WO2013140433A1 - 光学フィルムのロール体、およびそれを用いた偏光板の製造方法 - Google Patents

光学フィルムのロール体、およびそれを用いた偏光板の製造方法 Download PDF

Info

Publication number
WO2013140433A1
WO2013140433A1 PCT/JP2012/001902 JP2012001902W WO2013140433A1 WO 2013140433 A1 WO2013140433 A1 WO 2013140433A1 JP 2012001902 W JP2012001902 W JP 2012001902W WO 2013140433 A1 WO2013140433 A1 WO 2013140433A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
film
acid
roll
embossed
Prior art date
Application number
PCT/JP2012/001902
Other languages
English (en)
French (fr)
Inventor
真一郎 鈴木
光世 長谷川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201280001704.XA priority Critical patent/CN103747932B/zh
Priority to PCT/JP2012/001902 priority patent/WO2013140433A1/ja
Priority to JP2012531174A priority patent/JP5105033B1/ja
Priority to KR1020127029177A priority patent/KR101302289B1/ko
Priority to TW101140301A priority patent/TWI423879B/zh
Publication of WO2013140433A1 publication Critical patent/WO2013140433A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/26Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on a rotating drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • B29K2001/08Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent

Definitions

  • the present invention relates to a roll body of an optical film and a method for producing a polarizing plate using the roll body.
  • a liquid crystal display device usually has a liquid crystal cell, a pair of polarizing plates sandwiching the liquid crystal cell, and a backlight.
  • the polarizing plate has a polarizer and a pair of protective films that sandwich the polarizer. Further, the protective film that is a constituent member of the liquid crystal display device is required to be further thinned.
  • Patent Documents 1 to 3 As the protective film, a film containing cellulose acetate has been proposed (see, for example, Patent Documents 1 to 3).
  • Such a protective film is usually stored as a roll body wound in the length direction. Therefore, in order to suppress sticking between the protective films while the roll body of the protective film is stored, the both ends of the protective film in the width direction are usually embossed (for example, patents). Reference 4).
  • the protective film is unwound and cut into a predetermined size, or when processing such as applying a hard coat layer coating liquid is performed. There was a problem that the protective film was easily torn.
  • the present inventors have found that one of the causes that the protective film easily tears is that the embossed portions at both ends in the width direction of the protective film are crushed while the roll body of the protective film is stored. That is, when the embossed part of the protective film is crushed, the protective films to be laminated are easily brought into close contact with each other; the additive (plasticizer or the like) contained in the protective film is easily oozed out at the close contact part between the protective films. As a result, in the protective film, a portion having a relatively high density and a portion having a relatively low density are generated; it is considered that the protective film is easily torn during processing of the protective film. Further, the additive oozes out more easily in a thin film, and the protective film is easily broken.
  • the collapse of the embossed part was particularly likely to occur in a protective film having a thin film thickness or a protective film in which the embossed part was formed while being conveyed at high speed.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an optical film that is difficult to tear during processing even if the thickness is small.
  • a roll body of an optical film wherein a residual amount of methanol in the optical film is 10 to 100 ppm by mass with respect to the optical film and is larger than any residual amount of ethanol and butanol in the optical film.
  • a residual amount of methanol in the optical film is 10 to 100 ppm by mass with respect to the optical film and is larger than any residual amount of ethanol and butanol in the optical film.
  • the polyester compound is further sealed with an aromatic group or an aliphatic group at the molecular end of a compound obtained by reacting a diol having 1 to 4 carbon atoms with a dicarboxylic acid containing at least an aromatic dicarboxylic acid.
  • optical film roll body of the present invention is obtained by winding a long optical film in the length direction (perpendicular to the width direction of the film).
  • FIG. 1 is a schematic view showing an example of a roll body of an optical film.
  • a roll body 10 of an optical film has a core 12 and a long optical film 14 wound around the core 12 in the length direction of the film.
  • the embossed part 16 is formed in the width direction both ends of the elongate optical film 14. As shown in FIG.
  • FIG. 2 is a cross-sectional view showing an example of the vicinity of the embossed portion of the optical film.
  • the height D 0 of the convex portion 16A constituting the embossed portion 16 is preferably 1.0 ⁇ m or more and 10.0 ⁇ m or less, more preferably 2.0 ⁇ m or more and 6.0 ⁇ m or less.
  • the height D 0 of the convex portion 16A refers to the height from the film surface F (the film surface where the emboss is not formed) to the apex of the convex portion 16A. If the height of the convex portion 16A is less than 1.0 ⁇ m, the optical films are likely to adhere to each other, which is not preferable. On the other hand, when the height of the convex portion 16A is too large, the central portion in the width direction of the roll body is easily bent, and it is difficult to maintain the flatness as an optical film.
  • the width w of the convex portion 16A can be about 0.05 to 5 mm.
  • the width w of the convex portion 16 ⁇ / b> A is expressed as a distance between two points where the convex portion 16 ⁇ / b> A intersects the film surface F in the cross section of the embossed portion 16.
  • the interval b between the convex portions 16A and 16A is preferably 0.1 to 5 mm, and more preferably 0.5 to 2 mm.
  • the interval b between the convex portions 16A and the convex portions 16A is represented by the distance between the points at which the two convex portions 16A intersect the film surface F in the cross section of the embossed portion 16.
  • the width W of the embossed portion 16 is preferably in the range of 0.12 to 2.1% with respect to the width of the optical film. Specifically, the width W of the embossed portion 16 may be 5 to 25 mm, preferably 10 to 20 mm, depending on the width of the optical film. If the width W of the embossed portion 16 is too large, the area that can be used as an optical film is reduced. On the other hand, if the width W of the embossed portion 16 is too small, the optical films are likely to adhere to each other.
  • the convex portion of the embossed portion of the optical film in the vicinity of the core is easily crushed by the weight of the laminated optical film.
  • the laminated optical films are likely to be in close contact with each other; the additive (for example, a plasticizer) contained in the optical film is likely to ooze out at the close contact portion between the optical films.
  • the additive for example, a plasticizer
  • the additive oozes out at the close contact portion between the optical films, a rough portion and a dense portion of the additive (for example, a plasticizer) are generated in the optical film, and the optical film is easily torn when processed.
  • Such crushing of the convex portion of the embossed portion is particularly likely to occur when the film thickness of the optical film is reduced or the embossing is performed while the optical film is conveyed at a high speed.
  • the embossed portion formed while conveying the optical film at a high speed tends to reduce the strength of the embossed portion because the formation time of the embossed portion is short.
  • the convex portion of the embossed portion is not easily crushed; that is, the embossed portion preferably has high strength (high elastic modulus).
  • the crush resistance of the convex portion of the embossed portion measured by the following method is preferably 30% or more, and more preferably 50% or more.
  • the crush resistance of the convex part of the embossed part can be measured by the following method.
  • 3 and 4 are partial cross-sectional views illustrating an example of a method for measuring the crush resistance of the convex portion of the embossed portion.
  • 1) A region including the embossed portion 16 of the optical film 14 is cut out to obtain a sample film 14A (see FIG. 4).
  • the convex portion of the embossed portion 16 of the sample film 14A in FIG. 3, the height D 0 of the convex portion before applying a load
  • Height D 0 and measured at a thickness measuring instrument.
  • the sample film 14 ⁇ / b> A is placed on the stage 15.
  • a weight 18 of a total of 1 kg consisting of a metal cylindrical rod 18A with a diameter of 5 mm placed perpendicular to the film surface and a weight 18B placed thereon is placed.
  • it is stored for 10 minutes at 23 ° C. and 55% RH in a state where a load of 1 kg is applied to a circular region having a diameter of 5 mm on the surface of the embossed portion 16.
  • the height D of the convex portion of the embossed portion 16 (the height D of the convex portion after applying the load in FIG. 3) when the load is removed (excluding the weight) is measured with a thickness measuring machine.
  • the height D 0 of the convex part before applying the load measured in 1) above and the height D of the convex part after applying the load measured in 2) above are applied to the following equation. Calculate the crush resistance.
  • Adjustment of the crushing resistance ratio of the convex part of the embossed part is made of embossing conditions; 1) surface temperature of the embossing roll, 2) surface temperature of the back roll, 3) roll diameter of the embossing roll, and 4) material of the back roll. At least two or more can be adjusted in various combinations. Among them, 1) the surface temperature of the embossing roll and 2) the surface temperature of the back roll are preferably adjusted; 3) the diameter of the embossing roll is more preferably adjusted; and 4) the material of the back roll is selected. It is particularly preferred. In order to increase the crush resistance of the convex portion of the embossed portion, for example, 1) it is preferable to increase the surface temperature of the embossing roll and 2) increase the surface temperature of the back roll.
  • the above-mentioned bleeding of the additive in the close contact portion between the optical films is likely to occur when the additive moves in the film of the optical film, and the movement of the additive in the film of the optical film remains in the film. Almost promoted by solvents. Therefore, in order to suppress the bleeding of the additive in the adhesion portion between the optical films, among the solvent remaining in the film of the optical film, the content ratio of methanol having a low affinity with the additive, It is preferably less than ethanol or butanol having high affinity.
  • the amount (mass) of methanol remaining on the optical film constituting the roll body is larger than the amount (mass) of ethanol or butanol.
  • the amount of methanol remaining in the optical film is preferably 10 to 100 ppm by mass, more preferably 10 to 80 ppm by mass, and further preferably 20 to 60 ppm by mass with respect to the film.
  • the amount (mass) of methanol remaining in the optical film constituting the roll body is, as will be described later, the solvent composition contained in the dope when the optical film is produced by the solution casting method, and the drying temperature of the film after stretching. And can be adjusted by drying time and the like.
  • the amount of the solvent remaining on the optical film constituting the roll body can be measured by the following method. 1) Creating a calibration curve Place a sample with a known concentration of the solvent to be measured into a special vial, seal it with a septum and an aluminum cap, and set it on the headspace sampler. Next, the vial is heated under the following head space heating conditions to generate a volatile component, and the obtained volatile component is measured by gas chromatography. The same measurement is performed for samples having different solvent concentrations. The peak area of the solvent in the GC chart obtained by each measurement is calculated, a plot of the solvent concentration and the peak area is created, and a calibration curve is obtained.
  • Headspace sampler Equipment: Hewlett-Packard Headspace Sampler HP7694 Headspace Heating Conditions: 120 ° C for 20 minutes (Gas Chromatography) Equipment: Hewlett-Packard 5971 type Column: J & W DB-624 Detector: Hydrogen flame ionization detector (FID) GC temperature rise condition: held at 45 ° C. for 3 minutes, then raised to 100 ° C. at 8 ° C./min. GC introduction temperature: 150 ° C. 2) Measurement of the solvent remaining in the optical film The film cut into a 10 cm square was heat-treated under the headspace heating conditions in the same manner as in 1) except that the film was cut into 5 mm pieces and sealed in a dedicated vial.
  • FID Hydrogen flame ionization detector
  • the obtained volatile component is measured by gas chromatography. 3) Calculation of amount of solvent From the obtained GC chart, the peak area of the solvent is calculated and collated with the calibration curve obtained in 1) above to determine the amount of solvent remaining on the film. The amount of the solvent remaining in the film is determined as a mass ratio (mass%) with respect to the entire film.
  • the roll length of the optical film in the roll body of the present invention is usually from 1000 m to 8000 m, preferably from 3800 m to 6000 m.
  • the diameter of the core in the roll body of the present invention can be about 100 mm to 250 mm.
  • the width of the optical film in the roll body of the optical film of the present invention is about 1.2 to 4 m, preferably about 1.2 to 2.5 m.
  • the optical film has embossed portions with high strength at both ends in the width direction. Therefore, even in the roll body of the optical film having a large winding length, the convex portion of the embossed portion of the optical film in the vicinity of the core can be made difficult to be crushed by the weight of the laminated optical film. Thereby, adhesion between optical films; and exudation of additives due to the adhesion can be suppressed, and the film can be prevented from tearing during film processing.
  • the amount of methanol remaining on the optical film is adjusted to a predetermined range. Therefore, even if the convex part of the embossed part is crushed by the weight of the laminated optical film, the movement of the additive in the film of the optical film can be suppressed. Thereby, the exudation of the additive in the adhesion part of the optical film of the roll body can be suppressed; the film can be prevented from tearing during film processing.
  • optical film contains a cellulose ester and an additive.
  • Cellulose ester is a compound obtained by esterifying the hydroxyl group of cellulose with aliphatic carboxylic acid or aromatic carboxylic acid.
  • the acyl group contained in the cellulose ester is an aliphatic acyl group or an aromatic acyl group, preferably an aliphatic acyl group.
  • an aliphatic acyl group having 2 to 6 carbon atoms is preferable, and an aliphatic acyl group having 2 to 4 carbon atoms is more preferable.
  • Examples of the aliphatic acyl group having 2 to 4 carbon atoms include an acetyl group, a propionyl group, a butanoyl group, and the like, more preferably an acetyl group.
  • cellulose ester examples include cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, and the like, preferably cellulose acetate.
  • cellulose acetate it is preferable that all of the acyl groups contained in the cellulose ester are acetyl groups.
  • the degree of acetyl group substitution (total degree of acyl group substitution) of cellulose acetate is preferably 2.3 or more and 2.95 because it has high heat resistance, high solubility in a solvent, and relatively easy film formation. Or less, more preferably 2.5 or more and 2.95 or less, and further preferably 2.8 or more and 2.95 or less.
  • the method for measuring the total degree of acyl group substitution can be measured according to ASTM-D817-96.
  • the number average molecular weight of cellulose acetate is preferably 3.0 ⁇ 10 4 or more and less than 2.0 ⁇ 10 5 , and 4.5 ⁇ 10 4 or more and 1.5 More preferably, it is less than ⁇ 10 5 .
  • the weight average molecular weight of the cellulose acetate is preferably less than 1.2 ⁇ 10 5 or more 2.5 ⁇ 10 5, more preferably less than 1.5 ⁇ 10 5 or more 2.0 ⁇ 10 5.
  • the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of cellulose acetate is preferably 1.0 to 4.5.
  • the number average molecular weight and weight average molecular weight of cellulose acetate can be measured by gel permeation chromatography (GPC).
  • the measurement conditions are as follows. Solvent: Methylene chloride Column: Three Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used.
  • Cellulose ester can be synthesized by a known method. Specifically, cellulose can be synthesized by an esterification reaction between cellulose and an organic acid having 3 or more carbon atoms containing at least acetic acid or acetic anhydride (Japanese Patent Laid-Open No. 10-45804). See the description method).
  • cellulose which is a raw material for cellulose acetate, include cotton linter, wood pulp (derived from coniferous trees, derived from broadleaf trees), kenaf and the like.
  • the cellulose used as a raw material may be only one type or a mixture of two or more types.
  • additives contained in the optical film include plasticizers, antioxidants, light stabilizers, ultraviolet absorbers, retardation modifiers, antistatic agents, release agents, and preferably plasticizers. It can be.
  • plasticizers include polyester compounds, polyhydric alcohol ester compounds, polyvalent carboxylic acid ester compounds (including phthalic acid ester compounds), glycolate compounds, and ester compounds (including fatty acid ester compounds and phosphate ester compounds). ) Is included. These may be used alone or in combination of two or more.
  • the polyester compound is a compound containing a repeating unit obtained by reacting a dicarboxylic acid and a diol.
  • the dicarboxylic acid constituting the polyester compound is an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, preferably an aromatic dicarboxylic acid.
  • the dicarboxylic acid may be one kind or a mixture of two or more kinds.
  • the diol constituting the polyester compound is an aromatic diol, an aliphatic diol or an alicyclic diol, preferably an aliphatic diol, more preferably a diol having 1 to 4 carbon atoms.
  • the diol may be one type or a mixture of two or more types.
  • the polyester compound preferably includes a repeating unit obtained by reacting at least a dicarboxylic acid containing an aromatic dicarboxylic acid and a diol having 1 to 4 carbon atoms; an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid; More preferably, it contains a repeating unit obtained by reacting a dicarboxylic acid containing a diol with 1 to 4 carbon atoms.
  • Both ends of the molecule of the polyester compound may be sealed or not sealed, but are preferably sealed from the viewpoint of reducing the moisture permeability of the film.
  • the polyester compound is preferably a compound represented by the general formula (1) or (2).
  • n is an integer of 1 or more.
  • General formula (1) B- (GA) nGB
  • a in the general formulas (1) and (2) is a divalent group derived from an alkylenedicarboxylic acid having 3 to 20 carbon atoms (preferably 4 to 12 carbon atoms), and has 4 to 20 carbon atoms (preferably 4 to 4 carbon atoms). 12) a divalent group derived from an alkenylene dicarboxylic acid or a divalent group derived from an aryl dicarboxylic acid having 8 to 20 carbon atoms (preferably 8 to 12).
  • Examples of a divalent group derived from an alkylene dicarboxylic acid having 3 to 20 carbon atoms in A include 1,2-ethanedicarboxylic acid (succinic acid), 1,3-propanedicarboxylic acid (glutaric acid), 1 2, 4-butanedicarboxylic acid (adipic acid), 1,5-pentanedicarboxylic acid (pimelic acid), 1,8-octanedicarboxylic acid (sebacic acid) and the like.
  • Examples of the divalent group derived from alkenylene dicarboxylic acid having 4 to 20 carbon atoms in A include a divalent group derived from maleic acid, fumaric acid and the like.
  • Examples of a divalent group derived from an aryl dicarboxylic acid having 8 to 20 carbon atoms in A include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid, and 1,4-benzene.
  • Divalent groups derived from dicarboxylic acids, naphthalenedicarboxylic acids such as 1,5-naphthalenedicarboxylic acid and the like are included.
  • A may be one type or two or more types may be combined. Among these, A is preferably a combination of an alkylene dicarboxylic acid having 4 to 12 carbon atoms and an aryl dicarboxylic acid having 8 to 12 carbon atoms.
  • G in the general formulas (1) and (2) is a divalent group derived from an alkylene glycol having 2 to 20 (preferably 2 to 12) carbon atoms, and has 6 to 20 (preferably 6 to 12) carbon atoms. ) Or a divalent group derived from an oxyalkylene glycol having 4 to 20 (preferably 4 to 12) carbon atoms.
  • Examples of the divalent group derived from alkylene glycol having 2 to 20 carbon atoms in G include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1, 3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol ( Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylol) Heptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-
  • divalent groups derived from aryl glycols having 6 to 20 carbon atoms in G include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), and 1,4-dihydroxybenzene.
