WO2013133156A1 - 変性ミクロフィブリル化植物繊維を含む発泡体 - Google Patents
変性ミクロフィブリル化植物繊維を含む発泡体 Download PDFInfo
- Publication number
- WO2013133156A1 WO2013133156A1 PCT/JP2013/055648 JP2013055648W WO2013133156A1 WO 2013133156 A1 WO2013133156 A1 WO 2013133156A1 JP 2013055648 W JP2013055648 W JP 2013055648W WO 2013133156 A1 WO2013133156 A1 WO 2013133156A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- foam
- resin
- microfibrillated plant
- plant fiber
- rubber
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0085—Use of fibrous compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08H—DERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
- C08H8/00—Macromolecular compounds derived from lignocellulosic materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L97/00—Compositions of lignin-containing materials
- C08L97/02—Lignocellulosic material, e.g. wood, straw or bagasse
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/032—Impregnation of a formed object with a gas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/22—Thermoplastic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2321/00—Characterised by the use of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
Definitions
- the present invention relates to a microfibrillated plant fiber modified with alkyl or alkenyl succinic anhydride and a foam containing a resin component and / or a rubber component, and a method for producing the same.
- Thermoplastic resins such as polyethylene and polypropylene are widely used for containers, pipes, films, medical applications, etc. from the viewpoint of being inexpensive and excellent in flexibility and chemical resistance.
- Rubber is a material excellent in elastic modulus and impact resistance, and is widely used not only for industrial purposes but also for general purposes.
- foams obtained by foaming thermoplastic resin or rubber are conventionally known in order to further reduce weight, heat insulation, and shock absorption.
- the foam of thermoplastic resin or rubber is lighter than the unfoamed state, and is excellent in heat insulation and shock absorption, but has a problem that strength is lowered. is doing.
- a reinforcing material such as a filler is blended.
- microfibrillated plant fiber is very useful as a reinforcing material such as a filler because it is light in mass and high in strength.
- microfibrillated plant fibers have a very strong cohesive force and generally poor compatibility with resin components and rubber components, so that it is possible to obtain a uniform molding material in which microfibrillated plant fibers are uniformly dispersed. Have difficulty.
- the foam obtained by foaming the molding material also has a problem that the mechanical strength cannot be sufficiently exhibited. For such problems, attempts have been made to improve the dispersibility in the resin or rubber component by modifying the surface of the microfibrillated plant fiber with a chemical modifier or the like.
- Patent Document 2 describes that a compound containing a quaternary ammonium group is used to cation-modify microfibrillated plant fibers and suppress aggregation of microfibrillated plant fibers by electrostatic repulsion of cations.
- a composite material in which the modified microfibrillated plant fiber is combined with a thermoplastic resin is described.
- the above-mentioned cation-modified microfibrillated plant fiber is uniformly dispersed in a resin having a relatively high polarity such as a polyester-based resin.
- a resin having a relatively high polarity such as a polyester-based resin.
- Patent Document 3 discloses a foam having an average cell diameter of 0.3 mm to 1.5 mm in which a resin composition composed of a thermoplastic resin composed of a polyolefin resin and an organic fiber is foamed. Yes.
- cellulose fibers and the like are exemplified as organic fibers, and the average fiber diameter of the organic fibers is 0.1 to 1000 ⁇ m and the average fiber length is 0.01 to 5 mm.
- the surface treatment may be performed with a coupling agent (such as a silane coupling agent having a functional group such as an amino group, a substituted amino group, an epoxy group, or a glycidyl group).
- Patent Document 3 does not specifically examine the effect of the fiber surface treatment, and does not mention in detail the foam having excellent mechanical strength. Even in fiber-reinforced foams, the poor compatibility between cellulose fibers and resin deteriorates the dispersibility of the fibers and the fiber / resin interface strength, lowers the fiber reinforcement effect, and increases the strength due to coarse growth of bubbles during foaming. There is room for improvement in the modification of the fibers suitable for hydrophobic resins because they cause a decrease.
- the present invention provides a foam having a fine foam diameter excellent in mechanical strength, in which microfibrillated plant fibers are uniformly dispersed in a highly hydrophobic thermoplastic resin component or rubber component.
- An object of the present invention is to provide a method for producing a foam excellent in mechanical strength.
- modified microfibrillated plant fibers (hereinafter also referred to as ASA modified microfibrillated plant fibers) obtained by esterification as a reinforcing material makes it possible to uniformly modify modified microfibrillated plant fibers in thermoplastic resins and rubber.
- the present invention is an invention that has been completed based on such findings and further earnest studies. That is, this invention provides the foam shown to the following term, and its manufacturing method.
- Item 1 At least one component (A) selected from the group consisting of thermoplastic resin and rubber, and microfibrillated plant fiber (B) esterified with alkyl or alkenyl succinic anhydride Foam containing.
- Item 2 The content of the modified microfibrillated plant fiber (B) esterified with alkyl or alkenyl succinic anhydride is 0.1 to 200 parts by mass with respect to 100 parts by mass of the component (A). Foam.
- Item 3. The foam according to Item 1 or 2, wherein the specific gravity is 0.03 to 0.9.
- Item 4. The foam according to any one of Items 1 to 3, wherein an average foam diameter in the foam is 0.1 to 100 ⁇ m.
- Item 5 The foam according to any one of Items 1 to 4, wherein the component (A) is a polyolefin resin.
- Item 6. The foam according to any one of Items 1 to 5, wherein the component (A) is polyethylene.
- Item 7 (1) Mixing at least one component (A) selected from the group consisting of a resin and rubber with a modified microfibrillated plant fiber (B) esterified with alkyl or alkenyl succinic anhydride, and / or resin and / or A method for producing a foam, comprising a step of preparing a rubber composition, and (2) a step of foaming a resin and / or a rubber composition.
- A selected from the group consisting of a resin and rubber with a modified microfibrillated plant fiber (B) esterified with alkyl or alkenyl succinic anhydride, and / or resin and / or A method for producing a foam, comprising a step of preparing a rubber composition, and (2) a step of foaming a resin and / or a rubber composition.
- Item 8 The step of foaming the resin and / or rubber composition in step (2) encloses the resin and / or rubber composition and an inert gas in a high-pressure vessel, and impregnates the resin and / or rubber composition with the inert gas.
- Item 8 The method for producing a foam according to Item 7, which is a step of causing the resin and / or the rubber composition to foam by rapid decompression.
- Item 9 The method for producing a foam according to Item 8, wherein the inert gas is carbon dioxide.
- Item 10 The method for producing a foam according to Item 8 or 9, wherein the pressure in the high-pressure vessel is 1 to 30 MPa, and the pressure after rapid decompression is 0.5 ⁇ 10 5 to 2 ⁇ 10 5 Pa.
- the foam of the present invention the ASA-modified microfibrillated plant fiber obtained by esterification with alkyl or alkenyl succinic anhydride is uniformly dispersed in the thermoplastic resin or rubber. And / or the reduction in mechanical strength, which is regarded as a problem in foaming of the rubber composition, is not impaired.
- the foam diameter can be controlled to be small by improving the viscoelasticity due to the inclusion of the ASA-modified microfibrillated plant fiber. Therefore, the foam diameter in the obtained foam becomes fine, and a lightweight foam having a small specific gravity can be obtained without impairing the decrease in mechanical strength.
- the foam in which the conventional microfibrillated plant fiber or the modified microfibrillated plant fiber is dispersed does not provide sufficient mechanical strength.
- the foam of the resin component or rubber component since the ASA-modified microfibrillated plant fiber is used as the modified microfibrillated plant fiber in the resin or rubber component, it is possible to dramatically improve the mechanical strength. It becomes.
- FIG. 3 is a cross-sectional SEM photograph of the foam obtained in Example 2.
- 6 is a cross-sectional SEM photograph of a foam obtained in Comparative Example 5.
- FIG. 5 is a graph plotting specific gravity on the horizontal axis and bending elastic modulus on the vertical axis for the foams and unfoamed materials obtained in Examples 1 to 4 and Comparative Examples 1 to 6.
- FIG. 4 is a graph plotting specific gravity on the horizontal axis and bending strength on the vertical axis for the foams and unfoamed materials obtained in Examples 1 to 4 and Comparative Examples 1 to 6. It is the graph which plotted the storage elastic modulus (G ') in the frequency of 1 Hz of the sheet-like molding before foaming of Example 1 and Comparative Examples 4 and 6. It is the graph which plotted the loss elastic modulus (G '') in the frequency of 1 Hz of the sheet-like molding before foaming of Example 1 and Comparative Examples 4 and 6.
- the foam of the present invention comprises at least one component (A) selected from the group consisting of a thermoplastic resin and rubber, and a modified microfibrillated plant fiber (B) esterified with alkyl or alkenyl succinic anhydride. contains.
- thermoplastic resin component in component (A) olefin resin, polyamide resin, polyacetal resin, vinyl ether resin, polyamide resin, polycarbonate resin, polyester resin, polysulfone resin, polylactic acid, triacetylated cellulose, diacetylated Examples thereof include cellulose resins such as cellulose.
- olefin resin examples include polyethylene, vinyl chloride resin, styrene resin, and (meth) acrylic resin.
- polyethylene examples include high density polyethylene (HDPE) and low density polyethylene (LDPE), and examples of LDPE include branched low density polyethylene and linear low density polyethylene. Among these, it is preferable to use HDPE from the viewpoint of high rigidity and high heat resistance.
- the number average molecular weight of polyethylene is preferably about 10,000 to 1,000,000, more preferably about 50,000 to 500,000.
- the number average molecular weight of polyethylene is preferably about 10,000 to 1,000,000, more preferably about 50,000 to 500,000.
- the specific gravity of polyethylene is preferably about 0.91 to 0.98, more preferably about 0.91 to 0.94.
- the specific gravity of HDPE is preferably about 0.94 to 0.98.
- the specific gravity of LDPE is preferably about 0.91 to 0.935.
- a copolymer having an ethylene unit and another olefin unit may be used as long as the properties as polyethylene are not impaired.
- examples of other olefins include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-pentene, norbornene, vinyl acetate and ethyl acrylate.
- Examples of the rubber component in component (A) include those of diene rubber components. Specifically, natural rubber (NR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), and isoprene rubber. (IR), butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), acrylonitrile-styrene-butadiene copolymer rubber, chloroprene rubber, styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene- Examples include butadiene copolymer rubber, hydrogenated natural rubber, and deproteinized natural rubber.
- the rubber component other than the diene rubber component examples include ethylene-propylene copolymer rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluorine rubber, urethane rubber, and the like. These rubber components may be used alone or in combination of two or more. What is necessary is just to mix
- Plant fiber-containing materials containing plant fibers used as raw materials for ASA-modified microfibrillated plant fibers (B) include wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural residue, and cloth. Examples thereof include pulp obtained from natural plant fiber materials, regenerated cellulose fibers such as rayon and cellophane. In particular, pulp is a preferable raw material.
- the pulp includes chemical pulp (kraft pulp (KP), sulfite pulp (SP)), semi-chemical pulp (SCP) obtained by pulping plant raw materials chemically or mechanically, or a combination of both. ), Chemi-Grand Pulp (CGP), Chemi-Mechanical Pulp (CMP), Crushed Wood Pulp (GP), Refiner Mechanical Pulp (RMP), Thermomechanical Pulp (TMP), Chemi-thermomechanical Pulp (CTMP), and these plant fibers Preferred examples include deinked waste paper pulp, corrugated waste paper pulp, and magazine waste paper pulp as the main component. These raw materials can be delignified or bleached as necessary to adjust the amount of lignin in the plant fiber.
