 25d, and the mesh-like wiring patterns 24a and 24b is prepared or stored in advance, preparation is performed. You may make it acquire from what was done or stored.
  • pitch There are four types of combinations of the assumed pitch and the number of dots (pitch, number of dots), for example, (50 ⁇ m, 40000 dots), (1000 ⁇ m, 10000 dots), (200 ⁇ m, 2500 dots), and (300 ⁇ m, 1111 dots). It is. For example, 2 ⁇ m and 4 ⁇ m are used as the line width when the random mesh pattern is drawn.
  • the resolution is set to, for example, 25400 dpi
  • the size of the transmittance image data is defined, for example, the BM pattern 38
  • the pixel size may be close to 20000 pix ⁇ 20000 pix, and may be an integer multiple of a size that can be cut out periodically (for example, 109 pix ⁇ 109 pix). In this way, it is possible to create transmittance image data with a prescribed size.
  • step S10 two-dimensional processing is performed on each of the normalized brightness image data of the sub-pixel created in procedure 1 (step S10) and the transmittance image data of the composite wiring pattern created in procedure 2 (step S24).
  • Fast Fourier transform (2DFFT (base 2)) is performed, both transmittance image data are quantified, and the spatial frequency and peak spectrum intensity of the spectrum peak are calculated. That is, as shown in FIG. 45, in step S14, first, the brightness image data of the sub-pixel arrangement pattern (BM pattern) of each color of the BM pattern 38 and the transmittance image data of the combined wiring pattern for each color of RGB.
  • 2DFFT image size is 5000 pix ⁇ 5000 pix
  • FIG. 46A shows an example of the intensity characteristic of the two-dimensional Fourier spectrum of the lightness image data of G color (subpixel arrangement pattern) obtained in this way. Note that the intensity characteristics of the two-dimensional Fourier spectrum of the lightness image data of the G color shown in FIG. 46A are the same as those shown in FIG.
  • 2DFFT is performed on the transmittance image data of the composite wiring pattern created in step S24, and peak frequencies and peak intensities of a plurality of spectrum peaks of the two-dimensional Fourier spectrum of the transmittance image data of the composite wiring pattern are calculated.
  • the peak intensity is handled as an absolute value.
  • FIG. An example of the intensity characteristic of the two-dimensional Fourier spectrum of the transmittance image data of the composite wiring pattern obtained in this way is shown in FIG.
  • the visibility of noise is an evaluation target.
  • the intensity threshold of the spectrum peak to be included in the evaluation is different from the case of moire that targets strong (high) peak intensities that exist discretely. Since it is necessary to incorporate the evaluation into the evaluation, the threshold value is smaller.
  • the horizontal axis and the vertical axis represent the spatial frequency (cycle / mm) with respect to each two-dimensional axis, for example, the X-axis and Y-axis directions. ).
  • the center of the distribution chart that is, the origin indicates that the spatial frequency is 0 cycle / mm, and the radius r representing the distance from the center indicates the spatial frequency (cycle / mm).
  • the intensity level decreases as the display density for each spatial frequency band increases (black), and the intensity level increases as the display density decreases (white).
  • the intensity distribution characteristic of this two-dimensional spectrum indicates that it is isotropic and has one circular peak, and the spatial frequency is approximately the same, for example, 15 cycles / mm. It shows that spectral peaks having frequencies are isotropically distributed. That is, the random mesh pattern indicates that the average pitch of the cells (openings 22) is around 67 ⁇ m.
  • the spatial frequency and intensity of the mesh of the composite wiring pattern when the viewpoint is changed, and the spectrum intensity of the BM are different from those of the front.
  • the composite wiring pattern for example, if the viewpoint is shifted by 30 °, the amount of deviation between the upper mesh pattern and the lower mesh pattern may be shifted in consideration of the substrate thickness (for example, PET: 100 ⁇ m).
  • the spectral intensity of the BM may be 0.9 times that of the frontal intensity.
  • FIGS. 46A and 46B show the intensity of the two-dimensional Fourier spectrum of the lightness image data of the G color (subpixel array pattern) and the transmittance image data of the composite wiring pattern of the BM pattern 38, respectively. It is a figure which shows a characteristic.
  • the white portion has high intensity and shows a spectrum peak
  • the sub-colors of RGB 3 colors of the BM pattern 38 are shown. The peak frequency and peak intensity of each spectrum peak are calculated for each of the brightness data of the BM pattern 38 and the combined wiring pattern when lighting each color depending on the pixel arrangement pattern.
  • the upper position, that is, the peak position represents the peak frequency
  • the intensity of the two-dimensional Fourier spectrum at the peak position is the peak intensity.
  • the frequency and intensity of each spectral peak of each sub-pixel arrangement pattern of the BM pattern 38 and the combined wiring pattern are calculated in the same manner as in step S14 in the case of the calculation example of the moire evaluation index shown in FIG. Being acquired.
  • the value of the transmittance image data of the combined wiring pattern is different from the above-described example, the transmittance image data of the combined wiring pattern is the same, and the BM pattern 38 (sub-pixel arrangement pattern of each color) at the time of lighting each color is the same. Since the brightness data is exactly the same, detailed description is omitted.
  • the noise space is calculated from the peak frequency and peak intensity of the brightness data of the BM pattern 38 and the combined wiring pattern obtained in the procedure 3 (step 14) when the individual colors of RGB are lit alone. Calculate frequencies and intensities and make predictions. That is, as shown in FIG. 45, in step S26, noise is detected for each color from the peak frequency and peak intensity of both the two-dimensional Fourier spectra of the RGB sub-pixel arrangement pattern and mesh pattern of the BM pattern 38 calculated in step S14. Calculate the frequency and intensity.
  • the peak intensity and the noise intensity are handled as absolute values.
  • the spatial frequency and intensity of noise can be calculated by convolution of the peak frequency and peak intensity of the RGB sub-pixel arrangement pattern and the peak frequency and peak intensity of the mesh pattern 24.
  • noise is inherently the product of image data (transmittance image data and lightness image data) of the composite wiring pattern of the conductive film 10 and the subpixel arrangement pattern of the BM pattern 38 when each color is lit alone. Therefore, in the frequency space, the convolution integral (convolution) of both is performed. However, in steps S14 and S16, the peak frequency and peak intensity of the two-dimensional Fourier spectrum of both the sub-pixel array pattern and the combined wiring pattern of each color of the BM pattern 38 are calculated. The difference (absolute value) between the frequency peaks of both the pixel array pattern and the combined wiring pattern is obtained, the obtained difference is set as the noise frequency, and the product of two sets of vector intensities obtained by combining the two is obtained. The obtained product can be used as the noise intensity (absolute value). These noise frequencies and noise intensities are obtained for each color of RGB.
  • the difference between the frequency peaks of the intensity characteristics of the two-dimensional Fourier spectrum of each of the sub-pixel arrangement pattern and the combined wiring pattern of each color of the BM pattern 38 shown in FIGS. 46 (A) and 46 (B) is In the intensity characteristic obtained by superimposing the intensity characteristics of the two-dimensional Fourier spectrum for each color, this corresponds to the relative distance between the peak positions on the frequency coordinates of the respective frequency peaks. Since there are a plurality of spectral peaks of the two-dimensional Fourier spectrum for each color of the subpixel arrangement pattern and the combined wiring pattern of each color of the BM pattern 38 for each color, the difference between the frequency peaks, which is the value of the relative distance. That is, a plurality of noise frequencies are also obtained. Therefore, when there are a large number of spectrum peaks of both two-dimensional Fourier spectra, the frequency of noise to be obtained becomes large and the intensity of noise to be obtained becomes large.
  • the noise intensity at the obtained noise frequency is weak, the noise is not visually recognized. Therefore, noise that is considered to be low or larger than a predetermined value that can be regarded as weak, for example, the intensity is ⁇ 4.5 or more. It is preferable to handle only noise.
  • the maximum noise frequency can be defined in accordance with the display resolution.
  • the maximum frequency of noise to be considered in the present invention can be 1000 / Pd (cycle / mm) when the pixel pitch of the pixel arrangement pattern of the display is Pd ( ⁇ m).
  • the noise to be evaluated (quantified) in the present invention is the noise frequency.
  • the maximum noise frequency defined by the display resolution is 1000 / Pd (10 cycles / mm in the present embodiment) or less, for example, a frequency of 8 cycles / mm or less.
  • Noise with a noise intensity of ⁇ 4.5 or more is that many noises with an intensity of less than ⁇ 4.5 are generated, and when the sum is taken, even the noise that cannot be seen is scored. Because it becomes. For this reason, in the present invention, a threshold value of ⁇ 4.5 or more is set from the empirical visibility limit.
  • step S26 noise is quantified using the noise frequency and intensity for each sub-pixel of each RGB color calculated in procedure 4 (step S26) to obtain a quantitative value that serves as a noise evaluation index. That is, as shown in FIG. 45, in step S28, a visual transfer function (VTF; Visual Transfer Function) is convolved with the noise evaluation spectrum peak remaining in step S26 and quantified.
  • VTF Visual Transfer Function
  • step S28 the frequency and intensity (absolute value) of noise for each sub-pixel of each RGB color obtained in step S26 are each expressed by the above-described equation (1).
  • a human visual response characteristic (VTF) equivalent to an observation distance of 750 mm representing an example of the visual response characteristic is applied, that is, convolution integration is performed, and a plurality of noise evaluation values for each color are calculated.
  • VTF human visual response characteristic
  • an evaluation value of noise taking the common logarithm of intensity can be obtained for each color of RGB.
  • the above-described steps S10 to S28 may be repeated to obtain an evaluation value of the RGB noise.
  • calculation of each RGB color is performed. May be.
  • the worst value among the RGB noise evaluation values obtained in this way that is, the maximum value is set as a noise evaluation index (quantitative value).
  • the value of the noise evaluation index is also expressed in the common logarithm, and is obtained as a value (common logarithm value) in the common logarithm of the noise evaluation index.
  • noise can be defined as a state where there is a lot of moire. Therefore, in the present invention, if there is a peak at a single frequency, it is determined as moire, but if there are a plurality of peaks near the single frequency, it can be determined as noise.
  • the above noise evaluation index is for observing the conductive film 10 laminated on the display screen of the display unit 30 of the display 40 from the front of the display screen, but the present invention is not limited to this, and the front
  • an evaluation index of noise when observing from an oblique direction may be obtained.
  • the RGB intensity of the display 40 during oblique observation is calculated as 90% of the brightness during frontal observation, and the process returns to step S14 and again for each color.
  • the peak frequency / intensity of the Fourier spectrum is calculated. Thereafter, steps S26 to S28 are similarly repeated to calculate a noise evaluation index during oblique observation.
  • the noise evaluation index at the time of frontal observation and oblique observation is calculated, the larger value (worst value) of the noise evaluation indices at the time of frontal observation and oblique observation is used for noise evaluation. It is calculated as an evaluation index.
  • the noise evaluation index during the front observation or the oblique observation becomes the noise evaluation index used for the noise evaluation as it is.
  • step S26 the composite wiring pattern and the random mesh pattern are evaluated and determined based on the noise evaluation index (quantitative value: worst value) calculated in the procedure 5 (step S26). That is, as shown in FIG. 45, in step S30, if the common logarithm value of the noise evaluation index obtained in step S28 is less than or equal to a predetermined evaluation threshold value, each component constituting the composite wiring pattern is formed.
  • a random mesh pattern, or one random mesh pattern for the other wiring pattern, or a random mesh pattern when the other is a transparent conductive film is a random mesh pattern optimized for application to the conductive film 10 of the present invention. It is evaluated that there is, and is set as an optimized random mesh pattern 25d shown in FIG.
  • the reason why the noise evaluation index value is limited to a common logarithm and not more than a predetermined evaluation threshold is that if the noise evaluation index is larger than the predetermined evaluation threshold, the superimposed combined wiring pattern and the sub-pixel arrangement pattern of each BM pattern This is because it is visually recognized that there is noise caused by the interference, and the visually recognized noise becomes anxious for the user to visually observe. This is because if the value of the noise evaluation index is less than or equal to a predetermined evaluation threshold value, it may be a little worrisome, but it is not worrisome.
  • the predetermined evaluation threshold depends on the properties of the conductive film and the display device, specifically, the line width of the thin metal wire 14 of the random mesh pattern 25d, the shape of the cell (opening 22), and its size. (Pitch, etc.), angle, the state of overlapping of both wiring patterns of the two wiring layers 28, etc., and the shape, size (pitch, etc.), arrangement, angle, etc. of the BM pattern 38
  • the common logarithm is ⁇ 2.80 or less (10 ⁇ 2.80 in true number). That is, it is preferable that the noise evaluation index is, for example, a common logarithm of ⁇ 2.80 (true number 10 ⁇ 2.80 ) or less.
  • noise evaluation indexes are obtained from simulation samples for a large number of synthetic wiring patterns formed by overlaying random mesh patterns 25d, and three sensory evaluators determine the synthetic wiring patterns and BM patterns.
  • three sensory evaluators determine the synthetic wiring patterns and BM patterns.
  • the noise evaluation index is set to a preferred range of ⁇ 2.80 in common logarithm (10 ⁇ 2.80 in true number). It is specified below.
  • ⁇ 2.80 in common logarithm 10 ⁇ 2.80 in true number.
  • An optimized random mesh pattern 25d is obtained, but a noise log with a small common logarithm value is the best random mesh pattern 25d, and a plurality of optimized random mesh patterns 25d may be ordered. it can.
  • the random mesh pattern 25d shown in FIG. 27 thus evaluated is determined and evaluated as the wiring pattern of the conductive film of the present invention.
  • the method for determining the wiring pattern of the conductive film of the present invention is completed, and the evaluated random mesh pattern can be evaluated as the wiring pattern of the conductive film of the present invention.
  • the conductive film of the present invention having an optimized random mesh pattern can be produced.
  • the generation of noise can be further suppressed, and the noise visibility can be further improved. Even if it changes, generation
  • the conductive film according to the present invention has been described with reference to various embodiments and examples.
  • the invention is not limited to the examples, and various improvements and design changes may be made without departing from the gist of the present invention.
  • FIG. 14 shows a pixel arrangement (BM) pattern 38 of a display having different subpixel shapes, resolutions, and emission intensities, which is typically represented by the G subpixel arrangement patterns shown in FIGS. 35 (A1) to (H2).
  • the BM pattern of each color are superimposed to obtain a quantitative value of moire as an evaluation index of moire before and after imparting irregularity, and a number of similar mesh patterns before and after imparting different randomness
  • the BM patterns of each color are superimposed, and three sensory evaluators are able to perform both of the superimposed images in the moire simulation image. It was organoleptically evaluated by visual observation moiré caused by. In addition, the irregularity gave the value below a predetermined threshold with respect to the pitch or angle of the cell 22 of the regular mesh pattern 25.
  • the moire evaluation is performed by superimposing the transmittance data of the composite mesh pattern on the brightness image data of the sub-pixel array pattern of each color of the pixel array (BM) pattern used in step S14. Then, a moire simulation image in which the transmittance image is superimposed on the brightness image is created and displayed on a display, and the three sensory evaluators visually evaluated the displayed simulation image for sensory evaluation.
  • BM structure number is assigned, and 16 combinations having different BM structures, display resolutions, and display emission intensities are assigned BM condition numbers No. 1-No. It was set to 16. Table 1 shows the BM structure, BM conditions, display resolution, and display emission intensity.
  • Tables 2 and 3 show BM conditions, mesh pattern angles, pitches, line widths, moire quantitative values, and sensory evaluation results in each experimental example.
  • Table 2 shows a result of giving a predetermined threshold, for example, an irregularity of 10% or less to the pitch of the cells 22 of the regular mesh pattern 25.
  • Table 3 shows the result of giving irregularity of 3.0% or less with respect to the angle of the cell 22 of the regular mesh pattern 25.
  • the sensory evaluation results are performed in 5 stages of 1 to 5, and the deterioration of the visibility of the moire is recognized.
  • it is very worrisome, it is evaluated as 1, and the deterioration of the visibility of the moire is recognized. If you are concerned, evaluate as 2 and the deterioration of the visibility of moire is recognized. If you are concerned slightly, evaluate as 3, and the deterioration of the visibility of moire is recognized, but if you do not care When the deterioration of the visibility of moire was not recognized, it was evaluated as 5.
  • the visibility of moiré is acceptable if the rating is 3 or higher, but is preferably 4 or higher, and most preferably 5.
  • the pitch p was changed between 150 ⁇ m and 200 ⁇ m, and the angle ⁇ was fixed at 35 °.
  • the line width of the regular mesh pattern 25 was changed to 2 ⁇ m and 4 ⁇ m. Note that the display resolution is 149 dpi, 222 dpi, 265 dpi, 265 dpi (v2), 326 dpi, 384 dpi, 384 dpi (v2), and 440 dpi in the eight types of BM patterns shown in FIGS. 35A1 to 35H2. It was.
  • the luminous intensity of the display is standardized by the display LP101WX1 (SL) (n3) (manufactured by LG Display), and when the total intensity is given by 0-255, it is 64 (brightness 1) in any display. It was changed to 128 (lightness 2).
  • the randomness imparted to the pitch was changed to 0.0% (not imparted), 0.2%, 0.5%, 0.8%, 1.0%, and 3.0%. Randomness imparted to the angle was changed to 0.0% (not imparted), 2.0%, 4.0%, 6.0%, 8.0%, and 10.0%.
  • the display LP101WX1 (SL) (n3) (manufactured by LG Display Co., Ltd.) is turned on with only the G channel at MAX intensity
  • Imaging was performed using STM6 (manufactured by OLYMPUS), UMPlanFIx10 (manufactured by OLYMPUS) as a lens, and QIC-F-CLR-12-C (manufactured by Linkam Scientific Instruments) as a camera.
  • the imaging conditions were gain 1.0 and white balance (G, R, B) were (1.00, 2.17, 1.12). The captured image was shaded.
  • “NaN” in the column of the moiré quantitative value indicates that the moiré quantitative value could not be obtained because the intensity was small and the moiré that did not contribute to the occurrence of moiré was removed by threshold processing. There is no occurrence of moire and moire is not visually recognized.
  • Table 2 shows Experimental Examples 1 to 64. Experimental Examples 5 to 13, Experimental Example 15, Experimental Examples 17 to 19, Experimental Examples 21 to 24, Experimental Examples 27 to 32, Experimental Examples 37 to 41, Experimental Example 43, In Experimental Examples 49 to 51, Experimental Examples 55 to 56, and Experimental Examples 59 to 63, the evaluation index (evaluation value) is ⁇ 3.17 or less, and the evaluation result of visibility is 4 or more when the randomness is 0%. Thus, even with a regular fixed wiring pattern, the embodiment of the present invention was excellent in the visibility of moire.
  • Experimental example 1 experimental examples 5 to 32, experimental examples 37 to 45, experimental example 47, experimental examples 49 to 56, and experimental examples 59 to 64 have an evaluation index (evaluation value) of ⁇ 2.80 or less.
  • the evaluation index (evaluation value) exceeds ⁇ 2.80, and the randomness is 2 From 0.0% to 10.0%, the evaluation result included 2 or less, which was a comparative example.
  • the quantitative value (evaluation index) of the above moire has a rhombus composite wiring pattern that satisfies the above range where the evaluation index (evaluation value) is ⁇ 3.17 or less, and the evaluation index (evaluation value) is ⁇ 2.
  • the conductive film of the present invention having a square synthetic wiring pattern obtained by randomizing the rhomboid synthetic wiring pattern satisfying the above range of 80 or less is different in the BM pattern period and intensity of the display, the light emission intensity of the display, and the like.
  • Table 3 shows Experimental Examples 101 to 164.
  • Experimental example 101 experimental examples 105 to 132, experimental examples 137 to 45, experimental example 147, experimental examples 149 to 156, and experimental examples 159 to 164 have an evaluation index (evaluation value) of ⁇ 2.80 or less.
  • the evaluation index (evaluation value) exceeds ⁇ 2.80, and the randomness is 0. From 2% to 3.0%, the evaluation result included 2 or less, which was a comparative example.
  • the effect of improving moire was observed in all cases where the randomness of all the experimental examples was 0.0% to 3.0%.
  • the quantitative value (evaluation index) of the above moire has a rhombus composite wiring pattern that satisfies the above range where the evaluation index (evaluation value) is ⁇ 3.17 or less, and the evaluation index (evaluation value) is ⁇ 2.
  • the conductive film of the present invention having a square synthetic wiring pattern obtained by randomizing the rhomboid synthetic wiring pattern satisfying the above range of 80 or less is different in the BM pattern period and intensity of the display, the light emission intensity of the display, and the like.
  • Example II In this example, the experiment was performed as described below in accordance with the flow of the conductive film evaluation method of the present invention shown in FIGS. 36 and 37. Nos. Of different subpixel shapes and resolutions typically represented by the G subpixel arrangement patterns shown in FIGS. 1, no. 3 to No. 6 and no. Before giving irregularity to the pixel arrangement (BM) pattern 38 of a display having a BM structure of 8 and emitting light with different emission intensities, it has the rhombus pattern shape shown in FIG.
  • BM pixel arrangement
  • the moire evaluation is based on the transmittance data of the composite mesh pattern after the wavy line on the brightness image data of the sub-pixel arrangement pattern of each color of the pixel arrangement (BM) pattern used in step S14. Is superimposed on the lightness image and a moire inversely transformed image is created and displayed on the display.
  • the sensory evaluation is performed by three sensory evaluators visually observing the displayed inversely transformed image. went. Display BM structure (No. 1, No. 3 to No. 6 and No.
  • the pitch p is 120 ⁇ m.
  • the angle [theta] was changed to 30 [deg.], 35 [deg.], And 40 [deg.].
  • the line width of the regular mesh pattern 25b and therefore the wavy mesh pattern 25a was changed to 2 ⁇ m, 3 ⁇ m, and 4 ⁇ m.
  • the randomness changes the phase of the wavy line to 100 ⁇ m, 300 ⁇ m, and 500 ⁇ m, changes the wavelength of the wavy line to 100 ⁇ m, 300 ⁇ m, and 500 ⁇ m, and changes the amplitude of the wavy line to the rhombus shape of the regular mesh pattern 25b.
  • the wavy mesh pattern 25a was changed to 10%, 20%, and 30% with respect to the rhombic pitch p of the center line of the wavy line.
  • the randomness is such that the phase and wavelength of the wavy line is fixed to 100 ⁇ m, and only the amplitude of the wavy line is 0% (no randomness is imparted), 2.0%, and 4.0% with respect to the pitch p. It was also changed to 6.0%, 8.0%, and 10.0%.
  • the resolution of the display is No. shown in FIGS. 35 (A1), (C1), (D1), (E1), and (F1). 1, no. 3 to No. 6 and no. In 6 types of BM patterns having 8 types of BM structures, they were 149 dpi, 265 dpi (v2), 265 dpi, 326 dpi, 384 dpi (V2), and 440 dpi, respectively. Moreover, the light emission intensity of the display was changed to 1.0 times, 1.5 times, and 2.0 times the intensity standardized by the display LP101WX1 (SL) (n3) (manufactured by LG Display). .
  • the display LP101WX1 (SL) (n3) (manufactured by LG Display Co., Ltd.) is turned on with only the G channel at MAX intensity
  • Imaging was performed using STM6 (manufactured by OLYMPUS), UMPlanFIx10 (manufactured by OLYMPUS) as a lens, and QIC-F-CLR-12-C (manufactured by Linkam Scientific Instruments) as a camera.
  • the imaging conditions were gain 1.0 and white balance (G, R, B) were (1.00, 2.17, 1.12). The captured image was shaded.
  • the experiment No. 205, 206, 210, 211, 213, 216, 218, and 220 to 224 are examples of the present invention in which the quantitative value of moire is ⁇ 3.00 or less and the amplitude is 2.0% or more and 20% or less.
  • the sensory evaluation result as a scale shows 4 and it turns out that the visibility of a moire is favorable.
  • Experiment No. 201 to 204, 207 to 209, 212, 214, 215, 217, and 219 are comparative examples in which the moire quantitative value is more than ⁇ 3.00 and / or the amplitude is less than 2.0% or more than 20%.
  • the sensory evaluation result as a degradation scale is 3 or less, the visibility of the moire is poor, the degradation is recognized, and the moire that is of interest is visually recognized. From the above, in this example, there was no case where the sensory evaluation result was 5, but when the degradation scale was 4 or more and the image quality was at an acceptable level, the moiré quantitative value was ⁇ 3.00. It can be seen that the amplitude is 2.0% or more and 20% or less. It can be seen that satisfying these conditions is a condition for improving the image quality.
  • the conductive film of the present invention having a wavy synthetic wiring pattern in which the quantitative value (evaluation index) of the moire satisfies the above-mentioned range is randomized. It is possible to suppress the occurrence of moire even when the light emission intensity of the display is different, front observation or oblique observation, and the visibility can be greatly improved. From the above, the effect of the present invention is clear.
  • Example III In this example, the experiment was performed as described below according to the flow of the conductive film evaluation method of the present invention shown in FIGS. 45 and 17.
  • BM condition numbers No. 1 having different sub-pixel shapes, resolutions, and emission intensities, which are typically represented by the G sub-pixel arrangement patterns shown in FIGS. 1-No.
  • the pixel arrangement (BM) pattern 38 of 16 displays has the random mesh pattern shape shown in FIG. 27, the shape and size (average pitch) of the openings are different, and the line width of the fine metal wires (mesh) is different.
  • a simulation sample is used to superimpose the combined wiring pattern and the BM pattern of each color to obtain a noise evaluation index, and a large number of random mesh patterns having different randomness and a BM pattern of each color
  • the three sensory evaluators visually evaluated the noise generated by the interference between the two superimposed in the noise simulation image. The results are shown in Table 5.
  • the noise is evaluated by superimposing the transmittance data of the composite wiring pattern on the brightness image data of the sub-pixel array pattern of each color of the pixel array (BM) pattern used in step S14. Then, a noise simulation image in which the transmittance image is superimposed on the brightness image is created and displayed on the display, and the displayed simulation image is viewed by three sensory evaluators, and the sensory evaluation is performed in the same manner as in Example I. Went.
  • the average pitch of the cells (openings 22) of the random mesh pattern 25d was changed to 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, and 300 ⁇ m. Further, the line width of the random mesh pattern 25d was changed to 2 ⁇ m and 4 ⁇ m. Note that the display resolution is No. 1 shown in FIGS. 35 (A1) to (H1). 1-No. In 8 types of BM patterns having 16 different BM structures, No. 1 and 2 are 149 dpi, no. 3 and 4, 222 dpi, no. 5-8, 265 dpi, no. 91 and 10 are 326 dpi, no. 11-14, 384 dpi, no. In 15 and 16, it was 440 dpi.
  • the emission intensity of the display is normalized by the display LP101WX1 (SL) (n3) (manufactured by LG Display), and when the total intensity is given by 0-255, No. Nos. 1, 3, 5, 6, 9, 11, 12, and 15 are 64 (lightness 1). In 2, 4, 7, 8, 10, 13, 14, and 16, it was changed to 128 (lightness 2).
  • “NaN” in the column of the quantitative value of noise indicates that the quantitative value of noise could not be obtained because the intensity is small, and those that do not contribute to the generation of noise are removed by threshold processing. No noise is generated, indicating that no noise is visible.
  • the evaluation index (evaluation value) is ⁇ 2.80 or less, and all of the visibility evaluation results are 4 or more, indicating that the present invention is an example.
  • Examples 1 to 13 shown in Table 5 are “NaN” in the column of the quantitative value of noise, and all the evaluation results of the visibility are 5, and it is understood that no noise is generated and no noise is visually recognized. .
  • the evaluation index (evaluation value) is more than ⁇ 2.80, the evaluation result is 3 or less, and it can be seen that the noise of interest is visually recognized.
  • the conductive film of the present invention having a synthetic wiring pattern in which the quantitative value (evaluation index) of the noise includes a random mesh pattern at least one and satisfies the above range, the period and intensity of the BM pattern of the display.
  • the occurrence of noise can be suppressed even when viewed from the front or obliquely, and the visibility can be greatly improved. From the above, the effect of the present invention is clear.
  • wiring patterns having various pattern shapes are prepared in advance, and the upper side and the lower side constituting the composite wiring pattern optimized by the evaluation method of the present invention.
  • a conductive film having a wiring pattern including a random mesh pattern in all or a part of at least one of the wiring patterns can be determined, but when the noise evaluation index of one wiring pattern exceeds a predetermined value Update the transmittance image data of a random mesh pattern to the transmittance image data of a new random mesh pattern, create a transmittance image data of a new composite wiring pattern, and apply the above-described evaluation method of the present invention Repeatedly determining the quantitative value (evaluation index) of noise to determine a conductive film with an optimized wiring pattern It is also possible.
  • the new random mesh pattern to be updated may be prepared in advance or may be newly created.
  • the average pitch of the transmittance image data of the random mesh pattern may be changed, or the shape and size of the opening of the wiring pattern may be changed.
  • a mesh-like wiring pattern that can suppress the generation of moire or noise visually recognized in combination with a display and improve visibility
  • a rule Conductive film having a mesh-like wiring pattern, a mesh-like wiring pattern imparted with randomness (irregularity) also referred to as a mesh-like random wiring pattern, a random mesh pattern, or simply a random pattern
  • a method for evaluating a pattern of a conductive film can be provided.
  • the present invention even when superimposed on a pixel arrangement pattern of a display unit (display) having different emission intensity (brightness), it has a mesh pattern corresponding to the intensity of the display regardless of the observation distance.
  • a conductive film By using a conductive film, generation of moire and noise can be suppressed, and visibility can be greatly improved.
  • a transparent conductive film having a mesh pattern when used as an electrode for a touch panel, display is performed when the conductive film is visually recognized by being superimposed on a black matrix of a display unit of a display device having different emission intensity. It has a mesh pattern that considers the light emission intensity of the unit, for example, a regular mesh pattern or a random mesh pattern, can suppress the occurrence of moiré that causes a large image quality obstacle, and can greatly improve the visibility of the display on the touch panel. it can.
  • the light emission intensity is also improved in the design of the mesh pattern of the conductive film when the aperture shapes of the RGB sub-pixels of the display have different frequencies and intensities (shape and size).
  • the best image quality can be provided in combination with pixel arrangement patterns of different displays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Quality & Reliability (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 導電性フィルムは、2つの配線部の配線パターンと表示ユニットの画素配列パターンとが重畳されるように、表示ユニットに設置されるものであり、2つの配線部の3次元形状の配線パターンを視点に垂直な平面に射影する時の射影配線パターンは、メッシュ状の規則的な配線パターン、又は規則的な配線パターンに対して不規則性が付与されたメッシュ状の不規則配線パターンを含み、規則的な配線パターンからなる合成配線パターンは、画素配列パターンを同一の平面に射影する時の射影画素配列パターンとの干渉によって生じるモアレの評価指標が評価閾値以下である。