  • Divalent groups derived from (hydroquinone) and the like are included.
  • Examples of the divalent group derived from oxyalkylene glycol having 4 to 12 carbon atoms in G are derived from diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like. Divalent groups are included.
  • G may be one type or two or more types may be combined. Among these, G is preferably an alkylene glycol having 2 to 12 carbon atoms.
  • B in the general formula (1) is a monovalent group derived from an aromatic ring-containing monocarboxylic acid or an aliphatic monocarboxylic acid.
  • the aromatic ring-containing monocarboxylic acid in the monovalent group derived from the aromatic ring-containing monocarboxylic acid is a carboxylic acid containing an aromatic ring in the molecule, and not only those in which the aromatic ring is directly bonded to the carboxyl group, Also included are those in which an aromatic ring is bonded to a carboxyl group via an alkylene group or the like.
  • monovalent groups derived from aromatic ring-containing monocarboxylic acids include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, and normal propyl benzoic acid. , Monovalent groups derived from aminobenzoic acid, acetoxybenzoic acid, phenylacetic acid, 3-phenylpropionic acid and the like.
  • Examples of monovalent groups derived from aliphatic monocarboxylic acids include monovalent groups derived from acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid and the like. Is included. Among these, a monovalent group derived from an alkyl monocarboxylic acid having 1 to 3 carbon atoms in the alkyl portion is preferable, and an acetyl group (a monovalent group derived from acetic acid) is more preferable.
  • C in the general formula (2) is a monovalent group derived from an aromatic ring-containing monoalcohol or an aliphatic monoalcohol.
  • An aromatic ring-containing monoalcohol is an alcohol containing an aromatic ring in the molecule, and includes not only those in which an aromatic ring is directly bonded to an OH group, but also those in which an aromatic ring is bonded to an OH group via an alkylene group or the like.
  • Examples of the monovalent group derived from an aromatic ring-containing monoalcohol include a monovalent group derived from benzyl alcohol, 3-phenylpropanol and the like.
  • Examples of monovalent groups derived from aliphatic monoalcohols include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, isopentanol, hexanol, isohexanol, cyclohexyl alcohol, octanol, isooctanol, Monovalent groups derived from 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol, tert-nonyl alcohol, decanol, dodecanol, dodecahexanol, dodecaoctanol, allyl alcohol, oleyl alcohol and the like are included. Of these, monovalent groups derived from alcohols having 1 to 3 carbon atoms such as methanol, ethanol, propanol and isopropanol are preferred.
  • the weight average molecular weight of the polyester compound is preferably 300 to 1500, and more preferably 400 to 1000.
  • a polyester compound having a weight average molecular weight of less than 300 may easily exude from the optical film.
  • polyester compound Specific examples of the polyester compound are shown below. First, a specific example of a polyester compound in which both ends are sealed with an “aromatic group” is shown.
  • P-1 acetyl esterified product of both ends of a condensate (weight average molecular weight 950) comprising adipic acid / phthalic acid / ethanediol (1/1/2 molar ratio)
  • P-2 succinic acid / phthalic acid / ethane Acetyl esterified compound at both ends of a condensate (weight average molecular weight 2500) consisting of diol / (1/1/2 molar ratio)
  • P-3 glutaric acid / isophthalic acid / 1,3-propanediol (1/1 / Acetyl esterified product at both ends of a condensate (weight average molecular weight 1300) consisting of 2 mole ratio)
  • P-4 Succinic acid / glutaric acid / adipic acid / terephthalic acid / isophthalic acid /
  • the polyhydric alcohol ester compound is an ester compound (alcohol ester) of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, preferably a divalent to 20-valent aliphatic polyhydric alcohol ester.
  • the polyhydric alcohol ester compound preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • Preferred examples of the aliphatic polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2- Butanediol, 1,3-butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, trimethylolpropane , Pentaerythritol, trimethylolethane, xylitol and the like.
  • triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, xylitol and the like are preferable.
  • the monocarboxylic acid is not particularly limited, and may be an aliphatic monocarboxylic acid, an alicyclic monocarboxylic acid, an aromatic monocarboxylic acid, or the like. In order to increase the moisture permeability of the film and make it difficult to volatilize, alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred.
  • One kind of monocarboxylic acid may be used, or a mixture of two or more kinds may be used. Further, all of the OH groups contained in the aliphatic polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
  • the aliphatic monocarboxylic acid is preferably a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms.
  • the number of carbon atoms of the aliphatic monocarboxylic acid is more preferably 1-20, and still more preferably 1-10.
  • aliphatic monocarboxylic acids examples include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid , Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid; undecylenic acid, Examples include unsaturated fatty acids such as oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid. Of these, acetic acid or a mixture of
  • Examples of the alicyclic monocarboxylic acid include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid and the like.
  • aromatic monocarboxylic acids examples include benzoic acid; one having 1 to 3 alkyl groups or alkoxy groups (for example, methoxy group or ethoxy group) introduced into the benzene ring of benzoic acid (for example, toluic acid); benzene ring Aromatic monocarboxylic acids having two or more (for example, biphenyl carboxylic acid, naphthalene carboxylic acid, tetralin carboxylic acid, etc.) are included, and benzoic acid is preferred.
  • polyhydric alcohol ester compound examples include the following.
  • divalent alcohol ester compound examples include the following.
  • Examples of the trivalent or higher alcohol ester compound include the following compounds.
  • the polyvalent carboxylic acid ester compound is an ester compound of a divalent or higher, preferably 2 to 20 valent polycarboxylic acid and an alcohol compound.
  • the polyvalent carboxylic acid is preferably a divalent to 20-valent aliphatic polyvalent carboxylic acid, a 3- to 20-valent aromatic polyvalent carboxylic acid, or a 3- to 20-valent alicyclic polyvalent carboxylic acid. .
  • polyvalent carboxylic acids include trivalent or higher aromatic polyvalent carboxylic acids such as trimellitic acid, trimesic acid, pyromellitic acid or derivatives thereof, succinic acid, adipic acid, azelaic acid, sebacic acid, oxalic acid Contains aliphatic polycarboxylic acids such as fumaric acid, maleic acid, and tetrahydrophthalic acid, and oxypolycarboxylic acids such as tartaric acid, tartronic acid, malic acid, and citric acid, and suppresses volatilization from the film. For this, oxypolycarboxylic acids are preferred.
  • the alcohol compound examples include an aliphatic saturated alcohol compound having a straight chain or a side chain, an aliphatic unsaturated alcohol compound having a straight chain or a side chain, an alicyclic alcohol compound, or an aromatic alcohol compound.
  • the carbon number of the aliphatic saturated alcohol compound or the aliphatic unsaturated alcohol compound is preferably 1 to 32, more preferably 1 to 20, and still more preferably 1 to 10.
  • Examples of the alicyclic alcohol compound include cyclopentanol, cyclohexanol and the like.
  • the aromatic alcohol compound include benzyl alcohol and cinnamyl alcohol.
  • the molecular weight of the polyvalent carboxylic acid ester compound is not particularly limited, but is preferably 300 to 1000, and more preferably 350 to 750.
  • the molecular weight of the polyvalent carboxylic acid ester plasticizer is preferably larger from the viewpoint of suppressing bleeding out; it is preferably smaller from the viewpoint of moisture permeability and compatibility with cellulose acetate.
  • polyvalent carboxylic acid ester compounds include triethyl citrate, tributyl citrate, acetyl triethyl citrate (ATEC), acetyl tributyl citrate (ATBC), benzoyl tributyl citrate, acetyl triphenyl citrate, acetyl tribenzyl citrate Rate, dibutyl tartrate, diacetyl dibutyl tartrate, tributyl trimellitic acid, tetrabutyl pyromellitic acid and the like.
  • ATEC acetyl triethyl citrate
  • ATBC acetyl tributyl citrate
  • benzoyl tributyl citrate acetyl triphenyl citrate
  • acetyl tribenzyl citrate Rate dibutyl tartrate
  • diacetyl dibutyl tartrate diacetyl dibutyl tartrate
  • tributyl trimellitic acid
  • the polyvalent carboxylic acid ester compound may be a phthalic acid ester compound.
  • the phthalic acid ester compound include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, dicyclohexyl terephthalate and the like.
  • glycolate compounds include alkylphthalyl alkyl glycolates.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl Ethyl glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl Glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl
  • the ester compound includes a fatty acid ester compound, a citrate ester compound, a phosphate ester compound, and the like.
  • Examples of fatty acid ester compounds include butyl oleate, methylacetyl ricinoleate, and dibutyl sebacate.
  • Examples of the citrate ester compound include acetyltrimethyl citrate, acetyltriethyl citrate, and acetyltributyl citrate.
  • Examples of the phosphoric acid ester compound include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, biphenyl diphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc., preferably triphenyl phosphate. .
  • polyester compounds glycolate compounds, and phosphate ester compounds are preferable, and polyester compounds, ethylphthalylethyl glycolate, and triphenyl phosphate are more preferable.
  • the solubility parameter (SP value) of Fedors of the plasticizer is preferably in the range close to that of the cellulose ester, specifically, in the range of 9 to 11 More preferably.
  • the SP value in the present invention can be obtained by calculation using the Fedors parameter.
  • the unit of SP value is the square root of the value obtained by dividing the cohesive energy density ⁇ E by the molar volume V, and “(cm 3 / cal) 1/2 ” can be used.
  • the parameters of Fedors are described in References: Basic Science of Coatings by Yuji Harada, Kashiwa Shoten (1977), p.
  • the content of the plasticizer is preferably 1 to 20% by mass, more preferably 1.5 to 15% by mass with respect to cellulose acetate. If the content of the plasticizer is less than 1% by mass, the effect of imparting plasticity may not be sufficient. On the other hand, when the content of the plasticizer is more than 20% by mass, the plasticizer easily oozes out from the optical film.
  • the optical film may further contain fine particles (matting agent) as necessary in order to improve the slipperiness of the surface.
  • the fine particles may be inorganic fine particles or organic fine particles.
  • inorganic fine particles include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples include magnesium silicate and calcium phosphate. Of these, silicon dioxide and zirconium oxide are preferable, and silicon dioxide is more preferable in order to reduce an increase in haze of the obtained film.
  • Examples of fine particles of silicon dioxide include Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600, NAX50 (manufactured by Nippon Aerosil Co., Ltd.), Sea Hoster KE-P10, KE-P30, KE-P50, KE-P100 (manufactured by Nippon Shokubai Co., Ltd.) and the like are included.
  • Aerosil R972V, NAX50, Seahoster KE-P30 and the like are particularly preferable because the coefficient of friction can be reduced while the turbidity of the resulting film is kept low.
  • the primary particle diameter of the fine particles is preferably 5 to 50 nm, more preferably 7 to 20 nm.
  • a larger primary particle size has a greater effect of increasing the slipperiness of the resulting film, but transparency tends to decrease. Therefore, the fine particles may be contained as secondary aggregates having a particle diameter of 0.05 to 0.3 ⁇ m.
  • the size of the primary particles or secondary aggregates of the fine particles was determined by observing the primary particles or secondary aggregates at a magnification of 500,000 to 2,000,000 times with a transmission electron microscope, and measuring 100 primary particles or secondary aggregates. It can be determined as an average value of the particle diameter.
  • the content of the fine particles is preferably 0.05 to 1.0% by mass, more preferably 0.1 to 0.8% by mass with respect to the whole cellulose acetate including the low substitution degree component.
  • the thickness of the optical film is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably 50 ⁇ m or less, and particularly preferably 35 ⁇ m, in order to reduce the variation in retardation due to heat or humidity. It is. On the other hand, the thickness of the optical film is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more in order to obtain film strength and retardation that can function as a protective film. In particular, the thickness of the optical film is preferably 20 to 50 ⁇ m.
  • the in-plane retardation Ro measured at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH is 0 nm or more and 30 nm or less. Is preferable, and it is more preferably 0 nm or more and 10 nm or less.
  • the retardation Rth in the thickness direction is preferably 0 nm or more and 70 m or less, and more preferably 0 nm or more and 50 nm or less.
  • Retardation Ro and Rth are defined by the following equations, respectively.
  • Formula (I) Ro (nx ⁇ ny) ⁇ d
  • Formula (II) Rth ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (Nx: refractive index in the slow axis direction x in the film plane, ny: refractive index in the direction y perpendicular to the slow axis direction x in the film plane, nz: refractive index in the thickness direction z of the film, d: Film thickness (nm))
  • Retardation R0 and Rth can be measured, for example, by the following method.
  • the optical film is conditioned at 23 ° C. and 55% RH.
  • the average refractive index of the optical film after humidity adjustment is measured with an Abbe refractometer or the like.
  • the optical film after 2) humidity, measuring the R 0 when the light is incident in parallel to the measurement wavelength 590nm to normal of the film surface, KOBRA21ADH, in Oji Scientific Corporation.
  • KOBRA21ADH the slow axis in the plane of the optical film is set as the tilt axis (rotation axis), and light having a measurement wavelength of 590 nm from the angle normal to the surface of the optical film (incident angle ( ⁇ )) is obtained.
  • the retardation value R ( ⁇ ) when incident is measured.
  • the retardation value R ( ⁇ ) can be measured at 6 points every 10 ° in the range of 0 ° to 50 °.
  • the in-plane slow axis of the optical film can be confirmed by KOBRA21ADH.
  • nx, ny, and nz are calculated by KOBRA21ADH from the measured R 0 and R ( ⁇ ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated.
  • the measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
  • the angle ⁇ 1 (orientation angle) formed by the in-plane slow axis of the optical film and the width direction of the film is preferably ⁇ 1 ° to + 1 °, more preferably ⁇ 0.5 ° to + 0.5 °. .
  • the orientation angle ⁇ 1 of the optical film can be measured using an automatic birefringence meter KOBRA-WR (Oji Scientific Instruments).
  • the internal haze of the optical film measured according to JIS K-7136 is preferably 0.01 to 0.1.
  • the visible light transmittance of the optical film is preferably 90% or more, and more preferably 93% or more.
  • the optical film is preferably an optical film for a liquid crystal display device, and specific examples thereof include a polarizing plate protective film, a retardation film (optical compensation film), an antireflection film, an antiglare film, a hard coat film, and the like. More preferred are antireflection films, antiglare films, hard coat films, and the like.
  • the optical film roll body of the present invention comprises 1) a step of preparing a dope by dissolving at least cellulose acetate and an additive in a solvent, and 2) a dope on an endless metal support. 3) a step of evaporating the solvent from the cast dope to obtain a web, 4) a step of peeling the web from the metal support, 5) a step of drying the web and then drawing to obtain a film, It can be obtained through 6) a step of embossing both ends in the width direction of the film, and 7) a step of winding the film.
  • Step of preparing dope In a dissolution vessel, cellulose acetate and an additive are dissolved in a solvent to prepare a dope.
  • the solvent contained in the dope may be a single type or a combination of two or more types. From the viewpoint of increasing production efficiency, it is preferable to use a combination of a good solvent and a poor solvent for cellulose acetate.
  • a good solvent refers to a solvent that dissolves cellulose acetate alone
  • a poor solvent refers to a solvent that swells cellulose acetate or does not dissolve alone. Therefore, the good solvent and the poor solvent differ depending on the average acyl group substitution degree (acetyl group substitution degree) of cellulose acetate.
  • good solvents include organic halogen compounds such as dichloromethane, dioxolanes, acetone, methyl acetate, and methyl acetoacetate, and preferably dichloromethane or methyl acetate.
  • poor solvents examples include methanol (SP value 14.5), ethanol (SP value 12.7), n-butanol (SP value 11.4), cyclohexane, cyclohexanone and the like.
  • a poor solvent having a low affinity with the additive that is, a poor solvent having a large absolute value of the difference from the SP value of the additive is preferable.
  • Methanol is preferred.
  • the poor solvent may be one type or a mixture of two or more types.
  • the content ratio of the poor solvent having a large absolute value of the difference from the SP value of the additive is preferably the largest.
  • the good solvent is more than the poor solvent in order to increase the solubility of cellulose acetate.
  • the mixing ratio of the good solvent and the poor solvent is preferably 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent.
  • the concentration of cellulose acetate in the dope is preferably higher in order to reduce the drying load. However, if the concentration of cellulose acetate is too high, filtration is difficult. Therefore, the concentration of cellulose acetate in the dope is preferably 10 to 35% by mass, more preferably 15 to 25% by mass.
  • Examples of the method of dissolving cellulose acetate in a solvent include a method of dissolving under heating and pressure, a method of adding a poor solvent to cellulose acetate to swell, a method of further adding a good solvent, and a cooling dissolution method. sell.
  • dissolve under a heating and pressurization is preferable.
  • stirring and dissolving while heating to a temperature in the range where the solvent is boiling or higher under normal pressure and the solvent does not boil under pressure the generation of bulk undissolved material called gel or mako can be suppressed.
  • the heating temperature is preferably higher from the viewpoint of increasing the solubility of cellulose acetate, but if it is too high, it is necessary to increase the pressure and the productivity is lowered. For this reason, the heating temperature is preferably 45 to 120 ° C., more preferably 60 to 110 ° C., and further preferably 70 to 105 ° C.
  • the obtained dope may contain insoluble matters such as impurities contained in cellulose acetate as a raw material. Such an insoluble matter can become a bright spot foreign material in the obtained film. In order to remove such insoluble matter and the like, it is preferable to further filter the obtained dope.
  • Step of casting dope onto endless metal support The dope is cast onto an endless metal support (for example, a stainless belt or a rotating metal drum) from the slit of the pressure die.
  • an endless metal support for example, a stainless belt or a rotating metal drum
  • the die is preferably a pressure die that can adjust the slit shape of the die part and easily adjust the film thickness uniformly.
  • Examples of the pressure die include a coat hanger die and a T-die.
  • the surface of the metal support is preferably mirror-finished.
  • Step 3 Step of evaporating the solvent from the cast dope to obtain a web
  • the dope film is heated on a metal support to evaporate the solvent to obtain a web.
  • the dope film is preferably dried in an atmosphere of 40 to 100 ° C.
  • a method for evaporating the solvent there are a method in which air is applied to the surface of the dope film, a method in which heat is transferred by liquid from the back surface of the belt, a method in which heat is transferred from the front and back by radiant heat, etc.
  • a method of transferring heat from the back surface of the liquid with a liquid is preferable.
  • the process of peeling a web from a metal support body The obtained web is peeled in the peeling position on a metal support body.
  • the temperature at the peeling position on the metal support is preferably 10 to 40 ° C., more preferably 11 to 30 ° C.
  • the residual solvent amount of the web when peeling at the peeling position on the metal support depends on the drying conditions and the length of the metal support, but is preferably 50 to 120% by mass.
