WO2013145350A1 - Cu-Zn-Sn-Ni-P系合金 - Google Patents

Cu-Zn-Sn-Ni-P系合金 Download PDF

Info

Publication number
WO2013145350A1
WO2013145350A1 PCT/JP2012/068060 JP2012068060W WO2013145350A1 WO 2013145350 A1 WO2013145350 A1 WO 2013145350A1 JP 2012068060 W JP2012068060 W JP 2012068060W WO 2013145350 A1 WO2013145350 A1 WO 2013145350A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
less
rolling
grain size
stress relaxation
Prior art date
Application number
PCT/JP2012/068060
Other languages
English (en)
French (fr)
Inventor
直文 前田
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to KR1020147026093A priority Critical patent/KR101573163B1/ko
Publication of WO2013145350A1 publication Critical patent/WO2013145350A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a Cu—Zn—Sn—Ni—P alloy suitable for conductive spring materials such as connectors, terminals, relays, switches, and the like.
  • brass and phosphor bronze which are solid solution strengthened alloys
  • terminals and connectors have been used as materials for terminals and connectors.
  • terminals and connectors are made thinner and smaller, and high strength and high bendability are desired for materials used for these.
  • the connector contact pressure is reduced due to the stress relaxation phenomenon, and therefore, a material having good stress relaxation resistance is required.
  • brass and phosphor bronze do not have sufficient strength and stress relaxation resistance, precipitation strengthened alloys have been widely used in recent years.
  • Cu-Ni-Si alloy is called Corson alloy and has high strength, high bendability and good stress relaxation resistance due to precipitation of Ni 2 Si fine compound. Used in consumer and in-vehicle connectors (Patent Documents 1 to 8).
  • JP 2009-185341 A JP 2009-62610 A JP-A-11-293367 JP 2003-306732 A JP 2005-163127 A JP-A-5-33087 JP 2007-84923 A JP 2007-107087 A
  • the precipitation alloy is strengthened by solid solution of the solute element and precipitation by aging treatment, so that higher temperature solution treatment and longer aging treatment are required compared with the solid solution alloy, and an increase in manufacturing cost is avoided. I can't.
  • development of low-cost copper alloys that can replace these with inexpensive raw materials is desired.
  • terminals and connectors are manufactured by stamping and bending from copper alloy strips with a press.
  • flexibility is required in the direction of material removal during pressing. As a result, it is required that the material has a small anisotropy.
  • the present invention has been made in order to solve the above-mentioned problems.
  • the raw material cost is lower than that of Cu or Ni, and Zn that may be mixed into copper scrap is contained in an amount of 3% by mass or more and mixed into copper scrap.
  • the object is to provide a Cu—Zn—Sn—Ni—P based alloy that allows Sn to be contained, is low in cost, excellent in strength, bendability and stress relaxation resistance, and has low anisotropy.
  • the inventor has intensively studied, and as a result, in the Cu-Zn-Sn-Ni-P alloy, the crystal grain size a in the rolling parallel direction is set to the crystal grain size b in the direction perpendicular to the rolling.
  • the crystal grain size ratio a / b and the number density of Ni-P compound particles in the cross section in the rolling parallel direction anisotropy can be achieved without impairing strength, bendability and stress relaxation resistance. I succeeded in making it smaller.
  • the Cu-Zn-Sn-Ni-P alloy of the present invention contains, by mass, Sn: 0.2 to 0.8%, Zn: 3 to 18%, Ni: 0.3 to 1.2%, P: 0.01 to 0.12%
  • the balance is made of Cu and inevitable impurities
  • the crystal grain size ratio a / b is 0.9 to 1.4 when the crystal grain size a in the rolling parallel direction and the crystal grain size b in the perpendicular direction of rolling are 0.9, and in the cross section in the rolling parallel direction
  • the number density of the Ni-P compound particles is in the following range. (1) Ni-P compound particles A of 2.0 ⁇ m or more are 10 particles / mm2 or less (2) Ni-P compound particles B of 100nm to 500nm are 50 particles / mm2 to 500 particles / mm2
  • the tensile strength of GW and BW is 500 MPa or more, the difference in tensile strength of GW and BW is 50 MPa or less, the minimum bending radius MBR / t of GW and BW is 1 or less, and the deflection coefficient of GW and BW is The difference is preferably 10 GPa or less. Further, it is preferable that at least one selected from the group consisting of Mg, Mn, Ti, Cr and Zr is contained in a total amount of 0.02 to 0.25% by mass.
  • the raw material cost is cheaper than Cu and Ni, and it contains 3% by mass or more of Zn that may be mixed into copper scrap, while allowing the inclusion of Sn mixed into copper scrap, at low cost and strength
  • a Cu—Zn—Sn—Ni—P alloy having both excellent bendability and stress relaxation resistance and low anisotropy can be obtained.
  • % means “% by mass” unless otherwise specified.
  • composition [Sn and Zn]
  • the Sn concentration in the alloy is 0.2 to 0.8%, and the Zn concentration is 3 to 18%.
  • Sn and Zn improve the strength and heat resistance of the alloy, Sn further improves the stress relaxation resistance, and Zn improves the heat resistance of the solder joint.
  • the tensile strength can be improved to 500 MPa or more, and the manufacturing cost can be reduced by using copper scrap mixed with Zn for alloy production.
  • the recrystallization temperature is not lowered (480 ° C. or less)
  • the crystal grain size is significantly coarsened and the strength is reduced to 500 MPa or more.
  • the tensile strength cannot be obtained stably. If the content of Sn and Zn is less than the above range, the above-mentioned effect cannot be obtained, and if it exceeds the above range, the conductivity is lowered. Further, when the Sn content exceeds the above range, the hot workability decreases, and when the Zn content exceeds the above range, the bending workability decreases.
  • Ni and P The Ni concentration in the alloy is 0.3 to 1.2%, and the P concentration is 0.01 to 0.12%. When both Ni and P are contained, Ni 3 P fine precipitates are precipitated in the alloy even during a short heat treatment for the purpose of recrystallization, which improves strength and stress relaxation resistance.
  • Ni and P When the contents of Ni and P are less than the above ranges, the precipitation of Ni 3 P is not sufficient, and the desired strength and stress relaxation improvement effect cannot be obtained.
  • the content of Ni and P exceeds the above range, the electrical conductivity is remarkably lowered, and the bending workability and the hot workability are lowered.
  • the alloy may further contain 0.02 to 0.25% by mass in total of at least one selected from the group consisting of Mg, Mn, Ti, Cr and Zr.
  • Mg and Mn improve stress relaxation resistance
  • Cr and Mn improve hot workability.
