WO2013145290A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2013145290A1
WO2013145290A1 PCT/JP2012/058664 JP2012058664W WO2013145290A1 WO 2013145290 A1 WO2013145290 A1 WO 2013145290A1 JP 2012058664 W JP2012058664 W JP 2012058664W WO 2013145290 A1 WO2013145290 A1 WO 2013145290A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
positive electrode
material layer
transition metal
Prior art date
Application number
PCT/JP2012/058664
Other languages
English (en)
French (fr)
Inventor
裕喜 永井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/058664 priority Critical patent/WO2013145290A1/ja
Priority to US14/388,894 priority patent/US9882207B2/en
Priority to CN201280072055.2A priority patent/CN104205466B/zh
Priority to JP2014507251A priority patent/JP5904382B2/ja
Priority to DE112012006167.5T priority patent/DE112012006167B4/de
Priority to CN201710153825.0A priority patent/CN107134562A/zh
Publication of WO2013145290A1 publication Critical patent/WO2013145290A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • a “lithium ion secondary battery” is a secondary battery that uses lithium ions as electrolyte ions and is charged / discharged by movement of charges accompanying the lithium ions between the positive and negative electrodes.
  • “secondary battery” includes general power storage devices that can be repeatedly charged.
  • a lithium ion secondary battery is disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-218248 (JP 2008-218248A).
  • JP 2008-218248A the density of a negative electrode mixture containing a carbon material is mentioned.
  • the density of the negative electrode mixture having a carbon material is 1.4 g / cm 3 or more and 1.7 g / cm 3 or less, and the negative electrode mixture is applied to the negative electrode current collector.
  • a lithium ion secondary battery having a work amount of 6 mg / cm 2 or more and 8 mg / cm 2 or less has been proposed. According to the publication, such a configuration provides a lithium ion secondary battery with improved load characteristics and input / output characteristics.
  • JP 2008-218248 A JP 2008-218248A
  • the output tends to decrease in a low temperature environment of about ⁇ 30 ° C., and the resistance tends to increase due to a high rate cycle. Further, in a high temperature environment of about 60 ° C., the capacity tends to deteriorate due to storage.
  • the lithium ion secondary battery proposed by the present inventor includes a positive electrode current collector, a positive electrode active material layer containing positive electrode active material particles held by the positive electrode current collector, a negative electrode current collector, and a negative electrode A negative electrode active material layer that is held by a current collector and includes negative electrode active material particles made of a graphite material.
  • the positive electrode active material particles have a shell portion made of a layered lithium transition metal oxide, a hollow portion formed inside the shell portion, and a through-hole penetrating the shell portion.
  • the density A of the positive active material layer is 1.80 g / cm 3 ⁇ A ⁇ 2.35 g / cm 3
  • the density B of the negative electrode active material layer is 0.95 g / cm 3 ⁇ B ⁇ 1.25 g. / Cm 3 .
  • the output is maintained high particularly in a low temperature environment of about ⁇ 30 ° C., the increase in resistance after the high-rate cycle is suppressed to a small level. There is a tendency to be able to suppress the deterioration.
  • the thickness of the shell at an arbitrary position on the inner surface of the shell is defined as the shortest distance from an arbitrary position on the inner surface of the shell to the outer surface of the shell.
  • the thickness of the shell portion may be 3.0 ⁇ m or less on the average of the positive electrode active material layer.
  • the thickness of the shell portion may be 0.1 ⁇ m or more.
  • the major axis of the primary particles of the lithium transition metal oxide may be 0.8 ⁇ m or less.
  • the major axis of the primary particles of the lithium transition metal oxide may be 0.2 ⁇ m or more.
  • the opening width of the through hole may be 0.01 ⁇ m or more and 2.0 ⁇ m or less in the average of the positive electrode active material layer.
  • the average porosity of the positive electrode active material layer may be such that the particle porosity of the positive electrode active material particles is 15% or more.
  • the lithium transition metal oxide may contain at least one metal element of Ni, Co, and Mn.
  • the lithium transition metal oxide may contain Ni, Co, and Mn.
  • the lithium transition metal oxide may also be Li 1 + x Ni y Co z Mn (1-yz) M ⁇ O 2 .
  • the lithium transition metal oxide contains W.
  • the W content m MA is 0.05. It may be from mol% to 2 mol%.
  • the positive electrode active material layer includes a conductive material and PVDF
  • the positive electrode active material particles are 86% by mass to 94% by mass
  • the conductive material is 6% by mass to 10% by mass.
  • the PVDF may be 1% by mass or more and 4% by mass or less.
  • the negative electrode active material layer may contain 97% by mass to 99% by mass of negative electrode active material particles.
  • the positive electrode active material particles are, for example, a raw material hydroxide generating step in which ammonium ions are supplied to an aqueous solution of a transition metal compound to precipitate particles of the transition metal hydroxide from the aqueous solution. Includes at least one of transition metal elements constituting lithium transition metal oxide; mixing step of mixing transition metal hydroxide and lithium compound to prepare an unfired mixture; and firing the mixture It is good in the positive electrode active material particle manufactured by the manufacturing method including the baking process which obtains the said active material particle.
  • Such a lithium ion secondary battery maintains a high output especially in a low temperature environment of about ⁇ 30 ° C., suppresses a small increase in resistance after a high-rate cycle, and further deteriorates capacity due to storage even in a high temperature environment of about 60 ° C. There is a tendency to be able to suppress it. For this reason, this lithium ion secondary battery can be suitably used as a power source for driving a vehicle.
  • FIG. 1 is a diagram illustrating an example of the structure of a lithium ion secondary battery.
  • FIG. 2 is a view showing a wound electrode body of a lithium ion secondary battery.
  • FIG. 3 is a cross-sectional view showing a III-III cross section in FIG.
  • FIG. 4 is a cross-sectional view showing the structure of the positive electrode active material layer.
  • FIG. 5 is a cross-sectional view showing the structure of the negative electrode active material layer.
  • FIG. 6 is a side view showing a welding location between an uncoated portion of the wound electrode body and the electrode terminal.
  • FIG. 7 is a diagram schematically illustrating a state of the lithium ion secondary battery during charging.
  • FIG. 8 is a diagram schematically showing a state of the lithium ion secondary battery during discharge.
  • FIG. 9 is a cross-sectional SEM image of the positive electrode active material particles used in the lithium ion secondary battery according to one embodiment of the present invention.
  • FIG. 10 is a diagram showing a correlation between the density of the positive electrode active material layer and the output (W) of the lithium ion secondary battery at ⁇ 30 ° C. and SOC 27%.
  • FIG. 11 is a diagram showing a correlation between the density of the negative electrode active material layer and the output (W) at ⁇ 30 ° C. and SOC 27%.
  • FIG. 12 is an SEM image of a cross section obtained by bending and splitting the positive electrode active material layer.
  • FIG. 13 is an enlarged image of the positive electrode active material particles from the SEM image of the cross section.
  • FIG. 10 is a diagram showing a correlation between the density of the positive electrode active material layer and the output (W) of the lithium ion secondary battery at ⁇ 30 ° C. and SOC 27%.
  • FIG. 11 is a diagram showing a correlation between the density
  • FIG. 14 is a schematic diagram showing primary particles of the positive electrode active material particles.
  • FIG. 15 is a graph illustrating an approximate curve when calculating the output (W) at ⁇ 30 ° C. and SOC 27%.
  • FIG. 16 is a diagram showing a charge / discharge cycle in a test for evaluating a high rate cycle resistance increase rate.
  • FIG. 17 is a diagram illustrating an example of a vehicle equipped with a vehicle driving battery.
  • FIG. 1 shows a lithium ion secondary battery 100.
  • the lithium ion secondary battery 100 includes a wound electrode body 200 and a battery case 300.
  • FIG. 2 is a view showing the wound electrode body 200.
  • FIG. 3 shows a III-III cross section in FIG.
  • the wound electrode body 200 includes a positive electrode sheet 220, a negative electrode sheet 240, and separators 262 and 264.
  • the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are respectively strip-shaped sheet materials.
  • the positive electrode sheet 220 includes a strip-shaped positive electrode current collector 221 and a positive electrode active material layer 223.
  • a metal foil suitable for the positive electrode can be suitably used.
  • a strip-shaped aluminum foil having a predetermined width and a thickness of approximately 15 ⁇ m can be used.
  • An uncoated portion 222 is set along the edge on one side in the width direction of the positive electrode current collector 221.
  • the positive electrode active material layer 223 is held on both surfaces of the positive electrode current collector 221 except for the uncoated portion 222 set on the positive electrode current collector 221 as shown in FIG.
  • the positive electrode active material layer 223 contains a positive electrode active material.
  • the positive electrode active material layer 223 is formed by applying a positive electrode mixture containing a positive electrode active material to the positive electrode current collector 221.
  • FIG. 4 is a cross-sectional view of the positive electrode sheet 220.
  • the positive electrode active material particles 610, the conductive material 620, and the binder 630 in the positive electrode active material layer 223 are schematically illustrated so that the structure of the positive electrode active material layer 223 becomes clear.
  • the positive electrode active material layer 223 includes positive electrode active material particles 610, a conductive material 620, and a binder 630.
  • the positive electrode active material particles 610 a material that can be used as a positive electrode active material of a lithium ion secondary battery can be used.
  • the positive electrode active material particles 610 include LiNiCoMnO 2 (lithium nickel cobalt manganese composite oxide), LiNiO 2 (lithium nickelate), LiCoO 2 (lithium cobaltate), LiMn 2 O 4 (lithium manganate), LiFePO And lithium transition metal oxides such as 4 (lithium iron phosphate).
  • LiMn 2 O 4 has, for example, a spinel structure.
  • LiNiO 2 or LiCoO 2 has a layered rock salt structure.
  • LiFePO 4 has, for example, an olivine structure.
  • LiFePO 4 having an olivine structure includes, for example, nanometer order particles.
  • LiFePO 4 having an olivine structure can be further covered with a carbon film.
  • the conductive material 620 examples include carbon materials such as carbon powder and carbon fiber. One kind selected from such conductive materials may be used alone, or two or more kinds may be used in combination.
  • the carbon powder various carbon blacks (for example, acetylene black, oil furnace black, graphitized carbon black, carbon black, graphite, ketjen black), graphite powder, and the like can be used.
  • the binder 630 binds the positive electrode active material particles 610 and the conductive material 620 included in the positive electrode active material layer 223, or binds these particles and the positive electrode current collector 221.
  • a polymer that can be dissolved or dispersed in a solvent to be used can be used as the binder 630.
  • a cellulose polymer (carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC), etc.), a fluorine resin (eg, polyvinyl alcohol (PVA), polytetrafluoroethylene, etc.) (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP, etc.), rubbers (vinyl acetate copolymer, styrene butadiene copolymer (SBR), acrylic acid-modified SBR resin (SBR latex), etc.)
  • a water-soluble or water-dispersible polymer such as can be preferably used.
  • a polymer polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), polyacrylonitrile (PAN), etc.
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • PAN polyacrylonitrile
  • the positive electrode active material layer 223 is prepared, for example, by preparing a positive electrode mixture in which the above-described positive electrode active material particles 610 and the conductive material 620 are mixed in a paste (slurry) with a solvent, applied to the positive electrode current collector 221, and dried. And is formed by rolling.
  • a solvent for the positive electrode mixture either an aqueous solvent or a non-aqueous solvent can be used.
  • a preferred example of the non-aqueous solvent is N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the polymer material exemplified as the binder 630 may be used for the purpose of exhibiting a function as a thickener or other additive of the positive electrode mixture in addition to the function as a binder.
  • the mass ratio of the positive electrode active material in the total positive electrode mixture is preferably about 50 wt% or more (typically 50 to 95 wt%), and usually about 70 to 95 wt% (for example, 75 to 90 wt%). It is more preferable. Further, the ratio of the conductive material to the whole positive electrode mixture can be, for example, about 2 to 20 wt%, and is usually preferably about 2 to 15 wt%. In the composition using the binder, the ratio of the binder to the whole positive electrode mixture can be, for example, about 1 to 10 wt%, and usually about 2 to 5 wt%.
  • the negative electrode sheet 240 includes a strip-shaped negative electrode current collector 241 and a negative electrode active material layer 243.
  • a metal foil suitable for the negative electrode can be suitably used.
  • the negative electrode current collector 241 is made of a strip-shaped copper foil having a predetermined width and a thickness of about 10 ⁇ m.
  • an uncoated part 242 is set along the edge.
  • the negative electrode active material layer 243 is formed on both surfaces of the negative electrode current collector 241 except for the uncoated portion 242 set on the negative electrode current collector 241.
  • the negative electrode active material layer 243 is held by the negative electrode current collector 241 and contains at least a negative electrode active material.
  • a negative electrode mixture containing a negative electrode active material is applied to the negative electrode current collector 241.
  • FIG. 5 is a cross-sectional view of the negative electrode sheet 240 of the lithium ion secondary battery 100.
  • the negative electrode active material layer 243 includes a negative electrode active material 710, a thickener (not shown), a binder 730, and the like.
  • the negative electrode active material 710 and the binder 730 in the negative electrode active material layer 243 are schematically illustrated so that the structure of the negative electrode active material layer 243 becomes clear.
  • the negative electrode active material 710 one kind or two or more kinds of materials conventionally used for lithium ion secondary batteries can be used without any particular limitation.
  • the negative electrode active material is, for example, natural graphite, natural graphite coated with an amorphous carbon material, graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon ( Soft carbon) or a carbon material combining these may be used.
  • the negative electrode active material 710 is illustrated using so-called flake graphite, but the negative electrode active material 710 is not limited to the illustrated example.
  • the negative electrode active material layer 243 is prepared, for example, by preparing a negative electrode mixture in which the negative electrode active material 710 and the binder 730 described above are mixed in a paste (slurry) with a solvent, applied to the negative electrode current collector 241, and dried. It is formed by rolling. At this time, any of an aqueous solvent and a non-aqueous solvent can be used as the solvent for the negative electrode mixture.
  • a preferred example of the non-aqueous solvent is N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the binder 730 the polymer material exemplified as the binder 630 of the positive electrode active material layer 223 (see FIG. 4) can be used.
  • the polymer material exemplified as the binder 630 of the positive electrode active material layer 223 may be used for the purpose of exhibiting a function as a thickener or other additive of the positive electrode mixture in addition to the function as a binder. possible.
  • the separators 262 and 264 are members that separate the positive electrode sheet 220 and the negative electrode sheet 240 as shown in FIG. 1 or FIG.
  • the separators 262 and 264 are made of a strip-shaped sheet material having a predetermined width and having a plurality of minute holes.
  • a single layer structure separator or a multilayer structure separator made of a porous polyolefin resin can be used as the separators 262 and 264.
  • the width b1 of the negative electrode active material layer 243 is slightly wider than the width a1 of the positive electrode active material layer 223.
  • the widths c1 and c2 of the separators 262 and 264 are slightly wider than the width b1 of the negative electrode active material layer 243 (c1, c2>b1> a1).
  • the separators 262 and 264 are made of sheet-like members.
  • the separators 262 and 264 may be members that insulate the positive electrode active material layer 223 and the negative electrode active material layer 243 and allow the electrolyte to move. Therefore, it is not limited to a sheet-like member.
  • the separators 262 and 264 may be formed of a layer of insulating particles formed on the surface of the positive electrode active material layer 223 or the negative electrode active material layer 243, for example, instead of the sheet-like member.
  • the particles having insulating properties inorganic fillers having insulating properties (for example, fillers such as metal oxides and metal hydroxides) or resin particles having insulating properties (for example, particles such as polyethylene and polypropylene). ).
  • the battery case 300 is a so-called square battery case, and includes a container body 320 and a lid 340.
  • the container main body 320 has a bottomed rectangular tube shape and is a flat box-shaped container having one side surface (upper surface) opened.
  • the lid 340 is a member that is attached to the opening (opening on the upper surface) of the container body 320 and closes the opening.
  • the battery case 300 has a flat rectangular internal space as a space for accommodating the wound electrode body 200. Further, as shown in FIG. 1, the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200.
  • the battery case 300 includes a bottomed rectangular tubular container body 320 and a lid 340 that closes the opening of the container body 320. Electrode terminals 420 and 440 are attached to the lid 340 of the battery case 300. The electrode terminals 420 and 440 pass through the battery case 300 (lid 340) and come out of the battery case 300.
  • the lid 340 is provided with a liquid injection hole 350 and a safety valve 360.
  • the wound electrode body 200 is flatly pushed and bent in one direction orthogonal to the winding axis WL.
  • the uncoated part 222 of the positive electrode current collector 221 and the uncoated part 242 of the negative electrode current collector 241 are spirally exposed on both sides of the separators 262 and 264, respectively.
  • the intermediate portions 224 and 244 of the uncoated portions 222 and 242 are gathered together and welded to the tip portions 420 a and 440 a of the electrode terminals 420 and 440.
  • ultrasonic welding is used for welding the electrode terminal 420 and the positive electrode current collector 221 due to the difference in materials.
  • FIG. 6 is a side view showing a welded portion between the intermediate portion 224 (244) of the uncoated portion 222 (242) of the wound electrode body 200 and the electrode terminal 420 (440), and VI in FIG. It is -VI sectional drawing.
  • the wound electrode body 200 is attached to the electrode terminals 420 and 440 fixed to the lid body 340 in a state where the wound electrode body 200 is flatly pushed and bent.
  • the wound electrode body 200 is accommodated in a flat internal space of the container body 320 as shown in FIG.
  • the container body 320 is closed by the lid 340 after the wound electrode body 200 is accommodated.
  • the joint 322 (see FIG. 1) between the lid 340 and the container main body 320 is welded and sealed, for example, by laser welding.
  • the wound electrode body 200 is positioned in the battery case 300 by the electrode terminals 420 and 440 fixed to the lid 340 (battery case 300).
  • an electrolytic solution is injected into the battery case 300 from a liquid injection hole 350 provided in the lid 340.
  • a so-called non-aqueous electrolytic solution that does not use water as a solvent is used.
  • an electrolytic solution in which LiPF 6 is contained at a concentration of about 1 mol / liter in a mixed solvent of ethylene carbonate and diethyl carbonate (for example, a mixed solvent having a volume ratio of about 1: 1) is used. Yes.
  • a metal sealing cap 352 is attached (for example, welded) to the liquid injection hole 350 to seal the battery case 300.
  • the electrolytic solution is not limited to the electrolytic solution exemplified here.
  • non-aqueous electrolytes conventionally used for lithium ion secondary batteries can be used as appropriate.
  • the positive electrode active material layer 223 has minute gaps 225 that should also be referred to as cavities, for example, between the positive electrode active material particles 610 and the conductive material 620 (see FIG. 4).
  • An electrolytic solution (not shown) can penetrate into the minute gaps of the positive electrode active material layer 223.
  • the negative electrode active material layer 243 has minute gaps 245 that should also be referred to as cavities, for example, between the particles of the negative electrode active material 710 (see FIG. 5).
  • the gaps 225 and 245 are appropriately referred to as “holes”.
  • the wound electrode body 200 has uncoated portions 222 and 242 spirally wound on both sides along the winding axis WL.
  • the electrolytic solution can permeate from the gaps between the uncoated portions 222 and 242. For this reason, in the lithium ion secondary battery 100, the electrolytic solution is immersed in the positive electrode active material layer 223 and the negative electrode active material layer 243.
  • the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200 deformed flat.
  • gaps 310 and 312 are provided between the wound electrode body 200 and the battery case 300.
  • the gaps 310 and 312 serve as a gas escape path.
  • the abnormally generated gas moves toward the safety valve 360 through the gaps 310 and 312 between the wound electrode body 200 and the battery case 300 on both sides of the wound electrode body 200, and from the safety valve 360 to the battery case 300. Exhausted outside.
  • the positive electrode current collector 221 and the negative electrode current collector 241 are electrically connected to an external device through electrode terminals 420 and 440 that penetrate the battery case 300.
  • the operation of the lithium ion secondary battery 100 during charging and discharging will be described.
  • FIG. 7 schematically shows the state of the lithium ion secondary battery 100 during charging.
  • the electrode terminals 420 and 440 (see FIG. 1) of the lithium ion secondary battery 100 are connected to the charger 290. Due to the action of the charger 290, lithium ions (Li) are released from the positive electrode active material in the positive electrode active material layer 223 to the electrolytic solution 280 during charging. In addition, charges are released from the positive electrode active material layer 223. The discharged electric charge is sent to the positive electrode current collector 221 through a conductive material (not shown), and further sent to the negative electrode 240 through the charger 290. In the negative electrode 240, charges are stored, and lithium ions (Li) in the electrolyte solution 280 are absorbed and stored in the negative electrode active material in the negative electrode active material layer 243.
  • FIG. 8 schematically shows a state of the lithium ion secondary battery 100 during discharging.
  • charges are sent from the negative electrode sheet 240 to the positive electrode sheet 220, and lithium ions stored in the negative electrode active material layer 243 are released to the electrolyte solution 280.
  • lithium ions in the electrolytic solution 280 are taken into the positive electrode active material in the positive electrode active material layer 223.
  • lithium ions pass between the positive electrode active material layer 223 and the negative electrode active material layer 243 through the electrolytic solution 280.
  • electric charge is sent from the positive electrode active material to the positive electrode current collector 221 through the conductive material.
  • the charge is returned from the positive electrode current collector 221 to the positive electrode active material through the conductive material.
  • the above shows an example of a lithium ion secondary battery.
  • the lithium ion secondary battery is not limited to the above form.
  • an electrode sheet in which an electrode mixture is applied to a metal foil is used in various other battery forms.
  • a cylindrical battery or a laminate battery is known as another battery type.
  • a cylindrical battery is a battery in which a wound electrode body is accommodated in a cylindrical battery case.
  • a laminate type battery is a battery in which an electrode body in which a positive electrode sheet and a negative electrode sheet are stacked with a separator interposed therebetween is housed in a laminate case.
  • lithium ion secondary battery according to an embodiment of the present invention will be described. Since the basic structure of the lithium ion secondary battery described here is the same as that of the lithium ion secondary battery 100 described above, the lithium ion secondary battery will be described with reference to the lithium ion secondary battery 100 described above as appropriate. .
  • the lithium ion secondary battery 100 includes the positive electrode current collector 221 and the porous positive electrode active material layer 223 as shown in FIG.
  • the positive electrode active material layer 223 is held by a positive electrode current collector 221 and includes positive electrode active material particles 610 (positive electrode active material), a conductive material 620, and a binder 630.
  • the negative electrode active material layer 243 includes negative electrode active material particles 710 held by a negative electrode current collector 241 and made of a graphite material.
  • the density of the positive electrode active material layer 223 and the density of the negative electrode active material layer 243 are reduced, so that a space through which the electrolyte solution permeates the positive electrode active material layer 223 and the negative electrode active material layer 243 is formed. can get. Therefore, input and output of lithium ions can be smoothly performed between the positive electrode active material particles 610 and the electrolytic solution, and the negative electrode active material particles 710 and the electrolytic solution, respectively. For this reason, the high rate characteristic of the lithium ion secondary battery 100 can be improved by reducing the density of the positive electrode active material layer 223 and the density of the negative electrode active material layer 243.
  • the present inventor believes that it is appropriate to lower the density of the positive electrode active material layer 223 and the density of the negative electrode active material layer 243 respectively for a hybrid vehicle or an electric vehicle that requires a high output during a sudden start or the like. ing.
  • the density of the negative electrode active material layer 243 increases to some extent, the capacity retention rate after storage in a high temperature environment (about 60 ° C.) may be reduced.
  • the inventors infer that this is caused by cracks in the negative electrode active material particles 710 and the formation of a passive film at the interface where the negative electrode active material particles 710 absorb and adsorb lithium ions.
  • the present inventor should adjust the density of the positive electrode active material layer 223 and the density of the negative electrode active material layer 243 to be somewhat low. thinking.
  • the lithium ion secondary battery 100 is in a low temperature environment (for example, about ⁇ 30 ° C.) and has a low charge state. It was newly found that the output tends to decrease at (SOC of about 27%).
  • the present inventor tends to deteriorate the output characteristics at a low temperature of about ⁇ 30 ° C. Further, in the low SOC region, the Li ion concentration of the active material is high in the positive electrode active material layer 223, and the Li ion concentration is low in the negative electrode active material layer 243, so that ion diffusion tends to be slow during discharge, and output characteristics tend to be lowered. I think it will be. In addition, when the density of the positive electrode active material layer 223 decreases, the particles in the positive electrode active material layer 223 become sparse.
  • the density of the positive electrode active material layer 223 becomes lower, the number of contacts between the positive electrode active material particles and the conductive material decreases, and the conductive characteristics of the positive electrode active material layer 223 tend to deteriorate.
  • the lower the density of the negative electrode active material layer 243 the smaller the irreversible capacity in the negative electrode, and the lower the positive electrode potential in the low SOC region. The present inventor believes that these points are factors that deteriorate the output characteristics of the lithium ion secondary battery in a low temperature environment of about ⁇ 30 ° C. and in a low SOC region.
  • SOC means the state of charge (State Of Charge), and unless otherwise specified, means the state of charge based on the voltage range in which the battery is normally used.
  • OCV open circuit voltage
  • the state of charge was evaluated based on the range.
  • low SOC is a state of charge of approximately 30% or less of SOC, and approximately 28% to 20% of SOC is assumed to be a low state of charge in a practical range.
  • the output decreases in a low temperature environment of about ⁇ 30 ° C. and a low charge state of about 27% SOC.
  • reducing the density of the positive electrode active material layer 223 and the density of the negative electrode active material layer 243 is a low temperature environment of about ⁇ 30 ° C. and a temperature environment other than a low charge state of about 27% SOC. This is necessary for improving the high-rate output characteristics of the lithium ion secondary battery 100 in the charged state. Furthermore, there may be an event that the capacity deteriorates when stored in a high temperature environment.
  • the density of the positive electrode active material layer 223 and the density of the negative electrode active material layer 243 are appropriately managed, and the output characteristics at a high rate of the lithium ion secondary battery 100 are maintained. I want to ensure the required output.
  • the inventor devised the positive electrode active material particles 610 and found an appropriate range for the density of the positive electrode active material layer 223 and the density of the negative electrode active material layer 243.
  • FIG. 9 is a cross-sectional SEM image of the positive electrode active material particles 610 used in the lithium ion secondary battery 100 according to an embodiment of the present invention.
  • the positive electrode active material particles 610 include a shell portion 612 made of a lithium transition metal oxide, and a hollow portion 614 formed inside the shell portion 612. , And a through hole 616 penetrating the shell portion 612.
  • a portion corresponding to the through hole 616 of the positive electrode active material particle 610 in the inner side surface 612 a of the shell portion 612 is not included in the inner side surface 612 a of the shell portion 612.
  • the through hole 616 is not included in the hollow portion 614 of the positive electrode active material particle 610. That is, the positive electrode active material particles 610 used in the lithium ion secondary battery 100 according to an embodiment of the present invention have a hollow structure (“perforated hollow structure”) having a clear hollow portion 614 as shown in FIG. which is also clearly distinguished from solid particles having no hollow portion 614.
  • the “hollow structure positive electrode active material” refers to a positive electrode active material in which the proportion of the hollow portion in the apparent cross-sectional area of the active material (particle porosity) is 5% or more.