- NUKP coniferous unbleached kraft pulps
- NOKPs softwood oxygen-bleached unbleached kraft pulps
- NBKP Softwood bleached kraft pulp
- the plant fiber used as a raw material is mainly composed of cellulose, hemicellulose, and lignin.
- the lignin content in the plant fiber-containing material is usually about 0 to 40% by mass, preferably about 0 to 10% by mass.
- the lignin content can be measured by the Klason method.
- microfibrillated plant fibers having a width of about 4 nm are present as a minimum unit. This is the basic skeletal material (basic element) of plants. The cellulose microfibrils gather to form a plant skeleton.
- the “microfibrillated plant fiber” is a fiber (a fiber that has been defibrated) obtained by unraveling the fiber of the material containing the plant fiber to the nano-size level.
- Examples of a method for producing microfibrillated plant fibers include a method of defibrating a material containing plant fibers used as a raw material for the above-mentioned plant fibers by a known defibrating method.
- Examples of the method include pulverizing a suspension or slurry by mechanically grinding or beating them with a refiner, a high-pressure homogenizer, a grinder, a uniaxial or multiaxial (for example, biaxial) kneader, or a bead mill. You may process combining these defibrating methods as needed.
- JP 2011-162608 A a method described in JP 2011-162608 A can be used.
- the hydroxyl group of the microfibrillated plant fiber reacts with alkyl or alkenyl succinic anhydride to form an ester bond.
- alkyl or alkenyl succinic anhydride becomes a half ester of succinic acid in which the alkyl group or alkenyl group is substituted by reaction with a hydroxyl group, a carboxylic acid group is also introduced into the modified microfibrillated plant fiber.
- examples of the alkenyl succinic anhydride include compounds having a skeleton derived from an olefin having 4 to 30 carbon atoms and a maleic anhydride skeleton.
- alkenyl succinic anhydride examples include compounds having a skeleton derived from an olefin having 4 to 30 carbon atoms and a maleic anhydride skeleton.
- examples of the alkyl succinic anhydride include hydrogenated products obtained by adding hydrogen to the unsaturated bond of the alkenyl succinic anhydride.
- the method for producing the ASA-modified microfibrillated plant fiber (B) is not particularly limited.
- Examples thereof include a method in which a cellulose fiber-containing material is reacted with alkyl or alkenyl succinic anhydride, and the resulting ASA-modified cellulose fiber is defibrated by the above-described method.
- the degree of ester substitution (DS) of the ASA-modified microfibrillated plant fiber (B) is to uniformly disperse the highly hydrophilic microfibrillated plant fiber in polyethylene or to improve the water resistance of the microfibrillated plant fiber. Therefore, it is preferably about 0.05 to 2.0, more preferably about 0.1 to 2.0, and still more preferably about 0.1 to 0.8.
- DS removes by-products such as alkyl or alkenyl succinic anhydride used as a raw material by washing or a hydrolyzate thereof, and then increases in weight, elemental analysis, neutralization titration method, FT-IR. it can be analyzed by various analytical methods such as 1 H-NMR.
- the content of the ASA-modified microfibrillated plant fiber (B) is preferably about 0.1 to 200 parts by weight, more preferably about 0.5 to 100 parts by weight with respect to 100 parts by weight of the component (A). About 50 parts by mass is more preferable.
- the content of the ASA-modified microfibrillated plant fiber (B) is preferably about 0.1 to 200 parts by weight, more preferably about 0.5 to 100 parts by weight with respect to 100 parts by weight of the component (A). About 50 parts by mass is more preferable.
- a resin in which a polar group is introduced by adding maleic anhydride, epoxy or the like as a compatibilizing agent within a range not impairing the effects of the present invention for example, maleic anhydride-modified polyethylene resin, maleic anhydride An acid-modified polypropylene resin and various commercially available compatibilizers may be used in combination.
- the content of these compatibilizers is preferably about 0.1 to 50 parts by mass, more preferably about 0.5 to 20 parts by mass with respect to 100 parts by mass of the component (A).
- the foam of the present invention may further contain an inorganic salt (C), and by containing the inorganic salt (C), the modified microfibrillated plant fiber (B) interacts with the inorganic particles.
- C inorganic salt
- B modified microfibrillated plant fiber
- Examples of the inorganic salt (C) include salts composed of Group 1 or Group 2 metals. Specifically, acetates, carbonates, sulfates composed of Group 1 or Group 2 metals, Examples thereof include nitrates. Examples of the Group 1 metal include sodium and potassium. Examples of the Group 2 metal include magnesium, calcium, strontium, barium, and the like. More specifically, magnesium sulfate, barium sulfate, barium carbonate, carbonic acid. Examples include potassium and calcium carbonate.
- the particle diameter of the inorganic salt can be arbitrarily selected according to the purpose, but in general, a smaller one is preferable.
- carbonate is preferable in that it has an excellent effect of improving the elastic modulus, and a powder having a relatively large surface area of particle diameter / crystal diameter can be easily obtained and modified microfibrillated plant fiber (B).
- Calcium carbonate and barium carbonate are more preferable from the viewpoint of easy interaction with each other and that the obtained molded product is less colored.
- the content of the inorganic salt (C) is 0.1 to 20 parts by weight, preferably about 0.5 to 20 parts by weight, and more preferably about 1 to 10 parts by weight with respect to 100 parts by weight of the component (A). preferable.
- the content of the inorganic salt (C) is 0.1 parts by mass or more, the mechanical properties of the molded article can be improved by the interaction with the ASA-modified microfibrillated plant fiber (B).
- the relative amounts of polyethylene and ASA-modified microfibrillated plant fiber (B) are not reduced, and mechanical properties such as strength and elastic modulus are reduced. Can be prevented and deterioration of moldability can be prevented.
- foam of the present invention may contain any additive other than the above-described components.
- surfactants for example, surfactants; polysaccharides such as starches and alginic acids; natural proteins such as gelatin, glue and casein; inorganic compounds such as tannins, zeolites, ceramics and metal powders; colorants; plasticizers; fragrances; pigments; Additives such as agents, leveling agents, conductive agents, antistatic agents, ultraviolet absorbers, ultraviolet dispersants, deodorants, and flame retardants may be appropriately blended.
- the content of the optional additive may be appropriately contained within a range where the effects of the present invention are not impaired.
- about 1 to 5% by mass is more preferable.
- the specific gravity of the foam of the present invention is preferably about 0.03 to 0.9, more preferably about 0.1 to 0.8, and even more preferably about 0.3 to 0.8.
- the production method of the present invention comprises (1) a modified microfibrillated plant fiber (B) esterified with at least one component (A) selected from the group consisting of a thermoplastic resin and rubber and an alkyl or alkenyl succinic anhydride. ) To prepare a resin and / or rubber composition, and (2) to foam the resin and / or rubber composition.
- the component (A) used in the step (1) and the modified microfibrillated plant fiber (B) esterified with alkyl or alkenyl succinic anhydride are the same as those mentioned in the above ⁇ foam>. Things can be used.
- the blending amount of the ASA-modified microfibrillated plant fiber (B) is set so as to be the content of the ASA-modified microfibrillated plant fiber (B) of the ⁇ foam>, for example, the component (A) 100
- the amount is preferably about 0.1 to 200 parts by weight, more preferably about 0.5 to 100 parts by weight, and still more preferably about 1 to 50 parts by weight with respect to parts by weight.
- the method of mixing the component (A), the ASA-modified microfibrillated plant fiber (B), and the compatibilizer, inorganic salt (C), and optional additives described above is not particularly limited,
- a thermoplastic powder, pellets, or other optional additives are mixed in a mixer, blender twin-screw kneader, kneader, lab. Plastmill, homogenizer, high-speed homogenizer, high-pressure homogenizer, planetary stirrer, 3 rolls, etc.
- a method of melt-kneading with a device that can be used, an ASA-modified microfibrillated plant fiber (B) containing a component (A) and a solvent such as water, or any other option Utilizing a method in which solvent removal and melt-kneading are performed simultaneously in a device capable of heating and stirring, such as a twin-screw kneader, a kneader solid-phase shear extruder, etc. I can do it. Moreover, you may mix a component (A), after grind
- the kneading temperature in melt kneading is preferably about 160 to 200 ° C., for example.
- the blending ratio of the component (A) used for mixing with the ASA-modified microfibrillated plant fiber (B) when preparing the masterbatch is preferably 0.1 to 50% by mass with respect to the total amount of the component (A) About 0.5 to 30% by mass is more preferable.
- thermoplastic resin and / or rubber composition is obtained by the step (1), and the foam is obtained by foaming the thermoplastic resin and / or rubber composition in the step (2).
- foaming the thermoplastic resin and / or rubber composition for example, the thermoplastic resin and / or rubber composition and an inert gas are sealed in a high-pressure container, and the thermoplastic resin and / or rubber composition is not used.
- thermoplastic resin and / or rubber composition by impregnating with active gas and rapid decompression (foaming method 1), foaming agent is contained in thermoplastic resin and / or rubber composition, and foaming A method in which carbon dioxide or nitrogen gas is generated by thermally decomposing the agent and foamed (foaming method 2), a solvent having a low boiling point is contained in the thermoplastic resin and / or rubber composition, and a low boiling point solvent is obtained by heating.
- Examples include a method of evaporating and foaming a thermoplastic resin and / or a rubber composition (foaming method 3), a method of taking a gas such as air as bubbles by stirring and foaming (foaming method 4), and the like.
- Foaming method 3 a method of evaporating and foaming a thermoplastic resin and / or a rubber composition
- Foaming method 4 a method of taking a gas such as air as bubbles by stirring and foaming
- Foaming method 1 is preferable from the standpoint that it does not remain and that no odor is generated.
- foaming medium used in the foaming method 1 include carbon dioxide and nitrogen.
- carbon dioxide is preferable from the viewpoint of high solubility in the component (A), and it is more preferable to use supercritical carbon dioxide from the viewpoint that a denser foam can be formed.
- the pressure in the high-pressure vessel after enclosing the foaming medium is preferably about 1 to 30 MPa, more preferably about 3 to 25 MPa, and further preferably about 5 to 25 MPa.
- the resin and / or rubber composition can be more impregnated with an inert gas, and the dissolved inert gas is a thermoplastic resin and / or rubber. Since the composition is plasticized, the foaming temperature can be lowered. Furthermore, the apparatus cost concerning a pressure-resistant container can be lowered
- the temperature in the high-pressure vessel is preferably about 100 to 160 ° C., more preferably about 110 to 150 ° C., and further preferably about 120 to 140 ° C.
- the temperature in the high-pressure vessel is preferably about 100 to 160 ° C., more preferably about 110 to 150 ° C., and further preferably about 120 to 140 ° C.
- thermoplastic resin and / or rubber composition and an inert gas are enclosed in the high-pressure vessel, and the thermoplastic resin and / or rubber composition are sealed under a high-pressure and high-temperature condition as described above, and then rapidly decompressed. Things can be foamed.
- Examples of the method of rapidly depressurizing include a method of opening a high-pressure vessel at a time and reducing the pressure to atmospheric pressure.
- the pressure after sudden decompression is preferably about 0.5 ⁇ 10 5 to 2 ⁇ 10 5 Pa, more preferably atmospheric pressure (1.01325 ⁇ 10 5 Pa).
- the foam of the present invention can be molded into a desired shape and used as a molding material.
- Examples of the shape of the molding material include sheets, pellets, and powders.