  • these elements have lower free energy of formation of oxides than Zn, and if the total amount of these elements exceeds the above range, they will oxidize during dissolution in the atmosphere during ingot casting, resulting in unnecessary increase in raw material costs. Then, the generated oxide is involved at the time of casting, resulting in a decrease in ingot quality.
  • Crystal grain size ratio a / b is 0.9 to 1.4 when the crystal grain size a in the rolling parallel direction and the crystal grain size b in the direction perpendicular to the rolling are taken.
  • a / b exceeds the above range, the difference in crystal grain size between the rolling parallel direction and the rolling perpendicular direction becomes large, and the bending workability in the BW direction is significantly deteriorated.
  • the reason for this is not clear, but it is considered to be a difference in workability when a fibrous structure facing in one direction is bent in the fiber direction and in a direction perpendicular to the fiber direction.
  • the crystal grain size a is measured in accordance with the cutting method of JIS-H0501 with respect to the rolling parallel section (cross section cut along a plane parallel to the rolling direction).
  • the crystal grain size b is measured in accordance with the cutting method of JIS-H0501 with respect to the rolling cross section (cross section cut along a plane parallel to the direction perpendicular to the rolling direction).
  • Ni-P compounds The number density of Ni—P-based compound particles in the rolling parallel section is controlled within the following range.
  • Ni-P compound particles A of 2.0 ⁇ m or more 10 particles / mm2 or less
  • Ni-P compound particles B of 100 nm to 500 nm or less 50 particles / mm2 to 500 particles / mm2
  • Ni-P-based compound particles are particles containing Ni at 50 at% or more and containing P at 10 at% or more. Is defined as the diameter of the smallest circle that encloses (and so on).
  • the above-mentioned particle A is a crystallized product, and the bendability of GW and BW deteriorates when the number density exceeds 10 / mm2.
  • the above-mentioned particle B is a precipitate, and if it is less than 50 particles / mm 2, the precipitation of Ni—P-based particles of less than 100 nm that contributes to the improvement of the stress relaxation resistance becomes insufficient, so that the desired stress relaxation resistance can be obtained. Absent.
  • the number is 500 particles / mm 2 or more, the Ni—P-based particles grow, and thus the above-mentioned particles of less than 100 nm are reduced, so that desired stress relaxation resistance characteristics cannot be obtained.
  • Ni-P-based particles which means that in a predetermined field of view of the FE-SEM (electrolytic emission scanning electron microscope), particles having a representative form (diameter) are converted into EDS [energy dispersive X It is confirmed by analyzing using [Line Analysis].
  • the rolling parallel cross section of the sample is observed with an FE-SEM, and the number of particles in the above-mentioned particle size range is measured with the particle analysis software attached to the FE-SEM to obtain the number density. .
  • the Cu—Zn—Sn—Ni—P alloy of the present invention is usually manufactured by subjecting the ingot to hot rolling and face cutting, first cold rolling and recrystallization annealing, and finally cold rolling. Can do. After final cold rolling, strain relief annealing is performed.
  • the casting temperature of the ingot is 1250 ° C or less. If the casting temperature of the ingot exceeds 1250 ° C, the cast structure becomes coarse, and even after dynamic recrystallization at the end of hot rolling, the coarse structure remains without being sufficiently eliminated. As a result, even in the product, crystal grains elongated in the longitudinal direction remain, the crystal grain size ratio a / b is out of the range of 0.9 to 1.4, and at least one of the minimum bending radii MBR / t of GW and BW is bent beyond 1. Deteriorates.
  • the casting mold for casting the ingot is made of copper.
  • the mold is made of a material other than copper (for example, cast iron, graphite, brick, etc.), coarse crystals remain in the ingot and eventually the number density of particles A exceeds 1 / mm2, so GW and BW
  • the bendability is degraded. Adjust the pass schedule so that the temperature at the end of hot rolling is 600 °C or higher. When the end temperature of hot rolling is less than 600 ° C., dynamic recrystallization does not occur and a coarse structure remains in the rolling direction. Therefore, the crystal grain size ratio a / b is out of the range of 0.9 to 1.4, and at least one of the minimum bending radii MBR / t of GW and BW exceeds 1, and the bendability deteriorates.
  • the working degree of the final pass of hot rolling is 25-40%. If the degree of work is less than 25%, dynamic recrystallization does not occur and a coarse structure remains in the rolling direction. Therefore, the crystal grain size ratio a / b is out of the range of 0.9 to 1.4, and at least one of the minimum bending radii MBR / t of GW and BW exceeds 1, and the bendability deteriorates. If the degree of processing exceeds 40%, hot rolling may occur.
  • the working degree of the first cold rolling is 95% or more.
  • the workability of the first cold rolling is less than 95%, the precipitation of Ni-P during recrystallization annealing is insufficient, the number of particles B is less than 50 / mm2, and the stress relaxation resistance is deteriorated.
  • the recrystallization annealing temperature is preferably 380 to 500 ° C., and the annealing time is preferably 25 to 70 minutes.
  • the recrystallization annealing temperature is lower than 380 ° C., unrecrystallized grains remain, and at least one of the minimum bending radii MBR / t of GW and BW exceeds 1, and the bendability deteriorates. Further, the precipitation of the Ni—P compound is insufficient, the number of particles B is less than 50 / mm 2, and the stress relaxation resistance is deteriorated.
  • the recrystallization annealing temperature exceeds 500 ° C.
  • the crystal grain size exceeds 10 ⁇ m and coarsens, the strength decreases, and the Ni-P precipitates also coarsen, so that the particle B exceeds 500 particles / mm2, Precipitates that contribute to stress relaxation are reduced, and the stress relaxation resistance is deteriorated.
  • the annealing time for recrystallization annealing is less than 25 minutes, the precipitation of Ni—P compound is insufficient, the number of particles B is less than 50 / mm 2, and the stress relaxation resistance is deteriorated.
  • recrystallization annealing can be performed in a continuous annealing furnace. At that time, the annealing temperature is set to 550 to 800 ° C., and the residence time of the material in the furnace (synonymous with the sheet feeding speed) is adjusted so that the crystal grain size is equal to or smaller than the target size (10 ⁇ m).