  • a web having a large amount of residual solvent is too soft and tends to impair flatness, and wrinkles and streaks in the casting direction (MD direction) due to peeling tension tend to occur.
  • the residual solvent amount of the web at the peeling position can be set so that wrinkles and lines in the casting direction (MD direction) can be suppressed.
  • the heat treatment for measuring the residual solvent amount means a heat treatment at 115 ° C. for 1 hour.
  • the peeling tension when peeling the web from the metal support can usually be 300 N / m or less.
  • stretching and obtaining a film after drying a web The web obtained by peeling from a metal support body is dried.
  • the web may be dried while being transported by a large number of rolls arranged vertically, or may be dried while being transported while fixing both ends of the web with clips.
  • the method for drying the web may be a method of drying with hot air, infrared rays, a heating roll, microwaves, or the like, and a method of drying with hot air is preferable because it is simple.
  • the drying temperature of the web can be about 40 to 250 ° C., preferably about 40 to 160 ° C.
  • the optical film having a desired retardation is obtained by stretching the web.
  • the retardation of the optical film can be controlled by adjusting the magnitude of the tension applied to the web.
  • the stretching of the web is the stretching in the width direction (TD direction), the dope casting direction (MD direction), or the oblique direction, and is preferably stretched at least in the width direction (TD direction).
  • the web may be stretched uniaxially or biaxially.
  • Biaxial stretching is preferably stretching in the dope casting direction (MD direction) and the width direction (TD direction).
  • Biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching.
  • Sequential biaxial stretching includes a method in which stretching in different stretching directions is sequentially performed, a method in which stretching in the same direction is performed in multiple stages, and the like.
  • Examples of sequential biaxial stretching include the following stretching steps. Stretch in the casting direction (MD direction)-Stretch in the width direction (TD direction)-Stretch in the casting direction (MD direction)-Stretch in the casting direction (MD direction) Stretch in the width direction (TD direction)-Stretch in the width direction Stretching (TD direction)-Stretching in the casting direction (MD direction)-Stretching in the casting direction (MD direction)-Stretching in the casting direction (MD direction)
  • Simultaneous biaxial stretching includes a mode in which stretching is performed in one direction and the tension in the other direction is relaxed and contracted.
  • the draw ratio depends on the thickness of the optical film to be obtained and the required retardation value, it is finally 0.8 to 1.5 times, preferably 0.8 to 1.1 times in the casting direction. And 1.1 to 2.0 times, preferably 1.3 to 1.7 times in the width direction.
  • the stretching temperature of the web is preferably 120 ° C. to 200 ° C., more preferably 150 ° C. to 200 ° C., and even more preferably more than 150 ° C. and 190 ° C. or less.
  • the stretching method of the web is not particularly limited, and a method (roll stretching method) in which a circumferential speed difference is applied to a plurality of rolls, and the roll circumferential speed difference is utilized to stretch in the casting direction (MD direction). Fix both ends with clips and pins, and widen the gap between the clips and pins in the casting direction (MD direction) and extend in the casting direction (MD direction), or widen in the width direction (TD direction) and the width direction (TD direction) or a method of extending in both the casting direction (MD direction) and the width direction (TD direction) by extending both in the casting direction (MD direction) and the width direction (TD direction) ( And a tenter stretching method). These stretching methods may be combined.
  • the residual solvent of the web at the start of stretching is preferably 20% by mass or less, more preferably 15% by mass or less.
  • the film obtained after stretching is further dried.
  • the drying temperature is preferably 110 to 190 ° C., more preferably 120 to 170 ° C. If the drying temperature is too low, it is difficult to sufficiently remove the solvent by evaporation.
  • the method for drying the film can be, for example, a method in which hot air is applied while the film is conveyed.
  • FIG. 5 is a schematic diagram illustrating an example of the embossing apparatus 20.
  • the embossing apparatus includes an embossing roll 22 and a back roll 24 disposed so as to face the embossing roll 22 with the optical film 14 interposed therebetween.
  • the roll diameter of the embossing roll 22 is preferably 30 to 60 cm, and more preferably 30 to 50 cm.
  • the roll diameter of the embossing roll is more than 60 cm, the distance between the heat source (arranged inside the embossing roll) and the surface of the embossing roll is too large, and temperature unevenness may occur on the surface of the embossing roll. Therefore, a portion having a high elastic modulus and a portion having a low elastic modulus are generated in the embossed portion to be formed, and a portion having a low elastic modulus is easily crushed.
  • the roll diameter of the embossing roll is less than 30 cm, the rotation axis is likely to be shaken; The embossed part formed higher than the set height tends to be crushed.
  • the material of the back roll is preferably made of metal in order to uniformly cool the film on which the embossed portion is formed.
  • the type of metal can be, for example, SUS.
  • Metal back rolls, for example, are easier to cool the film than rubber back rolls, so it is easy to crystallize cellulose acetate uniformly and form an embossed part with high strength (high elastic modulus). Can do.
  • the clearance between the embossing roll 22 and the back roll 24 can be about 1 ⁇ m to 30 ⁇ m, preferably about 1 to 15 ⁇ m.
  • the nip pressure between the embossing roll 22 and the back roll 24 can be about 100 to 10,000 Pa.
  • the embossing roll 22 and the back roll 24 nip both end portions in the width direction of the optical film 14 to emboss both end portions in the width direction of the film.
  • the surface temperature of the embossing roll 22 is preferably 250 to 350 ° C, more preferably 260 to 300 ° C. If the surface temperature of the embossing roll 22 is less than 250 ° C., the film cannot be sufficiently melted. Therefore, even if it is cooled, it is difficult to sufficiently crystallize cellulose acetate, and it is difficult to form an embossed portion with high strength. On the other hand, when the surface temperature of the embossing roll is higher than 350 ° C., the film is excessively melted and the melted film tends to stick to the embossing roll.
  • the surface temperature of the back roll 24 depends on the surface temperature of the embossing roll 22, but is preferably 50 to 100 ° C, more preferably 50 to 80 ° C.
  • the surface temperature of the back roll is less than 50 ° C.
  • the film is cooled too rapidly, so that it is difficult to uniformly crystallize cellulose acetate and it is difficult to obtain an embossed portion with a high elastic modulus.
  • the surface temperature of the back roll is higher than 100 ° C., it is difficult to cool the cellulose acetate contained in the film.
  • the back side is easy to wave. When the undulations of the front and back surfaces of the film near the embossed portion occur, the films are likely to stick to each other and the film is easily torn.
  • the film conveying speed during embossing is preferably 80 to 120 m / min, more preferably 90 to 120 m / min.
  • Productivity will fall easily that the conveyance speed of a film is less than 80 m / min.
  • the conveyance speed of the film is more than 120 m / min, the pressure of the embossing roll and the heat of the embossing roll and the back roll are not easily transmitted to the film. Thereby, it is difficult to crystallize the cellulose acetate contained in the film uniformly, and it is difficult to obtain an embossed portion having high strength.
  • the embossing roll in order to form an embossed portion that is not easily crushed, it is important to 1) sufficiently melt the cellulose acetate with the embossing roll, and 2) slowly cool and crystallize the cellulose acetate melted with the back roll. It is done.
  • 1) the surface temperature of the embossing roll and 2) the surface temperature of the back roll are preferably adjusted to the above-mentioned ranges, respectively.
  • the embossing roll diameter is more preferably adjusted to the above-mentioned range; 4) It is particularly preferable to select a material for the back roll.
  • Step of winding the film The obtained long optical film is wound in the length direction of the film (perpendicular to the width direction) using a winder.
  • the winding method is not particularly limited, and may be a constant torque method, a constant tension method, a taper tension method, or the like.
  • the winding tension when winding the optical film can be about 50 to 170N.
  • the polarizing plate of the present invention includes a polarizer and an optical film that is disposed on at least one surface thereof and is obtained from the roll of the optical film of the present invention.
  • the optical film obtained from the roll body of the optical film of the present invention is an optical film obtained by removing the slits from the embossed portion.
  • the optical film may be disposed directly on the polarizer, or may be disposed through another film or layer.
  • a polarizer is an element that allows only light of a polarization plane in a certain direction to pass through.
  • a typical example of the polarizer is a polyvinyl alcohol-based polarizing film, and there are one in which a polyvinyl alcohol-based film is dyed with iodine and one in which a dichroic dye is dyed.
  • the polarizer may be a film obtained by uniaxially stretching a polyvinyl alcohol film and then dyeing with iodine or a dichroic dye, or after dyeing a polyvinyl alcohol film with iodine or a dichroic dye, A uniaxially stretched film (preferably a film further subjected to durability treatment with a boron compound) may be used.
  • the thickness of the polarizer is preferably 5 to 30 ⁇ m, more preferably 10 to 20 ⁇ m.
  • the polyvinyl alcohol film may be a film formed from a polyvinyl alcohol aqueous solution.
  • the polyvinyl alcohol film is preferably an ethylene-modified polyvinyl alcohol film because it is excellent in polarizing performance and durability performance and has few color spots.
  • Examples of the ethylene-modified polyvinyl alcohol film include an ethylene unit content of 1 to 4 mol%, a degree of polymerization of 2000 to 4000, and a degree of saponification of 99 described in JP-A Nos. 2003-248123 and 2003-342322. 0.0-99.99 mol% film is included.
  • dichroic dyes examples include azo dyes, stilbene dyes, pyrazolone dyes, triphenylmethane dyes, quinoline dyes, oxazine dyes, thiazine dyes and anthraquinone dyes.
  • a transparent protective film other than the above optical film may be disposed on the other surface of the polarizer.
  • the transparent protective film include commercially available cellulose ester films (for example, Konica Minoltak KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC6UY, KC4UY, KC4UE, KC8UE-H8-U8-U8-U8HU -C, KC8UXW-RHA-NC, KC4UXW-RHA-NC, manufactured by Konica Minolta Opto Co., Ltd.) are preferably used.
  • the thickness of the transparent protective film is not particularly limited, but can be about 10 to 200 ⁇ m, preferably 10 to 100 ⁇ m, more preferably 10 to 70 ⁇ m.
  • the polarizing plate of the present invention can be manufactured through a step of removing the embossed portion of the optical film in the roll body of the present invention, and a step of bonding the optical film from which the embossed portion has been removed and a polarizer.
  • a completely saponified polyvinyl alcohol aqueous solution is preferably used as the adhesive used for bonding.
  • the liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell. And at least one of a pair of polarizing plates contains the optical film obtained from the roll body of the optical film of this invention.
  • FIG. 6 is a schematic diagram showing a basic configuration of an embodiment of the liquid crystal display device according to the present invention.
  • the liquid crystal display device 30 includes a liquid crystal cell 40, a first polarizing plate 50 and a second polarizing plate 60 that sandwich the liquid crystal cell 40, and a backlight 70.
  • the display method of the liquid crystal cell 40 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (SuperwTwisted Nematic) method, an IPS (In-PlaneitSwitching) method, an OCB (Optically Compensated BirrefrenceAbirefringenceAbirefringenceAbirefringenceAbirefringenceAbirefringenceAbirefringenceAbirefringenceAbirefringenceAbirefringenceAbirefringenceAbireflenceAbirefrence
  • MVA Multi-domain Vertical Alignment
  • PVA including Patterned Vertical Alignment
  • HAN Hybrid Aligned Nematic
  • the VA liquid crystal cell has a pair of transparent substrates and a liquid crystal layer sandwiched between them.
  • one transparent substrate is provided with a pixel electrode for applying a voltage to liquid crystal molecules.
  • the counter electrode may be arranged on the one transparent substrate (on which the pixel electrode is arranged) or on the other transparent substrate. In order to increase the aperture ratio, (the pixel electrode is arranged) It is preferable to arrange on one of the transparent substrates.
  • the liquid crystal layer includes liquid crystal molecules having negative or positive dielectric anisotropy.
  • Liquid crystal molecules are liquid crystal molecules when no voltage is applied (when no electric field is generated between the pixel electrode and the counter electrode) due to the alignment regulating force of the alignment film provided on the liquid crystal layer side surface of the transparent substrate. Are oriented so that their major axes are substantially perpendicular to the surface of the transparent substrate.
  • an electric field is generated between the pixel electrode and the counter electrode by applying an image signal (voltage) to the pixel electrode.
  • the liquid crystal molecules initially aligned perpendicularly to the surface of the transparent substrate are aligned so that the major axis thereof is in the horizontal direction with respect to the substrate surface.
  • the liquid crystal layer is driven, and the image display is performed by changing the transmittance and reflectance of each sub-pixel.
  • the 1st polarizing plate 50 is arrange
  • the 2nd polarizing plate 60 is arrange
  • One of the protective films 56 (F2) and 64 (F3) may be omitted as necessary.
  • the protective films 54 (F1), 56 (F2), 64 (F3) and 66 (F4) at least one of the protective films 54 (F1) and 66 (F4); preferably the protective film 66 (F4)
  • An optical film obtained from the roll of the optical film of the invention is preferred.
  • TPP Triphenyl phosphate (SP value 10.7)
  • BDP Biphenyl diphenyl phosphate (SP value 11.0)
  • EPEG ethylphthalyl ethyl glycolate (SP value 10.9)
  • TMP-tribenzoate trimethylolpropane tribenzoate (SP value 11.0)
  • D Plasticizer
  • the SP value of the compound was calculated based on the calculation method described in pages 54 to 57 of Reference Literature: Basic Science of Coating, Yuji Harada, Tsuji Shoten (1977).
  • Example 1 Preparation of Inline Additive Solution After 10 parts by weight of Aerosil 972V (manufactured by Nippon Aerosil Co., Ltd., average primary particle diameter of 16 nm, apparent specific gravity of 90 g / liter) and 90 parts by weight of methanol were stirred and mixed with a dissolver for 30 minutes, then Manton Gorin To obtain a fine particle dispersion.
  • Aerosil 972V manufactured by Nippon Aerosil Co., Ltd., average primary particle diameter of 16 nm, apparent specific gravity of 90 g / liter
  • Preparation of main dope solution The following components were put into a sealed container and completely dissolved with heating and stirring. The obtained solution was prepared as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. 24. The main dope liquid was obtained by filtration.
  • the obtained dope solution was uniformly cast on a stainless band support using a belt casting apparatus under the conditions of a dope solution temperature of 35 ° C. and a width of 1.8 m.
  • the solvent in the obtained dope film was evaporated until the residual solvent amount reached 100% to obtain a web, and then the web was peeled from the stainless steel band support.
  • the obtained web was further dried at 35 ° C. and then slit to have a width of 1.65 m. Thereafter, the web was dried at a drying temperature of 160 ° C. while being stretched 1.5 times in the TD direction (the width direction of the film) with a tenter.
  • the residual solvent amount of the web at the start of stretching was 20%.
  • the draw ratio of MD direction computed from the rotational speed of a stainless steel band support body and the driving speed of a tenter was 1.0. Thereafter, the obtained film was dried at 125 ° C. for 15 minutes while being conveyed by a number of rolls in the drying apparatus, then slit to 2.2 m width, and the height of the convex portion was 10 ⁇ m at both ends in the width direction.
  • the embossed part (the width W of the embossed part: 15 mm) having a width w of the convex part of 100 ⁇ m and an interval between the convex parts of 1000 ⁇ m was formed. Embossing was performed under the following conditions.
  • Embossing roll Material: Stainless steel Roll diameter: 30cm Surface temperature: 270 ° C
  • Back roll Material: Metal (stainless steel) Temperature: 60 ° C
  • Clearance between emboss roll and back roll 27 ⁇ m
  • Nip pressure between emboss roll and back roll 150Pa
  • the thus obtained long optical film having a width of 2.2 m, a length of 4000 m, and a thickness of 30 ⁇ m was wound in the length direction to obtain a roll body of the optical film.
  • Examples 2 to 22 Same as Example 1, except that any one or more of the dope composition, the drying temperature of the stretched film, the embossing conditions, the winding length, and the thickness of the optical film were changed as shown in Table 1 or 3. Thus, a roll body of the optical film was obtained.
  • the additive contained in the dope was one type, the content of the additive was 5 parts by mass; when there were two types, the content of each additive was 5 parts by mass.
  • the amount of solvent remaining in the obtained optical film, the crush resistance of embossing, and the ease of tearing of the film were evaluated by the following methods.
  • Headspace sampler Equipment: Headspace sampler HP7694 manufactured by Hewlett-Packard Company Headspace heating condition: 20 minutes at 120 ° C (gas chromatography) Equipment: Hewlett-Packard 5971 type Column: J & W DB-624 Detector: Hydrogen flame ionization detector (FID) GC temperature rise condition: held at 45 ° C. for 3 minutes, then raised to 100 ° C. at 8 ° C./min. GC introduction temperature: 150 ° C.
  • FID Hydrogen flame ionization detector
  • the peak area of each solvent was calculated and collated with the calibration curve obtained in 1) above to determine the amount of each solvent remaining on the film.
  • the amount of the solvent remaining on the film was determined as a mass ratio (mass%) with respect to the entire film.
  • the obtained roll of optical film was stored at 23 ° C. and 55% RH for 24 hours. Thereafter, the optical film was unwound from the roll body, and the central portion in the width direction of the optical film near the core was cut off to obtain a sample film having a width of 50 mm and a length of 64 mm. The obtained sample film was conditioned at 23 ° C. and 55% RH for 24 hours, and then measured for Elmendorf tear strength in accordance with ISO 6383 / 2-1983.
  • Elmendorf tear strength was measured using a Toyo Seiki Co., Ltd. F9 elapsed weight difference tear tester. The tear strength was measured at 23 ° C. and 55% RH for each of the case where the film was torn in the length direction (MD direction) and the case in which the film was torn in the width direction (TD direction). Tear strength ".
  • Tear strength is 50 mN or more ⁇ : Tear strength is 40 mN or more and less than 50 mN ⁇ ⁇ : Tear strength is 30 mN or more and less than 40 mN ⁇ : Tear strength is 20 mN or more and less than 30 mN ⁇ : Tear strength is 10 mN or more and less than 20 mN XX: Tear strength Less than 10mN
  • Example 1 in which the crush resistance of the convex portion of the embossed portion is 30% or more and the amount of methanol remaining in the optical film of the roll body is in the range of 10 to 100 ppm by mass. It can be seen that the optical films of ⁇ 22 are more difficult to tear than the optical films of Comparative Examples 1-13.
  • Example 1 and Comparative Examples 6 and 7 From the comparison between Example 1 and Comparative Examples 6 and 7, if the surface temperature of the back roll is too low, cellulose acetate is hardly crystallized uniformly, so that an embossed portion with a high elastic modulus is not formed, and the optical film is It is suggested that it becomes easy to tear. Moreover, since the film is thermally expanded and the front and back surfaces of the film in the vicinity of the embossed portion are undulated, the films are easily adhered to each other, and the optical film is easily broken. Furthermore, from the comparison between Example 1 and Comparative Example 11, when using a rubber back roll, it is more difficult to transfer heat uniformly and sufficiently to the film than using a metal back roll. It is suggested that the obtained optical film is easily torn.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