- the molding material having these shapes can be obtained by using, for example, mold molding, injection molding, extrusion molding, hollow molding, foam molding and the like.
- the molding material obtained by molding the foam of the present invention is used in fields where polyethylene molded bodies containing microfibrillated plant fibers have been used, particularly in fields where weight reduction is required.
- interior materials, exterior materials, structural materials, etc. of transportation equipment such as automobiles, trains, ships, airplanes, etc .
- housings, structural materials, internal parts, etc. of electrical appliances such as personal computers, televisions, telephones, watches, etc .
- It can be suitably used for automotive ceiling materials, door trims, sound absorbing materials, seal materials, air conditioner insulation materials, building joint materials, and other industrial products, such as cushioning materials and heat insulation / cooling materials, especially used in foamed polyethylene.
- joint materials such as construction, civil engineering, vehicles, electrical equipment, and housing equipment, airtightness, seals, packing materials, heat insulation and heat insulation materials, which are used with foamed rubber components.
- Examples 1 to 4 Preparation of microfibrillated plant fiber by bead mill> A slurry of softwood bleached kraft pulp (NBKP) (slurry concentration: 2% by mass) is passed through a single disc refiner (manufactured by Kumagai Riki Kogyo Co., Ltd.) and repeatedly refined until the Canadian Standard Freeness (CSF) is 100 ml or less. Went. Next, the obtained slurry was concentrated to 20% by mass using a centrifuge (manufactured by Kokusan Co., Ltd.) to prepare NBKP (refiner treatment).
- NNKP softwood bleached kraft pulp
- Beads Zirconia beads (diameter: 1mm)
- Vessel capacity 2 liters
- Bead filling 1216 ml (4612 g)
- Rotation speed 2,000rpm
- Vessel temperature 20 ° C
- Discharge rate 600 ml / min.
- the obtained slurry of microfibrillated plant fibers was subjected to pressure filtration with a filter press (manufactured by Nippon Filtration Equipment Co., Ltd.) to obtain water-containing microfibrillated plant fibers having a solid content concentration of 25% by mass.
- ASA Alkenyl Succinic Anhydride Modified Microfibrillated Plant Fiber> After adding 300 g of N-methylpyrrolidone (NMP) to the above-mentioned water-containing microfibrillated plant fiber (solid content: 75 g), the mixture was added to Trimix TX-5 (manufactured by Inoue Seisakusho Co., Ltd.). Dehydrated under reduced pressure at -50 ° C. Next, 75 g of T-NS135 (ASA having 16 carbon atoms other than succinic anhydride, manufactured by Seiko PMC), 5.6 g of dimethylaminopyridine (DMAP), 25.6 g of potassium carbonate, and 50 g of NMP were added.
- NMP N-methylpyrrolidone
- substitution degree (DS) of ASA (C16) modified microfibrillated plant fiber was hydrolyzed by heating and stirring the ester bond of ASA and cellulose in the ASA-modified microfibrillated plant fiber at 70 ° C. in a sodium hydroxide solution. Then, it calculated after calculating
- a dried product of ASA-modified microfibrillated plant fiber was precisely weighed in a 100 ml beaker, 15 ml of ethanol and 5 ml of distilled water were added, and the mixture was stirred at room temperature for 30 minutes. Thereafter, 10 ml of 0.5N sodium hydroxide solution was added and stirred at 70 ° C. for 15 minutes, then cooled to room temperature and further stirred overnight. A few drops of an 85% phenolphthalein ethanol solution were added to the resulting mixture, followed by back titration with a 0.1N aqueous hydrochloric acid solution, and the amount of ASA produced by hydrolysis was measured. The degree of substitution was calculated from the amount of ASA-modified microfibrillated plant fiber used and the amount of ASA measured by titration.
- the dumbbell-shaped molded product obtained in ⁇ Composite of ASA-modified microfibrillated plant fiber and polyethylene> was cut to prepare a test piece having a length of 35 mm, a width of 5 mm, and a thickness of 1 mm. .
- the obtained test piece was placed in a mold, further placed in a high-pressure vessel, filled with carbon dioxide, and held at the temperature and pressure shown in Table 2 for 300 minutes until the test piece was sufficiently dissolved in carbon dioxide. Thereafter, carbon dioxide was released at once into the atmosphere (1.01325 ⁇ 10 5 Pa), and the test piece was foamed to obtain a foam.
- Comparative example 1 In Example 1, the sheet-like molded article prepared in ⁇ Composite of ASA-modified microfibrillated plant fiber and polyethylene> was not foamed, and was not foamed in the same manner as in Example 1 with the blending ratio shown in Table 1. The test piece was manufactured.
- Example 3 the sheet-like molded product prepared in ⁇ Composite of ASA-modified microfibrillated plant fiber and polyethylene> was not foamed, and was not foamed in the same manner as in Example 3 with the blending ratio shown in Table 1. The test piece was manufactured.
- Comparative example 3 A test piece was produced in the same manner as in Example 1 except that only HDPE used in Example 1 was formed into a sheet and an unfoamed test piece was produced without foaming.
- Comparative examples 4 and 5 Only HDPE used in Example 1 was formed into a sheet shape, and a foam was produced by the same method as in ⁇ Production of foam> in Example 1 above.
- Table 2 shows the temperature and pressure in the high-pressure vessel, which are the foaming conditions.
- Example 6 The refiner-treated pulp used in Example 1 was not subjected to ASA modification, and the pulp was defibrillated by the same method as in Example 1 to prepare unmodified microfibrillated plant fibers, and ASA modified microfibrils. Unmodified microfibrillated plant fibers were used in place of the modified plant fibers. Otherwise, a foam was produced in the same manner as in Example 1. Table 2 shows the temperature and pressure in the high-pressure vessel, which are the foaming conditions.
- the weight of the molded body in air and in water was measured, the density was determined by the Archimedes method, and the specific gravity was determined by dividing by the density value of water.
- Bending elastic modulus and bending strength The bending elastic modulus and bending strength of the molded body were measured at a deformation rate of 5 mm / min (load cell 100N).
- a universal testing machine Autograph AG-5000E [AG-X refreshed] (manufactured by Shimadzu Corporation) was used as a measuring instrument.
- FIG. 3 is a graph plotting specific gravity on the horizontal axis and bending elastic modulus on the vertical axis for Examples 1 to 4 and Comparative Examples 1 to 6.
- ⁇ is Examples 1-2
- ⁇ is Examples 3-4
- ⁇ is Comparative Example 1
- ⁇ Comparative Example 2
- ⁇ Comparative Example 3
- ⁇ is Comparative Examples 4-5
- ⁇ is Comparative Each of Example 6 is plotted.
- FIG. 4 shows a graph plotting specific gravity on the horizontal axis and bending strength on the vertical axis for Examples 1 to 4 and Comparative Examples 1 to 6.
- ⁇ is Examples 1-2
- ⁇ is Examples 3-4
- ⁇ is Comparative Example 1
- ⁇ Comparative Example 2
- ⁇ Comparative Example 3
- ⁇ is Comparative Examples 4-5
- ⁇ is Comparative Each of Example 6 is plotted.
- the test piece was set in a dynamic viscoelasticity measuring device “ARES” manufactured by TA Instruments Japan Co., Ltd., and the storage elastic modulus (G ') And loss modulus (G ") were measured.
- FIG. 5 shows a graph in which the storage elastic modulus (G ′) versus temperature of Example 1, Comparative Example 4, and Comparative Example 6 is plotted.
- FIG. 6 shows the results of Example 1, Comparative Example 4, and Comparative Example 6. The graph which plotted the loss elastic modulus (G ") with respect to temperature is shown.
- ⁇ Discussion> 1 and 2 it can be seen that when a resin composition of ASA-modified microfibrillated plant fiber and polyethylene is foamed, a dense foam having a small foam diameter is formed. Such a foam having a small foam diameter is considered to be obtained by suppressing the expansion of the foam diameter because the ASA-modified microfibrillated plant fiber is uniformly mixed in polyethylene in the resin composition before foaming. It is done.
- Examples 1 to 4 in which ASA-modified microfibrillated plant fibers and polyethylene were combined and further foamed were Comparative Examples 1 in which ASA-modified microfibrillated plant fibers and polyethylene were not foamed. And compared with the comparative example 3 of non-foamed polyethylene, the specific reduction of specific gravity was seen and it turns out that weight reduction has been achieved. In addition, in Examples 1 to 4, the flexural modulus and the bending strength were improved as compared with Comparative Examples 4 to 5 in which only polyethylene was foamed.
- the ASA-modified microfibrillated plant fiber is uniformly dispersed in polyethylene and a dense foam is formed by the ASA-modified microfibrillated plant fiber, and further, as a filler by the ASA-modified microfibrillated plant fiber. It is considered that the reinforcing effect was sufficiently exhibited. In Examples 3 to 4, in which the content of ASA-modified microfibrillated plant fibers is higher than that in Examples 1 and 2, the reinforcing effect is further enhanced, and the flexural modulus and bending strength are improved.
- the foam of unmodified microfibrillated plant fiber and polyethylene of Comparative Example 6 is inferior in flexural modulus and flexural strength, although it has a higher specific gravity than Example 1. This result is considered that the unmodified microfibrillated plant fiber is not sufficiently dispersed in polyethylene and the mechanical strength is lowered.
