WO2013137374A1 - 乳脂肪クリーム及びその製造方法 - Google Patents

乳脂肪クリーム及びその製造方法 Download PDF

Info

Publication number
WO2013137374A1
WO2013137374A1 PCT/JP2013/057130 JP2013057130W WO2013137374A1 WO 2013137374 A1 WO2013137374 A1 WO 2013137374A1 JP 2013057130 W JP2013057130 W JP 2013057130W WO 2013137374 A1 WO2013137374 A1 WO 2013137374A1
Authority
WO
WIPO (PCT)
Prior art keywords
cream
milk
fat
milk fat
mpa
Prior art date
Application number
PCT/JP2013/057130
Other languages
English (en)
French (fr)
Inventor
達也 小杉
木村 浩
裕輔 鈴木
武藤 高明
Original Assignee
雪印メグミルク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雪印メグミルク株式会社 filed Critical 雪印メグミルク株式会社
Publication of WO2013137374A1 publication Critical patent/WO2013137374A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C13/00Cream; Cream preparations; Making thereof

Definitions

  • milk fat cream is defined by a ministerial ordinance (December 27, 1951, Ministry of Health and Welfare Ordinance No. 52, hereinafter referred to as “Milk Ordinance”). Means “cream by type”.
  • cream in general, what is called cream includes milk fat cream consisting only of milk fat, milk fat added with emulsifier and stabilizer, vegetable fat added with emulsifier and stabilizer, milk fat and vegetable There are mixed fats with emulsifiers and stabilizers added. According to the Ordinance of Milk, etc., only milk fat cream is classified as “Cream by type”, and other emulsifiers and stabilizers (hereinafter referred to as “synthetic cream”) are “milk or dairy products as the main ingredients. Defined as “food”.
  • milk fat cream In the manufacture of confectionery, bakery and dessert, both milk fat cream and synthetic cream are used, but in recent years milk fat cream tends to be preferred because no additives are used at all. Synthetic creams have the advantage of providing products with excellent whipping properties and emulsification stability because they have a high degree of freedom in selecting blended fats and oils and a wide variety of combinations of emulsifiers and stabilizers are possible. However, compared with milk fat cream, there is a demerit that it lacks the flavor of rich and fresh milk and is inferior in flavor.
  • Milk fat cream is generally produced by adjusting fat with raw milk after cream sterilized from milk or cream sterilized from milk, and then homogenized, sterilized, re-homogenized, and cooled.
  • Milk fat cream has a flavor and richness unique to milk fat, and is superior to synthetic cream in terms of flavor, but by definition, emulsifiers and stabilizers for imparting stability cannot be added.
  • the addition of physical properties such as emulsification stability must be performed exclusively by controlling the production conditions. Therefore, there is a problem that the whipping property and the emulsion stability are inferior to the synthetic cream.
  • Patent Document 1 For improving the emulsification stability of milk fat cream, a method (Patent Document 1) has been reported that suppresses the fat layer from rising by homogenization before and after the sterilization step by the ultra-high temperature sterilization method (UHT method). In this method, sufficient emulsion stability cannot be obtained. Also, in the cooling step after cream heat sterilization, it is once cooled rapidly to 7-25 ° C, held at that temperature for 1-30 minutes, and then rapidly cooled to 3-5 ° C to emulsify A method of imparting stability (Patent Document 2) has been reported. However, this method provides vibration resistance during refrigerated storage, but does not provide temperature treatment resistance, and is insufficient as emulsion stability.
  • UHT method ultra-high temperature sterilization method
  • Patent Document 3 In addition to the production of milk fat cream, a method for producing cream (Patent Document 3) having excellent flavor and physical properties by performing membrane concentration treatment and deoxygenation treatment of raw milk has also been reported. In addition to requiring special equipment and complicated processes for production, the obtained milk fat cream is improved in flavor, but the emulsion stability is not sufficient.
  • An object of the present invention is to provide a milk fat cream having excellent emulsion stability and good whipping properties.
  • the present invention is as follows.
  • a milk fat cream wherein the median diameter of fat globules is 2.4 ⁇ m or less, and the mass ratio of casein to whey protein in the fat globule membrane is 3.5 or less.
  • the raw milk is added before the cream separating step.
  • the manufacturing method of the milk fat cream characterized by including the raw material milk homogenization process to homogenize.
  • a milk fat cream having excellent emulsification stability and good whipping properties can be obtained.
  • the milk fat cream in the present invention is a “type-specific cream” according to a ministerial ordinance such as milk and does not contain additives such as emulsifiers and stabilizers.
  • Milk fat cream usually includes a cream separation process for separating raw milk into cream and skim milk through a disk-type centrifuge, a cream sterilization process for sterilizing the separated cream, and a cream cooling process for cooling the sterilized cream. It is manufactured after. Moreover, you may pass through the cream homogenization process of homogenizing cream before a disinfection process and / or after a disinfection process as needed.
  • the milk fat cream of the present invention is characterized by undergoing a raw material milk homogenization step in which the raw material milk is subjected to a homogeneous treatment before the cream separation step.
  • the milk fat cream of the present invention undergoes a raw material milk homogenization process, so that the median diameter of fat globules is 2.4 ⁇ m or less and the mass ratio of casein to whey protein in the fat globule membrane (hereinafter referred to as “casein / whey protein ratio”). Is) 3.5 or less.
  • the median diameter referred to in the present invention is a particle diameter corresponding to 50% of the integrated distribution curve on a volume basis, and is measured using, for example, a laser diffraction particle size distribution measuring apparatus (SALD-3100, manufactured by Shimadzu Corporation). can do.
  • SALD-3100 laser diffraction particle size distribution measuring apparatus