Description

導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法
 本発明は、3次元形状の状態で使用される導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法に関する。
 携帯電話等の表示装置(以下、ディスプレイともいう)の表示ユニット上に設置される導電性フィルムとして、例えば電磁波シールド用の導電性フィルムやタッチパネル用の導電性フィルム等が挙げられる(例えば、特許文献1~5参照)。
 本出願人の出願に係る特許文献1では、例えばディスプレイの画素配列パターン(例えば、ブラックマトリックス(以下、BMともいう)パターン)等の第1のパターン、及び、例えば電磁波シールドパターン等の第2のパターンのそれぞれのパターンデータの2次元フーリエスペクトル(2DFFTSp)のスペクトルピーク間の相対距離が、所定の空間周波数、例えば8cm-1を超えている第2のパターンデータによって生成される第2のパターンを自動的に選定することを開示している。
 こうして、特許文献1では、モアレの発生を抑止でき、表面抵抗率の増大や透明性の劣化をも回避することができる電磁波シールドパターンの自動選定を可能にしている。
 一方、本出願人の出願に係る特許文献2では、多角形状のメッシュを複数備えるメッシュパターンを有する透明導電膜として、各メッシュの重心スペクトルに関して、所定の空間周波数、例えば人間の視覚応答特性が最大応答の5%に相当する空間周波数よりも高い帯域側における平均強度が、所定の空間周波数よりも低い帯域側における平均強度よりも大きくなるように、メッシュパターンが形成されている透明導電膜を開示している。
 こうして、特許文献2では、パターンに起因するノイズ粒状感を低減可能であり、観察対象物の視認性を大幅に向上できるとともに、断裁後にも安定した通電性能を有する透明導電膜を提供できるとしている。
 本出願人の出願に係る特許文献3では、金属細線による菱形形状のメッシュからなる導電パターンにおいて、各メッシュの開口部の菱形の2つの対角線の長さの比を所定範囲に限定することにより、同特許文献4では、金属細線によるメッシュパターンにおいて、金属細線が、表示装置の画素の配列方向に対する傾斜角度を所定範囲に限定することにより、同特許文献5では、金属細線による菱形形状のメッシュパターンにおいて、各メッシュの開口部の菱形の頂角を所定範囲に限定することにより、表示パネルに取り付けてもモアレが発生しにくくなり、しかも、高歩留まりで生産することができるという効果を得ている。
特開2009-117683号公報 特開2011-216379号公報 特開2012-163933号公報 特開2012-163951号公報 特開2012-164648号公報
 ところで、特許文献1~5に開示の導電性フィルムは、いずれも平面形状であり、ディスプレイの平らな表示面に重畳した時には、導電性フィルムの配線パターンとディスプレイのBMパターンとの干渉によるモアレを低減したモアレの視認性の良いものとすることができるものの、このモアレの視認性の良い平面形状の導電性フィルムを立体形状、例えば対応する両辺側が湾曲し、その間の中央部が平坦な3次元形状で用いる場合には、平面形状(2次元形状)から3次元形状への変化により、例えば、図47(A)に示すモアレの視認性の良い平面形状の導電性フィルムの配線パターン70であっても、配線パターンの空間周波数が変化して、図47(B)に示すように、ディスプレイの表示面の正面からの視点で観察した場合の射影配線パターン72となるため、形状が変化した湾曲部分において、図48に示すように、射影配線パターン72とBMパターンとが干渉してモアレが発生してしまうという問題があった。
 さらに、特許文献1では、ディスプレイのBMパターン及び導電性フィルム配線パターンの周波数情報のみからモアレ周波数を制御しているため、周波数のみならず強度にも影響を受ける人のモアレの知覚においては、強度によってはモアレが視認され、モアレの視認性が十分に向上されないという問題があった。
 また、特許文献2では、透明導電膜のメッシュパターンの各メッシュの重心スペクトルに関し、人間の視覚の応答特性を考慮することにより、人間にとって視覚的に感じられる透明導電膜のメッシュパターン自体のノイズ感の減少を図るに過ぎず、モアレの視認性を向上させることにはつながらないという問題があった。
 本発明は、上記従来技術の問題点を解消し、3次元形状の導電性フィルムを表示装置の平面形状又は3次元形状の表示面に重ねて配置して用いる際に、モアレやノイズ(粒状感)を抑止でき、モアレやノイズ(粒状性)の視認性を大幅に向上させることができる導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法を提供することを目的とする。
 本発明は、特に、3次元形状の配線パターンを有する3次元形状の導電性フィルムを表示装置の表示ユニットの平面形状又は同様に3次元形状の表示面に重ねて配置してタッチパネル用電極として用いる場合、表示装置の表示ユニットのブラックマトリクスに導電性フィルムを重畳して視認する際に大きな画質障害となるモアレやノイズの発生を抑止でき、タッチパネル上の表示の視認性を大幅に向上させることができる導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価及び決定方法を提供することを目的とする。
 上記目的を達成するために、本発明の第1の態様に係る導電性フィルムは、表示装置の表示ユニット上に設置される導電性フィルムであって、導電性フィルムは、3次元形状の透明基体と、透明基体の両側、若しくは片側に配置される3次元形状の2つの配線部と、を有し、2つの配線部の少なくとも一方の配線部は、複数の金属細線よりなる複数の開口部が配列されたメッシュ状の配線パターンを有し、表示ユニットは、互いに異なる少なくとも3色の複数色の光を射出する複数の副画素を含む画素の画素配列パターンで配列されてなり、導電性フィルムは、2つの配線部の配線パターンと表示ユニットの画素配列パターンとが重畳されるように、表示ユニットに設置されるものであり、3次元形状の2つの配線部の配線パターンを視点に垂直な平面に射影する時の射影配線パターンは、メッシュ状の規則的な配線パターン、又は規則的な配線パターンに対して不規則性が付与されたメッシュ状の不規則配線パターンを含み、規則的な配線パターンからなる合成配線パターンは、画素配列パターンを同一の平面に射影する時の射影画素配列パターンとの干渉によって生じるモアレの評価指標が評価閾値以下であり、モアレの評価指標は、視点において、合成配線パターンの透過率画像データの2次元フーリエスペクトルの複数の第1スペクトルピークの第1ピーク周波数及び第1ピーク強度と、複数色の光をそれぞれ点灯した時の各色の射影画素配列パターンの明度画像データの2次元フーリエスペクトルの複数の第2スペクトルピークの第2ピーク周波数及び第2ピーク強度とから各色毎に算出されるモアレの周波数及び強度において、表示ユニットの表示解像度に応じて規定される周波数閾値以下の各モアレの周波数におけるモアレの強度の内の第1強度閾値以上のモアレの強度にそれぞれ人間の視覚応答特性を観察距離に応じて作用させて得られた各色のモアレの評価値から算出したものであることを特徴とする。
 上記目的を達成するために、本発明の第2の態様に係る導電性フィルムは、表示装置の表示ユニット上に設置される導電性フィルムであって、導電性フィルムは、3次元形状の透明基体と、透明基体の両側、若しくは片側に配置される3次元形状の2つの配線部と、を有し、2つの配線部の少なくとも一方の配線部は、複数の金属細線よりなる複数の開口部が配列されたメッシュ状の配線パターンを有し、表示ユニットは、互いに異なる少なくとも3色の複数色の光を射出する複数の副画素を含む画素の画素配列パターンで配列されてなり、導電性フィルムは、2つの配線部の配線パターンと表示ユニットの画素配列パターンとが重畳されるように、表示ユニットに設置されるものであり、3次元形状の2つの配線部の配線パターンを視点に垂直な平面に射影する時の射影配線パターンは、少なくとも、開口部が多角形であり、不規則性が付与されたメッシュ状の不規則配線パターンを含む合成配線パターンであり、合成配線パターンは、画素配列パターンを同一の平面に射影する時の射影画素配列パターンとの干渉によって生じるノイズの評価指標が評価閾値以下であり、ノイズの評価指標は、視点において、合成配線パターンの透過率画像データの2次元フーリエスペクトルの複数の第1スペクトルピークの第1ピーク周波数及び第1ピーク強度と、複数色の光をそれぞれ点灯した時の各色の射影画素配列パターンの明度画像データの2次元フーリエスペクトルの複数の第2スペクトルピークの第2ピーク周波数及び第2ピーク強度とから各色毎に算出されるノイズの周波数及び強度において、表示ユニットの表示解像度に応じて規定される周波数閾値以下の各ノイズの周波数におけるノイズの強度の内の第1強度閾値以上のノイズの強度にそれぞれ人間の視覚応答特性を観察距離に応じて作用させて得られた各色のノイズの評価値から算出したものであることを特徴とする。
 上記目的を達成するために、本発明の第3の態様に係る表示装置は、互いに異なる複数色の光を射出する複数の副画素を備える画素が一方の方向及び一方の方向に垂直な方向に繰り返される画素配列パターンで配列されてなる表示ユニットと、この表示ユニットの上に設置される上記第1又は第2の態様の導電性フィルムと、を備えることを特徴とする。
 また、上記目的を達成するために、本発明の第4の態様に係る導電性フィルムの配線パターンの評価方法は、表示装置の表示ユニット上に設置され、3次元形状の透明基体の両側、若しくは片側に配置される3次元形状の2つの配線部を有する導電性フィルムの評価方法であって、2つの配線部の少なくとも一方の配線部は、複数の金属細線よりなる複数の開口部が配列されたメッシュ状の配線パターンを有し、表示ユニットは、互いに異なる少なくとも3色の複数色の光を射出する複数の副画素を含む画素の画素配列パターンで配列されてなり、導電性フィルムは、2つの配線部の配線パターンと表示ユニットの画素配列パターンとが重畳されるように、表示ユニットに設置されるものであり、3次元形状の2つの配線部の配線パターンを視点に垂直な平面に射影して、射影配線パターンに含まれるメッシュ状の規則的な配線パターン、又は規則的な配線パターン及びこれに対して不規則性が付与されたメッシュ状の不規則配線パターンの透過率画像データを求め、規則的な配線パターンを重ね合わせた合成配線パターンの透過率画像データを取得し、かつ、表示ユニットの複数色の各色の画素配列パターンを同一の平面に射影して、各色の射影画素配列パターンの明度画像データを取得し、視点において、合成配線パターンの透過率画像データ及び射影画素配列パターンの明度画像データに対して2次元フーリエ変換を行い、合成配線パターンの透過率画像データの2次元フーリエスペクトルの複数の第1スペクトルピークの第1ピーク周波数及び第1ピーク強度と、各色毎に、複数色の各色の射影画素配列パターンの明度画像データの2次元フーリエスペクトルの複数の第2スペクトルピークの第2ピーク周波数及び第2ピーク強度とを算出し、算出された配線パターンの第1ピーク周波数及び第1ピーク強度と、複数色のそれぞれの副画素配列パターンの第2ピーク周波数及び第2ピーク強度とからそれぞれ複数色の各色のモアレの周波数及び強度を算出し、算出された各色のモアレの周波数及び強度の中から、表示ユニットの表示解像度に応じて規定される周波数閾値以下の周波数及び第1強度閾値以上の強度を持つモアレを選び出し、選び出されたそれぞれの各色のモアレの周波数におけるモアレの強度に人間の視覚応答特性を観察距離に応じて作用させてそれぞれ各色のモアレの評価値を得、得られた各色毎のモアレの評価値からモアレの評価指標を算出し、算出されたモアレの評価指標が所定値以下である合成配線パターンを構成する2つの配線部の少なくとも一方の配線部の射影前のメッシュ状の配線パターンを持つ導電性フィルムを評価することを特徴とする。
 また、上記目的を達成するために、本発明の第5の態様に係る導電性フィルムの配線パターンの評価方法は、表示装置の表示ユニット上に設置され、3次元形状の透明基体の両側、若しくは片側に配置される3次元形状の2つの配線部を有する導電性フィルムの評価方法であって、2つの配線部の少なくとも一方の配線部は、複数の金属細線よりなる複数の開口部が配列されたメッシュ状の配線パターンを有し、表示ユニットは、互いに異なる少なくとも3色の複数色の光を射出する複数の副画素を含む画素の画素配列パターンで配列されてなり、導電性フィルムは、2つの配線部の配線パターンと表示ユニットの画素配列パターンとが重畳されるように、表示ユニットに設置されるものであり、3次元形状の2つの配線部の配線パターンを視点に垂直な平面に射影して、射影配線パターンに少なくとも含まれる、開口部が多角形であり、不規則性が付与されたメッシュ状の不規則配線パターンの透過率画像データを求め、不規則配線パターンを含む合成配線パターンの透過率画像データを取得し、かつ、表示ユニットの複数色の各色の画素配列パターンを同一の平面に射影して、各色の射影画素配列パターンの明度画像データを取得し、視点において、合成配線パターンの透過率画像データ及び射影画素配列パターンの明度画像データに対して2次元フーリエ変換を行い、合成配線パターンの透過率画像データの2次元フーリエスペクトルの複数の第1スペクトルピークの第1ピーク周波数及び第1ピーク強度と、各色毎に、複数色の各色の射影画素配列パターンの明度画像データの2次元フーリエスペクトルの複数の第2スペクトルピークの第2ピーク周波数及び第2ピーク強度とを算出し、算出された合成配線パターンの第1ピーク周波数及び第1ピーク強度と、複数色のそれぞれの射影副画素配列パターンの第2ピーク周波数及び第2ピーク強度とからそれぞれ複数色の各色のノイズの周波数及び強度を算出し、算出された各色のノイズの周波数及び強度の中から、表示ユニットの表示解像度に応じて規定される周波数閾値以下の周波数及び第1強度閾値以上の強度を持つノイズを選び出し、選び出されたそれぞれの各色のノイズの周波数におけるノイズの強度に人間の視覚応答特性を観察距離に応じて作用させてそれぞれ各色のノイズの評価値を得、得られた各色毎のノイズの評価値からノイズの評価指標を算出し、算出されたノイズの評価指標が所定値以下である合成配線パターンを構成する2つの配線部の少なくとも一方の配線部の射影前のメッシュ状の配線パターンを持つ導電性フィルムを評価することを特徴とする。
 ここで、上記第1、第3又は第4の態様において、表示ユニットの表示面は、3次元形状を有し、画素配列パターンは、3次元形状を有することが好ましい。
 また、射影配線パターンは、1つ又は2つの規則的な配線パターンからなり、規則的な配線パターンは、開口部の形状が菱形である規則的な菱形の配線パターンであり、評価閾値は、-3.17であることが好ましい。
 また、射影配線パターンは、1つ又は2つの不規則な配線パターン、もしくは、不規則な配線パターン及び規則的な配線パターンからなり、規則的な配線パターンは、開口部の形状が菱形である規則的な菱形の配線パターンであり、不規則な配線パターンは、規則的な配線パターンの菱形の形状に対して不規則性閾値以下の不規則性を有することが好ましい。
 また、評価閾値は、-2.80であり、不規則性閾値は、10%であり、不規則な配線パターンは、規則的な配線パターンの菱形のピッチに対して0%超10%以下の不規則性を付与したものであることが好ましい。
 また、評価閾値は、-2.80であり、不規則性閾値は、3.0%であり、不規則な配線パターンは、規則的な配線パターンの菱形の角度に対して0%超3.0%以下の不規則性を付与したものであることが好ましい。
 また、射影配線パターンは、1つ又は2つの不規則な配線パターン、もしくは、不規則な配線パターン及び規則的な配線パターンからなり、規則的な配線パターンは、開口部の形状が多角形である規則的な多角形の配線パターンであり、不規則な配線パターンは、規則的な配線パターンの多角形の辺を振幅閾値内の波線にすることによって不規則性を付与した波線化配線パターンであることが好ましい。
 また、評価閾値は、-3.00であり、振幅閾値は、規則性のある多角形の配線パターンのピッチの2.0%以上20%以下であることが好ましい。
 また、多角形は、菱形であることが好ましい。
 また、2つの配線部の射影配線パターンは、2つの不規則配線パターンからなることが好ましい。
 また、2つの配線部の射影配線パターンは、不規則配線パターン及び規則的な配線パターンからなることが好ましい。
 また、2つの配線部の少なくとも一方の配線部は、電極部と非電極部とを備え、電極部及び非電極部の一方の配線パターンは、不規則配線パターンであり、かつ他方の配線パターンは、規則的な配線パターンであることが好ましい。
 また、2つの配線部の一方の配線部の配線パターンは、不規則配線パターンであり、かつ他方の配線部の配線パターンは、酸化インジウムスズで構成され、2つの配線部の射影配線パターンは、1つの不規則配線パターンのみからなることが好ましい。
 また、複数の第1スペクトルピークは、合成配線パターンの透過率画像データを、2次元フーリエ変換して得られた複数のスペクトルピークから選択された第1の閾値以上のピーク強度を有するものであり、複数色のそれぞれについて、複数の第2スペクトルピークは、射影画素配列パターンの明度画像データを、2次元フーリエ変換して得られた複数のスペクトルピークから選択された第2の閾値以上のピーク強度を有するものであることが好ましい。
 また、各色に対応するモアレの周波数は、第1ピーク周波数と各色に対応する第2ピーク周波数との差として与えられ、各色に対応するモアレの強度は、第1ピーク強度と各色に対応する第2ピーク強度との積として与えられることが好ましい。
 また、モアレの評価値は、モアレの周波数及び強度に、視覚応答特性として観察距離に応じた視覚伝達関数を畳み込み積分で重み付けを行うことによって求められることが好ましい。
 また、視覚伝達関数VTFは、下記式(1)で与えられることが好ましい。
   VTF=5.05e-0.138k(1-e0.1k) …(1)
   k=πdu/180
 ここで、kは、立体角で定義される空間周波数(cycle/deg)であり、上記式(1)で表され、uは、長さで定義される空間周波数(cycle/mm)であり、dは、観察距離(mm)で定義される。
 また、モアレの評価指標は、各色について、1つのモアレの周波数に対して、観察距離に応じて重み付けされた複数のモアレの評価値の中の最も大きい評価値を用いて算出されることが好ましい。
 また、モアレの評価指標は、各色毎に、1つのモアレの周波数に対して選択された最も大きい評価値を全てのモアレの周波数について合算した複数の色の合算値の中で最も大きい合算値であることが好ましい。
 また、第1の強度閾値は、常用対数で-4.5であり、周波数閾値は、表示ユニットの解像度で得られる空間周波数であり、視覚応答特性を作用させるために選択されるモアレは、モアレの強度が-3.8以上の強度を持つモアレであることが好ましい。
 また、表示ユニットの解像度で得られる空間周波数は、表示ユニットの表示画素ピッチをPdμmとする時、1000/Pd cycle/mmで与えられるモアレの最高周波数であることが好ましい。
 また、上記第第2、第3又は第5の態様において、表示ユニットは、3次元形状を有し、画素配列パターンは、の表示面3次元形状を有することが好ましい。
 また、評価閾値は、-2.80であることが好ましい。
 また、2つの配線部の射影配線パターンは、2つの不規則配線パターンからなることが好ましい。
 また、2つの配線部の射影配線パターンは、不規則配線パターン及び開口部の形状が多角形である規則的な多角形の配線パターンからなることが好ましい。
 また、2つの配線部の少なくとも一方の配線部は、電極部と非電極部とを備え、電極部及び非電極部の一方の配線パターンは、不規則配線パターンであり、かつ他方の配線パターンは、開口部の形状が多角形である規則的な配線パターンであることが好ましい。
 また、2つの配線部の一方の配線部の配線パターンは、不規則配線パターンであり、かつ他方の配線部の配線パターンは、酸化インジウムスズで構成され、2つの配線部の射影配線パターンは、1つの不規則配線パターンのみからなることが好ましい。
 また、複数の第1スペクトルピークは、合成配線パターンの透過率画像データを、2次元フーリエ変換して得られた複数のスペクトルピークから選択された第1の閾値以上のピーク強度を有するものであり、複数色のそれぞれについて、複数の第2スペクトルピークは、射影画素配列パターンの明度画像データを、2次元フーリエ変換して得られた複数のスペクトルピークから選択された第2の閾値以上のピーク強度を有するものであることが好ましい。
 また、各色に対応するノイズの周波数及び強度は、第1ピーク周波数及び第1ピーク強度と、各色に対応する第2ピーク周波数及び第2ピーク強度との畳み込み演算によって求められることが好ましい。
 また、各色に対応するノイズの周波数は、第1ピーク周波数と各色に対応する第2ピーク周波数との差として与えられ、各色に対応するノイズの強度は、第1ピーク強度と各色に対応する第2ピーク強度との積として与えられることが好ましい。
 また、ノイズの評価値は、ノイズの周波数及び強度に、視覚応答特性として観察距離に応じた視覚伝達関数を畳み込み積分で重み付けを行うことによって求められることが好ましい。
 また、視覚伝達関数VTFは、上記式(1)で与えられることが好ましい。
 また、ノイズの評価指標は、各色について、1つのノイズの周波数に対して、観察距離に応じて重み付けされた複数のノイズの評価値の中の最も大きい評価値を用いて算出されることが好ましい。
 また、ノイズの評価指標は、各色毎に、1つのノイズの周波数に対して選択された最も大きい評価値を全てのノイズの周波数について合算した複数の色の合算値の中で最も大きい合算値であることが好ましい。
 また、第1の強度閾値は、常用対数で-4.5であることが好ましい。また、周波数閾値は、表示ユニットの解像度で得られる空間周波数、即ち、1画素ピッチの逆数に対応する空間周波数であるのが良い。
 また、表示ユニットの解像度で得られる空間周波数は、表示ユニットの表示画素ピッチをPdμmとする時、1000/Pd cycle/mmで与えられるノイズの最高周波数であることが好ましい。
 また、上記第1、第2、第3、第4又は第5の態様において、各色の射影画素配列パターンの明度画像データは、複数色の光をそれぞれ単独で点灯した時に表示ユニットの表示画面に表示された各色の画素配列パターンの画像を撮像して得られた当該色の撮像画像データを明度値に変換することによって得られた明度画像データを規格化した規格化明度データを画素配列パターンから射影画素配列パターンに変換したものであることが好ましい。
 また、表示ユニットの表示画面に表示された各色の画素配列パターンの画像は、複数色の光を各色毎に設定可能な最大強度で単独で点灯した時に表示ユニットに表示されたものであることが好ましい。
 また、複数色が、赤、緑及び青の3色である時、赤、緑及び青の各色の画素配列パターンの画像の撮像画像データは、マクベスチャートの白にホワイトバランス調整して撮像された画像データであることが好ましい。
 また、複数色の各色の射影画素配列パターンの画像の明度画像データは、表示ユニットにおいて複数色の各色の光を単独で点灯した時に、表示ユニットの表示画面に表示された当該色の画素配列パターンの画像をマイクロスコープで撮像した撮像画像データから作成したマスク画像に対して、計測された明度値を表示ユニットの解像度とマスク画像の値を持つ面積との積で規格化した明度データを与えることにより得られたものを画素配列パターンから射影画素配列パターンに変換したものであり、明度画像データは、基準となる表示装置の表示ユニットの明度が1.0となるように規格化されたものであることが好ましい。
 また、複数色が、赤、緑及び青の3色である時、計測された明度値は、赤、緑及び青の各色を単独で表示させてスペクトロメータで計測して取得された、赤、緑及び青の各色の分光スペクトルデータから求められた明度値であり、マスク画像は、マイクロスコープで撮像された撮像画像データを2値化した画像であることが好ましい。
 また、2つの配線部は、透明基体の両側の面にそれぞれ形成されることが好ましい。
 また、透明基体を第1の透明基体とする時、さらに、第1の透明基体と異なる第2の透明基体を有し、2つの配線部の一方の配線部は、第1の透明基体の一方の面に形成され、2つの配線部の他方の配線部は、第1の透明基体の他方の面側であって、第2の透明基体の一方の面に形成されることが好ましい。
 また、2つの配線部は、透明基体の片側に絶縁層を介してそれぞれ形成されることが好ましい。
 また、評価値は、正面観察及び斜め観察の少なくとも2視点において、複数色の各色毎に得られるものであり、評価指標は、得られた少なくとも2視点における各色の評価値の中で最も大きな評価値であることが好ましい。
 また、画素配列パターンは、ブラックマトリックスパターンであることが好ましい。
 以上説明したように、本発明によれば、3次元形状の導電性フィルムを表示装置の平面形状又は3次元形状の表示面に重ねて配置して用いる際に、モアレやノイズ(粒状感)を抑止でき、モアレやノイズ(粒状性)の視認性を大幅に向上させることができる。
 即ち、本発明の好ましい形態によれば、3次元形状の導電性フィルムの3次元形状の配線パターンを視点に垂直な平面に射影した状態の射影配線パターン及び表示装置の射影画素配列パターンの周波数解析により得られる、複数色の各色毎のモアレ又はノイズの周波数/強度から各色毎のモアレ又はノイズの評価値を算出し、算出された各色毎のモアレ又はノイズの評価値から算出したモアレ又はノイズの評価指標を視認性に優れるように数値限定しているので、モアレ又はノイズの発生による画質障害を無くし、優れた視認性を得ることができる。
本発明の導電性フィルムを組み込んだ本発明の一実施形態に係る表示装置の一実施例の概略断面図である。 図1に示す表示装置の表示ユニットの一部の画素配列パターンの一例を表す概略説明図である。 図1に示す表示装置に組み込まれる本発明の第1の実施形態に係る導電性フィルムの一例を模式的に示す部分断面図である。 (A)及び(B)は、それぞれ、図3に示す3次元形状の導電性フィルムの配線部の3次元形状の配線パターン及びこの3次元形状の配線パターンを所定に視点に垂直な平面に射影した平面形状の射影配線パターンの一例を模式的に示す平面図である。 (A)及び(B)は、図4(A)に示す3次元形状の配線パターンから図4(B)に示す平面形状の射影配線パターンへの射影を説明するための説明図であり、それぞれ、図1に示す3次元形状の導電性フィルムと平面形状の表示ユニットとを有する表示装置、及びこの表示装置を所定に視点に垂直な平面に射影した共に平面形状の射影導電性フィルムと射影表示ユニットとを有する射影表示装置を示す概略断面図である。 (A)及び(B)は、それぞれ、図5(A)に示す平面形状の表示ユニットの画素配列パターン及び図5(B)に示す平面形状の射影表示ユニットの射影画素配列パターンの一例を模式的に示す平面図であり、(C)は、図5(A)に示す画素配列パターンの部分拡大図であり、1つの副画素のみを示す。 (A)、(C)、(E)及び(B)、(D)、(F)は、それぞれ、図3に示す3次元形状の導電性フィルムの配線部の3次元形状の配線パターン及びこの3次元形状の配線パターンを所定に視点に垂直な平面に射影した平面形状の射影配線パターンの他の一例を模式的に示す平面図である。 (A)及び(B)は、それぞれ、共に3次元形状の導電性フィルムと表示ユニットとを有する本発明の他の実施形態の表示装置、及びこの表示装置を所定に視点に垂直な平面に射影した共に平面形状の射影導電性フィルムと射影表示ユニットとを有する射影表示装置を示す概略断面図である。 (A)及び(B)は、それぞれ、図8(A)に示す平面形状の表示ユニットの画素配列パターン及び図8(B)に示す平面形状の射影表示ユニットの射影画素配列パターンの他の一例を模式的に示す平面図であり、(C)は、図9(A)に示す画素配列パターンの部分拡大図であり、1つの副画素のみを示す。 (A)及び(B)は、それぞれ、共に3次元形状の導電性フィルムと表示ユニットとを有する本発明の他の実施形態の表示装置、及びこの表示装置を所定に視点に垂直な平面に射影した共に平面形状の射影導電性フィルムと射影表示ユニットとを有する射影表示装置を示す概略断面図である。 (A)及び(B)は、それぞれ、図10(A)に示す平面形状の表示ユニットの画素配列パターン及び図10(B)に示す平面形状の射影表示ユニットの射影画素配列パターンの他の一例を模式的に示す平面図であり、(C)は、図11(A)に示す画素配列パターンの部分拡大図であり、1つの副画素のみを示す。 本発明の第2の実施形態に係る導電性フィルムの一例の模式的部分断面図である。 本発明の第3の実施形態に係る導電性フィルムの一例の模式的部分断面図である。 図3に示す導電性フィルムの配線部の規則性のある菱形の定型配線パターンを模式的に示す平面図である。 図14に示す定型配線パターンに対して不規則性が付与された配線パターンの一例を模式的に示す平面図である。 図14に示す定型配線パターンに対して不規則性が付与された配線パターンの他の一例を模式的に示す平面図である。 図3に示す導電性フィルムの配線部の金属細線を波線化した波線化配線パターンの一例を模式的に示す平面図である。 図3に示す導電性フィルムの配線部の波線化配線パターンを構成する金属細線の波線を説明するための説明図である。 図3に示す導電性フィルムの上側及び下側の配線部の配線パターンの重なりによる合成配線パターンの一例を模式的に示す平面図である。 図3に示す導電性フィルムの上側及び下側の配線部の配線パターンの重なりによる合成配線パターンの一例を模式的に示す平面図である。 本発明の他の実施形態に係る導電性フィルムの上側及び下側の配線部の配線パターンの重なりによる合成配線パターンの一例を模式的に示す平面図である。 本発明の他の実施形態に係る導電性フィルムの上側及び下側の配線部の配線パターンの重なりによる合成配線パターンの一例を模式的に示す平面図である。 本発明の他の実施形態に係る導電性フィルムの上側及び下側の配線部の配線パターンの重なりによる合成配線パターンの一例を模式的に示す平面図である。 本発明の他の実施形態に係る導電性フィルムの上側及び下側の配線部の配線パターンの重なりによる合成配線パターンの一例を模式的に示す平面図である。 本発明の他の実施形態に係る導電性フィルムの上側及び下側の配線部の配線パターンの重なりによる合成配線パターンの一例を模式的に示す平面図である。 本発明の他の実施形態に係る導電性フィルムの上側の配線部の配線パターンの一例を模式的に示す平面図である。 図3に示す導電性フィルムの配線部の、ボロノイ多角形からなるランダムなメッシュ状配線パターンの一例を模式的に示す平面図である。 図27に示すランダムメッシュパターンを形成するボロノイ多角形を生成させるために、1つの平面領域内に任意の間隔で発生させたシード点(ドット)を示すドット切り出し画像の一例の概略説明図である。 図3に示す導電性フィルムの上側及び下側の配線部の配線パターンの重なりによる合成配線パターンの一例を模式的に示す平面図である。 本発明の他の実施形態に係る導電性フィルムの上側及び下側の配線部の配線パターンの重なりによる合成配線パターンの一例を模式的に示す平面図である。 (A)は、図14に示すメッシュ配線パターン(メッシュパターン)の構造の一例を示す模式図であり、(B)は、図2に示す表示ユニットの画素配列パターンの構造の一例を示す模式図であり、(C)は、本発明におけるメッシュ配線パターンの透過率(T)のグラフの一例であり、(D)は、表示ユニットの代表副画素の強度(I)のグラフの一例であり、(E)及び(F)は、それぞれ従来技術におけるメッシュ配線パターン及び表示ユニットの代表副画素の透過率(T)のグラフの一例である。 (A)及び(B)は、それぞれ本発明に係る導電性フィルムが適用される表示ユニットの一部の画素配列パターンの一例を表す概略説明図であり、(B)は、(A)の画素配列パターンの部分拡大図である。 (A)~(C)は、それぞれ本発明に適用される3つの副画素の形及び周期の少なくとも1つが異なる画素配列パターンの構成単位の一例を示す概略説明図である。 (A)及び(B)は、それぞれ図2に示す表示ユニットの画素配列パターンの画素中の3つの副画素の強度のばらつきの一例を模式的に示す説明図である。 (A1)~(H2)は、それぞれ解像度、形状及び強度が異なる表示ユニットの画素配列パターンの代表副画素の2×2画素の繰り返し単位の一例を示す模式図である。 本発明に係る導電性フィルムの配線評価方法の一例を示すフローチャートである。 本発明の導電性フィルムの評価方法のディスプレイBMデータの作成方法の詳細の一例を示すフローチャートである。 本発明に係る導電性フィルムが適用される表示ユニットのG副画素の撮像画像の一例を示す模式図、G副画素の分光スペクトルの一例を示すグラフ、及び2×2画素のインプットデータの一例を示す模式図である。 本発明に適用されるXYZ等色関数の一例を示すグラフである。 (A)及び(B)は、それぞれ図35(A1)に示す画素配列パターン及び図14に示す配線パターンの各透過率画像データの2次元フーリエスペクトルの強度特性を示す図である。 図35(A1)に示す表示ユニットの画素配列パターンの周波数ピーク位置を示すグラフである。 (A)は、入力パターン画像の周波数ピーク位置を説明するグラフであり、(B)は、周波数ピーク位置のピーク強度の算出を説明するグラフである。 (A)及び(B)は、それぞれ2次元フーリエスペクトルの強度特性の一例を曲線で表すグラフ及び棒で表す棒グラフである。 図35(A1)に示すに示す画素配列パターンと図14に示す配線パターンとの干渉によって発生するモアレ周波数及びモアレの強度を模式的に表わす概略説明図である。 本発明に係る導電性フィルムの配線評価方法の一例を示すフローチャートである。 (A)及び(B)は、それぞれ図35(A1)に示す画素配列パターン及び図27に示すランダムメッシュパターンの各透過率画像データの2次元フーリエスペクトルの強度特性を示す図である。 (A)及び(B)は、それぞれ平面状態で最適化された導電性フィルムの平面状態の平面配線パターン及び使用面状態の3次元形状に射影した射影配線パターンを模式的に示す平面模式図である。 図47(B)に示す使用状態の3次元形状の射影配線パターンを持つ導電性フィルムで視認されるモアレの模式図である。
 以下に、本発明に係る導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法を添付の図面に示す好適な実施形態を参照して詳細に説明する。
 本発明の導電性フィルムは、3次元形状を有し、表示装置の平面形状、又は3次元形状の表示ユニット上に設置されるものである。
 以下では、本発明に係る導電性フィルムについて、3次元形状のタッチパネル用の導電性フィルムを代表例として説明する。本発明は、これに限定されず、3次元形状の透明基体の両側に配置される、もしくは片側に絶縁層を介して配置される3次元形状の配線パターンの内、少なくとも一方が所定形状のセル(開口部)からなる配線パターンを持つ配線部を有するものであり、表示装置の様々な発光強度の表示ユニット上に設置される導電性フィルムであれば、どのようなものでも良い。例えば、電磁波シールド用の導電性フィルム等であっても良いのはもちろんである。
 なお、本発明に係る導電性フィルムが重畳される表示装置の表示ユニットとしては、特に制限的ではないが、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)、プラズマディスプレイ(PDP:Plasma Display Panel)、有機エレクトロルミネッセンス(有機EL)(OEL:Organic Electro-Luminescence)を利用した有機EL(発光)ダイオード(OLED:Organic Light Emitting Diode)や有機ELディスプレイ(OELD:Organic Electro-Luminescence Display)、無機EL(Electro-Luminescence)ディスプレイ、電子ペーパ等を挙げることができる。
 本発明に係る導電性フィルムの説明に先立ち、本発明の導電性フィルムを備える表示装置について説明する。
 図1は、本発明の3次元形状の導電性フィルムを組み込んだ本発明の第1の実施形態に係る表示装置の概略断面図である。なお、本発明の導電性フィルムを組み込んだ投影型静電容量方式のタッチパネルを代表例に挙げて説明するが、本発明はこれに限定されないことは言うまでもない。
 図1に示すように、表示装置40は、カラー画像及び/又はモノクロ画像を表示可能な平面形状の表示ユニット30と、本発明の第1の実施形態に係る導電性フィルム10からなり、入力面42(矢印Z1方向側)からの接触位置を検出するタッチパネル44と、表示ユニット30及びタッチパネル44を収容する筐体46とを有する。筐体46の一面(矢印Z1方向側)に設けられた大きな開口部を介して、ユーザは、タッチパネル44にアクセス可能である。
 タッチパネル44は、導電性フィルム10と、導電性フィルム10の一面(矢印Z1方向側)に積層されたカバー部材48と、ケーブル50を介して導電性フィルム10に電気的に接続されたフレキシブル基板52と、フレキシブル基板52上に配置された検出制御部54とを備える。
 表示ユニット30の一面(矢印Z1方向側)には、接着層56を介して、導電性フィルム10が接着されている。導電性フィルム10は、一方の主面側(第1配線部16a側:図3参照)を観察側に向け、他方の主面側(第2配線部16b側:図3参照)を表示ユニット30に対向させて、表示画面上に配置されている。
 カバー部材48は、導電性フィルム10の一面を被覆することで、入力面42としての機能を発揮する。また、接触体58(例えば、指やスタイラスペン)による直接的な接触を防止することで、擦り傷の発生や、塵埃の付着等を抑止可能であり、導電性フィルム10の導電性を安定させることができる。
 カバー部材48の材質は、例えば、ガラス、樹脂フィルムであってもよい。カバー部材48の一面(矢印Z2方向側)を酸化珪素等でコートした状態で、導電性フィルム10の一面(矢印Z1方向側)に密着させてもよい。また、擦れ等による損傷を防止するため、導電性フィルム10及びカバー部材48を貼り合わせて構成してもよい。
 フレキシブル基板52は、可撓性を備える電子基板である。本図示例では、筐体46の側面内壁に固定されているが、配設位置は種々変更してもよい。検出制御部54は、導体である接触体58を入力面42に接触する(又は近づける)際、接触体58と導電性フィルム10との間での静電容量の変化を捉えて、その接触位置(又は近接位置)を検出する電子回路を構成する。
 図2は、図1に示す表示装置の表示ユニットの一部の画素配列パターンの一例を表す概略説明のための平面図である。
 図2にその一部を示すように、表示ユニット30には、複数の画素32がマトリクス状に配列されて所定の画素配列パターン38が構成されている。1つの画素32は、3つの副画素(赤色副画素32r、緑色副画素32g及び青色副画素32b)が水平方向に配列されて構成されている。1つの副画素は垂直方向に縦長とされた長方形状とされている。画素32の水平方向の配列ピッチ(水平画素ピッチPh)と画素32の垂直方向の配列ピッチ(垂直画素ピッチPv)は略同じとされている。つまり、1つの画素32とこの1つの画素32を囲むブラックマトリクス(BM)34(パターン材)にて構成される形状(網掛けにて示す領域36を参照)は正方形となっている。また、1つの画素32のアスペクト比は1ではなく、水平方向(横)の長さ>垂直方向(縦)の長さとなっている。
 図2から明らかなように、複数の画素32の各々の副画素32r、32g及び32bによって構成される画素配列パターンは、これらの副画素32r、32g及び32bをそれぞれ囲むBM34のBMパターン38によって規定され、表示ユニット30と導電性フィルム10とを重畳した時に発生するモアレやノイズは、表示ユニット30のBM34のBMパターン38と導電性フィルム10の配線パターン24との干渉によって発生するので、厳密には、BMパターン38は、画素配列パターンの反転パターンであるが、ここでは、同様のパターンを表すものとして扱う。
 上記したBM34によって構成されるBMパターン38を有する表示ユニット30の表示パネル上に、例えば、導電性フィルム10を配置する場合、導電性フィルム10の配線パターン24(配線パターン24aと24bの合成配線パターン)は、視点aに垂直な平面に射影された平面形状の射影配線パターン23の状態において、BM(画素配列)パターン38に対してモアレやノイズの視認性の点で最適化されているので、画素32の配列周期と、導電性フィルム10の金属細線14の配線配列との間における空間周波数の干渉が弱まり、モアレや又はノイズの発生が抑制され、モアレやノイズの視認性に優れたものとなる。ここで、本発明では、モアレ/ノイズの視認性とは、モアレ/ノイズが視認できない程度をいう。
 なお、図2に示す表示ユニット30は、液晶パネル、プラズマパネル、有機ELパネル、無機ELパネル等の表示パネルで構成されても良く、その発光強度は、解像度に応じて異なるものであって良い。
 詳細は後述するが、本発明の導電性フィルム10が重畳される表示装置40の表示ユニット(以下、ディスプレイともいう)30は、互いに異なる少なくとも3色、例えば、赤、緑及び青の3色を含む複数色の光を射出する複数の副画素を含む画素の画素配列パターン(以下、BMパターンともいう)38で配列されてなり、その発光強度(輝度)のよる各副画素(カラーフィルタ)32r、32g、32bの輝度(明度)を、導電性フィルム10の重畳によるモアレ/ノイズの視認性の評価において考慮できるものであれば、特に制限的ではない。上記表示ユニット30は、例えば、従来のように、副画素(カラーフィルタ)の繰り返し周期及び強度(形状、サイズ)、即ち副画素配列パターン(副画素の形状及びサイズ、周期))がRGB等の複数色において全て同じであり、G副画素32gで代表させることができるBMパターンを持つ表示ユニットであっても良い。また、上記表示ユニット30は、前述したOELDのように、複数色において全て同じでない、即ち、少なくとも2つの色について異なる副画素配列パターンを含むBMパターンを持つディスプレイであっても良い。
 また、本発明の対象となる表示装置のディスプレイは、高解像度スマートフォンやタブレット端末等のように、発光強度の高いディスプレイであっても良いし、低解像度のデスクトップパソコンやテレビ(TV)等のように、発光強度の低いディスプレイであっても良いし、中解像度ノートブック等のように、発光強度の中程度のディスプレイであっても良い。
 本発明の表示装置は、基本的に以上のように構成される。