- Example 1 shows that in the sheet-like molded product before foaming, ASA-modified microfibrillated plant fibers are uniformly mixed as a filler in polyethylene. It can be seen that the viscosity and elasticity values in the molten state are significantly higher than those of Comparative Example 4 in which only polyethylene is used, compared to Comparative Example 6 using fibrillated plant fibers. Therefore, it turns out that the foam diameter of the obtained foam is small and can be foamed densely.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
疎水性の高い熱可塑性樹脂成分や、ゴム成分中で、均一にミクロフィブリル化植物繊維を分散させた、機械的強度において優れた微細な発泡径を有する発泡体を提供し、また、機械的強度において優れた発泡体の製造方法を提供する。 熱可塑性樹脂及びゴムよりなる群から選ばれる少なくとも1種の成分(A)、並びにアルキル、若しくはアルケニル無水コハク酸でエステル化されたミクロフィブリル化植物繊維(B)を含有する発泡体に関する。
Description
本発明は、アルキル、若しくはアルケニル無水コハク酸によって変性されたミクロフィブリル化植物繊維及び樹脂成分及び/又はゴム成分を含む発泡体、並びにその製造方法に関する。
ポリエチレンやポリプロピレン等の熱可塑性樹脂は、安価であり、柔軟性、及び耐薬品性に優れているという観点から、容器、配管、フィルム、医療用途等、幅広く利用されている。また、ゴムは、弾性率や、耐衝撃性に優れた材料であり、工業的用途のみならず、広く一般的に利用されている。
前記の特性において、さらに、軽量化、断熱性、及び衝撃吸収性を付与するために、熱可塑性樹脂やゴムを発泡させた発泡体が従来より知られている。
前記のように、熱可塑性樹脂やゴムの発泡体は、未発泡の状態よりも軽量であり、断熱性、及び衝撃吸収性において優れているが、その反面、強度が低下するという問題点を有している。このような熱可塑性樹脂やゴムの発泡体に強度を付与するために、フィラー等の補強材を配合させることが行われている。
ところで、樹脂やゴムの強度等の物性を向上させるため、セルロース繊維をミクロフィブリル化して、繊維径がナノオーダーにまで微細化されたミクロフィブリル化植物繊維をフィラーとして用いることが知られている(例えば、特許文献1)。
前記ミクロフィブリル化植物繊維は、質量が軽く、かつ高強度であるという点から、フィラーのような補強材料として非常に有用である。しかしながら、ミクロフィブリル化植物繊維は、非常に凝集力が強く、一般的に樹脂成分やゴム成分との相溶性が悪いため、ミクロフィブリル化植物繊維が均一に分散した均一な成形材料を得ることが困難である。また当該成形材料を発泡して得られる発泡体においても、機械的強度が十分に発揮できないという問題がある。このような問題に対して、ミクロフィブリル化植物繊維の表面を、化学修飾剤等によって変性処理し、樹脂又はゴム成分中での分散性を向上させようとする試みがなされている。
例えば、特許文献2では、四級アンモニウム基を含有する化合物で、ミクロフィブリル化植物繊維をカチオン変性させ、カチオンの静電反発によってミクロフィブリル化植物繊維の凝集を抑制させることが記載されており、また、当該変性ミクロフィブリル化植物繊維を熱可塑性樹脂と複合化させた複合材料について記載されている。
しかしながら、前記のカチオン変性化したミクロフィブリル化植物繊維は、ポリエステル系の樹脂等のような比較的極性の高い樹脂に対しては均一に分散されるが、ポリエチレンのような疎水性の高い樹脂に対しては、十分に分散させることが困難であり、機械的強度を十分に発揮できないという問題があった。
また、特許文献3には、ポリオレフィン系樹脂で構成された熱可塑性樹脂と有機繊維とで構成された樹脂組成物が発泡した平均気泡径が0.3mm~1.5mmの発泡体が開示されている。特許文献3には、有機繊維として、セルロース繊維等が例示され、有機繊維の平均繊維径が0.1~1000μm及び平均繊維長0.01~5mmであること、有機繊維は、表面処理剤、例えば、カップリング剤(アミノ基、置換アミノ基、エポキシ基やグリシジル基等の官能基を有するシランカップリング剤等)で表面処理してもよいことも記載されている。
しかしながら、特許文献3では繊維表面処理の効果については具体的に検討されておらず、優れた機械的強度を有する発泡体についても詳細に言及されていない。繊維強化した発泡体においてもセルロース繊維と樹脂の相溶性が悪いことは、繊維の分散性及び繊維/樹脂界面強度を悪化させ、繊維補強効果の低下や、発泡時に気泡が粗大成長することによる強度低下を引き起こすため、疎水性の樹脂に適した繊維の変性において改善の余地があった。
本発明は、疎水性の高い熱可塑性樹脂成分や、ゴム成分中で、均一にミクロフィブリル化植物繊維を分散させた、機械的強度において優れた微細な発泡径を有する発泡体を提供し、また、機械的強度において優れた発泡体の製造方法を提供することを目的とする。
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、疎水性の高い熱可塑性樹脂成分や、ゴム成分において、機械的強度を向上させるために、アルキル、若しくはアルケニル無水コハク酸でエステル化することによって得られる変性ミクロフィブリル化植物繊維(以下、ASA変性ミクロフィブリル化植物繊維ともいう)を補強材料として用いることが、熱可塑性樹脂やゴム中で、変性ミクロフィブリル化植物繊維を均一に分散させる点で有用であることを見出した。また、このようなASA変性ミクロフィブリル化植物繊維が均一に分散されている熱可塑性樹脂やゴムを発泡化させることにより、発泡体中での発泡径が非常に小さい微細な発泡体が得られることを見出した。このような知見から、従来の発泡体における問題点である機械的強度の低下を招くことなく樹脂又はゴム発泡体の軽量化を達成することができた。
本発明はこのような知見に基づき、更に鋭意検討を重ねて完成した発明である。すなわち、本発明は下記項に示す発泡体、及びその製造方法を提供する。
項1.熱可塑性樹脂及びゴムよりなる群から選ばれる少なくとも1種の成分(A)、並びに
アルキル、若しくはアルケニル無水コハク酸でエステル化されたミクロフィブリル化植物繊維(B)
を含有する発泡体。
アルキル、若しくはアルケニル無水コハク酸でエステル化されたミクロフィブリル化植物繊維(B)
を含有する発泡体。
項2.アルキル、若しくはアルケニル無水コハク酸でエステル化された変性ミクロフィブリル化植物繊維(B)の含有量が、成分(A)100質量部に対して、0.1~200質量部である項1に記載の発泡体。
項3.比重が、0.03~0.9である項1又は2に記載の発泡体。
項4.発泡体中の発泡径の平均値が、0.1~100μmである項1~3のいずれかに記載の発泡体。
項5.成分(A)がポリオレフィン系樹脂である項1~4のいずれかに記載の発泡体。
項6.成分(A)がポリエチレンである項1~5のいずれかに記載の発泡体。
項7.(1)樹脂及びゴムよりなる群から選ばれる少なくとも1種の成分(A)とアルキル、若しくはアルケニル無水コハク酸でエステル化された変性ミクロフィブリル化植物繊維(B)を混合し、樹脂及び/又はゴム組成物を調製する工程、並びに
(2)樹脂及び/又はゴム組成物を発泡させる工程
を含む
発泡体の製造方法。
(2)樹脂及び/又はゴム組成物を発泡させる工程
を含む
発泡体の製造方法。
項8.工程(2)における樹脂及び/又はゴム組成物を発泡させる工程が、高圧容器内で樹脂及び/又はゴム組成物と不活性ガスを封入し、樹脂及び/又はゴム組成物を不活性ガスに含浸させ、急減圧させることにより樹脂及び/又はゴム組成物を発泡させる工程である項7に記載の発泡体の製造方法。
項9.不活性ガスが、二酸化炭素である項8に記載の発泡体の製造方法。
項10.高圧容器内の圧力が1~30MPaであり、急減圧後の圧力が0.5×105~2×105Paである項8又は9に記載の発泡体の製造方法。
本発明の発泡体によると、熱可塑性樹脂又はゴム中で、アルキル、若しくはアルケニル無水コハク酸でエステル化することによって得られるASA変性ミクロフィブリル化植物繊維が均一に分散されているため、熱可塑性樹脂及び/またはゴム組成物の発泡化において問題視される機械的強度の低下が損なわれない。また、ASA変性ミクロフィブリル化植物繊維の含有による粘弾性の向上により、発泡体を製造する際に、発泡径の小さく制御することが出来る。そのため、得られる発泡体における発泡径は微細なものとなり、機械的強度の低下を損なうことなく、比重の小さい軽量な発泡体を得ることが出来る。
なお、熱可塑性樹脂やゴム成分中において、従来のミクロフィブリル化植物繊維又は変性ミクロフィブリル化植物繊維を分散させた発泡体では、機械的強度が十分に付与されないが、本発明のように熱可塑性樹脂成分又はゴム成分の発泡体においては、当該樹脂又はゴム成分中で変性ミクロフィブリル化植物繊維としてASA変性ミクロフィブリル化植物繊維を用いているため、機械的強度を飛躍的に向上させることが可能となる。
以下、本願発明の発泡体、及びその製造方法について、詳述する。
<発泡体>
本発明の発泡体は、熱可塑性樹脂及びゴムよりなる群から選ばれる少なくとも1種の成分(A)、並びにアルキル、若しくはアルケニル無水コハク酸でエステル化された変性ミクロフィブリル化植物繊維(B)を含有する。
本発明の発泡体は、熱可塑性樹脂及びゴムよりなる群から選ばれる少なくとも1種の成分(A)、並びにアルキル、若しくはアルケニル無水コハク酸でエステル化された変性ミクロフィブリル化植物繊維(B)を含有する。
成分(A)における熱可塑性樹脂成分としては、オレフィン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ビニルエーテル樹脂、ポリアミド樹脂、ポリカーボネート系樹脂、ポリエステル樹脂、ポリスルホン樹脂、ポリ乳酸、トリアセチル化セルロース、ジアセチル化セルロース等のセルロース系樹脂等が挙げられる。
オレフィン系樹脂としては、ポリエチレン、塩化ビニル樹脂、スチレン樹脂、(メタ)アクリル樹脂等が挙げられる。
ポリエチレンとしては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)が挙げられ、また、LDPEとしては、分枝鎖状低密度ポリエチレン又は直鎖状低密度ポリエチレンが挙げられる。これらの中で、HDPEを用いることが剛性の高さ、及び耐熱性の高さの観点から好ましい。
ポリエチレンの数平均分子量としては、10,000~1,000,000程度が好ましく、50,000~500,000程度がより好ましい。ポリエチレンの数平均分子量を10,000以上に設定することで、溶融時の流動性が低くなり発泡体の発泡径を小さくすることができ、機械的強度を損なうことなく、樹脂の軽量化が達成出来るという効果が得られる。また、ポリエチレンの数平均分子量を1,000,000以下に設定することで、樹脂の発泡倍率を高くすることが出来、軽量化を図れるという効果が得られる。
ポリエチレンの比重としては、0.91~0.98程度が好ましく、0.91~0.94程度がより好ましい。特に、ポリエチレンとしてHDPEを用いる場合、HDPEの比重としては、0.94~0.98程度が好ましい。また、ポリエチレンとしてLDPEを用いる場合、LDPEの比重としては、0.91~0.935程度が好ましい。
また、ポリエチレンとしての特性が損なわれない範囲で、エチレン単位と他のオレフィン単位を有するコポリマーとしてもよい。他のオレフィンとしては、例えば、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-ペンテン、ノルボルネン、酢酸ビニル、エチルアクリレート等が挙げられる。
成分(A)におけるゴム成分としては、ジエン系ゴム成分のものが挙げられ、具体的には、天然ゴム(NR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル-ブタジエンゴム(NBR)、アクリロニトリル-スチレン-ブタジエン共重合体ゴム、クロロプレンゴム、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム、水素化天然ゴム、脱タンパク天然ゴム等が挙げられる。また、ジエン系ゴム成分以外のゴム成分としては、エチレン-プロピレン共重合体ゴム、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらのゴム成分は、単独で使用してもよく、2種類以上をブレンドして用いてもよい。ブレンドする場合のブレンド比においても、各種用途に応じて適宜配合すればよい。