 本発明の目的は、薄膜であっても、加工時に裂けにくい光学フィルムを提供することである。セルロースアセテートと、添加剤とを含有する、厚み20~50μmの光学フィルムを、フィルムの幅方向に対して垂直方向に巻き取って得られる光学フィルムのロール体であって、光学フィルムは幅方向両端部にエンボス部を有し、光学フィルムのエンボス部の表面上の、直径5mmの円領域に1kgの荷重を加えた状態で23℃55%RH下において10分間保存した後のエンボス部の凸部の高さをDとし、荷重を加える前のエンボス部の凸部の高さをDとしたとき、下記式で示される耐つぶれ率が30%以上であり、光学フィルムにおけるメタノールの残留量が、光学フィルムに対して10~100質量ppmであり、かつ光学フィルムにおけるエタノールおよびブタノールのいずれの残留量よりも多い。 耐つぶれ率(%)=D/D×100

Description

光学フィルムのロール体、およびそれを用いた偏光板の製造方法
 本発明は、光学フィルムのロール体、およびそれを用いた偏光板の製造方法に関する。
 近年、液晶表示装置には、薄型化が求められている。液晶表示装置は、通常、液晶セルと、それを挟持する一対の偏光板と、バックライトとを有する。偏光板は、偏光子と、それを挟持する一対の保護フィルムとを有する。そして、液晶表示装置の構成部材である保護フィルムにも、さらなる薄膜化が求められている。
 保護フィルムとしては、セルロースアセテートを含有するフィルムが提案されている(例えば、特許文献1~3参照)。
 このような保護フィルムは、通常、長さ方向に巻き取られたロール体として保存される。そのため、保護フィルムのロール体を保存している間の、保護フィルム同士の貼り付きなどを抑制するために、通常、保護フィルムの幅方向両端部には、エンボス加工が施されている(例えば特許文献4参照)。
特開2011-127046号公報 特開2011-137860号公報 特開2011-105924号公報 特開2002-122741号公報
 しかしながら、保護フィルムのロール体を一定条件下で保存した後、保護フィルムを巻き出して、所定の大きさに裁断したり、ハードコート層用塗布液を塗布したりするなどの加工を行う際に、保護フィルムが裂けやすいという問題があった。
 本発明者らは、保護フィルムが裂けやすくなる原因の一つが、保護フィルムのロール体を保存している間に、保護フィルムの幅方向両端部のエンボス部がつぶれることにあることを見出した。即ち、保護フィルムのエンボス部がつぶれると、積層される保護フィルム同士が密着しやすくなり;保護フィルム同士の密着部分において、保護フィルムに含まれる添加剤(可塑剤など)が染み出しやすくなる。その結果、保護フィルムにおいて、密度が相対的に高い部分と、相対的に低い部分とが生じ;保護フィルムの加工時に保護フィルムが裂けやすくなると考えられる。また、添加剤の染み出しは、膜厚が薄いフィルムにおいてより生じやすく、保護フィルムが裂けやすかった。
 エンボス部のつぶれは、膜厚が薄い保護フィルムや、高速で搬送しながらエンボス部が形成された保護フィルムにおいて特に生じやすかった。
 本発明は、上記事情に鑑みてなされたものであり、厚みが薄くても、加工時に裂けにくい光学フィルムを提供することを目的とする。
 [1] セルロースアセテートと、添加剤とを含有する、厚み20~50μmの光学フィルムを、フィルムの幅方向に対して垂直方向に巻き取って得られる光学フィルムのロール体であって、前記光学フィルムは、幅方向両端部にエンボス部を有し、前記光学フィルムの前記エンボス部の表面上の、直径5mmの円領域に1kgの荷重を加えた状態で23℃55%RH下において10分間保存した後の前記エンボス部の凸部の高さをDとし、前記荷重を加える前の前記エンボス部の凸部の高さをDとしたとき、下記式で示される耐つぶれ率が30%以上であり、
Figure JPOXMLDOC01-appb-M000001
 前記光学フィルムにおけるメタノールの残留量が、前記光学フィルムに対して10~100質量ppmであり、かつ前記光学フィルムにおけるエタノールおよびブタノールのいずれの残留量よりも多い、光学フィルムのロール体。
 [2] 前記セルロースアセテートのアセチル基の総置換度が、2.3以上2.95以下である、[1]に記載の光学フィルムのロール体。
 [3] 前記光学フィルムの巻長が、1000m以上8000m以下である、[1]または[2]に記載の光学フィルムのロール体。
 [4] 前記添加剤は、SP値が9~11の可塑剤である、[1]~[3]のいずれかに記載の光学フィルムのロール体。
 [5] 前記可塑剤が、トリフェニルホスフェート、エチルフタリルエチルグリコレートまたはポリエステル化合物である、[4]に記載の光学フィルムのロール体。
 [6] 前記ポリエステル化合物が、炭素数1~4のジオールと、少なくとも芳香族ジカルボン酸を含有するジカルボン酸とを反応させて得られる化合物の分子末端を、芳香族基または脂肪族基でさらに封止したものである、[5]に記載の光学フィルムのロール体。
 [7] 前記可塑剤の含有量が、前記セルロースアセテートに対して1~20質量%である、[1]~[6]のいずれかに記載の光学フィルムのロール体。
 [8] [1]~[7]のいずれかに記載の光学フィルムのロール体における、前記光学フィルムの前記エンボス部を除去するステップと、前記エンボス部が除去された前記光学フィルムと、偏光子とを貼り合わせるステップと、を有する、偏光板の製造方法。
 本発明によれば、厚みが薄くても、加工時に裂けにくい光学フィルムを提供することができる。
光学フィルムのロール体の一例を示す模式図である。 光学フィルムのエンボス部近傍の一例を示す部分断面図である。 耐つぶれ率の測定におけるエンボス部の一例を示す部分断面図である。 エンボス部の凸部の耐つぶれ率の測定方法の一例を示す模式図である。 エンボス加工装置の一例を示す模式図である。 液晶表示装置の構成の一例を示す模式図である。
 1.光学フィルムのロール体
 本発明の光学フィルムのロール体は、長尺状の光学フィルムを、その長さ方向(フィルムの幅方向に対して垂直方向)に巻き取って得られるものである。
 図1は、光学フィルムのロール体の一例を示す模式図である。図1に示されるように、光学フィルムのロール体10は、巻芯12と、その周囲に、フィルムの長さ方向に巻き取られた長尺状の光学フィルム14とを有する。そして、ロール体10において、積層される光学フィルム14同士の密着を抑制するために、長尺状の光学フィルム14の幅方向両端部には、エンボス部16が形成されている。
 図2は、光学フィルムのエンボス部近傍の一例を示す断面図である。図2に示されるように、エンボス部16を構成する凸部16Aの高さDは、好ましくは1.0μm以上10.0μm以下であり、より好ましくは2.0μm以上6.0μm以下である。凸部16Aの高さDとは、フィルム面F(エンボスが形成されていない部分のフィルム面)から凸部16Aの頂点までの高さをいう。凸部16Aの高さが1.0μm未満であると、光学フィルム同士が密着しやすいため、好ましくない。一方、凸部16Aの高さが大きすぎると、ロール体の幅方向中央部がたわみやすく、光学フィルムとしての平面性が保ちにくい。
 凸部16Aの幅wは、0.05~5mm程度としうる。凸部16Aの幅wとは、エンボス部16の断面において、凸部16Aが、フィルム面Fと交わる2点間の距離として表される。凸部16Aと凸部16Aの間隔bは、0.1~5mmであることが好ましく、0.5~2mmであることがより好ましい。凸部16Aと凸部16Aの間隔bは、エンボス部16の断面において、2つの凸部16Aが、それぞれフィルム面Fと交わる点同士の距離で表される。
 エンボス部16の幅Wは、光学フィルムの幅に対して0.12~2.1%の範囲であることが好ましい。具体的には、エンボス部16の幅Wは、光学フィルムの幅の大きさにもよるが、5~25mmとし;好ましくは10~20mmとしうる。エンボス部16の幅Wが大きすぎると、光学フィルムとして使用できる面積が少なくなる。一方、エンボス部16の幅Wが小さすぎると、光学フィルム同士が密着しやすい。
 光学フィルムのロール体では、巻芯近傍の光学フィルムのエンボス部の凸部が、積層される光学フィルムの重みによってつぶれやすい。エンボス部の凸部がつぶれると、積層される光学フィルム同士が密着しやすくなり;光学フィルム同士の密着部分において、光学フィルムに含まれる添加剤(例えば可塑剤)の染み出しが生じやすい。光学フィルム同士の密着部分において添加剤の染み出しが生じると、光学フィルムに、添加剤(例えば可塑剤)の粗な部分と密な部分とが生じ、光学フィルムを加工する際に裂けやすくなる。
 このようなエンボス部の凸部のつぶれは、光学フィルムの膜厚を薄くしたり、光学フィルムを高速で搬送しながらエンボス加工を行ったりしたときに特に生じやすい。特に、光学フィルムを高速で搬送しながら形成されるエンボス部は、エンボス部の形成時間が短いため、エンボス部の強度が低くなりやすい。
 そこで、光学フィルムのエンボス部に力が加わっても、エンボス部の凸部がつぶれにくいこと;即ち、エンボス部が、高い強度(高い弾性率)を有することが好ましい。具体的には、以下の方法で測定されるエンボス部の凸部の耐つぶれ率が、30%以上であることが好ましく、50%以上であることがより好ましい。
 エンボス部の凸部の耐つぶれ率は、以下の方法で測定することができる。図3および4は、エンボス部の凸部の耐つぶれ率の測定方法の一例を示す部分断面図である。
 1)光学フィルム14のエンボス部16を含む領域を切り出して、サンプルフィルム14Aを得る(図4参照)。そして、サンプルフィルム14Aのエンボス部16の凸部の高さD(図3における、荷重を加える前の凸部の高さD)を、厚み測定機で測定する。
 2)次いで、図4に示されるように、ステージ15上にサンプルフィルム14Aを配置する。そして、フィルム面に対して垂直に載置された直径5mmの金属製の円筒棒18Aと、その上に配置された分銅18Bとからなる合計1kgの重し18を載せる。このようにして、エンボス部16の表面上の直径5mmの円領域に1kgの荷重を加えた状態で、23℃55%RH下において10分間保存する。その後、荷重を除いた(重しを除いた)ときの、エンボス部16の凸部の高さD(図3における荷重を加えた後の凸部の高さD)を、厚み測定機で測定する。
 3)前記1)で測定された荷重を加える前の凸部の高さDと、前記2)で測定された荷重を加えた後の凸部の高さDとを、下記式に当てはめて、耐つぶれ率を算出する。
Figure JPOXMLDOC01-appb-M000002
 エンボス部の凸部の耐つぶれ率の調整は、エンボス加工条件;1)エンボスロールの表面温度、2)バックロールの表面温度、3)エンボスロールのロール径、および4)バックロールの材質のうち少なくとも二以上を種々組み合わせて調整することができる。なかでも、1)エンボスロールの表面温度と、2)バックロールの表面温度を調整することが好ましく;さらに3)エンボスロール径を調整することがより好ましく;さらに4)バックロールの材質を選択することが特に好ましい。エンボス部の凸部の耐つぶれ率を高めるためには、例えば1)エンボスロールの表面温度を高くし、かつ2)バックロールの表面温度を高くすることが好ましい。
 前述の光学フィルム同士の密着部分における添加剤の染み出しは、光学フィルムの膜内で添加剤が移動することによって生じやすく、光学フィルムの膜内での添加剤の移動は、膜内に残存する溶剤によって促進されやすい。そのため、光学フィルム同士の密着部分における添加剤の染み出しを抑制するためには、光学フィルムの膜内に残留する溶剤のうち、添加剤との親和性が低いメタノールの含有割合が、添加剤との親和性が高いエタノールやブタノールよりも少ないことが好ましい。
 そのため、ロール体を構成する光学フィルムに残留するメタノールの量(質量)が、エタノールまたはブタノールの量(質量)よりも多いことが好ましい。光学フィルムに残留するメタノールの量は、当該フィルムに対して好ましくは10~100質量ppmであり、より好ましくは10~80質量ppmであり、さらに好ましくは20~60質量ppmである。
 ロール体を構成する光学フィルムに残留するメタノールの量(質量)は、後述するように、光学フィルムを溶液流延法により製造する際のドープに含まれる溶剤組成や、延伸後のフィルムの乾燥温度および乾燥時間などによって調整されうる。
 ロール体を構成する光学フィルムに残留する溶剤の量は、以下の方法によって測定することができる。
 1)検量線の作成
 測定対象となる溶剤の濃度が既知の試料を専用のバイアル瓶に入れ、セプタムとアルミキャップで密閉し、ヘッドスペースサンプラーにセットする。次いで、バイアル瓶を、下記のヘッドスペース加熱条件で加熱して揮発成分を生成させ、得られた揮発成分を、ガスクロマトグラフィーにて測定する。溶剤の濃度の異なる試料についても同様の測定を行う。各測定で得られたGCチャートにおける溶剤のピーク面積を算出し、溶剤の濃度とピーク面積のプロットを作成し、検量線を得る。
 (ヘッドスペースサンプラー)
 機器:ヒューレット・パッカード社製ヘッドスペースサンプラーHP7694型
 ヘッドスペース加熱条件:120℃で20分
 (ガスクロマトグラフィー)
 機器:ヒューレット・パッカード社製5971型
 カラム:J&W社製 DB-624
 検出器:水素炎イオン化検出器(FID)
 GC昇温条件:45℃で3分保持した後、8℃/分で100℃まで昇温
 GC導入温度:150℃
 2)光学フィルムに残留する溶剤の測定
 10cm角に切り出したフィルムを、5mm程度に細かく刻んで専用のバイアル瓶に封入する以外は前記1)と同様にしてヘッドスペース加熱条件にて加熱処理し、得られた揮発成分を、ガスクロマトグラフィーにて測定する。
 3)溶剤量の算出
 得られたGCチャートから、溶剤のピーク面積を算出し、前記1)で得た検量線と照合して、フィルムに残留する溶剤の量を求める。フィルムに残留する溶剤の量は、フィルム全体に対する質量割合(質量%)として求められる。
 本発明のロール体における光学フィルムの巻長は、通常、1000m以上8000m以下であり、好ましくは3800m以上6000m以下である。本発明のロール体における巻芯の径は、100mm~250mm程度としうる。本発明の光学フィルムのロール体における、光学フィルムの幅は、1.2~4m程度であり、好ましくは1.2~2.5m程度でありうる。
 本発明によれば、光学フィルムの幅方向両端部に、強度の高いエンボス部を有する。そのため、巻長が大きい光学フィルムのロール体においても、巻芯近傍の光学フィルムのエンボス部の凸部が、積層される光学フィルムの重みによってつぶされにくくすることができる。それにより、光学フィルム同士の密着;および、それによる添加剤の染み出しを抑制でき、フィルム加工時に、フィルムが裂けるのを抑制できる。
 また、本発明のロール体において、光学フィルムに残留するメタノールの量が所定の範囲に調整されている。そのため、仮に、エンボス部の凸部が、積層される光学フィルムの重みによってつぶされたとしても、光学フィルムの膜内における添加剤の移動を抑制することができる。それにより、ロール体の、光学フィルム同士の密着部分における添加剤の染み出しを抑制し;フィルム加工時に、フィルムが裂けるのを抑制できる。
 2.光学フィルムの組成および物性について
 光学フィルムは、セルロースエステルと、添加剤とを含有する。
 セルロースエステルについて
 セルロースエステルは、セルロースの水酸基を、脂肪族カルボン酸または芳香族カルボン酸でエステル化して得られる化合物である。
 セルロースエステルに含まれるアシル基は、脂肪族アシル基または芳香族アシル基であり、好ましくは脂肪族アシル基である。なかでも、一定以上の位相差発現性を得るためには、炭素原子数2~6の脂肪族アシル基が好ましく、炭素原子数2~4の脂肪族アシル基がより好ましい。炭素原子数2~4の脂肪族アシル基の例には、アセチル基、プロピオニル基、ブタノイル基などが含まれ、より好ましくはアセチル基である。
 セルロースエステルの例には、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどが含まれ、好ましくはセルロースアセテートである。セルロースアセテートは、セルロースエステルに含まれるアシル基の全てがアセチル基であることが好ましい。
 セルロースアセテートのアセチル基置換度(アシル基の総置換度)は、耐熱性が高く、かつ溶媒に対する溶解性が高く、製膜が比較的容易であることから、好ましくは2.3以上2.95以下であり、より好ましくは2.5以上2.95以下であり、さらに好ましくは2.8以上2.95以下である。
 アシル基の総置換度(アセチル基置換度)の測定方法は、ASTM-D817-96に準じて測定することができる。
 セルロースアセテートの数平均分子量は、機械的強度が高いフィルムを得るためには、3.0×10以上2.0×10未満であることが好ましく、4.5×10以上1.5×10未満であることがより好ましい。セルロースアセテートの重量平均分子量は、1.2×10以上2.5×10未満であることが好ましく、1.5×10以上2.0×10未満であることがより好ましい。
 セルロースアセテートの分子量分布(重量平均分子量Mw/数平均分子量Mn)は、1.0~4.5であることが好ましい。
 セルロースアセテートの数平均分子量および重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。測定条件は以下の通りである。
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製)を3本接続して使用する。
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standardポリスチレン(東ソー(株)製)Mw=1.0×10~5.0×10までの13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に選択することが好ましい。
 セルロースエステルは、公知の方法で合成することができる。具体的には、セルロースと、少なくとも酢酸または無水酢酸を含む、炭素原子数3以上の有機酸またはその無水物と、をエステル化反応させて合成することができる(特開平10-45804号公報に記載の方法を参照)。
 セルロースアセテートの原料であるセルロースの例には、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)およびケナフなどが含まれる。原料となるセルロースは、一種類だけであってもよいし、二種類以上の混合物であってもよい。