  • the cross-sectional SEM image of the positive electrode active material layer 223 may be evaluated in a cross section cut at random positions, and may be evaluated by an approximate average value (arithmetic average value) of the positive electrode active material layer 223. At this time, it is advisable to evaluate hollow portions that are gathered to some extent. In addition, when there are a plurality of hollow portions that are gathered to some extent, the total of the plurality of hollow portions may be evaluated. Further, fine pores (voids) that are less than 5% of the apparent volume may be ignored.
  • the positive electrode active material particles 610 used here do not simply have to have pores in the particles.
  • the porous particles having a plurality of fine pores (voids) manufactured by a spray baking method also referred to as a spray-drying method
  • voids are clearly different depending on the presence or absence of such collective hollow portions 614.
  • the positive electrode active material particles 610 may have a relatively large hollow portion 614 as shown in FIG. A through hole 616 is formed in the shell portion 612 that forms the hollow portion 614.
  • the ratio of the hollow portion 614 in the apparent cross-sectional area of the positive electrode active material particles 610 is 15% or more, more preferably 20% or more, and further preferably 23% or more. It is good to be. Note that the ratio of the hollow portion 614 to the apparent cross-sectional area of the positive electrode active material particles 610 may be evaluated in the average of the positive electrode active material layer 223.
  • the apparent volume of the particles becomes larger even with particles having the same weight as compared with solid particles (having no hollow part).
  • the perforated hollow structure has a space inside the positive electrode active material particles 610, even when the density of the positive electrode active material layer 223 is the same, the space (void) outside the positive electrode active material particles 610 becomes narrow.
  • the positive electrode active material layer 223 includes the conductive material 620 more densely outside the positive electrode active material particles 610 even if the proportion of the conductive material 620 is approximately the same. Further, the number of binders responsible for adhesion between the positive electrode active material particles 610 can be reduced.
  • the electroconductivity in the positive electrode active material layer 223 is good, and the diffusibility of the electrolyte solution (lithium ion) in the positive electrode active material layer 223 is good. Thereby, the output characteristic of the positive electrode active material layer 223 is remarkably improved.
  • the thickness of the shell 612 at an arbitrary position on the inner surface of the shell 612 is changed from the arbitrary position on the inner surface of the shell 612 to the shell 612.
  • the positive electrode active material particles 610 may have an average thickness of the positive electrode active material layer 223 such that the thickness of the shell portion 612 is 3 ⁇ m or less, more preferably 2.2 ⁇ m or less.
  • the shell part 612 of the positive electrode active material particle 610 is as thin as 3 ⁇ m or less, the lithium ion diffusion distance in the shell part 612 (in the positive electrode active material particle 610) is short, and the lithium ion diffusibility is low. Good and extremely low resistance lithium ion secondary battery 100 can be obtained.
  • the shell part 612 of the positive electrode active material particles 610 is as thin as 2.2 ⁇ m or less, the above effects can be obtained more remarkably.
  • the above-described carbon-based particles may be employed.
  • natural graphite particles or artificial graphite particles and more preferably amorphous particles.
  • Natural graphite particles that are at least partially coated (coated) with a carbon material are used.
  • the negative electrode active material layer 243 has more voids, so that the diffusibility of the electrolytic solution (lithium ions) in the negative electrode active material layer 243 is improved.
  • this negative electrode active material particle 710 and electrolyte solution can be enlarged, and the diffusion performance of the lithium ion to the negative electrode active material particle 710 is also improved. Further, by reducing the density of the negative electrode active material layer 243 to some extent, the capacity retention rate can be maintained high even when stored in a high temperature environment of about 60 ° C. That is, when the density of the negative electrode active material layer 243 is high, the capacity retention rate is deteriorated when stored in a high temperature environment of about 60 ° C.
  • the negative electrode active material layer 243 has a high density, so that cracks are observed in the negative electrode active material particles 710, and an SEI film (Solid Electrolyte Interphase) is formed in the cracked portion, so that lithium ions are immobilized. I believe.
  • the density of the negative electrode active material layer 243 is the output density. It is required to have a density necessary for exhibiting the above.
  • FIG. 10 shows a correlation between the density of the positive electrode active material layer 223 and the output (W) of the lithium ion secondary battery at ⁇ 30 ° C. and SOC 27%.
  • the density of the negative electrode active material layer 243 is 1.13 g / cm 3 .
  • the plot of “ ⁇ ” is the case where the positive electrode active material particles 610 having a holed hollow structure are used for the positive electrode active material layer 223, and shows the lithium ion secondary battery 100 according to one embodiment of the present invention. . Further, the plot of “ ⁇ ” indicates the case where the positive electrode active material particles 610 having a solid structure are used for the positive electrode active material layer 223.
  • the plot of “ ⁇ ” indicates that even if the density of the positive electrode active material layer 223 is lowered, the lithium The output (W) at ⁇ 30 ° C. and SOC 27% of the ion secondary battery 100 can be maintained to a certain degree.
  • the plot of “ ⁇ ” indicates that, when the positive electrode active material particles 610 having a solid structure are used for the positive electrode active material layer 223, the density of the positive electrode active material layer 223 decreases.
  • the output (W) at SOC 27% gradually decreases.
  • the output (W) at ⁇ 30 ° C. and SOC 27% of the lithium ion secondary battery is obtained. Remarkably low.
  • the output (W) of a lithium ion secondary battery at ⁇ 30 ° C. and SOC 27% can be maintained high.
  • FIG. 11 shows the correlation between the density of the negative electrode active material layer 243 and the output (W) at ⁇ 30 ° C. and SOC 27%.
  • the density of the positive electrode active material layer 223 is 1.92 g / cm 3 .
  • the plot of “ ⁇ ” is the case where the positive electrode active material particles 610 having a holed hollow structure are used for the positive electrode active material layer 223, and shows the lithium ion secondary battery 100 according to one embodiment of the present invention.
  • the plot of “ ⁇ ” is the case where the positive electrode active material particles 610 having a solid structure are used for the positive electrode active material layer 223.
  • the plot of “ ⁇ ” indicates that even if the density of the negative electrode active material layer 243 is lowered, the lithium The output (W) at ⁇ 30 ° C. and SOC 27% of the ion secondary battery 100 can be maintained to a certain degree.
  • the plot of “ ⁇ ” indicates that, when the positive electrode active material particles 610 having a solid structure are used for the positive electrode active material layer 223, the density of the negative electrode active material layer 243 decreases.
  • the output (W) in% gradually decreases.
  • the output (W) at ⁇ 30 ° C. and SOC 27% of the lithium ion secondary battery is obtained. Remarkably low.
  • the output (W) of a lithium ion secondary battery at ⁇ 30 ° C. and SOC 27% can be maintained high.
  • the composition formula of the composite oxide used as the positive electrode active material particles 610 is as follows for both the hollow and hollow particles and the solid particles.
  • Positive electrode active material particles 610 Li 1.14 Ni 0.34 Co 0.33 Mn 0.33 O 2 ;
  • the positive electrode active material particles 610 the positive electrode active material particles having the above-described composition formula (Li 1.14 Ni 0.34 Co 0.33 Mn 0.33 O 2 ) are illustrated.
  • the positive electrode active material particles of the lithium ion secondary battery according to the embodiment are merely illustrated, and the positive electrode active material particles of the lithium ion secondary battery of the present invention have a special composition (Li 1.14 Ni 0.34 Co).
  • the active material is not limited to 0.33 Mn 0.33 O 2 ).
  • Solid positive electrode active material particles a mixed solution of nickel sulfate, cobalt sulfate, and manganese sulfate is neutralized with sodium hydroxide to obtain Ni 0.34 Co 0.33 Mn 0.33 (OH) 2.
  • a precursor having the basic structure is prepared.
  • the obtained precursor is mixed with lithium carbonate and fired at a temperature of about 800 ° C. to 900 ° C. for about 5 hours to 15 hours in an air atmosphere. Thereby, the solid particles of Li 1.14 Ni 0.34 Co 0.33 Mn 0.33 O 2 can be obtained.
  • the perforated hollow structure has a composition of Li 1.14 Ni 0.34 Co 0.33 Mn 0.33 O 2 as in the case of the solid particles.
  • the ratio of the hollow portion 614 is about 23%, and the thickness of the shell portion 612 is about 2.2 ⁇ m.
  • the positive electrode active material particles are not limited to such a form unless otherwise specified. The method for producing the positive electrode active material particles having the perforated hollow structure will be described in detail later.
  • acetylene black was used as the conductive material
  • PVDF polyvinylidene fluoride
  • positive electrode active material particles 90% by mass
  • acetylene black 8% by mass
  • PVDF 2% by mass
  • NMP N-methyl-2-pyrrolidone
  • This positive electrode paste was applied to both surfaces of a positive electrode current collector (15 ⁇ m aluminum foil) and dried to obtain a positive electrode mixture layer. At this time, the positive electrode paste was applied so that the basis weight of both surfaces after drying (excluding NMP) was 11.2 mg / cm 2 . Further, the density of the positive electrode mixture layer was adjusted by a rolling press.
  • the positive electrode active material layer 223 includes pores (voids) so that the electrolytic solution can penetrate through as described above.
  • the weight of the positive electrode active material layer 223 may be obtained, for example, by cutting the positive electrode sheet 220 in a predetermined area and subtracting the weight of the positive electrode current collector 221 from the cut weight of the positive electrode sheet 220.
  • Weight of positive electrode active material layer 223 (Weight of positive electrode sheet 220)-(Weight of positive electrode current collector 221 included in positive electrode sheet 220);
  • the weight of the positive electrode current collector 221 included in the positive electrode sheet 220 cut out in a predetermined area can be obtained by the product of the volume of the positive electrode current collector 221 and the specific gravity. Further, the thickness of the positive electrode current collector 221 can be measured approximately. As the thickness of the positive electrode current collector 221, the thickness of the metal foil used for the positive electrode current collector 221 may be employed as it is. Further, when the thickness of the positive electrode current collector 221 is known, the volume of the positive electrode current collector 221 included in the positive electrode sheet 220 cut out in a predetermined area can be known. Further, the specific gravity of the metal (here, aluminum (Al)) used for the positive electrode current collector 221 can be roughly understood.
  • the weight of the positive electrode current collector 221 included in the positive electrode sheet 220 cut out in a predetermined area is obtained by the product of the volume of the positive electrode current collector 221 and the specific gravity of the metal used for the positive electrode current collector 221. Can do.
  • the approximate thickness of the positive electrode active material layer 223 is obtained by subtracting the thickness of the positive electrode current collector 221 from the thickness of the positive electrode sheet 220 cut out in a predetermined area.
  • the thickness of the positive electrode sheet 220 is preferably measured at a plurality of locations and approximated by an arithmetic average.
  • the thickness of the positive electrode current collector 221 for example, the thickness of the metal foil used for the positive electrode current collector 221 may be employed as it is.
  • the negative electrode active material particles 710 used for the negative electrode active material layer 243 were natural graphite particles that were at least partially coated (coated) with an amorphous carbon material.
  • mixing and impregnation were performed so that pitch was 4% by mass with respect to 96% by mass of natural graphite powder, and firing was performed at 1000 ° C. to 1300 ° C. for 10 hours in an inert atmosphere.
  • the specific surface area by the average particle diameter D50 of about 8 [mu] m ⁇ 11 [mu] m to obtain a negative electrode active material particles of about 3.5m 2 /g ⁇ 5.5m 2 / g.
  • the negative electrode active material particles are not limited to such a form unless otherwise specified.
  • CMC carboxymethylcellulose
  • SBR styrene-butadiene rubber
  • the negative electrode active material layer 243 includes pores (voids) so that the electrolytic solution can penetrate.
  • the density B of the negative electrode active material layer 243 is evaluated as an apparent density.
  • the density B of the negative electrode active material layer 243 can be obtained by dividing the weight of the negative electrode active material layer 243 by the volume (apparent volume) of the negative electrode active material layer 243 including voids.
  • Density B of negative electrode active material layer 243 (Weight of negative electrode active material layer 243) / (volume of negative electrode active material layer 243 including voids);
  • the weight of the negative electrode active material layer 243 may be obtained by cutting the negative electrode sheet 240 in a predetermined area and subtracting the weight of the negative electrode current collector 241 from the weight of the cut negative electrode sheet 240.
  • Weight of negative electrode active material layer 243 (Weight of negative electrode sheet 240)-(Weight of negative electrode current collector 241 included in negative electrode sheet 240);
  • the weight of the negative electrode current collector 241 included in the negative electrode sheet 240 cut out in a predetermined area can be obtained by the product of the volume of the negative electrode current collector 241 and the specific gravity. Further, the thickness of the negative electrode current collector 241 can be measured approximately. The thickness of the negative electrode current collector 241 may be the same as the thickness of the metal foil used for the negative electrode current collector 241. When the thickness of the negative electrode current collector 241 is known, the volume of the negative electrode current collector 241 included in the negative electrode sheet 240 cut out in a predetermined area can be known. Further, the specific gravity of the metal (here, copper (Cu)) used for the negative electrode current collector 241 can be roughly understood.
  • Cu copper
  • the weight of the negative electrode current collector 241 included in the negative electrode sheet 240 cut out in a predetermined area is obtained by the product of the volume of the negative electrode current collector 241 and the specific gravity of the metal used for the negative electrode current collector 241. Can do.
  • volume of negative electrode active material layer 243 including voids (apparent volume)>
  • the approximate thickness of the negative electrode active material layer 243 is obtained by subtracting the thickness of the negative electrode current collector 241 from the thickness of the negative electrode sheet 240 cut out in a predetermined area.
  • the wound electrode body 200 (see FIG. 1 and FIG. 2) is constructed with a positive electrode coating width of 90 mm and a length of 3000 mm, and a negative electrode coating width of 102 mm and a length of 3200 mm.
  • the battery case 300 was housed.
  • the number of windings of the wound electrode body 200 (the number of turns in a state of being folded flat) was about 29 turns.
  • the facing capacity ratio between the positive electrode and the negative electrode was adjusted to about 1.5 to 1.9.
  • the electrolytic solution is a mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) at a mass ratio of 3: 3: 4 to dissolve 1.1 mol / L LiPF 6 , Furthermore, an electrolytic solution in which difluorophosphate (LiPO 2 F 2 ) and lithium bisoxalate borate (LiBOB) were dissolved in about 0.025 mol / L each was used.
  • the battery capacity (rated capacity) was 3.8 Ah.
  • the present inventor has made positive electrode active material particles 610 having a perforated hollow structure into positive electrode active material layer 223. It is considered that the density of the positive electrode active material layer 223 and the density of the negative electrode active material layer 243 may be appropriately managed as the active material particles.
  • the inventor sets the density A of the positive electrode active material layer 223 to about 1.80 g / cm 3 ⁇ A ⁇ 2.35 g / cm 3 and the density B of the negative electrode active material layer 243 to about 0.95 g / cm 3. It is proposed that 3 ⁇ B ⁇ 1.25 g / cm 3 .
  • the output can be maintained high even in a low temperature environment of about ⁇ 30 ° C., the capacity deterioration when stored in a high temperature environment of about 60 ° C. can be reduced, and further, the high rate cycle The rise in resistance due to can be kept low.
  • the lithium transition metal oxide which comprises the positive electrode active material particle 610 may contain at least 1 type of metal element (M T ) among Ni, Co, and Mn, for example.
  • the lithium transition metal oxide may contain all of Ni, Co, and Mn as the metal element (M T ).
  • the lithium transition metal oxide constituting the positive electrode active material particles 610, W, at least one metal element (M A) is selected from Cr and Mo may further comprise.
  • Ni contained in the lithium transition metal oxide constituting the positive electrode active material particles 610 is taken as 100 mol% of the total molar number m MT of Co and Mn in a molar percentage content m MA of M A is 0 It may be from 0.05 mol% to 1 mol%.
  • a manufacturing method is illustrated about the positive electrode active material particle 610 (perforated hollow particle).
  • the manufacturing method of the positive electrode active material particles 610 includes, for example, a raw material hydroxide generation step, a mixing step, and a firing step.
  • the raw material hydroxide generation step is a step of supplying ammonium ions to the aqueous solution of the transition metal compound to precipitate the transition metal hydroxide particles from the aqueous solution.
  • the aqueous solution contains at least one transition metal element constituting the lithium transition metal oxide.
  • the transition metal hydroxide is grown in a state in which the transition metal hydroxide is precipitated from the aqueous solution and the pH of the aqueous solution is lower than that in the nucleation stage. And a grain growth stage.
  • the mixing step is a step of preparing an unfired mixture by mixing a transition metal hydroxide and a lithium compound.
  • the firing step is a step of firing the mixture to obtain the positive electrode active material particles 610. More preferably, the fired product is crushed and sieved after firing.
  • the perforated hollow active material particles disclosed herein include, for example, at least one of transition metal elements contained in a lithium transition metal oxide constituting the active material particles (preferably other than lithium contained in the oxide). It can be produced by a method in which a hydroxide of the transition metal is precipitated from an aqueous solution containing all of the metal elements under appropriate conditions, and the transition metal hydroxide and a lithium compound are mixed and fired.
  • the method for producing active material particles will be described in detail by taking as an example the case of producing perforated hollow active material particles made of a LiNiCoMn oxide having a layered structure. It is not intended to be limited to perforated hollow active material particles. Further, unless otherwise specified, the positive electrode active material particles are not limited to such a manufacturing method.
  • the method for producing active material particles disclosed herein includes a step of supplying ammonium ions (NH 4 + ) to an aqueous solution of a transition metal compound and precipitating transition metal hydroxide particles from the aqueous solution (raw material water). Oxide generation step).
  • the solvent (aqueous solvent) constituting the aqueous solution is typically water, and may be a mixed solvent containing water as a main component.
  • an organic solvent such as a lower alcohol
  • the aqueous solution of the transition metal compound constitutes the lithium transition metal oxide in accordance with the composition of the lithium transition metal oxide constituting the active material particles as the production target. It contains at least one (preferably all) transition metal elements (here, Ni, Co and Mn).
  • a transition metal solution containing one or more compounds that can supply Ni ions, Co ions, and Mn ions in an aqueous solvent is used.
  • the metal ion source compound sulfates, nitrates, chlorides, and the like of the metals can be appropriately employed.
  • a transition metal solution having a composition in which nickel sulfate, cobalt sulfate and manganese sulfate are dissolved in an aqueous solvent (preferably water) can be preferably used.
  • the NH 4 + may be supplied to the transition metal solution in the form of an aqueous solution (typically an aqueous solution) containing NH 4 + , for example, and supplied by directly blowing ammonia gas into the transition metal solution. These supply methods may be used in combination.
  • An aqueous solution containing NH 4 + can be prepared, for example, by dissolving a compound (ammonium hydroxide, ammonium nitrate, ammonia gas, or the like) that can be an NH 4 + source in an aqueous solvent.
  • NH 4 + is supplied in the form of an aqueous ammonium hydroxide solution (ie, aqueous ammonia).
  • the raw material hydroxide generation step has a pH of 12 or more (typically pH 12 or more and 14 or less, such as pH 12.2 or more and 13 or less) and an NH 4 + concentration of 25 g / L or less (typically 3 to 25 g / L).
  • a step (nucleation step) of depositing a transition metal hydroxide from the transition metal solution under conditions may be included.
  • the pH and NH 4 + concentration can be adjusted by appropriately balancing the usage amounts of the ammonia water and the alkali agent (a compound having an action of tilting the liquid property to alkalinity).
  • the alkaline agent for example, sodium hydroxide, potassium hydroxide and the like can be typically used in the form of an aqueous solution. In this embodiment, an aqueous sodium hydroxide solution is used.
  • the value of pH shall mean pH value on the basis of liquid temperature of 25 degreeC.
  • the transition metal hydroxide nuclei (typically particulate) precipitated in the nucleation stage are further reduced to a pH of less than 12 (typically pH 10 or more and less than 12, preferably pH 10).
  • Step of growing at 11.8 or less (for example, pH 11 or more and 11.8 or less) and NH 4 + concentration of 1 g / L or more, preferably 3 g / L or more (typically 3 to 25 g / L) (particle growth step) can be included.
  • the pH of the particle growth stage is 0.1 or more (typically 0.3 or more, preferably 0.5 or more, for example, about 0.5 to 1.5) lower than the pH of the nucleation stage. It is appropriate to do.
  • the pH and NH 4 + concentration can be adjusted in the same manner as in the nucleation stage.
  • This particle growth stage is performed so as to satisfy the pH and NH 4 + concentration, and preferably at the pH, the NH 4 + concentration is 15 g / L or less (eg, 1 to 15 g / L, typically 3 to 15 g / L), more preferably 10 g / L or less (for example, 1 to 10 g / L, typically 3 to 10 g / L), so that transition metal hydroxides (here, Ni, Co and The precipitation rate of Mn-containing composite hydroxide) is increased, and raw material hydroxide particles suitable for the formation of the perforated hollow active material particles disclosed herein (in other words, a fired product having a perforated hollow structure) is formed.
  • Raw material hydroxide particles can be produced.
  • the NH 4 + concentration may be 7 g / L or less (for example, 1 to 7 g / L, more preferably 3 to 7 g / L).
  • NH 4 + concentration in the particle growth step for example, may be a substantially the same level as NH 4 + concentration in the nucleation stage, may be lower than the NH 4 + concentration in the nucleation stage.
  • the precipitation rate of the transition metal hydroxide is, for example, the transition metal ions contained in the liquid phase of the reaction liquid with respect to the total number of moles of transition metal ions contained in the transition metal solution supplied to the reaction liquid. It can be grasped by examining the transition of the total number of moles (total ion concentration).
  • the temperature of the reaction solution is preferably controlled so as to be a substantially constant temperature (eg, a predetermined temperature ⁇ 1 ° C.) in a range of about 30 ° C. to 60 ° C.
  • the temperature of the reaction solution in the nucleation stage and the particle growth stage may be the same.
  • the total number of moles (total ion concentration) of Ni ions, Co ions and Mn ions contained in the reaction solution is set to, for example, about 0.5 to 2.5 mol / L through the nucleation stage and the particle growth stage.
  • the transition metal solution may be replenished (typically continuously supplied) in accordance with the deposition rate of the transition metal hydroxide so that the total ion concentration is maintained.
  • the amounts of Ni ions, Co ions, and Mn ions contained in the reaction solution correspond to the composition of the active material particles as the target product (that is, the molar ratio of Ni, Co, and Mn in the LiNiCoMn oxide constituting the active material particles). It is preferable to set the quantity ratio.
  • the transition metal hydroxide particles thus produced (here, composite hydroxide particles containing Ni, Co and Mn) are separated from the reaction solution, washed and dried. Then, the transition metal hydroxide particles and the lithium compound are mixed at a desired quantitative ratio to prepare an unfired mixture (mixing step).
  • the quantitative ratio corresponding to the composition of the active material particles as the target that is, the molar ratio of Li, Ni, Co, Mn in the LiNiCoMn oxide constituting the active material particles
  • Li compound and transition metal hydroxide particles are mixed.
  • the lithium compound Li compounds that can be dissolved by heating and become oxides, such as lithium carbonate and lithium hydroxide, can be preferably used.
  • the mixture is fired to obtain active material particles (firing step).
  • This firing step is typically performed in an oxidizing atmosphere (for example, in the air (air atmosphere)).
  • the firing temperature in this firing step can be, for example, 700 ° C. to 1100 ° C.
  • the maximum baking temperature is 800 ° C. or higher (preferably 800 ° C. to 1100 ° C., for example, 800 ° C. to 1050 ° C.). According to the maximum firing temperature within this range, the sintering reaction of the primary particles of the lithium transition metal oxide (preferably Ni-containing Li oxide, here LiNiCoMn oxide) can proceed appropriately.
  • the mixture is calcined at a temperature T1 of 700 ° C. to 900 ° C. (that is, 700 ° C. ⁇ T1 ⁇ 900 ° C., for example, 700 ° C. ⁇ T1 ⁇ 800 ° C., typically 700 ° C. ⁇ T1 ⁇ 800 ° C.).
  • a second firing step, and a result obtained through the first firing step is fired at a temperature T2 of 800 ° C. to 1100 ° C. (that is, 800 ° C. ⁇ T2 ⁇ 1100 ° C., for example, 800 ° C. ⁇ T2 ⁇ 1050 ° C.) And a firing step.
  • T1 and T2 are preferably set so that T1 ⁇ T2.
  • the first firing stage and the second firing stage may be continued (for example, after the mixture is held at the first firing temperature T1, the temperature is subsequently raised to the second firing temperature T2 and kept at the temperature T2).
  • it may be once cooled (for example, cooled to room temperature), and crushed and sieved as necessary, and then subjected to the second firing stage.
  • the first firing stage is a temperature T1 in which the sintering reaction of the target lithium transition metal oxide proceeds and is lower than the melting point and lower than the second firing stage. It can be grasped as a stage for firing.
  • the second firing stage should be understood as a stage in which the sintering reaction of the target lithium transition metal oxide proceeds and the firing is performed at a temperature T2 that is lower than the melting point and higher than the first firing stage. Can do. It is preferable to provide a temperature difference of 50 ° C. or higher (typically 100 ° C. or higher, for example, 150 ° C. or higher) between T1 and T2.
  • the method for producing the positive electrode active material particles 610 includes a raw material hydroxide generation step, a mixing step, and a firing step.
  • the ratio of the hollow portion 614 in the apparent cross-sectional area of the positive electrode active material particles 610 is 15% or more, more preferably 20% or more, still more preferably 23% or more, and the positive electrode active material particles 610.
  • the positive electrode active material particles 610 having a thickness T of 3.0 ⁇ m or less, more preferably 2.2 ⁇ m or less, can be stably obtained. Below, the manufacturing method of the positive electrode active material particle 610 from which this positive electrode active material particle 610 is obtained more stably is demonstrated.
  • the pH or NH 4 + concentration at the stage of depositing the transition metal hydroxide from the transition metal solution (nucleation stage) and the precipitation at the nucleation stage It is preferable to appropriately adjust the pH or NH 4 + concentration in the stage of growing the transition metal hydroxide nucleus (particle growth stage) or the grain growth stage.
  • M1 is a transition metal contained in the transition metal solution.
  • M1 contains Ni.
  • the transition metal (M1) in the transition metal solution in the equilibrium reaction of Reaction 1, the transition metal (M1) in the transition metal solution, ammonia (NH 3 ) supplied to the transition metal solution, a compound of transition metal (M1) and ammonia (NH 3 ) ([ Reaction with M1 (NH 3 ) 6 ] 2+ ) is in equilibrium.
  • the transition metal (M1) in the transition metal solution, the hydroxide ion (OH ⁇ ) supplied to the transition metal solution, and the transition metal hydroxide (M1 (OH) 2 ) The reaction is in equilibrium.
  • the transition metal hydroxide (M1 (OH) 2 ) is likely to precipitate due to the equilibrium reaction of Reaction 2.
  • ammonia in the transition metal solution is suppressed to a small amount, and the equilibrium formula of the reaction 1 proceeds to the left side.
  • the transition metal hydroxide (M1 (OH) 2 ) is likely to precipitate.
  • the transition metal hydroxide (M1 (OH) 2 ) is easily precipitated by reducing the pH in the transition metal solution while suppressing the ammonia in the transition metal solution to be small.
  • the pH is maintained to some extent while keeping the solubility of ammonia (NH 3 ) in the transition metal solution low.
  • the precipitation rate of transition metal hydroxide (M1 (OH) 2 ) can be suppressed appropriately.
  • the density inside the particles of the transition metal hydroxide that becomes the precursor can be lowered.
  • the pH is decreased while keeping the solubility of ammonia (NH 3 ) in the transition metal solution low.
  • the precipitation rate of the transition metal hydroxide (M1 (OH) 2 ) is increased in the nucleation stage. For this reason, the density in the vicinity of the outer surface of the transition metal hydroxide particles that become the precursor is higher than the density inside the transition metal hydroxide particles.
  • the density of the transition metal hydroxide is lowered inside the particle, and the vicinity of the outer surface. In the part, the density of the transition metal hydroxide can be increased.
  • the pH of the transition metal solution is preferably 12 or more and 13 or less, and the pH of the aqueous solution in the particle growth stage is 11 or more and less than 12.
  • the pH of the transition metal solution in the nucleation stage is preferably decreased by 0.1 or more, more preferably 0.2 or more than in the particle growth stage.