 図3は、図1に示す本発明の第1実施形態に係る導電性フィルムの平面部分断面の一例を示す模式的部分断面図である。図4(A)及び(B)は、それぞれ、図3に示す3次元形状の導電性フィルムの配線部の3次元形状の配線パターン及びこの3次元形状の配線パターンを所定に視点に垂直な平面に射影した平面形状の射影配線パターンの一例を模式的に示す平面図である。図5(A)及び(B)は、図4(A)に示す3次元形状の配線パターンから図4(B)に示す平面形状の射影配線パターンへの射影を説明するための説明図であり、それぞれ、図1に示す3次元形状の導電性フィルムと平面形状の表示ユニットとを有する表示装置、及びこの表示装置を所定に視点に垂直な平面に射影した共に平面形状の射影導電性フィルムと射影表示ユニットとを有する射影表示装置を示す概略断面図である。図6(A)及び(B)は、それぞれ、図5(A)に示す平面形状の表示ユニットの画素配列パターン及び図5(B)に示す平面形状の射影表示ユニットの射影画素配列パターンの一例を模式的に示す平面図であり、(C)は、図5(A)に示す画素配列パターンの部分拡大図であり、1つの副画素のみを示す。図7(A),(C),(E)及び(B),(D),(F)は、それぞれ、図3に示す3次元形状の導電性フィルムの配線部の3次元形状の配線パターン及び平面形状の射影配線パターンの一例を模式的に示す平面図である。
 これらの図に示すように、本実施形態の導電性フィルム10は、表示装置の表示ユニット上に設置されるものである。導電性フィルム10は、表示ユニットのブラックマトリックス(BM:Black Matrix)に対してモアレ/ノイズの発生の抑止の点で優れた配線パターン、特に、BMパターンに重畳した際にBMパターンに対して視認性、例えば、モアレ/ノイズの視認性の点で最適化された配線パターンを持つ導電性フィルムである。導電性フィルム10は、透明基体12と、透明基体10の一方の面(図3中上側の面)に形成され、複数の金属製の細線(以下、金属細線という)14からなり、第1電極部となる第1配線部16aと、第1配線部16aの略全面に、金属細線14を被覆するように、第1接着層18aを介して接着された第1保護層20aと、透明基体10の他方の面(図3中下側の面)に形成され、複数の金属製の細線14からなり、第2電極部となる第2配線部(電極)16bと、第2配線部16bの略全面に第2接着層18bを介して接着された第2保護層20bと、を有する。
 なお、以下では、第1配線部16a及び第2配線部16bを総称する際には単に配線部16といい、第1接着層18a及び第2接着層18bを総称する際には単に接着層18といい、第1保護層20a及び第2保護層20bを総称する際には単に保護層20という。
 透明基体12は、絶縁性を有し、かつ透光性が高い材料からなり、例えば、樹脂、ガラス、シリコン等の材料を挙げることができる。樹脂としては、例えば、PET(Polyethylene terephthalate)、PMMA(Polymethyl methacrylate)、PP(Polypropylene)、PS(Polystyrene)等が挙げられる。
 金属細線14は、導電性の高い金属製の細線であれば特に制限的ではなく、例えば、金(Au)、銀(Ag)又は銅(Cu)の線材等からなるものを挙げることができる。金属細線14の線幅は、視認性の点からは細い方が好ましいが、例えば、30μm以下であれば良い。なお、タッチパネル用途では、金属細線14の線幅は0.1μm以上15μm以下が好ましく、1μm以上9μm以下がより好ましく、2μm以上7μm以下がさらに好ましい。
 配線部16(16a,16b)は、メッシュ状に配列したメッシュ配線21(21a,21b)によって形成される配線パターン24(24a,24b)を持つ複数の金属細線14を有する。配線パターン24(24a,24b)は、詳細には、図4(A)及び(B)に示すように、複数の金属細線14同士を互いに交差させて形成された所定の形状の開口部(セル)22(22a,22b)が配列されたメッシュパターンである。
 配線部16(16a及び16b)は、図4(A)及び(B)、並びに図7(A),(C),(E)及び(B),(D),(F)に示すように、金属細線14と、隣接する金属細線14間の開口部(セル)22(22a及び22b)とによるメッシュ形状の配線パターン24(24a及び24b)とを有する配線層28(28a及び28b)からなる。図4に示す例では、配線パターン24a及び24bは、図4(B)に示すように、所定の視点(a:図5(B)参照)に垂直な平面に射影した時の射影パターン23が菱形形状の開口部22を持つ規則的なパターン23となる、図4(A)に示す配線パターン27である。
 上述したように、第1保護層20aは、第1配線部16aの金属細線14を被覆するように、第1接着層18aによって第1配線部16aからなる配線層28aの略全面に接着されている。また、第2保護層20bは、第2配線部16bの金属細線14を被覆するように、第2接着層18bによって第2配線部16bからなる配線層28bの略全面に接着されている。
 ここで、接着層18(第1接着層18a及び第2接着層18b)の材料としては、ウェットラミネート接着剤、ドライラミネート接着剤、又はホットメルト接着剤等が挙げられるが、第1接着層18aの材質と第2接着層18bの材質とは、同一であってもよいし、異なってもよい。
 また、保護層20(第1保護層20a及び第2保護層20b)は、透明基体12と同様に、樹脂、ガラス、シリコンを含む透光性が高い材料からなるが、第1保護層20aの材質と第2保護層20bの材質とは、同一であってもよいし、異なってもよい。
 第1保護層20aの屈折率n1及び第2保護層20bの屈折率n2は、いずれも、透明基体12の屈折率n0に等しいか、これに近い値であるのが好ましい。この場合、第1保護層20aに対する透明基体12の相対屈折率nr1及び第2保護層20bに対する透明基体12の相対屈折率nr2は、共に1に近い値となる。
 ここで、本明細書における屈折率は、波長589.3nm(ナトリウムのD線)の光における屈折率を意味し、例えば樹脂では、国際標準規格であるISO 14782:1999(JIS K 7105に対応)で定義される。また、第1保護層20aに対する透明基体12の相対屈折率nr1は、nr1=(n1/n0)で定義され、第1保護層20bに対する透明基体12の相対屈折率nr2は、nr2=(n2/n0)で定義される。
 ここで、相対屈折率nr1及び相対屈折率nr2は、0.86以上1.15以下の範囲にあればよく、より好ましくは、0.91以上1.08以下である。
 なお、相対屈折率nr1及び相対屈折率nr2の範囲をこの範囲に限定して、透明基体12と保護層20(20a、20b)との部材間の光の透過率を制御することにより、モアレ/ノイズの視認性をより向上させ、改善することができる。
 ここで、導電性フィルム10は、図1及び図5(A)に示すように、表示装置40の表示ユニット30上に所定の凸型の3次元形状で設置されて使用されるものである。導電性フィルム10は、図5(A)に示すように、表示ユニット30上に所定の3次元形状で設置された状態では、平面視で図4(A)に示す3次元形状の配線パターン27(24)を有している。しかし、図5(A)に示すように、導電性フィルム10が表示ユニット30上に所定の3次元形状で設置された状態の表示装置40を、矢印aで示す1つの視点に垂直な平面に射影すると、図5(B)に示すように、導電性フィルム10が表示ユニット30上に射影導電性フィルム10aとして平面形状で設置された状態の射影表示装置40aとなる。その結果、平面視で図4(A)に示す3次元形状の配線パターン27は、平面形状の射影導電性フィルム10aでは、図4(B)に示すように、平面形状の射影配線パターン23としてみることができる。
 なお、表示装置40において、表示ユニット30は、平面形状を有するので、表示装置40の平面形状の表示ユニット30から、射影表示装置40aの平面形状の表示ユニット30への射影は、恒等射影(写像)となり変化しない。したがって、(A)に示す射影前の表示ユニット30のBMパターン38と、図6(B)に示す射影後の表示ユニット30のBMパターン38とは、同じであり、変化していない。なお、BMパターン38は、図6(C)に示すような副画素、例えば、G副画素32gが配列されたパターンである。図6(C)に示す4つの画素32のG副画素32gは、図6(A)に示す平面形状の表示ユニット30のBMパターン38の中央部分の4画素の副画素であり、BMパターン38の画素配列の単位とすることができる。ここでは、G副画素32gのみが示されているが、図示されていないR副画素、及びB副画素も配列されているのは勿論である。
 ここで、本発明においては、平面形状の射影表示装置40aの平面形状の射影導電性フィルム10aの配線部16a及び16bの一方または両方の平面形状の規則的な射影配線パターン23の合成配線パターンは、表示ユニット30のブラックマトリックス(BM:Black Matrix)34のパターン(BMパターン38)に対して、モアレの発生の抑止の点で優れた、即ち、モアレの評価指標が、モアレが視認されない所定閾値以下の合成配線パターンということができる。なお、詳細は後述するが、平面形状の射影定型配線パターンでは、その合成配線パターンは、-3.17以下の所定範囲に入る配線パターンということができる。即ち、平面形状の射影表示装置40aにおける平面形状の射影導電性フィルム10aは、平面形状のBMパターン38に重畳した際にBMパターン38に対してモアレの視認性の点で最適化された合成配線パターンとなる射影配線パターン23を持つ平面形状の導電性フィルムであるということができる。
 図4(A)及び(B)からわかるように、1視点aから見た際に、図4(A)に示す3次元形状の配線パターン24は、図4(B)に示す平面形状の規則的な菱形形状の射影配線パターン23に対して不規則性があることは明らかである。その結果、図4(B)に示す平面形状の射影定型配線パターン23が合成配線パターンとした時にモアレの視認性の点で最適化されていれば、図4(A)に示す3次元形状の配線パターン24は、合成配線パターンとした時にモアレの視認性の点で更に適したものとなることは明らかである。
 したがって、表示装置40における導電性フィルム10は、特に、BMパターン38に3次元形状のままで重畳された状態でもBMパターン38に対してモアレの視認性の点で最適化された合成配線パターンとなる3次元形状の配線パターン24を持つ3次元形状の導電性フィルムであるということができる。
 このように、本発明の3次元形状の導電性フィルムは、平面形状に射影した時、3次元形状の配線パターンから射影された平面形状の射影定型配線パターン含む合成配線パターンが表示ユニットのBMパターンに対してモアレの視認性の点で最適化されているので、表示ユニット30上に3次元形状の導電性フィルムが設置された表示装置においても、モアレが視認されない、即ち、モアレの視認性の点で優れているといえる。
 なお、導電性フィルム10は、図5(B)に矢印aで示す1つの視点に対して、予め表示ユニット30上に設置される3次元形状に仕上げられた配線パターン24を持つように3次元形状に成形されたものであっても良いし、使用前は、視点aに垂直な平面に射影された平面形状の射影配線パターン23を持つ平面形状であって、使用時に表示ユニット30上に設置するために、図5(B)に矢印aで示す1つの視点に対して、配線パターン24となるように、3次元形状に変形される可撓性を有するものであっても良い。なお、射影導電性フィルム10aのような平面形状の導電性フィルム10を使用時に3次元形状にして設置する場合には、導電性フィルム10の透明基体12は、可撓性を有する材料、例えば樹脂材料が好ましい。一方、予め3次元形状に成形しておく場合には、樹脂材料でも良いし、ガラス、シリコン等の材料であっても良い。
 本発明の導電性フィルムは、3次元形状の導電性フィルム10の3次元形状の配線パターン24を1つの視点aに垂直な平面に射影された平面形状の射影配線パターン23を含む合成配線パターンが1視点aにおいてBMパターン38との干渉によって生じるモアレの評価指標が、モアレが視認されない所定閾値以下の範囲に入るものであるが、モアレの評価指標、モアレが視認されない所定閾値や所定閾値以下の範囲、及びモアレの視認性の最適化については、後述する。
 ここでは、導電性フィルム10は、図5(A)に示すように、表示ユニット30の表示面の対応する両側縁辺部において、それぞれ所定の曲率で湾曲する湾曲部13aと、両側の湾曲部13aの間に表示ユニット30の表示面に平行な平面部13bとを有する3次元形状を成すものとするが、導電性フィルム10の3次元形状は、これに限定されず、表示ユニット30の表示面の形状に対応した形状であれば、どのような3次元形状であっても良い。なお、図3に示す例では、紙面に垂直な方向の3次元形状については示されていないが、紙面に垂直な方向に対応する両側縁辺部にも湾曲部13aを備えていても良いし、逆に、紙面に垂直な方向には、同様の断面形状としても良い。この場合、表示ユニット30の表示面は、矩形であるのが好ましいが、特に制限的ではなく、楕円形や円形でも良いし、その他の形状であっても良い。
 また、ここでは、その上に3次元形状の導電性フィルム10が設置された表示ユニット30の表示面を観察する1つの視点は、図5(A)及び(B)に示すように、表示ユニット30の表示面、又は表示面に平行な導電性フィルム10の平面部13bから、好ましくはその中心から、表示面又は平面部13bに垂直に外側に伸びる直線上の点から、即ち、正面から表示面を観察する矢印aで示す視点aとして説明するが、本発明は、これに限定されず、視点aとは異なる視点から観察するものであっても良い。例えば、同じ3次元形状を持つ導電性フィルム10の湾曲部13aを正面として観察する視点であっても良い。
 本発明においては、隣接する金属細線14間の開口部22によるメッシュ形状をなす3次元形状の配線パターン24は、例えば、平面視では図4(A)に示す3次元形状の配線パターン27であるが、視点aに垂直な平面に射影されて、図4(B)に示すような平面形状の射影配線パターン23となる。この平面形状の射影配線パターン23を含む合成配線パターンがBMパターン38との干渉によって生じるモアレの評価指標が、モアレが視認されない又は視認され難い所定閾値以下の範囲に入ることにより、3次元形状の配線パターン24も、BMパターン38との干渉によってモアレが視認されない又は視認され難いものとなる。
 したがって、以下での導電性フィルムの配線パターン及び表示ユニットのBMパターンの説明では、3次元形状の構造等を説明する場合は、導電性フィルム及び配線パターンを3次元形状として説明するが、モアレの評価指標等を説明する場合には、導電性フィルムを平面形状の射影導電性フィルムとして、配線パターンを平面形状の射影配線パターンとして説明する。
 射影導電性フィルム10aの導電部16は、詳細には、複数の金属細線14をメッシュ状に配列した平面形状の射影配線パターン23(図4(B)参照)を有する。この射影配線パターン23においては、開口部22のメッシュ形状は菱形であるが、本発明はこれに限定されず、後述する所定のBMパターン38に対してモアレの視認性が最適化された射影配線パターン23を構成できれば、少なくとも3辺を有する多角形状であれば如何なるものでも良く、また、同一メッシュ形状であっても、異なるメッシュ形状であっても良く、例えば、正三角形、二等辺三角形等の三角形や、正方形、平行四辺形、長方形等の四角形や、五角形や、六角形(正六角形を含む)等の、同一又は異なる多角形等を挙げることができる。即ち、所定のBMパターン38に対してモアレの視認性が最適化された射影配線パターンであれば、規則性のある開口部22の配列によって構成される射影配線パターンでも、異なる形状の開口部22の配列によってランダム化された射影配線パターンでも良い。
 また、射影配線パターン23(配線パターン24)には、後述するように、断線(ブレーク)が入っていてもよい。
 このようなブレークのあるメッシュ状配線パターンの形状としては、本出願人の出願に係る特願2012-276175号明細書に記載の導電性フィルムのメッシュ状配線パターンの形状を適用することができる。
 上述した例では、射影配線パターン23は、規則的な菱形形状の定型配線パターンであるが、本発明はこれに限定されず、この規則的な定型の射影配線パターン23に不規則性(ランダム性)を付与したもの、例えば、開口部22の菱形形状のピッチや角度に所定閾値以下の不規則性を付与したものであっても良いし、開口部22の菱形形状の辺を所定振幅閾値内の波線にすることで辺の形態に不規則性を付与したものであっても良い。
 これらの例は、モアレの視認性(モアレが視認されないこと)の向上のために、規則的な定型の射影配線パターン23を含む合成配線パターンのモアレの評価指標をモアレが視認されない又は視認され難い(以下、視認されないで代表する)所定閾値以下、詳細は後述するが、不規則性付与の場合は、視認性の向上により効果があるので、-2.80以下の範囲内に収めることであるが、本発明はこれに限定されず、ノイズの視認性(ノイズが視認されないこと)の向上のために、ボロノイ多角形やドロネー3角形などからなるランダムな射影配線パターンを含む合成配線パターンのノイズの評価指標を所定閾値以下、モノイズが視認されない所定閾値以下、詳細は後述するが、この場合もランダム性があるので、-2.80以下の範囲内に収めるようにしても良い。
 図7(A)に示す3次元形状の配線パターン27aは、視点aに垂直な平面に射影した時に、図7(B)に示す平面形状の配線パターン23aとなるものである。この平面形状の配線パターン23aは、図4(A)に示す規則的な定型の射影配線パターン23の開口部(セル)22の形状、即ちメッシュ形状に、例えば、菱形形状のピッチに対して所定閾値以下、例えば10%以下、具体的には0%超10%以下の範囲の不規則性を付与したものである。ここで、不規則性を付与するのは、セル22のピッチに限定されず、セル22の角度に対してであっても良い。
 また、 図7(C)に示す3次元形状の配線パターン27bは、視点aに垂直な平面に射影した時に、図7(D)に示す平面形状の配線パターン23bとなるものである。この平面形状の配線パターン23bは、図4(A)に示す規則的な定型の射影配線パターン23のセル22の辺、即ちメッシュを構成する金属細線14を所定振幅閾値内、例えば、具体的には、セルのピッチの2.0%以上20%以下の範囲の振幅を持つ波線に変えた(波線化した)ものである。
 さらに、 図7(F)に示す3次元形状の配線パターン27cは、視点aに垂直な平面に射影した時に、図7(E)に示す平面形状の配線パターン23cとなるものである。この平面形状の配線パターン23cは、1つの平面領域内において任意の間隔で複数の位置に発生させた複数のシード点を基準としてボロノイ図(ボロノイ分割法)に従って決定されたボロノイ多角形からなるセル22を持つ配線パターンを有するもので、BMパターン38に重畳した時に、ノイズの評価指標を所定閾値以下の範囲内に収まるものである。
 上述した例においては、表示装置40の表示ユニット30は平面形状であるが、本発明はこれに限定されるわけではなく、3次元形状の表示ユニットであって良く、特に、表示面が3次元形状である表示ユニットであって良いのは勿論である。
 図8(A)は、それぞれ、共に凸型の3次元形状である導電性フィルムと表示ユニットとを有する本発明の他の実施形態の表示装置を示す概略断面図であり、図8(B)は、図8(A)に示す表示装置を所定に視点に垂直な平面に射影した共に平面形状の射影導電性フィルムと射影表示ユニットとを有する射影表示装置を示す概略断面図である。
 図8(A)に示す表示装置40bは、導電性フィルム10も表示ユニット30aも、共に凸型の3次元形状であり、表示面の形状が所定の凸型の3次元形状の表示ユニット30a上に同様な所定の凸型3次元形状の導電性フィルム10が設置されている。したがって、表示装置40bは、図5(A)に示す表示装置40と、表示ユニット30aの形状が3次元形状である点で異なるが、表示ユニット30a上に設置されている導電性フィルム10の形状は、図5(A)と同様な3次元形状である点で同じである。
 しかし、表示装置40bは、視点aに垂直な平面に射影された状態では、共に平面形状の射影導電性フィルム10aと射影表示ユニット30bとを有する射影表示装置40cとなる。
 したがって、導電性フィルム10は、図8(A)に示す3次元形状の状態では、平面視で図4(A)、図7(A),(C)及び(E)に示す3次元形状の配線パターン27、27a,27b及び27cを持つことができる。また、図8(B)に示すように、視点aに垂直な平面に射影された状態では、射影導電性フィルム10aは、図5(B)と同様に、平面形状となり、図4(B)、図7(B),(D)及び(F)に示す平面形状の射影配線パターン23、23a,23b及び23cを持つことができる。
 一方、図8(A)に示す表示装置40bの3次元形状の表示ユニット30aは、視点aに垂直な平面に射影された状態では、図8(B)に示すように、平面形状の射影表示ユニット30bとなる。このため、図9(A)に示す射影前の表示ユニット30aの3次元形状のBMパターン38aは、平面への射影によって、図9(B)に示す射影後の射影表示ユニット30bの平面形状の射影BMパターン38bとなる。なお、図9(C)に示す4つの画素32のG副画素32gは、図9(A)に示す凸型3次元形状の表示ユニット30aの凸型3次元形状のBMパターン38aの中央の平面又は平面に近い部分の4画素の副画素であり、BMパターン38a及び平面形状の射影BMパターン38bの画素配列の単位となるものである。
 その結果、本発明においては、図4(A)、図7(A),(C)及び(E)に示す3次元形状の配線パターン24(27、27a,27b及び27c)と図9(A)に示す3次元形状のBMパターン38aとのモアレやノイズの視認性を評価するために、図4(B)又は図7(F)に示す平面形状の射影配線パターン23又は23cと、図9(B)に示す平面形状の射影BMパターン38bと、を重畳した時のモアレ又はノイズの評価指標を求め、評価閾値以下である3次元形状の配線パターン24を持つ導電性フィルムを本発明の導電性フィルムとして評価することができる。
 また、図10(A)は、それぞれ、共に3次元形状の導電性フィルムと表示ユニットとを有する本発明の他の実施形態の表示装置を示す概略断面図であり、図10(B)は、図10(A)に示す表示装置を所定に視点に垂直な平面に射影した共に平面形状の射影導電性フィルムと射影表示ユニットとを有する射影表示装置を示す概略断面図である。
 図10(A)に示す表示装置40dは、図8(A)に示す表示装置40bが凸型形状であるのに対して、凹型形状である点で異なるが、導電性フィルム10bも表示ユニット30cも、共に凹型の3次元形状であり、表示面の形状が所定の凹型の3次元形状の表示ユニット30c上に同様な所定の凹型3次元形状の導電性フィルム10bが設置されている。
 このため、表示装置40dは、視点aに垂直な平面に射影された状態では、共に平面形状の射影導電性フィルム10cと射影表示ユニット30dとを有する射影表示装置40eとなる。
 この時、図10(A)に示す表示装置40dの3次元形状の表示ユニット30cは、視点aに垂直な平面に射影された状態では、図10(B)に示すように、平面形状の射影表示ユニット30dとなる。このため、図11(A)に示す射影前の表示ユニット30cの3次元形状のBMパターン38cは、平面への射影によって、図11(B)に示す射影後の射影表示ユニット30dの平面形状の射影BMパターン38dとなる。なお、図11(C)に示す4つの画素32のG副画素32gは、図11(A)に示す凹型3次元形状の表示ユニット30aの凹型3次元形状のBMパターン38cの中央の平面又は平面に近い部分の4画素の副画素であり、BMパターン38c及び平面形状の射影BMパターン38dの画素配列の単位となるものである。
 その結果、本発明においては、図示しないが、導電性フィルム10bの3次元形状の配線パターンと図11(A)に示す3次元形状のBMパターン38cとのモアレやノイズの視認性を評価するために、図4(B)又は図7(F)に示す平面形状の射影配線パターン23又は23cと、図11(B)に示す平面形状の射影BMパターン38dと、を重畳した時のモアレ又はノイズの評価指標を求め、評価閾値以下である3次元形状の配線パターン24を持つ導電性フィルムを本発明の導電性フィルムとして評価することができる。
 図3に示す実施の形態の導電性フィルム10では、透明基体12の上側及び下側の両側の配線部16(16a及び16b)は、いずれも複数の金属細線14を備える電極部となっているが、本発明はこれに限定されず、第1及び第2配線部16a及び16bの少なくとも一方を電極部と非電極部(ダミー電極部)とによって構成しても良い。
 図12は、本発明の第2の実施形態に係る導電性フィルムの一例を示す模式的部分断面図である。なお、本第2の実施形態の導電性フィルムの3次元形状の配線パターンは、上述した第1の実施形態の導電性フィルムの3次元形状の配線パターンと同様であるのでここでは説明を省略する。
 同図に示すように、本第2の実施形態の導電性フィルム11は、透明基体12の一方(図12の上側)の面に形成された第1電極部17a及びダミー電極部26からなる第1配線部16aと、透明基体12の他方(図12の下側)の面に形成された第2電極部17bからなる第2配線部16bと、第1電極部17a及びダミー電極部26からなる第1配線部16aの略全面に第1接着層18aを介して接着された第1保護層20aと、第2電極部17bからなる第2配線部16bの略全面に第2接着層18bを介して接着された第2保護層20bとを有する。
 導電性フィルム11においては、第1電極部17a及びダミー電極部26は、それぞれ複数の金属細線14からなり、共に、透明基体12の一方(図12の上側)の面に配線層28aとして形成され、第2電極部17bは、複数の金属細線14からなり、透明基体12の他方(図12下側)の面に配線層28bとして形成されている。ここで、ダミー電極部26は、第1電極部17aと同様に、透明基体12の一方(図12の上側)の面に形成されるが、図示例のように、他方(図12の下側)の面に形成された第2電極部17bの複数の金属細線14に対応する位置に同様に配列された複数の金属細線14からなる。
 ダミー電極部26は、第1電極部17aと所定間隔だけ離間して配置されており、第1電極部17aと電気的に絶縁された状態下にある。
 本実施形態の導電性フィルム11においては、透明基体12の一方(図12の上側)の面にも、透明基体12の他方(図12の下側)の面に形成されている第2電極部17bの複数の金属細線14に対応する複数の金属細線14からなるダミー電極部26を形成しているので、透明基体12の一方(図12の上側)の面での金属細線による散乱を制御することができ、電極視認性を改善することができる。
 ここで、配線層28aの第1電極部17a及びダミー電極部26は、金属細線14と開口部22によるメッシュ状の配線パターン24aとを有する。また、配線層28bの第2電極部17bは、第1電極部17aと同様に、金属細線14と開口部22によるメッシュ状の配線パターン24bを有する。上述したように、透明基体12は絶縁性材料からなり、第2電極部17bは、第1電極部17a及びダミー電極部26と電気的に絶縁された状態下にある。
 なお、第1、第2電極部17a、17b及びダミー電極部26は、それぞれ図3に示す導電性フィルム10の配線部16と同様の材料で同様に形成することができる。
 なお、第1保護層20aは、第1配線部16aの第1電極部17a及びダミー電極部26のそれぞれの金属細線14を被覆するように、第1接着層18aによって第1電極部17a及びダミー電極部26からなる配線層28aの略全面に接着されている。
 また、第2保護層20bは、第2配線部16bの第2電極部17bの金属細線14を被覆するように、第2接着層18bによって第2電極部17bからなる配線層28bの略全面に接着されている。
 なお、図12に示す導電性フィルム11の第1及び第2接着層18a及び18b、並びに第1及び第2保護層20a及び20bは、図3に示す導電性フィルム10と同様であるので、その説明は省略する。
 なお、本実施形態の導電性フィルム11では、第2電極部17bを備える第2配線部16bは、ダミー電極部を有していないが、本発明はこれに限定されず、第2配線部16bにおいて、第1配線部16aの第1電極部17aに対応する位置に、第1電極部17aから所定間隔だけ離間して、第2電極部17bと電気的絶縁された状態下にある、金属細線14からなるダミー電極部を配置しても良い。
 本実施形態の導電性フィルム11においても、上記第1配線部16aにダミー電極部26aを設け、また、第2配線部16bにこのようなダミー電極部を設けることにより、第1配線部16aの第1電極部17aと第2配線部16bの第2電極部17bの各メッシュ配線を対応して配置することができるので、透明基体12の一方(例えば、図12の上側又は下側)の面での金属細線による散乱を制御することができ、電極視認性を改善することができる。
 図3及び図12に示す第1及び第2の実施形態の導電性フィルム10及び11では、透明基体12の上側及び下側の両側に、それぞれ配線部16(16a及び16b)が形成されているが、本発明はこれに限定されず、図13に示す本発明の第3の実施形態の導電性フィルム11Aのように、透明基体12の一方の面(図13中上側の面)に複数の金属細線14からなる配線部16を形成し、配線部16の略全面に、金属細線14を被覆するように、接着層18を介して保護層20を接着した導電性フィルム要素を2つ重ねる構造としても良い。
 図13に示す本発明の第3の実施形態の導電性フィルム11Aは、図13中、下側の透明基体12bと、この透明基体12bの上側面に形成された複数の金属細線14からなる第2配線部16bと、第2配線部16b上に第2接着層18bを介して接着される第2保護層20bと、第2保護層20b上に、例えば接着剤等により接着されて配置される上側の透明基体12aと、この透明基体12aの上側面に形成された複数の金属細線14からなる第1配線部16aと、第1配線部16a上に接着層18aを介して接着される保護層20aとを有する。
 次に、図3、図12及び図13に示す第1、第2及び第3の実施形態の導電性フィルム10、11及び11Aでは、配線部16(16a及び16b)をそれぞれ構成する複数の金属細線14からなる配線パターン24(24a及び24b)は、3次元形状である。しかし、配線パターン24のBMパターン38との干渉によるモアレやノイズの視認性評価による配線パターン24の最適化については、平面に射影された平面形状の射影配線パターン、例えば射影配線パターン23、23a、23b、又は23c等を用いるので、以下の説明では、配線パターン24(24a及び24b)は、平面に射影された平面形状の射影配線パターン、例えば射影配線パターン23、23a、23b、又は23c等のような平面形状の配線パターンであるとして説明する。
 本発明の一実施形態においては、配線パターン24a及び24bの一方、又は両方の配線パターン24は、図14に示すように、同一形状の菱形の開口部22が複数個規則的に繰り返される規則性のある菱形の配線パターン、いわゆる定型配線パターン25であるのが好ましい。なお、この定型配線パターン25は、図4(B)に示す射影配線パターン23の部分拡大図である。
 また、本発明の他の実施形態においては、上記一方、又は両方の配線パターン24は、図15に示すように、平面視で互いに所定の角度が保存され、ピッチ(従ってサイズ)が異なる平行四辺形の形状を持つ開口部22が所定の角度をなす2方向に複数個連続して繋がった不規則性が付与された不規則な配線パターン、いわゆるランダムパターン25a(図7(B)参照)であっても良い。なお、このランダムパターン25aは、図7(B)に示す射影配線パターン23aの部分拡大図である。
 ここで、図15に示すランダムパターン25aは、図14に示すような定型配線パターン25の開口部22の菱形形状のピッチに対して、角度を保存したまま、所定範囲の不規則性(ランダム性)を付与したものである。
 ここで、ランダムパターン25aにおいて、定型配線パターン25の開口部22の菱形形状に対して、角度を保存したまま付与される不規則性の所定範囲は、0%超10%以下であるのが好ましく、2%~10%であるのがより好ましく、更に好ましくは、2%~8%である。
 また、ランダムパターン25aにおいて、規則的な定型配線パターン25の開口部22の菱形形状のピッチに対して付与する不規則性は、上述した範囲を満足するものであれば、特に制限的ではなく、いかなるものであっても良いが、例えば、不規則性の分布は、正規分布であっても、一様分布であっても良い。
 また、本発明の他の実施形態においては、上記一方、又は両方の配線パターン24は、図16に示すように、平面視で対向する2辺の一方が他方に対して傾斜し、互いに平行とならないように菱形から変形した矩形の形状を持つ開口部22が所定の2方向に複数個連続して繋がった不規則な配線パターン、いわゆるランダムパターン25bである。したがって、上記配線パターン24は、隣接する矩形形状の複数の開口部22において、角度が変化して保存されないランダムパターンであり、その結果、角度の変化に伴ってピッチ又は辺の長さも変化して保存されないランダムパターン25bであっても良い。
 なお、上記配線パターン24は、図16に示すように、隣接する複数の開口部22のメッシュ形状の角度が異なり、その結果、ピッチ又は辺の長さも異なる矩形である不規則性が付与された配線パターン、いわゆるランダムパターン25bを有するものである。
 ここで、図16に示すランダムパターン25bは、図14に示すような定型配線パターン25の開口部22の菱形形状の角度に対して、所定範囲の不規則性(ランダム性)を付与したものである。
 ここで、ランダムパターン25bにおいて、定型配線パターン25の開口部22の菱形形状の角度に対して付与される不規則性の所定範囲は、0%超3%以下であるのが好ましく、0.2%~3%であるのがより好ましく、更に好ましくは、0.5%~3%である。
 また、ランダムパターン25bにおいて、規則的な定型配線パターン25の開口部22の菱形形状の角度に対して付与する不規則性は、上述した範囲を満足するものであれば、特に制限的ではなく、いかなるものであっても良いが、例えば、不規則性の分布は、正規分布であっても、一様分布であっても良い。
 また、本発明の他の実施形態においては、上記一方、又は両方の配線パターン24は、図17に示すように、多角形、図示例では菱形の形状となる開口部22を構成する辺、即ち複数の金属細線14を波線化することによって不規則性が付与された配線パターン、即ち金属細線14の波線化によってランダム化されたランダムパターン25cであっても良い。なお、このランダムパターン25cは、図7(D)に示す射影配線パターン23bの部分拡大図である。
 このランダムパターン25cは、波線形状の金属細線14の波線の中心線が多角形、図示例では菱形の形状となる開口部22が、金属細線14が交差する所定の2方向に連続して繋がった配線パターンである。
 なお、図17に示すランダムパターン25cは、金属細線14を波線化することにより隣接する複数の開口部22のメッシュ形状に不規則性が付与された配線パターン、いわゆるランダムパターン25cを有するものである。
 図17に示すランダムパターン25cは、図14に示すような定型配線パターン25を構成する金属細線14を波線形状にすることによりぼかして、メッシュに対して所定範囲の不規則性(ランダム性)を付与したものである。
 配線パターン24を、このように、メッシュを波線にしてランダム性を付与したランダムパターン25cとすることにより、モアレの強度を減衰させることができる。
 ここで、上述したランダムパターン25cにおいては、メッシュ配線21は、図18に示すような波線形状の金属細線14によって構成される。なお、図18には、波線の説明のため、一方向に延びる金属細線14の2本の波線L1及びL2を示す。このような図18に示す波線L1及びL2は、図14に示す規則性のある定型配線パターン25の金属細線14の直線L1及びL2を波線形状に変形させたものであり、図17に示すランダムパターン25cの金属細線14の波線L1及びL2をその延在方向に位相差を与えて並べたものということができる。
 図18に示すように、波線L1及びL2は、三角関数、例えば正弦波で表す、又は近似することができ、正弦波の振幅をA、波長をλ、及び位相をαで定義することができる。
 なお、図18において、例えば、波線L1を基準にして、正弦波で表すと、波線L1は、Y=Asin(2π/λ)Xで表すことができ、波線L2は、位相差がαであるので、Y=Asin{(2π/λ)(x-α)}で表すことができる。
 ここで、振幅Aは、正弦波の係数に相当する。また、波長λは、周期の長さに相当する。また、位相αは、隣り合う波線L1とL2との間の描画開始点のずれ(シフト)量に相当する。
 このように表される金属細線14の波線のランダム性(不規則性)は、図14に示す規則性のある定型配線パターン25のピッチpに対する振幅A、波長λ、及び位相αの割合(百分率%)で定義することができる。例えば100μmのダイヤモンドメッシュパターンに、波長λ、位相(線毎)α、振幅(波長毎)A、それぞれに10%のランダム性を付与した場合は、それぞれ、90~110μmと、90~110μm、0~10μmの範囲で変化する。
 本発明においては、図14に示す規則性のある定型配線パターン25に対して金属細線14を波線化して得られたランダムパターン25cは、そのランダム性が、波線の振幅Aにおいて、振幅閾値内、好ましくは20%以下、より好ましくは2.0%以上20%以下であることを満足するのが良い。このランダム性を満足するランダムパターン25cを有する導電性フィルム10は、表示ユニット30のBMパターン38に重畳した際に、モアレが視認されないモアレの視認性に優れたものであるということができる。
 なお、本発明においては、波線のランダム性は、上述した範囲を満足するものであれば、特に制限的ではなく、いかなるものであっても良い。
 なお、詳細は、後述するが、本発明の導電性フィルム10は、射影配線パターンにおいて、上側及び下側の配線パターン24a及び24bの合成配線パターン24とした時に、表示ユニット30のBMパターン38の所定の明度(明度画像データ)に対してモアレの視認性の点で最適化された規則的な多角形の開口部(セル)22を持つ定型配線パターン、例えば、規則的な菱形のセル22を持つ定型配線パターン25、又はモアレの視認性の点で最適化されていてもいなくても、定型配線パターンのセル22の規則的な多角形の形状、例えば菱形の形状に対して不規則性を付与(ランダム化)することによって最適化された任意の多角形の形状、例えば、平行四辺形等の配線パターン、例えば、ランダムパターン25a,25b及び25cを持つものである。ここで、不規則性(ランダム性)は、例えば、定型配線パターン25のセル22の多角形(例えば、菱形)の形状に対して、角度を保存してピッチのみに付与されるものであっても良いし、角度に付与されるものであっても良いし、多角形の辺、例えば菱形の辺(この辺を構成する金属細線14)を波線化によって付与されるものであっても良い。
 なお、本発明では、所定の明度のBMパターンに対してモアレの視認性の点で最適化された多角形の開口部(セル)22からなる配線パターンとは、合成配線パターン24とした時に、所定の明度のBMパターン38に対してモアレが人間の視覚に知覚されない1又は2以上の1群の定型配線パターン、又は不規則性を付与されたランダム配線パターン(以下、単に、ランダムパターンという)を言う。
 まず、定型配線パターン25は、合成配線パターン24とした時に、表示ユニット30のBMパターン38の所定の明度(明度画像データ)に対してモアレの視認性の点で最適化された多角形(例えば、菱形)の配線パターンである。
 この定型配線パターン25は、その透過率画像データから得られる合成配線パターン24の合成画像データと、ディスプレイ40の複数色の光をそれぞれ点灯した時の各色のBMパターン38の明度画像データと、から求められるモアレの評価指標が所定評価閾値以下、好ましくは常用対数で-3.17以下となる配線パターンである。なお、合成配線パターン24は、定型配線パターン25を上側及び下側の配線パターン24a及び24bの一方または両方に用いて重ね合わせた配線パターンである。
 この定型配線パターン25は、それ自体で、所定発光強度のディスプレイ40の表示画面に重畳して、十分にモアレの発生を抑制でき、視認性を向上させることができる、表示ユニット30の所定の明度のBMパターン38に対してモアレの視認性の点で最適化された多角形(例えば、菱形)の配線パターンであるということができる。
 次に、ランダムパターン25a,25b及び25cは、いずれも、モアレの視認性の点で最適化されていてもいなくても、定型配線パターンに対して不規則性を付与することによって最適化された多角形(例えば、平行四辺形)の配線パターンである。
 これらのランダムパターン25a、25b及び25cは、ランダム性が付与されていない(付与する前の)定型配線パターンの透過率画像データから得られる合成配線パターン24の合成画像データと、ディスプレイ40の複数色の光をそれぞれ点灯した時の各色のBMパターン38の明度画像データと、から求められるモアレの評価指標が所定評価閾値以下、好ましくは常用対数で-2.80以下、より好ましくは-3.17となる配線パターンである。即ち、ランダムパターン25a、25b及び25cにおいては、ランダム性を付与する前の定型配線パターンが、モアレの視認性の点で最適化された定型配線パターン25であるのがより好ましい。
 本発明では、合成配線パターン24のランダム化により、ランダムパターン25a,25b、又は25cからなる合成配線パターン24に必要とされるモアレの評価指標の評価閾値は、定型配線パターン25からなる合成配線パターン24に必要とされるモアレの評価指標の評価閾値である-3.17よりも低い、-2.80とすることができ、ランダム化前の状態として、最適化に近い、不規則性を付与するのに適した適格化状態とすることができる。
 このように、最適化に近い適格化状態の、特に好ましくは、最適化された定型配線(メッシュ)パターンに対して、例えばセル22のピッチ又は角度に対して所定の不規則性を付与することで、もしくはセル22の辺(金属細線14)の波線化による所定の不規則性を付与することで、ロバストな配線パターンを生成することができる。
 本発明において、最表示ユニットの所定の明度のBMパターンに対してモアレの視認性の点で最適化に近い適格化状態の、特に好ましくは、最適化された多角形の定型配線パターンに対して所定の不規則性を付与する理由は、最適化に近い適格化状態の、特に好ましくは、最適化された定型配線パターンは既に画質がかなり又は十分に良好であるが、不規則性(ランダム性)を付与することにより、さらなる画質の改善を図ることができ、いずれも満足できる画質となるからである。