 添加剤について
 光学フィルムに含まれる添加剤の例には、可塑剤、酸化防止剤、光安定剤、紫外線吸収剤、レターデーション調整剤、帯電防止剤、剥離剤などが含まれ、好ましくは可塑剤でありうる。
 可塑剤の例には、ポリエステル化合物、多価アルコールエステル化合物、多価カルボン酸エステル化合物(フタル酸エステル化合物を含む)、グリコレート化合物、およびエステル化合物(脂肪酸エステル化合物やリン酸エステル化合物などを含む)が含まれる。これらは、単独で用いても、二種類以上を組み合わせて用いてもよい。
 ポリエステル化合物は、ジカルボン酸とジオールを反応させて得られる繰り返し単位を含む化合物である。
 ポリエステル化合物を構成するジカルボン酸は、芳香族ジカルボン酸、脂肪族ジカルボン酸または脂環式ジカルボン酸であり、好ましくは芳香族ジカルボン酸である。ジカルボン酸は、一種類であっても、二種類以上の混合物であってもよい。
 ポリエステル化合物を構成するジオールは、芳香族ジオール、脂肪族ジオールまたは脂環式ジオールであり、好ましくは脂肪族ジオールであり、より好ましくは炭素数1~4のジオールである。ジオールは、一種類であっても、二種類以上の混合物であってもよい。
 なかでも、ポリエステル化合物は、少なくとも芳香族ジカルボン酸を含むジカルボン酸と、炭素数1~4のジオールとを反応させて得られる繰り返し単位を含むことが好ましく;芳香族ジカルボン酸と脂肪族ジカルボン酸とを含むジカルボン酸と、炭素数1~4のジオールとを反応させて得られる繰り返し単位を含むことがより好ましい。
 ポリエステル化合物の分子の両末端は、封止されていても、封止されていなくてもよいが、フィルムの透湿性を低減する観点からは、封止されていることが好ましい。
 ポリエステル化合物は、一般式(1)または(2)で表される化合物であることが好ましい。下記式において、nは1以上の整数である。
 一般式(1)
 B-(G-A)n-G-B
 一般式(2)
 C-(A-G)n-A-C
 一般式(1)および(2)のAは、炭素原子数3~20(好ましくは4~12)のアルキレンジカルボン酸から誘導される2価の基、炭素原子数4~20(好ましくは4~12)のアルケニレンジカルボン酸から誘導される2価の基、または炭素原子数8~20(好ましくは8~12)のアリールジカルボン酸から誘導される2価の基を表す。
 Aにおける炭素原子数3~20のアルキレンジカルボン酸から誘導される2価の基の例には、1,2-エタンジカルボン酸(コハク酸)、1,3-プロパンジカルボン酸(グルタル酸)、1,4-ブタンジカルボン酸(アジピン酸)、1,5-ペンタンジカルボン酸(ピメリン酸)、1,8-オクタンジカルボン酸(セバシン酸)などから誘導される2価の基が含まれる。Aにおける炭素原子数4~20のアルケニレンジカルボン酸から誘導される2価の基の例には、マレイン酸、フマル酸などから誘導される2価の基が含まれる。Aにおける炭素原子数8~20のアリールジカルボン酸から誘導される2価の基の例には、1,2-ベンゼンジカルボン酸(フタル酸)、1,3-ベンゼンジカルボン酸、1,4-ベンゼンジカルボン酸、1,5-ナフタレンジカルボン酸などのナフタレンジカルボン酸などから誘導される2価の基が含まれる。
 Aは、一種類であっても、二種類以上が組み合わされてもよい。なかでも、Aは、炭素原子数4~12のアルキレンジカルボン酸と炭素原子数8~12のアリールジカルボン酸との組み合わせが好ましい。
 一般式(1)および(2)のGは、炭素原子数2~20(好ましくは2~12)のアルキレングリコールから誘導される2価の基、炭素原子数6~20(好ましくは6~12)のアリールグリコールから誘導される2価の基、または炭素原子数4~20(好ましくは4~12)のオキシアルキレングリコールから誘導される2価の基を表す。
 Gにおける炭素原子数2~20のアルキレングリコールから誘導される2価の基の例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、および1,12-オクタデカンジオール等から誘導される2価の基が含まれる。
 Gにおける炭素原子数6~20のアリールグリコールから誘導される2価の基の例には、1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン)などから誘導される2価の基が含まれる。Gにおける炭素原子数が4~12のオキシアルキレングリコールから誘導される2価の基の例には、ジエチレングルコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどから誘導される2価の基が含まれる。
 Gは、一種類であっても、二種類以上が組み合わされてもよい。なかでも、Gは、炭素原子数2~12のアルキレングリコールであることが好ましい。
 一般式(1)のBは、芳香環含有モノカルボン酸または脂肪族モノカルボン酸から誘導される1価の基である。
 芳香環含有モノカルボン酸から誘導される1価の基における芳香環含有モノカルボン酸は、分子内に芳香環を含有するカルボン酸であり、芳香環がカルボキシル基と直接結合したものだけでなく、芳香環がアルキレン基などを介してカルボキシル基と結合したものも含む。芳香環含有モノカルボン酸から誘導される1価の基の例には、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、フェニル酢酸、3-フェニルプロピオン酸などから誘導される1価の基が含まれる。
 脂肪族モノカルボン酸から誘導される1価の基の例には、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸などから誘導される1価の基が含まれる。なかでも、アルキル部分の炭素原子数が1~3であるアルキルモノカルボン酸から誘導される1価の基が好ましく、アセチル基(酢酸から誘導される1価の基)がより好ましい。
 一般式(2)のCは、芳香環含有モノアルコールまたは脂肪族モノアルコールから誘導される1価の基である。
 芳香環含有モノアルコールは、分子内に芳香環を含有するアルコールであり、芳香環がOH基と直接結合したものだけでなく、芳香環がアルキレン基などを介してOH基と結合したものも含む。芳香環含有モノアルコールから誘導される1価の基の例には、ベンジルアルコール、3-フェニルプロパノールなどから誘導される1価の基が含まれる。
 脂肪族モノアルコールから誘導される1価の基の例には、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ペンタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、オクタノール、イソオクタノール、2-エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、tert-ノニルアルコール、デカノール、ドデカノール、ドデカヘキサノール、ドデカオクタノール、アリルアルコール、オレイルアルコールなどから誘導される1価の基が含まれる。なかでも、メタノール、エタノール、プロパノール、イソプロパノールなどの炭素原子数1~3のアルコールから誘導される1価の基が好ましい。
 ポリエステル化合物の重量平均分子量は、300~1500であることが好ましく、400~1000であることがより好ましい。重量平均分子量が300未満であるポリエステル化合物が、光学フィルムから染み出しやすいことがある。
 ポリエステル化合物の具体例を、以下に示す。まず、「芳香族基」で両末端を封止したポリエステル化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 次に、「脂肪族基」で両末端を封止したポリエステル化合物の具体例を、以下に示す。
Figure JPOXMLDOC01-appb-C000006
 P-1:アジピン酸/フタル酸/エタンジオール(1/1/2 モル比)からなる縮合物(重量平均分子量950)の両末端のアセチルエステル化体
 P-2:コハク酸/フタル酸/エタンジオール/(1/1/2 モル比)からなる縮合物(重量平均分子量2500)の両末端のアセチルエステル化体
 P-3:グルタル酸/イソフタル酸/1,3-プロパンジオール(1/1/2 モル比)からなる縮合物(重量平均分子量1300)の両末端のアセチルエステル化体
 P-4: コハク酸/グルタル酸/アジピン酸/テレフタル酸/イソフタル酸/エタンジオール/1,2-プロパンジオール(1/1/1/1/1/3/2 モル比)からなる縮合物(数平均分子量3000)の両末端のプロピルエステル化体
 P-5: コハク酸/フタル酸/エタンジオール/(1/1/2 モル比)からなる縮合物(重量平均分子量2100)の両末端のブチルエステル化体
 P-6: アジピン酸/テレフタル酸/1,2-プロパンジオール(1/1/2 モル比)からなる縮合物(数平均分子量2500)の両末端の2-エチルヘキシルエステル化体
 P-7: コハク酸/テレフタル酸/ポリ(平均重合度5)プロピレンエーテルグリコール/1,2-プロパンジオール(2/1/1/2モル比)からなる縮合物(重量平均分子量3500)の両末端の2-エチルヘキシルエステル化体
 多価アルコールエステル化合物は、2価以上の脂肪族多価アルコールと、モノカルボン酸とのエステル化合物(アルコールエステル)であり、好ましくは2~20価の脂肪族多価アルコールエステルである。多価アルコールエステル化合物は、分子内に芳香環またはシクロアルキル環を有することが好ましい。
 脂肪族多価アルコールの好ましい例には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、トリメチロールプロパン、ペンタエリスリトール、トリメチロールエタン、キシリトール等が含まれる。なかでも、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールなどが好ましい。
 モノカルボン酸は、特に制限はなく、脂肪族モノカルボン酸、脂環式モノカルボン酸または芳香族モノカルボン酸等でありうる。フィルムの透湿性を高め、かつ揮発しにくくするためには、脂環式モノカルボン酸または芳香族モノカルボン酸が好ましい。モノカルボン酸は、一種類であってもよいし、二種以上の混合物であってもよい。また、脂肪族多価アルコールに含まれるOH基の全部をエステル化してもよいし、一部をOH基のままで残してもよい。
 脂肪族モノカルボン酸は、炭素数1~32の直鎖または側鎖を有する脂肪酸であることが好ましい。脂肪族モノカルボン酸の炭素数はより好ましくは1~20であり、さらに好ましくは1~10である。脂肪族モノカルボン酸の例には、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸;ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等が含まれる。なかでも、セルロースアセテートとの相溶性を高めるためには、酢酸、または酢酸とその他のモノカルボン酸との混合物が好ましい。
 脂環式モノカルボン酸の例には、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸などが含まれる。
 芳香族モノカルボン酸の例には、安息香酸;安息香酸のベンゼン環にアルキル基またはアルコキシ基(例えばメトキシ基やエトキシ基)を1~3個を導入したもの(例えばトルイル酸など);ベンゼン環を2個以上有する芳香族モノカルボン酸(例えばビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸など)が含まれ、好ましくは安息香酸である。
 多価アルコールエステル化合物の具体例を以下に示す。2価のアルコールエステル化合物の例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000007
 3価以上のアルコールエステル化合物の例には、以下の化合物が含まれる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 多価カルボン酸エステル化合物は、2価以上、好ましくは2~20価の多価カルボン酸と、アルコール化合物とのエステル化合物である。多価カルボン酸は、2~20価の脂肪族多価カルボン酸であるか、3~20価の芳香族多価カルボン酸または3~20価の脂環式多価カルボン酸であることが好ましい。
 多価カルボン酸の例には、トリメリット酸、トリメシン酸、ピロメリット酸のような3価以上の芳香族多価カルボン酸またはその誘導体、コハク酸、アジピン酸、アゼライン酸、セバシン酸、シュウ酸、フマル酸、マレイン酸、テトラヒドロフタル酸のような脂肪族多価カルボン酸、酒石酸、タルトロン酸、リンゴ酸、クエン酸のようなオキシ多価カルボン酸などが含まれ、フィルムからの揮発を抑制するためには、オキシ多価カルボン酸が好ましい。
 アルコール化合物の例には、直鎖もしくは側鎖を有する脂肪族飽和アルコール化合物、直鎖もしくは側鎖を有する脂肪族不飽和アルコール化合物、脂環式アルコール化合物または芳香族アルコール化合物などが含まれる。脂肪族飽和アルコール化合物または脂肪族不飽和アルコール化合物の炭素数は、好ましくは1~32であり、より好ましくは1~20であり、さらに好ましくは1~10である。脂環式アルコール化合物の例には、シクロペンタノール、シクロヘキサノールなどが含まれる。芳香族アルコール化合物の例には、ベンジルアルコール、シンナミルアルコールなどが含まれる。
 多価カルボン酸エステル化合物の分子量は、特に制限はないが、300~1000であることが好ましく、350~750であることがより好ましい。多価カルボン酸エステル系可塑剤の分子量は、ブリードアウトを抑制する観点では、大きいほうが好ましく;透湿性やセルロースアセテートとの相溶性の観点では、小さいほうが好ましい。
 多価カルボン酸エステル化合物の例には、トリエチルシトレート、トリブチルシトレート、アセチルトリエチルシトレート(ATEC)、アセチルトリブチルシトレート(ATBC)、ベンゾイルトリブチルシトレート、アセチルトリフェニルシトレート、アセチルトリベンジルシトレート、酒石酸ジブチル、酒石酸ジアセチルジブチル、トリメリット酸トリブチル、ピロメリット酸テトラブチル等が含まれる。
 多価カルボン酸エステル化合物は、フタル酸エステル化合物であってもよい。フタル酸エステル化合物の例には、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が含まれる。
 グリコレート化合物の例には、アルキルフタリルアルキルグリコレート類が含まれる。アルキルフタリルアルキルグリコレート類の例には、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が含まれ、好ましくはエチルフタリルエチルグリコレートである。
 エステル化合物には、脂肪酸エステル化合物、クエン酸エステル化合物やリン酸エステル化合物などが含まれる。
 脂肪酸エステル化合物の例には、オレイン酸ブチル、リシノール酸メチルアセチル、およびセバシン酸ジブチル等が含まれる。クエン酸エステル化合物の例には、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、およびクエン酸アセチルトリブチル等が含まれる。リン酸エステル化合物の例には、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ビフェニルジフェニルホスフェート、トリオクチルホスフェート、およびトリブチルホスフェート等が含まれ、好ましくはトリフェニルホスフェートである。
 なかでも、ポリエステル化合物、グリコレート化合物、リン酸エステル化合物が好ましく、ポリエステル化合物、エチルフタリルエチルグリコレート、トリフェニルホスフェートがより好ましい。
 可塑剤とセルロースエステルとの相溶性を高めるためには、可塑剤のFedorsの溶解度パラメータ(SP値)が、セルロースエステルのそれと近い範囲にあることが好ましく、具体的には、9~11の範囲にあることがより好ましい。
 本発明におけるSP値は、Fedorsのパラメーターを用いて計算により求めることができる。SP値の単位は、凝集エネルギー密度△Eをモル体積Vで除した値の平方根で、「(cm/cal)1/2」を用いることができる。Fedorsのパラメーターは、参考文献:コーティングの基礎科学 原田勇次著 槇書店(1977)のp54~57に記載されている。
 可塑剤の含有量は、セルロースアセテートに対して好ましくは1~20質量%であり、より好ましくは1.5~15質量%である。可塑剤の含有量が1質量%未満であると、可塑性の付与効果が十分でないことがある。一方、可塑剤の含有量が20質量%超であると、光学フィルムにおいて可塑剤が染み出しやすくなる。
 微粒子(マット剤)
 光学フィルムは、表面の滑り性を高めるためなどから、必要に応じて微粒子(マット剤)をさらに含有してもよい。
 微粒子は、無機微粒子であっても有機微粒子であってもよい。無機微粒子の例には、二酸化珪素(シリカ)、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムなどが含まれる。なかでも、二酸化珪素や酸化ジルコニウムが好ましく、得られるフィルムのヘイズの増大を少なくするためには、より好ましくは二酸化珪素である。
 二酸化珪素の微粒子の例には、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600、NAX50(以上日本アエロジル(株)製)、シーホスターKE-P10、KE-P30、KE-P50、KE-P100(以上日本触媒(株)製)などが含まれる。なかでも、アエロジルR972V、NAX50、シーホスターKE-P30などが、得られるフィルムの濁度を低く保ちつつ、摩擦係数を低減させうるため特に好ましい。
 微粒子の一次粒子径は、5~50nmであることが好ましく、7~20nmであることがより好ましい。一次粒子径が大きいほうが、得られるフィルムの滑り性を高める効果は大きいが、透明性が低下しやすい。そのため、微粒子は、粒子径0.05~0.3μmの二次凝集体として含有されていてもよい。微粒子の一次粒子またはその二次凝集体の大きさは、透過型電子顕微鏡にて倍率50万~200万倍で一次粒子または二次凝集体を観察し、一次粒子または二次凝集体100個の粒子径の平均値として求めることができる。
 微粒子の含有量は、低置換度成分を含むセルロースアセテート全体に対して0.05~1.0質量%であることが好ましく、0.1~0.8質量%であることがより好ましい。