  • the ammonia concentration (ammonium ion concentration) in the particle growth stage is preferably suppressed to a low level of 3 g / L to 10 g / L. This ensures that the deposition rate of the transition metal hydroxide (M1 (OH) 2 ) is faster in the particle growth stage than in the nucleation stage. Then, the density in the vicinity of the outer surface of the transition metal hydroxide particles is more reliably higher than the density inside the transition metal hydroxide particles.
  • the hollow part 614 of the positive electrode active material particles 610 can be enlarged by taking a required time in the nucleation stage.
  • the shell 612 of the positive electrode active material particles 610 can be thinned by increasing the deposition rate of the transition metal hydroxide in the particle growth stage and shortening the time of the particle growth stage.
  • the ammonium ion concentration of the transition metal solution in the nucleation stage is preferably 20 g / L or less, and the ammonium ion concentration of the transition metal solution in the particle growth stage is 10 g / L or less.
  • the ammonium ion concentration of the transition metal solution in the nucleation stage and the particle growth stage may be, for example, 3 g / L or more.
  • the mixing step a transition metal hydroxide and a lithium compound are mixed to prepare an unfired mixture.
  • the firing step the mixture is fired to obtain the positive electrode active material particles 610.
  • the transition metal hydroxide particles that are the precursors of the positive electrode active material particles 610 have a low internal density and a high density in the vicinity of the outer surface.
  • sintering is performed so that the inside of the transition metal hydroxide particles as the precursor is taken into the vicinity of the outer surface where the density is high and the mechanical strength is high. For this reason, the shell part 612 of the positive electrode active material particles 610 is formed, and a large hollow part 614 is formed.
  • a through-hole 616 that penetrates the shell 612 is formed in a part of the shell 612.
  • positive electrode active material particles 610 having a shell portion 612, a hollow portion 614, and a through hole 616 are formed.
  • the fired product is crushed and sieved after the firing step to adjust the particle size of the positive electrode active material particles 610.
  • the positive electrode active material particles 610 thus manufactured pass through the thin shell portion 612, the wide hollow portion 614, and the shell portion 612, and the hollow portion 614 of the positive electrode active material particles 610 and the outside of the shell portion 612 are spaced from each other. Through-holes 616 that are continuous with each other.
  • Such positive electrode active material particles 610 as a preferred embodiment, the BET specific surface area of the positive electrode active material particles 610 as described above, it is possible to approximately 0.3m 2 /g ⁇ 2.2m about 2 / g.
  • the BET specific surface area of the positive electrode active material particles 610 is more preferably about 0.5 m 2 / g or more, and still more preferably about 0.8 m 2 / g or more. Further, the BET specific surface area of the positive electrode active material particles 610 may be, for example, about 1.9 m 2 / g or less, and more preferably 1.5 m 2 / g or less.
  • the raw material hydroxide generation step is divided into a nucleation stage and a particle growth stage as described above, and the density of the shell portion 612 is high. For this reason, the positive electrode active material particles 610 that are harder and have higher form stability than other manufacturing methods (for example, spray baking manufacturing method (also referred to as spray drying manufacturing method)) can be obtained.
  • spray baking manufacturing method also referred to as spray drying manufacturing method
  • the positive electrode active material particles 610 have, for example, an average hardness of 0.5 MPa or more in a dynamic hardness measurement performed using a flat diamond indenter with a diameter of 50 ⁇ m under a load speed of 0.5 mN / second to 3 mN / second. .
  • the average hardness of the positive electrode active material particles 610 is approximately 0.5 MPa or more.
  • the average hardness refers to a value obtained by dynamic microhardness measurement performed using a flat diamond indenter having a diameter of 50 ⁇ m and under a load speed of 0.5 mN / sec to 3 mN / sec.
  • a microhardness meter, MCT-W500 manufactured by Shimadzu Corporation can be used.
  • the positive electrode active material particles 610 have a hollow structure and high average hardness (in other words, high shape maintainability). Such positive electrode active material particles 610 may provide a battery that stably exhibits higher performance. For this reason, for example, a lithium ion secondary battery having a low internal resistance (in other words, good output characteristics) and a small increase in resistance due to a charge / discharge cycle (particularly, a charge / discharge cycle including a discharge at a high rate) is obtained. Very suitable for construction.
  • the transition metal solution contains nickel.
  • the transition metal hydroxide when the transition metal hydroxide is precipitated in the nucleation stage and grain growth stage, it is in the form of secondary particles in which a plurality of fine primary particles shaped like rice grains are aggregated. , Transition metal hydroxide particles are produced. Further, in the temperature range at the time of firing, crystals grow while substantially maintaining the shape of the primary particles of the transition metal hydroxide.
  • the transition metal solution does not contain nickel at all and contains cobalt and particles of lithium cobalt oxide (LiCoO 2 ) are generated by firing, the shape of the primary particles cannot be maintained. In addition, the entire particle is sintered. For this reason, it is difficult to obtain the positive electrode active material particles 610 (see FIG. 9) having the large hollow portions 614 as described above.
  • LiCoO 2 lithium cobalt oxide
  • the lithium transition metal oxide is preferably a compound having a layered structure containing nickel as a constituent element.
  • nickel transition metal hydroxide particles (precursor particles) having a low internal density and a high density in the vicinity of the outer surface can be formed.
  • crystals can be grown while generally maintaining the shape of the primary particles in the firing step.
  • the positive electrode active material particle 610 (refer FIG. 9) which has the shell part 612, the hollow part 614, and the through-hole 616 can be produced.
  • the ratio (composition ratio) of nickel in the transition metal contained in the positive electrode active material particles 610 is about 0.1% or more, more preferably 0.25% or more.
  • the lithium transition metal oxide may be a compound having a layered structure containing nickel, cobalt, and manganese as constituent elements.
  • the lithium transition metal oxide may be a compound having a layer structure including Li 1 + x Ni y Co z Mn (1-yz) M ⁇ O 2 .
  • M is an additive, and 0 ⁇ ⁇ ⁇ 0.03 .
  • M may be at least one additive selected from the group consisting of Zr, W, Mg, Ca, Na, Fe, Cr, Zn, Si, Sn, Al, B, and F.
  • Such a lithium transition metal oxide constitutes a compound having a layered structure and can hold lithium ions between layers. Further, it is particularly suitable for manufacturing the positive electrode active material particles 610 having the shell portion 612, the hollow portion 614, and the through hole 616 described above.
  • the ratio of the hollow part 614 in the apparent cross-sectional area of the positive electrode active material particles 610 is 15% or more, preferably 23% or more, and the ratio of the hollow parts 614 is large, and the positive electrode active material particles 610
  • the positive electrode active material particles 610 can be stably obtained with a thickness T of the shell portion 612 of 3.0 ⁇ m or less, preferably 2.2 ⁇ m or less.
  • the hollow part 614 of the positive electrode active material particles 610 is large, and the electrolytic solution 280 (see FIGS. 7 and 8) sufficiently penetrates to the hollow part 614 of the positive electrode active material particles 610 in the positive electrode active material layer 223. It becomes like this. Furthermore, since the shell 612 of the positive electrode active material particles 610 is thin, the diffusion of lithium ions into the shell 612 (inside the active material) is fast. For this reason, the lithium ion secondary battery 100 can stably exhibit a high output even with a low charge amount.
  • the thickness of the shell portion 612 is, for example, 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the required mechanical strength can be obtained for the positive electrode active material particles 610.
  • the positive electrode active material particles 610 expand and contract as the release and absorption of lithium ions are repeated. Sufficient strength can be secured against such expansion and contraction. For this reason, the durability of the positive electrode active material particles 610 is improved, and the performance of the lithium ion secondary battery 100 can be stabilized for a long time.
  • the average opening width of the through holes 616 is preferably 0.01 ⁇ m or more.
  • the opening width of the through hole 616 is a passing length in the narrowest part in the path from the outside of the positive electrode active material particle 610 to the hollow part 614.
  • the electrolyte 280 see FIG. 7 or FIG. 8 can sufficiently enter the hollow portion 614 from the outside through the through-holes 616. Thereby, the effect which improves the battery performance of the lithium ion secondary battery 100 can be exhibited more appropriately.
  • the thin shell portion 612, the wide hollow portion 614, and the through-hole 616 having a wide opening width such as the positive electrode active material particles 610 are usually, for example, other manufacturing methods (for example, spray baking manufacturing method (also referred to as spray drying manufacturing method). ))) Is not realized.
  • the average value of the opening sizes is, for example, the opening size of a part or all of the through holes 616 of the positive electrode active material particles 610 with respect to at least 10 positive electrode active material particles 610. It can be obtained by grasping and calculating their arithmetic average value.
  • the through hole 616 only needs to be suitable for the electrolytic solution 280 to be immersed in the hollow portion 614, and the average width of the positive electrode active material layer 223 has an opening width of the through hole 616 of about 2.0 ⁇ m or less. Is preferably about 1.8 ⁇ m or less.
  • the opening width of the through hole 616 is about 0.01 ⁇ m or more, more preferably about 0.1 ⁇ m or more, on the average of the positive electrode active material layer 223.
  • the positive electrode active material particles 610 have the shell part 612, the hollow part 614, and the through hole 616 as described above. Furthermore, the present inventor has proposed that the major axis L1 of the primary particles 800 of the positive electrode active material particles 610 be 0.8 ⁇ m or less, for example, 0.7 ⁇ m or less. By using the positive electrode active material particles 610, the output of the lithium ion secondary battery 100 can be improved particularly in a low SOC region.
  • the major axis L1 of the primary particles 800 of the positive electrode active material particles 610 depends on the firing temperature and the firing time. The present inventor believes that it is appropriate to perform firing at a firing temperature of about 750 ° C. to 950 ° C. for a firing time of 5 hours to 15 hours.
  • the major axis L1 of the primary particles 800 of the positive electrode active material particles 610 may vary depending on the amount of Li with respect to the transition metal (Me) contained in the positive electrode active material particles 610.
  • the molar ratio (Li / Me) is preferably 1.05 or more, for example, 1.07 or more.
  • the molar ratio (Li / Me) is preferably 1.20 or less, for example, 1.18 or less.
  • tungsten is further added to the positive electrode active material particles 610 in order to make the major axis L1 of the primary particles 800 of the positive electrode active material particles 610 0.8 ⁇ m or less. It is preferable.
  • the major axis L1 of the primary particles 800 of the positive electrode active material particles 610 can be adjusted by the addition amount of tungsten. That is, in order to obtain the positive electrode active material particles 610 having the major axis L1 of the primary particles 800 of 0.8 ⁇ m or less, in the lithium transition metal oxide having a layered structure including nickel, cobalt, and manganese as constituent elements as described above, It is preferable that 0.05 mol% to 2.0 mol% of tungsten is added. The amount of tungsten added may be, for example, 0.1 mol% or more, more preferably 0.2 mol% or more with respect to the transition metal.
  • the amount of tungsten added may be, for example, 1.5 mol% or less, or 1.0 mol% or less. Thereby, it becomes easy to make the major axis L1 of the primary particles 800 of the positive electrode active material particles 610 0.8 ⁇ m or less.
  • Table 1 shows the primary particles 800 of the positive electrode active material particles 610 with respect to a plurality of samples of evaluation batteries that are substantially different only in the density of the positive electrode active material particles 610, the positive electrode active material layer 223, and the negative electrode active material layer 243.
  • the major axis L1 the thickness of the shell 612, the particle porosity (cross-sectional area ratio), -30 ° C, output at 27% SOC (W), high rate cycle resistance increase rate, capacity retention rate after high temperature storage (%), respectively The measurement results are shown.
  • Primary particles 800 (see FIG. 13) of the lithium transition metal oxide have the positive electrode active material particles 610 as secondary particles, the positive electrode active material particles 610 as the secondary particles are formed, and the appearance is apparent. Judging from the geometric form, the primary particle 800 is assumed to be a particle form considered as a unit particle (ultimate particle). Note that the primary particle 800 is an aggregate of crystallites of a lithium transition metal oxide.
  • FIG. 12 is an SEM image of a cross section obtained by bending and splitting the positive electrode active material layer 223.
  • FIG. 13 is an image obtained by enlarging the positive electrode active material particles 610 from the SEM image of the cross section.
  • the primary particles 800 can be observed based on a cross-sectional SEM image obtained by bending and breaking the positive electrode active material layer 223.
  • the primary particles 800 may be observed based on an electron micrograph of the positive electrode active material particles 610, an SEM image of the particle surfaces of the positive electrode active material particles 610, and the like.
  • an SEM image of a cross section obtained by dividing the positive electrode active material layer 223, an electron micrograph of the positive electrode active material particles 610, an SEM image of the particle surface of the positive electrode active material particles 610, and the like are, for example, Hitachi ultra-high resolution electrolytic emission type It can be obtained with a scanning microscope S5500.
  • the major axis L1 of the primary particle 800 can be measured based on the positive electrode active material particles 610 observed by the SEM image of the cross section obtained by bending and splitting the positive electrode active material layer 223, for example, as shown in FIG. It is. Alternatively, the measurement may be based on an electron micrograph of the positive electrode active material particles 610 or an SEM image of the particle surface of the positive electrode active material particles 610.
  • the particle surface of the positive electrode active material particle 610 that is a secondary particle
  • the primary particles 800 suitable for specifying the major axis L1 of the primary particles 800 may be specified from the SEM images.
  • a plurality of primary particles 800 are shown in the SEM image of the particle surface of the positive electrode active material particles 610 that are secondary particles.
  • the primary particles 800 may be arranged in descending order of the area, and a plurality of primary particles 800 having a large area may be extracted.
  • the SEM image of the particle surface it is possible to extract the primary particles 800 in which the outer shape along the longest major axis L1 is reflected.
  • the length of the longest long axis is determined in the extracted primary particle 800, and this is made into the major axis L1 of the primary particle 800.
  • the length of the shortest axis on the axis orthogonal to the major axis is defined as the minor diameter L2 of the primary particle 800.
  • the positive electrode active material particles 610 are referred to as the major axis L1 and the minor axis L2 of the primary particles 800, they are evaluated by an arithmetic average of a plurality of primary particles 800 included in the single positive electrode active material particle 610. Further, in the positive electrode active material layer 223, the arithmetic average of the plurality of positive electrode active material particles 610 included in the positive electrode active material layer 223 is further evaluated.
  • the thickness of the shell 612 corresponds to the inner side surface of the shell 612 (however, corresponding to the through hole 616 in the cross-sectional SEM image of the positive electrode active material or the material containing the active material particles).
  • the average value of the shortest distance T (k) from an arbitrary position k to the outer surface of the shell 612 is indicated. More specifically, the shortest distance T (k) may be obtained for a plurality of positions on the inner surface of the shell 612, and the arithmetic average value thereof may be calculated.
  • the thickness T of the shell 612 converges to an average value, and the thickness of the shell 612 can be appropriately evaluated.
  • the thickness of the shell portion 612 of the positive electrode active material particles 610 may be evaluated by, for example, an approximate average (arithmetic average value) of the positive electrode active material layer 223. For example, based on a plurality of cross-sectional SEM images of the positive electrode active material layer 223, the thickness of the shell portion 612 of the positive electrode active material particles 610 may be obtained and the average value (arithmetic average value) may be obtained.
  • the “particle porosity” refers to the ratio of the hollow portion in the apparent cross-sectional area of the active material in the average of the cross sections obtained by cutting the positive electrode active material at random positions. This ratio can be grasped
  • SEM scanning electron microscope
  • Such a cross-sectional SEM image is obtained, for example, by cutting a sample obtained by solidifying positive electrode active material particles or a material containing the active material particles with an appropriate resin (preferably a thermosetting resin), and observing the cross-section by SEM. Can do.
  • the shell part, the hollow part, and the through-hole of the active material particle can be distinguished by the difference in color tone or shade.
  • the ratio of the area CV occupied by the hollow portion of the active material particles to the apparent cross-sectional area CT occupied by the active material particles (CV / CT).
  • the apparent cross-sectional area CT occupied by the active material particles refers to the cross-sectional area occupied by the shell part, the hollow part, and the through hole of the active material particles.
  • the particle porosity may be evaluated by an average value of the positive electrode active material layer 223. Therefore, the average value (arithmetic average value) of the ratio (CV / CT) described above may be obtained based on a plurality of cross-sectional SEM images of the positive electrode active material layer 223.
  • the rated capacity is measured by the following procedures 1 to 3 at a temperature of 25 ° C. and a voltage range of 3.0 V to 4.1 V for the battery for the evaluation test after the conditioning process.
  • Procedure 1 After reaching 3.0V by constant current discharge of 1C, discharge by constant voltage discharge for 2 hours, and then rest for 10 seconds.
  • Procedure 2 After reaching 4.1 V by constant current charging at 1 C, charge for 2.5 hours by constant voltage charging, and then rest for 10 seconds.
  • Procedure 3 After reaching 3.0 V by constant current discharge at 0.5 C, discharge at constant voltage discharge for 2 hours, and then stop for 10 seconds.
  • Rated capacity The discharge capacity (CCCV discharge capacity) in the discharge from the constant current discharge to the constant voltage discharge in the procedure 3 is defined as the rated capacity. In this evaluation battery, the rated capacity is about 3.8 Ah.
  • the SOC adjustment is performed by the following procedures 1 and 2.
  • the SOC adjustment may be performed after the conditioning process and the measurement of the rated capacity.
  • SOC adjustment is performed in a temperature environment of 25 ° C.
  • Procedure 1 Charging at a constant current of 3V to 1C to obtain a charged state (SOC 60%) of about 60% of the rated capacity.
  • Procedure 2 After procedure 1, charge at constant voltage for 2.5 hours. Thereby, the evaluation battery can be adjusted to a predetermined state of charge.
  • Procedure 1 As the SOC adjustment, the SOC is adjusted to 27% (here, the battery voltage value is 3.553 V) by 1 C constant current charging in a temperature environment of normal temperature (here, 25 ° C.). Next, it charges for 1 hour by constant voltage charge.
  • Procedure 2 [Leave for 6 hours at ⁇ 30 ° C.]: After the above procedure 1, leave the battery adjusted to 27% SOC for 6 hours in a constant temperature bath at ⁇ 30 ° C.
  • Procedure 3 [Constant Watt Discharge]: After Procedure 2 above, discharge at a constant watt (W) in a temperature environment of ⁇ 30 ° C. At this time, the number of seconds from the start of discharge until the voltage reaches 2.0 V is measured.
  • W constant watt
  • Procedure 4 Repeat steps 1 to 3 while changing the constant wattage discharge voltage in procedure 3 under the conditions of 80 to 200 W.
  • the constant wattage discharge voltage of step 3 is increased to 10W while the constant wattage discharge voltage of step 3 is increased by 10W, the first time 80W, the second time 90W, the third time 100W, and so on. Repeat steps 1 to 3 until Here, the constant watt discharge voltage in step 3 is increased by 10 W.
  • the constant wattage discharge voltage in step 3 may be increased by a constant wattage (for example, by 5 W or 15 W), or, for example, from 500 W by a certain wattage (for example, by 5 W) (10W or 15W).
  • Procedure 5 [Calculation of output characteristics]: For example, as shown in FIG. 15, the horizontal axis represents the number of seconds up to 2.0 V measured under the constant watt condition in Procedure 4 above, and the wattage (W ) On the vertical axis, the wattage (W) at 2 seconds is calculated as “-30 ° C., 27% SOC output (W)”.
  • Such output characteristics indicate an output that can be exhibited by the evaluation battery when left in a very low temperature environment of ⁇ 30 ° C. for a predetermined time with a charge amount as low as about 27% SOC. For this reason, the output characteristic 1 indicates that the higher the value of W, the higher the output of the evaluation battery. In addition, the output characteristic 1 indicates that the higher the value of W, the more stable output can be obtained even with a low charge amount of about 27% SOC.
  • FIG. 16 shows a charge / discharge cycle in the characteristic evaluation test.
  • one cycle of the charge / discharge cycle consisting of (I) to (V) will be described.
  • (I) Discharge for 10 seconds at a constant current of 20 C (4.4 A here).
  • (II) Pause for 5 seconds.
  • (III) Charge for 200 seconds at a constant current of 1C.
  • (IV) Pause for 145 seconds.
  • (V) The rate of increase in resistance in the discharge of (I) is measured for each cycle. However, every time one charge / discharge cycle consisting of (I) to (V) is repeated 100 times, the SOC is adjusted to 60% by the SOC adjustment.
  • Capacity maintenance ratio after high temperature storage (%)
  • the capacity maintenance rate (capacity maintenance rate after storage) is obtained by storing the evaluation cell adjusted to a predetermined state of charge in a predetermined environment for a predetermined time, and then discharging capacity (hereinafter referred to as “ It is calculated by the ratio (capacity after storage) / (initial capacity).
  • “capacity after storage” is a discharge capacity measured based on an evaluation cell stored in a temperature environment of 60 ° C. for 30 days after adjusting to SOC 90%.
  • “Capacity maintenance after storage” (capacity after storage) / (initial capacity) ⁇ 100 (%);
  • Sample 1 to Sample 10 shown in Table 1 have a hollow portion with a particle porosity of 15% or more, and the density A of the positive electrode active material layer 223 is 1.85 g / cm 3. ⁇ A ⁇ 2.35 g / cm 3 , and the density B of the negative electrode active material layer is 0.95 g / cm 3 ⁇ B ⁇ 1.25 g / cm 3 .
  • the output (W) at ⁇ 30 ° C. and SOC 27% is considerably high, and the rate of increase in high-rate cycle resistance is also kept low at 1.20 or less, and the capacity retention rate after high-temperature storage (% ) Can be maintained at about 90%.
  • the density A of the positive electrode active material layer 223 is less than 1.75 g / cm 3 , and in particular, the rate of increase in high-rate cycle resistance tends to be as high as about 1.60.
  • the density A of the positive electrode active material layer 223 is 1.80 g / cm 3 or more, and the rate of increase in high-rate cycle resistance is about 1.31, and the increase is mitigated.
  • the density A of the positive electrode active material layer 223 is 2.42 g / cm 3 or more, and in particular, the rate of increase in high-rate cycle resistance tends to be higher than about 1.55. is there.
  • the density A of the positive electrode active material layer 223 is 2.42 g / cm 3 or more, the higher the density A of the positive electrode active material layer 223, the higher the high rate cycle resistance. The rate tends to be high.
  • Sample 21 to sample 31 have positive electrode active material particles 610 with a particle porosity of about 4%, and so-called solid positive electrode active material particles are employed. In this case, it is difficult to satisfactorily obtain all the performance in terms of output (W) at ⁇ 30 ° C., SOC 27%, high rate cycle resistance increase rate, and capacity retention rate (%) after high temperature storage.
  • samples 21 to 23, 27 to 29, etc. tend to be inferior in terms of output (W) at ⁇ 30 ° C. and SOC 27%
  • samples 24-26 tend to increase the rate of increase in high-rate cycle resistance.
  • the rate of increase in high-rate cycle resistance tends to be high
  • the capacity retention rate (%) after high-temperature storage tends to decrease.
  • the particle porosity of the positive electrode active material particles 610 is so-called solid positive electrode active material particles
  • the output (W) at ⁇ 30 ° C. and SOC 27% the high rate cycle resistance increase rate, or Sufficient performance may not be obtained in terms of capacity retention rate (%) after high-temperature storage.
  • the positive electrode active material particles 610 may be positive electrode active material particles having a perforated hollow structure.
  • the density A of the positive electrode active material layer 223 is about 1.80 g / cm 3 ⁇ A, may more preferably at about 1.85g / cm 3 ⁇ A.
  • the density A of the positive electrode active material layer 223 is about A ⁇ 2.35 g / cm 3 , more preferably about A ⁇ 2.30.
  • the density B is approximately 0.95 g / cm 3 ⁇ B of the negative electrode active material layer 243, and more preferably about 1.00 g / cm 3 ⁇ B, may still more preferably at about 1.10 g / cm 3 ⁇ B .
  • the density B is approximately B ⁇ 1.25 g / cm 3 of the negative electrode active material layer 243, may more preferably at approximately B ⁇ 1.22g / cm 3.
  • the output (W) at ⁇ 30 ° C. and SOC 27% is considerably high, the rate of increase in the high-rate cycle resistance is kept low at 1.20 or less, and the capacity retention rate after high-temperature storage (%)
  • the lithium ion secondary battery 100 that can maintain approximately 90% or more can be provided.
  • the average porosity of the positive electrode active material layer may be such that the positive electrode active material particles have a particle porosity of 15% or more.
  • the thickness of the shell at an arbitrary position on the inner surface of the shell is defined as the shortest distance from an arbitrary position on the inner surface of the shell to the outer surface of the shell.
  • the thickness of the shell portion may be 3.0 ⁇ m or less on the average of the positive electrode active material layer.
  • the thickness of the shell portion may be 0.1 ⁇ m or more.
  • the major axis of the primary particles of the lithium transition metal oxide may be 0.8 ⁇ m or less.
  • the major axis of the primary particles of the lithium transition metal oxide may be 0.2 ⁇ m or more.
  • the opening width of the through hole may be 0.01 ⁇ m or more and 2.0 ⁇ m or less in the average of the positive electrode active material layer.
  • the performance of the lithium ion secondary battery is more stable with respect to the output (W) at -30 ° C and SOC 27%, which is considerably high, the rate of increase in high-rate cycle resistance, and the capacity retention rate (%) after high-temperature storage. Can be made.
  • the lithium transition metal oxide may contain at least one metal element of Ni, Co, and Mn.
  • the lithium transition metal oxide may contain Ni, Co, and Mn.
  • the lithium transition metal oxide may be Li 1 + x Ni y Co z Mn (1-yz) M ⁇ O 2 .
  • the lithium transition metal oxide contains W.
  • the W content m MA is 0. .05 mol% to 2 mol% is preferable.
  • the positive electrode active material layer includes, for example, a conductive material and PVDF in addition to the positive electrode active material particles, the positive electrode active material particles are 86% by mass to 94% by mass, and the conductive material is 6% by mass to 10% by mass. % Or less, PVDF may be 1 mass% or more and 4 mass% or less. Moreover, 97 mass% or more and 99 mass% or less of negative electrode active material particles may be sufficient as a negative electrode active material layer, for example.
  • the positive electrode active material particles are supplied with ammonium ions to the aqueous solution of the transition metal compound, and the raw material hydroxide generation step in which the particles of the transition metal hydroxide are precipitated from the aqueous solution.
  • the aqueous solution contains at least one of transition metal elements constituting the lithium transition metal oxide; a mixing step of mixing the transition metal hydroxide and the lithium compound to prepare an unfired mixture; and
  • the positive electrode active material particles may be produced by a production method including a firing step of firing to obtain the active material particles. Thereby, positive electrode active material particles having a perforated hollow structure can be obtained stably.
  • the lithium ion secondary battery 100 according to the embodiment of the present invention has been described.
  • the lithium ion secondary battery 100 according to the embodiment of the present invention is not limited to the above-described form unless particularly limited.
  • the lithium ion secondary battery according to the embodiment of the present invention has a performance with respect to an output (W) at ⁇ 30 ° C. and SOC 27%, a high rate cycle resistance increase rate, and a capacity retention rate (%) after high-temperature storage. Contributes to improvement.
  • the lithium ion secondary battery according to the embodiment of the present invention is particularly a hybrid vehicle having a high level required for these performances, and more particularly a plug-in hybrid vehicle having a high level required for capacity or It is suitable for a secondary battery for a vehicle driving power source that requires a high capacity and a high output, such as a battery for driving an electric vehicle.
  • the lithium ion secondary battery according to the embodiment of the present invention can stably exhibit a high output even with a low charge amount, and can withstand use with a lower charge amount. Therefore, the battery can be used efficiently, and even when the required level of capacity is high, the number of batteries to be used can be reduced and the cost can be reduced. Furthermore, the lithium ion secondary battery according to the embodiment of the present invention can exhibit a high output even in a low temperature environment. Thus, the lithium ion secondary battery 100 according to the embodiment of the present invention is particularly suitable as the vehicle driving battery 1000.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウムイオン二次電池100は、正極活物質粒子610は、層状のリチウム遷移金属酸化物で構成された殻部612と、殻部612の内部に形成された中空部614と、殻部612を貫通した貫通孔616とを有している。正極活物質層223の密度Aが、1.80g/cm≦A≦2.35g/cmであり、負極活物質層243の密度Bが、0.95g/cm≦B≦1.25g/cmである。