 また、このような定型配線パターン25、並びにランダムパターン25a、25b及び25cには、開口部22を構成する金属細線14の辺(メッシュ配線21)に断線(ブレーク)が入っていてもよい。このようなブレークのあるメッシュ状配線パターンの形状としては、本出願人の出願に係る特願2012-276175号明細書に記載の導電性フィルムのメッシュ状配線パターンの形状を適用することができる。
 図3に示す実施の形態の導電性フィルム10では、図3中、透明基体12の上側(観察側)の第1配線部16aの複数の金属細線14も、下側(ディスプレイ側)の第2配線部16bの複数の金属細線14も、射影配線パターンにおいて、図4(B)及び図14に示す定型配線パターン25、若しくは図7(B)及び図15、図16、又は図7(D)及び図17に示す、不規則性が付与されたランダムパターン25a、25b又は25cをそれぞれ配線パターン24a及び24bとして有している。
 即ち、両配線部16a及び16bの両方の複数の金属細線14が、配線パターン24a及び24bとして、共に図14に示す定型配線パターン25を有している場合には、図19に示すように、配線パターン24a及び24bの重ね合わせによる合成配線パターン24が構成される。
 なお、図19及び以下に示す図20~図25では、理解しやすいように、上側の配線パターン24aを構成する複数の金属細線14を太線で、下側の配線パターン24bを構成する複数の金属細線14を細線で示しているが、太線及び細線の幅は、金属細線14の線幅を表すものではないことは勿論であり、同じであっても、異なっていても良い。
 また、両方の複数の金属細線14が、配線パターン24a及び24bとして、共に図15~図17にそれぞれ示すランダムパターン25a、25b及び25cのいずれか1つを有している場合には、図20、図22、又は図24に示すように、不規則性が付与された上下の配線パターン24a及び24bの重ね合わせによる不規則性が付与された合成配線パターン24が構成される。
 上述した図19、図20、図22、及び図24に示す例では、それぞれ、第1及び第2の配線部16a及び16bを、共に図14~図17に示すような定型配線パターン25、不規則性が付与されたランダムパターン25a、25b及び25cのいずれか1つを持つ複数の金属細線で構成しているが、本発明はこれに限定されず、いずれか一方の配線部16の少なくとも一部に、図15~図17に示すように、不規則性が付与(ランダム化)されたランダムパターン25a、25b及び25cのいずれか1つを持つ複数の金属細線を有していればよい。
 このように、導電性フィルムの上側又は下側の配線部16(配線部16a又は16b)の全部又は一部の金属細線を、ランダムパターン25a、25b及び25cのいずれか1つで構成することにより、両配線部16の配線パターンの重ね合わせによって合成されたメッシュ状合成配線パターンをランダム化して、メッシュ状配線パターンを透過してくる光をランダムにすることができ、 規則性のある配線パターンとディスプレイの干渉によるモアレの視認性を改善することができる。
 例えば、図21、図23及び図25に示すように、第1及び第2の配線部16a及び16bを、異なる配線パターンを持つ複数の金属細線で構成しても良い。図21、図23及び図25に示す例では、透明基体12の上側の第1配線部16aを、それぞれ、図15、図16及び図17に示すランダムパターン25a、25b及び25cを持つ複数の金属細線14で構成し、透明基体12の下側の第2配線部16bを、図14に示す規則的な定型配線パターン25を持つ複数の金属細線14で構成しているが、逆に、第1配線部16aを、定型配線パターン25を持つ複数の金属細線14で、第2配線部16bを、ランダムパターン25a、25b及び25cのいずれかを持つ複数の金属細線14で構成しても良い。こうして、不規則性が付与されたランダムパターン25a、25b及び25cのいずれかと定型配線パターン25との重ね合わせによる合成配線パターンに不規則性を付与することができる。
 上述した例では、異なる配線パターンの合成配線パターンを、ランダムパターン25a、25b及び25cのいずれかと定型配線パターン25との重ね合わせにより形成しているが、不規則性が異なる2つのランダムパターンとして、不規則性の種類が異なる、例えば、セル22の形状が異なるランダムパターン25aと25bや、ランダムパターン25bと25cや、ランダムパターン25cと25aとの重ね合わせにより形成しても良い。さらに、不規則性の異なるランダムパターンとして、同一種類の不規則性を持つもので、不規則性のサイズ(大きさ)、例えば、セル22のピッチ及び角度の一方または両方が異なる2つのランダムパターンを用いても良いし、セル22を波線化する際の波線の振幅、波長(周期)、位相の少なくとも1つが異なる2つのランダムパターンを用いても良い。
 また、図26に示すように、第1及び第2の配線部16a及び16bの少なくとも一方の複数の金属細線14を、上述したように、断線(ブレーク)によって、配線層28を構成する電極部17と、ダミー電極部(非電極部)26とに分断し、電極部17及びダミー電極部26のいずれか一方を、図14に示す規則的な定型配線パターン25を持つ複数の金属細線14で構成し、他方を、図15に示す不規則性が付与されたランダムパターン25aを持つ複数の金属細線14で構成して、図12に示すような本発明の第2の実施形態の導電性フィルム11のような形態としても良い。こうして、定型配線パターン25とランダムパターン25aとの組み合わせと、定型配線パターン25、又はランダムパターン25aとの重ね合わせによる合成配線パターン、又は定型配線パターン25とランダムパターン25aとの組み合わせ同士の重ね合わせによって、合成配線パターンに不規則性を付与することができる。
 なお、図26においては、透明基体12の上側の第1配線部16aを断線(ブレーク)によって電極部17aと、その両側の2つのダミー電極部26に分断し、2つのダミー電極部26を、図15に示すランダムパターン25aを持つ複数の金属細線14で構成し、電極部17aを、図14に示す定型配線パターン25を持つ複数の金属細線14で構成しているが、逆に構成しても良いのはもちろんである。
 さらに、2つのダミー電極部26を、ランダムパターン25aの代わりに、ランダムパターン25b及び25cのいずれかを持つ複数の金属細線14で構成しても良い。また、電極部17aを、定型配線パターン25の代わりに、2つのダミー電極部26のランダムパターンと不規則性(種類、サイズ等)が異なるランダムパターンを持つ複数の金属細線14で構成しても良い。
 なお、上述した例、例えば、図19~図25に示す例においては、第1配線部16a及び第2配線部16bの両方を複数の金属細線14で構成しているが、本発明は、これに限定されず、一方の配線部を、複数の金属細線14の代わりに、ITO(Indium Tin Oxide:酸化インジウムスズ(スズドープ酸化インジウム))等の透明導電膜によるパターン化された配線で構成しても良い。
 例えば、図19、図21、図23及び図25に示す例やその逆の例などにおいては、第1配線部16a及び第2配線部16bの一方の規則的な定型配線パターン25を持つ複数の金属細線14の代わりに、ITOによるパターン化された配線を用いても良い。
 また、図26に示すように、第1配線部16a及び第2配線部16bの一方が、断線(ブレーク)によって電極部17aとその両側の2つのダミー電極部26に分断され、電極部17a及びダミー電極部26の一方がランダムパターンを持つ複数の金属細線14で構成されている場合には、他方の配線部を構成する複数の金属細線14の代わりに、ITOによるパターン化された配線を用いても良い。
 また、本発明の他の実施形態は、不規則なメッシュ状のランダムパターン(以下、ランダムメッシュパターンという)とディスプレイ画素配列(BM)パターンの重畳で視認されるノイズを抑制するため、ディスプレイに組み合わせるためのランダムメッシュパターンを持つ導電性フィルムを提供するものであっても良い。ここで、本実施形態に用いられるランダムメッシュパターンとしては、少なくとも2種類の異なる開口形状を有し、その頂点の数は少なくとも2種類となる不規則なパターンとして定義することができる。
 ところで、ディスプレイとランダムメッシュパターンとで視認されるノイズを定量化し、その定量値が閾値以下となる組み合わせにおいては、ノイズは視認されることはない。したがって、本実施形態においては、ランダムメッシュパターンとしては、上記のように定義できるが、ディスプレイのBMパターン及びランダムメッシュパターンを定量化し、これらの定量値から視認されるノイズを定量化する必要がある。
 そのため、本実施形態においては、先ず、複数の特徴の異なる不規則なメッシュパターンを想定し、透過率画像を作成している。次に、この透過率画像から得られる高速フーリエ変換(FFT)スペクトルと、ディスプレイから得られるFFTスペクトルの畳み込み演算を行っている。ここで、得られた演算結果に視覚伝達関数を作用させた積算値がノイズ視認性定量値に相当し、この段階で、ノイズ視認性定量値、及びノイズシミュレーション画像が得られる。得られた画像を評価することにより、視認性として許容できるノイズ視認性を決定することができ、本発明の導電性フィルム及びその評価方法を提供することができる。
 また、本実施形態においては、配線パターン24a及び24bの一方、又は両方の配線パターン24は、図27に示すように、複数の金属細線で形成される開口部がランダムな多角形とからなることで不規則性が付与された配線パターン、即ちランダムメッシュパターン25dであっても良い。このランダムメッシュパターン25dは、ノイズの視認性に優れた配線パターンであるが、金属細線14によって形成される開口部22の形状が、異なる2種類以上の開口形状であり、その頂点の数が2種類以上となるランダムな多角形状となるものであれば、どのようなランダムメッシュパターンであっても良い。なお、このランダムメッシュパターン25dは、図7(F)に示す射影配線パターン23cの部分拡大図である。
 なお、図3に示す例においては、配線パターン24は、配線パターン24a及び24bとして、図27に示すようランダムメッシュパターン25dを有するものである。
 ここで、図27に示す不規則性が付与された配線パターンであるランダムメッシュパターン25dは、図28に示すような1つの平面領域100内において任意の間隔で複数の位置に存在する複数のシード点pを基準としてボロノイ図(ボロノイ分割法)に従って決定されたボロノイ多角形からなる開口部22を持つ配線形状を有する。
 図28は、図27に示すランダムメッシュパターンを形成するボロノイ多角形を生成させるために、1つの平面領域100内において任意の間隔で無作為に選択された複数の位置にドットを発生させて複数のシード点pとしたドット切り出し画像を示す。
 図27に示すランダムメッシュパターン25dにおいては、ボロノイ図(ボロノイ分割法)に従って図28に示す複数のシード点pをそれぞれ囲繞する複数のランダムな多角形の領域、すなわち複数のボロノイ多角形の領域がそれぞれ画定されている。ここで、ボロノイ図により区画された複数のボロノイ多角形の領域は、シード点pが最も近接する点である点の集合体であることを示している。ここで、距離関数としてユークリッド距離を用いたが、種々の関数を用いてもよい。
 なお、本発明において用いられるランダムメッシュパターンとして、図28に示す複数のシード点を基準として、ドロネー図(ドロネー三角形分割法)に従って決定されたドロネー三角形からなる開口部22を持つ配線形状を有するランダムメッシュパターン(図示せず)を用いても良い。ドロネー三角形分割法とは、複数のシード点pのうち、隣接するシード点同士を繋いで三角形状の領域を画定する方法である。これにより、例えば、複数のシード点のいずれかを頂点とする複数のドロネー三角形の領域をそれぞれ画定することができる。
 また、本発明において用いられるランダムメッシュパターンとしては、上記のボロノイ多角形やドロネー三角形等の開口部(セル)の形状を持つランダムメッシュパターンに限定されず、ランダムメッシュパターンであれば、どのようなものであっても良い。例えば、菱形などの正多角形の規則的な定型パターンのピッチや角度等を数%、例えば10%以下ランダム化したランダムメッシュパターン等であっても良い。
 なお、詳細は、後述するが、本発明の導電性フィルム10は、上側及び下側の配線パターン24a及び24bの合成配線パターン24とした時に、表示ユニット30のBMパターン38の所定の明度(明度画像データ)に対してノイズ視認性の点で最適化されたランダムメッシュパターンを持つものである。なお、本発明では、所定の明度のBMパターンに対してノイズ視認性の点で最適化されたランダムメッシュパターンとは、合成配線パターン24とした時に、所定の明度のBMパターン38に対してノイズが人間の視覚に知覚されない1又は2以上の1群の菱形の配線パターンを言う。
 したがって、図27に示すランダムメッシュパターン25dは、合成配線パターン24とした時に、表示ユニットのBMパターンの所定の明度(明度画像データ)に対してノイズ視認性の点で最適化されたランダムメッシュパターンであり、ランダムメッシュパターン25dの透過率画像データが上側及び下側の配線パターン24a及び24bとして重ねあわされた合成配線パターン24の合成画像データと、ディスプレイの複数色の光をそれぞれ点灯した時の各色のBMパターンの明度画像データとから求められるノイズの評価指標が所定評価閾値以下となるランダムメッシュパターンであり、それ自体で、所定発光強度のディスプレイの表示画面に重畳して、十分にノイズの発生を抑制でき、視認性を向上させることができる、表示ユニットの所定の明度のBMパターンに対してノイズ視認性の点で最適化されたランダムメッシュパターンであるということができる。
 なお、このような最適化されたランダムメッシュパターン25dには、上述したように、開口部22を構成する金属細線14の辺(メッシュ配線21)に断線(ブレーク)が入っていてもよい。
 図3に示す実施の形態の導電性フィルム10では、図3中、透明基体12の上側(観察側)の第1配線部16aの複数の金属細線14も、下側(ディスプレイ側)の第2配線部16bの複数の金属細線14も、図27に示す不規則性が付与されたランダムメッシュパターン25dをそれぞれ配線パターン24a及び24bとして有し、図29に示すように、上下の不規則性が付与された配線パターン24a及び24bの重ね合わせによる不規則性が付与された合成配線パターン24を構成する。なお、図29及び後述する図30でも、理解しやすいように、上側の配線パターン24aを構成する複数の金属細線14を太線で、下側の配線パターン24bを構成する複数の金属細線14を細線で示しているが、太線及び細線の幅は、金属細線14の線幅を表すものではないことは勿論であり、同じであっても、異なっていても良い。
 即ち、図3に示す例では、第1及び第2の配線部16a及び16bを、共に、図27に示すような不規則性が付与されたランダムメッシュパターン25dを持つ複数の金属細線で構成しているが、本発明はこれに限定されず、いずれか一方の配線部16の少なくとも一部に図27に示す不規則性が付与されたランダムメッシュパターン25dを持つ複数の金属細線を有していればよい。
 このように、導電性フィルムの上側又は下側の配線部16(配線部16a又は16b)の全部又は一部の金属細線を不規則性が付与(ランダム化)されたランダムメッシュパターン25dで構成することにより、両配線部16の配線パターンの重ね合わせによって合成されたメッシュ状配線パターンをランダム化して、メッシュ状配線パターンを透過してくる光をランダムにすることができ、配線パターンとディスプレイの干渉によるノイズ視認性を改善することができる。
 例えば、図30に示すように、第1及び第2の配線部16a及び16bを、異なる配線パターンを持つ複数の金属細線で構成しても良い。図5に示す例では、透明基体12の上側の第1配線部16aを、図27に示す不規則性が付与されたランダムメッシュパターン25dを持つ複数の金属細線14で構成し、透明基体12の下側の第2配線部16bを、上述したように、図14に示す菱形形状の開口部からなる規則的な定型配線パターン25を持つ複数の金属細線14で構成しているが、逆に、第1配線部16aを、定型配線パターン25を持つ複数の金属細線14で、第2配線部16bを、ランダムメッシュパターン25dを持つ複数の金属細線14で構成しても良い。こうして、ランダムメッシュパターン25dと規則的な定型配線パターン25との重ね合わせによる合成配線パターンに不規則性を付与することができる。
 なお、図26に示すブレークによって電極17とその両側に分断された2つのダミー電極部(非電極部)26の電極パターンを、図15に示すランダムパターン25aに代えて、図27に示すランダムメッシュパターン25dを用いても良いし、又は、図14に示す定型配線パターン25に変えた上で、図26に示す電極部17の電極パターンを、図14に示す定型配線パターン25に代えて、図27に示すランダムメッシュパターン25dを用いても良い。
 なお、図30に示す例においては、上述の図21、図23及び図25に示す場合と同様に、一方の配線部を、複数の金属細線14の代わりに、ITO(Indium Tin Oxide:酸化インジウムスズ(スズドープ酸化インジウム))等の透明導電膜によるパターン化された配線で構成しても良い。
 例えば、図30に示す例やその逆の例などにおいては、第1配線部16a及び第2配線部16bの一方の規則的な定型パターン25bを持つ複数の金属細線14の代わりに、ITOによるパターン化された配線を用いても良い。
 また、上述したように、第1配線部16a及び第2配線部16bの一方が、断線(ブレーク)によって電極部17aとその両側の2つのダミー電極部26に分断され、電極部17a及びダミー電極部26の一方がランダムメッシュパターンを持つ複数の金属細線14で構成されている場合には、他方の配線部を構成する複数の金属細線14の代わりに、ITOによるパターン化された配線を用いても良い。
 上述した本発明の第1、第2及び第3の実施形態の導電性フィルム10、11及び11Aは、例えば、図2に模式的に示す表示ユニット30(ディスプレイ)のタッチパネル(44:図1参照)に適用されるが、少なくとも1視点、例えば視点aにおいて、導電性フィルムと表示ユニットとの両者を視点aに垂直な平面に射影した時、ディスプレイの発光強度に依存する各色の画素配列(BM)パターンの明度値に対して合成配線パターンとした時に、モアレの視認性の点で最適化された配線パターン、例えば、規則的な定型配線パターン、又はこの定型配線パターンに対して不規則性が付与された不規則配線(ランダム)パターンを持つもの、あるいは、ノイズ視認性の点で最適化された不規則配線(ランダムメッシュ)パターンを持つものである。
 なお、本発明では、ディスプレイの発光強度に依存する各色のBMパターンの明度値に対して、合成配線パターンとした時に、モアレの視認性、又はノイズ視認性の点で、最適化された配線パターン(例えば、定型配線パターン、ランダムパターン、ランダムメッシュパターン)とは、少なくとも1視点において、ディスプレイの複数の副画素の各色の光を単独で点灯した時にいずれにおいても、当該色のBMパターンに対して合成配線パターンとした時に、モアレ、又はノイズが人間の視覚に知覚されない1又は2以上の1群のメッシュ配線パターン(例えば、定型配線パターン、ランダムパターン、ランダムメッシュパターン)を言う。
 即ち、最適化された配線パターン(例えば、定型配線パターン、ランダムパターン、ランダムメッシュパターン)とは、複数色の光、例えば、RGB単体点灯時に、最も、モアレ、又はノイズが生じやすい色、例えば、最も高い明度値を持つ色のBMパターン、換言すれば、最悪値を取るBMパターンに対して合成配線パターンとした時に、モアレ、又はノイズが人間の視覚に知覚されない1群の配線パターンを言う。なお、本発明では、最適化された2以上の1群の配線パターン(例えば、定型配線パターン、ランダムパターン、ランダムメッシュパターン)においても、最も知覚されない配線パターンから知覚されにくい配線パターンまで序列を付けることができ、最も、モアレ、又はノイズが知覚されない1つの配線パターンを決定することもできる。
 ここで、本発明において、メッシュ配線パターンのモアレの視認性、又はノイズ視認性の最適化において、ディスプレイの発光強度に依存する各色のBMパターンの明度値を用いる理由は、例えば、導電性フィルムが図31(A)に示すような金属細線の線幅と平均ピッチを持つメッシュ配線パターンであり、ディスプレイが、図31(A)に示すような1つの画素が1つの副画素によって代表されるBMパターンを持つ時、ディスプレイの1画素に対して考慮すると、メッシュ配線パターンの透過率データは、図31(C)及び(E)に示すように、本発明においても、特許文献1のような従来技術においても、金属細線の線幅に相当する部分は、非透過であるため0、金属細線間は、透過であるために1.0とすることができ、いずれも2値化データとなり、全く同じとなる。しかし、ディスプレイのBMは非透過であるため0となるが、副画素(色フィルタ)は光が透過するが、その光の強度、例えば明度値は、図31(D)に示すように、ディスプレイの発光強度に依存して変化する。一方、特許文献1のような従来技術において対象とする、ディスプレイの副画素(色フィルタ)の配列パターン、即ちBMパターンの透過率データは、図31(F)に示すように、ディスプレイの副画素(色フィルタ)では透過で1.0、ディスプレイのBMでは不透過で0として取り扱うので、ディスプレイの発光強度が考慮されない。
 一方、高解像度スマートフォンのように、発光強度が強ければ、視認されるモアレ、又はノイズは強くなり、発光強度が弱ければ、視認されるモアレ、又はノイズも弱くなるため、従来技術のように、透過率データのみでは、発光強度の異なるディスプレイに対して求まるモアレ、又はノイズの評価指標、即ち定量値は、比較することができなくなり、モアレ、又はノイズの視認性を正しく評価できなくなる。
 このため、本発明においては、基準となるディスプレイの発光強度を基準として他のディスプレイの発光強度を評価して、規格化することにより、種々の発光強度の異なるディスプレイに適用可能な配線パターンのモアレの視認性、又はノイズ視認性の最適化を行うことができる。
 次に、本発明で、複数色の各色が単独点灯されたBM(画素配列)パターンに対して、合成配線パターンとして、モアレの視認性の点で最適化された配線パターンとは、最適化された多角形、例えば菱形の定型配線パターンを言い、又は、最適化に近い適格化状態の多角形、例えば菱形の定型配線パターンの開口部(セル)の多角形(菱形)のピッチ又は角度に対して所定の不規則性を付与して、或いは、多角形(菱形)の辺を波線化して、ランダム化したものを言う。したがって、本発明において、ピッチに対して不規則性が付与された配線(メッシュ)パターンは、隣接する複数の開口部の角度が保存され、ピッチが異なるランダムパターンとも言え、角度に対して不規則性が付与された配線パターンは、隣接する複数の開口部の角度及びピッチ又は辺の長さが異なるランダムパターンとも言え、波線化によって不規則性が付与された配線パターンは、波線の中心線によって画成される隣接する複数の多角形の形状が定型配線パターンの開口部の形状と同じランダムパターンとも言える。
 また、本発明で、複数色の各色が単独点灯されたBM(画素配列)パターンに対して、合成配線パターンとして、ノイズ視認性の点で最適化された配線パターンとは、最適化された多角形のメッシュ状不規則配線(ランダムメッシュ)パターンを言う。
 なお、本発明において必須となる、ディスプレイの発光強度に依存する各色のBMパターンの明度値に対する定型配線パターンのモアレの視認性、並びに不規則(ランダム)配線パターンのモアレの視認性、及びノイズ視認性の最適化については、後述する。
 本発明の導電性フィルムは、基本的に以上のように構成される。
 次に、図2に示す本発明の導電性フィルムが適用されるディスプレイの画素配列(BM)パターンの副画素の構成及び発光強度について説明する。
 本発明に適用可能なディスプレイのBMパターン及びその発光強度は、特に制限的ではなく、従来公知のいかなるディスプレイのBMパターン及びその発光強度であっても良いが、例えば、図32(A)及び(B)、並びに図33(A)、(B)及び(C)に示すような、OLED等のRGBの各色の周期や強度が異なるものであっても良いし、図2や図34(A)及び(B)に示すような同一形状のRGB副画素からなり、副画素内の強度ばらつきが大きいものや、副画素内の強度ばらつきが小さく、最も強度の高いG副画素(チャネル)だけ考慮すればよいものであっても良いし、特に、スマートフォンやタブレット等のような強度の高いディスプレイ等であっても良い。
 図32(A)は、それぞれ本発明の導電性フィルムが適用される表示ユニットの画素配列パターンの一例を模式的に表す概略説明図及びその一部の部分拡大図である。
 図32(A)に示すように、表示ユニット30aには、複数の画素32がマトリクス状に配列されて所定の画素配列パターンが構成されている。図32(A)に示すように、1つの画素32は、3つの副画素(赤色副画素32r、緑色副画素32g及び青色副画素32b)が水平方向に配列されて構成されている。
 本発明においては、表示ユニットの画素配列パターンが、1画素内の複数、図示例では3つの副画素の内の少なくとも2つの副画素が異なる形状を有しているか、1画素内の複数(3つ)の副画素の内の少なくとも2つについて各副画素の配列によって形成される副画素配列パターンの周期が異なるか、1画素内の複数(3つ)の副画素が1つの方向に一列に並んでいないか、3つの条件のいずれかを満たす必要がある。なお、本発明においては、副画素配列パターンの周期、すなわち、副画素(カラーフィルタ)の周期には、一画素内の副画素の周期も含まれる。
 図32(B)示す例においては、副画素32rは、図中y(垂直)方向に縦長とされた菱形形状とされて、正方形の画素32の図中左側に配置されており、副画素32gは、円形状とされて、画素32の図中右下側に配置されており、副画素32bは、矩形状(正方形状)とされて、画素32の図中右上側に配置されている。図32(A)及び(B)に示す表示ユニット30は、その画素配列パターン38が1画素内の3つの副画素32r、32g及び32bの形が異なり、強度が異なる場合に相当し、かつ1画素内の複数(3つ)の副画素が1つの方向に一列をなさない場合に相当する。
 図示例では、画素32の水平方向の配列ピッチ(水平画素ピッチPh)と画素32の垂直方向の配列ピッチ(垂直画素ピッチPv)は略同じとされており、画素ピッチPdで表すことができる。即ち、1つの画素32の3つの副画素32r、32g及び32bからなる領域と、これらの副画素32r、32g及び32bを囲むブラックマトリクス(BM)34(パターン材)にて構成される画素域領域36は正方形となっている。なお、画素域領域36は、1つの画素32に対応するものであるので、以下では、画素域領域36を画素ともいう。
 なお、画素ピッチPd(水平及び垂直画素ピッチPh、Pv)は、表示ユニット30の解像度に応じたピッチであれば、如何なるピッチでも良く、例えば、84μm~264μmの範囲内のピッチを挙げることができる。
 なお、図示例では、1つの画素内の副画素32r、32g、32bの形状は、それぞれ菱形、円形、正方形であるが、本発明はこれに限定されず、図9(A)に示すような同じ形の3つの副画素が図中水平方向に一列に並んだ1つの画素32が図中水平方向及び垂直方向に繰り返され、副画素(カラーフィルタ)の周期及び強度がRGBの3つの副画素で全て同じになる画素配列パターン38を持つものであっても良い。
 又は、図33(A)~図33(C)に示すピンタイル構造と呼ばれる開口形状の副画素(カラーフィルタ)32r、32g、32bであっても良く、これらの副画素32r、32g、32bからなる画素配列パターンを持つものであっても良い。
 図33(A)に示すように、画素32の3つの副画素32r、32g、32bの形が異なって(形状は長方形であるが、大きさが異なって)いても良い。この場合は、強度が異なる場合に相当する。なお、この場合には、副画素の周期は同一であると言える。
 即ち、図33(A)に示す例では、このような形が異なる3つの副画素32r、32g、32bを1画素として画素配列パターン38aが形成され、3つの副画素32r、32g、32bのそれぞれの副画素配列パターンの周期は、いずれも画素配列パターン38aの周期と同じになる。
 なお、本発明においては、副画素の形が異なるとは、副画素の形状が異なる場合のみならず、副画素の大きさが異なる場合も含まれるものと定義される。
 また、図33(B)に示すように、3つの副画素32r、32g、32bの形が同じであっても、副画素32gと、副画素32r、32bとの繰り返し周期(副画素配列パターンの周期)は異なっていても良い。この例では、副画素32gの周期は、副画素32r、32bの周期の半分である。なお、この場合には、副画素の強度は同一であると言える。
 即ち、図33(B)に示す例では、2つの副画素32gと、副画素32r、32bとの4つの副画素を1画素32として画素配列パターン38bが形成され、副画素32r、32bのそれぞれの副画素配列パターンの周期は、いずれも画素配列パターン38aの周期と同じになるが、副画素32gの副画素配列パターンの周期は、画素配列パターン38aの周期の半分となる。
 さらに、図33(C)に示すように、副画素32gと、副画素32r、32bとは、繰り返し周期(副画素パターンの周期)も、形(形状も大きさも)も異なっていても良い。この場合は、副画素の周期も、強度も異なる場合に相当する。
 即ち、図33(C)に示す例では、図33(C)に示す例と同様に、2つの副画素32gと、副画素32r、32bとの4つの副画素を1画素32として画素配列パターン38cが形成され、副画素32r、32bのそれぞれの副画素配列パターンの周期は、いずれも画素配列パターン38aの周期と同じになるが、副画素32gの副画素配列パターンの周期は、画素配列パターン38aの周期の半分となる。
 また、図34(A)は、GBR副画素内の強度ばらつきが大きい同一形状のRGB副画素からなる画素のBM構造を示し、図34(B)は、GBR副画素内の強度ばらつきが小さい同一形状のRGB副画素からなる画素のBM構造を示し、最も強度の高いG副画素だけ考慮すれば導電性フィルムの配線パターンの設計が可能なものである。
 なお、本発明に用いることのできるディスプレイの2×2画素のBMの解像度及び強度を図35(A1)~図35(H2)に示す。図35(A1)~図35(H2)に示す各BMは、それぞれ、解像度、形状、及び強度(明度)のいずれかが異なるものである。図35(A1)~図35(H2)においては、Gチャネル(G副画素)のみが示され、Bチャネル(B副画素)及びRチャネル(R副画素)は示されていないが、その解像度及び形状は同一であるのは勿論である。
 図35(A1)及び(A2)は、共に、解像度が149dpiで、図中中心で左側に折れ曲がった短冊形状の4つのG副画素で表されるBM構造番号No.1のBM構造を示し、それぞれ、基準となるディスプレイにおける強度で規格化した時の強度が、0.5(64)及び1.0(128)であることを示し、後述する実施例において用いたBM条件番号No.1及び2に相当する。
 図35(B1)及び(B2)は、共に、解像度が222dpiで、図中縦に連続する帯形状の4つのG副画素で表されるBM構造番号No.2のBM構造を示し、それぞれ、基準となるディスプレイにおける強度で規格化した時の強度が、0.5(64)及び1.0(128)であることを示し、後述する実施例において用いたBM条件番号No.3及び4に相当する。
 図35(C1)及び(C2)は、共に、解像度が265dpiで、図中横方向に並ぶ平板形状の4つのG副画素で表されるBM構造番号No.3のBM構造を示し、それぞれ、基準となるディスプレイにおける強度で規格化した時の強度が、0.5(64)及び1.0(128)であることを示し、後述する実施例において用いたBM条件番号No.5及び7に相当する。
 図35(D1)及び(D2)は、共に、解像度が265dpiで、図中縦方向に並ぶ細い帯形状の4つのG副画素で表されるBM構造番号No.4(265dpi v2)のBM構造を示し、それぞれ、基準となるディスプレイにおける強度で規格化した時の強度が、0.5(64)及び1.0(128)であることを示し、後述する実施例において用いたBM条件番号No.6及び8に相当する。
 図35(E1)及び(E2)は、共に、解像度が326dpiで、図中横方向に並ぶ矩形状の4つのG副画素で表されるBM構造番号No.5のBM構造を示し、それぞれ、基準となるディスプレイにおける強度で規格化した時の強度が、0.5(64)及び1.0(128)であることを示し、後述する実施例において用いたBM条件番号No.9及び10に相当する。
 図35(F1)及び(F2)は、共に、解像度が384dpiで、図中4角方向に並ぶ小矩形状の4つのG副画素で表されるBM構造番号No.6のBM構造を示し、それぞれ、基準となるディスプレイにおける強度で規格化した時の強度が、0.5(64)及び1.0(128)であることを示し、後述する実施例において用いたBM条件番号No.11及び13に相当する。
 図35(G1)及び(G2)は、共に、解像度が384dpiで、図中4辺方向に並ぶ小三角形形状の4つのG副画素で表されるBM構造番号No.7(265dpi v2)のBM構造を示し、それぞれ、基準となるディスプレイにおける強度で規格化した時の強度が、0.5(64)及び1.0(128)であることを示し、後述する実施例において用いたBM条件番号No.12及び14に相当する。
 図35(H1)及び(H2)は、共に、解像度が440dpiで、図中縦方向に並ぶ矩形状の4つのG副画素で表されるBM構造番号No.8のBM構造を示し、それぞれ、基準となるディスプレイにおける強度で規格化した時の強度が、0.5(64)及び1.0(128)であることを示し、後述する実施例において用いたBM条件番号No.15及び16に相当する。
 なお、基準となるディスプレイとしては、例えば、実施例で用いたディスプレイ LP101WX1(SL)(n3)(LGディスプレイ社製)を挙げることができる。
 上述したRGBの副画素配列パターンを定義するBM34によって構成されるBMパターン38を有する表示ユニット30の表示パネル上に、例えば、導電性フィルム10、11又は11Aを配置する場合、その配線パターン24は、RGBの副画素配列パターンを含むBM(画素配列)パターン38の明度値に対してノイズ視認性の点で合成配線パターンとして最適化された規則的な定型配線パターン、定型配線パターンに不規則性が付与されたランダムパターン、又はランダムメッシュパターンであるので、表示ユニット30の画素32の配列周期や強度と、導電性フィルム10、11又は11Aの金属細線14の配線配列との間における空間周波数の干渉が弱まり、又は殆どなく、モアレ、及び/又はノイズの発生が抑制されることになる。
 ところで、モアレ、及び/又はノイズの最適化を行う際に用いられるディスプレイの画素配列パターンは、厳密には、複数色、例えばRGBの個々の副画素配列パターン、例えば、副画素の形状、繰り返し周波数等によって規定されるので、ディスプレイの解像度に対して副画素の解像度を正確に定義する必要があるが、本発明では、ディスプレイの画素配列パターンの光強度、例えば明度値(明度画像データ)を用いる必要があるので、強度・周波数の観点で言うと、どういう強度の副画素(単チャネルを示す)が、どういう配列をしているかが問題となるのみであるため、RGBを明確に分ける必要はない。したがって、ディスプレイに最適である、規則的な定型配線パターン、定型配線パターンに不規則性が付与されたランダムパターン、又はランダムメッシュパターンを設計するには、モアレ、又はノイズの定量値を求める際に、RGB単体点灯時の最悪値を利用すればよい。したがって、ディスプレイに最適である、規則的な定型配線パターン、定型配線パターンに不規則性が付与されたランダムパターン、又はランダムメッシュパターンを設計するには、モアレ、又はノイズの評価指標、即ち定量値を求める際に、RGB単体点灯時の最悪値を利用すればよい。
 次に、本発明において、所定の強度(明度値)を持つ表示装置の画素配列(BM)パターンに対する導電性フィルムの配線パターンのモアレの視認性、又はノイズ視認性の最適化及びランダム化の手順について説明する。即ち、本発明の導電性フィルムにおいて、少なくとも1視点において、所定の強度の表示装置の所定の画素配列(BM)パターンに対してモアレが人間の視覚に知覚されないように最適化された定型配線パターン、及び最適化され、かつランダム化された配線パターン、ノイズが人間の視覚に知覚されないように最適化されたランダム化された配線パターンを評価して決定する手順について説明する。
 まず、先に、導電性フィルムの配線パターンのモアレの視認性の最適化及びランダム化の手順について説明する。
 図16は、本発明の一実施形態の導電性フィルムの評価方法の一例を示すフローチャートである。
 本実施形態の導電性フィルムの配線パターンの評価方法は、まず、表示装置の表示ユニットの複数色(例えばRGB)の各色の単体点灯時のBM(画素配列)パターンの明度画像データを取得する。また、導電性フィルムの上側と下側の菱形の配線パターンの合成配線パターンの透過率データを取得する。
 次に、合成配線パターンの透過率データとBMパターンとの高速フーリエ変換(FFT)を用いた周波数解析により得られるモアレの周波数・強度から、表示ユニットの表示解像度に応じて規定されるモアレの最高周波数以下の周波数及び所定の強度を持つ各色についてのモアレ(周波数・強度)を選び出す。
 次いで、選び出された各色についてのそれぞれのモアレの周波数におけるモアレの強度に人間の視覚応答特性を観察距離に応じて作用させてそれぞれ各色のモアレの評価値を得、得られた複数のモアレの評価値からモアレの評価指標(定量値)を算出する。
 次に、算出されたモアレの評価指標が予め設定された条件を満たす合成配線パターンを構成する菱形の配線パターンを、モアレが視認されないように最適化された定型配線パターンとして評価し、最適化された定型配線パターンとして決定する、又は所定範囲の不規則性の付与により最適化される適格化定型配線パターンとして評価し、評価された適格化定型配線パターンに対して不規則性を付与して、例えば、適格化定型配線パターンのセルの形状のピッチ、又は角度に対して所定範囲の不規則性を付与し、或いは、適格化定型配線パターンのセルを構成する辺を波線化して所定範囲の不規則性を付与し、所定範囲の不規則性が付与されたランダムパターン(ピッチランダムパターン、角度ランダムパターン、波線化ランダムパターン)として決定するものである。この本発明法では、モアレの周波数/強度については一般的にFFTが利用されるが、利用方法によっては、対象物の周波数/強度が大きく変化するため、以下の手順を規定している。
 なお、導電性フィルムの上側と下側の配線部16a及び16bの一方が多角形の配線パターンを持つ複数の金属細線14で構成され、他方の配線部がITO等の多角形の配線パターンを持つ透明導電膜で構成されている場合には、両者の配線パターンの合成配線パターンの透過率画像データは、一方の複数の金属細線14で構成される多角形の配線パターンの透過率画像データで表すことができるが、以下では、この場合も、両者の多角形の配線パターンの合成配線パターンの透過率画像データとして扱う。
 本発明では、まずは、1つの視点として、表示装置の表示ユニットの表示画面を正面の視点aから観察する場合を考慮すればよいが、本発明はこれに限定されず、少なくとも1つの視点から観察した場合のモアレの視認性を向上させることができるものであれば、いずれの視点から観察したものであっても良い。
 もちろん、本発明においては、表示画面を正面から観察する場合(正面観察時)と、表示画面を斜めから観察する場合(斜め観察時)とを考慮するのが好ましい。
 以下では、撮像は、RGB3色を副画素とするBM(画素配列)パターンを各色毎に単体で点灯して行うものとして説明する。
 本発明法においては、手順1として、図16に示すように、まず、最初に、ステップS10において、視点aに垂直な平面に射影したディスプレイBMデータを作成する。
 ここで、ステップS10において行うディスプレイBMデータを作成する方法の詳細を図37に示す。
 図37は、本実施形態の導電性フィルムの評価方法の内のディスプレイBMデータの作成方法の詳細の一例を示すフローチャートである。
 図37に示すように、まず、ステップS30において、マイクロスコープによるディスプレイの撮像を行う。即ち、ステップS30において、RGBの各色毎に、表示装置の表示ユニットの表示画面(各色の副画素配列パターンの画像)を撮像する。この際、図6(C)、図9(C)及び図11(C)に示すように、それぞれ、図6(A)、図9(A)及び図11(A)に示す3次元形状の表示ユニット30の表示面の中央の、3次元形状が平面に最も近い箇所を撮影し、それらの画素の各副画素の明度データを取得するのが好ましい。その理由は、表示ユニット30において、平面となる箇所が一番高い明度となるため、その明度で評価することにより、一番視認性の悪いモアレやノイズを評価できるからである。
 このステップS30では、まず、表示装置40の表示ユニット30をRGBの各色毎に単独で点灯させる。この際、発光側(表示装置40)の設定変更で行える範囲で明るさを最大にするのが好ましい。
 次いで、RGBの各色それぞれの副画素点灯状態の下で副画素の画像の撮像を行う。例えば、図2、図32(B)及び図33(A)~(C)に示すような表示ユニット30の画素配列パターン38(38a~38c)の副画素(RGBカラーフィルタ)32r、32g、32bのそれぞれの透過光を、マイクロスコープを使って撮影する。撮像においては、マイクロスコープのホワイトバランスをマクベスチャートの白に合わせるのが好ましい。
 対象とするディスプレイや、撮像に用いるマイクロスコープ、レンズ、カメラは、特に制限的ではないが、例えば、ディスプレイは、LP101WX1(SL)(n3)(LGディスプレイ社製)、マイクロスコープは、STM6(オリンパス社製)、レンズは、UMPlanFI10x(オリンパス社製)、カメラは、QIC-F-CLR-12-C(QIMAGING社製)を用いることができる。
 本発明の実施例では、ディスプレイとして、LP101WX1(SL)(n3)を用い、まず、Gチャネルのみを最大(MAX)強度で点灯させ、マイクロスコープとしてオリンパス社製STM6を用い、対物レンズとして同社製のUMPlanFI10xを用いて撮像する。
 この際、撮像条件は、例えば、露光時間が12ms、ゲインが1.0、ホワイトバランス(G、R、B)は(1.00、2.17、1.12)とすることができる。なお、撮像画像は、シェーディング補正が行われているのが望ましい。