ASA変性ミクロフィブリル化植物繊維(B)の原料として用いられる植物繊維を含有する材料(植物繊維含有材料)としては、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物、布といった天然植物繊維原料から得られるパルプ、レーヨンやセロファン等の再生セルロース繊維等が挙げられる。特に、パルプが好ましい原材料として挙げられる。
前記パルプとしては、植物原料を化学的、若しくは機械的に、又は両者を併用してパルプ化することで得られるケミカルパルプ(クラフトパルプ(KP)、亜硫酸パルプ(SP))、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、及びこれらの植物繊維を主成分とする脱墨古紙パルプ、段ボール古紙パルプ、雑誌古紙パルプが好ましいものとして挙げられる。これらの原材料は、必要に応じ、脱リグニン、又は漂白を行い、当該植物繊維中のリグニン量を調整することが出来る。
これらのパルプの中でも、繊維の強度が強い針葉樹由来の各種クラフトパルプ(針葉樹未漂白クラフトパルプ(以下、NUKPということがある)、針葉樹酸素晒し未漂白クラフトパルプ(以下、NOKPということがある)、針葉樹漂白クラフトパルプ(以下、NBKPということがある))が特に好ましい。
原料となる植物繊維は主にセルロース、ヘミセルロース、リグニンから構成される。植物繊維含有材料中のリグニン含有量は、通常0~40質量%程度、好ましくは0~10質量%程度である。リグニン含有量の測定は、Klason法により測定することが出来る。
植物の細胞壁の中では、幅4nm程のミクロフィブリル化植物繊維が最小単位として存在する。これが、植物の基本骨格物質(基本エレメント)である。そして、このセルロースミクロフィブリルが集まって、植物の骨格を形成している。本発明において、「ミクロフィブリル化植物繊維」とは、植物繊維を含む材料の繊維をナノサイズレベルまで解きほぐしたもの(解繊したもの)である。
ミクロフィブリル化植物繊維を製造する方法としては、前記の植物繊維の原料として用いられる植物繊維を含有する材料を公知の解繊方法によって解繊する方法が挙げられ、例えば、セルロース繊維含有材料の水懸濁液、スラリーをリファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸(例えば、二軸)混練機、ビーズミル等により機械的に摩砕、ないし叩解することにより解繊する方法が挙げられる。必要に応じて、これらの解繊方法を組み合わせて処理してもよい。
より詳細には、例えば、特開2011-162608号公報等に記載されている方法等を用いることが出来る。
本発明のASA変性ミクロフィブリル化植物繊維(B)は、ミクロフィブリル化植物繊維の水酸基と、アルキル、若しくはアルケニル無水コハク酸とが反応してエステル結合している。ここで、アルキル、若しくはアルケニル無水コハク酸は水酸基との反応によりアルキル基又はアルケニル基が置換されたコハク酸のハーフエステルとなるため、変性ミクロフィブリル化植物繊維にはカルボン酸基も導入される。
アルケニル無水コハク酸としては、より具体的には、炭素数4~30のオレフィン由来の骨格と無水マレイン酸骨格を持つ化合物が例示される。具体的にはオクチル無水コハク酸、ドデシル無水コハク酸、ヘキサデシル無水コハク酸、オクタデシル無水コハク酸等のアルキル無水コハク酸、ペンテニル無水コハク酸、ヘキセニル無水コハク酸、オクテニル無水コハク酸、デセニル無水コハク酸、ウンデセニル無水コハク酸、ドデセニル無水コハク酸、トリデセニル無水コハク酸、ヘキサデセニルコハク酸無水物、オクタデセニルコハク酸無水物等が例示され、これらは1種類単独でも用いてもよく、また、疎水性や耐水性等の性状を制御することが出来るという観点から2種類以上を併用して用いてもよい。
また、アルキル無水コハク酸としては、前記のアルケニル無水コハク酸の不飽和結合に水素を付加して得た水添物が例示される。
前記ASA変性ミクロフィブリル化植物繊維(B)を製造する方法としては、特に限定されるものではないが、例えば、ミクロフィブリル化植物繊維とアルキル、若しくはアルケニル無水コハク酸と反応させる方法、パルプ等のセルロース繊維含有材料とアルキル、若しくはアルケニル無水コハク酸を反応させ、得られたASA変性セルロース繊維を前記の方法により解繊する方法等が挙げられる。
ASA変性ミクロフィブリル化植物繊維(B)のエステル置換度(DS)は、親水性の高いミクロフィブリル化植物繊維をポリエチレン中に均一に分散させたり、ミクロフィブリル化植物繊維の耐水性を向上させる点から、0.05~2.0程度が好ましく、0.1~2.0程度がより好ましく、0.1~0.8程度が更に好ましい。
なお、DSは、洗浄により原料として用いたアルキル、若しくはアルケニル無水コハク酸や、それらの加水分解物等の副生成物を除去した後、重量増加率、元素分析、中和滴定法、FT-IR、1H-NMR等の各種分析方法により分析することが出来る。
ASA変性ミクロフィブリル化植物繊維(B)の含有量は、成分(A)100質量部に対して、0.1~200質量部程度が好ましく、0.5~100質量部程度がより好ましく、1~50質量部程度がさらに好ましい。ASA変性ミクロフィブリル化植物繊維(B)の含有量を0.1質量部以上に設定することで、溶融時の粘性・弾性が増加、熱可塑性樹脂及び/又はゴム組成物の弾性率、強度等が向上するという効果が得られる。また、ASA変性ミクロフィブリル化植物繊維(B)の含有量を200質量部以下に設定することで、樹脂及び/又はゴム組成物の加熱成形性を保つという効果が得られる。
また、本発明の発泡体には、本発明の効果を損なわない範囲で、相溶化剤として無水マレイン酸やエポキシ等を付加し極性基を導入した樹脂、例えば無水マレイン酸変性ポリエチレン樹脂、無水マレイン酸変性ポリプロピレン樹脂、市販の各種相溶化剤を併用して用いてもよい。
これらの相溶化剤の含有量としては、成分(A)100質量部に対して、0.1~50質量部程度が好ましく、0.5~20質量部程度がより好ましい。
また、本発明の発泡体は、更に無機塩(C)を含有してもよく、前記無機塩(C)を含有することにより、変性ミクロフィブリル化植物繊維(B)が無機粒子と相互作用し、樹脂及び/又はゴム組成物の強度、弾性率等が向上するという効果が得られる。
無機塩(C)としては、第1族、又は第2族の金属からなる塩が挙げられ、具体的には、第1族、又は2族の金属からなる酢酸塩、炭酸塩、硫酸塩、硝酸塩等が挙げられる。第1族の金属としてはナトリウム、カリウムが挙げられ、第2族の金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられ、より具体的には、硫酸マグネシウム、硫酸バリウム、炭酸バリウム、炭酸カリウム、炭酸カルシウム等が挙げられる。無機塩の粒子径は目的に応じて任意に選択することが出来るが、一般的には小さい方が好ましい。これらの中で、炭酸塩が弾性率向上効果が優れるとの点で好ましく、比較的表面積の大きな粒子径/結晶径の粉体が容易に得られることや変性ミクロフィブリル化植物繊維(B)との相互作用しやすいこと、また、得られた成形体の着色が少ないという観点から炭酸カルシウムや炭酸バリウムが更に好ましい。
無機塩(C)の含有量は、成分(A)100質量部に対して、0.1~20質量部であり、0.5~20質量部程度が好ましく、1~10質量部程度がより好ましい。無機塩(C)の含有量を0.1質量部以上に設定することにより、ASA変性ミクロフィブリル化植物繊維(B)との相互作用により、成形体の力学物性を向上させることが出来る。また、無機塩(C)の含有量を20質量部以下に設定することにより、ポリエチレン、及びASA変性ミクロフィブリル化植物繊維(B)の相対量が少なくならず、強度、弾性率等の力学物性が低下や、成形性の悪化を防ぐことが出来る。
また本発明の発泡体には、前記の各成分以外にも、任意の添加剤を含有してもよい。
例えば、界面活性剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;着色剤;可塑剤;香料;顔料;流動調整剤;レベリング剤;導電剤;帯電防止剤;紫外線吸収剤;紫外線分散剤;消臭剤;難燃剤等の添加剤を適宜配合していてもよい。
任意の添加剤の含有割合としては、本発明の効果が損なわれない範囲で適宜含有されてもよいが、例えば、成分(A)100質量部に対して、0.01~10質量%程度が好ましく、1~5質量%程度がより好ましい。
本発明の発泡体の比重としては、0.03~0.9程度が好ましく、0.1~0.8程度がより好ましく、0.3~0.8程度が更にこのましい。本発明の発泡体の比重を0.03以上に設定することにより、機械的強度の低下を抑制することが出来るという効果が得られる。また、発泡体の比重を0.9以下に設定することで、発泡体の軽量化が達成出来る、断熱性、絶縁性が向上するという効果が得られる。
<発泡体の製造方法>
本発明の製造方法は、(1)熱可塑性樹脂及びゴムよりなる群から選ばれる少なくとも1種の成分(A)とアルキル、若しくはアルケニル無水コハク酸でエステル化された変性ミクロフィブリル化植物繊維(B)を混合し、樹脂及び/又はゴム組成物を調製する工程、及び
(2)樹脂及び/又はゴム組成物を発泡させる工程を含む。
本発明の製造方法は、(1)熱可塑性樹脂及びゴムよりなる群から選ばれる少なくとも1種の成分(A)とアルキル、若しくはアルケニル無水コハク酸でエステル化された変性ミクロフィブリル化植物繊維(B)を混合し、樹脂及び/又はゴム組成物を調製する工程、及び
(2)樹脂及び/又はゴム組成物を発泡させる工程を含む。
工程(1)で用いられる成分(A)及びアルキル、若しくはアルケニル無水コハク酸でエステル化された変性ミクロフィブリル化植物繊維(B)としては、前記の<発泡体>で挙げられたものと同様のものを用いることが出来る。
ASA変性ミクロフィブリル化植物繊維(B)の配合量としては、前記の<発泡体>のASA変性ミクロフィブリル化植物繊維(B)の含有量になるように設定され、例えば、成分(A)100質量部に対し、0.1~200質量部程度が好ましく、0.5~100質量部程度がより好ましく、1~50質量部程度がさらに好ましい。
成分(A)、ASA変性ミクロフィブリル化植物繊維(B)、また、前述の相溶化剤、無機塩(C)、及び任意の添加剤を混合する方法としては、特に限定されるものではなく、公知の方法によって混合されるが、例えばASA変性ミクロフィブリル化植物繊維を予め乾燥させた後、熱可塑性の粉末、或いはペレット、その他の任意の添加材をミキサー、ブレンダー二軸混練機、ニーダー、ラボプラストミル、ホモジナイザー、高速ホモジナイザー、高圧ホモジナイザー、遊星攪拌装置、3本ロール等の混合、又は攪拌出来る装置で混合、攪拌した後、二軸混練機、ニーダー固相せん断押出機等の加熱と攪拌が出来る装置で溶融混練する方法や、成分(A)と水等の溶媒を含むASA変性ミクロフィブリル化植物繊維(B)、その他の任意の添加剤を上記の装置で混合した後に脱溶媒と溶融混練を二軸混練機、ニーダー固相せん断押出機等の加熱と攪拌が出来る装置で脱溶剤と溶融混練を同時に行う方法等を利用することが出来る。また、成分(A)は、公知の粉砕機で粉砕した後に混合してもよい。
溶融混練における混練温度としては、例えば、160~200℃程度が好ましい。
また、成分(A)の一部と、ASA変性ミクロフィブリル化植物繊維(B)を混合してマスターバッチを調製し、得られたマスターバッチと残りの成分(A)とを混合する方法が、成分(A)中にASA変性ミクロフィブリル化植物繊維(B)をより均一に分散させる点で好ましい。マスターバッチを調製する場合のASA変性ミクロフィブリル化植物繊維(B)と混合するために用いる成分(A)の配合割合は、成分(A)全量に対して、好ましくは0.1~50質量%程度、より好ましくは、0.5~30質量%程度用いられる。
また、成分(A)と、変性ミクロフィブリル化植物繊維(B)を混合する際に、相溶化剤、無機塩(C)、及び任意の添加剤を配合してもよく、これらの添加量は、前記の発泡体中に含まれる各含有量の範囲となるように、適宜配合すればよい。