  • the degree of workability of the final cold rolling can be arbitrarily set in consideration of desired tensile strength and bending workability, but is preferably 20% or more and 50% or less.
  • the strain relief annealing is performed under conditions of 250 ° C. or higher, and the conditions are adjusted so that the difference in tensile strength before and after annealing is within 50 MPa.
  • the present invention contains Ni and P in the alloy, and even if the recrystallization annealing time is set to a short time as described above, Ni 3 P fine precipitates are precipitated, reducing the production cost, Strength and stress relaxation resistance can be improved.
  • the stress relaxation rate in order to reduce the stress relaxation rate to 25% or less, it is necessary to disperse Ni3P having an appropriate size that contributes to stress relaxation as a precipitate in the matrix.
  • the precipitation of Ni3P proceeds, but the size of Ni3P becomes coarse compared to the precipitate size at a level that contributes to stress relaxation.
  • Ni3P precipitates in the material during subsequent strip annealing and recrystallization annealing. Adjust the state of Ni and P.
  • the end temperature of hot rolling is 600 ° C. or higher, and the material is water-cooled after the end of hot rolling to suppress precipitation.
  • Electrolytic copper was melted in an air melting furnace, a predetermined amount of additive elements shown in Table 1 were added, and the molten metal was stirred. Thereafter, the hot water was poured into a copper mold at a casting temperature of 1170 ° C. to obtain a copper alloy ingot having a composition shown in Table 1 having a thickness of 30 mm ⁇ width of 60 mm ⁇ length of 120 mm. The ingot was shaved 2.5 mm per side and then subjected to hot rolling, cold rolling and heat treatment in the following order to obtain a sample having a thickness of 0.2 mm. (1) After annealing the ingot at a holding temperature of 850 ° C.
  • Experiment B (Invention Examples 21 to 32, Comparative Examples 11 to 25) An ingot was obtained in the same manner as in Experiment A except that the composition of the ingot was Cu-0.4% Sn-10% Zn-1.0% Ni-0.05% P. However, ingot melting and casting conditions, hot rolling conditions, first cold rolling workability, and recrystallization annealing conditions were changed as shown in Table 3. Final cold rolling was performed on the 0.3 mm thick material after recrystallization annealing until it reached 0.2 mm (working degree: 33.3%). Further, after the final cold rolling, a strain relief annealing of 300 ° C. ⁇ 0.5 h was further performed.
  • the copper alloy with small anisotropy shown in the inventive examples refers to a copper alloy in which the difference in tensile strength between the rolling parallel direction and the direction perpendicular to the rolling direction and the difference in deflection coefficient are small according to the following criteria.
  • a sample having a width of 20 mm and a length of 20 mm was electropolished, and then a reflected electron image was observed with a FE-SEM manufactured by Philips.
  • the observation magnification was set to 1000 times, and the crystal grain size was determined by the cutting method defined in JISH0501 for images of five fields of view, and the average value was calculated.
  • the above average values were obtained for the crystal grain size a in the rolling parallel direction and the crystal grain size b in the direction perpendicular to the rolling, and the crystal grain size ratio a / b was calculated.
  • the rolled parallel section of the sample was mirror-finished by mechanical polishing using diamond abrasive grains having a diameter of 1 ⁇ m, and then electropolished with a phosphoric acid type polishing solution.
  • FE-SEM Electrolytic Emission Scanning Electron Microscope: manufactured by PHILIPS
  • the sample surface after electropolishing is 65 fields at a magnification of 500 times for Particle A and 67 fields at a magnification of 8000 times for Particle B.
  • the above-mentioned components of the particles A and B are Ni-P-based particles, and in each field of view, particles having a representative form (diameter) are analyzed using EDS (energy dispersive X-ray analysis) of FE-SEM. Was confirmed.
  • E is the deflection coefficient (value measured by the above method)
  • t is the thickness of the sample.
  • Unloading after 1000 hours of heating at 150 ° C with y 0 deflection applied to the test piece, measuring permanent deformation (height) y, stress relaxation rate ⁇ [y (mm) / y0 (mm) ] ⁇ 100 (%) ⁇ was calculated. When the stress relaxation rate was 25% or less, it was determined that the stress relaxation resistance was good.
  • Tables 1 to 4 show the results of Experiment A, and Tables 3 and 4 show the results of Experiment B.
  • Comparative Example 2 where Zn exceeded 18%, the minimum bending radius MBR / t of BW exceeded 1, and the stress relaxation rate deteriorated beyond 25%.
  • Comparative Example 4 in which Sn exceeded 0.8% and in Comparative Example 8 in which P exceeded 0.12%, cracks occurred during hot rolling, and an alloy could not be produced.
  • Comparative Example 5 in which Ni is less than 0.3%, the precipitation of Ni—P-based particles was insufficient, and the stress relaxation rate deteriorated by exceeding 25%.
  • Comparative Example 6 in which Ni exceeded 1.2%, the minimum bending radius MBR / t of BW exceeded 1.
  • Comparative Example 7 where P is less than 0.01%, the precipitation of Ni—P-based particles was insufficient, and the stress relaxation rate deteriorated by exceeding 25%.
  • Comparative Example 11 in which the casting temperature of the ingot was less than 1150 ° C., the casting surface of the ingot became rough, and surface abnormalities occurred, which prevented further production.
  • Comparative Example 12 where the ingot casting temperature exceeded 1250 ° C., the cast structure became coarse, the crystal grain size ratio a / b was out of the range of 0.9 to 1.4, the anisotropy increased, and GW and BW The minimum bend radius MBR / t of both exceeded 1 and the bendability deteriorated.
  • Comparative Example 21 In the case of Comparative Example 21 in which the recrystallization annealing temperature exceeded 500 ° C., the crystal grain size exceeded 10 ⁇ m and the tensile strength of GW and BW decreased to less than 500 MPa. Furthermore, the number density of particles B exceeded 500 particles / mm2, and fine precipitates contributing to stress relaxation decreased, resulting in deterioration of stress relaxation resistance. In the case of Comparative Example 22 in which the annealing time for recrystallization annealing is less than 25 minutes, the precipitation of Ni-P-based particles is insufficient, the number density of particles B is less than 50 / mm2, and the stress relaxation resistance is deteriorated. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