Description

リチウムイオン二次電池
 本発明はリチウムイオン二次電池に関する。本明細書において「リチウムイオン二次電池」は、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池である。本明細書において「二次電池」には、繰り返し充電可能な蓄電デバイス一般が含まれる。
 リチウムイオン二次電池は、例えば、特開2008-218248号公報(JP2008-218248A)に開示されている。同文献では、炭素材料を含む負極合剤について、その密度に言及されている。具体的には、同公報には、炭素材料を有する負極合剤の密度が1.4g/cm以上1.7g/cm以下であり、かつ、負極合剤の負極集電体への塗工量が6mg/cm以上8mg/cm以下である、リチウムイオン二次電池が提案されている。同公報によれば、かかる構成によって、負荷特性および入出力特性を向上させたリチウムイオン二次電池が提供される、とされている。
特開2008-218248号公報(JP2008-218248A)
 ところで、いわゆるハイブリッド車(プラグインハイブリッド車を含む)、電気自動車など、電気モータによって車輪を駆動させる車両では、電池に蓄えられた電力のみでの走行が可能である。電池には、充電量が減るにつれて出力が低下する傾向がある。走行を安定させるためには、電池を所定の充電量の範囲内で使用することが望ましい。かかる車両に搭載される電池が、低充電量(充電量が少ない場合)でも所要の出力を発揮できれば、ハイブリッド車、電気自動車などの走行性能を向上させることができる。また、低充電量(充電量が少ない場合)でも所要の出力を発揮できれば、必要なエネルギー量を確保するための電池の数を減らすことができ、コストダウンを図ることができる。また、このような車両用途では、特に屋外で放置されるような使用が想定される。例えば、-30℃程度から60℃程度のより幅広い温度環境において所要の性能を確保する必要とされる。
 しかしながら、本発明者の検討によれば、例えば、-30℃程度の低温環境では出力が低下したり、ハイレートサイクルによって抵抗が上昇したりし易い傾向がある。また、60℃程度の高温環境では、保存により容量が劣化しやすい傾向がある。
 ここで、本発明者が提案するリチウムイオン二次電池は、正極集電体と、正極集電体に保持された、正極活物質粒子を含む正極活物質層と、負極集電体と、負極集電体に保持され、黒鉛材料で構成された負極活物質粒子を含む負極活物質層とを備えている。ここで、正極活物質粒子は、層状のリチウム遷移金属酸化物で構成された殻部と、殻部の内部に形成された中空部と、殻部を貫通した貫通孔とを有している。そして、正活物質層の密度Aが、1.80g/cm≦A≦2.35g/cmであり、負極活物質層の密度Bが、0.95g/cm≦B≦1.25g/cmである。
 かかるリチウムイオン二次電池によれば、特に、-30℃程度の低温環境で出力が高く維持され、ハイレートサイクル後の抵抗上昇が小さく抑えられ、さらに、60℃程度の高温環境でも、保存によって容量が劣化するのを抑制できる傾向がある。
 また、正極活物質層の任意の断面において、殻部の内側面の任意の位置における殻部の厚さを、当該殻部の内側面の任意の位置から殻部の外側面への最短距離とした場合において、正極活物質層の平均において殻部の厚さが3.0μm以下であってもよい。また、殻部の厚さは0.1μm以上であってもよい。また、正極活物質層の平均において、リチウム遷移金属酸化物の一次粒子の長径が0.8μm以下であってもよい。また、この場合、リチウム遷移金属酸化物の一次粒子の長径が0.2μm以上であってもよい。また、貫通孔の開口幅が、正極活物質層の平均において、0.01μm以上2.0μm以下であってもよい。
 また、正極活物質層の平均において、正極活物質粒子の粒子空孔率が15%以上であってもよい。
 リチウム遷移金属酸化物は、Ni,CoおよびMnのうち少なくとも一種の金属元素を含んでいてもよい。また、リチウム遷移金属酸化物は、Ni,CoおよびMnを含んでいてもよい。また、リチウム遷移金属酸化物は、Li1+xNiCoMn(1-y-z)γであってもよい。ここで、0≦x≦0.2、0.1<y<0.9、0.1<z<0.4、0≦γ≦0.03であり、Mは、Zr、W、Mg、Ca、Na、Fe、Cr、Zn、Si、Sn、Al、BおよびFからなる群より選ばれた少なくとも一種類の添加物である。また、この場合、リチウム遷移金属酸化物は、Wを含んでおり、Ni,CoおよびMnの合計モル数mMTをモル百分率で100モル%としたとき、Wの含有量mMAが0.05モル%~2モル%であってもよい。
 また、正極活物質層は、正極活物質粒子に加えて、導電材と、PVDFとを含み、正極活物質粒子が86質量%以上94質量%以下、導電材が6質量%以上10質量%以下、PVDFが1質量%以上4質量%以下であってもよい。また、負極活物質層は、負極活物質粒子が97質量%以上99質量%以下であってもよい。
 また、正極活物質粒子は、例えば、遷移金属化合物の水性溶液にアンモニウムイオンを供給して、遷移金属水酸化物の粒子を前記水性溶液から析出させる原料水酸化物生成工程、ここで、水性溶液は、リチウム遷移金属酸化物を構成する遷移金属元素の少なくとも一つを含む;遷移金属水酸化物とリチウム化合物とを混合して未焼成の混合物を調製する混合工程;および、混合物を焼成して前記活物質粒子を得る焼成工程;を包含する製造方法によって製造された正極活物質粒子であるとよい。
 かかるリチウムイオン二次電池は、特に、-30℃程度の低温環境で出力が高く維持され、ハイレートサイクル後の抵抗上昇が小さく抑えられ、さらに、60℃程度の高温環境でも、保存によって容量が劣化するのを抑制できる傾向がある。このため、このリチウムイオン二次電池は、車両の駆動用電源として好適に用いることができる。
図1は、リチウムイオン二次電池の構造の一例を示す図である。 図2は、リチウムイオン二次電池の捲回電極体を示す図である。 図3は、図2中のIII-III断面を示す断面図である。 図4は、正極活物質層の構造を示す断面図である。 図5は、負極活物質層の構造を示す断面図である。 図6は、捲回電極体の未塗工部と電極端子との溶接箇所を示す側面図である。 図7は、リチウムイオン二次電池の充電時の状態を模式的に示す図である。 図8は、リチウムイオン二次電池の放電時の状態を模式的に示す図である。 図9は、本発明の一実施形態に係るリチウムイオン二次電池に用いられた正極活物質粒子の断面SEM画像である。 図10は、正極活物質層の密度と、リチウムイオン二次電池の-30℃、SOC27%における出力(W)との相関関係を示す図である。 図11は、負極活物質層の密度と、-30℃、SOC27%における出力(W)との相関関係を示す図である。 図12は、正極活物質層を折り曲げて割った断面のSEM画像である。 図13は、当該断面のSEM画像から正極活物質粒子を拡大した画像である。 図14は、正極活物質粒子の一次粒子を示す模式図である。 図15は、-30℃、SOC27%における出力(W)を算出する際の近似曲線を例示したグラフである。 図16は、ハイレートサイクル抵抗上昇率を評価する試験における充放電サイクルを示す図である。 図17は、車両駆動用電池を搭載した車両の一例を示す図である。
 ここではまず、リチウムイオン二次電池の一構造例を説明する。その後、かかる構造例を適宜に参照しつつ、本発明の一実施形態に係るリチウムイオン二次電池を説明する。なお、同じ作用を奏する部材、部位には適宜に同じ符号を付している。また、各図面は模式的に描かれており、必ずしも実物を反映していない。各図面は、一例を示すのみであり、特に言及されない限りにおいて本発明を限定しない。
 図1は、リチウムイオン二次電池100を示している。このリチウムイオン二次電池100は、図1に示すように、捲回電極体200と電池ケース300とを備えている。図2は、捲回電極体200を示す図である。図3は、図2中のIII-III断面を示している。
 捲回電極体200は、図2に示すように、正極シート220、負極シート240およびセパレータ262、264を有している。正極シート220、負極シート240およびセパレータ262、264は、それぞれ帯状のシート材である。
≪正極シート220≫
 正極シート220は、帯状の正極集電体221と正極活物質層223とを備えている。正極集電体221には、正極に適する金属箔が好適に使用され得る。正極集電体221には、例えば、所定の幅を有し、厚さが凡そ15μmの帯状のアルミニウム箔を用いることができる。正極集電体221の幅方向片側の縁部に沿って未塗工部222が設定されている。図示例では、正極活物質層223は、図3に示すように、正極集電体221に設定された未塗工部222を除いて、正極集電体221の両面に保持されている。正極活物質層223には、正極活物質が含まれている。正極活物質層223は、正極活物質を含む正極合剤を正極集電体221に塗工することによって形成されている。
≪正極活物質層223および正極活物質粒子610≫
 ここで、図4は、正極シート220の断面図である。なお、図4において、正極活物質層223の構造が明確になるように、正極活物質層223中の正極活物質粒子610と導電材620とバインダ630とを大きく模式的に表している。正極活物質層223には、図4に示すように、正極活物質粒子610と導電材620とバインダ630が含まれている。
 正極活物質粒子610には、リチウムイオン二次電池の正極活物質として用いることができる物質を使用することができる。正極活物質粒子610の例を挙げると、LiNiCoMnO(リチウムニッケルコバルトマンガン複合酸化物)、LiNiO(ニッケル酸リチウム)、LiCoO(コバルト酸リチウム)、LiMn(マンガン酸リチウム)、LiFePO(リン酸鉄リチウム)などのリチウム遷移金属酸化物が挙げられる。ここで、LiMnは、例えば、スピネル構造を有している。また、LiNiO或いはLiCoOは層状の岩塩構造を有している。また、LiFePOは、例えば、オリビン構造を有している。オリビン構造のLiFePOには、例えば、ナノメートルオーダーの粒子がある。また、オリビン構造のLiFePOは、さらにカーボン膜で被覆することができる。
≪導電材620≫
 導電材620としては、例えば、カーボン粉末、カーボンファイバーなどのカーボン材料が例示される。このような導電材から選択される一種を単独で用いてもよく二種以上を併用してもよい。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、オイルファーネスブラック、黒鉛化カーボンブラック、カーボンブラック、黒鉛、ケッチェンブラック)、グラファイト粉末などのカーボン粉末を用いることができる。
≪バインダ630≫
 また、バインダ630は、正極活物質層223に含まれる正極活物質粒子610と導電材620の各粒子を結着させたり、これらの粒子と正極集電体221とを結着させたりする。かかるバインダ630としては、使用する溶媒に溶解または分散可能なポリマーを用いることができる。例えば、水性溶媒を用いた正極合剤組成物においては、セルロース系ポリマー(カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)など)、フッ素系樹脂(例えば、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)など)、ゴム類(酢酸ビニル共重合体、スチレンブタジエン共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)など)などの水溶性または水分散性ポリマーを好ましく採用することができる。また、非水溶媒を用いた正極合剤組成物においては、ポリマー(ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリアクリルニトリル(PAN)など)を好ましく採用することができる。
≪増粘剤、溶媒≫
 正極活物質層223は、例えば、上述した正極活物質粒子610と導電材620を溶媒にペースト状(スラリ状)に混ぜ合わせた正極合剤を作製し、正極集電体221に塗布し、乾燥させ、圧延することによって形成されている。この際、正極合剤の溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適な例としてN-メチル-2-ピロリドン(NMP)が挙げられる。上記バインダ630として例示したポリマー材料は、バインダとしての機能の他に、正極合剤の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
 正極合剤全体に占める正極活物質の質量割合は、凡そ50wt%以上(典型的には50~95wt%)であることが好ましく、通常は凡そ70~95wt%(例えば75~90wt%)であることがより好ましい。また、正極合剤全体に占める導電材の割合は、例えば凡そ2~20wt%とすることができ、通常は凡そ2~15wt%とすることが好ましい。バインダを使用する組成では、正極合剤全体に占めるバインダの割合を例えば凡そ1~10wt%とすることができ、通常は凡そ2~5wt%とすることが好ましい。
≪負極シート240≫
 負極シート240は、図2に示すように、帯状の負極集電体241と、負極活物質層243とを備えている。負極集電体241には、負極に適する金属箔が好適に使用され得る。この負極集電体241には、所定の幅を有し、厚さが凡そ10μmの帯状の銅箔が用いられている。負極集電体241の幅方向片側には、縁部に沿って未塗工部242が設定されている。負極活物質層243は、負極集電体241に設定された未塗工部242を除いて、負極集電体241の両面に形成されている。負極活物質層243は、負極集電体241に保持され、少なくとも負極活物質が含まれている。負極活物質層243は、負極活物質を含む負極合剤が負極集電体241に塗工されている。
≪負極活物質層243≫
 図5は、リチウムイオン二次電池100の負極シート240の断面図である。負極活物質層243には、図5に示すように、負極活物質710、増粘剤(図示省略)、バインダ730などが含まれている。図5では、負極活物質層243の構造が明確になるように、負極活物質層243中の負極活物質710とバインダ730とを大きく模式的に表している。
≪負極活物質≫
 負極活物質710としては、従来からリチウムイオン二次電池に用いられる材料の一種または二種以上を特に限定なく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。より具体的には、負極活物質は、例えば、天然黒鉛、非晶質の炭素材料でコートした天然黒鉛、黒鉛質(グラファイト)、難黒鉛化炭素質(ハードカーボン)、易黒鉛化炭素質(ソフトカーボン)、または、これらを組み合わせた炭素材料でもよい。なお、ここでは、負極活物質710は、いわゆる鱗片状黒鉛が用いられた場合を図示しているが、負極活物質710は、図示例に限定されない。
≪増粘剤、溶媒≫
 負極活物質層243は、例えば、上述した負極活物質710とバインダ730を溶媒にペースト状(スラリ状)に混ぜ合わせた負極合剤を作製し、負極集電体241に塗布し、乾燥させ、圧延することによって形成されている。この際、負極合剤の溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適な例としてN-メチル-2-ピロリドン(NMP)が挙げられる。バインダ730には、上記正極活物質層223(図4参照)のバインダ630として例示したポリマー材料を用いることができる。また、上記正極活物質層223のバインダ630として例示したポリマー材料は、バインダとしての機能の他に、正極合剤の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
≪セパレータ262、264≫
 セパレータ262、264は、図1または図2に示すように、正極シート220と負極シート240とを隔てる部材である。この例では、セパレータ262、264は、微小な孔を複数有する所定幅の帯状のシート材で構成されている。セパレータ262、264には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造のセパレータ或いは積層構造のセパレータを用いることができる。この例では、図2および図3に示すように、負極活物質層243の幅b1は、正極活物質層223の幅a1よりも少し広い。さらにセパレータ262、264の幅c1、c2は、負極活物質層243の幅b1よりも少し広い(c1、c2>b1>a1)。
 なお、図1および図2に示す例では、セパレータ262、264は、シート状の部材で構成されている。セパレータ262、264は、正極活物質層223と負極活物質層243とを絶縁するとともに、電解質の移動を許容する部材であればよい。従って、シート状の部材に限定されない。セパレータ262、264は、シート状の部材に代えて、例えば、正極活物質層223または負極活物質層243の表面に形成された絶縁性を有する粒子の層で構成してもよい。ここで、絶縁性を有する粒子としては、絶縁性を有する無機フィラー(例えば、金属酸化物、金属水酸化物などのフィラー)、或いは、絶縁性を有する樹脂粒子(例えば、ポリエチレン、ポリプロピレンなどの粒子)で構成してもよい。
≪電池ケース300≫
 また、この例では、電池ケース300は、図1に示すように、いわゆる角型の電池ケースであり、容器本体320と、蓋体340とを備えている。容器本体320は、有底四角筒状を有しており、一側面(上面)が開口した扁平な箱型の容器である。蓋体340は、当該容器本体320の開口(上面の開口)に取り付けられて当該開口を塞ぐ部材である。
 車載用の二次電池では、車両の燃費を向上させるため、重量エネルギー効率(単位重量当りの電池の容量)を向上させることが望まれる。このため、この実施形態では、電池ケース300を構成する容器本体320と蓋体340は、アルミニウム、アルミニウム合金などの軽量金属が採用されている。これにより重量エネルギー効率を向上させることができる。
 電池ケース300は、捲回電極体200を収容する空間として、扁平な矩形の内部空間を有している。また、図1に示すように、電池ケース300の扁平な内部空間は、捲回電極体200よりも横幅が少し広い。この実施形態では、電池ケース300は、有底四角筒状の容器本体320と、容器本体320の開口を塞ぐ蓋体340とを備えている。また、電池ケース300の蓋体340には、電極端子420、440が取り付けられている。電極端子420、440は、電池ケース300(蓋体340)を貫通して電池ケース300の外部に出ている。また、蓋体340には注液孔350と安全弁360とが設けられている。
 捲回電極体200は、図2に示すように、捲回軸WLに直交する一の方向において扁平に押し曲げられている。図2に示す例では、正極集電体221の未塗工部222と負極集電体241の未塗工部242は、それぞれセパレータ262、264の両側において、らせん状に露出している。図6に示すように、この実施形態では、未塗工部222、242の中間部分224、244を寄せ集め、電極端子420、440の先端部420a、440aに溶接している。この際、それぞれの材質の違いから、電極端子420と正極集電体221の溶接には、例えば、超音波溶接が用いられる。また、電極端子440と負極集電体241の溶接には、例えば、抵抗溶接が用いられる。ここで、図6は、捲回電極体200の未塗工部222(242)の中間部分224(244)と電極端子420(440)との溶接箇所を示す側面図であり、図1のVI-VI断面図である。
 捲回電極体200は、扁平に押し曲げられた状態で、蓋体340に固定された電極端子420、440に取り付けられる。かかる捲回電極体200は、図1に示すように、容器本体320の扁平な内部空間に収容される。容器本体320は、捲回電極体200が収容された後、蓋体340によって塞がれる。蓋体340と容器本体320の合わせ目322(図1参照)は、例えば、レーザ溶接によって溶接されて封止されている。このように、この例では、捲回電極体200は、蓋体340(電池ケース300)に固定された電極端子420、440によって、電池ケース300内に位置決めされている。
≪電解液≫
 その後、蓋体340に設けられた注液孔350から電池ケース300内に電解液が注入される。電解液は、水を溶媒としていない、いわゆる非水電解液が用いられている。この例では、電解液は、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば、体積比1:1程度の混合溶媒)にLiPFを約1mol/リットルの濃度で含有させた電解液が用いられている。その後、注液孔350に金属製の封止キャップ352を取り付けて(例えば溶接して)電池ケース300を封止する。なお、電解液は、ここで例示された電解液に限定されない。例えば、従来からリチウムイオン二次電池に用いられている非水電解液は適宜に使用することができる。
≪空孔≫
 ここで、正極活物質層223は、例えば、正極活物質粒子610と導電材620の粒子間などに、空洞とも称すべき微小な隙間225を有している(図4参照)。かかる正極活物質層223の微小な隙間には電解液(図示省略)が浸み込み得る。また、負極活物質層243は、例えば、負極活物質710の粒子間などに、空洞とも称すべき微小な隙間245を有している(図5参照)。ここでは、かかる隙間225、245(空洞)を適宜に「空孔」と称する。また、捲回電極体200は、図2に示すように、捲回軸WLに沿った両側において、未塗工部222、242が螺旋状に巻かれている。かかる捲回軸WLに沿った両側252、254において、未塗工部222、242の隙間から、電解液が浸み込みうる。このため、リチウムイオン二次電池100の内部では、正極活物質層223と負極活物質層243に電解液が浸み渡っている。
≪ガス抜け経路≫
 また、この例では、当該電池ケース300の扁平な内部空間は、扁平に変形した捲回電極体200よりも少し広い。捲回電極体200の両側には、捲回電極体200と電池ケース300との間に隙間310、312が設けられている。当該隙間310、312は、ガス抜け経路になる。例えば、過充電が生じた場合などにおいて、リチウムイオン二次電池100の温度が異常に高くなると、電解液が分解されてガスが異常に発生する場合がある。この実施形態では、異常に発生したガスは、捲回電極体200の両側における捲回電極体200と電池ケース300との隙間310、312を通して安全弁360の方へ移動し、安全弁360から電池ケース300の外に排気される。
 かかるリチウムイオン二次電池100では、正極集電体221と負極集電体241は、電池ケース300を貫通した電極端子420、440を通じて外部の装置に電気的に接続される。以下、充電時と放電時のリチウムイオン二次電池100の動作を説明する。
≪充電時の動作≫
 図7は、かかるリチウムイオン二次電池100の充電時の状態を模式的に示している。充電時においては、図7に示すように、リチウムイオン二次電池100の電極端子420、440(図1参照)は、充電器290に接続される。充電器290の作用によって、充電時には、正極活物質層223中の正極活物質からリチウムイオン(Li)が電解液280に放出される。また、正極活物質層223からは電荷が放出される。放出された電荷は、導電材(図示省略)を通じて正極集電体221に送られ、さらに、充電器290を通じて負極240へ送られる。また、負極240では電荷が蓄えられるとともに、電解液280中のリチウムイオン(Li)が、負極活物質層243中の負極活物質に吸収され、かつ、貯蔵される。
≪放電時の動作≫
 図8は、かかるリチウムイオン二次電池100の放電時の状態を模式的に示している。放電時には、図8に示すように、負極シート240から正極シート220に電荷が送られるとともに、負極活物質層243に貯蔵されたリチウムイオンが、電解液280に放出される。また、正極では、正極活物質層223中の正極活物質に電解液280中のリチウムイオンが取り込まれる。