 その結果、図38(A)に示すGチャネル副画素の1画素の画像を取得することができる。
 ここで、本発明においては、特に制限的ではなく、どのようなディスプレイを基準として用いても良いが、ディスプレイの基準として、LP101WX1(SL)(n3)を用いるのが好ましい。
 また、ディスプレイLP101WX1(SL)(n3)のBMパターンは、図15(A1)、(A2)に示すBMパターンを有する。なお、図35(A1)及び(A2)には、Gチャネルのみのパターンが示されているが、RBチャネルについても同様である。
 RBチャネルの各副画素の1画素の画像も、Gチャネル副画素の1画素の画像と全く同様にして撮像することができる。
 次に、撮像後、スペクトロメータ(小型ファイバ光学分光器)を用いて、各副画素画像の分光スペクトルの計測し、計測された分光スペクトルデータを用いて明度変換して、RGB明度画素情報(明度画像データ)を取得する。
 例えば、以下のようにして、スペクトロメータを利用して、RGB副画素(BM)インプットデータを作成することができる。
 1.まず、ステップS32において、明度の計測を行う。表示ユニット30のGチャネルの副画素を単色で点灯させ、表示ユニット30の表示面の中央部分の平面部分の数画素、例えば、4~16画素のG副画素をスペクトロメータで計測する。その結果、G副画素について、例えば、図38(B)に示すような分光スペクトルデータを得ることができる。RB副画素についても、G副画素と全く同様して分光スペクトルデータを得ることができる。
 なお、明度の計測には、オーシャンオプティクス製スペクトロメータUSB2000+を用い、スペクトロメータのファイバの先端には拡散板(同社製CC-3-UV-S)を利用し、積分時間は250msとする。
 2.次に、ステップS34において、ステップS10で得られたマイクロスコープ撮像画像にマスクをかけて2値化を行い、撮像画像の画像データからマスク画像を作成する。マスク画像の作成方法は、Gチャネルの場合には、撮像画像データのGチャネルに対し、点灯BMの画素サイズでの平均値を算出し、その値を閾値として、マスクデータを求め、マスク画像を作成する。この閾値は、撮像画像1画素分の画像のGチャネルのみの平均値である。RBチャネルの場合も、Gチャネルの場合と同様にして撮像画像の画像データからマスク画像を作成する。
3.続いて、得られたマスク画像に対して、解像度×マスク画像の値を持つ面積で規格化した明度データを与えて、インプットデータとする。
 即ち、上記2.で得られたマスク画像の(0、1)マスクデータの1の箇所を、上記1.で得られたスペクトルデータに、図39に示すXYZ等色関数をかけたものの積分値で置き換える。例えば、G副画素のインプットデータを作成する際には、図38(B)に示すGの分光スペクトルデータGと図39に示すXYZ等色関数の明度Yの分光スペクトルデータYとの積(G×Y)を求め、B副画素のインプットデータを作成する際には、Bの分光スペクトルデータBと図39に示すXYZ等色関数の明度Yの分光スペクトルデータYとの積(B×Y)を求めればよい。同様にして、R副画素のインプットデータも作成すればよい。この際、算出された明度値(明度データ)Yは、スペクトロメータのセンサ内に含まれる画素数(解像度)と副画素の開口面積(マスク画像の値を持つ面積)に比例するので、画素数×開口面積、即ち解像度×マスク画像の値を持つ面積で規格化して与える。これは、マクロな明度は、副画素を無限小の光源の集合と考えた場合、副画素の開口面積×センサに含まれる画素数と考えることができるからである。
 続いて、ステップS36において、マイクロスコープ画像の解像度と、必要なインプットデータ(12700dpi)は異なるため、ステップS34で得られたRGB副画素のインプットデータを、それぞれバイキュービック法で拡縮(縮小)し、ステップS38において、本実施例のディスプレイ明度が1.0となるように規格化して、図38(C)に示す2画素×2画素インプットデータとしてディスプレイBMデータ(規格化明度画像データ)を作成する。
 こうして、ディスプレイBMデータを取得することができる。
 こうして得られたディスプレイBMデータは、基準となるディスプレイの明度によって規格化された規格化明度画像データとなっているので、他のディスプレイと比較した際にも絶対値で比較することができる。
 こうして取得されたディスプレイBMデータを視点aに垂直な平面に射影して射影されたディスプレイBMデータを取得することができる。
 ところで、ディスプレイBMデータに対して2次元高速フーリエ変換(2DFFT(基底2))を行うに先立ち、2画素×2画素インプットデータを画像サイズ20000pix×20000pixに近くなる整数倍繰り返しコピーし、モアレ評価用インプットデータとしての規格化明度画像データを作成しておくのが好ましい。
 なお、2画素×2画素インプットデータを作成することなく、ステップS34で得られたRGB副画素のインプットデータを、それぞれ、バイリニア補間で、高解像度である解像度12700dpiとし、画像サイズを109pix(画素)×109pix(画素)にバイキュービック法で変換しておいても良い。なお、撮像光学系の解像度が既知であれば、それに応じてこれらは算出可能である。
 続いて、RGB各色毎に、画像サイズが109pix×109pix、解像度12700dpiの規格化明度画像を、画像サイズ20000pix×20000pixに近くなる整数倍(183回)繰り返しコピーし、モアレ評価用インプットデータとしての規格化明度画像データを作成しておいても良い。
 なお、表示ユニット30のRGB副画素配列パターンを撮像してRGB明度画素情報を表すディスプレイBMデータ(規格化明度画像データ)を取得する方法は、上述したスペクトロメータを用いて、各副画素画像の分光スペクトルの計測し、計測された分光スペクトルデータを用いて明度変換する方法に限定されず、撮像画像データから、直接各色(RGB)の明度値に変換するようにしても良い。
 例えば、撮像された各色の副画素配列パターンの画像の撮像画像データから、各色(RGB)の明度値に変換し、ディスプレイの明度=1.0を基準にしてRGBの明度データ(合計3種)を作成する。
 撮像画像から明度値への変換は、赤の画像データをR、緑の画像データをG、青の画像データをBとし、明度値をYとする時、下記の変換式(2)を用いてY(明度値)を算出し、R、G、Bカラーフィルタ画像(明度比画像)を作成する。
  Y=0.300R+0.590G+0.110B   ……(2)
 こうして得られたG副画素(カラーフィルタ)画像(明度比画像)の最大値を1.0(=0.25*255)、即ち基準として、R、G、B副画素の明度画像を規格化することで、RGB副画素のそれぞれの規格化明度画像(画像データ)を作成することができる。
 次に、手順2として、視点aに垂直な平面に射影された、上側及び下側のメッシュ状配線パターン24a及び24bの合成メッシュパターンの画像(透過率画像データ)の作成を行う。なお、上述したように、一方の片側面がメッシュ状配線パターンであり、他方の片側面がITO等の透明導電膜による配線パターンである場合には、両者の合成メッシュパターンの画像は、片側面のメッシュ状配線パターンの画像となる。したがって、この場合には、透明導電膜による配線パターンの透過率画像データの値を全面的に1.0として、合成配線パターンの透過率画像データを作成する。
 図16に示すように、ステップS12において、射影された合成メッシュパターンの透過率画像データを作成する。即ち、上側及び下側のメッシュ状配線パターン24a及び24bとして、射影された規則性のある多角形、例えば菱形の定型配線パターン25(金属細線14)(図14参照)の透過率画像データを作成して取得し、取得した透過率画像データをそれぞれ用いて、上側及び下側のメッシュ状配線パターン24a及び24bを重ね合わせた状態の合成配線(メッシュ)パターンの合成透過率データを作成する。なお、予め、合成メッシュパターン、メッシュ状配線パターン24a及び24bの透過率画像データの少なくとも1つが準備されている、若しくは蓄えられている場合には、準備された、若しくは蓄えられた中から取得するようにしても良い。以下では、定型配線パターンの代表例として、規則性のある菱形の定型配線パターン25を用いて説明する。
 規則性のある菱形のメッシュパターン25は、例えば、図14に示すように、配線となる金属細線14が水平線に対して所定角度、例えば、45°[deg]未満の角度傾いた菱形パターンである。
 また、菱形のメッシュパターンの透過率画像データ、及び合成メッシュパターンの透過率画像データを作成する際に、その解像度を、例えば、25400dpiとし、透過率画像データのサイズを規定し、例えば、BMパターン38と同様に、画素サイズを20000pix×20000pixに近く、周期的に切り出すことができるサイズ(例えば、109pix×109pix)の整数倍とする。こうして、規定されたサイズで透過率画像データを作成することができる。
 次に、手順3として、手順1(ステップS10)で作成した副画素の規格化明度画像データ及び手順2(ステップS12)で作成した合成メッシュパターンの透過率画像データのそれぞれに対して、2次元高速フーリエ変換(2DFFT(基底2))を行い、スペクトルピークの空間周波数、及びピークスペクトル強度を算出する。
 即ち、図16に示すように、ステップS14において、まず、RGBの各色毎にBMパターン38の各色の副画素配列パターン(BMパターン)の明度画像データ及び合成メッシュパターンの透過率画像データのそれぞれに対して2DFFT(画像サイズは、20000pix×20000pix)を行い、フーリエスペクトルを算出する。ここでは、DC(直流)成分の強度が、画像の平均値になるように規格化しておくのが好ましい。
 まず、ステップS10で得られたモアレ評価用明度画像データに対して2DFFTを行い、ピーク周波数、及びそのピーク強度を得る。ここでは、ピーク強度は、フーリエスペクトルの絶対値として取り扱う。
 これをRGB各色について繰り返し行う。この際、モアレに寄与しない強度が小さいものも全て用いると、計算が煩雑になるばかりか、精度を正しく評価できなくなるおそれがあるので、強度で閾値を設けるのが好ましい。例えば、スペクトル強度の絶対値を常用対数で表した場合に-2.2より大きい(log10(強度)>-2.2)ものだけを採用するのが好ましい。
 こうして得られたG色の(副画素配列パターン)の明度画像データの2次元フーリエスペクトルの強度特性の一例を図40(A)に示す。
 続いて、こうして作成された合成メッシュパターンの各透過率画像データに対して2DFFTを行い、合成メッシュパターンの各透過率画像データの2次元フーリエスペクトルの複数のスペクトルピークのピーク周波数及びピーク強度を算出する。ここでは、ピーク強度は、絶対値として取り扱う。計算簡略化の為、例えば、強度の閾値は、スペクトル強度の絶対値を常用対数で表した場合に、-2.0より大きいものだけを取り扱うのが好ましい。
 こうして得られた合成メッシュパターンの各透過率画像データの2次元フーリエスペクトルの強度特性の一例を図40(B)に示す。
 なお、視点を変えた場合の合成メッシュパターンのメッシュの空間周波数及びその強度、及びBMのスペクトル強度は正面のものとは異なる。合成メッシュパターンについては、例えば30°視点をずらすと、上側のメッシュパターンと下側のメッシュパターンとのズレ量は、基体厚み(例えば、PET:100μm)を考慮してずらせばよい。BMのスペクトル強度については、正面の強度と比べて、0.9倍にすればよい。
 上述したように、図40(A)及び(B)は、それぞれBMパターン38のG色の(副画素配列パターン)の明度画像データ及び合成メッシュパターンの各透過率画像データの2次元フーリエスペクトルの強度特性を示す図である。
 なお、図40(A)及び(B)において、白い部分は強度が高く、スペクトルピークを示しているので、図40(A)及び(B)に示す結果から、BMパターン38のRGB3色の副画素配列パターンに依存する各色点灯時のBMパターン38の明度データ及び合成メッシュパターンのそれぞれについて、各スペクトルピークのピーク周波数及びピーク強度を算出する。即ち、図40(A)及び(B)にそれぞれ示すBMパターン38(各色の副画素配列パターン)の明度データ及び合成メッシュパターンの透過率データの2次元フーリエスペクトルの強度特性におけるスペクトルピークの周波数座標上の位置、即ちピーク位置がピーク周波数を表し、そのピーク位置における2次元フーリエスペクトルの強度がピーク強度となる。
 ここでは、BMパターン38の各副画素配列パターン及び合成メッシュパターンの各スペクトルピークのピークの周波数及び強度は、以下のようにして同様に算出されて取得される。以下では、纏めて説明する。なお、以下では、各色点灯時のBMパターン38(各色の副画素配列パターン)の明度データを、明度データで表されるものとして単にBMパターン38の各副画素配列パターンと言い、合成メッシュパターンの透過率画像データを、透過率画像データで表されるものとして単に合成メッシュパターンという。
 まず、ピークの算出には、BMパターン38の各副画素配列パターン及び合成メッシュパターンの基本周波数から周波数ピークを求める。これは、2DFFT処理を行う明度画像データ及び透過率画像データは離散値であるため、ピーク周波数が、画像サイズの逆数に依存してしまうからである。周波数ピーク位置は、図41に示すように、独立した2次元基本周波数ベクトル成分aバー及びbバーを元に組み合わせて表すことができる。したがって、当然ながら、得られるピーク位置は格子状となる。
 即ち、図42(A)に示すように、BMパターン38の各副画素配列パターン及び合成メッシュパターンのスペクトルピークの周波数座標fxfy上の位置、即ちピーク位置は、パターンピッチの逆数(1/p(pitch)を格子間隔とする周波数座標fxfy上の格子状点の位置として与えられる。
 なお、図41は、G色点灯時のBMパターン38のG色の副画素配列パターンの場合の周波数ピーク位置を示すグラフであるが、合成メッシュパターンの場合も、同様にして求めることができる。
 一方、ピーク強度の取得においては、上記のピーク周波数の取得においてピーク位置が求まるため、ピーク位置が持つ2次元フーリエスペクトルの強度(絶対値)を取得する。
 ここで、得られたピーク強度は、画像面積(画像サイズ)で規格化するのが好ましい。例えば、上述した画像サイズで規格化しておくのが好ましい(パーセバルの定理)。
 次に、手順4として、手順3(ステップ14)で得られたRGB各色の単体点灯時のBMパターン38の明度データのピーク周波数及びピーク強度と合成メッシュパターンのピーク周波数及びピーク強度からモアレの空間周波数及び強度の算出を行う。
 即ち、図16に示すように、ステップS16において、ステップS14でそれぞれ算出したBMパターン38のRGB各色の副画素配列パターン及びメッシュパターンの両2次元フーリエスペクトルのピーク周波数及びピーク強度から各色についてそれぞれモアレの周波数及び強度を算出する。なお、ここでも、ピーク強度及びモアレの強度は、絶対値として取り扱う。
 ここでは、RGB各色の副画素配列パターンのピーク周波数及びピーク強度とメッシュパターン24のピーク周波数及びピーク強度の畳み込み演算によってモアレの空間周波数及び強度を計算することができる。
 実空間においては、モアレは、本来、導電性フィルム10の合成メッシュパターンと各色の単体点灯時のBMパターン38の副画素配列パターンとの画像データ(透過率画像データと明度画像データと)の掛け算によって起こるため、周波数空間においては、両者の畳み込み積分(コンボリューション)を行うことになる。しかしながら、ステップS14及び16において、BMパターン38の各色の副画素配列パターン及び合成メッシュパターンの両方の2次元フーリエスペクトルのピーク周波数及びピーク強度が算出されているので、RGBの中の1色の副画素配列パターンと合成メッシュパターンとの両者のそれぞれの周波数ピーク同士の差分(差の絶対値)を求め、求められた差分をモアレの周波数とし、両者の組み合わせた2組のベクトル強度の積を求め、求められた積をモアレの強度(絶対値)とすることができる。
 これらのモアレの周波数及びモアレの強度は、RGBの各色毎に求められる。
 ここで、図40(A)及び(B)にそれぞれ示すBMパターン38の各色の副画素配列パターンと合成メッシュパターンとのそれぞれ両者の2次元フーリエスペクトルの強度特性のそれぞれの周波数ピーク同士の差分は、各色について、両者の2次元フーリエスペクトルの強度特性を重ね合わせて得られる強度特性において、両者のそれぞれの周波数ピークの周波数座標上のピーク位置間の相対距離に相当する。
 なお、BMパターン38の各色の副画素配列パターンと合成メッシュパターンとの両2次元フーリエスペクトルのスペクトルピークは、各色毎に、それぞれ複数存在するので、その相対距離の値である周波数ピーク同士の差分、即ちモアレの周波数も複数求められることになる。したがって、両2次元フーリエスペクトルのスペクトルピークが多数存在すると、求めるモアレの周波数も多数となり、求めるモアレの強度も多数となる。
 しかしながら、求められたモアレの周波数におけるモアレの強度が弱い場合は、モアレが視認されないため、モアレの強度が弱いと見做せる所定値またはそれより大きいモアレ、例えば、強度が-4.5以上のモアレのみを扱うのが好ましい。
 また、ここで、表示装置においては、ディスプレイ解像度が決まっているため、ディスプレイが表示できる最高の周波数はその解像度に対して決まる。このため、この最高の周波数より高い周波数を持つモアレは、このディスプレイで表示されないことになるので、本発明における評価の対象とする必要はない。従って、ディスプレイ解像度に合わせてモアレの最高周波数を規定することができる。ここで、本発明において考慮すべきモアレの最高周波数は、ディスプレイの画素配列パターンの画素ピッチをPd(μm)とする時、1000/Pd(cycle/mm)とすることができる。
 以上から、本発明では、両2次元フーリエスペクトルのスペクトルピークから求められたモアレの周波数及び強度の中で、本発明における評価(定量化)の対象とするモアレは、モアレの周波数が、対象となるディスプレイ解像度(例えば、本実施例のものでは、151dpi)に応じて規定されるモアレの最高周波数1000/Pd以下の周波数を持つモアレであって、モアレの強度が-4.5以上のモアレである。本発明において、モアレの強度が-4.5以上のモアレを対象とする理由は、強度が-4.5未満のモアレも多数発生し、合算値をとると本来見えないモアレまで点数付けすることになるからである。このため、本発明においては、経験的な視認限界より-4.5以上という閾値を設けている。
 次に、手順5として、手順4(ステップS16)で算出したRGB各色の副画素毎のモアレの周波数及び強度を用いて、モアレの定量化を行い、モアレの評価指標となる定量値を求める。
 即ち、図16に示すように、ステップS18において、ステップS16で残ったモアレ評価用スペクトルピークに対して視覚伝達関数(VTF;Visual Transfer Function)を畳み込み、定量化する。
 なお、モアレの定量化に先立ち、両2次元フーリエスペクトルのスペクトルピークが多数存在すると、求めるモアレの周波数も多数となり、計算処理に時間がかかることになる。このような場合は、予め両第2次元フーリエスペクトルのスペクトルピークにおいて、それぞれピーク強度が弱いものを除いて、ある程度強いもののみを選定しておいてもよい。その場合は、選定されたピーク同士の差分のみを求めることになるので、計算時間を短縮することができる。
 例えば、対象として、モアレスペクトルに観察距離400mmとして視覚伝達関数(VTF;Visual Transfer Function:下記式(1)参照)(VTFが最大値をとる周波数より小さい低周波数領域ではVTFを1.0とする。但し、0周波数成分は0とする。)を畳み込んだ後、-3.8以上のもののみを取り扱うことができる。
 ここで、人の目に見えるモアレのみを抽出するために、システム内での散乱の効果を踏まえて、観察距離400mm相当のVTFを代用している。
 こうして残ったスペクトルピークをモアレ評価用スペクトルピークとすることができる。この際、スペクトル強度は、常用対数で-3.8以上のピークのみを用いることが好ましい。これにより、知覚されるモアレを抽出することが可能となる。
 こうして求められたモアレ周波数及びモアレの強度を、図44に示す。図44は、図15(A)に示す画素配列パターンと図14に示す定型配線パターンとの干渉によって発生するモアレの周波数及びモアレの強度を模式的に表わす概略説明図であり、図40(A)及び(B)に示す2次元フーリエスペクトルの強度特性の畳み込み積分の結果ということもできる。
 図44においては、モアレの周波数は、縦横軸の位置によって表され、モアレの強度は、グレー(無彩色)濃淡で表され、色が濃いほど小さく、色が薄い、即ち白いほど大きくなることを示している。
 モアレの定量化においては、具体的には、ステップS18において、ステップS16で得られたRGB各色の副画素毎のモアレの周波数及び強度(絶対値)に、それぞれ下記式(1)で示す人間の視覚応答特性の一例を表す観察距離750mm相当の人間の視覚応答特性(VTF)を作用させて、即ち畳み込み積分を行い、各色毎の複数のモアレの評価値を算出する。ここで、モアレの点数付けのために、観察距離750mm相当のVTFを代用している。
   VTF=5.05e-0.138k(1-e0.1k)   …(1)
   k=πdu/180
 ここで、kは、立体角で定義される空間周波数(cycle/deg)であり、上記式(1)で表され、uは、長さで定義される空間周波数(cycle/mm)であり、dは、観察距離(mm)で定義される。
 上記式(1)で示される視覚伝達関数は、Dooley-Shaw関数と呼ばれるもので、参考文献(R.P.Dooley, R.Shaw: Noise Perception in Electrophotography, J.Appl.Photogr.Eng., 5, 4 (1979), pp.190-196.)の記載を参照することにより求めることができる。
 こうして、RGBの各色毎に、強度の常用対数をとったモアレの評価値を求めることができる。
 ここで、RGBの各色毎に、上述したステップS10~S18を繰り返して、RGBのモアレの評価値を求めても良いが、上述したステップS10~S18の各ステップにおいて、RGBの各色の演算を行っても良い。
 こうして得られたRGBのモアレの評価値の中の最悪値、即ち最大値をモアレの評価指標(定量値)とする。モアレの評価指標の値も、常用対数で表され、モアレの評価指標の常用対数での値(常用対数値)として求められる。なお、最悪値の算出に伴い、評価画像もRGB表示で合せて評価するのが好ましい。
 なお、モアレの評価指標であるモアレの定量値は、従来通りのモアレ、及びノイズを定量化したものと言える。本発明では、ノイズは、モアレがたくさんある状態として定義することができる。したがって、本発明では、単一周波数にピークがあれば、モアレと判断し、単一周波数付近に複数のピークがあれば、ノイズと判断することができる。
 以上のモアレの評価指標は、ディスプレイ40の表示ユニット30の表示画面に積層された導電性フィルム10を表示画面の正面から観察する場合のものであるが、本発明はこれに限定されず、正面に対し、斜めから観察する場合のモアレの評価指標を求めても良い。
 なお、斜めから観察する場合のモアレの評価指標を求める場合には、斜め観察時のディスプレイ40のRGBの強度を、正面観察時の明度の90%で計算し、ステップS14に戻り、再度、各色のフーリエスペクトルのピーク周波数・強度を算出する。この後、ステップS16~S18を同様に繰り返し、斜め観察時のモアレの評価指標を算出する。
 こうして、正面観察時及び斜め観察時のモアレの評価指標が算出されると、正面観察時及び斜め観察時のモアレの評価指標の内の大きい値(最悪値)がモアレの評価に供されるモアレの評価指標として算出される。
 なお、正面観察時及び斜め観察時の一方しか行わない場合には、正面観察時又は斜め観察時のモアレの評価指標がそのままモアレの評価に供されるモアレの評価指標となる。
 次に、手順6として、手順5(ステップS24)で算出されたモアレの評価指標(定量値:最悪値)に基づいて配線パターンの評価を行う。
 即ち、図16に示すように、ステップS20において、ステップS18で求めた当該合成メッシュパターンのモアレの評価指標の常用対数値が、所定の評価閾値以下であれば、当該合成メッシュパターンを構成する各菱形の定型メッシュパターンは、本発明の導電性フィルム10に適用するのに最適化された菱形の定型メッシュパターンであると評価し、図14に示す最適化された菱形のメッシュの定型配線パターン25として設定する。
 一方、モアレの評価指標の常用対数値が、ランダム化に適した所定の評価閾値以下であれば、当該合成メッシュパターンを構成する各菱形の定型メッシュパターンは、ランダム化することにより、本発明の導電性フィルム10に適用するのに最適化されたランダムパターンとなるランダム化に適した菱形の定型メッシュパターンであると評価し、適格化された菱形の定型メッシュパターンとして設定する。
 なお、モアレの評価指標の値を、常用対数で、所定の評価閾値以下に限定する理由は、所定の評価閾値より大きいと、最適化された菱形の定型メッシュパターン25を配線パターンとして用いた時、また、適格化された菱形の定型メッシュパターンを(ピッチ、角度の不規則化、及び波線化によって)所定閾値以下のランダム性を付与した図15、図17及び図19に示すランダムパターン25a、25b、25cを配線パターンとして用いた時、重畳された配線パターンとBMパターン各副画素配列パターンのとの干渉によって生じたモアレがあると視認され、視認されたモアレが目視するユーザにとって劣化が認められ僅かでも気になるものとなるからである。モアレの評価指標の値が、所定の評価閾値以下では、劣化が認められても気にならないからである。
 ここで、所定の評価閾値は、導電性フィルム及び表示装置の性状に応じて、具体的には、定型メッシュパターン25の金属細線14の線幅や、開口部22の形状やそのサイズ(ピッチ等)や角度や、2つの配線層の配線パターンの位相角(回転角、ズレ角)等、及びBMパターン38の形状やそのサイズ(ピッチ等)や配置角度等に応じて適宜設定されるものであるが、定型メッシュパターン25をモアレが視認されないように最適化する場合には、例えば、常用対数で-3.17(真数で10-3.17)以下であるのが好ましい。即ち、モアレの評価指標は、その値が、例えば、常用対数で-3.17(真数で10-3.17)以下であるのが好ましい。
 なお、定型メッシュパターン25に対して不規則性を付与してランダム化したランダムパターンをモアレが視認されないように最適化する場合には、例えば、常用対数で-2.80(真数で10-2.80)以下であるのが好ましく、常用対数で-3.17(真数で10-3.17)以下であるのがより好ましく、常用対数で-4.00(真数で10-4.00)以下であるのが最も好ましい。即ち、モアレの評価指標は、その値が、例えば、常用対数で-2.80(真数で10-2.80)以下であるのが好ましく、常用対数で-3.17(真数で10-3.17)以下であるのがより好ましく、常用対数で-4.00(真数で10-4.00)以下であるのが最も好ましい。
 なお、詳しくは後述するが、規則性のある菱形の様々な定型メッシュパターン25の重ね合わせによって構成される多数の合成メッシュパターンについて、シミュレーションサンプル及び実サンプルでモアレの評価指標を求め、その後、少なくとも一方の定型メッシュパターン25に対して、そのセル22のピッチや、角度に所定閾値以下のランダム性を付与したメッシュ状ランダムパターン25a又は25b、若しくは、そのセル22の辺を波線化して所定閾値以下のランダム性を付与したメッシュパターン25cを用いて、ランダム性が付与された合成メッシュパターンを構成し、3名の官能評価者が、定型メッシュパターン25の重ね合わせによる合成メッシュパターン(ランダム性付与無し)及びランダム性が付与された合成メッシュパターンとBMパターンのRGB3色の各色の副画素配列パターンとの干渉によるモアレを目視による官能評価を行ったところ、モアレの評価指標が、ランダム性の付与が無い場合には常用対数で-3.17以下であれば、ランダム性が付与された場合には、常用対数で-2.80以下であれば、ディスプレイが点灯された状態で、重畳された合成メッシュパターンとBMパターンのRGB3色の各色の副画素配列パターンとの干渉によって生じるモアレの視認性に対して、劣化が僅かに認められても気にならないレベル以上のレベルだからである。
 したがって、本発明において最適化された合成メッシュパターン及び構成要素となる菱形の定型メッシュパターン25では、モアレの評価指標を、好ましい範囲として、ランダム性を付与しない場合には常用対数で-3.17(真数で10-3.17)以下に特定し、ランダム性を付与する場合には常用対数で-2.80(真数で10-2.80)以下に特定する。
 もちろん、定型メッシュパターン25の金属細線14の線幅や、開口部22の形状やそのサイズ(ピッチや角度)や、ランダム性を付与しない場合及び付与する場合の2つの配線層の定型メッシュパターン25の位相角(回転角、ズレ角)等に応じて、ランダム性を付与しない場合及び付与する場合において複数の最適化されたメッシュパターン25が得られるが、モアレの評価指標の常用対数値が小さいものが最良の定型メッシュパターン25となり、複数の最適化された定型メッシュパターン25には序列を付けることもできる。
 なお、アレの評価指標が常用対数で-3.17以下として特定された場合には、特定された定型メッシュパターン25は、最適化されたものとして、本発明の導電性フィルムの配線パターンに決定され、かつ評価される。
 一方、手順6(ステップS20)で菱形の適格化定型メッシュパターンが設定されている場合には、手順7として、設定された適格化定型メッシュパターンに不規則性の付与を行う。
 図16に示すように、ステップS22において、ステップS20で設定された、例えば図14に示す適格化定型メッシュ(配線)パターン25のセル22の菱形形状のセル22のピッチ、角度に対して所定範囲の不規則性を付与して、若しくはセル22の辺を波線化して不規則性を付与して得られた、図15、図16、及び図17に示す配線パターン25a、25b、及び25cを、本発明の導電性フィルムの配線パターンとして決定し評価する。
 ここで、ステップS22における所定の不規則性を付与は、以下のようにして行うことができる。
 まず、図14に示す適格化配線パターン25において、そのセル22の菱形形状のピッチに対して、所定範囲の不規則性を付与して、図15に示す平行四辺形のランダムパターン25aを作成する場合について説明する。
 即ち、図14に示す規則性のある定型配線パターン25の菱形形状において、菱形の対向する2辺に平行性を保ったまま所定距離平行に移動させることにより、菱形形状のピッチpに対して所定の不規則性を付与して、図15に示すランダム性が付与された平行四辺形の配線パターン25aを得ることができる。
 この時、対向する2辺の平行性は保たれるので、角度θは保存され、セル22の菱形は平行四辺形に変化する。このように菱形を構成する1本の線を移動させる場合には、不規則性の付与の前後において菱形の角度θが保存される。したがって、菱形のピッチpがランダムに変化し、角度θが保存されるので、菱形のピッチpをランダムに変形させ、角度θを一定に保つ角度保存パターンであるということができる。
 なお、本発明においては、不規則性は、規則性のある定型配線パターン25において、不規則性が付与される前の菱形のピッチに対する、不規則性が付与された平行四辺形のピッチの分布、例えば正規分布又は一様分布に従う平均値の割合で定義される。
 本発明においては、上記で定義される不規則性の所定の限定範囲は、0%超10%以下であるのが好ましく、より好ましくは、2%~10%であるのがよく、更に好ましくは、2%~8%であるのが良い。
 ここで、不規則性を上記所定の限定範囲に限定する理由は、この限定範囲内であれば、モアレの発生が抑止され、モアレの視認性に優れたものとすることができ、重畳するBMパターン少し変化した場合であっても、モアレの発生を抑止することができ、モアレの視認性に優れた性能を維持することができるが、この限定範囲を外れると、不規則性の付与による上記効果を得ることができなくなるからである。
 規則的な定型メッシュパターンのセルのピッチに対する所定範囲の不規則性を付与は、以上のように行うことができる。
 次に、図14に示す適格化配線パターン25において、そのセル22の菱形形状の角度に対して、所定範囲の不規則性を付与して、図16に示す四角形のランダムパターン25bを作成する場合について説明する。
 まず、14に示す適格化配線パターン25の菱形形状において、菱形の対向する2辺の内の1辺を他方の辺に対して平行性をなくすように所定角度傾斜させることにより、菱形形状の角度θに対して所定の不規則性を付与して、図16に示すランダム性が付与されたランダム配線パターン25bを得ることができる。
 この時、対向する2辺のなす角度は変化し、平行性は維持されないことから、開口部の菱形形状は四角形に変化する。このように菱形を構成する1本の線を対向する他の1本の線に対して傾斜させる場合には、不規則性の付与の前後において菱形の角度、例えば、隣接する辺のなす角、もしくは、1つの直線に対して交差する菱形の辺のなす角が変化する。したがって、角度θがランダムに変化し、角度θの変化に応じて菱形のピッチpも変化する。即ち、菱形の角度θをランダムに変化させ、その結果、角度θの変化に応じてピッチpも変化させるパターンであるということができる。
 なお、本発明においては、不規則性は、定型配線パターン25において、不規則性が付与される前の菱形のピッチに対する、不規則性が付与された四角形のピッチの正規分布に従う平均値の割合で定義される。
 本発明においては、上記で定義される不規則性の所定の限定範囲は、0%超3%以下であるのが好ましく、より好ましくは、0.2%~3%であるのがよく、更に好ましくは、0.5%~3%であるのが良い。
 ここで、不規則性を上記所定の限定範囲に限定する理由は、この限定範囲内であれば、モアレの発生が抑止され、モアレの視認性に優れたものとすることができ、重畳するBMパターン少し変化した場合であっても、モアレの発生を抑止することができ、モアレの視認性に優れた性能を維持することができるが、この限定範囲を外れると、不規則性の付与による上記効果を得ることができなくなるからである。
 規則的な定型メッシュパターンのセルの角度に対する所定範囲の不規則性を付与は、以上のように行うことができる。
 次に、図14に示す適格化定型配線パターン25において、そのセル22の菱形形状の辺を波線化することにより、セル22の菱形形状に対して所定範囲の不規則性を付与して、図17に示す波線化ランダム配線パターン25cを作成する場合について説明する。
 まず、図14に示す定型配線パターン25において、セル22の辺を構成する金属細線14を所定振幅A、所定波長λ、及び所定位相αの波線の形状に変形させることにより、所定の不規則性を付与して、図17に示すランダム性が付与された波線化ランダムパターン25cを得ることができる。
 この時、図17に示す波線化ランダムパターン25cを構成する金属細線14の波線の中心線は、図14に示す定型配線パターン25の金属細線14の直線と一致する。したがって、波線化ランダムパターン25cの波線の中心線によって形成される開口部(セル)は、図14に示す定型配線パターン25の菱形形状のセル22と一致するので、波線化ランダムパターン25cのセル22は、菱形形状のセル22の各辺を波線化したものということができる。
 なお、本発明においては、不規則性は、菱形の定型配線パターン25のセル22の菱形形状、即ち、不規則性が付与される前の菱形形状のピッチに対する、不規則性が付与された波線化ランダムパターン25cの波線の振幅A、波長λ、及び位相αの割合(%)で定義される。
 本発明においては、上記で定義される不規則性の所定の限定範囲は、波線の振幅Aが菱形のランダム配線パターン25の菱形のセル22のピッチの2.0%以上20%以下であるのが好ましい。
 ここで、不規則性を上記所定の限定範囲に限定する理由は、この限定範囲内であれば、モアレの発生が更に抑止され、モアレの視認性に更に優れたものとすることができ、重畳するBMパターン少し変化した場合であっても、モアレの発生を抑止することができ、モアレの視認性に優れた性能を維持することができるが、この限定範囲を外れると、不規則性の付与による上記効果を得ることができなくなるからである。
 ステップS20における所定の不規則性を付与は、以上のように行うことができる。
 こうして、本発明の導電性フィルムの配線パターンの評価方法は、終了し、評価された定型配線パターン及びランダム配線パターンを本発明の導電性フィルムの配線パターンとして評価し、決定することができる。
 その結果、点灯状態の表示装置の表示ユニットのBMパターンに重畳しても、モアレの発生が抑止され、異なる解像度の表示装置に対しても、また、観察距離によらず、モアレの視認性に優れた、最適化された定型配線パターン、及び不規則性が付与されて最適化された配線パターンを持つ本発明の導電性フィルムを作製することができる。
 本発明においては、所定のBMパターンに対して、最適化した定型配線パターンを評価するので、また、所定のBMパターンに対して、適格化した定型配線パターンに上述した所定範囲内で不規則性を付与するので、モアレの発生が抑止され、モアレの視認性に優れたものとすることができ、また、最適化した定型配線パターンに更に上述した所定範囲内で不規則性を付与する場合はモアレの発生が更に抑止され、モアレの視認性に更に優れたものとすることができ、重畳するBMパターン少し変化した場合であっても、モアレの発生を抑止することができ、モアレの視認性に優れた性能を維持することができる。
 次に、本発明における視点aに垂直な平面に射影された状態において、所定の強度(明度値)を持つ表示装置の画素配列(BM)パターンに対する導電性フィルムの配線パターンのノイズ視認性の最適化及びランダム化の手順について説明する。
 即ち、本発明の射影された導電性フィルムにおいて、少なくとも1視点において、所定の強度の表示装置の所定の射影された画素配列(BM)パターンに対してノイズが人間の視覚に知覚されないように最適化された不規則(ランダム)配線パターンを評価して決定する手順について説明する。
 図45は、本発明の他の実施形態の導電性フィルムの評価方法の一例を示すフローチャートである。
 図45に示す本実施形態の導電性フィルムの評価方法は、図16に示す上述した実施形態の導電性フィルムの評価方法と、モアレの評価指標を求めて定型配線パターンを評価するのに対し、ノイズの評価指標を求めてランダムメッシュパターンを評価する点、定型配線パターンの合成配線パターンを作成し、ランダム性の付与は、モアレの評価指標による評価後であるのに対し、予めランダムメッシュパターンを作成して合成配線パターンを作成する点では異なるが、ステップS10のディスプレイのBMデータの作成ステップは全く同じであり、ステップS14のBMパターン、合成配線パターンの2次元高速フーリエ変換(2DFFT)スペクトルの算出ステップも類似しており、他の部分についても類似している部分があるので、以下では、同様な部分については、その詳細な説明を省略する。
 本実施形態の導電性フィルムの配線パターンの評価方法は、まず、表示装置の表示ユニットの複数色(例えばRGB)の各色の単体点灯時のBM(画素配列)パターンの明度画像データを取得する。また、導電性フィルムの上側と下側の一方に用いられる不規則配線パターンと他方に用いられる配線パターンとを生成し、それらの透過率データを得、それらの合成配線パターンの透過率データを取得する。ここで、他方に用いられる配線パターンは、不規則配線パターンであっても良いし、規則的な配線パターンであっても良い。
 次に、合成配線パターンの透過率データとBMパターンとの高速フーリエ変換(FFT)を用いた周波数解析により得られるノイズの周波数・強度から、表示ユニットの表示解像度に応じて規定されるノイズの最高周波数以下の周波数及び所定の強度を持つ各色についてのノイズ(周波数・強度)を選び出す。
 次いで、選び出された各色についてのそれぞれのノイズの周波数におけるノイズの強度に人間の視覚応答特性を観察距離に応じて作用させてそれぞれ各色のノイズの評価値を得、得られた複数のノイズの定量値からノイズの評価指標(定量値)を算出する。
 次に、算出されたノイズの評価指標が予め設定された条件を満たす合成配線パターンを構成する不規則配線パターンを、ノイズが視認されないように最適化された配線パターンとして評価し、最適化された不規則配線パターンとして決定するものである。
 本発明法においては、手順1として、図45に示すように、まず、最初に、ステップS10において、ディスプレイを定量的に取り扱うために、ディスプレイの透過率画像データ(BMデータ)を作成する。
 ここで、ステップS10において行うディスプレイBMデータを作成する方法は、モアレの評価とノイズの評価の違いはあるが、上述した実施形態の導電性フィルムの配線パターンの評価方法と全く様に、図37に示すディスプレイBMデータの作成方法のフローに従って、全く同様に行えばよい。
 次に、手順2として、導電性フィルム10のメッシュ状配線パターン24を定量化するために、導電性フィルム10の上側及び下側の配線パターン24a及び24bの合成配線パターンの画像(透過率画像データ)の作成を行う。なお、配線パターン24a及び24bの少なくとも一方は、不規則メッシュパターン(以下、ランダムメッシュパターンともいう)である。上述したように、一方の片側面がランダムメッシュパターンであり、他方の片側面がITO等の透明導電膜による配線パターンである場合には、両者の合成配線パターンの画像(透過率画像データ)は、片側面のランダムメッシュパターンの画像(透過率画像データ)で表すものとする。
 図45に示すように、ステップS24において、ランダムメッシュパターンを含む合成配線パターンの透過率画像データを作成する。
 ここでは、上側及び下側の配線パターン24a及び24bの少なくとも一方として用いられるランダムメッシュパターン25dの透過率画像(データ)を作成する。その手順では、まず、上述の図28に示すように、平面領域100内において任意の間隔で無作為に選択された複数の位置にドットを発生させて複数のシード点pとするのが好ましい。次に、図27に示すように、得られた複数のシード点のドットデータを、元にボロノイ図(ボロノイ分割法)に従って決定されたボロノイ多角形を開口部22として持つランダムメッシュパターン25dを作成して、その透過率画像データを取得するのが好ましい。なお、上述したように、なお、ランダムメッシュパターンの作成方法は、ドロネー三角形でも何であってもよい。