  • the cream homogenization process performed conventionally performs a homogenous process with respect to a cream of high fat, for example, when the homogenization process is performed at a high homogeneous pressure of 2.0 MPa or more, the fat globule surface area increased by the fine particle formation. Insufficient protein to coat the surface causes aggregation and coalescence of fat globules. Therefore, in the cream homogenization process, it is common to perform a homogenous treatment at a low homogenous pressure of less than 2.0 MPa. With such a homogenous pressure, homogenization is repeated until the median diameter of fat globules becomes 2.4 ⁇ m or less.
  • the casein / whey protein ratio in the fat globule membrane is greater than 3.5. Conversely, if the homogenous pressure is lowered or the number of homogenizations is reduced to make the casein / whey protein ratio in the fat globule membrane smaller than 3.5, the median diameter of the fat globule will not be less than 2.4 ⁇ m. .
  • the median diameter of fat globules is 2.4 ⁇ m or less, and the casein / whey protein ratio in the fat globules is 3.5 or less.
  • a milk fat cream having both emulsion stability and whipping properties can be obtained.
  • the raw material milk homogenization step the raw material milk is heated to a predetermined homogenization temperature and then homogenized using a homogenizer.
  • a plate type heat exchanger, a batch type heating machine, etc. can be used for heating raw material milk. Especially, it is preferable to use a plate type heat exchanger from the point of the heating efficiency of raw material milk.
  • a microfluidizer, a colloid mill, or the like may be used in addition to a homogenizer such as a homogenizer. From the point of homogenization efficiency of raw material milk and ability of processing amount, it is preferable to use a homogenizer, and among these, it is preferable to use a two-stage homogenizer.
  • the homogenization pressure may be appropriately changed depending on the production conditions such as the type of homogenizer, the raw milk processing flow rate, the shape of the homobubbles, and the homogenization temperature. For example, the homogenization pressure is as high as 2.0 MPa or higher. It is also possible to process.
  • the cream separation step and the cream sterilization step may be appropriately performed using existing methods, and the cream separation step may be performed using a disk-type centrifuge or the like.
  • the retention sterilization method is 63 ° C. for 30 minutes
  • the plate-type heat exchange sterilization method is 72 to 75 ° C. for 15 seconds
  • What is necessary is just to implement on conditions, such as a 140 degreeC 2 second ultra high temperature sterilization method (UHT method).
  • UHT method ultra high temperature sterilization method
  • the cream that has undergone the sterilization process is immediately cooled to 10 ° C. or less, but the cream homogenization process may be performed before and after the cream sterilization process.
  • the cream homogenization process may be performed by an existing method, for example, homogenization may be performed with a homogeneous pressure of about 1.0 MPa.
  • the raw milk heated to 60 ° C. was homogenized at a homogeneous pressure of 2.0 MPa, and then a cream with a fat percentage of 45% was separated by a centrifuge.
  • the obtained cream was passed through a plate type sterilizer and sterilized at 120 ° C. for 2 seconds. After sterilization, the plate was cooled to about 50 ° C., and 700 g of the cream was collected in a pouch and cooled to obtain a milk fat cream (Example Product 1).
  • the obtained milk fat cream was stored at 5 ° C.
  • the raw milk heated to 60 ° C. was processed with a homogenizer at a homogeneous pressure of 2.0 MPa, and then a cream with a fat percentage of 45% was separated with a centrifuge.
  • the obtained cream was homogenized at a uniform pressure of 1.0 MPa, then passed through a plate sterilizer, and sterilized at 120 ° C. for 2 seconds. Then, after cooling the plate to about 50 ° C., 700 g of the cream was collected in a pouch and cooled to obtain a milk fat cream (Example Product 2).
  • the obtained milk fat cream was stored at 5 ° C.
  • the raw milk heated to 60 ° C. was homogenized at a homogeneous pressure of 2.0 MPa, and then a cream with a fat percentage of 45% was separated by a centrifuge.
  • the obtained cream was homogenized at a uniform pressure of 1.0 MPa, then passed through a plate sterilizer, and sterilized at 120 ° C. for 2 seconds. Thereafter, the plate was cooled to about 50 ° C. and then homogenized again at a homogeneous pressure of 1.0 MPa. 700 g of the homogenized cream was collected in a pouch and cooled to obtain a milk fat cream (Example Product 3).
  • the obtained milk fat cream was stored at 5 ° C.
  • the raw milk heated to 60 ° C. was homogenized at a homogeneous pressure of 2.0 MPa, and then a cream with a fat percentage of 45% was separated by a centrifuge.
  • the obtained cream is passed through a plate sterilizer, sterilized at 120 ° C. for 2 seconds, then cooled to about 50 ° C., and then homogenized at a uniform pressure of 1.0 MPa.
  • the obtained milk fat cream was stored at 5 ° C.
  • Example 1 The median diameter of fat globules was measured for Example products 1 to 4 and Comparative product 1 to 5. Moreover, the protein composition analysis of the fat globule membrane was performed, and the casein / whey protein ratio in the fat globule membrane was calculated. A laser diffraction particle size distribution analyzer (SALD-3100, manufactured by Shimadzu Corporation) was used to measure the median diameter of fat globules. The protein composition analysis of the fat globule membrane was performed by the following method. 150 g of cream of each level is diluted by adding 250 g of ultrapure water, centrifuged at 2500 rpm, 5 ° C. for 20 minutes, and the lower aqueous layer is discarded.
  • SALD-3100 laser diffraction particle size distribution analyzer
  • the remaining cream layer is diluted by adding 300 g of ultrapure water, centrifuged again, and the lower layer is discarded. This operation is further performed twice to recover the cream layer. 15 g of hexane was added to 25 g of the recovered cream layer and mixed, and then centrifuged at 1000 rpm and 25 ° C. for 5 minutes, and the lipid in the cream layer was removed together with the upper hexane to prepare a sample. 10 g of the obtained sample was centrifuged and concentrated at 15000 rpm, 5 ° C. for 30 minutes using Amicon Ultra Ultrace-3K.