 Cu やNi に比べ原料代が安いZn を3 質量%以上含有すると共に、銅スクラップに混入するSnの含有を許容し、低コストで強度、曲げ性及び耐応力緩和特性に共に優れ、異方性が少ないCu-Zn-Sn-Ni-P 系合金を提供するため、質量%で、Sn:0.2~0.8%、Zn:3~18%、Ni:0.3~1.2%、P:0.01~0.12%含有し、残部がCu 及び不可避不純物からなり、圧延平行方向の結晶粒径a、圧延直角方向の結晶粒径b としたときの結晶粒径比a/b が0.9~1.4、かつ圧延平行方向断面におけるNi-P 系化合物粒子の個数密度が以下の範囲であるCu-Zn-Sn-Ni-P 系合金を製造した。 (1)2.0μm 以上のNi-P 系化合物粒子A が10 個/mm2 以下 (2)100nm 以上500nm 以下のNi-P 系化合物粒子B が50 個/mm2 以上500 個/mm2 以下

Description

Cu-Zn-Sn-Ni-P系合金
 本発明は、例えばコネクタ、端子、リレ-、スイッチ等の導電性ばね材に好適なCu-Zn-Sn-Ni-P系合金に関する。
 従来から、端子やコネクタの材料として、固溶強化型合金である黄銅やりん青銅が用いられてきた。ところで、電子機器の軽量化及び小型化に伴い、端子やコネクタは薄肉化、小型化し、これらに使用される材料には高強度及び高曲げ性が望まれている。さらに、自動車のエンジンルーム付近等の高温環境で使用されるコネクタでは、応力緩和現象によりコネクタ接圧が低下するため、耐応力緩和性の良好な材料が求められる。
 しかしながら、黄銅やりん青銅は強度、耐応力緩和特性が十分でないため、近年では析出強化型合金が広く使用されている。特に、析出強化型合金のなかでも、Cu-Ni-Si合金は、コルソン合金と呼ばれ、Ni2Si微細化合物の析出により高強度、高曲げ性、良好な耐応力緩和特性を有し、近年の民生用及び車載用コネクタに用いられている(特許文献1~8)。
特開2009-185341号公報 特開2009-62610号公報 特開平11-293367号公報 特開2003-306732号公報 特開2005-163127号公報 特開平5-33087号公報 特開2007-84923号公報 特開2007-107087号公報
 しかしながら、析出合金は、溶質元素の固溶及び時効処理による析出によって強化されるため、固溶合金と比較して高温の溶体化処理及び長時間の時効処理が必要となり、製造コストの上昇が避けられない。また、近年の銅価格やニッケル価格の高騰により、これらを安価な原料で代替できる低コストの銅合金の開発が望まれている。さらに、端子・コネクタは、銅合金条からプレスにて打抜き・曲げ加工され製造されるが、電子部品の小型化と高機能化に伴い、プレス加工時の材料取の方向に自由度が求められ、結果として、材料の異方性が小さいことが要求されている。
 本発明は上記の課題を解決するためになされたものであり、CuやNiに比べ原料代が安く、銅スクラップに混入することがあるZnを3質量%以上含有すると共に、銅スクラップに混入するSnの含有を許容し、低コストで強度、曲げ性及び耐応力緩和特性に共に優れ、異方性が小さいCu-Zn-Sn-Ni-P系合金の提供を目的とする。
 上記の目的を達成するために、発明者は鋭意研究を進めた結果、Cu-Zn-Sn-Ni-P合金における圧延平行方向の結晶粒径a、圧延直角方向の結晶粒径bとしたときの結晶粒径比a/bと、圧延平行方向断面におけるNi-P系化合物粒子の個数密度を適切に制御する事で、強度、曲げ性及び耐応力緩和特性を損なわずに、異方性を小さくする事に成功した。
 すなわち、本発明のCu-Zn-Sn-Ni-P系合金は、質量%で、Sn:0.2~0.8%、Zn:3~18%、Ni:0.3~1.2%、P:0.01~0.12%含有し、残部がCu及び不可避不純物からなり、圧延平行方向の結晶粒径a、圧延直角方向の結晶粒径bとしたときの結晶粒径比a/bが0.9~1.4、かつ圧延平行方向断面におけるNi-P系化合物粒子の個数密度が以下の範囲である。
(1)2.0μm以上のNi-P系化合物粒子Aが10個/mm2以下
(2)100nm以上500nm以下のNi-P系化合物粒子Bが50個/mm2以上500個/mm2以下
 GW及びBWの引張強さがいずれも500MPa以上、GW及びBWの引張強さの差が50MPa以下、GW及びBWの最小曲げ半径MBR/tがいずれも1以下、かつGW及びBWのたわみ係数の差が10GPa以下であることが好ましい。
 更にMg、Mn、Ti、Cr及びZrの群から選ばれる少なくとも1種以上を総量で0.02~0.25質量%含有することが好ましい。
 本発明によれば、CuやNiに比べ原料代が安く、銅スクラップに混入することがあるZnを3質量%以上含有すると共に、銅スクラップに混入するSnの含有を許容し、低コストで強度、曲げ性及び耐応力緩和特性に共に優れ、異方性が小さいCu-Zn-Sn-Ni-P系合金が得られる。
 以下、本発明の実施形態に係るCu-Zn-Sn-Ni-P系合金について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
(組成)
[Sn及びZn]
 合金中のSnの濃度を0.2~0.8%とし、Znの濃度を3~18%とする。Sn及びZnは合金の強度及び耐熱性を向上させ、さらにSnは耐応力緩和特性を向上させ、Znは、はんだ接合の耐熱性を向上させる。又、Znを3質量%以上含有させることで、引張強さを500MPa以上に向上できるとともに、Znが混入する銅スクラップを合金製造に利用して製造コストを低減できる。なお、後述するように、Znを3質量%以上含有させても、再結晶温度を低温(480℃以下)にしないと、結晶粒径の著しい粗大化が起こり、強度が低下して500MPa以上の引張強さが安定して得られない。