 なお、上側及び下側の配線パターン24a及び24bとしてランダムメッシュパターン25dを用いる場合には、2つのランダムメッシュパターン25dの透過率画像データから両者を重ね合わせた状態の合成配線パターンの透過率画像データを作成する。
 上側及び下側の配線パターン24a及び24bの一方のみにランダムメッシュパターン25dを用いる場合には、別途、他方の配線パターンの透過率画像データを取得して、両者の透過率画像データから両者を重ね合わせた状態の合成配線パターンの透過率画像データを作成する。この時、他方の配線パターンがITO等の透明導電膜の配線パターンである場合には、その透過率データの値を全面的に1.0として、合成配線パターンの透過率画像データを作成する。
 なお、予め、合成配線パターン、ランダムメッシュパターン25d、及びメッシュ状配線パターン24a及び24bの他方の配線パターンの透過率画像データの少なくとも1つが準備されている、若しくは蓄えられている場合には、準備された、若しくは蓄えられた中から取得するようにしても良い。
 なお、今回、実施例において、ランダムに発生させたシード点pのドットデータは、以下の通りである。
 先ず、例えば、解像度12700dpi(2μm/pix)で、10mm相当(5000pix×5000pix)の平面領域100を持つキャンバスを用意する。そこに、メッシュになった時のピッチを想定し、必要な数のドットを配置する。ドット数は、例えばピッチを50μmと想定した場合、キャンバスサイズが5000pix×5000pixなので、50μmは25pixに相当するので、25pixで割ると、200X200=40000のドットが必要になる。それをランダムに配置する。想定したピッチとドット数との組み合わせ(ピッチ、ドット数)は、例えば、(50μm,40000ドット)、(1000μm,10000ドット)、(200μm,2500ドット)、(300μm,1111ドット)の計4種である。ランダムメッシュパターンを描画する際の線幅は、例えば、2μm及び4μmを利用する。
 また、ランダムメッシュパターンの透過率画像データ、及び合成配線パターンの透過率画像データを作成する際に、その解像度を、例えば、25400dpiとし、透過率画像データのサイズを規定し、例えば、BMパターン38の場合と同様に、画素サイズを20000pix×20000pixに近く、周期的に切り出すことができるサイズ(例えば、109pix×109pix)の整数倍としても良い。こうして、規定されたサイズで透過率画像データを作成することができる。
 次に、手順3として、手順1(ステップS10)で作成した副画素の規格化明度画像データ及び手順2(ステップS24)で作成した合成配線パターンの透過率画像データのそれぞれに対して、2次元高速フーリエ変換(2DFFT(基底2))を行い、両透過率画像データの定量化を行って、スペクトルピークの空間周波数、及びピークスペクトル強度を算出する。
 即ち、図45に示すように、ステップS14において、まず、RGBの各色毎にBMパターン38の各色の副画素配列パターン(BMパターン)の明度画像データ及び合成配線パターンの透過率画像データのそれぞれに対して2DFFT(画像サイズは、5000pix×5000pix)を行い、フーリエスペクトルを算出する。ここでは、DC(直流)成分の強度が、画像の平均値になるように規格化しておくのが好ましい。
 まず、上述したように、ステップS10で得られたノイズ評価用明度画像データに対して2DFFTを行い、ピーク周波数、及びそのピーク強度を得る。
 こうして得られたG色の(副画素配列パターン)の明度画像データの2次元フーリエスペクトルの強度特性の一例を図46(A)に示す。なお、図46(A)に示すG色の明度画像データの2次元フーリエスペクトルの強度特性は、図40(A)に示すものと同じである。
 続いて、ステップS24で作成された合成配線パターンの透過率画像データに対して2DFFTを行い、合成配線パターンの透過率画像データの2次元フーリエスペクトルの複数のスペクトルピークのピーク周波数及びピーク強度を算出する。ここでは、ピーク強度は、絶対値として取り扱う。計算簡略化の為、例えば、強度の閾値は、スペクトル強度の絶対値を常用対数で表した場合に、-3.0より大きいものだけを取り扱うのが好ましい。
 こうして得られた合成配線パターンの透過率画像データの2次元フーリエスペクトルの強度特性の一例を図46(B)に示す。本発明においては、ノイズの視認性を評価対象としている。このため、評価に組み入れるスペクトルピークの強度閾値は、離散的に存在する強い(高い)ピーク強度を対象とするモアレの場合と異なり、分布状態を評価する必要があるので、より弱い(低い)ピーク強度まで評価に組み入れる必要があることから、より小さい閾値となっている。
 なお、図46(B)に示す2次元パワースペクトルの強度の分布を示す図において、横軸及び縦軸は、それぞれ2次元の各軸、例えばX軸及びY軸方向に対する空間周波数(cycle/mm)を示す。この分布図の中心、即ち原点は、空間周波数が0cycle/mmであることを示し、中心からの距離を表わす動径rは、空間周波数(cycle/mm)を示す。また、同図において、空間周波数帯域毎の表示濃度が濃い(黒い)ほど強度レベル(スペクトルの値)が小さくなり、表示濃度が薄い(白い)ほど強度レベルが大きくなっていることを示す。本図の例では、この2次元スペクトルの強度分布特性は、等方的であるとともに環状のピークを1個有していることを示し、略同一の空間周波数、例えば、15cycle/mm付近に空間周波数を持つスペクトルピークが等方的に分布していることを示している。即ち、ランダムメッシュパターンは、セル(開口部22)の平均ピッチが67μm付近であることを示している。
 なお、視点を変えた場合の合成配線パターンのメッシュの空間周波数及びその強度、及びBMのスペクトル強度は正面のものとは異なる。合成配線パターンについては、例えば30°視点をずらすと、上側のメッシュパターンと下側のメッシュパターンとのズレ量は、基体厚み(例えば、PET:100μm)を考慮してずらせばよい。BMのスペクトル強度については、正面の強度と比べて、0.9倍にすればよい。
 上述したように、図46(A)及び(B)は、それぞれBMパターン38のG色の(副画素配列パターン)の明度画像データ及び合成配線パターンの透過率画像データの2次元フーリエスペクトルの強度特性を示す図である。
 なお、図46(A)及び(B)において、白い部分は強度が高く、スペクトルピークを示しているので、図46(A)及び(B)に示す結果から、BMパターン38のRGB3色の副画素配列パターンに依存する各色点灯時のBMパターン38の明度データ及び合成配線パターンのそれぞれについて、各スペクトルピークのピーク周波数及びピーク強度を算出する。即ち、図46(A)及び(B)にそれぞれ示すBMパターン38(各色の副画素配列パターン)の明度データ及び合成配線パターンの透過率データの2次元フーリエスペクトルの強度特性におけるスペクトルピークの周波数座標上の位置、即ちピーク位置がピーク周波数を表し、そのピーク位置における2次元フーリエスペクトルの強度がピーク強度となる。
 ここでは、BMパターン38の各副画素配列パターン及び合成配線パターンの各スペクトルピークのピークの周波数及び強度は、上述した図16に示すモアレの評価指標の算出例の場合のステップS14と同様に算出されて取得される。上述した例と、合成配線パターンの透過率画像データの値自体は異なるが、合成配線パターンの透過率画像データとしては同じであり、各色点灯時のBMパターン38(各色の副画素配列パターン)の明度データは全く同じであるので、詳細な説明は省略する。
 次に、手順4として、手順3(ステップ14)で得られたRGB各色の単体点灯時のBMパターン38の明度データのピーク周波数及びピーク強度と合成配線パターンのピーク周波数及びピーク強度からノイズの空間周波数及び強度を算出し、それらの予測を行う。
 即ち、図45に示すように、ステップS26において、ステップS14でそれぞれ算出したBMパターン38のRGB各色の副画素配列パターン及びメッシュパターンの両2次元フーリエスペクトルのピーク周波数及びピーク強度から各色についてそれぞれノイズの周波数及び強度を算出する。なお、ここでも、ピーク強度及びノイズの強度は、絶対値として取り扱う。
 ここでは、RGB各色の副画素配列パターンのピーク周波数及びピーク強度とメッシュパターン24のピーク周波数及びピーク強度の畳み込み演算によってノイズの空間周波数及び強度を計算することができる。
 実空間においては、ノイズは、本来、導電性フィルム10の合成配線パターンと各色の単体点灯時のBMパターン38の副画素配列パターンとの画像データ(透過率画像データと明度画像データと)の掛け算によって起こるため、周波数空間においては、両者の畳み込み積分(コンボリューション)を行うことになる。しかしながら、ステップS14及び16において、BMパターン38の各色の副画素配列パターン及び合成配線パターンの両方の2次元フーリエスペクトルのピーク周波数及びピーク強度が算出されているので、RGBの中の1色の副画素配列パターンと合成配線パターンとの両者のそれぞれの周波数ピーク同士の差分(差の絶対値)を求め、求められた差分をノイズの周波数とし、両者の組み合わせた2組のベクトル強度の積を求め、求められた積をノイズの強度(絶対値)とすることができる。
 これらのノイズの周波数及びノイズの強度は、RGBの各色毎に求められる。
 ここで、図46(A)及び(B)にそれぞれ示すBMパターン38の各色の副画素配列パターンと合成配線パターンとのそれぞれ両者の2次元フーリエスペクトルの強度特性のそれぞれの周波数ピーク同士の差分は、各色について、両者の2次元フーリエスペクトルの強度特性を重ね合わせて得られる強度特性において、両者のそれぞれの周波数ピークの周波数座標上のピーク位置間の相対距離に相当する。
 なお、BMパターン38の各色の副画素配列パターンと合成配線パターンとの両2次元フーリエスペクトルのスペクトルピークは、各色毎に、それぞれ複数存在するので、その相対距離の値である周波数ピーク同士の差分、即ちノイズの周波数も複数求められることになる。したがって、両2次元フーリエスペクトルのスペクトルピークが多数存在すると、求めるノイズの周波数も多数となり、求めるノイズの強度も多数となる。
 しかしながら、求められたノイズの周波数におけるノイズの強度が弱い場合は、ノイズが視認されないため、ノイズの強度が弱いと見做せる所定値またはそれより大きいノイズ、例えば、強度が-4.5以上のノイズのみを扱うのが好ましい。
 また、ここで、表示装置においては、ディスプレイ解像度が決まっているため、ディスプレイが表示できる最高の周波数はその解像度に対して決まる。このため、この最高の周波数より高い周波数を持つノイズは、このディスプレイで表示されないことになるので、本発明における評価の対象とする必要はない。従って、ディスプレイ解像度に合わせてノイズの最高周波数を規定することができる。ここで、本発明において考慮すべきノイズの最高周波数は、ディスプレイの画素配列パターンの画素ピッチをPd(μm)とする時、1000/Pd(cycle/mm)とすることができる。
 以上から、本発明では、両2次元フーリエスペクトルのスペクトルピークから求められたノイズの周波数及び強度の中で、本発明における評価(定量化)の対象とするノイズは、ノイズの周波数が、対象となるディスプレイ解像度(例えば、本実施例のものでは、264dpi)に応じて規定されるノイズの最高周波数1000/Pd(本実施例のものでは、10cycle/mm)以下、例えば、8cycle/mm以下の周波数を持つノイズであって、ノイズの強度が-4.5以上のノイズである。本発明において、ノイズの強度が-4.5以上のノイズを対象とする理由は、強度が-4.5未満のノイズも多数発生し、合算値をとると本来見えないノイズまで点数付けすることになるからである。このため、本発明においては、経験的な視認限界より-4.5以上という閾値を設けている。
 次に、手順5として、手順4(ステップS26)で算出したRGB各色の副画素毎のノイズの周波数及び強度を用いて、ノイズの定量化を行い、ノイズの評価指標となる定量値を求める。
 即ち、図45に示すように、ステップS28において、ステップS26で残ったノイズ評価用スペクトルピークに対して視覚伝達関数(VTF;Visual Transfer Function)を畳み込み、定量化する。
 ノイズの定量化においては、具体的には、ステップS28において、ステップS26で得られたRGB各色の副画素毎のノイズの周波数及び強度(絶対値)に、それぞれ上記式(1)で示す人間の視覚応答特性の一例を表す観察距離750mm相当の人間の視覚応答特性(VTF)を作用させて、即ち畳み込み積分を行い、各色毎の複数のノイズの評価値を算出する。ここで、ノイズの点数付けのために、観察距離750mm相当のVTFを代用している。
 こうして、RGBの各色毎に、強度の常用対数をとったノイズの評価値を求めることができる。
 ここで、RGBの各色毎に、上述したステップS10~S28を繰り返して、RGBのノイズの評価値を求めても良いが、上述したステップS10~S28の各ステップにおいて、RGBの各色の演算を行っても良い。
 こうして得られたRGBのノイズの評価値の中の最悪値、即ち最大値をノイズの評価指標(定量値)とする。ノイズの評価指標の値も、常用対数で表され、ノイズの評価指標の常用対数での値(常用対数値)として求められる。なお、最悪値の算出に伴い、評価画像もRGB表示で合せて評価するのが好ましい。
 なお、ノイズの評価指標であるノイズの定量値は、従来通りのモアレ、及びノイズを定量化したものと言える。本発明では、ノイズは、モアレがたくさんある状態として定義することができる。したがって、本発明では、単一周波数にピークがあれば、モアレと判断するが、単一周波数付近に複数のピークがあれば、ノイズと判断することができる。
 以上のノイズの評価指標は、ディスプレイ40の表示ユニット30の表示画面に積層された導電性フィルム10を表示画面の正面から観察する場合のものであるが、本発明はこれに限定されず、正面に対し、斜めから観察する場合のノイズの評価指標を求めても良い。
 なお、斜めから観察する場合のノイズの評価指標を求める場合には、斜め観察時のディスプレイ40のRGBの強度を、正面観察時の明度の90%で計算し、ステップS14に戻り、再度、各色のフーリエスペクトルのピーク周波数・強度を算出する。この後、ステップS26~S28を同様に繰り返し、斜め観察時のノイズの評価指標を算出する。
 こうして、正面観察時及び斜め観察時のノイズの評価指標が算出されると、正面観察時及び斜め観察時のノイズの評価指標の内の大きい値(最悪値)がノイズの評価に供されるノイズの評価指標として算出される。
 なお、正面観察時及び斜め観察時の一方しか行わない場合には、正面観察時又は斜め観察時のノイズの評価指標がそのままノイズの評価に供されるノイズの評価指標となる。
 次に、手順6として、手順5(ステップS26)で算出されたノイズの評価指標(定量値:最悪値)に基づいて合成配線パターン及びランダムメッシュパターンを評価し、判定を行う。
 即ち、図45に示すように、ステップS30において、ステップS28で求めた当該合成配線パターンのノイズの評価指標の常用対数値が、所定の評価閾値以下であれば、当該合成配線パターンを構成する各ランダムメッシュパターン、又は他方の配線パターンに対する一方のランダムメッシュパターン、若しくは他方が透明導電膜の場合のランダムメッシュパターンは、本発明の導電性フィルム10に適用するのに最適化されたランダムメッシュパターンであると評価し、図27に示す最適化されたランダムメッシュパターン25dとして設定する。
 なお、ノイズの評価指標の値を、常用対数で、所定の評価閾値以下に限定する理由は、所定の評価閾値より大きいと、重畳された合成配線パターンとBMパターン各副画素配列パターンのとの干渉によって生じたノイズがあると視認され、視認されたノイズが目視するユーザにとって気になるものとなるからである。ノイズの評価指標の値が、所定の評価閾値以下では、僅かに気になることはあってもあまり気にならないからである。
 ここで、所定の評価閾値は、導電性フィルム及び表示装置の性状に応じて、具体的には、ランダムメッシュパターン25dの金属細線14の線幅や、セル(開口部22)の形状やそのサイズ(ピッチ等)や角度や、2つの配線層28の両配線パターンの重ね合わせの状態等、及びBMパターン38の形状やそのサイズ(ピッチ等)や配置や角度等に応じて適宜設定されるものであるが、例えば、常用対数で-2.80(真数で10-2.80)以下であるのが好ましい。即ち、ノイズの評価指標は、その値が、例えば、常用対数で-2.80(真数で10-2.80)以下であるのが好ましい。
 なお、詳しくは後述するが、ランダムメッシュパターン25dの重ね合わせによって構成される多数の合成配線パターンについて、シミュレーションサンプルでノイズの評価指標を求め、3名の官能評価者が合成配線パターンとBMパターンのRGB3色の各色の副画素配列パターンとの干渉によるノイズを目視による官能評価を行ったところ、ノイズの評価指標が、常用対数で-2.80以下であれば、ディスプレイが点灯された状態で、重畳された合成配線パターンとBMパターンのRGB3色の各色の副画素配列パターンとの干渉によって生じるノイズの視認性に対して、劣化が僅かに認められるが、殆ど気にならないレベル以上だからである。
 したがって、本発明において最適化された合成配線パターン及び構成要素となるランダムメッシュパターン25dでは、ノイズの評価指標を、好ましい範囲として、常用対数で-2.80(真数で10-2.80)以下に特定する。
 もちろん、ランダムメッシュパターン25dの金属細線14の線幅や、開口部22の形状やそのサイズ(ピッチや角度)や、2つの配線層のランダムメッシュパターン25dの重ね合わせ状態等に応じて、複数の最適化されたランダムメッシュパターン25dが得られるが、ノイズの評価指標の常用対数値が小さいものが最良のランダムメッシュパターン25dとなり、複数の最適化されたランダムメッシュパターン25dには序列を付けることもできる。
 こうして評価された図27に示すランダムメッシュパターン25dを、本発明の導電性フィルムの配線パターンとして決定し評価する。
 こうして、本発明の導電性フィルムの配線パターンの決定方法は、終了し、評価されたランダムメッシュパターンを本発明の導電性フィルムの配線パターンとして評価することができる。
 その結果、点灯状態の表示装置の表示ユニットのBMパターンに重畳してもノイズの発生が抑止され、異なる解像度の表示装置に対しても、また、観察距離によらず、ノイズの視認性に優れた、最適化されたランダムメッシュパターンを持つ本発明の導電性フィルムを作製することができる。
 本発明においては、所定のBMパターンに対して最適化したランダムメッシュパターンを用いるので、ノイズの発生が更に抑止され、ノイズの視認性に更に優れたものとすることができ、重畳するBMパターン少し変化した場合であっても、ノイズの発生を抑止することができ、ノイズの視認性に優れた性能を維持することができる。
 以上に、本発明に係る導電性フィルム、それを備える表示装置及び導電性フィルムのパターンの評価方法について種々の実施形態及び実施例を挙げて説明したが、本発明は、上述の実施形態及び実施例に限定されず、本発明の要旨を逸脱しないかぎり、種々の改良や設計の変更を行っても良いことはもちろんである。
 以下に、本発明を実施例に基づいて具体的に説明する。
(実施例I)
 本実施例においては、図36及び図37に示す本発明の導電性フィルムの評価方法のフローに従って、上述のようにして、以下のように実験を行った。
 図35(A1)~(H2)に示すG副画素配列パターンで代表的に表される、異なる副画素形状、解像度及び発光強度を持つディスプレイの画素配列(BM)パターン38に対して、図14に示す菱形パターン形状を持ち、開口部の形状及びサイズ(ピッチp及び角度θ)が異なり、金属細線(メッシュ)の線幅の異なる多数の定型メッシュパターン25について、シミュレーションサンプルで、その合成メッシュパターンと各色のBMパターンとを重畳し、不規則性を付与する前後において、モアレの評価指標であるモアレの定量値を求めると共に、異なるランダム性を付与する前及び後の同様の多数のメッシュパターンと各色のBMパターンとを重畳し、3名の官能評価者が、モアレのシミュレーション画像において重畳された両者の干渉によって生じるモアレを目視で官能評価した。
 なお、不規則性は、定型メッシュパターン25のセル22のピッチ、又は角度に対して所定閾値以下の値を付与した。
 ここで、モアレの評価は、図36に示すように、ステップS14で用いた画素配列(BM)パターンの各色の副画素配列パターンの明度画像データ上に合成メッシュパターンの透過率データを重畳して、明度画像上に透過率画像が重畳されたモアレのシミュレーション画像を作成してディスプレイに表示し、表示されたシミュレーション画像を3名の官能評価者が目視して官能評価を行った。
 なお、図35に示すように、8種類のディスプレイのBM構造に対し、No.1~No.8のBM構造番号を付し、このBM構造、ディスプレイの解像度、及びディスプレイの発光強度の異なる16の組み合わせをBM条件番号No.1~No.16とした。これらのBM構造、BM条件、ディスプレイの解像度、及びディスプレイの発光強度を表1に示す。
 各実験例におけるBM条件、メッシュパターンの角度、ピッチ、及び線幅、モアレの定量値、並びに官能評価結果を表2及び表3に示す。
 表2は、定型メッシュパターン25のセル22のピッチに対して所定閾値、例えば10%以下の不規則性を付与した結果を示す。
 表3は、定型メッシュパターン25のセル22の角度に対して3.0%以下の不規則性を付与した結果を示す。
 ここで、官能評価結果は、1~5の5段階で行い、モアレの視認性の劣化が認められ、非常に気になる場合は、1と評価し、モアレの視認性の劣化が認められ、気になる場合は、2と評価し、モアレの視認性の劣化が認められ、僅かに気になる場合は、3と評価し、モアレの視認性の劣化が認められるが、気にならない場合は、2と評価し、モアレの視認性の劣化が認められない場合は、5と評価した。
 モアレの視認性としては、評価3以上であれば合格であるが、評価4以上であるのが望ましく、評価5であるのが最も望ましい。
 本実施例においては、定型メッシュパターン25の開口部22の形状については、ピッチpを150μmと200μmとに変化させ、角度θは35°に固定した。
 また、定型メッシュパターン25の線幅は、2μmと、4μmとに変化させた。
 なお、ディスプレイの解像度は、図35(A1)~(H2)に示す8種のBMパターンでは、それぞれ、149dpi、222dpi,265dpi,265dpi(v2),326dpi,384dpi,384dpi(v2),440dpiであった。
 また、ディスプレイの発光強度は、ディスプレイ LP101WX1(SL)(n3)(LGディスプレイ社製)で規格化され、全強度が0-255で与えられる時、いずれのディスプレイにおいても、64(明度1)と128(明度2)とに変化させた。
 ピッチに対して付与するランダム性は、0.0%(付与せず)、0.2%、0.5%、0.8%、1.0%、及び3.0%に変化させた。
 角度に対して付与するランダム性は、0.0%(付与せず)、2.0%、4.0%、6.0%、8.0%、及び10.0%に変化させた。
 なお、画素配列(BM)パターン38の各色の副画素配列パターンの撮像においては、ディスプレイ LP101WX1(SL)(n3)(LGディスプレイ社製)を、GチャネルのみをMAX強度で点灯させ、マイクロスコープとしてSTM6(OLYMPUS社製)、レンズとしてUMPlanFIx10(OLYMPUS社製)、カメラとしてQIC-F-CLR-12-C(Linkam Scientific Instruments社製)を用いて撮像した。この際、撮像条件は、ゲイン1.0、ホワイトバランス(G、R、B)は(1.00、2.17、1.12)とした。また、撮像画像は、シェーディングを行った。
 明度の計測には、オーシャンオプティクス製USB2000+、ファイバの先端には拡散板(同社製CC-3-UV-S)を利用し、積分時間は250msとした。
 モアレの評価指標の算出は、図36に示す方法で、上述のように行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、表2中、モアレの定量値の欄の「NaN」は、強度が小さく、モアレの発生に寄与しないものを閾値処理によって除去したために、モアレの定量値が求められなかったことを示し、モアレの発生がなく、モアレが視認されないことを示す。
 表2は、実験例1~64を示し、実験例5~13、実験例15、実験例17~19、実験例21~24、実験例27~32、実験例37~41、実験例43、実験例49~51、実験例55~56、及び実験例59~63は、評価指標(評価値)が-3.17以下であり、ランダム性が0%において全て視認性の評価結果は4以上であり、規則的な定型配線パターンであっても、モアレの視認性に優れた本発明の実施例であった。
 また、実験例1、実験例5~32、実験例37~45、実験例47、実験例49~56、及び実験例59~64は、評価指標(評価値)が-2.80以下であり、ランダム性が2.0%~10%において全て視認性の評価結果は4以上であり、本発明例であった。
 これに対し、実験例2~4、実験例33~36、実験例46、実験例48、実験例57~58は、評価指標(評価値)が-2.80超であり、ランダム性が2.0%~10.0%において評価結果は2以下を含んでおり、比較例であった。
 なお、全ての実験例のランダム性が0.0%~10.0%の全てにおいてモアレの改善効果が見られた。
 以上から、上記のモアレの定量値(評価指標)が、評価指標(評価値)が-3.17以下の上記範囲を満足する菱形の合成配線パターン、及び評価指標(評価値)が-2.80以下の上記範囲を満足する菱形の合成配線パターンをランダム化した四角形の合成配線パターンを持つ本発明の導電性フィルムは、ディスプレイのBMパターンの周期や強度やディスプレイの発光強度等が異なっていても、また、正面観察時でも、斜め観察時でも、モアレの発生を抑止でき、視認性を大幅に向上させることができる。
 以上から、本発明の効果は明らかである。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3は、実験例101~164を示し、実験例105~113、実験例115、実験例117~119、実験例121~124、実験例127~132、実験例137~141、実験例143、実験例149~151、実験例155~156、及び実験例159~163は、評価指標(評価値)が-3.17以下であり、ランダム性が0%において全て視認性の評価結果は4以上であり、規則的な定型配線パターンであっても、モアレの視認性に優れた本発明の実施例であった。
 また、実験例101、実験例105~132、実験例137~45、実験例147、実験例149~156、及び実験例159~164は、評価指標(評価値)が-2.80以下であり、ランダム性が0.2%~3.0%において全て視認性の評価結果は4以上であり、本発明例であった。
 これに対し、実験例102~104、実験例133~136、実験例146、実験例148、実験例157~158は、評価指標(評価値)が-2.80超であり、ランダム性が0.2%~3.0%において評価結果は2以下を含んでおり、比較例であった。
 なお、全ての実験例のランダム性が0.0%~3.0%の全てにおいてモアレの改善効果が見られた。
 以上から、上記のモアレの定量値(評価指標)が、評価指標(評価値)が-3.17以下の上記範囲を満足する菱形の合成配線パターン、及び評価指標(評価値)が-2.80以下の上記範囲を満足する菱形の合成配線パターンをランダム化した四角形の合成配線パターンを持つ本発明の導電性フィルムは、ディスプレイのBMパターンの周期や強度やディスプレイの発光強度等が異なっていても、また、正面観察時でも、斜め観察時でも、モアレの発生を抑止でき、視認性を大幅に向上させることができる。
 以上から、本発明の効果は明らかである。
(実施例II)
 本実施例においては、図36及び図37に示す本発明の導電性フィルムの評価方法のフローに従って、上述のようにして、以下のように実験を行った。
図35(A1)、(C1)、(D1)、(E1)及び(F1)に示すG副画素配列パターンで代表的に表される、異なる副画素形状、及び解像度のNo.1、No.3~No.6及びNo.8のBM構造を持ち、異なる発光強度で発光するディスプレイの画素配列(BM)パターン38に対して、不規則性を付与する前において、図14に示す菱形パターン形状を持ち、開口部の形状及びサイズ(ピッチp及び角度θ)が異なり、金属細線(メッシュ)の線幅の異なる多数の定型メッシュパターン25について、シミュレーションサンプル及び実サンプルで、その合成メッシュパターンと各色のBMパターンとを重畳し、モアレの評価指標でありモアレの定量値を求めた。ここで、発光強度は、後述する特定のディスプレイで規格化された強度の1.0倍、1.5倍、及び2.0倍とした。
 こうしてモアレの評価指標が求められた定型メッシュパターン25に対して、金属細線14を異なる振幅A、波長λ、及び位相αを持つ波線に変化させることによって異なるランダム性が付与された多数の波線化メッシュパターン25cからなる波線化後の合成メッシュパターンと各色のBMパターンとを重畳し、3名の官能評価者が、モアレのシミュレーション画像において重畳された両者の干渉によって生じるモアレを目視で官能評価した。
 ここで、モアレの評価は、図36に示すように、ステップS14で用いた画素配列(BM)パターンの各色の副画素配列パターンの明度画像データ上に波線化後の合成メッシュパターンの透過率データを重畳して、明度画像上に透過率画像が重畳されたモアレの逆変換画像を作成してディスプレイに表示し、表示された逆変換画像を3名の官能評価者が目視して官能評価を行った。
  ディスプレイのBM構造(No.1、No.3~No.6及びNo.8の6種)、及びディスプレイの発光強度(規格化強度の1.0倍、1.5倍及び2.0倍の3種)、メッシュパターンのメッシュ及び角度(組み合わせ3種)、及びメッシュパターンの線幅(3種)金属配線の波線の位相(3種)、波長(3種)、及び振幅(7種)の異なる24の組み合わせによる実験を実験番号No.201~No,224とした。この実験番号No.201~No,224についての以上の結果を表4に示す。
 本実施例においては、定型メッシュパターン25bの開口部22cの菱形形状、したがって、波線化メッシュパターン25aの開口部22の4辺の波線の各中心線が形成する菱形形状については、ピッチpを120μmと、150μmと、180μmとに変化させ、角度θは30°と、35°と、40°とに変化させた。
 また、定型メッシュパターン25b、したがって、波線化メッシュパターン25aの線幅は、2μmと、3μmと、4μmとに変化させた。
 ランダム性は、波線の位相を100μmと、300μmと、500μmとに変化させ、波線の波長を100μmと、300μmと、500μmとに変化させ、波線の振幅を、定型メッシュパターン25bの菱形形状、したがって、波線化メッシュパターン25aの波線の中心線の菱形形状のピッチpに対して10%と、20%と、30%とに変化させた。更に、ランダム性は、波線の位相及び波長を100μmに固定し、波線の振幅のみを、ピッチpに対して0%(ランダム性付与無し)と、2.0%と、4.0%と、6.0%と、8.0%と、10.0%とにも変化させた。
 なお、ディスプレイの解像度は、図35(A1)、(C1)、(D1)、(E1)及び(F1)に示すNo.1、No.3~No.6及びNo.8の6種のBM構造を持つ6種のBMパターンでは、それぞれ、149dpi、265dpi(v2),265dpi,326dpi,384dpi(V2),及び440dpiであった。
 また、ディスプレイの発光強度は、ディスプレイ LP101WX1(SL)(n3)(LGディスプレイ社製)で規格化された強度の1.0倍と、1.5倍と、2.0倍とに変化させた。
 なお、画素配列(BM)パターン38の各色の副画素配列パターンの撮像においては、ディスプレイ LP101WX1(SL)(n3)(LGディスプレイ社製)を、GチャネルのみをMAX強度で点灯させ、マイクロスコープとしてSTM6(OLYMPUS社製)、レンズとしてUMPlanFIx10(OLYMPUS社製)、カメラとしてQIC-F-CLR-12-C(Linkam Scientific Instruments社製)を用いて撮像した。この際、撮像条件は、ゲイン1.0、ホワイトバランス(G、R、B)は(1.00、2.17、1.12)とした。また、撮像画像は、シェーディングを行った。
 明度の計測には、オーシャンオプティクス製USB2000+、ファイバの先端には拡散板(同社製CC-3-UV-S)を利用し、積分時間は250msとした。
 モアレの評価指標の算出は、図36に示す方法で、上述のように行った。
Figure JPOXMLDOC01-appb-T000006
 なお、表6から明らかなように、実験No.205、206、210、211、213、216、218及び220~224は、モアレの定量値が-3.00以下、かつ振幅が2.0%以上20%以下である本発明例であり、劣化尺度としての官能評価結果が4を示し、モアレの視認性が良好であることが分かる。
 一方、実験No.201~204、207~209、212、214、215、217及び219は、モアレの定量値が-3.00超、かつ/又は振幅が2.0%未満又は20%超である比較例であり、劣化尺度としての官能評価結果が3以下を示し、モアレの視認性が悪く、劣化が認められ、気になるモアレが視認されることが分かる。
 以上から、本実施例においては、官能評価結果が5を示すケースは存在しなかったが、劣化尺度が4以上となり、画質が許容レベルとなるケースは、モアレの定量値が、-3.00以下、かつ振幅が2.0%以上20%以下であることが分かる。これらの条件を満たすことが、画質改善のための条件であることが分かる。
 上記のモアレの定量値(評価指標)が、上記範囲を満足する菱形の合成配線パターンをランダム化した波線化合成配線パターンを持つ本発明の導電性フィルムは、ディスプレイのBMパターンの周期や強度やディスプレイの発光強度等が異なっていても、また、正面観察時でも、斜め観察時でも、モアレの発生を抑止でき、視認性を大幅に向上させることができる。
 以上から、本発明の効果は明らかである。
(実施例III)
 本実施例においては、図45及び図17に示す本発明の導電性フィルムの評価方法のフローに従って、上述のようにして、以下のように実験を行った。
 図35(A1)~(H2)に示すG副画素配列パターンで代表的に表される、異なる副画素形状、解像度及び発光強度を持つBM条件番号No.1~No.16のディスプレイの画素配列(BM)パターン38に対して、図27に示すランダムなメッシュパターン形状を持ち、開口部の形状及びサイズ(平均ピッチ)が異なり、金属細線(メッシュ)の線幅の異なる多数のランダムメッシュパターン25dについて、シミュレーションサンプルで、その合成配線パターンと各色のBMパターンとを重畳し、ノイズの評価指標を求めると共に、異なるランダム性を有する多数のランダムメッシュパターンと各色のBMパターンとを重畳し、3名の官能評価者が、ノイズのシミュレーション画像において重畳された両者の干渉によって生じるノイズを目視で官能評価した。
 その結果を表5に示す。
 ここで、ノイズの評価は、図45に示すように、ステップS14で用いた画素配列(BM)パターンの各色の副画素配列パターンの明度画像データ上に合成配線パターンの透過率データを重畳して、明度画像上に透過率画像が重畳されたノイズのシミュレーション画像を作成してディスプレイに表示し、表示されたシミュレーション画像を3名の官能評価者が目視して、実施例Iと同様に官能評価を行った。
 本実施例においては、ランダムメッシュパターン25dのセル(開口部22)の平均ピッチを50μmと、100μmと、200μmと、300μmとに変化させた。
 また、ランダムメッシュパターン25dの線幅は、2μmと、4μmとに変化させた。
 なお、ディスプレイの解像度は、図35(A1)~(H1)に示すNo.1~No.16のBM構造が異なる8種のBMパターンでは、それぞれ、No.1及び2では149dpi、No.3及び4では222dpi,No.5~8では265dpi,No.91及び10では326dpi,No.11~14では384dpi,No.15及び16では440dpiであった。
 また、ディスプレイの発光強度は、ディスプレイ LP101WX1(SL)(n3)(LGディスプレイ社製)で規格化され、全強度が0-255で与えられる時、各ディスプレイにおいて、No.1、3、5、6、9、11、12及び15では64(明度1)に、No.2、4、7、8、10、13、14及び16では、128(明度2)に変化させた。
 なお、画素配列(BM)パターン38の各色の副画素配列パターンの撮像においては、マイクロスコープとしてSTM6(OLYMPUS社製)、レンズとしてUMPlanFIx10(OLYMPUS社製)、カメラとしてQIC-F-CLR-12-C(Linkam Scientific Instruments社製)を用いた。この際、撮像条件は、ゲイン1.0、ホワイトバランス(G、R、B)は(1.00、2.17、1.12)とした。また、撮像画像は、シェーディングを行った。
 明度の計測には、オーシャンオプティクス製USB2000+、ファイバの先端には拡散板(同社製CC-3-UV-S)を利用し、積分時間は250msとした。
 ノイズの評価指標の算出は、図45に示す方法で、上述のように行った。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 なお、表5中、ノイズの定量値の欄の「NaN」は、強度が小さく、ノイズの発生に寄与しないものを閾値処理によって除去したために、ノイズの定量値が求められなかったことを示し、ノイズの発生がなく、ノイズが視認されないことを示す。
 表5に示す実施例1~73は、評価指標(評価値)が-2.80以下であり、全て視認性の評価結果は4以上であり、本発明の実施例であることが分かる。
 なお、表5に示す実施例1~13は、ノイズの定量値の欄の「NaN」であり、全て視認性の評価結果は5であり、ノイズの発生がなく、ノイズが視認されないことが分かる。
 これに対し、表5に示す比較例1~55は、評価指標(評価値)が-2.80超であり、評価結果は3以下であり、気になるほどのノイズが視認されることが分かる。
 以上から、上記のノイズの定量値(評価指標)が、ランダムメッシュパターンを少なくとも一方に含み、上記範囲を満足する合成配線パターンを持つ本発明の導電性フィルムは、ディスプレイのBMパターンの周期や強度やディスプレイの発光強度等が異なっていても、また、正面観察時でも、斜め観察時でも、ノイズの発生を抑止でき、視認性を大幅に向上させることができる。
 以上から、本発明の効果は明らかである。
 なお、本発明では、上述した実施例のように、予め、種々のパターン形状の配線パターンを準備しておいて、本発明の評価方法によって最適化された合成配線パターンを構成する上側及び下側の配線パターンの少なくとも一方の全部または一部にランダムメッシュパターンを含む配線パターンを持つ導電性フィルムを決定することができるが、1つの配線パターンのノイズの評価指標が、所定値超である場合には、ランダムメッシュパターンの透過率画像データを新たなランダムメッシュパターンの透過率画像データに更新して、新たな合成配線パターンの透過率画像データを作成して、上述した本発明の評価方法を適用してノイズの定量値(評価指標)を求めることを繰り返して、最適化された配線パターンを持つ導電性フィルムを決定することもできる。
 ここで、更新される新たなランダムメッシュパターンは、予め準備されたものであっても、新たに作成されたものであっても良い。なお、新たに作成され場合には、ランダムメッシュパターンの透過率画像データの平均ピッチ等を変化させても良いし、配線パターンの開口部の形状やサイズを変更するようにしても良い。なお、本発明では、合成配線パターンの少なくとも一方の少なくとも一部にランダムメッシュパターンを用いる必要があるのは、もちろんである。
 以上詳述したように、本発明によれば、ディスプレイとの組み合わせにおいて視認されるモアレやノイズの発生を抑制し、視認性を向上させることができるメッシュ状配線パターン(メッシュパターン)、例えば、規則的なメッシュ状配線パターン、ランダム性(不規則)を付与したメッシュ状配線パターン(メッシュ状ランダム配線パターン、ランダムメッシュパターン、又は単にランダムパターンともいう)を有する導電性フィルム、これを備える表示装置及び導電性フィルムのパターンの評価方法を提供することができる。
 特に、本発明によれば、発光強度(明度)が異なる表示ユニット(ディスプレイ)の画素配列パターンに重畳された場合であっても、観察距離によらず、ディスプレイの強度に応じたメッシュパターンを有する導電性フィルムとすることにより、モアレやノイズの発生を抑止でき、視認性を大幅に向上させることができる。
 また、本発明によれば、メッシュパターンを有する透明導電性フィルムをタッチパネル用電極として用いる場合、発光強度の異なる表示装置の表示ユニットのブラックマトリクスに導電性フィルムを重畳して視認する際に、表示ユニットの発光強度を考慮したメッシュパターン、例えば、規則的なメッシュパターンやランダムメッシュパターンを持ち、大きな画質障害となるモアレの発生を抑止でき、タッチパネル上の表示の視認性を大幅に向上させることができる。
 また、本発明によれば、上記効果に加え、ディスプレイのRGB副画素の開口形状がそれぞれ異なる周波数・強度(形状、サイズ)を持つ場合の導電性フィルムのメッシュパターンの設計においても、発光強度が異なるディスプレイの画素配列パターンとの組み合わせにおいても最良の画質を提供することができる。
10、11、11A 導電性フィルム
12 透明支持体
14 金属製の細線(金属細線)
16、16a、16b 導電部
18、18a、18b 接着層
20、20a、20b 保護層
22 開口部(セル)
23、23a,23b、23c 射影配線パターン
24、24a,24b 配線パターン
25 定型配線パターン
25a、25b、25c、25d ランダム配線パターン(ランダムパターン)
26 ダミー電極部
27、27a、27b、27c 3次元形状の配線パターン
30 表示ユニット
32、32r、32g、32b 画素
34 ブラックマトリクス(BM)
38 BMパターン
40 表示装置
44 タッチパネル
 