 光学フィルムの物性
 光学フィルムの厚みは、熱や湿度によるレターデーションの変動を少なくするためなどから、好ましくは200μm以下、より好ましくは100μm以下であり、さらに好ましくは50μm以下であり、特に好ましくは35μmである。一方、光学フィルムの厚みは、保護フィルムとして機能しうるフィルム強度やレターデーションを得るためには、好ましくは10μm以上であり、より好ましくは20μm以上である。なかでも、光学フィルムの厚みは、20~50μmであることが好ましい。
 光学フィルムが、位相差調整機能を有しない保護フィルムである場合、23℃、55%RHの環境下で、波長590nmにて測定される面内方向のレターデーションRoは0nm以上30nm以下であることが好ましく、0nm以上10nm以下であることがより好ましい。厚み方向のレターデーションRthは、0nm以上70m以下であることが好ましく、0nm以上50nm以下であることがより好ましい。
 レターデーションRoおよびRthは、それぞれ以下の式で定義される。
 式(I) Ro=(nx-ny)×d
 式(II) Rth={(nx+ny)/2-nz}×d
 (nx:フィルム面内の遅相軸方向xの屈折率、ny:フィルム面内において、遅相軸方向xに対して直交する方向yの屈折率、nz:フィルムの厚み方向zの屈折率、d:フィルムの厚み(nm))
 レターデーションRおよびRthは、例えば以下の方法によって測定することができる。
 1)光学フィルムを、23℃55%RHで調湿する。調湿後の光学フィルムの平均屈折率をアッベ屈折計などで測定する。
 2)調湿後の光学フィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのRを、KOBRA21ADH、王子計測(株)にて測定する。
 3)KOBRA21ADHにより、光学フィルムの面内の遅相軸を傾斜軸(回転軸)として、光学フィルムの表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのレターデーション値R(θ)を測定する。レターデーション値R(θ)の測定は、θが0°~50°の範囲で、10°毎に6点行うことができる。光学フィルムの面内の遅相軸は、KOBRA21ADHにより確認することができる。
 4)測定されたRおよびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA21ADHにより、nx、nyおよびnzを算出して、測定波長590nmでのRthを算出する。レターデーションの測定は、23℃55%RH条件下で行うことができる。
 光学フィルムの面内遅相軸とフィルムの幅方向とのなす角θ1(配向角)は、好ましくは-1°~+1°であり、さらに好ましくは-0.5°~+0.5°である。光学フィルムの配向角θ1の測定は、自動複屈折計KOBRA-WR(王子計測機器)を用いて測定することができる。
 光学フィルムの、JIS K-7136に準拠して測定される内部ヘイズは、0.01~0.1であることが好ましい。光学フィルムの可視光透過率は、90%以上であることが好ましく、93%以上であることがより好ましい。
 光学フィルムは、好ましくは液晶表示装置用の光学フィルムであり、その具体例には、偏光板保護フィルム、位相差フィルム(光学補償フィルム)、反射防止フィルム、防眩フィルム、ハードコートフィルムなどが含まれ、より好ましくは反射防止フィルム、防眩フィルム、ハードコートフィルムなどである。
 2.光学フィルムのロール体の製造方法
 本発明の光学フィルムのロール体は、1)少なくともセルロースアセテートと、添加剤とを溶剤に溶解させてドープを調製する工程、2)ドープを無端の金属支持体上に流延する工程、3)流延したドープから溶媒を蒸発させてウェブを得る工程、4)ウェブを金属支持体から剥離する工程、5)ウェブを乾燥後、延伸してフィルムを得る工程、6)フィルムの幅方向両端部にエンボス加工を施す工程、7)フィルムを巻き取る工程、を経て得ることができる。
 1)ドープを調製する工程
 溶解釜において、セルロースアセテートと、添加剤とを溶剤に溶解させてドープを調製する。
 ドープに含まれる溶剤は、1種類でも2種以上を組み合わせたものでもよい。生産効率を高める観点では、セルロースアセテートの良溶剤と貧溶剤を組み合わせて用いることが好ましい。良溶剤とは、セルロースアセテートを単独で溶解する溶剤をいい、貧溶剤とは、セルロースアセテートを膨潤させるか、または単独では溶解しないものをいう。そのため、良溶剤および貧溶剤は、セルロースアセテートの平均アシル基置換度(アセチル基置換度)によって異なる。
 良溶剤の例には、ジクロロメタン等の有機ハロゲン化合物、ジオキソラン類、アセトン、酢酸メチル、およびアセト酢酸メチルなどが含まれ、好ましくはジクロロメタンまたは酢酸メチルなどである。
 貧溶剤の例には、メタノール(SP値14.5)、エタノール(SP値12.7)、n-ブタノール(SP値11.4)、シクロヘキサン、およびシクロヘキサノン等が含まれる。ロール体を構成する光学フィルムにおける添加剤の染み出しを抑制するためには、添加剤との親和性が低い貧溶剤;即ち、添加剤のSP値との差の絶対値が大きい貧溶剤が好ましく、メタノールが好ましい。
 貧溶剤は、一種類でも、二種類以上の混合物であってもよい。貧溶剤が二種類以上の貧溶剤の混合物である場合、添加剤のSP値との差の絶対値が大きい貧溶剤の含有割合が最も多いことが好ましい。
 良溶剤と貧溶剤を組み合わせて用いる場合、セルロースアセテートの溶解性を高めるためには、良溶剤が貧溶剤よりも多いことが好ましい。良溶剤と貧溶剤の混合比率は、良溶剤が70~98質量%であり、貧溶剤が2~30質量%であることが好ましい。
 ドープにおけるセルロースアセテートの濃度は、乾燥負荷を低減するためには高いほうが好ましいが、セルロースアセテートの濃度が高すぎるとろ過しにくい。そのため、ドープにおけるセルロースアセテートの濃度は、好ましくは10~35質量%であり、より好ましくは15~25質量%である。
 セルロースアセテートを溶剤に溶解させる方法は、例えば加熱および加圧下で溶解させる方法、セルロースアセテートに貧溶剤を加えて膨潤させた後、良溶剤をさらに加えて溶解させる方法、および冷却溶解法などでありうる。
 なかでも、常圧における沸点以上に加熱できることから、加熱および加圧下で溶解させる方法が好ましい。具体的には、常圧下で溶剤の沸点以上であり、かつ加圧下で溶剤が沸騰しない範囲の温度に加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を抑制できる。
 加熱温度は、セルロースアセテートの溶解性を高める観点では、高いほうが好ましいが、高過ぎると、圧力を高める必要があり、生産性が低下する。このため、加熱温度は、45~120℃であることが好ましく、60~110℃がより好ましく、70℃~105℃であることがさらに好ましい。
 得られるドープには、例えば原料であるセルロースアセテートに含まれる不純物などの不溶物が含まれることがある。このような不溶物は、得られるフィルムにおいて輝点異物となりうる。このような不溶物等を除去するために、得られたドープをさらに濾過することが好ましい。
 2)ドープを無端状の金属支持体上に流延する工程
 ドープを、加圧ダイのスリットから無端状の金属支持体(例えばステンレスベルトや回転する金属ドラムなど)上に流延させる。
 ダイは、口金部分のスリット形状を調整でき、膜厚を均一に調整しやすい加圧ダイが好ましい。加圧ダイの例には、コートハンガーダイ、T-ダイなどが含まれる。金属支持体の表面は、鏡面加工されていることが好ましい。
 3)流延したドープから溶媒を蒸発させてウェブを得る工程
 ドープ膜を金属支持体上で加熱して溶剤を蒸発させて、ウェブを得る。
 ドープ膜の乾燥は、40~100℃の雰囲気下で行うことが好ましい。ドープ膜を40~100℃の雰囲気下で乾燥させるためには、40~100℃の温風をウェブ上面に当てたり、赤外線などで加熱したりすることが好ましい。
 溶媒を蒸発させる方法としては、ドープ膜の表面に風を当てる方法、ベルトの裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法などがあるが、乾燥効率が高いことから、ベルトの裏面から液体により伝熱させる方法が好ましい。
 得られるウェブの面品質や透湿性、剥離性などを高める観点から、流延後、30~120秒以内で、ウェブを金属支持体から剥離することが好ましい。
 4)ウェブを金属支持体から剥離する工程
 得られたウェブを、金属支持体上の剥離位置で剥離する。金属支持体上の剥離位置における温度は、好ましくは10~40℃であり、さらに好ましくは11~30℃である。
 金属支持体上の剥離位置で剥離する際のウェブの残留溶媒量は、乾燥条件や金属支持体の長さなどにもよるが、50~120質量%とすることが好ましい。残留溶媒量が多いウェブは、柔らか過ぎて平面性を損ないやすく、剥離張力による流延方向(MD方向)のシワやスジが発生し易い。そのような流延方向(MD方向)のシワやスジを抑制できるように、剥離位置でのウェブの残留溶媒量が設定されうる。
 ウェブの残留溶媒量は、下記式で定義される。
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を意味する。
 金属支持体からウェブを剥離する際の剥離張力は、通常、300N/m以下としうる。
 5)ウェブを乾燥後、延伸してフィルムを得る工程
 金属支持体から剥離して得られたウェブを乾燥させる。ウェブの乾燥は、ウェブを、上下に配置した多数のロールにより搬送しながら乾燥させてもよいし、ウェブの両端部をクリップで固定して搬送しながら乾燥させてもよい。
 ウェブの乾燥方法は、熱風、赤外線、加熱ロールおよびマイクロ波等で乾燥する方法であってよく、簡便であることから熱風で乾燥する方法が好ましい。ウェブの乾燥温度は、40~250℃程度、好ましくは40~160℃程度としうる。
 ウェブの延伸により、所望のレターデーションを有する光学フィルムを得る。光学フィルムのレターデーションは、ウェブに掛かる張力の大きさを調整することで制御することができる。
 ウェブの延伸は、幅方向(TD方向)、ドープの流延方向(MD方向)、または斜め方向の延伸であり、少なくとも幅方向(TD方向)に延伸することが好ましい。ウェブの延伸は、一軸延伸であっても、二軸延伸であってもよい。二軸延伸は、好ましくはドープの流延方向(MD方向)と幅方向(TD方向)への延伸である。二軸延伸は、逐次二軸延伸であっても同時二軸延伸であってもよい。
 逐次二軸延伸には、延伸方向の異なる延伸を順次行う方法や、同一方向の延伸を多段階に分けて行う方法などが含まれる。逐次二軸延伸の例には、以下のような延伸ステップが含まれる。
 流延方向(MD方向)に延伸-幅方向(TD方向)に延伸-流延方向(MD方向)に延伸-流延方向(MD方向)に延伸
 幅方向(TD方向)に延伸-幅方向に延伸(TD方向)-流延方向(MD方向)に延伸-流延方向(MD方向)に延伸
 同時二軸延伸には、一方向に延伸し、もう一方の方向の張力を緩和して収縮させる態様も含まれる。
 延伸倍率は、得られる光学フィルムの厚みや、求められるレターデーション値にもよるが、最終的には、流延方向に0.8~1.5倍、好ましくは0.8~1.1倍とし;幅方向に1.1~2.0倍、好ましくは1.3~1.7倍としうる。
 ウェブの延伸温度は、好ましくは120℃~200℃とし、より好ましくは150℃~200℃とし、さらに好ましくは150℃超190℃以下としうる。
 ウェブの延伸方法は、特に制限されず、複数のロールに周速差をつけ、その間でロール周速差を利用して流延方向(MD方向)に延伸する方法(ロール延伸法)、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を流延方向(MD方向)に向かって広げて流延方向(MD方向)に延伸したり、幅方向(TD方向)に広げて幅方向(TD方向)に延伸したり、流延方向(MD方向)と幅方向(TD方向)の両方に広げて流延方向(MD方向)と幅方向(TD方向)の両方に延伸する方法など(テンター延伸法)などが挙げられる。これらの延伸方法は、組み合わせてもよい。
 延伸開始時のウェブの残留溶媒は、好ましくは20質量%以下とし、より好ましくは15質量%以下としうる。
 フィルムに残留する溶剤量を低減するために、延伸後に得られるフィルムを、さらに乾燥させる。乾燥温度は、110~190℃であることが好ましく、120~170℃であることがより好ましい。乾燥温度が低すぎると、溶剤を十分に蒸発除去させにくい。フィルムの乾燥方法は、例えばフィルムを搬送させながら、熱風を当てる方法などでありうる。
 6)フィルムの幅方向両端部にエンボス加工を施す工程
 延伸後に得られたフィルムの幅方向両端部にエンボス加工を施す。図5は、エンボス加工装置20の一例を示す模式図である。図5に示されるように、エンボス加工装置は、エンボスロール22と、光学フィルム14を介してエンボスロール22と対向配置されたバックロール24とを有する。
 エンボスロール22のロール径は、30~60cmであることが好ましく、30~50cmであることがより好ましい。エンボスロールのロール径が60cm超であると、(エンボスロールの内部に配置される)熱源とエンボスロールの表面との距離が大きすぎるため、エンボスロールの表面において温度ムラが生じることがある。そのため、形成されるエンボス部に弾性率が高い部分と低い部分とが生じ、弾性率が低い部分がつぶれやすい。一方、エンボスロールのロール径が30cm未満であると、回転軸がブレやすく;形成されるエンボスの凸部の高さがばらつきやすい。設定した高さよりも高く形成されたエンボス部は、つぶれやすい傾向がある。
 バックロールの材質は、エンボス部が形成されたフィルムを均一に冷却させるためなどから、金属製であることが好ましい。金属の種類は、例えばSUSなどでありうる。金属製のバックロールは、例えばゴム製のバックロールよりも、フィルムを均一に冷却しやすいため、セルロースアセテートを均一に結晶化させやすく、高い強度(高い弾性率)を有するエンボス部を形成することができる。
 エンボスロール22とバックロール24との間のクリアランスは、1μm~30μm程度とし、好ましくは1~15μm程度としうる。エンボスロール22とバックロール24とによるニップ圧は、100~10000Pa程度としうる。
 そして、エンボスロール22とバックロール24とで、光学フィルム14の幅方向両端部をニップして、フィルムの幅方向両端部にエンボス加工を施す。
 エンボスロール22の表面温度は、250~350℃とすることが好ましく、260~300℃とすることがより好ましい。エンボスロール22の表面温度が250℃未満であると、フィルムを十分に溶融させることができないため、冷却しても、セルロースアセテートを十分に結晶化させにくく、強度の高いエンボス部を形成しにくい。一方、エンボスロールの表面温度が350℃超であると、フィルムが溶融しすぎて、フィルムの溶融物がエンボスロールに貼り付きやすい。
 バックロール24の表面温度は、エンボスロール22の表面温度にもよるが、50~100℃とすることが好ましく、50~80℃とすることがより好ましい。バックロールの表面温度が50℃未満であると、フィルムが急速に冷却されすぎるため、セルロースアセテートを均一に結晶化させにくく、弾性率の高いエンボス部が得られにくい。一方、バックロールの表面温度が100℃超であると、フィルムに含まれるセルロースアセテートを冷却しにくいことから、結晶化させにくいだけでなく、フィルムが熱膨張して、エンボス部付近のフィルムの表裏面が波打ちやすい。エンボス部付近のフィルムの表裏面の波打ちが生じると、フィルム同士が貼りつきやすく、フィルムが裂けやすくなる。
 エンボス加工時のフィルムの搬送速度は、80~120m/分であることが好ましく、90~120m/分であることがより好ましい。フィルムの搬送速度が80m/分未満であると、生産性が低下しやすい。一方、フィルムの搬送速度が120m/分超であると、エンボスロールの圧力や、エンボスロールやバックロールの熱がフィルムに均一に伝わりにくい。それにより、フィルムに含まれるセルロースアセテートを均一に結晶化させにくく、強度の高いエンボス部が得られにくい。
 つまり、つぶれにくいエンボス部を形成するためには、1)エンボスロールでセルロースアセテートを十分に溶融させて、2)バックロールで溶融したセルロースアセテートをゆっくりと冷却して結晶化させることが重要と考えられる。そのためには、1)エンボスロールの表面温度、2)バックロールの表面温度、3)エンボスロールのロール径、および4)バックロールの材質のうち少なくとも二以上を種々組み合わせて調整することが好ましい。なかでも、1)エンボスロールの表面温度と2)バックロールの表面温度を、それぞれ前述の範囲に調整することが好ましく;さらに3)エンボスロール径を前述の範囲に調整することがより好ましく;さらに4)バックロールの材質を選択することが特に好ましい。
 7)フィルムを巻き取る工程
 得られた長尺状の光学フィルムを、巻き取り機を用いて、フィルムの長さ方向(幅方向に対して垂直方向)に巻き取る。
 巻き取り方法は、特に制限されず、定トルク法、定テンション法、テーパーテンション法などでありうる。
 光学フィルムを巻き取る際の、巻き取り張力は、50~170N程度としうる。
 3.偏光板
 本発明の偏光板は、偏光子と、その少なくとも一方の面に配置され、本発明の光学フィルムのロール体から得られる光学フィルムとを含む。本発明の光学フィルムのロール体から得られる光学フィルムは、エンボス部がスリット除去されて得られる光学フィルムである。光学フィルムは、偏光子上に直接配置されてもよいし、他のフィルムまたは層を介して配置されてもよい。
 偏光子は、一定方向の偏波面の光のみを通過させる素子である。偏光子の代表的な例は、ポリビニルアルコール系偏光フィルムであり、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものと、がある。
 偏光子は、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色して得られるフィルムであってもよいし、ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光子の厚さは、5~30μmであることが好ましく、10~20μmであることがより好ましい。