  • the diluted liquid composition was used by dissolving guanidine hydrochloride so as to have a final concentration of 4.5 M in mobile phase A described below.
  • a high performance liquid chromatography apparatus was used by connecting a PDA detector (L7490, manufactured by Hitachi High-Technologies) to ELITE Lachrom (L2000, manufactured by Hitachi High-Technologies).
  • a PDA detector L7490, manufactured by Hitachi High-Technologies
  • ELITE Lachrom L2000, manufactured by Hitachi High-Technologies
  • As the column an ODS-3 column (diameter: 4.6 mm ⁇ length: 250 mm, manufactured by GL Sciences Inc.) was used. Sample injection volume was 40 ⁇ l, column temperature was 25 ° C., flow rate was 1.2 ml / min, and detection was performed at 220 nm.
  • the solution was passed through the column and eluted. Each eluted peak was identified from the elution position of the sample (Sigma Aldrich). For ⁇ -lactalbumin, ⁇ -lactoglobulin, and ⁇ -casein, each mass was calculated from the peak area value using a calibration curve obtained from each sample.
  • the values obtained by subtracting the masses of ⁇ -lactalbumin, ⁇ -lactoglobulin, and ⁇ -casein from the total protein amount of the sample subjected to HPLC are ⁇ -casein and ⁇ -casein.
  • the total mass of From the ratio of the total mass of ⁇ -lactalbumin and ⁇ -lactoglobulin and the total mass of ⁇ -casein, ⁇ -casein, and ⁇ -casein, the mass ratio of casein to whey protein (casein / whey protein ratio) ) was calculated.
  • Example 2 The example products 1 to 4 and the comparative example products 1 to 5 were subjected to a vibration resistance test as an index of emulsion stability and a foaming test at the time of whipping as an index of whipping property.
  • the vibration resistance test consists of a cream preparation stored at 5 ° C for 24 hours, a temporary temperature treatment (25 ° C, 1 hour bath), and a storage at 5 ° C for 24 hours (heat shock (HS) 25 ° C treatment. 200 g each was placed in a 250 ml carton container and shaken at 20 ° C. at 167 times / minute, and the number of times until the cream solidified was determined.
  • the emulsification stability was evaluated in two stages, ⁇ and ⁇ , from a vibration resistance test (stored at 5 ° C., heat shock (HS) 25 ° C. processed product). Specifically, a product stored at 5 ° C. with a vibration frequency of 10,000 times or more and a product treated with HS25 ° C. with a vibration frequency of 8,000 times or more are marked with ⁇ , and those that do not satisfy either of these conditions are marked with ⁇ did.
  • HS heat shock
  • whipping foam test In the foaming test at the time of whipping, the whipping end point when the cream is whipped with a mixer (GENERAL ELECTRIC) is set to a load that shows optimum artificial flowering property, the time to reach this end point (whipping time) and whipping rise To the end point ( ⁇ whip time) was measured.
  • the overrun of the cream that reached the whipping end point was determined by measuring the weight of a certain volume of the cream before and after whipping and using the following formula.
  • Overrun ((W1-W2) / W2) ⁇ 100 (%)
  • W1 Cream weight before whipping a certain volume
  • W2 Cream weight after whipping a certain volume
  • the hardness of the cream that reached the whipping end point was measured using a rheometer (CR-200D, manufactured by Sun Kagaku Co., Ltd.) under the conditions of a plunger diameter of 20 mm, an intrusion depth of 10 mm, and a gantry speed of 60 mm / min. The evaluation was performed in two stages of ⁇ and ⁇ by combining the whipping time, ⁇ whipping time, overrun, and hardness.
  • whipping time 18 minutes or less, a ⁇ whipping time of 2 minutes or more, an overrun of 100% or more, and a hardness of 20 gf or more and less than 30 gf were marked with ⁇ , and those not satisfying these conditions were marked with x.
  • (DELTA) whipping time shall represent time until it reaches setting hardness from the value of 1/10 of setting hardness (load 25gf) of whipped cream.
  • the results of Test Example 1 and Test Example 2 are shown together in Table 1.
  • the emulsification stability of the example products 1 to 4 was dramatically improved in both the 5 ° C. storage product and the HS 25 ° C. treatment product as compared with the comparative example products 1 to 3. Also, in the foaming evaluation, compared with Comparative Example Product 1 and Comparative Example Product 3, the ⁇ whip time was longer, the overrun was improved, and it was easy to whip to the desired hardness. There was no significant difference between Example products 1 to 4, and the number of homogenizations hardly affected the physical properties of the cream, and it became clear that the desired effect could be obtained by homogenizing only the raw material milk.
  • the raw milk heated to 60 ° C. was homogenized at a homogeneous pressure of 5.0 MPa, and then a cream with a fat percentage of 45% was separated by a centrifuge.
  • the obtained cream was passed through a plate type sterilizer and sterilized at 120 ° C. for 2 seconds. After sterilization, the plate was cooled to about 50 ° C., and 700 g of the cream was collected in a pouch and cooled to obtain milk fat cream (Example Product 5).
  • the obtained milk fat cream was stored at 5 ° C.
  • Example 3 For Example Product 1, Example Product 5 and Comparative Product 6-9, measurement of fat globule median diameter and calculation of casein / whey protein ratio of fat globule membrane by the same method as in Test Example 1 and Test Example 2 A vibration resistance test and a foaming test during whipping were performed. The results are shown in Table 2.
  • Example products 1 and 5 compared with Comparative products 6 and 7, the emulsion stability was dramatically improved under both conditions of 5 ° C. storage product and HS 25 ° C. treatment product. Also in the foaming evaluation, the ⁇ whip time was long, the overrun was improved, and it was easy to whip to the desired hardness. In Comparative Example Products 8 and 9, although emulsion stability is improved as compared with Example Products 1 and 5, the whipping time is remarkably prolonged, so that it is not suitable as a whipped cream.