 このようにリチウムイオン二次電池100の充放電において、電解液280を介して、正極活物質層223と負極活物質層243との間でリチウムイオンが行き来する。また、充電時においては、正極活物質から導電材を通じて正極集電体221に電荷が送られる。これに対して、放電時においては、正極集電体221から導電材を通じて正極活物質に電荷が戻される。
 充電時においては、リチウムイオンの移動および電子の移動がスムーズなほど、効率的で急速な充電が可能になると考えられる。放電時においては、リチウムイオンの移動および電子の移動がスムーズなほど、電池の抵抗が低下し、放電量が増加し、電池の出力が向上すると考えられる。
≪他の電池形態≫
 なお、上記はリチウムイオン二次電池の一例を示すものである。リチウムイオン二次電池は上記形態に限定されない。また、同様に金属箔に電極合剤が塗工された電極シートは、他にも種々の電池形態に用いられる。例えば、他の電池形態として、円筒型電池或いはラミネート型電池などが知られている。円筒型電池は、円筒型の電池ケースに捲回電極体を収容した電池である。また、ラミネート型電池は、正極シートと負極シートとをセパレータを介在させて積層した電極体を、ラミネートケースに収容した電池である。
 以下、本発明の一実施形態に係るリチウムイオン二次電池を説明する。なお、ここで説明するリチウムイオン二次電池は、基本的な構造が上述したリチウムイオン二次電池100と同じであるので、適宜に上述したリチウムイオン二次電池100の図を参照して説明する。
 上述したように、リチウムイオン二次電池100は、図1に示すように、正極集電体221と、多孔質の正極活物質層223を備えている。正極活物質層223は、図4に示すように、正極集電体221に保持され、正極活物質粒子610(正極活物質)、導電材620、バインダ630を含んでいる。また、負極活物質層243は、図5に示すように、負極集電体241に保持され、黒鉛材料で構成された負極活物質粒子710を含んでいる。
 ところで、かかるリチウムイオン二次電池100は、正極活物質層223の密度と負極活物質層243の密度を低くすることによって、正極活物質層223と負極活物質層243に電解液が染み渡る空隙が得られる。このため、正極活物質粒子610と電解液と、負極活物質粒子710と電解液との間で、それぞれリチウムイオンの入力と出力がスムーズに行なえる。このため、正極活物質層223の密度と負極活物質層243の密度を低くすることによって、リチウムイオン二次電池100のハイレート特性を向上させることができる。特に、急発進時などにおいて高い出力が求められるハイブリッド車や電気自動車については、正極活物質層223の密度と、負極活物質層243の密度をそれぞれ低くすることが適当と、本発明者は考えている。しかしながら、負極活物質層243の密度がある程度高くなると、高温環境(60℃程度)での保存後の容量維持率が低下する場合がある。これは、負極活物質粒子710に割れが生じ、負極活物質粒子710がリチウムイオンを吸蔵吸着する界面において不動態被膜が生じることに起因すると、本発明者は推察している。このように、所要の出力特性と、高温時の保存容量を高く維持するため、本発明者は、正極活物質層223の密度と負極活物質層243の密度をある程度低く調整することがよいと考えている。
 しかしながら、正極活物質層223の密度と負極活物質層243の密度とがともに低すぎると、かかるリチウムイオン二次電池100は、低温環境(例えば、-30℃程度)で、かつ、低い充電状態(SOC27%程度)において、出力が低下する傾向があることが新たに見出された。
 かかる傾向について、本発明者は、-30℃程度の低温になると、そもそも出力特性が低下する傾向がある。さらに低SOC域では、正極活物質層223において活物質のLiイオン濃度が高く、また負極活物質層243においてLiイオン濃度が低く、放電時にイオン拡散が遅くなりやすく、出力特性が低下しがちになると考えている。これに加えて、正極活物質層223の密度が低くなると、正極活物質層223中の粒子が疎になる。このため、正極活物質層223の密度が低くなればなるほど、正極活物質粒子と導電材との接点が少なくなり、正極活物質層223の導電特性が悪くなる傾向がある。また、負極活物質層243の密度が低くなればなるほど、負極において不可逆容量が小さくなる傾向があり、低SOC域での正極電位がより低くなる傾向がある。本発明者は、これらの点が-30℃程度の低温環境かつ低SOC域においてリチウムイオン二次電池の出力特性を低下させる要因となっていると考えている。
 ここで「SOC」は、充電状態(State Of Charge)を意味しており、特記しない場合において、当該電池が通常使用される電圧範囲を基準とする充電状態をいうものとする。ここでは、リチウムイオン二次電池の正負の端子間電圧(開回路電圧(OCV:Open Circuit Voltage))が凡そ4.1Vに設定される上限電圧~凡そ3.0Vに設定される下限電圧の電圧範囲を基準にして充電状態を評価した。また、ここで「低SOC」は凡そSOC30%以下の充電状態であり、凡そSOC28%~20%程度を凡そ実用的な範囲での低い充電状態として想定している。
 このように、正極活物質層223の密度と負極活物質層243の密度をともに低くした場合、-30℃程度の低温環境で、かつ、SOC27%程度の低い充電状態において、出力が低下する場合がある。これに対して、正極活物質層223の密度と負極活物質層243の密度を低くすることは、-30℃程度の低温環境で、かつ、SOC27%程度の低い充電状態を除く、温度環境や充電状態において、リチウムイオン二次電池100のハイレートでの出力特性を向上させるのに必要である。さらに、高温環境に保存された場合に容量が劣化する事象も見られる場合がある。このため、正極活物質層223の密度と負極活物質層243の密度を適切に管理し、リチウムイオン二次電池100のハイレートでの出力特性を維持しつつ、上記の低温環境かつ低充電状態でも、所要の出力が確保されるようにしたい。本発明者は、正極活物質粒子610について工夫するとともに、正極活物質層223の密度と負極活物質層243の密度について適切な範囲を見出した。
≪正極活物質粒子610(孔開き中空粒子)≫
 図9は、本発明の一実施形態に係るリチウムイオン二次電池100に用いられた正極活物質粒子610の断面SEM画像である。ここで、正極活物質粒子610(孔開き中空粒子)は、図9に示すように、リチウム遷移金属酸化物で構成された殻部612と、殻部612の内部に形成された中空部614と、殻部612を貫通した貫通孔616とを含んでいる。なお、ここでは、殻部612の内側面612aのうち正極活物質粒子610の貫通孔616に相当する部分は、殻部612の内側面612aに含めない。また、貫通孔616は、正極活物質粒子610の中空部614に含めない。つまり、本発明の一実施形態に係るリチウムイオン二次電池100で用いられる正極活物質粒子610は、図9に示すように、明確な中空部614を有した中空構造(「孔開き中空構造」とも称する)であり、このような中空部614を有しない中実の粒子とは明確に区別される。
 ここで、「中空構造の正極活物質」とは、該活物質の見かけの断面積のうち中空部が占める割合(粒子空孔率)が5%以上である正極活物質を指すものとする。正極活物質層223の断面SEM画像で、ランダムな位置で切断された断面において評価するとよく、正極活物質層223の凡その平均値(算術平均値)で評価するとよい。この際、ある程度纏まった中空部を評価するとよい。また、ある程度纏まった中空部が複数ある場合には、複数の中空部の合計を評価するとよい。また、見かけの体積の5%に満たない微細な細孔(空隙)は無視してよい。このように、ここで用いられる正極活物質粒子610は、単に、粒子に空孔があれば良いというものではない。例えば、噴霧焼成製法(スプレードライ製法とも称される)によって製造される、細かい空孔(空隙)を複数有する多孔質の粒子とは、かかる纏まった中空部614の存在の有無によって明らかに異なる。
 好適には、正極活物質層223の断面SEM画像において、正極活物質粒子610は、図9に示すように、比較的大きな中空部614を有しているとよい。当該中空部614を形成する殻部612に貫通孔616が形成されている。かかる正極活物質粒子610の好適な一形態としては、正極活物質粒子610の見かけの断面積のうち中空部614が占める割合が15%以上、より好ましくは20%以上、さらに好ましくは23%以上であるとよい。なお、正極活物質粒子610の見かけの断面積のうち中空部614が占める割合は、正極活物質層223の平均において評価するとよい。
 このような孔開き中空構造の正極活物質粒子610を用いた場合、例えば、中実(中空部を有していない)の粒子に比べて、同じ重量の粒子でも粒子の見かけの体積は大きくなり、嵩高くなる。そして、孔開き中空構造は正極活物質粒子610内部に空間があるため、正極活物質層223の密度が同じ場合でも、正極活物質粒子610外の空間(空隙)は狭くなる。この場合、正極活物質層223は、導電材620の割合が同程度でも、正極活物質粒子610外でより密に導電材620が存在する。また、正極活物質粒子610間の接着を担うバインダについても少なくできる。このため、正極活物質層223中の導電性がよく、また正極活物質層223中の電解液(リチウムイオン)の拡散性がよい。これにより、正極活物質層223の出力特性は格段に向上する。
 さらに好適には、正極活物質層223の任意の断面において、殻部612の内側面の任意の位置における殻部612の厚さを、当該殻部612の内側面の任意の位置から殻部612の外側面への最短距離とする。この場合において、正極活物質粒子610は、正極活物質層223の平均において殻部612の厚さが3μm以下、より好ましくは2.2μm以下であるとよい。このように、正極活物質粒子610の殻部612が3μm以下と薄い場合には、当該殻部612(正極活物質粒子610内)のリチウムイオンの拡散する距離が短く、リチウムイオンの拡散性が良く、極めて低抵抗のリチウムイオン二次電池100が得られる。正極活物質粒子610の殻部612が2.2μm以下と薄い場合には、より顕著に上記効果が得られる。
 さらに、負極活物質層243の負極活物質粒子710としては、上述した炭素系粒子(黒鉛粒子)を採用するとよく、例えば、天然黒鉛の粒子や人工黒鉛の粒子、より好適には非晶質の炭素材料で少なくとも一部をコート(被覆)した天然黒鉛粒子が用いられる。この場合、負極活物質層243の密度を低くすることで、負極活物質層243に空隙が多くなるので、負極活物質層243において電解液(リチウムイオン)の拡散性が良くなる。そして、かかる負極活物質粒子710と電解液との界面を大きくでき、負極活物質粒子710へのリチウムイオンの拡散性能も向上する。さらに、負極活物質層243の密度をある程度低くすることによって、凡そ60℃程度の高温環境で保存した場合でも容量維持率を高く維持できる。すなわち、負極活物質層243の密度が高いと、凡そ60℃程度の高温環境で保存した場合に容量維持率が悪くなる。これは、負極活物質層243の密度が高いために、負極活物質粒子710に割れが見られ、当該割れた部分にSEI被膜(Solid Electrolyte Interphase)が形成され、リチウムイオンが固定化されるためと考えている。
 負極活物質層243の密度を低くし過ぎると、負極活物質層243の単位体積当りの充電容量が低下するので、所要の出力を発揮するには、負極活物質層243の密度は、当該出力を発揮する上で必要な程度の密度を備えていることが求められる。
 ここで、図10は、正極活物質層223の密度と、リチウムイオン二次電池の-30℃、SOC27%における出力(W)との相関関係を示している。図10に示す例では、負極活物質層243の密度は1.13g/cmとした。ここで、「●」のプロットは正極活物質層223に孔開き中空構造の正極活物質粒子610を用いた場合であり、本発明の一実施形態に係るリチウムイオン二次電池100を示している。また、「○」のプロットは正極活物質層223に中実構造の正極活物質粒子610を用いた場合について示している。
 図10に示すように、「●」のプロットは正極活物質層223に孔開き中空構造の正極活物質粒子610を用いた場合には、正極活物質層223の密度を低くしても、リチウムイオン二次電池100の-30℃、SOC27%における出力(W)をある程度高く維持できる。「○」のプロットは正極活物質層223に中実構造の正極活物質粒子610を用いた場合には、正極活物質層223の密度が低くなると、リチウムイオン二次電池100の-30℃、SOC27%における出力(W)が徐々に低下する。また、正極活物質層223の密度がある程度(図10に示す例では、2.4g/cm程度)よりも低くなると、リチウムイオン二次電池の-30℃、SOC27%における出力(W)が著しく低くなる。このように、孔開き中空構造の正極活物質粒子610を採用することによって、リチウムイオン二次電池の-30℃、SOC27%における出力(W)を高く維持することができる。
 また、図11は、負極活物質層243の密度と、-30℃、SOC27%における出力(W)との相関関係を示している。図11に示す例では、正極活物質層223の密度は1.92g/cmとした。ここでも、「●」のプロットは正極活物質層223に孔開き中空構造の正極活物質粒子610を用いた場合であり、本発明の一実施形態に係るリチウムイオン二次電池100を示している。また、「○」のプロットは正極活物質層223に中実構造の正極活物質粒子610を用いた場合である。
 図11に示すように、「●」のプロットは正極活物質層223に孔開き中空構造の正極活物質粒子610を用いた場合には、負極活物質層243の密度を低くしても、リチウムイオン二次電池100の-30℃、SOC27%における出力(W)をある程度高く維持できる。「○」のプロットは正極活物質層223に中実構造の正極活物質粒子610を用いた場合には、負極活物質層243の密度が低くなると、リチウムイオン二次電池の-30℃、SOC27%における出力(W)が徐々に低下する。また、負極活物質層243の密度がある程度(図11に示す例では、1.5g/cm程度)よりも低くなると、リチウムイオン二次電池の-30℃、SOC27%における出力(W)が著しく低くなる。このように、孔開き中空構造の正極活物質粒子610を採用することによって、リチウムイオン二次電池の-30℃、SOC27%における出力(W)を高く維持することができる。
≪評価用電池≫
 以下、かかる試験で用いた評価用電池を説明する。
 図10および図11に示す例で、正極活物質粒子610として用いた複合酸化物の組成式は、孔開き中空構造の粒子、中実粒子ともに、以下のとおりである。
正極活物質粒子610:Li1.14Ni0.34Co0.33Mn0.33
 なお、ここでは、正極活物質粒子610として、上記の組成式(Li1.14Ni0.34Co0.33Mn0.33)の正極活物質粒子を例示したが、本発明の一実施形態に係るリチウムイオン二次電池の正極活物質粒子を例示するに過ぎず、本発明のリチウムイオン二次電池の正極活物質粒子は、特段、組成式(Li1.14Ni0.34Co0.33Mn0.33)の活物質に限定されない。
<中実の正極活物質粒子>
 ここで、中実の正極活物質粒子については、硫酸ニッケルと硫酸コバルトと硫酸マンガンの混合溶液を水酸化ナトリウムで中和して、Ni0.34Co0.33Mn0.33(OH)を基本構成とする前駆体を作製する。次に、得られた前駆体を炭酸リチウムと混合し、大気雰囲気中にて約800℃~900℃の温度にて5時間~15時間程度焼成する。これにより、上記Li1.14Ni0.34Co0.33Mn0.33の中実粒子を得ることができる。そして、当該粒子を篩いにかけて、平均粒子径D50が凡そ3μm~8μmで比表面積が凡そ0.5m/g~1.9m/gの中実の正極活物質粒子を得た。
<孔開き中空構造の正極活物質粒子>
 ここでは、孔開き中空構造は、中実粒子と同様にLi1.14Ni0.34Co0.33Mn0.33の組成とした。ここでは、中空部614の割合を凡そ23%程度とし、殻部612の厚さを凡そ2.2μmとした。なお、正極活物質粒子は、特に言及されない限りにおいて、かかる形態に限定されない。また、孔開き中空構造の正極活物質粒子の製造方法は、後で詳述する。
<正極ペースト、正極シート>
 また、ここでは導電材としてアセチレンブラック、バインダ(結着剤)としてポリフッ化ビニリデン(PVDF)を用いた。そして、正極活物質粒子:90質量%、アセチレンブラック:8質量%、PVDF:2質量%の重量割合で、溶媒としてのN-メチル-2-ピロリドン(NMP)と混錬して正極ペーストを作製した。かかる正極ペーストを、正極集電体(15μmのアルミニウム箔)の両面に塗布し、乾燥させて正極合剤層を得た。この際、正極ペーストは、乾燥後(NMPを除いて)の両面合わせた目付量が11.2mg/cmになるように塗布した。また、正極合剤層は、圧延プレスにて密度を調整した。
≪正極活物質層223の密度A≫
 ここで、正極活物質層223は、上述したように電解液が染み渡りうるように空孔(空隙)を含んでいる。正極活物質層223の密度Aは見かけの密度で評価されている。すなわち、正極活物質層223の密度Aは、正極活物質層223の重量を、空隙を含む当該正極活物質層223の体積(見かけの体積)で割った値で求められる。
正極活物質層223の密度A=
(正極活物質層223の重量)/(空隙を含む正極活物質層223の体積);
<正極活物質層223の重量>
 正極活物質層223の重量は、例えば、正極シート220を所定の面積で切り取り、切り取られた正極シート220の重量から正極集電体221の重量を引いて求めるとよい。
正極活物質層223の重量=
(正極シート220の重量)-(正極シート220に含まれる正極集電体221の重量);
 ここで、所定の面積で切り取られた正極シート220に含まれる正極集電体221の重量は、正極集電体221の体積と比重との積によって求めることができる。また、正極集電体221の厚さは凡そ測定可能である。正極集電体221の厚さは、正極集電体221に用いられる金属箔の厚さをそのまま採用してもよい。また、正極集電体221の厚さが分かると、所定の面積で切り取られた正極シート220に含まれる正極集電体221の体積が分かる。また、正極集電体221に用いられる金属(ここでは、アルミニウム(Al))の比重についても凡そ分かる。そして、正極集電体221の体積と、正極集電体221に用いられる金属の比重との積によって、所定の面積で切り取られた正極シート220に含まれる正極集電体221の重量を求めることができる。
<空隙を含む正極活物質層223の体積(見かけの体積)>
 また、所定の面積で切り取られた正極シート220の厚さから、正極集電体221の厚さを引くことによって正極活物質層223の凡その厚さが求められる。正極シート220の厚さは、複数個所で計測し、算術平均で近似するとよい。正極集電体221の厚さは、例えば、正極集電体221に用いられる金属箔の厚さをそのまま採用してもよい。また、空隙を含む正極活物質層223の体積(見かけの体積)は、かかる正極活物質層223の厚さと正極シート220を切り取った面積との積によって求められる。
空隙を含む正極活物質層223の体積(見かけの体積)=
(正極活物質層223の厚さ)×(正極シート220を切り取った面積);
<負極活物質粒子710>
 また、負極活物質層243に用いられた負極活物質粒子710には、非晶質の炭素材料で少なくとも一部をコート(被覆)した天然黒鉛粒子が用いた。ここでは、天然黒鉛粉末96質量%に対してピッチを4質量%になるように、混合および含浸させ、不活性雰囲気下において、1000℃~1300℃にて10時間焼成した。その結果、平均粒子径D50が凡そ8μm~11μmで比表面積が凡そ3.5m/g~5.5m/gの負極活物質粒子を得た。なお、負極活物質粒子は、特に言及されない限りにおいて、かかる形態に限定されない。
<負極ペースト、負極シート>
 また、ここでは増粘剤としてカルボキシメチルセルロース(CMC:carboxymethylcellulose)、バインダ(結着剤)としてスチレン・ブタジエンゴム(SBR:styrene-butadiene rubber)を用いた。そして、負極活物質粒子:98.6質量%、CMC:0.7質量%、SBR:0.7質量%の重量割合で、溶媒としての水と混錬して負極ペーストを作製した。かかる負極ペーストを、負極集電体(10μmの銅箔)の両面に塗布し、乾燥させて負極合剤層を得た。この際、負極ペーストは、乾燥後(水を除いて)の両面合わせた目付量が7.3mg/cmになるように塗布した。また、負極合剤層は、圧延プレスにて密度を調整した。
≪負極活物質層243の密度B≫
 次に、負極活物質層243は、電解液が染み渡りうるように空孔(空隙)を含んでいる。負極活物質層243の密度Bは見かけの密度で評価されている。例えば、負極活物質層243の密度Bは、負極活物質層243の重量を、空隙を含む当該負極活物質層243の体積(見かけの体積)で割った値で求められる。
負極活物質層243の密度B=
(負極活物質層243の重量)/(空隙を含む負極活物質層243の体積);
<負極活物質層243の重量>
 負極活物質層243の重量は、負極シート240を所定の面積で切り取り、切り取られた負極シート240の重量から負極集電体241の重量を引いて求めるとよい。
負極活物質層243の重量=
(負極シート240の重量)-(負極シート240に含まれる負極集電体241の重量);
 ここで、所定の面積で切り取られた負極シート240に含まれる負極集電体241の重量は、負極集電体241の体積と比重との積によって求めることができる。また、負極集電体241の厚さは凡そ測定可能である。負極集電体241の厚さは、負極集電体241に用いられる金属箔の厚さをそのまま採用してもよい。負極集電体241の厚さが分かると、所定の面積で切り取られた負極シート240に含まれる負極集電体241の体積が分かる。また、負極集電体241に用いられる金属(ここでは、銅(Cu))の比重についても凡そ分かる。そして、負極集電体241の体積と、負極集電体241に用いられる金属の比重との積によって、所定の面積で切り取られた負極シート240に含まれる負極集電体241の重量を求めることができる。
<空隙を含む負極活物質層243の体積(見かけの体積)>
 また、所定の面積で切り取られた負極シート240の厚さから、負極集電体241の厚さを引くことによって、負極活物質層243の凡その厚さが求められる。空隙を含む負極活物質層243の体積(見かけの体積)は、かかる負極活物質層243の厚さと、負極シート240を切り取った面積との積によって求められる。
空隙を含む負極活物質層243の体積=
(負極活物質層243の厚さ)×(負極シート240を切り取った面積);
≪その他の評価用電池の仕様≫
 ここでは、正極の塗工幅は90mm、長さは3000mmとし、負極の塗工幅は102mm、長さは3200mmとして、捲回電極体200(図1及び図2参照)を構築し、角型の電池ケース300に収容した。ここで、捲回電極体200の捲回数(扁平に折り曲げた状態でのターン数)は凡そ29ターンとした。ここで、正極と負極の対向容量比(正極の充電容量/負極の充電容量)は、凡そ1.5~1.9に調整した。
 電解液は、ここでは、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)を3:3:4の質量割合で混合し、1.1mol/LのLiPFを溶解させ、さらに、ジフルオロリン酸塩(LiPO)と、リチウムビスオキサレートボレート(LiBOB)を各0.025mol/L程度、溶解させた電解液を用いた。電池容量(定格容量)は3.8Ahであった。