 ポリビニルアルコール系フィルムは、ポリビニルアルコール水溶液を製膜したものであってもよい。ポリビニルアルコール系フィルムは、偏光性能および耐久性能に優れ、色斑が少ないなどことから、エチレン変性ポリビニルアルコールフィルムが好ましい。エチレン変性ポリビニルアルコールフィルムの例には、特開2003-248123号公報、特開2003-342322号公報等に記載されたエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のフィルムが含まれる。
 二色性色素の例には、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素およびアントラキノン系色素などが含まれる。
 偏光子の一方の面に前述の光学フィルムが配置される場合、偏光子の他方の面には、前述の光学フィルム以外の透明保護フィルムが配置されてもよい。透明保護フィルムの例には、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC8UX-RHA、KC8UXW-RHA-C、KC8UXW-RHA-NC、KC4UXW-RHA-NC、以上コニカミノルタオプト(株)製)が好ましく用いられる。
 透明保護フィルムの厚みは、特に制限されないが、10~200μm程度とすることができ、好ましくは10~100μmであり、より好ましくは10~70μmである。
 本発明の偏光板は、本発明のロール体における光学フィルムのエンボス部を除去するステップと、エンボス部が除去された光学フィルムと、偏光子とを貼り合わせるステップと、を経て製造されうる。
 貼り合わせに用いられる接着剤は、例えば完全鹸化型ポリビニルアルコール水溶液などが好ましく用いられる。
 4.液晶表示装置
 本発明の液晶表示装置は、液晶セルと、それを挟持する一対の偏光板とを有する。そして、一対の偏光板のうち少なくとも一方が、本発明の光学フィルムのロール体から得られる光学フィルムを含む。
 図6は、本発明に係る液晶表示装置の一実施形態の基本構成を示す模式図である。図6に示されるように、液晶表示装置30は、液晶セル40と、それを挟持する第一の偏光板50および第二の偏光板60と、バックライト70と、を有する。
 液晶セル40の表示方式は、特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、IPS(In-Plane Switching)方式、OCB(Optically Compensated Birefringence)方式、VA(Vertical Alignment)方式(MVA;Multi-domain Vertical AlignmentやPVA;Patterned Vertical Alignmentも含む)、HAN(Hybrid Aligned Nematic)方式等がある。コントラストを高めるためには、VA(MVA、PVA)方式が好ましい。
 VA方式の液晶セルは、一対の透明基板と、それらの間に挟持された液晶層とを有する。
 一対の透明基板のうち、一方の透明基板には、液晶分子に電圧を印加するための画素電極が配置される。対向電極は、(画素電極が配置された)前記一方の透明基板に配置されてもよいし、他方の透明基板に配置されてもよく、開口率を高めるためには、(画素電極が配置された)前記一方の透明基板に配置されることが好ましい。
 液晶層は、負または正の誘電率異方性を有する液晶分子を含む。液晶分子は、透明基板の液晶層側の面に設けられた配向膜の配向規制力により、電圧無印加時(画素電極と対向電極との間に電界が生じていない時)には、液晶分子の長軸が、透明基板の表面に対して略垂直となるように配向している。
 このように構成された液晶セルでは、画素電極に画像信号(電圧)を印加することで、画素電極と対向電極との間に電界を生じさせる。これにより、透明基板の表面に対して垂直に初期配向している液晶分子を、その長軸が基板面に対して水平方向となるように配向させる。このように、液晶層を駆動し、各副画素の透過率および反射率を変化させて画像表示を行う。
 第一の偏光板50は、視認側に配置されており、第一の偏光子52と、それを挟持する保護フィルム54(F1)および56(F2)とを有する。第二の偏光板60は、バックライト70側に配置されており、第二の偏光子62と、それを挟持する保護フィルム64(F3)および66(F4)とを有する。保護フィルム56(F2)と64(F3)の一方は、必要に応じて省略されてもよい。
 保護フィルム54(F1)、56(F2)、64(F3)および66(F4)のうち、保護フィルム54(F1)と66(F4)の少なくとも一方;好ましくは保護フィルム66(F4)を、本発明の光学フィルムのロール体から得られる光学フィルムとすることが好ましい。
 以下において、実施例を参照して本発明をより詳細に説明する。これらの実施例によって、本発明の範囲は限定して解釈されない。
 1.フィルム材料の準備
 1)セルロースアセテート
  セルロースアセテート1:アセチル基置換度(アシル基の総置換度)2.9、重量平均分子量Mw=152000、数平均分子量Mn=90000、Mw/Mn=1.7、SP値=15.7
  セルロースアセテート2:アセチル基置換度(アシル基の総置換度)2.45、重量平均分子量Mw=151000、数平均分子量Mn=100000、Mw/Mn=1.5
 2)可塑剤
 TPP:トリフェニルホスフェート(SP値10.7)
Figure JPOXMLDOC01-appb-C000011
 BDP:ビフェニルジフェニルホスフェート(SP値11.0)
Figure JPOXMLDOC01-appb-C000012
 EPEG:エチルフタリルエチルグリコレート(SP値10.9)
Figure JPOXMLDOC01-appb-C000013
 TMP-トリベンゾエート:トリメチロールプロパントリベンゾエート(SP値11.0)
Figure JPOXMLDOC01-appb-C000014
 ポリエステル化合物A(n=0~5の混合物、Mw400、SP値10)
Figure JPOXMLDOC01-appb-C000015
 ポリエステル化合物B(m=0~5、n=0~5の混合物、Mw400、SP値10.1)
Figure JPOXMLDOC01-appb-C000016
 ポリエステル化合物C(m=1、n=1、Mw=1000、SP値=10)
Figure JPOXMLDOC01-appb-C000017
 ポリエステル化合物D
Figure JPOXMLDOC01-appb-C000018
 化合物のSP値は、参考文献:コーティングの基礎科学 原田勇次著 槇書店(1977)のp54~57に記載の計算方法に基づいて算出した。
 2.光学フィルムの製造
 (実施例1)
 インライン添加液の調製
 10質量部のアエロジル972V(日本アエロジル社製、一次粒子の平均径16nm、見掛け比重90g/リットル)と、90質量部のメタノールとをディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散させて、微粒子分散液を得た。
 得られた微粒子分散液に、88質量部のジクロロメタンを撹拌しながら投入し、ディゾルバーで30分間撹拌混合して、希釈した。得られた溶液をアドバンテック東洋社製ポリプロピレンワインドカートリッジフィルターTCW-PPS-1Nで濾過して、微粒子分散希釈液を得た。
 15質量部のチヌビン928(BASFジャパン社製)と、100質量部のジクロロメタンとを密閉容器に投入し、加熱攪拌して完全に溶解させた後、ろ過した。得られた溶液に、36質量部の前記微粒子分散希釈液を撹拌しながら加えて30分間さらに撹拌した後、6質量部のセルロースエステル1(アセチル基置換度2.9、Mn=90000、Mw=152000、Mw/Mn=1.7)を撹拌しながら加えて60分間さらに撹拌した。得られた溶液を、日本精線(株)製ファインメットNFで濾過して、インライン添加液を得た。濾材は、公称濾過精度20μmのものを用いた。
 主ドープ液の調製
 下記成分を密閉容器に投入し、加熱および撹拌しながら完全に溶解させた。得られた溶液を安積濾紙(株)製の安積濾紙No.24で濾過して、主ドープ液を得た。
 (主ドープ液の組成)
 セルロースアセテート1(アセチル基置換度2.9(アシル基の総置換度2.9)、Mn=90000、Mw=152000、Mw/Mn=1.7):100質量部
 トリフェニルホスフェート(TPP、SP値10.7):5質量部
 ビフェニルジフェニルホスフェート(BDP、SP値11.0):5質量部
 ジクロロメタン(SP値9.7):430質量部
 メタノール(SP値14.5):40質量部
 100質量部の主ドープ液と、2.5質量部のインライン添加液とを、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分に混合してドープ液を得た。
 得られたドープ液を、ベルト流延装置を用いてステンレスバンド支持体上に、ドープ液温度35℃、幅1.8mの条件で均一に流延させた。ステンレスバンド支持体上で、得られたドープ膜中の溶剤を、残留溶剤量が100%になるまで蒸発させてウェブを得た後、ステンレスバンド支持体からウェブを剥離した。得られたウェブを、35℃でさらに乾燥させた後、幅1.65mとなるようにスリットした。その後、ウェブを、テンターでTD方向(フィルムの幅手方向)に1.5倍に延伸しながら、160℃の乾燥温度で乾燥させた。延伸開始時のウェブの残留溶剤量は20%であった。また、ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.0倍であった。その後、得られたフィルムを、乾燥装置内を多数のロールで搬送させながら125℃で15分間乾燥させた後、2.2m幅にスリットし、幅方向両端部に、凸部の高さが10μm、凸部の幅wが100μm、凸部同士の間隔が1000μmのエンボス部(エンボス部の幅W:15mm)を形成した。エンボス加工は、以下の条件で行った。
 (エンボス加工条件)
 エンボスロール:
  材質:ステンレス製
  ロール径:30cm
  表面温度:270℃
 バックロール:
  材質:金属製(ステンレス製)
  温度:60℃
 フィルムの搬送速度:90m/分
 搬送張力:120N/m
 エンボスロールとバックロールとのクリアランス:27μm
 エンボスロールとバックロールとによるニップ圧:150Pa
 このようにして得られた、幅2.2m、長さ4000m、厚み30μmの長尺状の光学フィルムを、長さ方向に巻き取って光学フィルムのロール体を得た。
 (実施例2~22)
 ドープ組成、延伸後のフィルムの乾燥温度、エンボス加工条件、巻長、および光学フィルムの厚みのうちいずれか一以上を、表1または3に示されるように変更した以外は、実施例1と同様にして光学フィルムのロール体を得た。ドープに含まれる添加剤が1種類である場合、添加剤の含有量は5質量部とし;2種類である場合、各添加剤の含有量をそれぞれ5質量部とした。
 (比較例1~3)
 延伸後のフィルムの乾燥温度を表2に示されるように変更した以外は実施例1と同様にして光学フィルムのロール体を得た。
 (比較例4~5)
 ドープに含まれる溶剤の種類を表2に示されるように変更した以外は、実施例1と同様にして光学フィルムのロール体を得た。このうち、比較例4では、実施例1におけるメタノール40質量部をエタノール40質量部に変更し;比較例5では、ブタノール/メタノール=20質量部/20質量部(合計40質量部)に変更した。
 (比較例6~12)
 エンボス加工条件を表2に示されるように変更した以外は実施例1と同様にして光学フィルムのロール体を得た。
 (比較例13)
 光学フィルムの厚みが表4に示される値となるように、ドープの流延厚みを変更した以外は実施例11と同様にして光学フィルムのロール体を得た。
 実施例1~22の光学フィルムのロール体の製造条件を表1に示し;比較例1~13の光学フィルムのロール体の製造条件を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた光学フィルムに残留する溶剤の量、エンボスの耐つぶれ率、およびフィルムの裂けやすさを、以下の方法で評価した。
 (残留する溶剤の量)
 1)検量線の作成
 メタノールの濃度が既知の試料を専用のバイアル瓶に入れ、セプタムとアルミキャップで密閉し、ヘッドスペースサンプラーにセットした。そして、バイアル瓶を、下記のヘッドスペース加熱条件にて加熱して揮発成分を生成させ、当該揮発成分を、ガスクロマトグラフィーにて測定した。メタノール濃度の異なる試料についても、同様の測定を行った。そして、各測定で得られたGCチャートにおける溶剤のピーク面積を算出し、溶剤の濃度とピーク面積のプロットを作成し、検量線を得た。同様にして、エタノール、ブタノールの検量線もそれぞれ作成した。
 (ヘッドスペースサンプラー)
 機器:ヒューレット・パッカード社製ヘッドスペースサンプラーHP7694型
 ヘッドスペース加熱条件:120℃で20分
 (ガスクロマトグラフィー)
 機器:ヒューレット・パッカード社製5971型
 カラム:J&W社製 DB-624
 検出器:水素炎イオン化検出器(FID)
 GC昇温条件:45℃で3分保持した後、8℃/分で100℃まで昇温
 GC導入温度:150℃
 2)光学フィルムに残留する溶剤の測定
 10cm角に切り出したフィルムを、5mm程度に細かく刻んで専用のバイアル瓶に封入した以外は前記1)と同様にしてヘッドスペース加熱条件にて加熱処理し、得られた揮発成分をガスクロマトグラフィーにて測定した。
 得られたチャートから、各溶剤のピーク面積を算出し、前記1)で得た検量線と照合して、フィルムに残留する各溶剤の量を求めた。フィルムに残留する溶剤の量は、フィルム全体に対する質量割合(質量%)として求めた。
 (エンボスの耐つぶれ率)
 得られた光学フィルムの、エンボス部が施された部分を切り取り、5cm角のサンプルフィルムを10枚準備した。サンプルフィルムを、厚み測定機(Nikon デジマイクロ MH-15M)のステージ上に配置し、サンプルフィルムのエンボス部の高さDを測定した。次いで、図4に示されるように、サンプルフィルム14Aのエンボス部16上に、フィルム面に対して垂直に載置された直径5mmの金属製の円筒棒18Aと、その上に配置された分銅18Bとからなる合計1kgの重し18を載せた。このように、フィルムのエンボス部16の表面上の直径5mmの円領域に1kgの荷重を加えた状態で、23℃55%RH下において10分間放置した。その後、円筒棒18Aと分銅18Bからなる重し18を除去して得られるサンプルフィルム14Aのエンボス部の高さDを、前述と同様にして測定した。得られた測定値を、それぞれ下記式に当てはめて、耐つぶれ率を算出した。
Figure JPOXMLDOC01-appb-M000003
 同様の測定を、他の9枚のサンプルフィルムについても行い、耐つぶれ率を算出した。そして、10回の測定で得られた耐つぶれ率の平均値を求めた。
 (裂けやすさ)
 得られた光学フィルムのロール体を、23℃55%RH下で24時間保存した。その後、ロール体から光学フィルムを巻き出し、巻芯近傍の光学フィルムの幅方向中央部分を切り取って、幅50mm×長さ64mmのサンプルフィルムを得た。得られたサンプルフィルムを、23℃55%RH下で24時間調湿した後、ISO6383/2-1983に準拠したエルメンドルフ引き裂き強度を測定した。
 エルメンドルフ引き裂き強度は、東洋精機(株)F9経過重差だし引裂き試験機を用いて測定した。引き裂き強度は、23℃55%RH下で、フィルムの長さ方向(MD方向)に引き裂いた場合と、フィルムの幅方向(TD方向)に引き裂いた場合のそれぞれについて行い、それらの平均値を「引き裂き強度」とした。
 裂けやすさを、以下の基準に基づいて評価した。
 ◎:引き裂き強度が50mN以上
 ○:引き裂き強度が40mN以上50mN未満
 ○△:引き裂き強度が30mN以上40mN未満
 △:引き裂き強度が20mN以上30mN未満
 ×:引き裂き強度が10mN以上20mN未満
 ××:引き裂き強度が10mN未満
 実施例1~22で得られた光学フィルムの評価結果を表3に示し;比較例1~13で得られた光学フィルムの評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および4に示されるように、エンボス部の凸部の耐つぶれ率が30%以上であり、かつロール体の光学フィルムに残留するメタノール量が10~100質量ppmの範囲にある実施例1~22の光学フィルムは、比較例1~13の光学フィルムよりもフィルムが裂けにくいことがわかる。
 比較例1~5の対比から、フィルムに残留するメタノール量が少なすぎても多すぎても、光学フィルムが裂けやすいことがわかる。即ち、残留するメタノール量が多すぎる比較例2および3の光学フィルムは、可塑剤がフィルム中を移動しやすくなり、光学フィルムに添加剤が疎な部分と密な部分とが形成されると考えられる。また、残留するメタノール量が少なすぎる比較例1の光学フィルムは、可塑剤の膜内での移動は抑制されるが、溶媒が存在しないことにより、フィルムの柔軟性が損なわれるため、フィルムが裂けやすくなると考えられる。
 実施例1と比較例6および7との対比から、バックロールの表面温度を低くしすぎると、セルロースアセテートを均一に結晶化させにくいため、弾性率の高いエンボス部が形成されず、光学フィルムが裂けやすくなることが示唆される。また、フィルムが熱膨張して、エンボス部近傍のフィルムの表裏面が波打つため、フィルム同士が密着しやすくなり、光学フィルムが裂けやすいことがわかる。さらに、実施例1と比較例11との対比から、ゴム製のバックロールを用いると、金属製のバックロールを用いるよりも、フィルムに熱を均一かつ十分に伝わらせにくいため、セルロースアセテートを十分に結晶化させることができず、得られる光学フィルムが裂けやすいことが示唆される。
 本発明によれば、厚みが薄くても、加工時に裂けにくい光学フィルムを提供することができる。
 10 光学フィルムのロール体
 12 巻芯
 14 光学フィルム
 14A サンプルフィルム
 15 ステージ
 16 エンボス部
 18A 円筒棒
 18B 分銅
 18 重し
 20 エンボス加工装置
 22 エンボスロール
 24 バックロール
 30 液晶表示装置
 40 液晶セル
 50 第一の偏光板
 52 第一の偏光子
 54 保護フィルム(F1)
 56 保護フィルム(F2)
 60 第二の偏光板
 62 第二の偏光子
 64 保護フィルム(F3)
 66 保護フィルム(F4)
 70 バックライト
 D、D エンボス部の凸部の高さ
 