Abstract

 乳化剤等の安定化用添加物を用いることなく、また製造上特別な装置設備や複雑な工程を用いることなく、乳由来の良好な風味を有する乳脂肪クリームについて、乳化安定性に優れ、かつ良好なホイップ性を有する乳脂肪クリームを提供する。 遠心分離によりクリーム層を回収する前に、クリーム分離工程前に原料乳を2.0~5.0MPaで均質化することにより得られる、乳化安定性に優れ、かつ良好なホイップ性を有する乳脂肪クリームが得られる。

Description

乳脂肪クリーム及びその製造方法
 本発明は、新規な乳脂肪クリーム及びその製造方法に関する。なお、本発明において、「乳脂肪クリーム」とは、乳及び乳製品の成分規格等に関する省令(昭和26年12月27日厚生省令第52号、以下「乳等省令」という。)によって規定される「種類別 クリーム」を意味するものである。
 一般に、クリームと呼ばれるものには、乳脂肪のみからなる乳脂肪クリームのほか、乳脂肪に乳化剤や安定剤を加えたもの、植物性脂肪に乳化剤や安定剤を加えたもの、乳脂肪と植物性脂肪の混合脂肪に乳化剤や安定剤を加えたものがある。乳等省令上は、乳脂肪クリームのみが「種類別 クリーム」とされ、その他の乳化剤、安定剤を加えたもの(以下、「合成クリーム」という。)は「乳又は乳製品を主要原料とする食品」として定義されている。
 製菓、製パン、デザートの製造においては、乳脂肪クリーム、合成クリームのいずれも使用されているが、近年は添加剤を一切使用しないという点から乳脂肪クリームが好まれる傾向がある。合成クリームは、配合油脂の選択の自由度が高く、また乳化剤や安定剤の組み合わせも多種多様な選択が可能であることから、ホイップ性と乳化安定性に優れた製品を提供できるというメリットがあるが、一方で、乳脂肪クリームと比較すると、芳醇でフレッシュな乳の風味に欠け、風味の面で劣るというデメリットがある。
 乳脂肪クリームは、乳から分離したクリーム、もしくは乳から分離したクリームを殺菌処理したものを生乳で脂肪調整した後、均質、殺菌、再均質、冷却して製造されるのが一般的である。乳脂肪クリームは乳脂肪独特の風味やコクを有し、風味の点で合成クリームより優れるが、定義上、安定性を付与するための乳化剤や安定剤を添加することができないため、ホイップ性や乳化安定性等の物性の付与は、専ら製造条件の制御によって行わなければならない。よって、ホイップ性や乳化安定性においては、合成クリームに劣るという問題がある。乳脂肪クリームの乳化安定性の改善については、超高温殺菌法(UHT法)による殺菌工程の前後で均質化することにより脂肪層の浮上を抑制する方法(特許文献1)が報告されているが、この方法では、十分な乳化安定性は得られない。また、クリーム加熱殺菌処理後の冷却工程において、一旦7℃~25℃まで急速に冷却し、その温度で1分間~30分間保持し、その後3℃~5℃まで急速に冷却することで、乳化安定性を付与する方法(特許文献2)が報告されている。しかし、この方法では冷蔵保存時での振動耐性は付与されるが、温度処理耐性は付与されず、乳化安定性としては不十分である。
 この他にも乳脂肪クリームの製造に関して、生乳を膜濃縮処理、脱酸素処理を行なうことで風味と物性に優れたクリームの製造方法(特許文献3)も報告されているが、この方法は、製造に特別な装置や複雑な工程が必要となるほか、得られた乳脂肪クリームは、風味は改善されるものの、乳化安定性は十分なものではない。
特開2007-259831号公報 特開2006-325426号公報 特開2006-141273号公報
 本発明は、乳化安定性に優れ、かつ良好なホイップ性を有する乳脂肪クリームの提供を課題とする。
 本発明は、以下のとおりである。
(1)脂肪球のメディアン径が2.4μm以下であり、かつ脂肪球皮膜におけるホエイタンパク質に対するカゼインの質量比が3.5以下であることを特徴とする乳脂肪クリーム。
(2)原料乳からクリームを分離するクリーム分離工程と、前記分離工程によって分離された分離クリームを殺菌するクリーム殺菌工程とを含む乳脂肪クリームの製造方法において、前記クリーム分離工程前に原料乳を均質処理する原料乳均質工程を含むことを特徴とする乳脂肪クリームの製造方法。
(3)前記原料乳均質工程における均質処理の均質圧が2.0MPa~5.0MPaであることを特徴とする(2)記載の乳脂肪クリームの製造方法。
(4)前記クリーム殺菌工程前及び/又は前記クリーム殺菌工程後に、分離したクリームを均質処理するクリーム均質処理工程を含むことを特徴とする(2)乃至(3)記載の乳脂肪クリームの製造方法。
 本発明によれば、乳化安定性に優れ、かつ良好なホイップ性を有する乳脂肪クリームが得られる。
 以下、本発明につき、さらに詳細に説明する。
 本発明における乳脂肪クリームとは、乳等省令上の「種類別 クリーム」であり、乳化剤や安定剤などの添加物を含まないものである。乳脂肪クリームは、通常、原料乳をディスク型の遠心分離機を通してクリームと脱脂乳に分離するクリーム分離工程、分離されたクリームを殺菌するクリーム殺菌工程、殺菌後のクリームを冷却するクリーム冷却工程を経て製造される。また、必要に応じて殺菌工程前及び/又は殺菌工程後にクリームを均質化するクリーム均質工程を経てもよい。本発明の乳脂肪クリームは、前記の工程に加えて、クリーム分離工程前に、原料乳に均質処理を行なう原料乳均質工程を経ることを特徴とする。
 本発明の乳脂肪クリームは、原料乳均質工程を経ることによって、脂肪球のメディアン径を2.4μm以下、かつ脂肪球皮膜におけるホエイタンパク質に対するカゼインの質量比(以下、「カゼイン/ホエイタンパク質比」という。)を3.5以下とすることを特徴とする。本発明で言うメディアン径とは、体積基準での積算分布曲線の50%に相当する粒子径であって、例えばレーザー回折式粒度分布測定装置(SALD-3100、島津製作所社製)を用いて測定することができる。