 図10および図11に示すように、-30℃、SOC27%における出力(W)を向上させるという観点において、本発明者は、孔開き中空構造の正極活物質粒子610を正極活物質層223の活物質粒子として採用し、さらに、正極活物質層223の密度と、負極活物質層243の密度を適切に管理するとよいと考えている。本発明者は、ここでは、正極活物質層223の密度Aを凡そ1.80g/cm≦A≦2.35g/cmとし、負極活物質層243の密度Bが凡そ0.95g/cm≦B≦1.25g/cmとすることを提案する。かかるリチウムイオン二次電池100によれば、例えば、-30℃程度の低温環境でも出力を高く維持でき、60℃程度の高温環境で保存された際の容量劣化を少なくでき、さらには、ハイレートサイクルによる抵抗上昇も低く抑えられる。
 なお、正極活物質粒子610を構成するリチウム遷移金属酸化物は、例えば、Ni,CoおよびMnのうち少なくとも一種の金属元素(M)を含んでいても良い。例えば、リチウム遷移金属酸化物は、金属元素(M)としてNi,CoおよびMnを全て含んでいてもよい。
 また、正極活物質粒子610を構成するリチウム遷移金属酸化物は、W,CrおよびMoから選択される少なくとも一種の金属元素(M)をさらに含んでいてもよい。この場合、正極活物質粒子610を構成するリチウム遷移金属酸化物に含まれるNi,CoおよびMnの合計モル数mMTをモル百分率で100モル%としたとき、Mの含有量mMAが0.05モル%~1モル%であってもよい。以下、正極活物質粒子610(孔開き中空粒子)について製造方法を例示する。
≪正極活物質粒子610(孔開き中空粒子)の製造方法≫
 正極活物質粒子610の製造方法は、例えば、原料水酸化物生成工程と、混合工程と、焼成工程とを含んでいる。原料水酸化物生成工程は、遷移金属化合物の水性溶液にアンモニウムイオンを供給して、遷移金属水酸化物の粒子を水性溶液から析出させる工程である。ここで、水性溶液は、リチウム遷移金属酸化物を構成する遷移金属元素の少なくとも一つを含んでいる。
 ここで、原料水酸化物生成工程は、水性溶液から遷移金属水酸化物を析出させる核生成段階と、核生成段階よりも水性溶液のpHを減少させた状態で遷移金属水酸化物を成長させる粒子成長段階とを含んでいるとよい。
 混合工程は、遷移金属水酸化物とリチウム化合物とを混合して未焼成の混合物を調製する工程である。焼成工程は、混合物を焼成して正極活物質粒子610を得る工程である。さらに、好適には、焼成後に焼成物を解砕し、篩分けを行なうとよい。
 以下、正極活物質粒子610の製造方法をより具体的に例示する。
 ここに開示される孔開き中空活物質粒子は、例えば、該活物質粒子を構成するリチウム遷移金属酸化物に含まれる遷移金属元素の少なくとも一つ(好ましくは、該酸化物に含まれるリチウム以外の金属元素の全部)を含む水性溶液から、該遷移金属の水酸化物を適切な条件で析出させ、その遷移金属水酸化物とリチウム化合物とを混合して焼成する方法により製造され得る。
 また、かかる活物質粒子製造方法の一実施態様につき、層状構造のLiNiCoMn酸化物からなる孔開き中空活物質粒子を製造する場合を例として詳しく説明するが、この製造方法の適用対象をかかる組成の孔開き中空活物質粒子に限定する意図ではない。また、特に言及されない限りにおいて、正極活物質粒子は、かかる製造方法に限定されない。
≪原料水酸化物生成工程≫
 ここに開示される活物質粒子の製造方法は、遷移金属化合物の水性溶液にアンモニウムイオン(NH )を供給して、該水性溶液から遷移金属水酸化物の粒子を析出させる工程(原料水酸化物生成工程)を含む。上記水性溶液を構成する溶媒(水性溶媒)は、典型的には水であり、水を主成分とする混合溶媒であってもよい。この混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る-有機溶媒(低級アルコール等)が好適である。上記遷移金属化合物の水性溶液(以下、「遷移金属溶液」ともいう。)は、製造目的たる活物質粒子を構成するリチウム遷移金属酸化物の組成に応じて、該リチウム遷移金属酸化物を構成する遷移金属元素(ここではNi,CoおよびMn)の少なくとも一つ(好ましくは全部)を含む。例えば、水性溶媒中にNiイオン,CoイオンおよびMnイオンを供給し得る一種または二種以上の化合物を含む遷移金属溶液を使用する。これらの金属イオン源となる化合物としては、該金属の硫酸塩、硝酸塩、塩化物等を適宜採用することができる。例えば、水性溶媒(好ましくは水)に硫酸ニッケル、硫酸コバルトおよび硫酸マンガンが溶解した組成の遷移金属溶液を好ましく使用し得る。
 上記NH は、例えば、NH を含む水性溶液(典型的には水溶液)の形態で上記遷移金属溶液に供給されてもよく、該遷移金属溶液にアンモニアガスを直接吹き込むことにより供給されてもよく、これらの供給方法を併用してもよい。NH を含む水性溶液は、例えば、NH 源となり得る化合物(水酸化アンモニウム、硝酸アンモニウム、アンモニアガス等)を水性溶媒に溶解させることにより調製することができる。本実施態様では、水酸化アンモニウム水溶液(すなわちアンモニア水)の形態でNH を供給する。
≪核生成段階≫
 上記原料水酸化物生成工程は、pH12以上(典型的にはpH12以上14以下、例えばpH12.2以上13以下)かつNH 濃度25g/L以下(典型的には3~25g/L)の条件下で上記遷移金属溶液から遷移金属水酸化物を析出させる段階(核生成段階)を含み得る。上記pHおよびNH 濃度は、上記アンモニア水とアルカリ剤(液性をアルカリ性に傾ける作用のある化合物)との使用量を適切にバランスさせることによって調整することができる。アルカリ剤としては、例えば水酸化ナトリウム、水酸化カリウム等を、典型的には水溶液の形態で用いることができる。本実施態様では水酸化ナトリウム水溶液を使用する。なお、本明細書中において、pHの値は、液温25℃を基準とするpH値をいうものとする。
≪粒子成長段階≫
 上記原料水酸化物生成工程は、さらに、上記核生成段階で析出した遷移金属水酸化物の核(典型的には粒子状)を、pH12未満(典型的にはpH10以上12未満、好ましくはpH10以上11.8以下、例えばpH11以上11.8以下)かつNH 濃度1g/L以上、好ましくは3g/L以上(典型的には3~25g/L)で成長させる段階(粒子成長段階)を含み得る。通常は、核生成段階のpHに対して、粒子成長段階のpHを0.1以上(典型的には0.3以上、好ましくは0.5以上、例えば0.5~1.5程度)低くすることが適当である。
 上記pHおよびNH 濃度は、核生成段階と同様にして調整することができる。この粒子成長段階は、上記pHおよびNH 濃度を満たすように行われることにより、好ましくは上記pHにおいてNH 濃度を15g/L以下(例えば1~15g/L、典型的には3~15g/L)、より好ましくは10g/L以下(例えば1~10g/L、典型的には3~10g/L)の範囲とすることにより、遷移金属水酸化物(ここでは、Ni,CoおよびMnを含む複合水酸化物)の析出速度が速くなり、ここに開示される孔開き中空活物質粒子の形成に適した原料水酸化物粒子(換言すれば、孔開き中空構造の焼成物を形成しやすい原料水酸化物粒子)が生成し得る。
 上記NH 濃度を7g/L以下(例えば1~7g/L、より好ましくは3~7g/L)としてもよい。粒子成長段階におけるNH 濃度は、例えば、核生成段階におけるNH 濃度と概ね同程度としてもよく、核生成段階におけるNH 濃度よりも低くしてもよい。なお、遷移金属水酸化物の析出速度は、例えば、反応液に供給される遷移金属溶液に含まれる遷移金属イオンの合計モル数に対して、反応液の液相中に含まれる遷移金属イオンの合計モル数(合計イオン濃度)の推移を調べることにより把握され得る。
 核生成段階および粒子成長段階のそれぞれにおいて、反応液の温度は、凡そ30℃~60℃の範囲のほぼ一定温度(例えば、所定の温度±1℃)になるように制御することが好ましい。核生成段階と粒子成長段階の反応液の温度は、同程度にしてもよい。また、反応液および反応槽内の雰囲気は、核生成段階および粒子成長段階を通じて非酸化性雰囲気に維持することが好ましい。また、反応液に含まれるNiイオン,CoイオンおよびMnイオンの合計モル数(合計イオン濃度)は、核生成段階および粒子成長段階を通じて、例えば凡そ0.5~2.5モル/Lとすることができ、凡そ1.0~2.2モル/Lとすることが好ましい。かかる合計イオン濃度が維持されるように、遷移金属水酸化物の析出速度に合わせて遷移金属溶液を補充(典型的には連続供給)するとよい。反応液に含まれるNiイオン,CoイオンおよびMnイオンの量は、目的物たる活物質粒子の組成(すなわち、該活物質粒子を構成するLiNiCoMn酸化物におけるNi,Co,Mnのモル比)に対応する量比とすることが好ましい。
≪混合工程≫
 本実施態様では、このようにして生成した遷移金属水酸化物粒子(ここでは、Ni,CoおよびMnを含む複合水酸化物粒子)を反応液から分離し、洗浄して乾燥させる。そして、この遷移金属水酸化物粒子とリチウム化合物とを所望の量比で混合して未焼成の混合物を調製する(混合工程)。この混合工程では、典型的には、目的物たる活物質粒子の組成(すなわち、該活物質粒子を構成するLiNiCoMn酸化物におけるLi,Ni,Co,Mnのモル比)に対応する量比で、Li化合物と遷移金属水酸化物粒子とを混合する。上記リチウム化合物としては、加熱により溶解し、酸化物となり得るLi化合物、例えば炭酸リチウム,水酸化リチウム等を好ましく用いることができる。
≪焼成工程≫
 そして、上記混合物を焼成して活物質粒子を得る(焼成工程)。この焼成工程は、典型的には酸化性雰囲気中(例えば大気中(空気雰囲気))で行われる。この焼成工程における焼成温度は、例えば700℃~1100℃とすることができる。最高焼成温度が800℃以上(好ましくは800℃~1100℃、例えば800℃~1050℃)となるように行われることが好ましい。この範囲の最高焼成温度によると、リチウム遷移金属酸化物(好ましくはNi含有Li酸化物、ここではLiNiCoMn酸化物)の一次粒子の焼結反応を適切に進行させることができる。
 好ましい一態様では、上記混合物を700℃以上900℃以下の温度T1(すなわち700℃≦T1≦900℃、例えば700℃≦T1≦800℃、典型的には700℃≦T1<800℃)で焼成する第一焼成段階と、その第一焼成段階を経た結果物を800℃以上1100℃以下の温度T2(すなわち800℃≦T2≦1100℃、例えば800℃≦T2≦1050℃)で焼成する第二焼成段階とを含む態様で行う。このことによって、孔開き中空構造の活物質粒子をより効率よく形成することができる。T1およびT2は、T1<T2となるように設定することが好ましい。
 第一焼成段階と第二焼成段階とは、連続させ(例えば、上記混合物を第一焼成温度T1に保持した後、引き続き第二焼成温度T2まで昇温して該温度T2に保持し)てもよく、或いは、第一焼成温度T1に保持した後、いったん冷却(例えば、常温まで冷却)し、必要に応じて解砕と篩い分けを行ってから第二焼成段階に供してもよい。
 なお、ここに開示される技術において、上記第一焼成段階は、目的とするリチウム遷移金属酸化物の焼結反応が進行し且つ融点以下の温度域であって第二焼成段階よりも低い温度T1で焼成する段階として把握することができる。また、上記第二焼成段階は、目的とするリチウム遷移金属酸化物の焼結反応が進行し且つ融点以下の温度域であって第一焼成段階よりも高い温度T2で焼成する段階として把握することができる。T1とT2との間には50℃以上(典型的には100℃以上、例えば150℃以上)の温度差を設けることが好ましい。
 このように正極活物質粒子610の製造方法は、原料水酸化物生成工程と、混合工程と、焼成工程とを含んでいる。ここでは、正極活物質粒子610の見かけの断面積のうちに占める中空部614の割合が15%以上、より好ましくは20%以上、さらに好ましくは23%以上であり、かつ、正極活物質粒子610の殻部612の厚さTが3.0μm以下、より好ましくは2.2μm以下と薄い正極活物質粒子610が安定して得られるとよい。以下に、かかる正極活物質粒子610がより安定して得られる、正極活物質粒子610の製造方法を説明する。
 正極活物質粒子610をより安定して得るには、例えば、遷移金属溶液から遷移金属水酸化物を析出させる段階(核生成段階)のpH或いはNH 濃度、および、核生成段階で析出した遷移金属水酸化物の核を成長させる段階(粒子成長段階)粒子成長段階のpH或いはNH 濃度を適切に調整するとよい。
 かかる遷移金属溶液では、例えば、以下のような、平衡反応が生じている。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
ここで、M1は、遷移金属溶液に含まれる遷移金属であり、この実施形態では、Niを含んでいる。
 すなわち、反応1の平衡反応では、遷移金属溶液中の遷移金属(M1)と、遷移金属溶液に供給されたアンモニア(NH)と、遷移金属(M1)とアンモニア(NH)の化合物([M1(NH2+)との反応が平衡している。反応2の平衡反応では、遷移金属溶液中の遷移金属(M1)と、遷移金属溶液に供給された水酸化物イオン(OH)と、遷移金属水酸化物(M1(OH))との反応が平衡している。
 この場合、遷移金属溶液中のpHが減少すると、反応2の平衡反応によって、遷移金属水酸化物(M1(OH))が析出し易くなる。この際、遷移金属溶液中のアンモニアを少なく抑え、反応1の平衡式が左辺側に進み、遷移金属溶液中の遷移金属のイオン(M1)2+を増加させることによって、遷移金属水酸化物(M1(OH))が析出し易くなる。このように、遷移金属溶液中のアンモニアを少なく抑えつつ、遷移金属溶液中のpHを減少させることによって、遷移金属水酸化物(M1(OH))が析出し易くなる。
 例えば、核生成段階では、遷移金属溶液のアンモニア(NH)の溶解度を低く抑えつつ、pHをある程度維持する。これにより遷移金属水酸化物(M1(OH))の析出速度を適切に抑えることができる。さらに、前駆体になる遷移金属水酸化物の粒子の内部の密度を低くできる。また、粒子成長段階で、遷移金属溶液のアンモニア(NH)の溶解度を低く抑えつつ、pHを減少させる。これにより、遷移金属水酸化物(M1(OH))の析出速度が核生成段階で速くなる。このため、前駆体になる遷移金属水酸化物の粒子の外表面近傍部の密度が、遷移金属水酸化物の粒子の内部の密度よりも高くなる。
 このように、核生成段階と粒子成長段階で遷移金属溶液のpHおよびアンモニア濃度(アンモニウムイオン濃度)を適宜調整することによって、粒子の内部において遷移金属水酸化物の密度を低くし、外表面近傍部において遷移金属水酸化物の密度を高くすることができる。
 ここで、核生成段階では、例えば、遷移金属溶液のpHが12以上13以下、および、粒子成長段階での水性溶液のpHが11以上12未満であるとよい。この際、好ましくは、核生成段階での遷移金属溶液のpHは、粒子成長段階よりも0.1以上、より好ましくは、0.2以上減少しているとよい。また、粒子成長段階でのアンモニア濃度(アンモニウムイオン濃度)を3g/L~10g/Lと低く抑えるとよい。これにより、遷移金属水酸化物(M1(OH))の析出速度が、粒子成長段階で、核生成段階よりも確実に速くなる。そして、遷移金属水酸化物の粒子の外表面近傍部の密度が、遷移金属水酸化物の粒子の内部の密度よりもより確実に高くなる。
 なお、核生成段階で所要の時間をとることによって、正極活物質粒子610の中空部614を大きくできる。また、粒子成長段階での遷移金属水酸化物の析出速度を速めるとともに粒子成長段階の時間を短くすることによって、正極活物質粒子610の殻部612を薄くできる。
 さらに、この場合、遷移金属溶液中のアンモニアを少なく抑えておくとよい。例えば、核生成段階での遷移金属溶液のアンモニウムイオン濃度が20g/L以下、および、粒子成長段階での遷移金属溶液のアンモニウムイオン濃度が10g/L以下であるとよい。このように、核生成段階および粒子成長段階での遷移金属溶液のアンモニウムイオン濃度を低く抑えることにより、遷移金属溶液に含まれる遷移金属のイオンの濃度を、必要量維持できる。この場合、遷移金属溶液中のアンモニアが少なすぎるのも良くない。核生成段階および粒子成長段階での、遷移金属溶液のアンモニウムイオン濃度は、例えば、3g/L以上であるとよい。
 混合工程では、遷移金属水酸化物とリチウム化合物とを混合して未焼成の混合物を調製する。焼成工程では、混合物を焼成して正極活物質粒子610を得る。ここで、正極活物質粒子610の前駆体である遷移金属水酸化物の粒子は、内部の密度が低く、外表面近傍部の密度が高い。このため、焼成工程において、前駆体である遷移金属水酸化物の粒子のうち密度が低い内部が、密度が高く機械強度が強い外表面近傍部に取り込まれるように焼結する。このため、正極活物質粒子610の殻部612が形成されるとともに、大きな中空部614が形成される。さらに、焼結時に結晶が成長する際に、殻部612の一部に殻部612を貫通した貫通孔616が形成される。これにより、図9に示すように、殻部612と、中空部614と、貫通孔616とを有する正極活物質粒子610が形成される。なお、好適には、焼成工程後に焼成物を解砕し、篩分けを行ない、正極活物質粒子610の粒径を調整するとよい。
 このように製造された正極活物質粒子610は、薄い殻部612と、広い中空部614と、殻部612を貫通し、正極活物質粒子610の中空部614と殻部612の外部とを空間的に連続させる貫通孔616を有している。かかる正極活物質粒子610は、好適な一形態として、上述した正極活物質粒子610のBET比表面積を、凡そ0.3m/g~2.2m/g程度にすることが可能である。正極活物質粒子610のBET比表面積は、より好ましくは、凡そ0.5m/g以上、さらに好ましくは、凡そ0.8m/g以上にしてもよい。また、正極活物質粒子610のBET比表面積は、例えば、凡そ1.9m/g以下、さらに好ましくは1.5m/g以下にしてもよい。
 また、かかる正極活物質粒子610は、上述したように原料水酸化物生成工程が、核生成段階と、粒子成長段階とに分かれており、殻部612の密度が高い。このため、他の製法(例えば、噴霧焼成製法(スプレードライ製法とも称される))と比べても硬く、形態安定性が高い正極活物質粒子610が得られる。
 かかる正極活物質粒子610は、例えば、直径50μmの平面ダイヤモンド圧子を使用して負荷速度0.5mN/秒~3mN/秒の条件で行われるダイナミック硬度測定において、平均硬度が0.5MPa以上である。
 また、ここに開示される活物質粒子の他の好ましい一態様では、正極活物質粒子610の平均硬度は、概ね0.5MPa以上である。ここで、平均硬度とは、直径50μmの平面ダイヤモンド圧子を使用して負荷速度0.5mN/秒~3mN/秒の条件で行われるダイナミック微小硬度測定により得られる値をいう。かかるダイナミック微小硬度測定には、例えば、株式会社島津製作所製の微小硬度計、MCT-W500を用いることができる。
 このように、正極活物質粒子610は、図9に示すように、中空構造であって且つ平均硬度の高い(換言すれば、形状維持性の高い)。かかる正極活物質粒子610は、より高い性能を安定して発揮する電池を与えるものであり得る。このため、例えば、内部抵抗が低く(換言すれば、出力特性が良く)、且つ充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)によっても抵抗の上昇の少ないリチウムイオン二次電池を構築するのに極めて好適である。
≪正極活物質粒子610を構成するリチウム遷移金属酸化物≫
 かかる正極活物質粒子610の製造では、特に、遷移金属溶液がニッケルを含んでいるとよい。遷移金属溶液がニッケルを含んでいる場合、核生成段階、粒子成長段階で遷移金属水酸化物が析出する際に、米粒のような形状の微小な一次粒子が複数集合した二次粒子の形態で、遷移金属水酸化物の粒子が生成される。また、焼成時の温度範囲において、かかる遷移金属水酸化物の一次粒子の形状を概ね維持しつつ結晶が成長する。
 なお、遷移金属溶液がニッケルを全く含んでおらず、コバルトを含んでおり、焼成によりコバルト酸リチウム(LiCoO)の粒子が生成される場合には、一次粒子の形状を維持することができずに、粒子全体が焼結されてしまう。このため、上述したような大きな中空部614を有する正極活物質粒子610(図9参照)が得られ難い。
 このように、正極活物質粒子610を安定して製造するためには、リチウム遷移金属酸化物は、好適にはニッケルを構成元素として含む層状構造の化合物であるとよい。ニッケルを含んでいることによって、内部の密度が低く、外表面近傍部の密度が高い遷移金属水酸化物の粒子(前駆体粒子)を形成することができる。そして、かかる内部の密度が低く、外表面近傍部の密度が高い前駆体粒子を基に、焼成工程において、一次粒子の形状を概ね維持しつつ結晶を成長させることができる。これにより、殻部612と、中空部614と、貫通孔616とを有する正極活物質粒子610(図9参照)を作製することができる。
 この場合、正極活物質粒子610に含まれる遷移金属中、ニッケルの割合(組成比)は、凡そ0.1%以上、より好ましくは0.25%以上であるとよい。
 また、リチウム遷移金属酸化物は、ニッケル、コバルトおよびマンガンを構成元素として含む層状構造の化合物であってもよい。例えば、リチウム遷移金属酸化物は、Li1+xNiCoMn(1-y-z)γとして含む層状構造の化合物であるとよい。ここで、0≦x≦0.2、0.1<y<0.9、0.1<z<0.4であり、Mは、添加物であり、0≦γ≦0.03である。例えば、Mは、Zr、W、Mg、Ca、Na、Fe、Cr、Zn、Si、Sn、Al、BおよびFからなる群より選ばれた少なくとも一種類の添加物であるとよい。かかるリチウム遷移金属酸化物は、層状構造の化合物を構成しており、層間にリチウムイオンを保持できる。また、上述した殻部612と中空部614と貫通孔616を有する正極活物質粒子610を製造するのに特に好適である。
 これによって、例えば、正極活物質粒子610の見かけの断面積のうちに占める中空部614の割合が15%以上、好ましくは23%以上と中空部614の割合が大きく、かつ、正極活物質粒子610の殻部612の厚さTが3.0μm以下、好ましくは2.2μm以下と薄い正極活物質粒子610を安定して得ることができる。
 この場合、正極活物質粒子610の中空部614が大きく、正極活物質層223中の正極活物質粒子610の中空部614まで、電解液280(図7、図8参照)が十分に浸み渡るようになる。さらに、正極活物質粒子610の殻部612が薄いので、当該殻部612の内部(活物質内部)へのリチウムイオンの拡散が速い。このため、リチウムイオン二次電池100は、低い充電量であっても高い出力を安定して発揮できる。
 この場合、殻部612の厚さが、例えば、0.05μm以上、より好ましくは0.1μm以上であるとよい。殻部612の厚さが0.05μm以上、より好ましくは0.1μm以上であると、正極活物質粒子610に所要の機械強度が得られる。正極活物質粒子610は、リチウムイオンの放出と吸収が繰り返されると、膨張と収縮が生じる。かかる膨張収縮に対しても十分な強度を確保できる。このため、正極活物質粒子610の耐久性が向上し、リチウムイオン二次電池100の性能が長期に安定し得る。
 また、貫通孔616の開口幅が平均0.01μm以上であるとよい。ここで、貫通孔616の開口幅は、該貫通孔616が正極活物質粒子610の外部から中空部614に至る経路で最も狭い部分における差渡し長さである。貫通孔616の開口幅が平均0.01μm以上であると、貫通孔616を通して外部から中空部614に電解液280(図7又は図8参照)が十分に入り得る。これにより、リチウムイオン二次電池100の電池性能を向上させる効果をより適切に発揮することができる。
 この正極活物質粒子610のような薄い殻部612、広い中空部614、および、開口幅が広い貫通孔616は、例えば、通常、他の製法(例えば、噴霧焼成製法(スプレードライ製法とも称される))では実現されない。