前記の工程(1)により、熱可塑性樹脂及び/又はゴム組成物が得られ、工程(2)において当該熱可塑性樹脂及び/又はゴム組成物を発泡させることにより、発泡体が得られる。熱可塑性樹脂及び/又はゴム組成物を発泡させる方法としては、例えば、高圧容器内で熱可塑性樹脂及び/又はゴム組成物と不活性ガスを封入し、熱可塑性樹脂及び/又はゴム組成物を不活性ガスに含浸させ、急減圧させることにより、熱可塑性樹脂及び/又はゴム組成物を発泡させる方法(発泡方法1)、熱可塑性樹脂及び/又はゴム組成物中に発泡剤を含有させ、当該発泡剤を熱分解させることにより炭酸ガスや窒素ガスを発生させ、発泡させる方法(発泡方法2)、沸点の低い溶剤を熱可塑性樹脂及び/又はゴム組成物に含有させ、加熱により、低沸点溶媒を気化させ、熱可塑性樹脂及び/又はゴム組成物を発泡させる方法(発泡方法3)、撹拌により空気等の気体を気泡として取り込み発泡させる方法(発泡方法4)等が挙げられる。これらの中で、熱可塑性樹脂及び/又はゴム組成物中の発泡径を小さくさせることが出来る点、また、発泡径の大きさがばらつかず、均一に発泡出来る点、発泡剤の分解残渣が残らない点、及び匂いが発生しない等の観点から、発泡方法1が好ましい。
前記発泡方法1において、用いられる発泡媒体の具体例としては、二酸化炭素、窒素等が挙げられる。これらの中で、成分(A)中の溶解度の高さ等の観点から、二酸化炭素が好ましく、超臨界の二酸化炭素を用いることが、より緻密な発泡体を形成出来るという点でより好ましい。
発泡媒体の封入後の高圧容器内の圧力としては、1~30MPa程度が好ましく、3~25MPa程度がより好ましく、5~25MPa程度がさらに好ましい。高圧容器内の圧力を1MPa以上に設定することで、樹脂及び/又はゴム組成物中に不活性ガスをより多く含浸させることが出来る、また、溶解した不活性ガスが熱可塑性樹脂及び/又はゴム組成物が可塑化するため発泡温度を低く出来る。さらに、高圧容器内の圧力を30MPa以下に設定することで、耐圧容器にかかる装置コストを下げることが出来る。
高圧容器内の温度としては、100~160℃程度が好ましく、110~150℃程度がより好ましく、120~140℃程度がさらに好ましい。高圧容器内の温度を樹脂の融点付近以上に設定することで、発泡倍率が大きくなり、軽量化を図ることが出来る。また、高圧容器内の温度を成分(A)の融点付近に設定することで、発泡倍率が小さくなり、機械的強度の低下を抑制することが出来る。
前記高圧容器内に熱可塑性樹脂及び/又はゴム組成物と不活性ガスを封入し、上記のような高圧高温条件下で封入させた後、急減圧させることにより、熱可塑性樹脂及び/又はゴム組成物を発泡させることが出来る。
急減圧させる方法としては、高圧容器を一度に開放し、圧力を大気圧にまで減圧させる方法等が挙げられる。急減圧後の圧力としては、0.5×105~2×105Pa程度が好ましく、大気圧(1.01325×105Pa)であることがより好ましい。
<成形材料及び成形体>
本発明の発泡体は、所望の形状に成形され成形材料として用いることが出来る。成形材料の形状としては、例えば、シート、ペレット、粉末等が挙げられる。これらの形状を有する成形材料は、例えば金型成形、射出成形、押出成形、中空成形、発泡成形等を用いて得られる。
本発明の発泡体は、所望の形状に成形され成形材料として用いることが出来る。成形材料の形状としては、例えば、シート、ペレット、粉末等が挙げられる。これらの形状を有する成形材料は、例えば金型成形、射出成形、押出成形、中空成形、発泡成形等を用いて得られる。
本発明の発泡体を成形して得られる成形材料は、ミクロフィブリル化植物繊維を含有するポリエチレン成形体が使用されていた分野において、特に軽量化が要求される分野において用いられる。例えば、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等の筺体、構造材、内部部品等;建築材;文具等の事務機器等、容器、コンテナー等として有効に使用することが出来る。
特に発泡したポリエチレンで用いられる、自動車用天井材やドアトリム、吸音材、シール材、エアコン断熱材、建築用目地材、その他工業製品の緩衝材や保温・保冷材等にも好適に用いることが出来る。また、発泡したゴム成分で用いられる、建築・土木・車両・電気機器・住宅設備等の目地材、気密・シール・パッキン材、断熱・保温材等に好適に用いることが出来る。
[実施例]
以下、実施例及び比較例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
以下、実施例及び比較例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
・実施例1~4
<ビーズミルによるミクロフィブリル化植物繊維の調製>
針葉樹漂白クラフトパルプ(NBKP)のスラリー(スラリー濃度:2質量%)をシングルディスクリファイナー(熊谷理機工業(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)が100ml以下となるまで繰り返しリファイナー処理を行った。次いで得られたスラリーを遠心分離機((株)コクサン製)を用いて20質量%まで濃縮し、NBKP(リファイナー処理)を調整した。
<ビーズミルによるミクロフィブリル化植物繊維の調製>
針葉樹漂白クラフトパルプ(NBKP)のスラリー(スラリー濃度:2質量%)をシングルディスクリファイナー(熊谷理機工業(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)が100ml以下となるまで繰り返しリファイナー処理を行った。次いで得られたスラリーを遠心分離機((株)コクサン製)を用いて20質量%まで濃縮し、NBKP(リファイナー処理)を調整した。
次いでNBKP(リファイナー処理、濃度:20質量%)375gに水を加え、全量を10kgとした(スラリー濃度:0.75質量%)。得られたリファイナー処理NBKPスラリーをビーズミル(NVM-2、アイメックス(株)製)で以下の条件で機械的解繊処理を行った。
[解繊条件]
ビーズ:ジルコニアビーズ(直径:1mm)
ベッセル容量:2リットル
ビーズ充填量:1216ml(4612g)
回転数:2,000rpm
ベッセル温度:20℃
吐出量:600ml/分。
ビーズ:ジルコニアビーズ(直径:1mm)
ベッセル容量:2リットル
ビーズ充填量:1216ml(4612g)
回転数:2,000rpm
ベッセル温度:20℃
吐出量:600ml/分。
得られたミクロフィブリル化植物繊維のスラリーをフィルタープレス(日本濾過装置(株)製)にて加圧濾過し、固形分濃度25質量%の含水のミクロフィブリル化植物繊維を得た。
<比表面積測定用サンプルの調製>
上記で得られた含水のミクロフィブリル化植物繊維を4g(固形分1g)サンプリングし、エタノールを加え0.5質量%とし、スターラーで30分間攪拌した後に遠心分離管に移し、(株)コクサン製冷却高速遠心機「HR-9」を用いて遠心分離をした。遠心分離後、上澄みをデカンテーションで除いた後、残渣を再度エタノールに分散させ0.5質量%としスターラーで攪拌した後にスラリーを遠心分離した。この操作をエタノール、tert-ブタノールで各3回繰り返し、溶媒置換した後、ミクロフィブリル化植物繊維のtert-ブタノール分散物(濃度:0.5質量%)200gをナスフラスコに移し、このフラスコを液体窒素浴に漬け全体を凍結させた。次いで、このナスフラスコを凍結乾燥器機(FDU-1200、東京理化器械(株))にセットし凍結乾燥を行った。
上記で得られた含水のミクロフィブリル化植物繊維を4g(固形分1g)サンプリングし、エタノールを加え0.5質量%とし、スターラーで30分間攪拌した後に遠心分離管に移し、(株)コクサン製冷却高速遠心機「HR-9」を用いて遠心分離をした。遠心分離後、上澄みをデカンテーションで除いた後、残渣を再度エタノールに分散させ0.5質量%としスターラーで攪拌した後にスラリーを遠心分離した。この操作をエタノール、tert-ブタノールで各3回繰り返し、溶媒置換した後、ミクロフィブリル化植物繊維のtert-ブタノール分散物(濃度:0.5質量%)200gをナスフラスコに移し、このフラスコを液体窒素浴に漬け全体を凍結させた。次いで、このナスフラスコを凍結乾燥器機(FDU-1200、東京理化器械(株))にセットし凍結乾燥を行った。
<ミクロフィブリル化植物繊維の比表面積測定>
得られた凍結乾燥後のミクロフィブリル化植物繊維を、自動比表面積/細孔径分布測定装置「BELSORP-mini II」(日本ベル(株)製)を用いた窒素ガス吸着法によりBET比表面積を測定したところ138m2/gであった。
得られた凍結乾燥後のミクロフィブリル化植物繊維を、自動比表面積/細孔径分布測定装置「BELSORP-mini II」(日本ベル(株)製)を用いた窒素ガス吸着法によりBET比表面積を測定したところ138m2/gであった。
<アルケニル無水コハク酸(ASA)変性ミクロフィブリル化植物繊維の調製>
上記の含水のミクロフィブリル化植物繊維(固形分75g)にN-メチルピロリドン(NMP)を300g加え、トリミックスTX-5((株)井上製作所製)に投入した後、攪拌を開始し、40~50℃で減圧脱水した。次いで、T-NS135(無水コハク酸以外の炭素数が16のASA、星光PMC(株)製)を75g、ジメチルアミノピリジン(DMAP)を5.6g、炭酸カリウムを25.6g、NMPを50g加え、62℃で1.5時間反応させた。反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、含水のASA変性ミクロフィブリル化植物繊維を得た。置換度を以下の方法により測定した結果、0.40であった。
上記の含水のミクロフィブリル化植物繊維(固形分75g)にN-メチルピロリドン(NMP)を300g加え、トリミックスTX-5((株)井上製作所製)に投入した後、攪拌を開始し、40~50℃で減圧脱水した。次いで、T-NS135(無水コハク酸以外の炭素数が16のASA、星光PMC(株)製)を75g、ジメチルアミノピリジン(DMAP)を5.6g、炭酸カリウムを25.6g、NMPを50g加え、62℃で1.5時間反応させた。反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、含水のASA変性ミクロフィブリル化植物繊維を得た。置換度を以下の方法により測定した結果、0.40であった。
<ASA(C16)変性ミクロフィブリル化植物繊維の置換度(DS)の算出>
ASA変性の置換度(DS)は、ASA変性ミクロフィブリル化植物繊維中のASAとセルロースのエステル結合を、水酸化ナトリウム溶液中70℃で加熱攪拌することで加水分解した。その後、0.1N塩酸水溶液で逆滴定することで加水分解により生成したASA量を求めた後に算出した。なお、逆滴定の際の指示薬としては、フェノールフタレインを用いた。
ASA変性の置換度(DS)は、ASA変性ミクロフィブリル化植物繊維中のASAとセルロースのエステル結合を、水酸化ナトリウム溶液中70℃で加熱攪拌することで加水分解した。その後、0.1N塩酸水溶液で逆滴定することで加水分解により生成したASA量を求めた後に算出した。なお、逆滴定の際の指示薬としては、フェノールフタレインを用いた。
具体的には、ASA変性ミクロフィブリル化植物繊維の乾燥物を約0.5g、100mlビーカーに精秤し、エタノール15ml、蒸留水5mlを加え室温で30分攪拌した。その後、0.5N水酸化ナトリウム溶液10mlを加え、70℃で15分攪拌した後、室温まで冷却し更に1晩攪拌した。得られた混合液に85%フェノールフタレインのエタノール溶液を数滴加えた後、0.1N塩酸水溶液で逆滴定し、加水分解により生成したASA量を測定した。用いたASA変性ミクロフィブリル化植物繊維量と滴定にて測定したASA量から置換度を算出した。
<ASA変性ミクロフィブリル化植物繊維とポリエチレンとの複合化>
前記、<ASA変性ミクロフィブリル化植物繊維の調製>で得られたASA変性ミクロフィブリル化植物繊維をエタノールで2回洗浄したのち、エタノールを加え固形分濃度を3.0質量%に調製した。このエタノールに分散されたASA変性ミクロフィブリル化植物繊維(固形分54g)に、無水マレイン酸変性ポリプロピレン(MAPP、東洋紡績(株)製のトーヨータックPMA H1000P、酸含有量5.7質量%、メルトフローレート:110g/10分(190℃、2.16kg))12.9g、及び炭酸カルシウム(CaCO3)4g、及び高密度ポリエチレン(HDPE)(住友精化(株)製のフロービーズHE3040、融点:130℃)29.2gそれぞれにエタノールを加え、固形分濃度を10.0質量%に調製した分散液を、ビーカー内でプロペラ撹拌しながら混合した。得られた樹脂混合物分散液を吸引ろ過した後、トリミックスにより撹拌しながら減圧乾燥を行いマスターバッチを調製した。
前記、<ASA変性ミクロフィブリル化植物繊維の調製>で得られたASA変性ミクロフィブリル化植物繊維をエタノールで2回洗浄したのち、エタノールを加え固形分濃度を3.0質量%に調製した。このエタノールに分散されたASA変性ミクロフィブリル化植物繊維(固形分54g)に、無水マレイン酸変性ポリプロピレン(MAPP、東洋紡績(株)製のトーヨータックPMA H1000P、酸含有量5.7質量%、メルトフローレート:110g/10分(190℃、2.16kg))12.9g、及び炭酸カルシウム(CaCO3)4g、及び高密度ポリエチレン(HDPE)(住友精化(株)製のフロービーズHE3040、融点:130℃)29.2gそれぞれにエタノールを加え、固形分濃度を10.0質量%に調製した分散液を、ビーカー内でプロペラ撹拌しながら混合した。得られた樹脂混合物分散液を吸引ろ過した後、トリミックスにより撹拌しながら減圧乾燥を行いマスターバッチを調製した。