Claims (49)

  1.  表示装置の表示ユニット上に設置される導電性フィルムであって、
     前記導電性フィルムは、3次元形状の透明基体と、該透明基体の両側、若しくは片側に配置される3次元形状の2つの配線部と、を有し、
     前記2つの配線部の少なくとも一方の配線部は、複数の金属細線よりなる複数の開口部が配列されたメッシュ状の配線パターンを有し、
     前記表示ユニットは、互いに異なる少なくとも3色の複数色の光を射出する複数の副画素を含む画素の画素配列パターンで配列されてなり、
     前記導電性フィルムは、前記2つの配線部の配線パターンと前記表示ユニットの前記画素配列パターンとが重畳されるように、前記表示ユニットに設置されるものであり、
     3次元形状の前記2つの配線部の配線パターンを視点に垂直な平面に射影する時の射影配線パターンは、メッシュ状の規則的な配線パターン、又は該規則的な配線パターンに対して不規則性が付与されたメッシュ状の不規則配線パターンを含み、
     前記規則的な配線パターンからなる合成配線パターンは、前記画素配列パターンを同一の平面に射影する時の射影画素配列パターンとの干渉によって生じるモアレの評価指標が評価閾値以下であり、
     前記モアレの評価指標は、前記視点において、前記合成配線パターンの透過率画像データの2次元フーリエスペクトルの複数の第1スペクトルピークの第1ピーク周波数及び第1ピーク強度と、複数色の光をそれぞれ点灯した時の各色の前記射影画素配列パターンの明度画像データの2次元フーリエスペクトルの複数の第2スペクトルピークの第2ピーク周波数及び第2ピーク強度とから各色毎に算出されるモアレの周波数及び強度において、前記表示ユニットの表示解像度に応じて規定される周波数閾値以下の各モアレの周波数におけるモアレの強度の内の第1強度閾値以上のモアレの強度にそれぞれ人間の視覚応答特性を観察距離に応じて作用させて得られた各色のモアレの評価値から算出したものであることを特徴とする導電性フィルム。
  2.  前記表示ユニットの表示面は、3次元形状を有し、
     前記画素配列パターンは、3次元形状を有する請求項1に記載の導電性フィルム。
  3.  前記射影配線パターンは、1つ又は2つの前記規則的な配線パターンからなり、
     前記規則的な配線パターンは、前記開口部の形状が菱形である規則的な菱形の配線パターンであり、
     前記評価閾値は、-3.17である請求項1又は2に記載の導電性フィルム。
  4.  前記射影配線パターンは、1つ又は2つの前記不規則な配線パターン、もしくは、前記不規則な配線パターン及び前記規則的な配線パターンからなり、
     前記規則的な配線パターンは、前記開口部の形状が菱形である規則的な菱形の配線パターンであり、
     前記不規則な配線パターンは、前記規則的な配線パターンの前記菱形の形状に対して不規則性閾値以下の不規則性を有する請求項1又は2に記載の導電性フィルム。
  5.  前記評価閾値は、-2.80であり、
     前記不規則性閾値は、10%であり、
     前記不規則な配線パターンは、前記規則的な配線パターンの前記菱形のピッチに対して0%超10%以下の前記不規則性を付与したものである請求項4に記載の導電性フィルム。
  6.  前記評価閾値は、-2.80であり、
     前記不規則性閾値は、3.0%であり、
     前記不規則な配線パターンは、前記規則的な配線パターンの前記菱形の角度に対して0%超3.0%以下の前記不規則性を付与したものである請求項4に記載の導電性フィルム。
  7.  前記射影配線パターンは、1つ又は2つの前記不規則な配線パターン、もしくは、前記不規則な配線パターン及び前記規則的な配線パターンからなり、
     前記規則的な配線パターンは、前記開口部の形状が多角形である規則的な多角形の配線パターンであり、
     前記不規則な配線パターンは、前記規則的な配線パターンの前記多角形の辺を振幅閾値内の波線にすることによって不規則性を付与した波線化配線パターンである請求項1又は2に記載の導電性フィルム。
  8.  前記評価閾値は、-3.00であり、
     前記振幅閾値は、前記規則性のある多角形の配線パターンのピッチの2.0%以上20%以下である請求項7に記載の導電性フィルム。
  9.  前記多角形は、菱形である請求項7又は8に記載の導電性フィルム。
  10.  前記2つの配線部の前記射影配線パターンは、2つの前記不規則配線パターンからなる請求項1~9のいずれか1項に記載の導電性フィルム。
  11.  前記2つの配線部の前記射影配線パターンは、前記不規則配線パターン及び前記規則的な配線パターンからなる請求項1~9のいずれか1項に記載の導電性フィルム。
  12.  前記2つの配線部の少なくとも一方の配線部は、電極部と非電極部とを備え、
     前記電極部及び前記非電極部の一方の配線パターンは、前記不規則配線パターンであり、かつ他方の配線パターンは、前記規則的な配線パターンである請求項1~9のいずれか1項に記載の導電性フィルム。
  13.  前記2つの配線部の一方の配線部の配線パターンは、前記不規則配線パターンであり、かつ他方の配線部の配線パターンは、酸化インジウムスズで構成され、
     前記2つの配線部の前記射影配線パターンは、1つの前記不規則配線パターンのみからなる請求項1~9のいずれか1項に記載の導電性フィルム。
  14.  前記複数の第1スペクトルピークは、前記合成配線パターンの透過率画像データを、2次元フーリエ変換して得られた複数のスペクトルピークから選択された第1の閾値以上のピーク強度を有するものであり、
     前記複数色のそれぞれについて、前記複数の第2スペクトルピークは、前記射影画素配列パターンの前記明度画像データを、2次元フーリエ変換して得られた複数のスペクトルピークから選択された第2の閾値以上のピーク強度を有するものである請求項1~13のいずれか1項に記載の導電性フィルム。
  15.  各色に対応するモアレの周波数は、前記第1ピーク周波数と各色に対応する前記第2ピーク周波数との差として与えられ、
     各色に対応するモアレの強度は、前記第1ピーク強度と各色に対応する前記第2ピーク強度との積として与えられる請求項1~14のいずれか1項に記載の導電性フィルム。
  16.  前記モアレの評価値は、前記モアレの周波数及び強度に、前記視覚応答特性として前記観察距離に応じた視覚伝達関数を畳み込み積分で重み付けを行うことによって求められる請求項1~15のいずれか1項に記載の導電性フィルム。
  17.  前記視覚伝達関数VTFは、下記式(1)で与えられる請求項16に記載の導電性フィルム。
       VTF=5.05e-0.138k(1-e0.1k) …(1)
       k=πdu/180
     ここで、kは、立体角で定義される空間周波数(cycle/deg)であり、上記式(1)で表され、uは、長さで定義される空間周波数(cycle/mm)であり、dは、観察距離(mm)で定義される。
  18.  前記モアレの評価指標は、各色について、1つの前記モアレの周波数に対して、前記観察距離に応じて重み付けされた複数の前記モアレの評価値の中の最も大きい評価値を用いて算出される請求項1~17のいずれか1項に記載の導電性フィルム。
  19.  前記モアレの評価指標は、各色毎に、前記1つの前記モアレの周波数に対して選択された前記最も大きい評価値を全ての前記モアレの周波数について合算した前記複数の色の合算値の中で最も大きい合算値である請求項18に記載の導電性フィルム。
  20.  前記第1の強度閾値は、常用対数で-4.5であり、前記周波数閾値は、前記表示ユニットの解像度で得られる空間周波数であり、
     前記視覚応答特性を作用させるために選択されるモアレは、前記モアレの強度が-3.8以上の強度を持つモアレである請求項1~19のいずれか1項に記載の導電性フィルム。
  21.  前記表示ユニットの解像度で得られる空間周波数は、前記表示ユニットの表示画素ピッチをPdμmとする時、1000/Pd cycle/mmで与えられる前記モアレの最高周波数である請求項20に記載の導電性フィルム。
  22.  表示装置の表示ユニット上に設置される導電性フィルムであって、
     前記導電性フィルムは、3次元形状の透明基体と、該透明基体の両側、若しくは片側に配置される3次元形状の2つの配線部と、を有し、
     前記2つの配線部の少なくとも一方の配線部は、複数の金属細線よりなる複数の開口部が配列されたメッシュ状の配線パターンを有し、
     前記表示ユニットは、互いに異なる少なくとも3色の複数色の光を射出する複数の副画素を含む画素の画素配列パターンで配列されてなり、
     前記導電性フィルムは、前記2つの配線部の配線パターンと前記表示ユニットの前記画素配列パターンとが重畳されるように、前記表示ユニットに設置されるものであり、
     3次元形状の前記2つの配線部の配線パターンを視点に垂直な平面に射影する時の射影配線パターンは、少なくとも、前記開口部の形状が異なる2種類以上の開口形状であり、その頂点の数が2種類以上となる多角形状となる、不規則性が付与されたメッシュ状の不規則配線パターンを含む合成配線パターンであり、
     前記合成配線パターンは、前記画素配列パターンを同一の平面に射影する時の射影画素配列パターンとの干渉によって生じるノイズの評価指標が評価閾値以下であり、
     前記ノイズの評価指標は、前記視点において、前記合成配線パターンの透過率画像データの2次元フーリエスペクトルの複数の第1スペクトルピークの第1ピーク周波数及び第1ピーク強度と、複数色の光をそれぞれ点灯した時の各色の前記射影画素配列パターンの明度画像データの2次元フーリエスペクトルの複数の第2スペクトルピークの第2ピーク周波数及び第2ピーク強度とから各色毎に算出されるノイズの周波数及び強度において、前記表示ユニットの表示解像度に応じて規定される周波数閾値以下の各ノイズの周波数におけるノイズの強度の内の第1強度閾値以上のノイズの強度にそれぞれ人間の視覚応答特性を観察距離に応じて作用させて得られた各色のノイズの評価値から算出したものであることを特徴とする導電性フィルム。
  23.  前記評価閾値は、-2.80である請求項22に記載の導電性フィルム。
  24.  前記2つの配線部の前記射影配線パターンは、2つの前記不規則配線パターンからなる請求項22又は23に記載の導電性フィルム。
  25.  前記2つの配線部の前記射影配線パターンは、前記不規則配線パターン及び前記開口部の形状が多角形である規則的な多角形の配線パターンからなる請求項22又は23に記載の導電性フィルム。
  26.  前記2つの配線部の少なくとも一方の配線部は、電極部と非電極部とを備え、
     前記電極部及び前記非電極部の一方の配線パターンは、前記不規則配線パターンであり、かつ他方の配線パターンは、前記開口部の形状が多角形である規則的な配線パターンである請求項22又は23に記載の導電性フィルム。
  27.  前記2つの配線部の一方の配線部の配線パターンは、前記不規則配線パターンであり、かつ他方の配線部の配線パターンは、酸化インジウムスズで構成され、
     前記2つの配線部の前記射影配線パターンは、1つの前記不規則配線パターンのみからなる請求項22又は23に記載の導電性フィルム。
  28.  前記複数の第1スペクトルピークは、前記合成配線パターンの透過率画像データを、2次元フーリエ変換して得られた複数のスペクトルピークから選択された第1の閾値以上のピーク強度を有するものであり、
     前記複数色のそれぞれについて、前記複数の第2スペクトルピークは、前記射影画素配列パターンの前記明度画像データを、2次元フーリエ変換して得られた複数のスペクトルピークから選択された第2の閾値以上のピーク強度を有するものである請求項22~27のいずれか1項に記載の導電性フィルム。
  29.  各色に対応するノイズの周波数及び強度は、前記第1ピーク周波数及び前記第1ピーク強度と、各色に対応する前記第2ピーク周波数及び前記第2ピーク強度との畳み込み演算によって求められる請求項22~28のいずれか1項に記載の導電性フィルム。
  30.  各色に対応するノイズの周波数は、前記第1ピーク周波数と各色に対応する前記第2ピーク周波数との差として与えられ、
     各色に対応するノイズの強度は、前記第1ピーク強度と各色に対応する前記第2ピーク強度との積として与えられる請求項22~29のいずれか1項に記載の導電性フィルム。
  31.  前記ノイズの評価値は、前記ノイズの周波数及び強度に、前記視覚応答特性として前記観察距離に応じた視覚伝達関数を畳み込み積分で重み付けを行うことによって求められる請求項22~30のいずれか1項に記載の導電性フィルム。
  32.  前記視覚伝達関数VTFは、下記式(1)で与えられる請求項31に記載の導電性フィルム。
       VTF=5.05e-0.138k(1-e0.1k) …(1)
       k=πdu/180
     ここで、kは、立体角で定義される空間周波数(cycle/deg)であり、上記式(1)で表され、uは、長さで定義される空間周波数(cycle/mm)であり、dは、観察距離(mm)で定義される。
  33.  前記ノイズの評価指標は、各色について、1つの前記ノイズの周波数に対して、前記観察距離に応じて重み付けされた複数の前記ノイズの評価値の中の最も大きい評価値を用いて算出される請求項22~32のいずれか1項に記載の導電性フィルム。
  34.  前記ノイズの評価指標は、各色毎に、前記1つの前記ノイズの周波数に対して選択された前記最も大きい評価値を全ての前記ノイズの周波数について合算した前記複数の色の合算値の中で最も大きい合算値である請求項33に記載の導電性フィルム。
  35.  前記第1の強度閾値は、常用対数で-4.5であり、前記周波数閾値は、前記表示ユニットの解像度で得られる空間周波数である請求項22~34のいずれか1項に記載の導電性フィルム。
  36.  前記表示ユニットの解像度で得られる空間周波数は、前記表示ユニットの表示画素ピッチをPdμmとする時、1000/Pd cycle/mmで与えられる前記ノイズの最高周波数である請求項35に記載の導電性フィルム。
  37.  各色の前記射影画素配列パターンの明度画像データは、前記複数色の光をそれぞれ単独で点灯した時に前記表示ユニットの表示画面に表示された各色の画素配列パターンの画像を撮像して得られた当該色の撮像画像データを明度値に変換することによって得られた明度画像データを規格化した規格化明度データを前記画素配列パターンから前記射影画素配列パターンに変換したものである請求項1~36のいずれか1項に記載の導電性フィルム。
  38.  前記表示ユニットの表示画面に表示された各色の前記画素配列パターンの画像は、複数色の光を各色毎に設定可能な最大強度で単独で点灯した時に前記表示ユニットに表示されたものである請求項37に記載の導電性フィルム。
  39.  前記複数色が、赤、緑及び青の3色である時、前記赤、緑及び青の各色の前記画素配列パターンの画像の前記撮像画像データは、マクベスチャートの白にホワイトバランス調整して撮像された画像データである請求項38に記載の導電性フィルム。
  40.  前記複数色の各色の前記射影画素配列パターンの画像の前記明度画像データは、
     前記表示ユニットにおいて前記複数色の各色の光を単独で点灯した時に、前記表示ユニットの表示画面に表示された当該色の画素配列パターンの画像をマイクロスコープで撮像した撮像画像データから作成したマスク画像に対して、計測された明度値を表示ユニットの解像度とマスク画像の値を持つ面積との積で規格化した明度データを与えることにより得られたものを前記画素配列パターンから前記射影画素配列パターンに変換したものであり、
     前記明度画像データは、基準となる表示装置の表示ユニットの明度が1.0となるように規格化されたものである請求項1~39のいずれか1項に記載の導電性フィルム。
  41.  前記複数色が、赤、緑及び青の3色である時、前記計測された明度値は、前記赤、緑及び青の各色を単独で表示させてスペクトロメータで計測して取得された、前記赤、緑及び青の各色の分光スペクトルデータから求められた明度値であり、
     前記マスク画像は、前記マイクロスコープで撮像された前記撮像画像データを2値化した画像である請求項40に記載の導電性フィルム。
  42.  前記2つの配線部は、前記透明基体の両側の面にそれぞれ形成される請求項1~41のいずれか1項に記載の導電性フィルム。
  43.  前記透明基体を第1の透明基体とする時、さらに、前記第1の透明基体と異なる第2の透明基体を有し、
     前記2つの配線部の一方の配線部は、前記第1の透明基体の一方の面に形成され、
     前記2つの配線部の他方の配線部は、前記第1の透明基体の他方の面側であって、前記第2の透明基体の一方の面に形成される請求項1~41のいずれか1項に記載の導電性フィルム。
  44.  前記2つの配線部は、前記透明基体の片側に絶縁層を介してそれぞれ形成される請求項1~41のいずれか1項に記載の導電性フィルム。
  45.  前記評価値は、正面観察及び斜め観察の少なくとも2視点において、前記複数色の各色毎に得られるものであり、
     前記評価指標は、得られた少なくとも2視点における各色の評価値の中で最も大きな評価値である請求項1~44のいずれか1項に記載の導電性フィルム。
  46.  前記画素配列パターンは、ブラックマトリックスパターンである請求項1~45のいずれか1項に記載の導電性フィルム。
  47.  互いに異なる複数色の光を射出する複数の副画素を備える画素が一方の方向及び前記一方の方向に垂直な方向に繰り返される画素配列パターンで配列されてなる表示ユニットと、
     この表示ユニットの上に設置される、請求項1~46のいずれか1項に記載の導電性フィルムと、を備えることを特徴とする表示装置。
  48.  表示装置の表示ユニット上に設置され、3次元形状の透明基体の両側、若しくは片側に配置される3次元形状の2つの配線部を有する導電性フィルムの評価方法であって、
     前記2つの配線部の少なくとも一方の配線部は、複数の金属細線よりなる複数の開口部が配列されたメッシュ状の配線パターンを有し、
     前記表示ユニットは、互いに異なる少なくとも3色の複数色の光を射出する複数の副画素を含む画素の画素配列パターンで配列されてなり、
     前記導電性フィルムは、前記2つの配線部の配線パターンと前記表示ユニットの前記画素配列パターンとが重畳されるように、前記表示ユニットに設置されるものであり、
     3次元形状の前記2つの配線部の配線パターンを視点に垂直な平面に射影して、射影配線パターンに含まれるメッシュ状の規則的な配線パターン、又は該規則的な配線パターン及びこれに対して不規則性が付与されたメッシュ状の不規則配線パターンの透過率画像データを求め、前記規則的な配線パターンを重ね合わせた合成配線パターンの透過率画像データを取得し、
     かつ、前記表示ユニットの前記複数色の各色の前記画素配列パターンを同一の前記平面に射影して、各色の射影画素配列パターンの明度画像データを取得し、
     前記視点において、前記合成配線パターンの透過率画像データ及び前記射影画素配列パターンの明度画像データに対して2次元フーリエ変換を行い、前記合成配線パターンの透過率画像データの2次元フーリエスペクトルの複数の第1スペクトルピークの第1ピーク周波数及び第1ピーク強度と、各色毎に、前記複数色の各色の前記射影画素配列パターンの明度画像データの2次元フーリエスペクトルの複数の第2スペクトルピークの第2ピーク周波数及び第2ピーク強度とを算出し、
     算出された前記配線パターンの前記第1ピーク周波数及び前記第1ピーク強度と、前記複数色のそれぞれの前記副画素配列パターンの前記第2ピーク周波数及び前記第2ピーク強度とからそれぞれ前記複数色の各色のモアレの周波数及び強度を算出し、
     算出された各色の前記モアレの周波数及び強度の中から、前記表示ユニットの表示解像度に応じて規定される周波数閾値以下の周波数及び第1強度閾値以上の強度を持つモアレを選び出し、
     選び出されたそれぞれの各色のモアレの周波数における前記モアレの強度に人間の視覚応答特性を観察距離に応じて作用させてそれぞれ各色のモアレの評価値を得、
     得られた各色毎のモアレの評価値からモアレの評価指標を算出し、
     算出された前記モアレの評価指標が所定値以下である前記合成配線パターンを構成する前記2つの配線部の少なくとも一方の配線部の射影前の前記メッシュ状の配線パターンを持つ導電性フィルムを評価することを特徴とする導電性フィルムの評価方法。
  49.  表示装置の表示ユニット上に設置され、3次元形状の透明基体の両側、若しくは片側に配置される3次元形状の2つの配線部を有する導電性フィルムの評価方法であって、
     前記2つの配線部の少なくとも一方の配線部は、複数の金属細線よりなる複数の開口部が配列されたメッシュ状の配線パターンを有し、
     前記表示ユニットは、互いに異なる少なくとも3色の複数色の光を射出する複数の副画素を含む画素の画素配列パターンで配列されてなり、
     前記導電性フィルムは、前記2つの配線部の配線パターンと前記表示ユニットの前記画素配列パターンとが重畳されるように、前記表示ユニットに設置されるものであり、
     3次元形状の前記2つの配線部の配線パターンを視点に垂直な平面に射影して、射影配線パターンに少なくとも含まれる、前記開口部前記開口部の形状が異なる2種類以上の開口形状であり、その頂点の数が2種類以上となる多角形状となる、不規則性が付与されたメッシュ状の不規則配線パターンの透過率画像データを求め、前記不規則配線パターンを含む合成配線パターンの透過率画像データを取得し、
     かつ、前記表示ユニットの前記複数色の各色の前記画素配列パターンを同一の前記平面に射影して、各色の射影画素配列パターンの明度画像データを取得し、
     前記視点において、前記合成配線パターンの透過率画像データ及び前記射影画素配列パターンの明度画像データに対して2次元フーリエ変換を行い、前記合成配線パターンの透過率画像データの2次元フーリエスペクトルの複数の第1スペクトルピークの第1ピーク周波数及び第1ピーク強度と、各色毎に、前記複数色の各色の前記射影画素配列パターンの明度画像データの2次元フーリエスペクトルの複数の第2スペクトルピークの第2ピーク周波数及び第2ピーク強度とを算出し、
     算出された前記合成配線パターンの前記第1ピーク周波数及び前記第1ピーク強度と、前記複数色のそれぞれの前記射影副画素配列パターンの前記第2ピーク周波数及び前記第2ピーク強度とからそれぞれ前記複数色の各色のノイズの周波数及び強度を算出し、
     算出された各色の前記ノイズの周波数及び強度の中から、前記表示ユニットの表示解像度に応じて規定される周波数閾値以下の周波数及び第1強度閾値以上の強度を持つノイズを選び出し、
     選び出されたそれぞれの各色のノイズの周波数における前記ノイズの強度に人間の視覚応答特性を観察距離に応じて作用させてそれぞれ各色のノイズの評価値を得、
     得られた各色毎のノイズの評価値からノイズの評価指標を算出し、
     算出された前記ノイズの評価指標が所定値以下である前記合成配線パターンを構成する前記2つの配線部の少なくとも一方の配線部の射影前の前記メッシュ状の配線パターンを持つ導電性フィルムを評価することを特徴とする導電性フィルムの評価方法。
     