 Sn及びZnの含有量が上記範囲未満であると、上述の効果が得られず、上記範囲を超えると導電性が低下する。さらに、Snの含有量が上記範囲を超えると熱間加工性が低下し、Znの含有量が上記範囲を超えると曲げ加工性が低下する。
[Ni及びP]
 合金中のNiの濃度を0.3~1.2%とし、Pの濃度を0.01~0.12%とする。Ni及びPを共に含有させると、再結晶を目的とする短時間の熱処理中でも、合金中にNi3Pの微細析出物が析出するため、強度及び耐応力緩和特性が向上する。
 Ni及びPの含有量が上記範囲未満であると、Ni3Pの析出が十分でなく、所望の強度及び応力緩和改善効果が得られない。Ni及びPの含有量が上記範囲を超えると、導電性が著しく低下することに加え、曲げ加工性及び熱間加工性が低下する。
[他の添加元素]
 合金中に、強度を改善する目的で、さらにMg、Mn、Ti、Cr及びZrの群から選ばれる少なくとも一種以上を総量で0.02~0.25質量%含有してもよい。さらに、Mg、Mnは耐応力緩和特性を向上させ、Cr、Mnは熱間加工性を向上させる。
 但し、これらの元素はZnに比べると酸化物の生成自由エネルギーが低く、これらの元素の総量が上記範囲を超えると、インゴット鋳造時の大気溶解中に酸化し、不必要な原料コストの上昇や、生成した酸化物を鋳造時に巻き込んでインゴット品質の低下を招く。
[結晶粒径]
 圧延平行方向の結晶粒径a、圧延直角方向の結晶粒径bとしたときの結晶粒径比a/bを0.9~1.4とする。a/bが上記範囲を超えると、圧延平行方向と圧延直角方向の結晶粒径の差が大きくなって、BW方向の曲げ加工性が著しく劣化する。この理由は明確ではないが、一方向に向く繊維状組織を、繊維方向に曲げた場合と繊維方向に直角な方向に曲げた場合の加工性の違いと考えられる。つまり、曲げ軸を横切る結晶粒の大きさが、GW方向に比べてBW方向では大きくなるため、塑性変形時のひずみを個々の結晶粒のすべり変形で吸収できず、結晶粒界を伝播する形でクラックが発生することが考えられる。
 なお、結晶粒径aは、圧延平行断面(圧延方向に平行な面で切断した断面)につき、JIS-H0501の切断法に準じ測定する。結晶粒径bは、圧延直角断面(圧延直角方向に平行な面で切断した断面)につき、JIS-H0501の切断法に準じ測定する。
[Ni-P系化合物]
 圧延平行方向断面におけるNi-P系化合物粒子の個数密度を以下の範囲に制御する。
(1)2.0μm以上のNi-P系化合物粒子Aが10個/mm2以下
(2)100nm以上500nm以下のNi-P系化合物粒子Bが50個/mm2以上500個/mm2以下
 ここで、Ni-P系化合物粒子(以下、Ni-P系粒子とする)とは、Niを50at%以上含有し、かつPを10at%以上含有する粒子であり、Ni-P系粒子の粒径は、粒子を囲む最小円の直径と定義する(以下同様)。上記した粒子Aは晶出物であり、個数密度が10個/mm2を超えると、GWおよびBWの曲げ性が劣化する。上記した粒子Bは析出物であり、50個/mm2未満では耐応力緩和特性向上に寄与する100nm未満のNi-P系粒子の析出が不十分となるため、所望の耐応力緩和特性が得られない。一方、500個/mm2以上では、Ni-P系粒子が成長する事で、前述の100nm未満の粒子が減少するため、所望の耐応力緩和特性が得られない。
 上記した粒子A、Bの成分がNi-P系粒子であることは、FE-SEMの(電解放射型走査電子顕微鏡)所定視野において、代表的形態(径)の粒子をEDS〔エネルギー分散型X線分析〕を用いて分析することにより確認する。又、粒子A、Bは、試料の圧延平行断面をFE-SEMにて観察し、上記した粒径範囲の粒子の個数をFE-SEMに付属の粒子解析ソフトウェアにて計測し、個数密度を求める。
 本発明のCu-Zn-Sn-Ni-P系合金は、通常、インゴットを熱間圧延及び面削後、第1の冷間圧延と再結晶焼鈍を行い、最終冷間圧延して製造することができる。最終冷間圧延の後に歪取り焼鈍を実施する。
 インゴットの鋳込温度を1250℃以下とする。インゴットの鋳込温度が1250℃を超えると、鋳造組織が粗大化し、熱間圧延終了時の動的再結晶でも十分に解消出来ずに、粗大組織が残留する。結果、製品でも長手方向に伸長した結晶粒が残留し、結晶粒径比a/bが0.9~1.4の範囲から外れ、GW及びBWの最小曲げ半径MBR/tの少なくとも一方が1を超えて曲げ性が劣化する。
 又、インゴットを鋳込む際の鋳型を銅製とする。鋳型が銅以外の材質(例えば、鋳鉄、黒鉛、煉瓦等)であると、インゴットに粗大晶出物が残留し、最終的に粒子Aの個数密度が1個/mm2を超えるため、GW及びBWの曲げ性が劣化する。
 熱間圧延終了時の温度が600℃以上になる様に、パススケジュールを調整する。熱間圧延の終了温度が600℃未満であると、動的再結晶を起こさず、圧延方向に粗大組織が残る。このため、結晶粒径比a/bが0.9~1.4の範囲から外れ、GW及びBWの最小曲げ半径MBR/tの少なくとも一方が1を超えて曲げ性が劣化する。
 熱間圧延の最終パスの加工度を25~40%とする。上記加工度が25%未満であると、動的再結晶を起こさず、圧延方向に粗大組織が残る。このため、結晶粒径比a/bが0.9~1.4の範囲から外れ、GW及びBWの最小曲げ半径MBR/tの少なくとも一方が1を超えて曲げ性が劣化する。上記加工度が40%を超えると、熱延割れを起こす恐れがある。
 第1の冷間圧延の加工度を95%以上とする。第1の冷間圧延の加工度が95%未満であると、再結晶焼鈍時のNi-Pの析出が不十分で、粒子Bが50個/mm2未満となり、耐応力緩和特性が劣化する。
 バッチ焼鈍では、再結晶焼鈍の温度を380~500℃とし、焼鈍時間を25~70分とすることが好ましい。再結晶焼鈍温度が380℃未満であると、未再結晶粒が残留し、GW及びBWの最小曲げ半径MBR/tの少なくとも一方が1を超えて曲げ性が劣化する。また、Ni-P化合物の析出も不十分となり、粒子Bが50個/mm2未満となり、耐応力緩和特性が劣化する。再結晶焼鈍温度が500℃を超えると、結晶粒径が10μmを超えて粗大化し、強度が低下すると共に、Ni-P析出物も粗大化することで、粒子Bが500個/mm2を超え、応力緩和に寄与する析出物が減少し、耐応力緩和特性が劣化する。