次いで、得られたマスターバッチと、HDPE(旭化成ケミカルズ(株)製サンテック-HD J320)との混合物を、(株)テクノベル製の二軸混練機(KZW、スクリュー径:15mm、L/D:45、スクリュー回転数:200rpm、せき止め構造:0個、処理速度200g/時)にて140℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、得られたペレットを射出成形機(NPX7-1F、日精樹脂(株)製)に投入しダンベル型の成型物を得た。加熱筒温度は160℃、金型温度は40℃とした。得られた成形物に含まれる各成分の配合比率を表1に示す。
<発泡体の製造>
前記、<ASA変性ミクロフィブリル化植物繊維とポリエチレンとの複合化>で得られたダンベル状の成形物を、切断し、長さ:35mm、幅:5mm、厚さ:1mmの試験片を作製した。得られた試験片を金型に入れ、さらに高圧容器に入れ、二酸化炭素を充填し、表2に示す温度、及び圧力で、試験片が二酸化炭素に十分溶解するまで300分間保持した。その後、二酸化炭素を大気(1.01325×105Pa)中に一気に開放し、試験片を発泡させ、発泡体を得た。
前記、<ASA変性ミクロフィブリル化植物繊維とポリエチレンとの複合化>で得られたダンベル状の成形物を、切断し、長さ:35mm、幅:5mm、厚さ:1mmの試験片を作製した。得られた試験片を金型に入れ、さらに高圧容器に入れ、二酸化炭素を充填し、表2に示す温度、及び圧力で、試験片が二酸化炭素に十分溶解するまで300分間保持した。その後、二酸化炭素を大気(1.01325×105Pa)中に一気に開放し、試験片を発泡させ、発泡体を得た。
・比較例1
実施例1において、<ASA変性ミクロフィブリル化植物繊維とポリエチレンとの複合化>で調製したシート状の成形物を発泡させず、表1の配合比率で、実施例1と同様の方法で未発泡の試験片を製造した。
実施例1において、<ASA変性ミクロフィブリル化植物繊維とポリエチレンとの複合化>で調製したシート状の成形物を発泡させず、表1の配合比率で、実施例1と同様の方法で未発泡の試験片を製造した。
・比較例2
実施例3において、<ASA変性ミクロフィブリル化植物繊維とポリエチレンとの複合化>で調製したシート状の成形物を発泡させず、表1の配合比率で、実施例3と同様の方法で未発泡の試験片を製造した。
実施例3において、<ASA変性ミクロフィブリル化植物繊維とポリエチレンとの複合化>で調製したシート状の成形物を発泡させず、表1の配合比率で、実施例3と同様の方法で未発泡の試験片を製造した。
・比較例3
実施例1で用いたHDPEのみをシート状に成形し、発泡させず未発泡の試験片を製造した以外は、実施例1と同様の方法により試験片を製造した。
実施例1で用いたHDPEのみをシート状に成形し、発泡させず未発泡の試験片を製造した以外は、実施例1と同様の方法により試験片を製造した。
・比較例4、及び5
実施例1で用いたHDPEのみをシート状に成形し、前記実施例1の<発泡体の製造>と同様の方法により、発泡体を製造した。発泡条件である高圧容器内の温度、及び圧力を表2に示す。
実施例1で用いたHDPEのみをシート状に成形し、前記実施例1の<発泡体の製造>と同様の方法により、発泡体を製造した。発泡条件である高圧容器内の温度、及び圧力を表2に示す。
・比較例6
実施例1で用いたリファイナー処理済みのパルプについて、ASA変性を行わず、実施例1と同様の方法により、パルプに解繊を行い未変性のミクロフィブリル化植物繊維を調製し、ASA変性ミクロフィブリル化植物繊維に代えて、未変性のミクロフィブリル化植物繊維を用いた。それ以外は、実施例1と同様の方法により、発泡体を製造した。発泡条件である高圧容器内の温度、及び圧力を表2に示す。
実施例1で用いたリファイナー処理済みのパルプについて、ASA変性を行わず、実施例1と同様の方法により、パルプに解繊を行い未変性のミクロフィブリル化植物繊維を調製し、ASA変性ミクロフィブリル化植物繊維に代えて、未変性のミクロフィブリル化植物繊維を用いた。それ以外は、実施例1と同様の方法により、発泡体を製造した。発泡条件である高圧容器内の温度、及び圧力を表2に示す。
<物性評価>
実施例2及び比較例5で得られた発泡体の断面SEM写真を、図1及び図2にそれぞれ示す。
実施例2及び比較例5で得られた発泡体の断面SEM写真を、図1及び図2にそれぞれ示す。
実施例1~4、及び比較例1~6で得られたサンプルの発泡径の平均値、比重、曲げ弾性率、曲げ強度、及び動的粘弾性を測定した。測定結果を表2に示す。なお、発泡径の平均値、比重、曲げ弾性率、曲げ強度、及び動的粘弾性測定は、以下の条件及び測定方法により測定した。
・発泡径の平均値
発泡体の断面SEM画像からフィルム等に気泡の輪郭のみを写しとり、それをスキャナ等で画像データに変換した後、気泡の面積を画像計測し、円相当直径を計算した。1サンプルに付き50個以上の気泡について計算した円相当直径の平均を発泡径の平均値とした。
発泡体の断面SEM画像からフィルム等に気泡の輪郭のみを写しとり、それをスキャナ等で画像データに変換した後、気泡の面積を画像計測し、円相当直径を計算した。1サンプルに付き50個以上の気泡について計算した円相当直径の平均を発泡径の平均値とした。
・比重
成形体の空気中での重量と水中での重量を測定し、アルキメデス法により密度を求め、水の密度の値で除して比重を求めた。
成形体の空気中での重量と水中での重量を測定し、アルキメデス法により密度を求め、水の密度の値で除して比重を求めた。
・曲げ弾性率・曲げ強度
成形体を変形速度5mm/分で曲げ弾性率及び曲げ強度を測定した(ロードセル100N)。測定器として万能試験機オートグラフAG-5000E[AG-Xリフレッシュ済]((株)島津製作所製)を用いた。
成形体を変形速度5mm/分で曲げ弾性率及び曲げ強度を測定した(ロードセル100N)。測定器として万能試験機オートグラフAG-5000E[AG-Xリフレッシュ済]((株)島津製作所製)を用いた。
また、実施例1~4、及び比較例1~6について、横軸に比重、縦軸に曲げ弾性率をプロットしたグラフを図3に示す。なお、図3における△は実施例1~2、◇は実施例3~4、▲は比較例1、◆は比較例2、■は比較例3、□は比較例4~5、○は比較例6をそれぞれプロットしたものである。
そして、実施例1~4、及び比較例1~6について、横軸に比重、縦軸に曲げ強度をプロットしたグラフを図4に示す。なお、図4における△は実施例1~2、◇は実施例3~4、▲は比較例1、◆は比較例2、■は比較例3、□は比較例4~5、○は比較例6をそれぞれプロットしたものである。
・動的粘弾性測定
実施例1のASA変性ミクロフィブリル化植物繊維/PE樹脂、比較例4のPE樹脂、及び比較例6のミクロフィブリル化植物繊維/PE樹脂の発泡前のシート状の成形物試験片をティー・エー・インスツルメント・ジャパン(株)製の動的粘弾性測定装置 「ARES」にセットし、周波数1Hz、昇温速度2℃/minの条件にて、貯蔵弾性率(G’)及び損失弾性率(G”)を測定した。
実施例1のASA変性ミクロフィブリル化植物繊維/PE樹脂、比較例4のPE樹脂、及び比較例6のミクロフィブリル化植物繊維/PE樹脂の発泡前のシート状の成形物試験片をティー・エー・インスツルメント・ジャパン(株)製の動的粘弾性測定装置 「ARES」にセットし、周波数1Hz、昇温速度2℃/minの条件にて、貯蔵弾性率(G’)及び損失弾性率(G”)を測定した。
図5に、実施例1、比較例4、及び比較例6の温度に対する貯蔵弾性率(G’)をプロットしたグラフを示し、図6に、実施例1、比較例4、及び比較例6の温度に対する損失弾性率(G”)をプロットしたグラフを示す。
<考察>
図1及び図2より、ASA変性ミクロフィブリル化植物繊維とポリエチレンとの樹脂組成物を発泡した場合、発泡径の小さい緻密な発泡体が形成されていることが分かる。このような発泡径の小さい発泡体は、発泡前の樹脂組成物において、ポリエチレン中でASA変性ミクロフィブリル化植物繊維が均一に混合されていることにより、発泡径の拡大が抑えられたものと考えられる。
図1及び図2より、ASA変性ミクロフィブリル化植物繊維とポリエチレンとの樹脂組成物を発泡した場合、発泡径の小さい緻密な発泡体が形成されていることが分かる。このような発泡径の小さい発泡体は、発泡前の樹脂組成物において、ポリエチレン中でASA変性ミクロフィブリル化植物繊維が均一に混合されていることにより、発泡径の拡大が抑えられたものと考えられる。
表2、図3及び図4より、ASA変性ミクロフィブリル化植物繊維とポリエチレンを複合化し、さらに発泡させた実施例1~4は、ASA変性ミクロフィブリル化植物繊維とポリエチレンの未発泡の比較例1及び未発泡のポリエチレンの比較例3と比較して、比重の大幅な低減がみられ、軽量化が達成できていることがわかる。また、実施例1~4は、ポリエチレンのみを発泡した比較例4~5と比較して、曲げ弾性率及び曲げ強度が向上した。このことから、ASA変性ミクロフィブリル化植物繊維がポリエチレン中で、均一に分散され、かつASA変性ミクロフィブリル化植物繊維によって緻密な発泡体を形成し、さらにASA変性ミクロフィブリル化植物繊維によるフィラーとしての補強効果が十分に発揮されたものと考えられる。そして、実施例1~2に比べASA変性ミクロフィブリル化植物繊維の含有率が高い実施例3~4はさらに補強効果が高まり、曲げ弾性率及び曲げ強度が向上している。
さらに、比較例6の未変性のミクロフィブリル化植物繊維とポリエチレンとの発泡体においては、実施例1と比較して比重が高いにもかかわらず曲げ弾性率及び曲げ強度が劣っている。この結果は、ポリエチレン中で、未変性のミクロフィブリル化植物繊維が十分に分散されず、機械的強度が低下したものと考えられる。
さらにまた、図5及び図6より、実施例1は、発泡前のシート状の成形物において、ポリエチレン中でフィラーとしてASA変性ミクロフィブリル化植物繊維が均一に混合されていることから、未変性ミクロフィブリル化植物繊維を用いた比較例6よりも溶融状態での粘性、弾性の値がポリエチレンのみである比較例4の値と比べて大きく上昇していることが分かる。そのため、得られる発泡体の発泡径は小さく、且つ緻密に発泡できていることが分かる。
Claims (10)
- 熱可塑性樹脂及びゴムよりなる群から選ばれる少なくとも1種の成分(A)、並びに
アルキル、若しくはアルケニル無水コハク酸でエステル化されたミクロフィブリル化植物繊維(B)
を含有する発泡体。 - アルキル、若しくはアルケニル無水コハク酸でエステル化された変性ミクロフィブリル化植物繊維(B)の含有量が、成分(A)100質量部に対して、0.1~200質量部である請求項1に記載の発泡体。
- 比重が、0.03~0.9である請求項1又は2に記載の発泡体。
- 発泡体中の発泡径の平均値が、0.1~100μmである請求項1~3のいずれかに記載の発泡体。
- 成分(A)がポリオレフィン系樹脂である請求項1~4のいずれかに記載の発泡体。
- 成分(A)がポリエチレンである請求項1~5のいずれかに記載の発泡体。
- (1)樹脂及びゴムよりなる群から選ばれる少なくとも1種の成分(A)とアルキル、若しくはアルケニル無水コハク酸でエステル化された変性ミクロフィブリル化植物繊維(B)を混合し、樹脂及び/又はゴム組成物を調製する工程、並びに
(2)樹脂及び/又はゴム組成物を発泡させる工程
を含む
発泡体の製造方法。 - 工程(2)における樹脂及び/又はゴム組成物を発泡させる工程が、高圧容器内で樹脂及び/又はゴム組成物と不活性ガスを封入し、樹脂及び/又はゴム組成物を不活性ガスに含浸させ、急減圧させることにより樹脂及び/又はゴム組成物を発泡させる工程である請求項7に記載の発泡体の製造方法。
- 不活性ガスが、二酸化炭素である請求項8に記載の発泡体の製造方法。
- 高圧容器内の圧力が1~30MPaであり、急減圧後の圧力が0.5×105~2×105Paである請求項8又は9に記載の発泡体の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012051747A JP5865128B2 (ja) | 2012-03-08 | 2012-03-08 | 変性ミクロフィブリル化植物繊維を含む発泡体 |
JP2012-051747 | 2012-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133156A1 true WO2013133156A1 (ja) | 2013-09-12 |
Family
ID=49116636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/055648 WO2013133156A1 (ja) | 2012-03-08 | 2013-03-01 | 変性ミクロフィブリル化植物繊維を含む発泡体 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5865128B2 (ja) |