 なお、従来から行なわれているクリーム均質工程は、高脂肪のクリームに対して均質処理を行なうため、例えば2.0MPa以上の高い均質圧で均質処理を行なうと、微粒子化によって増加した脂肪球表面積を被覆するだけのタンパク質が不足し、脂肪球同士の凝集や合一が発生する。したがって、クリーム均質工程では2.0MPa未満の低い均質圧での均質処理を行なうことが一般的であるが、このような均質圧で脂肪球のメディアン径を2.4μm以下となるまで繰り返し均質を行なった場合、脂肪球皮膜におけるカゼイン/ホエイタンパク質比が3.5より大きくなる。逆に、脂肪球皮膜におけるカゼイン/ホエイタンパク質比を3.5より小さくするために、均質圧を下げたり、均質回数を減らしたりした場合は、脂肪球のメディアン径が2.4μm以下とはならない。
 本発明では、原料乳を均質処理する原料乳均質工程を採用することにより、脂肪球のメディアン径を2.4μm以下、かつ脂肪球皮膜におけるカゼイン/ホエイタンパク質比を3.5以下とすることができ、かつこのような条件を満たすことによって、乳化安定性、ホイップ性を兼ね備えた乳脂肪クリームを得ることができる。
 原料乳均質工程では、原料乳を所定の均質化温度になるように加温した後、均質機を用いて均質化する。原料乳の加温には、プレート式熱交換機、バッチ式加熱機等が用いることができる。中でも、原料乳の加温効率の点から、プレート式熱交換機を用いることが好ましい。また、均質化には、ホモゲナイザーなどの均質機のほか、マイクロフルイダイザー、コロイドミル等を用いてもよい。原料乳の均質化効率及び処理量の能力の点から、ホモゲナイザーを用いることが好ましく、その中でも二段均質機を用いることが好ましい。また、均質化圧力は、均質機の種類、原料乳の処理流量やホモバブルの形状、均質化温度等の製造条件の違いにより適宜変更すればよいが、例えば、2.0MPa以上の高い均質圧で処理することも可能である。
 なお、クリーム分離工程、クリーム殺菌工程は、適宜既存の手法を用いて行なえばよく、クリーム分離工程では、ディスク型の遠心分離機等を用いて行なえばよい。またクリーム殺菌工程では、例えば、保持殺菌法では63℃30分間、プレート式熱交換殺菌法では72~75℃15秒、82~85℃10秒間の高温短時間殺菌法(HTST法)あるいは130~140℃2秒間の超高温殺菌法(UHT法)等の条件で実施すればよい。また、通常は、殺菌工程を経たクリームは直ちに10℃以下に冷却されるが、このクリーム殺菌工程前後でクリーム均質工程を行なってもよい。クリーム均質工程についても、既存の方法で行なえばよく、例えば1.0MPa程度の均質圧で均質処理を行なえばよい。
 以下に本発明の実施例、参考例、試験例を挙げて説明するが、本発明はこれらに限定されるものではない。
 原料乳を60℃まで加温したものを均質圧2.0MPaで均質処理し、その後遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームをプレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。殺菌後、約50℃までプレート冷却したのち、クリームをパウチに700g採取し、冷却して乳脂肪クリーム(実施例品1)を得た。得られた乳脂肪クリームは5℃で保存した。
 原料乳を60℃まで加温したものを均質機において均質圧2.0MPaで処理し、その後遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームを均質圧1.0MPaで均質処理した後、プレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。その後、約50℃までプレート冷却したのち、クリームをパウチに700g採取し、冷却して乳脂肪クリーム(実施例品2)を得た。得られた乳脂肪クリームは5℃で保存した。
 原料乳を60℃まで加温したものを均質圧2.0MPaで均質処理し、その後遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームを均質圧1.0MPaで均質処理した後、プレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。その後、約50℃までプレート冷却したのち、再度均質圧1.0MPaで均質処理し、均質処理後のクリームをパウチに700g採取し、冷却して乳脂肪クリーム(実施例品3)を得た。得られた乳脂肪クリームは5℃で保存した。
 原料乳を60℃まで加温したものを均質圧2.0MPaで均質処理し、その後遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームをプレート式殺菌機に通液し、120℃、2秒の殺菌処理を行ない、その後約50℃までプレート冷却したのち、均質圧1.0MPaで均質処理し、均質処理後のクリームをパウチに700g採取し、冷却して乳脂肪クリーム(実施例品4)を得た。得られた乳脂肪クリームは5℃で保存した。
[比較例1] 
 原料乳を60℃まで加温した後、遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームをプレート式殺菌機に通液し、120℃、2秒の殺菌処理を行ない、その後、約50℃までプレート冷却した後、均質圧1.0MPaで均質処理し、均質処理後のクリームをパウチに700g採取し、冷却して乳脂肪クリーム(比較例品1)を得た。得られた乳脂肪クリームは5℃で保存した。
[比較例2]
 原料乳を60℃まで加温した後、遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームを均質圧1.0MPaで均質処理した後、プレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。その後、約50℃までプレート冷却し、均質圧1.0MPaで均質処理した。均質処理後のクリームをパウチに700g採取し、冷却して乳脂肪クリーム(比較例品2)得た。得られた乳脂肪クリームは5℃で保存した。
[比較例3]