 再結晶焼鈍の焼鈍時間が25分未満であると、Ni-P化合物の析出が不十分で、粒子Bが50個/mm2未満となり、耐応力緩和特性が劣化する。再結晶焼鈍の焼鈍時間が70分を超えると、結晶粒径が10μmを超えて粗大化し、強度が低下すると共に、Ni-P析出物も粗大化することで、粒子Bが500個/mm2を超え、応力緩和に寄与する析出物が減少し、耐応力緩和特性が劣化する。
 なお、生産コストの更なる低減のために、連続式焼鈍炉にて再結晶焼鈍を行なう事ができる。その際、焼鈍温度は550~800℃とし、結晶粒径が目標サイズ以下(10μm)となる様に、材料の炉内滞在時間(通板速度と同義)を調整する。
 最終冷間圧延の加工度は所望の引張強さ及び曲げ加工性を考慮し、任意に設定できるが、好ましくは20%以上50%以下とする。歪取り焼鈍は、250℃以上の条件で行ない、焼鈍前後の引張強さの差異が50MPa以内となる様に条件を調整する。
 なお、本発明は、合金中にNi及びPを含有することで、上述のように再結晶焼鈍時間を短時間としても、Ni3Pの微細析出物が析出し、生産コストを低減しつつ、強度及び耐応力緩和特性を向上させることができる。
 一方、応力緩和率を25%以下にするためには、応力緩和に寄与する適度なサイズのNi3Pを母相中に析出物として分散させる必要がある。熱間圧延後の冷却を徐冷とした場合、Ni3Pの析出は進行するものの、Ni3Pのサイズが応力緩和に寄与するレベルの析出物サイズと比較して粗大となる。このため、熱間圧延終了後の析出を抑制し、かつ、NiおよびPを母相中に十分に固溶させる事で、後の素条焼鈍および再結晶焼鈍時にNi3Pが析出する様に材料中のNi及びPの状態を調整する。Ni及びPを固溶させるため、熱間圧延の終了温度は600℃以上とし、析出を抑制するため熱間圧延の終了後に材料を水冷する。
<実験A(発明例1~16、比較例1~8)
 大気溶解炉中にて電気銅を溶解し、表1に示す添加元素を所定量投入し、溶湯を攪拌した。その後、鋳込み温度1170℃にて銅製の鋳型に出湯し、厚み30mm×幅60mm×長さ120mmの表1に示す組成の銅合金インゴットを得た。インゴットを片面当り2.5mm面削後、以下の順で熱間圧延、冷間圧延、熱処理を行い、板厚0.2mmの試料を得た。
  (1)インゴットを保持温度850℃で3時間(保持時間)焼鈍後、板厚11mmまで熱間圧延し、熱間圧延終了時の材料温度(熱間圧延の終了温度)が660℃(誤差±10℃)となるように調整し、その後に水冷した。
  (2)熱間圧延後の表層の酸化スケールを除去するため、片面0.5mmの面削を実施した。
  (3)板厚0.36mmになるまで(加工度97%)、第1の冷間圧延を実施した。
  (4)380℃×30分の再結晶焼鈍を実施した。
  (5)再結晶焼鈍後の表面の酸化スケールを酸洗・バフ研磨で除去後、板厚0.25mmになるまで(加工度33.3%)、最終冷間圧延を施した。
  (6)最終冷間圧延後、さらに300℃×0.5hの歪取り焼鈍を施した。
<実験B(発明例21~32、比較例11~25)
 インゴットの組成をCu-0.4%Sn-10%Zn-1.0%Ni-0.05%Pとしたこと以外は、実験Aと同様にしてインゴットを得た。但し、インゴットの溶解鋳造条件、熱間圧延の条件、第1の冷間圧延の加工度、及び再結晶焼鈍条件を表3に示すように変化させた。再結晶焼鈍後の板厚0.3mmの材料を0,2mmになるまで(加工度:33.3%)最終冷間圧延を実施した。又、最終冷間圧延後、さらに300℃×0.5hの歪取り焼鈍を施した。
<評価>
 実験A,Bの歪取焼鈍後の材料について以下の項目を評価した。なお、本実験において発明例に示す異方性が小さい銅合金とは、圧延平行方向と圧延方向に直角な方向の引張強さの差及び、たわみ係数の差が下記基準に従って小さい銅合金を指す。
[平均結晶粒径及び結晶粒径比a/b]
 幅20mm×長さ20mmのサンプルを電解研磨後、Philips社製FE-SEMにて反射電子像を観察した。観察倍率は1000倍とし、5視野の画像についてJISH0501に規定される切断法にて結晶粒径を求め、平均値を算出した。なお、圧延平行方向の結晶粒径a、圧延直角方向の結晶粒径bについてそれぞれ上記平均値を求め、結晶粒径比a/bを算出した。
[平均結晶粒径及び結晶粒径比a/b]
 Ni-P系化合物粒子の個数密度を測定するため、試料の圧延平行断面を直径1μmのダイヤモンド砥粒を用いた機械研磨で鏡面に仕上げた後、りん酸系研磨液で電解研磨した。電解研磨後の試料面をFE-SEM(電解放射型走査電子顕微鏡:PHILIPS社製)を用い、粒子Aについては、倍率500倍にて65視野、粒子Bについては倍率8000倍にて67視野で観察し、上記した粒径範囲の化合物粒子の個数をFE-SEMに付属の粒子解析ソフトウェアにて計測し、個数密度を求めた。上記した粒子A、Bの成分がNi-P系粒子であることは、各視野において、代表的形態(径)の粒子をFE-SEMのEDS(エネルギー分散型X線分析)を用いて分析することにより確認した。
[引張強さ]
 各試料について、GW及びBWについて引張試験を行い、JISZ2241に準拠して引張強さ(TS)を求めた。引張強さが500MPa以上で強度が良好と判定し、GWおよびBWの引張強さの差が50MPa以下である場合に強度差が小さいと判定した。
[導電率]
 各試料について、JISH0505に準拠し、ダブルブリッジ装置を用いた四端子法により求めた体積抵抗率から導電率(%IACS)を算出した。
[W曲げ性]