 なお、上記開口サイズの平均値(平均開口サイズ)は、例えば、少なくとも10個の正極活物質粒子610について、該正極活物質粒子610の有する貫通孔616の一部個数または全個数の開口サイズを把握し、それらの算術平均値を求めることにより得ることができる。また、貫通孔616は、電解液280が中空部614に浸み込むのに適していればよく、正極活物質層223の平均において、貫通孔616の開口幅は凡そ2.0μm以下、より好ましくは凡そ1.8μm以下であるとよい。また、貫通孔616の開口幅は、正極活物質層223の平均において、凡そ0.01μm以上、より好ましくは凡そ0.1μm以上であるとよい。
 このリチウムイオン二次電池100では、正極活物質粒子610は、上述したように殻部612と、中空部614と、貫通孔616とを有している。さらに、本発明者は、正極活物質粒子610の一次粒子800の長径L1を0.8μm以下、例えば、0.7μm以下にすることを提案している。かかる正極活物質粒子610を用いることによって、特に低SOC領域において、リチウムイオン二次電池100の出力を向上させることができる。
≪一次粒子800の長径L1の制御≫
 本発明者は、鋭意検討したところでは、例えば、上述した製造方法において、正極活物質粒子610の一次粒子800の長径L1は、焼成温度および焼成時間によって左右される。本発明者は、凡そ750℃~950℃程度の焼成温度にて、5時間~15時間の焼成時間で焼成するのが適当と考えている。また、正極活物質粒子610の一次粒子800の長径L1は、正極活物質粒子610に含まれる遷移金属(Me)に対するLiの量によっても変動し得る。本発明者は、遷移金属(Me)に対するLiの量は、モル比(Li/Me)=1.03~1.22で調整するとよい。この場合、モル比(Li/Me)は、好ましくは1.05以上、例えば、1.07以上とするとよい。また、この場合、モル比(Li/Me)は、好ましくは1.20以下、例えば、1.18以下にするとよい。
≪タングステンの添加≫
 また、本発明者の知見によれば、上述したように正極活物質粒子610の一次粒子800の長径L1を0.8μm以下にするには、さらに正極活物質粒子610にタングステンが添加されていることが好ましい。
 さらに正極活物質粒子610にタングステンを添加する場合においては、タングステンの添加量によっても、正極活物質粒子610の一次粒子800の長径L1を調整できることを見出した。すなわち、一次粒子800の長径L1を0.8μm以下の正極活物質粒子610を得るには、上述したようなニッケル、コバルトおよびマンガンを構成元素として含む層状構造のリチウム遷移金属酸化物では、遷移金属に対して0.05mol%~2.0mol%のタングステンが添加されているとよい。タングステンの添加量は、例えば、遷移金属に対するタングステンして0.1mol%以上、より好ましくは0.2mol%以上とするとよい。また、タングステンの添加量は、例えば、1.5mol%以下としてもよく、また1.0mol%以下としてもよい。これにより、正極活物質粒子610の一次粒子800の長径L1を0.8μm以下にすることが容易になる。
 表1は、実質的に正極活物質粒子610、正極活物質層223の密度、負極活物質層243の密度のみが異なる評価用電池の複数のサンプルについて、正極活物質粒子610の一次粒子800の長径L1、殻部612の厚さ、粒子空孔率(断面積比)、-30℃、SOC27%における出力(W)、ハイレートサイクル抵抗上昇率、高温保存後の容量維持率(%)をそれぞれ測定した結果を示している。
Figure JPOXMLDOC01-appb-T000003
≪リチウム遷移金属酸化物の一次粒子≫
 ここで、リチウム遷移金属酸化物の一次粒子800(図13参照)は、正極活物質粒子610を二次粒子とし、かかる二次粒子としての正極活物質粒子610を形成し、かつ、外見上の幾何学的形態から判断して、単位粒子(ultimate particle)と考えられる粒子形態を一次粒子800としている。なお、一次粒子800は、さらにリチウム遷移金属酸化物の結晶子の集合物である。
 ここで、図12は、正極活物質層223を折り曲げて割った断面のSEM画像である。図13は、当該断面のSEM画像から正極活物質粒子610を拡大した画像である。一次粒子800は、例えば、図12および図13に示すように、正極活物質層223を折り曲げて割った断面のSEM画像を基に観察することができる。また、一次粒子800は、正極活物質粒子610の電子顕微鏡写真や正極活物質粒子610の粒子表面のSEM画像などを基に観察してもよい。ここで、正極活物質層223を割った断面のSEM画像や、正極活物質粒子610の電子顕微鏡写真や正極活物質粒子610の粒子表面のSEM画像などは、例えば、日立超高分解能電解放出形走査顕微鏡S5500によって得ることができる。
≪一次粒子800の長径L1≫
 また、一次粒子800の長径L1は、例えば、図13に示すように、正極活物質層223を折り曲げて割った断面のSEM画像によって観察される正極活物質粒子610を基に測定することが可能である。また、正極活物質粒子610の電子顕微鏡写真や正極活物質粒子610の粒子表面のSEM画像を基に測定してもよい。ここで、正極活物質粒子610の粒子表面のSEM画像を基に一次粒子800の長径L1を測定する場合には、図13に示すように、二次粒子である正極活物質粒子610の粒子表面のSEM画像から一次粒子800の長径L1を特定するのに適当な一次粒子800を特定するとよい。
 すなわち、二次粒子である正極活物質粒子610の粒子表面のSEM画像には、複数の一次粒子800が写っている。このうち、面積が大きな順に一次粒子800を並べて、面積が大きな一次粒子800を複数個抽出するとよい。これにより、当該粒子表面のSEM画像において、概ね最も長い長径L1に沿った外形が写った一次粒子800を抽出することができる。そして、図14に示すように、当該抽出された一次粒子800において最も長い長軸の長さを決め、これを一次粒子800の長径L1とする。また、かかる長軸に直交する軸で最も短い短軸の長さを一次粒子800の短径L2とする。
 ここで、正極活物質粒子610について、一次粒子800の長径L1および短径L2という場合には、単一の正極活物質粒子610に含まれる複数の一次粒子800における算術平均で評価される。また、正極活物質層223では、さらに正極活物質層223に含まれる複数の正極活物質粒子610についての算術平均で評価される。
≪殻部の厚さ≫
 ここで、殻部612の厚さとは、図9に示すように、正極活物質または該活物質粒子を含む材料の断面SEM画像において、殻部612の内側面(ただし、貫通孔616に相当する部分は内側面に含めない。)の任意の位置kから殻部612の外側面への最短距離T(k)の平均値を指す。より具体的には、殻部612の内側面の複数の位置について上記最短距離T(k)を求め、それらの算術平均値を算出するとよい。この場合、上記最短距離T(k)を求めるポイントの数を多くするほど、殻部612の厚さTが平均値に収束し、殻部612の厚みを適切に評価することができる。通常は、少なくとも10個(例えば20個以上)の正極活物質粒子610に基づいて殻部612の厚さを求めることが好ましい。また、少なくともサンプルの(例えば正極活物質素の)任意の3箇所(例えば5箇所以上)の断面におけるSEM画像に基づいて殻部612の厚さを求めることが好ましい。また、正極活物質粒子610の殻部612の厚さは、例えば、正極活物質層223の凡その平均(算術平均値)において評価するとよい。例えば、正極活物質層223の複数の断面SEM画像を基に、正極活物質粒子610の殻部612の厚さを求め、その平均値(算術平均値)で求めるとよい。
≪粒子空孔率≫
 ここで、「粒子空孔率」とは、正極活物質をランダムな位置で切断した断面の平均において、該活物質の見かけの断面積のうち中空部が占める割合をいう。この割合は、例えば、正極活物質粒子または該活物質粒子を含む材料の適当な断面における走査型電子顕微鏡(SEM)画像を通じて把握することができる。かかる断面SEM画像は、例えば、正極活物質粒子または該活物質粒子を含む材料を適当な樹脂(好ましくは熱硬化性樹脂)で固めたサンプルを切断し、その断面をSEM観察することにより得ることができる。該断面SEM画像では、色調あるいは濃淡の違いによって、活物質粒子の殻部と、中空部と、貫通孔とを区別することができる。上記サンプルの任意の断面SEM画像に表れた複数の活物質粒子について、それらの活物質粒子の中空部が占める面積CVと、それらの活物質粒子が見かけの上で占める断面積CTとの比(CV/CT)を得る。ここで、活物質粒子が見かけの上で占める断面積CTとは、活物質粒子の殻部、中空部および貫通孔が占める断面積を指す。かかる比(CV/CT)によって、活物質粒子の見かけの体積のうち中空部が占める割合(すなわち粒子空孔率)が概ね求められる。この場合、粒子空孔率は、正極活物質層223の凡その平均値で評価するとよい。従って、正極活物質層223の複数の断面SEM画像を基に、上述した比(CV/CT)の平均値(算術平均値)で求めるとよい。
≪コンディショニング≫
 ここでは、上記のように構築した評価用電池について、コンディショニング工程、定格容量の測定、SOC調整を順に説明する。
 コンディショニング工程は、次の手順1、2によって行なわれる。
手順1:1Cの定電流充電にて4.1Vに到達した後、5分間休止する。
手順2:手順1の後、定電圧充電にて1.5時間充電し、5分間休止する。
≪定格容量の測定≫
 次に、定格容量は、上記コンディショニング工程の後、評価試験用の電池について、温度25℃、3.0Vから4.1Vの電圧範囲で、次の手順1~3によって測定される。
手順1:1Cの定電流放電によって3.0Vに到達後、定電圧放電にて2時間放電し、その後、10秒間休止する。
手順2:1Cの定電流充電によって4.1Vに到達後、定電圧充電にて2.5時間充電し、その後、10秒間休止する。
手順3:0.5Cの定電流放電によって、3.0Vに到達後、定電圧放電にて2時間放電し、その後、10秒間停止する。
定格容量:手順3における定電流放電から定電圧放電に至る放電における放電容量(CCCV放電容量)を定格容量とする。この評価用電池では、定格容量が凡そ3.8Ahになる。
≪SOC調整≫
 SOC調整は、次の1、2の手順によって調整される。ここで、SOC調整は、上記コンディショニング工程および定格容量の測定の後で行なうとよい。また、ここでは、温度による影響を一定にするため、25℃の温度環境下でSOC調整を行なっている。
手順1:3Vから1Cの定電流で充電し、定格容量の凡そ60%の充電状態(SOC60%)にする。
手順2:手順1の後、2.5時間、定電圧充電する。
これにより、評価用電池は、所定の充電状態に調整することができる。
 ここでは、複数サンプルの評価用電池を用意して、評価用電池のいくつかの性能を比較した。
≪-30℃、かつ、SOC27%の充電状態での出力特性≫
 ここでは、低温かつ低い充電状態での出力特性を評価するために、評価用電池の性能として「-30℃、かつ、SOC27%の充電状態での出力特性」を評価した。-30℃、かつ、SOC27%の充電状態での出力特性は、以下の手順によって求められる。
手順1[SOC調整]:SOC調整として、常温(ここでは、25℃)の温度環境において、1C定電流充電によってSOC27%(ここでは、電池電圧値3.553V)に調整する。次に、定電圧充電で1時間充電する。
手順2[-30℃にて6時間放置]:上記手順1の後、SOC27%に調整した電池を-30℃の恒温槽にて6時間放置する。
手順3[定ワット放電]:上記手順2の後、-30℃の温度環境において、定ワット(W)にて放電する。この際、放電開始から電圧が2.0Vになるまでの秒数を測定する。
手順4[繰り返し]:手順3の定ワット放電電圧を80W~200Wの条件で変えながら、上記手順1~3を繰り返す。ここでは、手順3の定ワット放電電圧を、1回目80W、2回目90W、3回目100W・・・と、定ワット放電電圧を10Wずつ上げていきながら、手順3の定ワット放電電圧が200Wになるまで、上記手順1~3を繰り返す。ここでは、手順3の定ワット放電電圧を10Wずつ上げている。これに限らず、手順3の定ワット放電電圧を、一定のワット数ずつ(例えば、5Wずつ、あるいは、15Wずつ)上げてもよいし、例えば、500Wから一定のワット数ずつ(例えば、5Wずつ、10Wずつ、あるいは、15Wずつ)下げてもよい。
手順5[出力特性の算出]:例えば、図15に示すように、上記手順4での定ワットの条件にて測定された2.0Vまでの秒数を横軸にとり、その時のワット数(W)を縦軸にとったプロットの近似曲線から2秒時のワット数(W)を、ここでは、「-30℃、SOC27%における出力(W)」として算出する。
 かかる出力特性は、SOC27%程度の低い充電量で、かつ、-30℃という極めて低い低温の環境に所定時間放置された場合において、評価用電池が発揮し得る出力を示している。このため、出力特性1は、Wの値が高ければ高いほど、評価用電池が高い出力を発揮し得ることを示している。また、出力特性1は、Wの値が高ければ高いほど、SOC27%程度の低い充電量でも安定した出力が得られることを示している。
≪ハイレートサイクル抵抗上昇率≫
 次に、かかる評価用セルについて、所定の充放電サイクル後の抵抗上昇率を評価した。ここでは、評価用セルについて、上記コンディショニング後、25℃の温度環境においてIV抵抗を測定し、これを「初期抵抗」とする。次に、-15℃の温度環境において、所定の充放電サイクルを実施し、初期抵抗と同様に25℃の温度環境においてIV抵抗を測定し、これを「サイクル後抵抗」とする。「充放電サイクル後の抵抗上昇率」は、「サイクル後抵抗」が「初期抵抗」に比べてどの程度上昇したかを評価する評価値であり、「サイクル後抵抗」/「初期抵抗」で求められる値である。
≪充放電サイクル≫
 ここで、図16は、当該特性評価試験における、充放電サイクルを示している。
 以下、(I)~(V)からなる充放電サイクルの1サイクルを説明する。
(I)20C(ここでは4.4A)の定電流で10秒間放電させる。
(II)5秒間休止する。
(III)1Cの定電流で200秒間充電する。
(IV)145秒間休止する。
(V)サイクル毎に(I)の放電における抵抗の上昇率を測定する。
ただし、(I)~(V)からなる充放電サイクルの1サイクルを100回繰り返す毎に、上記SOC調整にてSOC60%に調整する。
≪IV抵抗測定≫
 ここで、充放電サイクル前の初期抵抗と、充放電サイクル後のサイクル後抵抗を測定する。抵抗は、IV抵抗で評価した。かかるIV抵抗の測定は、25℃の温度環境で、それぞれ評価用セルをSOC60%に調整する。そして、10分間休止させた後で、評価用セルを30Cの定電流で10秒間放電した(CC放電)。ここで、放電時の下限電圧は、3.0Vとした。この際、V=IRの傾き(R=V/I)をIV抵抗とした。
≪高温保存後の容量維持率(%)≫
 ここで、容量維持率(保存後容量維持率)は、所定の充電状態に調整された評価用セルを所定環境で所定時間保存した後、初期容量と同じ条件で放電容量(以下、適宜に「保存後容量」という。)を測定し、比(保存後容量)/(初期容量)で求められる。ここでは、「保存後容量」は、SOC90%に調整した後、60℃の温度環境で30日間保存した評価用セルを基に測定した放電容量である。
「保存後容量維持率」=(保存後容量)/(初期容量)×100(%);
 例えば、表1に示すサンプル1~サンプル10は、粒子空孔率が15%以上と、纏まりのある中空部を有し、かつ、正極活物質層223の密度Aが、1.85g/cm≦A≦2.35g/cmであり、負極活物質層の密度Bが、0.95g/cm≦B≦1.25g/cmである。この場合、-30℃、SOC27%における出力(W)も相当程度高い出力が得られ、ハイレートサイクル抵抗上昇率についても、1.20以下と低く抑えられ、さらに高温保存後の容量維持率(%)についても、凡そ90%を維持できる。
 これに対して、例えば、サンプル11は、正極活物質層223の密度Aが1.75g/cm未満であり、特に、ハイレートサイクル抵抗上昇率が凡そ1.60と高くなる傾向がある。また、サンプル12は、正極活物質層223の密度Aが1.80g/cm以上であり、ハイレートサイクル抵抗上昇率が凡そ1.31程度になり上昇が緩和される。
 また、例えば、サンプル13~15に示すように、正極活物質層223の密度Aが2.42g/cm以上であり、特に、ハイレートサイクル抵抗上昇率が凡そ1.55よりも高くなる傾向がある。サンプル13~15に示すように、正極活物質層223の密度Aが2.42g/cm以上である場合、当該正極活物質層223の密度Aが高くなればなるほど、特に、ハイレートサイクル抵抗上昇率が高くなる傾向がある。
 また、サンプル16~サンプル20に示すように、負極活物質層の密度Bが、1.42g/cmよりも高い場合、高温保存後の容量維持率(%)が凡そ87%以下になり、容量維持率が低下する傾向がある。この場合、サンプル16~サンプル20に示すように、当該負極活物質層243の密度Bが高くなればなるほど、高温保存後の容量維持率(%)が低下する傾向が見られる。
 また、サンプル21~サンプル31は、正極活物質粒子610の粒子空孔率が凡そ4%程度であり、いわゆる中実の正極活物質粒子が採用されている。この場合、-30℃、SOC27%における出力(W)、ハイレートサイクル抵抗上昇率、高温保存後の容量維持率(%)の点で全ての性能を満足に得ることが難しい。
 例えば、サンプル21~23、27~29などは、-30℃、SOC27%における出力(W)の点で、劣る傾向があり、サンプル24~26では、ハイレートサイクル抵抗上昇率が高くなる傾向があり、サンプル29~31では、ハイレートサイクル抵抗上昇率が高くなり、かつ、高温保存後の容量維持率(%)が低下する傾向がある。このように、正極活物質粒子610の粒子空孔率が、いわゆる中実の正極活物質粒子である場合には、-30℃、SOC27%における出力(W)、ハイレートサイクル抵抗上昇率、あるいは、高温保存後の容量維持率(%)の点で、十分な性能が得られない場合がある。
 このように、正極活物質粒子610は、孔開き中空構造の正極活物質粒子を採用するとよい。また、正極活物質層223の密度Aは凡そ1.80g/cm≦A、より好ましくは凡そ1.85g/cm≦Aであるとよい。また、正極活物質層223の密度Aは凡そA≦2.35g/cm、より好ましくは凡そA≦2.30であるとよい。さらに、負極活物質層243の密度Bは凡そ0.95g/cm≦B、より好ましくは凡そ1.00g/cm≦B、さらに好ましくは凡そ1.10g/cm≦Bであるとよい。また、負極活物質層243の密度Bは凡そB≦1.25g/cm、より好ましくは凡そB≦1.22g/cmであるとよい。
 これにより、-30℃、SOC27%における出力(W)について相当程度高い出力が得られ、ハイレートサイクル抵抗上昇率についても1.20以下と低く抑えられ、さらに高温保存後の容量維持率(%)についても凡そ90%以上を維持できるリチウムイオン二次電池100を提供することができる。
 また、この場合、特に、好適には、正極活物質層の平均において、前記正極活物質粒子の粒子空孔率が15%以上であってもよい。また、正極活物質層の任意の断面において、殻部の内側面の任意の位置における殻部の厚さを、当該殻部の内側面の任意の位置から殻部の外側面への最短距離とした場合において、正極活物質層の平均において殻部の厚さが3.0μm以下であってもよい。また、殻部の厚さは0.1μm以上であってもよい。また、正極活物質層の平均において、リチウム遷移金属酸化物の一次粒子の長径が0.8μm以下であってもよい。また、この場合、リチウム遷移金属酸化物の一次粒子の長径が0.2μm以上であってもよい。また、貫通孔の開口幅が、正極活物質層の平均において、0.01μm以上2.0μm以下であってもよい。
 これにより、-30℃、SOC27%における出力(W)について相当程度高い出力や、ハイレートサイクル抵抗上昇率や、高温保存後の容量維持率(%)について、リチウムイオン二次電池の性能をより安定させることができる。
 また、この場合、リチウム遷移金属酸化物は、Ni,CoおよびMnのうち少なくとも一種の金属元素を含んでいてもよい。また、リチウム遷移金属酸化物は、Ni,CoおよびMnを含んでいてもよい。また、好適な形態として、リチウム遷移金属酸化物は、Li1+xNiCoMn(1-y-z)γであってもよい。ここで、0≦x≦0.2、0.1<y<0.9、0.1<z<0.4、0≦γ≦0.03であり、Mは、Zr、W、Mg、Ca、Na、Fe、Cr、Zn、Si、Sn、Al、BおよびFからなる群より選ばれた少なくとも一種類の添加物である。また、この場合、特に、リチウム遷移金属酸化物は、Wを含んでおり、Ni,CoおよびMnの合計モル数mMTをモル百分率で100モル%としたとき、Wの含有量mMAが0.05モル%~2モル%であるとよい。
 なお、正極活物質層は、例えば、正極活物質粒子に加えて、導電材と、PVDFとを含み、正極活物質粒子が86質量%以上94質量%以下、導電材が6質量%以上10質量%以下、PVDFが1質量%以上4質量%以下であってもよい。また、負極活物質層は、例えば、負極活物質粒子が97質量%以上99質量%以下であってもよい。
 また、正極活物質粒子は、上述したように、遷移金属化合物の水性溶液にアンモニウムイオンを供給して、遷移金属水酸化物の粒子を前記水性溶液から析出させる原料水酸化物生成工程、ここで、水性溶液は、リチウム遷移金属酸化物を構成する遷移金属元素の少なくとも一つを含む;遷移金属水酸化物とリチウム化合物とを混合して未焼成の混合物を調製する混合工程;および、混合物を焼成して前記活物質粒子を得る焼成工程;を包含する製造方法によって製造された正極活物質粒子であるとよい。これにより、孔開き中空構造の正極活物質粒子が安定して得られる。
 以上、本発明の一実施形態に係るリチウムイオン二次電池100を説明したが、本発明の一実施形態に係るリチウムイオン二次電池100は、特に限定されない限りにおいて、上述した形態に限定されない。
 上述したように、本発明の実施形態に係るリチウムイオン二次電池は、-30℃、SOC27%における出力(W)、ハイレートサイクル抵抗上昇率、高温保存後の容量維持率(%)について、性能向上に寄与する。このため、本発明の実施形態に係るリチウムイオン二次電池は、特に、これらの性能について要求されるレベルが高いハイブリッド車、さらには、特に容量について要求されるレベルが高い、プラグインハイブリッド車若しくは電気自動車の駆動用電池など、高容量かつ高出力を要する車両駆動電源用の二次電池に好適である。
 この場合、例えば、図17に示すように、二次電池の複数個を接続して組み合わせた組電池の形態で、自動車などの車両1のモータ(電動機)を駆動させる車両駆動用電池1000として好適に利用され得る。特に、本発明の実施形態に係るリチウムイオン二次電池は、低い充電量でも安定して高い出力を発揮することができ、より低い充電量での使用に耐えうる。このため、電池を効率よく使用することができるとともに、容量について要求されるレベルが高い場合でも、使用する電池の数を少なくでき、コストダウンを図ることができる。さらに、本発明の実施形態に係るリチウムイオン二次電池は、低い温度環境でも高い出力を発揮し得る。このように、本発明の実施形態に係るリチウムイオン二次電池100は、車両駆動用電池1000として特に好適である。
1 車両
100 リチウムイオン二次電池
200 捲回電極体
220 正極シート
221 正極集電体
222 未塗工部
223 正極活物質層
240 負極シート
241 負極集電体
242 未塗工部
243 負極活物質層
262、264 セパレータ
280 電解液
290 充電器
300 電池ケース
310 隙間
320 容器本体
340 蓋体
350 注液孔
352 封止キャップ
360 安全弁
420 電極端子
440 電極端子
610 正極活物質粒子
612 殻部
614 中空部
616 貫通孔
620 導電材
630 バインダ
710 負極活物質粒子
730 バインダ
800 正極活物質粒子610の一次粒子
1000 車両駆動用電池