 原料乳を60℃まで加温した後、遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームを均質圧1.0MPaで均質処理し、プレート式殺菌機に通液して120℃、2秒の殺菌処理を行なった。その後、約50℃までプレート冷却したのち、クリームをパウチに700g採取し、冷却して乳脂肪クリーム(比較例品3)を得た。得られた乳脂肪クリームは5℃で保存した。
[比較例4]
 原料乳を60℃まで加温した後、遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームをプレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。その後、約50℃までプレート冷却し、均質圧2.0MPaで均質処理を行った後、クリームをパウチに700g採取し、冷却して乳脂肪クリーム(比較例品4)を得た。得られた乳脂肪クリームは5℃で保存した。
[比較例5]
 原料乳を60℃まで加温した後、遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームをプレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。その後、約50℃までプレート冷却し、均質圧5.0MPaで均質処理した後、クリームをパウチに700g採取し、冷却して乳脂肪クリーム(比較例品5)を得た。得られた乳脂肪クリームは5℃で保存した。
[試験例1]
 実施例品1~4、比較例品1~5について、脂肪球のメディアン径を測定した。また、脂肪球皮膜のタンパク質組成分析を行い、脂肪球皮膜におけるカゼイン/ホエイタンパク質比を算出した。
 脂肪球のメディアン径の測定には、レーザー回折式粒度分布測定装置(SALD-3100、島津製作所社製)を用いた。
 脂肪球皮膜のタンパク質組成分析は以下の方法により行なった。
 各水準のクリーム150gに対して超純水250gを加えて希釈し、2500rpm、5℃、20分間遠心分離をし、下層の水層を捨てる。残ったクリーム層に超純水300gを加えて希釈し再び遠心分離し、下層を捨てる。この操作をさらに2回行ないクリーム層を回収する。回収したクリーム層25gにヘキサン15gを加えて混合後、1000rpm、25℃、5分間遠心分離をし、上層のヘキサンとともにクリーム層中の脂質を除去し試料とした。得られた試料10gをAmicon Ultra Ultrace-3Kを用いて、15000rpm、5℃、30分間遠心分離し濃縮した。濃縮した試料4gを精秤し、5.37mMクエン酸Naおよび6Mグアニジン塩酸塩を含有する0.1MBisTris緩衝液(pH6.8)5000μlと1MDTT300μlを加え混合し、試料を可溶化した。1N-NaOHでpHを8.2に調整後、蒸留水を加え10mlに定容した。このうち1mlを1.5mlマイクロチューブに採取し沸騰水中で3分間加熱し室温まで放冷した。このうち300μlを希釈液900μlと混合し、高速液体クロマトグラフィー(HPLC)に供した。希釈液組成は以下に記載の移動相Aにグアニジン塩酸塩を終濃度4.5Mになるように溶解して用いた。高速液体クロマトグラフィー装置はELITE Lachrom(L2000、日立ハイテクノロジーズ社製)にPDAディテクター(L7490、日立ハイテクノロジーズ社製)を接続して用いた。カラムはODS-3カラム(直径4.6mm×長さ250mm、ジーエルサイエンス社製)を用いた。試料注入量は40μl、カラム温度は25℃、流速は1.2ml/min、検出は220nmで行った。移動相は0.1%TFAを含むアセトニトリル/水=1/9(移動相A)、0.1%TFAを含むアセトニトリル/水=9/1(移動相B)を用い、移動相Bの割合を開始27%から4分後32%、12分後34%、17分後36.5%、35分後39%、50分後43.5%、52分後80%まで濃度勾配をかけてカラムに通液し、溶出させた。溶出した各ピークは標品(シグマアルドリッチ)の溶出位置から同定した。α-ラクトアルブミン、β-ラクトグロブリン、κ-カゼインにおいては、ピーク面積値から、各標品より求めた検量線を用いて各々の質量を算出した。α-カゼイン、β-カゼインについては、HPLCに供した試料の全タンパク質量から、前述のα-ラクトアルブミン、β-ラクトグロブリン、κ-カゼインの質量を引いた値をα-カゼイン、β-カゼインの総質量とした。得られたα-ラクトアルブミン、β-ラクトグロブリンの質量の合計と、α-カゼイン、β-カゼイン、κ-カゼインの質量の合計の比から、ホエイタンパク質に対するカゼインの質量比(カゼイン/ホエイタンパク質比)を算出した。
[試験例2]
 実施例品1~4、比較例品1~5について、乳化安定性の指標として振動耐性試験と、ホイップ性の指標としてホイップ時の起泡性試験を行なった。
(振動耐性試験)
 振動耐性試験は、クリーム調製後5℃で24時間保存したものと、一時的温度処理(25℃、1時間温浴)した後、5℃で24時間保存したもの(ヒートショック(HS)25℃処理品)を、それぞれ200gを250ml容量のカートン容器に入れ、20℃で167回/分の振とうを与えたとき、クリームが凝固するまでの回数を求めた。
 乳化安定性については、振動耐性試験(5℃保存品、ヒートショック(HS)25℃処理品)より、○、×の2段階で評価した。具体的には、5℃保存品で振動回数10,000回以上、かつHS25℃処理品で振動回数8,000回以上のものを○、これらの条件をいずれか一方でも満たさないものを×とした。
(ホイップ時起泡性試験) 
 ホイップ時の起泡性試験では、クリームをミキサー(GENERAL ELECTRIC製)でホイップした際のホイップ終点を最適造花性を示す荷重に設定し、この終点に到達するまでの時間(ホイップ時間)及びホイップ立ち上がりから終点までの時間(Δホイップ時間)を測定した。また、ホイップ終点に到達したクリームのオーバーランを、ホイップ前後で一定容積のクリーム重量を測定し、次式により求めた。