 試料長手方向が圧延方向と平行(GW方向)または直角(BW方向)になるようにして幅10mm×長さ30mmの短冊試験片を採取した。この試験片のW曲げ試験(JCBA-T307)を行い、割れの発生しない最小曲げ半径をMBR(Minimum Bend Radius)とし、板厚t(mm)との比MBR/tにより評価した。両方向とも、MBR/tが1以下であるとき、曲げ性が良好と判定した。
[たわみ係数]
 GW及びBWの各試料について、日本伸銅協会技術標準(JCBAT312:2002)に準拠してたわみ係数を測定した。GW及びBWのたわみ係数の差が10GPa以下の場合、たわみ係数の差が小さいと判定した。
[耐応力緩和特性]
 幅10mm×長さ100mmの短冊形状の試験片を,試験片の長手方向が圧延方向と平行になるように採取した。試験片の片端を固定し、固定位置から50mmの位置(l=50mm)を作用点として,試験片にy0のたわみを与え,0.2%耐力の80%に相当する応力(σ0)を負荷した。y0は次式により求めた。
y0=(2/3)・l・σ0 / (E・t)
ここで,Eはたわみ係数(上記方法で測定した値)であり,tは試料の厚みである。試験片にy0のたわみを与えた状態で150℃にて1000時間加熱後に除荷し,永久変形量(高さ)yを測定し,応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。応力緩和率が25%以下の場合、耐応力緩和特性が良好と判定した。
 得られた結果を表1~表4に示す。なお、表1、表2は実験Aの結果であり、表3、表4は実験Bの結果である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実験Aについて
 Sn、Zn、Ni、Pの含有量が規定範囲内であって、結晶粒径比a/bが0.9~1.4を満たし、Ni-P系化合物である粒子Aおよび粒子Bの個数密度が規定範囲内である各実施例の場合、強度、曲げ性、耐応力緩和特性を良好に保持し、かつ異方性が小さくなった。
 一方、Znが3%未満である比較例1、及びSnが0.2%未満である比較例3の場合、GW及びBWの引張強さがいずれも500MPa未満となり、強度が劣化した。
 Znが18%を超えた比較例2の場合、BWの最小曲げ半径MBR/tが1を超え、応力緩和率も25%を超えて劣化した。
 Snが0.8%を超えた比較例4の場合、及びPが0.12%を超えた比較例8の場合、いずれも熱間圧延で割れが発生し、合金を製造できなかった。
 Niが0.3%未満である比較例5の場合、Ni-P系粒子の析出が不十分で、応力緩和率が25%を超えて劣化した。
 Niが1.2%を超えた比較例6の場合、BWの最小曲げ半径MBR/tが1を超えた。
 Pが0.01%未満である比較例7の場合、Ni-P系粒子の析出が不十分で、応力緩和率が25%を超えて劣化した。
 実験Bについて
 インゴットの溶解鋳造、熱間圧延、第1の冷間圧延、及び再結晶焼鈍の条件が規定範囲を満たす各実施例の場合、結晶粒径比a/bが0.9~1.4を満たし、かつNi-P系化合物である粒子Aおよび粒子Bの個数密度が規定範囲内となって、強度、曲げ性、耐応力緩和特性を良好に保持し、異方性も小さくなった。
 一方、インゴットの鋳込温度が1150℃未満である比較例11の場合、インゴットの鋳肌が粗くなり、表面異常が発生してそれ以上の製造ができなかった。インゴットの鋳込温度が1250℃を超えた比較例12の場合、鋳造組織が粗大化し、結晶粒径比a/bが0.9~1.4の範囲から外れ、異方性が大きくなると共に、GW及びBWの最小曲げ半径MBR/tが共に1を超えて曲げ性が劣化した。
 又、インゴットを鋳込む際の鋳型を銅以外の材質(それぞれ鋳鉄、黒鉛、煉瓦等)とした比較例13~15の場合、インゴットに粗大晶出物が残留し、粒子Aの個数密度が10個/mm2を超え、GW及びBWの最小曲げ半径MBR/tが1を超えて曲げ性が劣化した。
 熱間圧延の終了温度が600℃未満である比較例16の場合、動的再結晶を起こさず、圧延方向に粗大組織が残った。このため、結晶粒径比a/bが0.9~1.4の範囲から外れ、異方性が大きくなると共に、BWの最小曲げ半径MBR/tが1を超えて曲げ性が劣化した。また、固溶するNi、P量が不十分であったため、Ni-P系粒子の析出が不十分となり、粒子Bの個数密度が50個/mm2未満となり、耐応力緩和特性が劣化した。
 熱間圧延の最終パスの加工度が25%未満である比較例17の場合、動的再結晶を起こさず、圧延方向に粗大組織が残った。このため、結晶粒径比a/bが0.9~1.4の範囲から外れ、異方性が大きくなると共に、BWの最小曲げ半径MBR/tが1を超えて曲げ性が劣化した。一方、熱間圧延の最終パス加工度が40%を超えた比較例18の場合、熱延割れを起こし、それ以上の製造ができなかった。
 第1の冷間圧延の加工度が95%未満である比較例19の場合、再結晶焼鈍時のNi-Pの析出が不十分となり、粒子Bの個数密度が50個/mm2未満となり、耐応力緩和特性が劣化した。
 再結晶焼鈍の温度が380℃未満である比較例20の場合、再結晶が十分に起こらず、観察領域の大部分に未再結晶領域が残留し、GW及びBWの最小曲げ半径MBR/tがいずれも1を超えて曲げ性が劣化した。
 再結晶焼鈍の温度が500℃を超えた比較例21の場合、結晶粒径が10μmを超えて粗大化し、GW及びBWの引張強さが500MPa未満に低下した。 さらに粒子Bの個数密度が500個/mm2を超え、応力緩和に寄与する微細析出物が減少した結果、耐応力緩和特性が劣化した。
 再結晶焼鈍の焼鈍時間が25分未満である比較例22の場合、Ni-P系粒子の析出が不十分で、粒子Bの個数密度が50個/mm2未満となり、耐応力緩和特性が劣化した。再結晶焼鈍の焼鈍時間が70分を超えた比較例23の場合、結晶粒径が10μmを超えて粗大化し、GWの引張強さが500MPa未満に低下した。また、粒子Bの個数密度が500個/mm2以上となり、応力緩和に寄与する微細析出物が減少した結果、耐応力緩和特性が劣化した。