Claims (8)

  1.  セルロースアセテートと、添加剤とを含有する、厚み20~50μmの光学フィルムを、フィルムの幅方向に対して垂直方向に巻き取って得られる光学フィルムのロール体であって、
     前記光学フィルムは、幅方向両端部にエンボス部を有し、
     前記光学フィルムの前記エンボス部の表面上の、直径5mmの円領域に1kgの荷重を加えた状態で23℃55%RH下において10分間保存した後の前記エンボス部の凸部の高さをDとし、前記荷重を加える前の前記エンボス部の凸部の高さをDとしたとき、下記式で示される耐つぶれ率が30%以上であり、
    Figure JPOXMLDOC01-appb-M000004
     前記光学フィルムにおけるメタノールの残留量が、前記光学フィルムに対して10~100質量ppmであり、かつ前記光学フィルムにおけるエタノールおよびブタノールのいずれの残留量よりも多い、光学フィルムのロール体。
  2.  前記セルロースアセテートのアセチル基の総置換度が、2.3以上2.95以下である、請求項1に記載の光学フィルムのロール体。
  3.  前記光学フィルムの巻長が、1000m以上8000m以下である、請求項1に記載の光学フィルムのロール体。
  4.  前記添加剤は、SP値が9~11の可塑剤である、請求項1に記載の光学フィルムのロール体。
  5.  前記可塑剤が、トリフェニルホスフェート、エチルフタリルエチルグリコレートまたはポリエステル化合物である、請求項4に記載の光学フィルムのロール体。
  6.  前記ポリエステル化合物が、炭素数1~4のジオールと、少なくとも芳香族ジカルボン酸を含有するジカルボン酸とを反応させて得られる化合物の分子末端を、芳香族基または脂肪族基でさらに封止したものである、請求項5に記載の光学フィルムのロール体。
  7.  前記可塑剤の含有量が、前記セルロースアセテートに対して1~20質量%である、請求項4に記載の光学フィルムのロール体。
  8.  請求項1に記載の光学フィルムのロール体における、前記光学フィルムの前記エンボス部を除去するステップと、
     前記エンボス部が除去された前記光学フィルムと、偏光子とを貼り合わせるステップと、を有する、偏光板の製造方法。
PCT/JP2012/001902 2012-03-19 2012-03-19 光学フィルムのロール体、およびそれを用いた偏光板の製造方法 WO2013140433A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280001704.XA CN103747932B (zh) 2012-03-19 2012-03-19 光学膜的辊体及使用它的偏振片的制造方法
PCT/JP2012/001902 WO2013140433A1 (ja) 2012-03-19 2012-03-19 光学フィルムのロール体、およびそれを用いた偏光板の製造方法
JP2012531174A JP5105033B1 (ja) 2012-03-19 2012-03-19 光学フィルムのロール体、およびそれを用いた偏光板の製造方法
KR1020127029177A KR101302289B1 (ko) 2012-03-19 2012-03-19 광학 필름의 롤체 및 그것을 사용한 편광판의 제조 방법
TW101140301A TWI423879B (zh) 2012-03-19 2012-10-31 An optical film roll body, and a method for manufacturing the polarizing plate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001902 WO2013140433A1 (ja) 2012-03-19 2012-03-19 光学フィルムのロール体、およびそれを用いた偏光板の製造方法

Publications (1)

Publication Number Publication Date
WO2013140433A1 true WO2013140433A1 (ja) 2013-09-26

Family

ID=47528524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001902 WO2013140433A1 (ja) 2012-03-19 2012-03-19 光学フィルムのロール体、およびそれを用いた偏光板の製造方法

Country Status (5)

Country Link
JP (1) JP5105033B1 (ja)
KR (1) KR101302289B1 (ja)
CN (1) CN103747932B (ja)
TW (1) TWI423879B (ja)
WO (1) WO2013140433A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091921A1 (ja) * 2012-12-13 2014-06-19 コニカミノルタ株式会社 光学フィルムのロール体、その製造方法、偏光板及び表示装置
WO2021250904A1 (ja) * 2020-06-12 2021-12-16 コニカミノルタ株式会社 フィルムおよびその製造方法、ロール体およびその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014132691A1 (ja) * 2013-02-26 2017-02-02 コニカミノルタ株式会社 偏光板、偏光板の製造方法及び液晶表示装置
JP5922613B2 (ja) * 2013-05-08 2016-05-24 富士フイルム株式会社 ナーリング装置及び方法並びにフィルムロール製造方法
CN104999681B (zh) * 2015-08-04 2017-03-29 中国乐凯集团有限公司 一种纤维素酯薄膜的制备方法
KR102033697B1 (ko) * 2016-04-01 2019-10-17 주식회사 엘지화학 광학 필름 마킹 시스템 및 광학 필름 마킹 방법
JP7020483B2 (ja) * 2017-05-23 2022-02-16 日本ゼオン株式会社 フィルムロール及びその製造方法
JP7481794B2 (ja) * 2017-10-18 2024-05-13 日東電工株式会社 ロール体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073154A (ja) * 2007-09-25 2009-04-09 Konica Minolta Opto Inc 光学フィルム、及びその製造方法
JP2009208358A (ja) * 2008-03-04 2009-09-17 Konica Minolta Opto Inc 光学フィルム
JP2011236258A (ja) * 2010-04-30 2011-11-24 Fujifilm Corp 光学フィルムの製造方法、光学フィルム、偏光板、及び画像表示装置
JP2012030542A (ja) * 2010-08-02 2012-02-16 Konica Minolta Opto Inc エンボス形成装置及びそのエンボス形成装置により製造されたフィルム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101756474B1 (ko) * 2009-10-30 2017-07-10 후지필름 가부시키가이샤 광학 필름 및 그 제조 방법, 편광판, 액정 표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073154A (ja) * 2007-09-25 2009-04-09 Konica Minolta Opto Inc 光学フィルム、及びその製造方法
JP2009208358A (ja) * 2008-03-04 2009-09-17 Konica Minolta Opto Inc 光学フィルム
JP2011236258A (ja) * 2010-04-30 2011-11-24 Fujifilm Corp 光学フィルムの製造方法、光学フィルム、偏光板、及び画像表示装置
JP2012030542A (ja) * 2010-08-02 2012-02-16 Konica Minolta Opto Inc エンボス形成装置及びそのエンボス形成装置により製造されたフィルム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091921A1 (ja) * 2012-12-13 2014-06-19 コニカミノルタ株式会社 光学フィルムのロール体、その製造方法、偏光板及び表示装置
JPWO2014091921A1 (ja) * 2012-12-13 2017-01-05 コニカミノルタ株式会社 光学フィルムのロール体、その製造方法、偏光板及び表示装置
WO2021250904A1 (ja) * 2020-06-12 2021-12-16 コニカミノルタ株式会社 フィルムおよびその製造方法、ロール体およびその製造方法

Also Published As

Publication number Publication date
CN103747932B (zh) 2015-06-10
JPWO2013140433A1 (ja) 2015-08-03
CN103747932A (zh) 2014-04-23
KR101302289B1 (ko) 2013-09-03
JP5105033B1 (ja) 2012-12-19
TW201336669A (zh) 2013-09-16
TWI423879B (zh) 2014-01-21

Similar Documents

Publication Publication Date Title
JP5105033B1 (ja) 光学フィルムのロール体、およびそれを用いた偏光板の製造方法
JP5146628B1 (ja) 位相差フィルム、偏光板の製造方法および液晶表示装置
US7709067B2 (en) Cellulose ester film, polarizing plate and liquid crystal display
US8545737B2 (en) Cellulose acetate film, polarizing plate, and liquid crystal display device
US7354633B2 (en) Retardation film, and polarizing plate and display device using the same
JP4622698B2 (ja) 位相差板、偏光板及び液晶表示装置
US20110001904A1 (en) Cellulose ester film, polarizer and liquid crystal display device
WO2011108350A1 (ja) 偏光板の製造方法、それを用いた偏光板、及び液晶表示装置
JP5776362B2 (ja) セルロースエステルフィルムおよびその製造方法、並びにこれを用いた位相差フィルムおよび表示装置
JP6136226B2 (ja) 光学フィルムのロール体とその製造方法、包装体、偏光板および液晶表示装置
WO2014002130A1 (ja) 偏光板
JP2011248192A (ja) ロール状偏光板、枚葉状偏光板、及びそれを用いた液晶表示装置
JP4228809B2 (ja) セルロースエステルフィルム、その製造方法及び偏光板
JP5170338B1 (ja) 光学補償フィルムおよびその製造方法、偏光板および液晶表示装置
WO2013114450A1 (ja) 光学補償フィルムおよびその製造方法、偏光板および液晶表示装置
JP4691918B2 (ja) セルロースエステルフィルム及びその製造方法、並びにセルロースエステルフィルムを用いた偏光板及び表示装置
JP4419558B2 (ja) セルロースエステルフィルム、その製造方法及びそれを用いた偏光板、表示装置
JP5835339B2 (ja) 光学フィルム、それを含む偏光板および液晶表示装置
JP2006206627A (ja) ドープの濾過方法、及びその方法を用いて製造したセルロースエステルフィルム
JP2009083343A (ja) 光学フィルム及びその製造方法、偏光板用保護フィルム及びそれを用いた偏光板、並びに液晶表示装置
JP6024666B2 (ja) 位相差フィルム、偏光板および液晶表示装置
JP2004143376A (ja) 光学フィルムの製造方法及び光学フィルムならびに該光学フィルムを有する偏光板及び表示装置
JP2004170592A (ja) 光学フィルムの製造方法、光学フィルム、偏光板及び表示装置
JP2005173024A (ja) セルロースエステルフィルム及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012531174

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127029177

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872149

Country of ref document: EP

Kind code of ref document: A1