オーバーラン=((W1-W2)/W2)×100(%)
W1:一定容積のホイップ前のクリーム重量
W2:一定容積のホイップ後のクリーム重量 

 また、ホイップ終点に到達したクリームの硬度を、レオメーター(CR-200D、サン科学社製)を用いて、プランジャー直径20mm、侵入深度10mm、架台スピード60mm/minの条件で測定した。
 評価は、ホイップ時間、Δホイップ時間、オーバーラン、硬度を総合して○、×の2段階で実施した。具体的には、ホイップ時間が18分間以内、Δホイップ時間が2分間以上、オーバーランが100%以上、硬度が20gf以上30gf未満のものを○とし、これらの条件を満たさないものを×とした。なお、Δホイップ時間とは、ホイップクリームの設定硬度(荷重25gf)の1/10の値から設定硬度に達するまでの時間を表すものとする。試験例1、試験例2の結果をあわせて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、実施例品1~4については、比較例品1~3に比べ、5℃保存品およびHS25℃処理品の両条件で乳化安定性が飛躍的に向上した。また起泡性評価においても、比較例品1および比較例品3と比べ、Δホイップ時間が長く、オーバーランも向上し、思い通りの硬さにホイップしやすいものであった。実施例品1~4で大きな違いは見られず、均質化の回数はクリーム物性にほとんど影響せず、原料乳均質のみをすれば目的の効果は得られることが明らかとなった。また、比較例品4より、クリーム分離後に均質処理をする場合には、均質圧力を高めて脂肪球径を小さくしても、乳化安定性は低下する。加えて、比較例品5より、クリーム分離後に均質圧5.0MPaで均質処理を行なうと均質過程で凝集してしまいクリームは調製できなかった。
 原料乳を60℃まで加温したものを均質圧5.0MPaで均質処理し、その後遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームをプレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。殺菌後、約50℃までプレート冷却したのち、クリームをパウチに700g採取し、冷却して乳脂肪クリーム(実施例品5)を得た。得られた乳脂肪クリームは5℃で保存した。
[比較例6] 
 原料乳を60℃まで加温したものを均質圧0.0MPaで均質処理し、その後遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームをプレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。殺菌後、約50℃までプレート冷却したのち、クリームをパウチに700g採取し、冷却して乳脂肪クリーム(比較例品6)を得た。得られた乳脂肪クリームは5℃で保存した。
[比較例7]
 原料乳を60℃まで加温したものを均質圧1.0MPaで均質処理し、その後遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームをプレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。殺菌後、約50℃までプレート冷却したのち、クリームをパウチに700g採取し、冷却して乳脂肪クリーム(比較例品7)を得た。得られた乳脂肪クリームは5℃で保存した。
[比較例8]
 原料乳を60℃まで加温したものを均質圧8.0MPaで均質処理し、その後遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームをプレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。殺菌後、約50℃までプレート冷却したのち、クリームをパウチに700g採取し、冷却して乳脂肪クリーム(比較例品8)を得た。得られた乳脂肪クリームは5℃で保存した。
[比較例9]
 原料乳を60℃まで加温したものを均質圧10.0MPaで均質処理し、その後遠心分離機にて脂肪率45%のクリームを分離した。得られたクリームをプレート式殺菌機に通液し、120℃、2秒の殺菌処理を行なった。殺菌後、約50℃までプレート冷却したのち、クリームをパウチに700g採取し、冷却して乳脂肪クリーム(比較例品9)を得た。得られた乳脂肪クリームは5℃で保存した。
[試験例3]
 実施例品1、実施例品5、比較例品6~9について、試験例1および試験例2と同様の方法によって、脂肪球のメディアン径の測定、脂肪球皮膜のカゼイン/ホエイタンパク質比の算出、振動耐性試験及びホイップ時の起泡性試験を実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、実施例品1および5について、比較例品6および7と比べ、5℃保存品およびHS25℃処理品の両条件で乳化安定性が飛躍的に向上した。また起泡性評価においても、Δホイップ時間が長く、オーバーランも向上し、思い通りの硬さにホイップしやすいものであった。比較例品8および9においては、実施例品1および5より、乳化安定性は向上するものの、ホイップ時間が顕著に延長されるため、ホイップクリームとしては適していない。

Claims (4)