Claims (3)

  1.  質量%で、Sn:0.2~0.8%、Zn:3~18%、Ni:0.3~1.2%、P:0.01~0.12%含有し、残部がCu及び不可避不純物からなり、
     圧延平行方向の結晶粒径a、圧延直角方向の結晶粒径bとしたときの結晶粒径比a/bが0.9~1.4、かつ圧延平行方向断面におけるNi-P系化合物粒子の個数密度が以下の範囲であるCu-Zn-Sn-Ni-P系合金。
    (1)2.0μm以上のNi-P系化合物粒子Aが10個/mm2以下
    (2)100nm以上500nm以下のNi-P系化合物粒子Bが50個/mm2以上500個/mm2以下
  2.  GW及びBWの引張強さがいずれも500MPa以上、GW及びBWの引張強さの差が50MPa以下、GW及びBWの最小曲げ半径MBR/tがいずれも1以下、かつGW及びBWのたわみ係数の差が10GPa以下である請求項1記載のCu-Zn-Sn-Ni-P系合金。
  3.  更にMg、Mn、Ti、Cr及びZrの群から選ばれる少なくとも1種以上を総量で0.02~0.25質量%含有する請求項1又は2記載のCu-Zn-Sn-Ni-P系合金。
PCT/JP2012/068060 2012-03-30 2012-07-17 Cu-Zn-Sn-Ni-P系合金 WO2013145350A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020147026093A KR101573163B1 (ko) 2012-03-30 2012-07-17 Cu-Zn-Sn-Ni-P 계 합금

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-082974 2012-03-30
JP2012082974A JP5153949B1 (ja) 2012-03-30 2012-03-30 Cu−Zn−Sn−Ni−P系合金

Publications (1)

Publication Number Publication Date
WO2013145350A1 true WO2013145350A1 (ja) 2013-10-03

Family

ID=47890629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068060 WO2013145350A1 (ja) 2012-03-30 2012-07-17 Cu-Zn-Sn-Ni-P系合金

Country Status (4)

Country Link
JP (1) JP5153949B1 (ja)
KR (1) KR101573163B1 (ja)
TW (1) TWI475119B (ja)
WO (1) WO2013145350A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115307A1 (ja) 2013-01-25 2014-07-31 三菱伸銅株式会社 端子・コネクタ材用銅合金板及び端子・コネクタ材用銅合金板の製造方法
JP5452778B1 (ja) * 2013-01-25 2014-03-26 三菱伸銅株式会社 端子・コネクタ材用銅合金板及び端子・コネクタ材用銅合金板の製造方法
JP5690979B1 (ja) * 2013-07-10 2015-03-25 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
CN105283567B (zh) * 2013-07-10 2017-06-09 三菱综合材料株式会社 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电元件及端子
JP6218325B2 (ja) * 2014-02-27 2017-10-25 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子
JP5879464B1 (ja) * 2014-09-26 2016-03-08 三菱伸銅株式会社 銅合金板及び銅合金板の製造方法
TWI540213B (zh) * 2014-09-26 2016-07-01 三菱伸銅股份有限公司 銅合金板及銅合金板的製造方法
JP2016132816A (ja) * 2015-01-21 2016-07-25 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
CN105420544B (zh) * 2015-12-24 2017-11-17 中色奥博特铜铝业有限公司 一种锡黄铜带及其制备方法
JP6645337B2 (ja) * 2016-04-20 2020-02-14 株式会社オートネットワーク技術研究所 接続端子および接続端子対
JP7266540B2 (ja) 2020-01-14 2023-04-28 株式会社オートネットワーク技術研究所 接続端子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354843A (ja) * 1991-05-31 1992-12-09 Dowa Mining Co Ltd 熱交換器用銅基合金
JP2000080427A (ja) * 1998-07-08 2000-03-21 Kobe Steel Ltd 端子・コネクタ用銅合金及びその製造方法
JP2002530523A (ja) * 1998-11-16 2002-09-17 オリン コーポレイション 応力緩和抵抗性の黄銅

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166147B2 (ja) 2003-12-03 2008-10-15 株式会社神戸製鋼所 高強度電気電子部品用銅合金板の製造方法
JP5466879B2 (ja) * 2009-05-19 2014-04-09 Dowaメタルテック株式会社 銅合金板材およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354843A (ja) * 1991-05-31 1992-12-09 Dowa Mining Co Ltd 熱交換器用銅基合金
JP2000080427A (ja) * 1998-07-08 2000-03-21 Kobe Steel Ltd 端子・コネクタ用銅合金及びその製造方法
JP2002530523A (ja) * 1998-11-16 2002-09-17 オリン コーポレイション 応力緩和抵抗性の黄銅

Also Published As

Publication number Publication date
TW201348467A (zh) 2013-12-01
JP2013213237A (ja) 2013-10-17
JP5153949B1 (ja) 2013-02-27
KR101573163B1 (ko) 2015-12-01
KR20140125877A (ko) 2014-10-29
TWI475119B (zh) 2015-03-01

Similar Documents

Publication Publication Date Title
JP5153949B1 (ja) Cu−Zn−Sn−Ni−P系合金
JP4596493B2 (ja) 導電性ばね材に用いられるCu−Ni−Si系合金
US10294547B2 (en) Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
EP2952595B1 (en) Copper alloy and material rolled thereof for electronic device and method for producing this alloy
WO2011125554A1 (ja) 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法
KR102126731B1 (ko) 구리합금 판재 및 구리합금 판재의 제조 방법
WO2009122869A1 (ja) 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法
WO2006106939A1 (ja) 電子材料用Cu-Ni-Si-Co-Cr系銅合金及びその製造方法
KR20120104548A (ko) 구리합금판재
JP5619389B2 (ja) 銅合金材料
KR20110039371A (ko) 전기·전자부품용 동합금 재료
WO2011036804A1 (ja) 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法
KR20110088595A (ko) 전자 재료용 Cu-Ni-Si-Co 계 구리 합금 및 그 제조 방법
WO2012043170A1 (ja) 電子材料用Cu-Co-Si系銅合金及びその製造方法
TWI429764B (zh) Cu-Co-Si alloy for electronic materials
WO2013161351A1 (ja) Cu-Ni-Si系銅合金
KR20130109209A (ko) 전자 재료용 Cu-Si-Co 계 구리 합금 및 그 제조 방법
KR20150023874A (ko) 구리 합금 및 그의 제조 방법
JP6077755B2 (ja) Cu−Zn−Sn−Ni−P系合金及びその製造方法
JP4175920B2 (ja) 高力銅合金
JP5325178B2 (ja) 強度、導電率及び曲げ加工性に優れたCu−Co−Si系銅合金及びその製造方法
JP2012229467A (ja) 電子材料用Cu−Ni−Si系銅合金
JP6762453B1 (ja) 銅合金板材およびその製造方法
JP2021138998A (ja) 銅合金材およびその製造方法
JP2020143376A (ja) 強度及び導電性に優れる銅合金板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026093

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873221

Country of ref document: EP

Kind code of ref document: A1