WO (1) | WO2013133156A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014017335A1 (ja) * | 2012-07-27 | 2014-01-30 | Dic株式会社 | 変性セルロースナノファイバー含有ポリエチレン微多孔膜、セパレーター、及びそれを用いたリチウムイオン電池 |
WO2016063914A1 (ja) * | 2014-10-21 | 2016-04-28 | 古河電気工業株式会社 | ポリオレフィン樹脂組成物、成形品および車両用外板 |
WO2016207783A1 (en) | 2015-06-26 | 2016-12-29 | Stora Enso Oyj | Manufacturing method for a film or product comprising an amphiphilic polymer |
CN115536938A (zh) * | 2022-10-19 | 2022-12-30 | 上汽通用五菱汽车股份有限公司 | 一种微孔植物纤维复合材料及其制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6394934B1 (ja) * | 2016-12-14 | 2018-09-26 | 星光Pmc株式会社 | 発泡成形体用組成物及びその製造方法、発泡成形体及びその製造方法並びに発泡成形体用変性セルロース含有樹脂組成物 |
US20200251740A1 (en) * | 2017-09-29 | 2020-08-06 | Attaccato Limited Liability Company | Binder for lithium ion batteries, and electrode and separator using same |
JP7291898B2 (ja) | 2019-02-08 | 2023-06-16 | パナソニックIpマネジメント株式会社 | 発泡成形体 |
JP6760552B1 (ja) | 2019-04-05 | 2020-09-23 | 星光Pmc株式会社 | 発泡体及びその製造方法 |
JP7429517B2 (ja) * | 2019-11-01 | 2024-02-08 | Psジャパン株式会社 | スチレン系樹脂発泡体 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003096229A (ja) * | 2001-09-20 | 2003-04-03 | Mitsui Chemicals Inc | 多孔質(共)重合体フィルムの製造方法およびそれにより得られる多孔質(共)重合体フィルム |
JP2008106227A (ja) * | 2006-09-26 | 2008-05-08 | Nard Inst Ltd | セルロース含有生分解性樹脂組成物およびその発泡体 |
JP2010106251A (ja) * | 2008-09-30 | 2010-05-13 | Daicel Chem Ind Ltd | 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法 |
JP2011213754A (ja) * | 2010-03-31 | 2011-10-27 | Kyoto Univ | ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法 |
JP2012214563A (ja) * | 2011-03-31 | 2012-11-08 | Kyoto Univ | 変性ミクロフィブリル化植物繊維を含む樹脂組成物 |
JP2012229350A (ja) * | 2011-04-27 | 2012-11-22 | Kyoto Univ | 樹脂組成物 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2610054A4 (en) * | 2010-08-23 | 2014-08-27 | Nitto Denko Corp | sandwich panel |
-
2012
- 2012-03-08 JP JP2012051747A patent/JP5865128B2/ja active Active
-
2013
- 2013-03-01 WO PCT/JP2013/055648 patent/WO2013133156A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003096229A (ja) * | 2001-09-20 | 2003-04-03 | Mitsui Chemicals Inc | 多孔質(共)重合体フィルムの製造方法およびそれにより得られる多孔質(共)重合体フィルム |
JP2008106227A (ja) * | 2006-09-26 | 2008-05-08 | Nard Inst Ltd | セルロース含有生分解性樹脂組成物およびその発泡体 |
JP2010106251A (ja) * | 2008-09-30 | 2010-05-13 | Daicel Chem Ind Ltd | 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法 |
JP2011213754A (ja) * | 2010-03-31 | 2011-10-27 | Kyoto Univ | ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法 |
JP2012214563A (ja) * | 2011-03-31 | 2012-11-08 | Kyoto Univ | 変性ミクロフィブリル化植物繊維を含む樹脂組成物 |
JP2012229350A (ja) * | 2011-04-27 | 2012-11-22 | Kyoto Univ | 樹脂組成物 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014017335A1 (ja) * | 2012-07-27 | 2014-01-30 | Dic株式会社 | 変性セルロースナノファイバー含有ポリエチレン微多孔膜、セパレーター、及びそれを用いたリチウムイオン電池 |
WO2016063914A1 (ja) * | 2014-10-21 | 2016-04-28 | 古河電気工業株式会社 | ポリオレフィン樹脂組成物、成形品および車両用外板 |
US11485841B2 (en) | 2014-10-21 | 2022-11-01 | Furukawa Electric Co., Ltd. | Polyolefin resin composition, molded article, and outer panel for a vehicle |
WO2016207783A1 (en) | 2015-06-26 | 2016-12-29 | Stora Enso Oyj | Manufacturing method for a film or product comprising an amphiphilic polymer |
EP3314056A4 (en) * | 2015-06-26 | 2019-01-16 | Stora Enso Oyj | METHOD OF MANUFACTURING A FOIL OR A PRODUCT WITH AN AMPHIPHILEN POLYMER |
CN115536938A (zh) * | 2022-10-19 | 2022-12-30 | 上汽通用五菱汽车股份有限公司 | 一种微孔植物纤维复合材料及其制备方法 |
CN115536938B (zh) * | 2022-10-19 | 2023-11-21 | 上汽通用五菱汽车股份有限公司 | 一种微孔植物纤维复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5865128B2 (ja) | 2016-02-17 |
JP2013185085A (ja) | 2013-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5865128B2 (ja) | 変性ミクロフィブリル化植物繊維を含む発泡体 | |
JP5496435B2 (ja) | 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物 | |
JP5757765B2 (ja) | 変性ミクロフィブリル化植物繊維を含む樹脂組成物 | |
JP7185215B2 (ja) | 繊維強化樹脂組成物、繊維強化成形体及びその製造方法 | |
JP6012206B2 (ja) | 変性セルロースナノファイバー及び変性セルロースナノファイバーを含む樹脂組成物 | |
KR102405761B1 (ko) | 화학적으로 개질된 셀룰로오스 나노섬유 및 열가소성 수지를 포함하는 섬유 강화 수지 조성물 | |
Paul et al. | Effect of green plasticizer on the performance of microcrystalline cellulose/polylactic acid biocomposites | |
WO2018230600A1 (ja) | 微細セルロース繊維、その製造方法、スラリー及び複合体 | |
JP5540176B2 (ja) | ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法 | |
Ninomiya et al. | Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: Application to esterified bagasse/polypropylene composites | |
EP3431527A1 (en) | Master batch containing acylation-modified microfibrillated plant fibers | |
JP6286975B2 (ja) | 変性セルロースならびに該変性セルロースを含むマスターバッチ用樹脂組成物、樹脂成形材料、および成形体 | |
JP6688438B1 (ja) | 化学修飾されたセルロース微細繊維を含む高耐熱性樹脂複合体 | |
WO2016148233A1 (ja) | 化学修飾セルロースナノファイバー及び熱可塑性樹脂を含有する繊維強化樹脂組成物 | |
Virtanen et al. | High strength modified nanofibrillated cellulose-polyvinyl alcohol films | |
JP6678698B2 (ja) | 微細セルロース含有樹脂組成物 | |
JP2017066274A (ja) | 微細繊維状セルロース含有物 | |
Abdulkhani et al. | Effect of nanofibers on the structure and properties of biocomposites | |
JP2021172671A (ja) | 粉末状微細セルロース繊維、樹脂組成物、成形体およびその製造方法 | |
JP6792265B2 (ja) | エチレングリコール誘導体を含有するアセチル化パルプ組成物、ミクロフィブリル化されたアセチル化パルプを含有する樹脂組成物、及びそれらの製造方法 | |
JP6727085B2 (ja) | 樹脂組成物 | |
WO2019194032A1 (ja) | ソリッド成形材料用樹脂組成物、及びその製造方法、並びにソリッド成形体 | |
JP7333510B2 (ja) | 繊維強化樹脂組成物及びその製造方法、並びに成形体 | |
JP6915107B2 (ja) | 微細セルロース含有樹脂組成物 | |
Venkatesh | Melt-processing and properties of thermoplastic composites based on ethylene-acrylic acid copolymer reinforced with wood nanocellulose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13758693 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13758693 Country of ref document: EP Kind code of ref document: A1 |