  1.  脂肪球のメディアン径が2.4μm以下であり、かつ脂肪球皮膜におけるホエイタンパク質に対するカゼインの質量比が3.5以下であることを特徴とする乳脂肪クリーム。
  2.  原料乳からクリームを分離するクリーム分離工程と、
     前記分離工程によって分離されたクリームを殺菌するクリーム殺菌工程とを含む乳脂肪クリームの製造方法において、
     前記クリーム分離工程前に原料乳を均質処理する原料乳均質工程を含むことを特徴とする乳脂肪クリームの製造方法。
  3.  前記原料乳均質工程における均質処理の均質圧が2.0MPa~5.0MPaであることを特徴とする請求項2記載の乳脂肪クリームの製造方法。
  4.  前記クリーム殺菌工程前及び/又は前記クリーム殺菌工程後に、分離後のクリームを均質処理するクリーム均質処理工程を含むことを特徴とする請求項2乃至3記載の乳脂肪クリームの製造方法。
PCT/JP2013/057130 2012-03-15 2013-03-14 乳脂肪クリーム及びその製造方法 WO2013137374A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-059472 2012-03-15
JP2012059472A JP5946662B2 (ja) 2012-03-15 2012-03-15 乳脂肪クリーム及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013137374A1 true WO2013137374A1 (ja) 2013-09-19

Family

ID=49161277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057130 WO2013137374A1 (ja) 2012-03-15 2013-03-14 乳脂肪クリーム及びその製造方法

Country Status (3)

Country Link
JP (1) JP5946662B2 (ja)
TW (1) TWI610624B (ja)
WO (1) WO2013137374A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002920A1 (ja) * 2014-07-04 2016-01-07 株式会社明治 クリーム類及びその製造方法
KR20160138224A (ko) 2014-03-27 2016-12-02 아지노모토 가부시키가이샤 밀크와 같은 부드러움이나 깊은 맛을 부여하는 조성물

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162439B2 (ja) * 2013-03-11 2017-07-12 雪印メグミルク株式会社 乳脂肪クリーム及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141273A (ja) * 2004-11-19 2006-06-08 Meiji Milk Prod Co Ltd 風味・物性に優れたクリーム類とその製造方法。
JP2007259831A (ja) * 2006-03-30 2007-10-11 Morinaga Milk Ind Co Ltd 生クリームの製造方法、及び乳脂肪含量が40〜46質量%の生クリーム
JP2007259830A (ja) * 2006-03-30 2007-10-11 Morinaga Milk Ind Co Ltd 生クリームの製造方法、及び乳脂肪含量が35質量%以上40質量%未満の生クリーム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081840A (ja) * 2008-09-30 2010-04-15 Morinaga Milk Ind Co Ltd 水中油型乳化組成物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141273A (ja) * 2004-11-19 2006-06-08 Meiji Milk Prod Co Ltd 風味・物性に優れたクリーム類とその製造方法。
JP2007259831A (ja) * 2006-03-30 2007-10-11 Morinaga Milk Ind Co Ltd 生クリームの製造方法、及び乳脂肪含量が40〜46質量%の生クリーム
JP2007259830A (ja) * 2006-03-30 2007-10-11 Morinaga Milk Ind Co Ltd 生クリームの製造方法、及び乳脂肪含量が35質量%以上40質量%未満の生クリーム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K.INOUE ET AL.: "Effects of manufacturing process parameters on fat globule size and viscosity of whipping cream.", MILCHWISSENSCHAFT, vol. 66, no. 2, 2011, pages 141 - 144 *
SANAE HORIGUCHI ET AL.: "Cream no Netsu Shori ga Shibokyu ya Tanpakushitsu ni Ataeru Eikyo", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2011 NENDO TAIKAI KOEN YOSHISHU, 5 March 2011 (2011-03-05), pages 229 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138224A (ko) 2014-03-27 2016-12-02 아지노모토 가부시키가이샤 밀크와 같은 부드러움이나 깊은 맛을 부여하는 조성물
WO2016002920A1 (ja) * 2014-07-04 2016-01-07 株式会社明治 クリーム類及びその製造方法

Also Published As

Publication number Publication date
JP2013192459A (ja) 2013-09-30
TW201343074A (zh) 2013-11-01
TWI610624B (zh) 2018-01-11
JP5946662B2 (ja) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2014017525A1 (ja) 低脂肪または無脂肪の気泡含有乳化物
JP5946662B2 (ja) 乳脂肪クリーム及びその製造方法
JP4397906B2 (ja) 生クリームの製造方法
JP6612491B2 (ja) 食用クリームおよびその製造方法
JP4382053B2 (ja) 生クリームの製造方法
JP6022174B2 (ja) 乳脂肪クリーム及びその製造方法
JP6301628B2 (ja) 牛乳類及びその製造方法
GR1009671B (el) Εναλλακτικο προϊον με βαση το γαλα, που περιεχει φυτικο ελαιο και μεθοδος παραγωγης του ιδιου
JP6162439B2 (ja) 乳脂肪クリーム及びその製造方法
JP5993183B2 (ja) クリームチーズおよびその製造方法
JP5120933B2 (ja) 乳脂肪クリームとその製造方法
JP2016119884A (ja) クリーム様製品の製造方法
JP5436246B2 (ja) 乳製品製造用組成物、乳製品およびその製造方法
JP7219210B2 (ja) 乳脂肪クリームおよびその製造方法
JP4783803B2 (ja) 食用クリーム
JP2011211925A (ja) 生クリームの製造方法
JP2019176749A (ja) ゲル状食品及びその製造方法
JP2000262236A (ja) 水中油型乳化物
Pascual Effects of different types of milk fat globule membrane materials on the physical and rheological characteristics of set yoghurts
JP6644289B1 (ja) 低トランス脂肪酸バター様食品の製造方法及び低トランス脂肪酸バター様食品
JP2013066432A (ja) クリームチーズ類
JP2014068605A (ja) ホイップ用クリームの製造方法
JP2023056835A (ja) ゲル状食品及びその製造方法
Arzami Rheological, melting, microstructural, and oil droplets-interfacial properties of model processed cheese made with calcium caseinate and trisodium citrate or sodium pyrophosphate
JP2024052611A (ja) 発酵乳及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760507

Country of ref document: EP

Kind code of ref document: A1