Claims (15)

  1.  正極集電体と、
     前記正極集電体に保持された、正極活物質粒子を含む正極活物質層と、
     負極集電体と、
     前記負極集電体に保持され、黒鉛材料で構成された負極活物質粒子を含む負極活物質層と
    を備え、
     前記正極活物質粒子は、
       層状のリチウム遷移金属酸化物で構成された殻部と、
       前記殻部の内部に形成された中空部と、
       前記殻部を貫通した貫通孔と
    を有しており、
     前記正活物質層の密度Aが、1.80g/cm≦A≦2.35g/cmであり、
     前記負極活物質層の密度Bが、0.95g/cm≦B≦1.25g/cmである、
    リチウムイオン二次電池。
  2.  前記正極活物質層の任意の断面において、前記殻部の内側面の任意の位置における前記殻部の厚さを、当該殻部の内側面の任意の位置から前記殻部の外側面への最短距離とした場合において、前記正極活物質層の平均において前記殻部の厚さが3.0μm以下である、請求項1に記載されたリチウムイオン二次電池。
  3.  前記正極活物質層の平均において、前記正極活物質粒子の粒子空孔率が15%以上である、請求項1または2に記載されたリチウムイオン二次電池。
  4.  前記殻部の厚さは0.1μm以上である、請求項1から3までの何れか一項に記載されたリチウムイオン二次電池。
  5.  前記正極活物質層の平均において、前記リチウム遷移金属酸化物の一次粒子の長径が0.8μm以下である、請求項1から4までの何れか一項に記載されたリチウムイオン二次電池。
  6.  前記リチウム遷移金属酸化物の一次粒子の長径が0.2μm以上である、請求項5に記載されたリチウムイオン二次電池。
  7.  前記貫通孔の開口幅が、前記正極活物質層の平均において、0.01μm以上2.0μm以下である、請求項1から6までの何れか一項に記載されたリチウムイオン二次電池。
  8.  前記リチウム遷移金属酸化物は、Ni,CoおよびMnのうち少なくとも一種の金属元素を含む、請求項1から7までの何れか一項に記載されたリチウムイオン二次電池。
  9.  前記リチウム遷移金属酸化物は、Ni,CoおよびMnを含む、請求項1から8までの何れか一項に記載されたリチウムイオン二次電池。
  10.  前記リチウム遷移金属酸化物は、Li1+xNiCoMn(1-y-z)γであり、
     ここで、0≦x≦0.2、0.1<y<0.9、0.1<z<0.4、0≦γ≦0.03であり、
     前記Mは、Zr、W、Mg、Ca、Na、Fe、Cr、Zn、Si、Sn、Al、BおよびFからなる群より選ばれた少なくとも一種類の添加物である、請求項9に記載されたリチウムイオン二次電池。
  11.  前記リチウム遷移金属酸化物は、Wを含んでおり、Ni,CoおよびMnの合計モル数mMTをモル百分率で100モル%としたとき、前記Wの含有量mMAが0.05モル%~2モル%である、請求項8から10までの何れか一項に記載されたリチウムイオン二次電池。
  12.  前記正極活物質層は、前記正極活物質粒子に加えて、導電材と、PVDFとを含み、前記正極活物質粒子が86質量%以上94質量%以下、前記導電材が6質量%以上10質量%以下、前記PVDFが1質量%以上4質量%以下である、請求項1から11までの何れか一項に記載されたリチウムイオン二次電池。
  13.  前記負極活物質層は、前記負極活物質粒子が97質量%以上99質量%以下である、請求項1から12までの何れか一項に記載されたリチウムイオン二次電池。
  14.  前記正極活物質粒子は、遷移金属化合物の水性溶液にアンモニウムイオンを供給して、前記遷移金属水酸化物の粒子を前記水性溶液から析出させる原料水酸化物生成工程、ここで、前記水性溶液は、前記リチウム遷移金属酸化物を構成する遷移金属元素の少なくとも一つを含む;
     前記遷移金属水酸化物とリチウム化合物とを混合して未焼成の混合物を調製する混合工程;および、
    前記混合物を焼成して前記活物質粒子を得る焼成工程;
    を包含する製造方法によって製造された正極活物質粒子である、請求項1から13までの何れか一項に記載されたリチウムイオン二次電池。
  15.  車両の駆動用電源として用いられる、請求項1から14までの何れか一項に記載されたリチウムイオン二次電池。
PCT/JP2012/058664 2012-03-30 2012-03-30 リチウムイオン二次電池 WO2013145290A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/058664 WO2013145290A1 (ja) 2012-03-30 2012-03-30 リチウムイオン二次電池
US14/388,894 US9882207B2 (en) 2012-03-30 2012-03-30 Lithium-ion secondary battery
CN201280072055.2A CN104205466B (zh) 2012-03-30 2012-03-30 锂离子二次电池
JP2014507251A JP5904382B2 (ja) 2012-03-30 2012-03-30 リチウムイオン二次電池
DE112012006167.5T DE112012006167B4 (de) 2012-03-30 2012-03-30 Lithium-Ionen-Sekundärbatterie
CN201710153825.0A CN107134562A (zh) 2012-03-30 2012-03-30 锂离子二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058664 WO2013145290A1 (ja) 2012-03-30 2012-03-30 リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2013145290A1 true WO2013145290A1 (ja) 2013-10-03

Family

ID=49258653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058664 WO2013145290A1 (ja) 2012-03-30 2012-03-30 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US9882207B2 (ja)
JP (1) JP5904382B2 (ja)
CN (2) CN104205466B (ja)
DE (1) DE112012006167B4 (ja)
WO (1) WO2013145290A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138729A (ja) * 2014-01-24 2015-07-30 トヨタ自動車株式会社 リチウムイオン二次電池
CN105098170A (zh) * 2014-05-20 2015-11-25 三星Sdi株式会社 活性物质前驱体、其制备方法和由其形成的活性物质
JP2016095934A (ja) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 二次電池
JP2017037744A (ja) * 2015-08-07 2017-02-16 日立マクセル株式会社 非水電解質二次電池
CN106450425A (zh) * 2015-08-06 2017-02-22 丰田自动车株式会社 非水电解液二次电池
JP2017107796A (ja) * 2015-12-11 2017-06-15 株式会社デンソー 非水電解質二次電池
JP2017107795A (ja) * 2015-12-11 2017-06-15 株式会社デンソー 非水電解質二次電池
JP2018536972A (ja) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
EP3267517A4 (en) * 2015-03-03 2019-01-09 Sumitomo Metal Mining Co., Ltd. POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE AND METHOD FOR THE PRODUCTION THEREOF
CN111725482A (zh) * 2020-07-27 2020-09-29 江西星盈科技有限公司 一种厚电极和电池
CN113097441A (zh) * 2021-03-31 2021-07-09 宁德新能源科技有限公司 电化学装置及电子装置
JP2022510305A (ja) * 2018-11-30 2022-01-26 エルジー・ケム・リミテッド リチウム二次電池用正極活物質前駆体の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300117A (zh) * 2014-11-10 2015-01-21 厦门首能科技有限公司 一种用于锂离子电池的阴极组合物及其制备方法
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10276868B2 (en) 2015-12-11 2019-04-30 Denso Corporation Non-aqueous electrolyte rechargeable battery
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6943985B2 (ja) * 2018-02-02 2021-10-06 本田技研工業株式会社 固体電池用正極電極、固体電池、及び固体電池の製造方法
JP2019175721A (ja) 2018-03-29 2019-10-10 三洋電機株式会社 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
KR102288293B1 (ko) * 2018-06-20 2021-08-10 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
KR102288295B1 (ko) * 2018-06-20 2021-08-10 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
KR102290959B1 (ko) * 2018-06-20 2021-08-19 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
KR102288294B1 (ko) * 2018-06-20 2021-08-10 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
JP7222002B2 (ja) * 2021-01-29 2023-02-14 プライムプラネットエナジー&ソリューションズ株式会社 正極活物質複合粒子および正極板の製造方法および正極活物質複合粒子の製造方法
CN113066956B (zh) * 2021-03-17 2022-06-10 宁德新能源科技有限公司 电化学装置及电子装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321300A (ja) * 1995-03-17 1996-12-03 Canon Inc リチウムを利用する二次電池
JPH1074516A (ja) * 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JP2009205974A (ja) * 2008-02-28 2009-09-10 Agc Seimi Chemical Co Ltd リチウムイオン二次電池正極活物質用リチウムコバルト複合酸化物の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872450B9 (en) * 1997-04-15 2004-09-15 SANYO ELECTRIC Co., Ltd. Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery
US6699618B2 (en) * 2000-04-26 2004-03-02 Showa Denko K.K. Cathode electroactive material, production method therefor and secondary cell
KR100674287B1 (ko) * 2005-04-01 2007-01-24 에스케이 주식회사 핵·껍질 다층구조를 가지는 리튬이차전지용 양극 활물질,그 제조 방법 및 이를 사용한 리튬이차전지
JP2007220670A (ja) * 2006-01-23 2007-08-30 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2008025748A (ja) 2006-07-24 2008-02-07 Ntn Corp 免震装置
JP5097415B2 (ja) 2007-03-06 2012-12-12 日立粉末冶金株式会社 リチウム二次電池
JP2009064714A (ja) * 2007-09-07 2009-03-26 Toyota Motor Corp 電極体およびそれを用いたリチウム二次電池
US20090104517A1 (en) * 2007-10-17 2009-04-23 Toyotaka Yuasa Cathode active material and lithium ion secondary battery containing the same
JP4901807B2 (ja) * 2008-05-20 2012-03-21 トヨタ自動車株式会社 リチウム二次電池
JP4766348B2 (ja) * 2008-10-10 2011-09-07 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
US9099738B2 (en) * 2008-11-03 2015-08-04 Basvah Llc Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
CN102484290A (zh) * 2009-09-25 2012-05-30 丰田自动车株式会社 锂二次电池和其制造方法
JP5175826B2 (ja) 2009-12-02 2013-04-03 トヨタ自動車株式会社 活物質粒子およびその利用
JP5627250B2 (ja) 2010-02-25 2014-11-19 日立オートモティブシステムズ株式会社 リチウムイオン電池
WO2011122448A1 (ja) 2010-03-29 2011-10-06 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質の前駆体、ならびに該正極活物質を用いた非水系電解質二次電池
KR101504051B1 (ko) 2010-11-12 2015-03-18 도요타지도샤가부시키가이샤 이차 전지
JP5598726B2 (ja) 2011-05-31 2014-10-01 トヨタ自動車株式会社 リチウム二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321300A (ja) * 1995-03-17 1996-12-03 Canon Inc リチウムを利用する二次電池
JPH1074516A (ja) * 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JP2009205974A (ja) * 2008-02-28 2009-09-10 Agc Seimi Chemical Co Ltd リチウムイオン二次電池正極活物質用リチウムコバルト複合酸化物の製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138729A (ja) * 2014-01-24 2015-07-30 トヨタ自動車株式会社 リチウムイオン二次電池
CN105098170A (zh) * 2014-05-20 2015-11-25 三星Sdi株式会社 活性物质前驱体、其制备方法和由其形成的活性物质
JP2016095934A (ja) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 二次電池
EP3267517A4 (en) * 2015-03-03 2019-01-09 Sumitomo Metal Mining Co., Ltd. POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE AND METHOD FOR THE PRODUCTION THEREOF
CN106450425A (zh) * 2015-08-06 2017-02-22 丰田自动车株式会社 非水电解液二次电池
CN106450425B (zh) * 2015-08-06 2019-06-21 丰田自动车株式会社 非水电解液二次电池
JP2017037744A (ja) * 2015-08-07 2017-02-16 日立マクセル株式会社 非水電解質二次電池
JP2017107796A (ja) * 2015-12-11 2017-06-15 株式会社デンソー 非水電解質二次電池
JP2017107795A (ja) * 2015-12-11 2017-06-15 株式会社デンソー 非水電解質二次電池
JP2018536972A (ja) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
US10700352B2 (en) 2016-03-04 2020-06-30 Lg Chem, Ltd. Precursor of positive electrode active material for secondary battery and positive electrode active material prepared using the same
JP2022510305A (ja) * 2018-11-30 2022-01-26 エルジー・ケム・リミテッド リチウム二次電池用正極活物質前駆体の製造方法
JP7216824B2 (ja) 2018-11-30 2023-02-01 エルジー・ケム・リミテッド リチウム二次電池用正極活物質前駆体の製造方法
CN111725482A (zh) * 2020-07-27 2020-09-29 江西星盈科技有限公司 一种厚电极和电池
CN111725482B (zh) * 2020-07-27 2023-07-18 江西星盈科技有限公司 一种厚电极和电池
CN113097441A (zh) * 2021-03-31 2021-07-09 宁德新能源科技有限公司 电化学装置及电子装置
CN113097441B (zh) * 2021-03-31 2023-03-21 宁德新能源科技有限公司 电化学装置及电子装置

Also Published As

Publication number Publication date
JP5904382B2 (ja) 2016-04-13
CN104205466B (zh) 2018-09-04
CN107134562A (zh) 2017-09-05
JPWO2013145290A1 (ja) 2015-08-03
DE112012006167B4 (de) 2024-03-28
CN104205466A (zh) 2014-12-10
US9882207B2 (en) 2018-01-30
DE112012006167T5 (de) 2014-12-11
US20150072232A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5904382B2 (ja) リチウムイオン二次電池
JP5650247B2 (ja) リチウムイオン二次電池
JP5858279B2 (ja) リチウムイオン二次電池
JP5787196B2 (ja) リチウムイオン二次電池
KR101504051B1 (ko) 이차 전지
US9184442B2 (en) Secondary battery
JP5641362B2 (ja) 正極活物質の製造方法
JP5510761B2 (ja) 二次電池
JP5614591B2 (ja) 非水電解液二次電池およびその製造方法
JP7068238B2 (ja) 非水電解質二次電池
JP7125238B2 (ja) 非水電解質二次電池
KR102503012B1 (ko) 비수전해질 이차 전지
JP7235405B2 (ja) 非水電解質二次電池
JP2013137955A (ja) 非水系二次電池
JP2014026990A (ja) リチウムイオン二次電池
JP7144371B2 (ja) 非水電解質二次電池
JP2017037763A (ja) 活物質粒子の製造方法、活物質粉末材料およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507251

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012006167

Country of ref document: DE

Ref document number: 1120120061675

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14388894

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12873020

Country of ref document: EP

Kind code of ref document: A1