PCT/JP2015/078987 2014-10-15 2015-10-14 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法 WO2016060147A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18165701.6A EP3367220A1 (en) 2014-10-15 2015-10-14 Conductive film, display device having the same, and method of evaluating wiring patterns of conductive film
KR1020177010248A KR101896395B1 (ko) 2014-10-15 2015-10-14 도전성 필름, 그것을 구비하는 표시 장치 및 도전성 필름의 배선 패턴의 평가 방법
CN201580055789.3A CN106796470B (zh) 2014-10-15 2015-10-14 导电性膜、具备此膜的显示装置以及导电性膜的评估方法
EP15850592.5A EP3208696A4 (en) 2014-10-15 2015-10-14 Electroconductive film, display device provided with same, and method for evaluating wiring pattern of electroconductive film
US15/487,673 US10475175B2 (en) 2014-10-15 2017-04-14 Conductive film, display device having the same, and method of evaluating wiring patterns of conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-211188 2014-10-15
JP2014211188A JP6275618B2 (ja) 2014-10-15 2014-10-15 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/487,673 Continuation US10475175B2 (en) 2014-10-15 2017-04-14 Conductive film, display device having the same, and method of evaluating wiring patterns of conductive film

Publications (1)

Publication Number Publication Date
WO2016060147A1 true WO2016060147A1 (ja) 2016-04-21

Family

ID=55746690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078987 WO2016060147A1 (ja) 2014-10-15 2015-10-14 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法

Country Status (7)

Country Link
US (1) US10475175B2 (ja)
EP (2) EP3208696A4 (ja)
JP (1) JP6275618B2 (ja)
KR (1) KR101896395B1 (ja)
CN (1) CN106796470B (ja)
TW (1) TWI688484B (ja)
WO (1) WO2016060147A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189201A1 (ja) * 2018-03-27 2019-10-03 富士フイルム株式会社 導電性部材、導電性フィルム、表示装置、及びタッチパネル
WO2019189187A1 (ja) * 2018-03-27 2019-10-03 富士フイルム株式会社 導電性部材、導電性フィルム、表示装置、及びタッチパネル

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6231432B2 (ja) * 2014-05-02 2017-11-15 富士フイルム株式会社 導電性フイルム、それを備える表示装置及び導電性フイルムの評価方法
JP6441046B2 (ja) * 2014-11-26 2018-12-19 三菱製紙株式会社 光透過性導電材料
KR102226601B1 (ko) * 2014-12-02 2021-03-15 삼성디스플레이 주식회사 터치 패널 및 그 제조방법
JP6422762B2 (ja) * 2014-12-16 2018-11-14 三菱製紙株式会社 光透過性導電材料
JP2016133590A (ja) * 2015-01-19 2016-07-25 ソニー株式会社 表示装置及び電子機器
KR20170105330A (ko) * 2016-03-09 2017-09-19 삼성전자주식회사 터치 패널 및 이를 포함하는 전자 장치
CN107703689B (zh) * 2017-09-18 2021-01-01 上海天马微电子有限公司 一种透明显示面板及显示装置
CN109669586B (zh) 2017-10-16 2022-01-04 日本航空电子工业株式会社 触控面板
JP6886907B2 (ja) * 2017-10-31 2021-06-16 日本航空電子工業株式会社 タッチパネル及びタッチパネルの生産方法
CN108415679B (zh) * 2018-03-08 2021-02-26 广东美的制冷设备有限公司 设备及其触摸控制方法
CN108536332B (zh) * 2018-04-03 2021-05-14 京东方科技集团股份有限公司 触控层图形的确定方法及装置、触控显示装置、存储介质和计算机设备
CN108563364B (zh) * 2018-04-28 2024-03-08 京东方科技集团股份有限公司 一种触摸屏、其制作方法、触控显示面板及显示装置
JP7155681B2 (ja) * 2018-07-10 2022-10-19 ソニーグループ株式会社 情報処理装置、情報処理方法、及び、プログラム
DE102018123781B4 (de) 2018-09-26 2023-08-03 Carl Zeiss Meditec Ag Verfahren zum Durchführen einer Shading-Korrektur und optisches Beobachtungsgerätesystem
JP7468354B2 (ja) * 2018-11-09 2024-04-16 Toppanホールディングス株式会社 モアレ顕像化パターンの生成方法、モアレ顕像化パターンの生成装置、及びモアレ顕像化パターンの生成システム
US11698557B2 (en) 2019-07-05 2023-07-11 Magic Leap, Inc. Geometries for mitigating artifacts in see-through pixel arrays
KR20210085958A (ko) * 2019-12-31 2021-07-08 미래나노텍(주) 스크린 장치
WO2022138034A1 (ja) * 2020-12-23 2022-06-30 富士フイルム株式会社 タッチパネル用導電性部材、タッチパネルおよびタッチパネル表示装置
WO2023058664A1 (ja) * 2021-10-04 2023-04-13 大日本印刷株式会社 配線基板、モジュール及び画像表示装置
DE102021126307A1 (de) 2021-10-11 2023-04-13 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Hintergrund-Wiedergabeeinrichtung
TWI824970B (zh) * 2023-05-03 2023-12-01 華碩電腦股份有限公司 光效產生裝置以及光效產生方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117683A (ja) * 2007-11-08 2009-05-28 Fujifilm Corp 電磁波シールドフィルムの製造装置、電磁波シールドフィルムの製造方法及びパターン生成方法
JP2013025626A (ja) * 2011-07-22 2013-02-04 Mitsubishi Electric Corp タッチパネル及びそれを備える表示装置
WO2013146056A1 (ja) * 2012-03-30 2013-10-03 富士フイルム株式会社 導電性フィルム、それを備える表示装置及び導電性フィルムのパターンの決定方法
WO2014097921A1 (ja) * 2012-12-18 2014-06-26 富士フイルム株式会社 導電性フイルム、それを備える表示装置及び導電性フイルムのパターンの決定方法
WO2015125398A1 (ja) * 2014-02-19 2015-08-27 富士フイルム株式会社 タッチパネル用電極積層体、静電容量式タッチパネル及び三次元タッチパネル付表示装置
WO2015166924A1 (ja) * 2014-05-02 2015-11-05 富士フイルム株式会社 導電性フイルム、それを備える表示装置及び導電性フイルムの評価方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW417025B (en) * 1997-04-10 2001-01-01 Sumitomo Chemical Co Front plate for plasma display
KR100521911B1 (ko) * 2001-07-09 2005-10-13 다이니폰 인사츠 가부시키가이샤 전자파 차폐용 부재 및 그 제조방법
US9151996B2 (en) 2004-12-29 2015-10-06 Honeywell International Inc. Distributed aperture display
JPWO2009063744A1 (ja) * 2007-11-16 2011-03-31 コニカミノルタホールディングス株式会社 金属ナノワイヤの製造方法、金属ナノワイヤ及び透明導電体
JP5409094B2 (ja) * 2008-07-17 2014-02-05 富士フイルム株式会社 曲面状成形体及びその製造方法並びに車両灯具用前面カバー及びその製造方法
KR101521219B1 (ko) 2008-11-10 2015-05-18 엘지전자 주식회사 플렉서블 디스플레이를 이용하는 휴대 단말기 및 그 제어방법
CN102308366B (zh) * 2009-02-06 2015-08-12 Lg化学株式会社 触摸屏及其制备方法
US9368289B2 (en) * 2009-04-09 2016-06-14 The Regents Of The University Of California Three dimensional dye-sensitized solar cells with nanoscale architectures
US8599150B2 (en) * 2009-10-29 2013-12-03 Atmel Corporation Touchscreen electrode configuration
JP5385192B2 (ja) * 2010-03-29 2014-01-08 富士フイルム株式会社 パターン生成方法及びパターン生成プログラム
KR20110109817A (ko) * 2010-03-29 2011-10-06 후지필름 가부시키가이샤 도전성 필름, 투명 발열체, 패턴 생성 방법 및 패턴 생성 프로그램
CN102822829B (zh) * 2010-03-31 2015-10-21 富士胶片株式会社 导电性膜的制造方法与制造装置及导电性膜
JP5443244B2 (ja) 2010-03-31 2014-03-19 富士フイルム株式会社 透明導電膜
EP2579276A4 (en) * 2010-05-28 2014-02-19 Shinetsu Polymer Co TRANSPARENT CONDUCTIVE FILM AND CONDUCTIVE SUBSTRATE USING THE SAME
JP5725818B2 (ja) * 2010-12-01 2015-05-27 富士フイルム株式会社 透明導電シートの製造方法、透明導電シート及びプログラム
JP6092516B2 (ja) 2011-01-18 2017-03-08 富士フイルム株式会社 導電性フイルム及びそれを備えた表示装置
JP2012163933A (ja) 2011-01-18 2012-08-30 Fujifilm Corp 導電性フイルム及びそれを備えた表示装置
JP2012163951A (ja) 2011-01-18 2012-08-30 Fujifilm Corp 導電性フイルムを備える表示装置及び導電性フイルム
US9117384B2 (en) * 2011-03-18 2015-08-25 Blackberry Limited System and method for bendable display
JP2012212615A (ja) * 2011-03-31 2012-11-01 Sony Corp 光電変換素子の製造方法、光電変換素子および電子機器
JP5781886B2 (ja) * 2011-10-05 2015-09-24 富士フイルム株式会社 導電シート、タッチパネル及び表示装置
CN104012084B (zh) * 2011-12-27 2015-06-24 富士胶片株式会社 彩色摄像元件
JP5812895B2 (ja) * 2012-02-28 2015-11-17 株式会社ジャパンディスプレイ 近接検出装置、近接検出方法、電子機器
CN202720612U (zh) * 2012-03-07 2013-02-06 深圳市汇顶科技有限公司 单层式二维触摸传感器及触控终端
US9250753B2 (en) * 2013-01-07 2016-02-02 Microsoft Technology Licensing, Llc Capacitive touch surface in close proximity to display
JP6463133B2 (ja) * 2013-02-05 2019-01-30 富士フイルム株式会社 導電性フイルムを備える表示装置
US9052766B2 (en) * 2013-02-14 2015-06-09 Synaptics Incorporated Mesh sensor design for reduced visibility in touch screen devices
WO2014141867A1 (ja) * 2013-03-11 2014-09-18 富士フイルム株式会社 導電性フィルム、これを備える表示装置及び配線の視認性の評価方法
JP5893582B2 (ja) * 2013-03-27 2016-03-23 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置及び電子機器
KR20140129805A (ko) * 2013-04-30 2014-11-07 삼성전기주식회사 터치센서
CN103336609B (zh) * 2013-06-17 2016-05-18 业成光电(深圳)有限公司 触控面板及触控显示装置
JP2016014929A (ja) * 2014-06-30 2016-01-28 富士フイルム株式会社 導電性フイルム、これを備える表示装置及び導電性フイルムの評価方法
JP6307372B2 (ja) * 2014-07-03 2018-04-04 富士フイルム株式会社 導電性フイルム、これを備える表示装置及び導電性フイルムの評価方法
JP6307410B2 (ja) * 2014-10-15 2018-04-04 富士フイルム株式会社 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法
JP6285888B2 (ja) * 2014-10-15 2018-02-28 富士フイルム株式会社 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117683A (ja) * 2007-11-08 2009-05-28 Fujifilm Corp 電磁波シールドフィルムの製造装置、電磁波シールドフィルムの製造方法及びパターン生成方法
JP2013025626A (ja) * 2011-07-22 2013-02-04 Mitsubishi Electric Corp タッチパネル及びそれを備える表示装置
WO2013146056A1 (ja) * 2012-03-30 2013-10-03 富士フイルム株式会社 導電性フィルム、それを備える表示装置及び導電性フィルムのパターンの決定方法
WO2014097921A1 (ja) * 2012-12-18 2014-06-26 富士フイルム株式会社 導電性フイルム、それを備える表示装置及び導電性フイルムのパターンの決定方法
WO2015125398A1 (ja) * 2014-02-19 2015-08-27 富士フイルム株式会社 タッチパネル用電極積層体、静電容量式タッチパネル及び三次元タッチパネル付表示装置
WO2015166924A1 (ja) * 2014-05-02 2015-11-05 富士フイルム株式会社 導電性フイルム、それを備える表示装置及び導電性フイルムの評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3208696A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189201A1 (ja) * 2018-03-27 2019-10-03 富士フイルム株式会社 導電性部材、導電性フィルム、表示装置、及びタッチパネル
WO2019189187A1 (ja) * 2018-03-27 2019-10-03 富士フイルム株式会社 導電性部材、導電性フィルム、表示装置、及びタッチパネル
US11322559B2 (en) 2018-03-27 2022-05-03 Fujifilm Corporation Conductive member, conductive film, display device having the same, touch panel, method of producing wiring pattern of conductive member, and method of producing wiring pattern of conductive film
US11402961B2 (en) 2018-03-27 2022-08-02 Fujifilm Corporation Conductive member, conductive film, display device having the same, touch panel, method of producing wiring pattern of conductive member, and method of producing wiring pattern of conductive film

Also Published As

Publication number Publication date
EP3367220A1 (en) 2018-08-29
EP3208696A1 (en) 2017-08-23
EP3208696A4 (en) 2017-10-11
US20170221196A1 (en) 2017-08-03
CN106796470B (zh) 2019-10-01
US10475175B2 (en) 2019-11-12
JP6275618B2 (ja) 2018-02-07
JP2016081257A (ja) 2016-05-16
TWI688484B (zh) 2020-03-21
CN106796470A (zh) 2017-05-31
KR101896395B1 (ko) 2018-09-10
TW201622979A (zh) 2016-07-01
KR20170058402A (ko) 2017-05-26

Similar Documents

Publication Publication Date Title
JP6275618B2 (ja) 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法
JP2016081257A5 (ja)
JP6285888B2 (ja) 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法
JP6307372B2 (ja) 導電性フイルム、これを備える表示装置及び導電性フイルムの評価方法
JP6307410B2 (ja) 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法
WO2016002676A1 (ja) 導電性フイルム、これを備える表示装置及び導電性フイルムの評価方法
JP6231432B2 (ja) 導電性フイルム、それを備える表示装置及び導電性フイルムの評価方法
JP6307468B2 (ja) 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法
JP2016082214A5 (ja)
WO2014123009A1 (ja) 導電性フイルム、それを備える表示装置及び導電性フイルムの評価方法
JP6038294B2 (ja) 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価及び決定方法
JP2016082037A5 (ja)
JP2016194827A5 (ja)
WO2016060142A1 (ja) 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850592

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015850592

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015850592

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177010248

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE