WO2013129564A1 - 有機el素子の製造方法及び有機el素子 - Google Patents

有機el素子の製造方法及び有機el素子 Download PDF

Info

Publication number
WO2013129564A1
WO2013129564A1 PCT/JP2013/055379 JP2013055379W WO2013129564A1 WO 2013129564 A1 WO2013129564 A1 WO 2013129564A1 JP 2013055379 W JP2013055379 W JP 2013055379W WO 2013129564 A1 WO2013129564 A1 WO 2013129564A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
electrode layer
longitudinal direction
light emitting
Prior art date
Application number
PCT/JP2013/055379
Other languages
English (en)
French (fr)
Inventor
啓功 大崎
成紀 森田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR20147022409A priority Critical patent/KR20140128330A/ko
Priority to CN201380011467.XA priority patent/CN104145530B/zh
Priority to EP13754199.1A priority patent/EP2822361A4/en
Priority to US14/381,478 priority patent/US9331307B2/en
Publication of WO2013129564A1 publication Critical patent/WO2013129564A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an organic EL element and an organic EL element, wherein an electrode layer and an organic layer are formed on a substrate, and light is emitted from the organic layer.
  • an organic EL (electroluminescence) element is known as an element used in a light emitting display device or the like.
  • the organic EL element basically includes an organic layer having at least a light emitting layer as an organic constituent layer and a pair of electrode layers.
  • a conventional organic EL element 50 has a first electrode layer 23 (for example, an anode layer) on at one surface side of a base material 21, and at least a light emitting layer as an organic constituent layer.
  • An organic layer 25 and a second electrode layer 27 are sequentially stacked (see FIG. 10A), and then a sealing layer 29 is stacked (see FIG. 10A). (See FIGS. 10B to 10D).
  • an overlapping portion of the first electrode layer 23, the organic layer 25, and the second electrode layer 27 is provided as the light emitting unit 40.
  • the first electrode layer 23 and the second electrode layer 27 are formed so as not to overlap each other outside the sealing layer 29 in order to allow current to flow from outside without short-circuiting each other.
  • the right end side of the organic layer 25 is more than the right end edge of the second electrode layer 27 so that the first electrode layer 23 can be energized without short-circuiting. Also protrudes to the right.
  • the right end portion side of the first electrode layer 23 protrudes to the right side of the right end edge of the organic layer 25 (see the right side of FIG. 10A).
  • the right end portion side of the first electrode layer is formed to protrude to the right side from the right end edge of the sealing layer 29 (see the right side in FIG.
  • the left end side of the organic layer 25 is more than the left end edge of the first electrode layer 23 so that the second electrode layer 27 can be energized without short-circuiting. It protrudes to the left. Further, the left end side of the second electrode layer 27 protrudes to the left of the left end edge of the organic layer 25 (see the left side of FIG. 10A). Further, the second electrode layer 27 is formed so as to protrude to the left of the left edge of the sealing layer 29 (see the left side of FIG. 10D).
  • a base material made of an organic resin is used as a base material in order to make it flexible.
  • oxygen and moisture pass through the base material to the constituent layer side.
  • the light emission characteristics of the organic EL element may deteriorate over time.
  • an object of the present invention is to provide a method for manufacturing an organic EL element in which deterioration of light emission characteristics is suppressed and an organic EL element.
  • the band-shaped metal base is usually formed by rolling in the longitudinal direction.
  • the longitudinal direction By this rolling, it was found that a plurality of fine grooves extending in the longitudinal direction were formed in the surface portion of the base material in the width direction.
  • the groove due to the groove of the base material extends in the longitudinal direction on the surface portion of the insulating layer laminated on the base material.
  • the second electrode layer does not protrude beyond the organic layer on at least one of the outer sides of the light emitting portion in the longitudinal direction.
  • oxygen or moisture passes through the groove on the surface of the insulating layer and penetrates into the sealing layer. To do. Further, oxygen and moisture enter from the edge side to the region corresponding to the light emitting portion at the boundary between the organic layer and the first electrode layer or at the boundary between the organic layer and the second electrode layer. As a result, it was found that the emission characteristics deteriorate.
  • an organic EL element manufacturing method includes an insulating layer, a first electrode layer, an organic layer having at least a light emitting layer as an organic constituent layer on the one surface side of a belt-shaped metal base, Manufacture of an organic EL element in which an electrode layer and a sealing layer are sequentially formed to produce an organic EL element having an overlapping portion of the first electrode layer, the organic layer, and the second electrode layer as a light emitting portion.
  • the organic layer is disposed at least on both outer sides in the longitudinal direction of the substrate with respect to the first electrode layer while preventing the first electrode layer and the second electrode layer from contacting each other.
  • the second electrode layer is protruded at least on both outer sides in the longitudinal direction from the organic layer, so that at least the outer sides of the light emitting part in the longitudinal direction of the substrate are at least the longitudinal length of the organic layer. Both directions As the edge is covered by the longitudinal end side of said second electrode layer, the first electrode layer, and forming the organic layer and the second electrode layer.
  • the organic EL device includes an insulating layer, a first electrode layer, an organic layer having at least a light-emitting layer as an organic component layer, a second electrode layer, and a sealing layer on one surface side of a belt-shaped metal substrate.
  • a stop layer is formed sequentially, and is an organic EL element having a light emitting portion as an overlapping portion of the first electrode layer, the organic layer, and the second electrode layer, wherein the first electrode layer, The second electrode layer is not in contact with the organic layer, and the organic layer protrudes at least on both outer sides in the longitudinal direction of the base material from the first electrode layer.
  • the both ends in the longitudinal direction of the organic layer are formed on the second electrode layer. Covered at both ends in the longitudinal direction And wherein the Rukoto.
  • the surface roughness in the longitudinal direction of the base material is smaller than the surface roughness in the lateral direction.
  • FIG. 1 is a schematic partial side sectional view schematically showing a layer configuration example of an organic EL element.
  • Fig.1 (a) is a figure which shows the case where an organic layer is one layer.
  • FIG. 1B is a diagram illustrating a case where the organic layer has three layers.
  • FIG.1 (c) is a figure which shows the case where there are five organic layers.
  • FIG. 2A is a schematic plan view schematically showing a state in which an anode layer is formed in the manufacture of the organic EL elements of Example 1 and Example 3.
  • FIG. FIG. 2B is a schematic plan view schematically showing a state in which the organic layer is formed.
  • FIG. 2C is a schematic plan view schematically showing a state where the cathode layer is formed.
  • FIG. 1 is a schematic partial side sectional view schematically showing a layer configuration example of an organic EL element.
  • Fig.1 (a) is a figure which shows the case where an organic layer is one layer.
  • FIG. 2D is a schematic plan view schematically showing a state in which the sealing layer is formed.
  • FIG. 3A is a schematic plan view schematically showing the organic EL elements of Example 1 and Example 3.
  • FIG. 3B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3C is a cross-sectional view taken along line BB in FIG.
  • FIG. 4A is a schematic plan view schematically showing a state in which an anode layer is formed in the manufacture of the organic EL element of Example 2.
  • FIG. FIG. 4B is a schematic plan view schematically showing a state where the organic layer is formed.
  • FIG. 4C is a schematic plan view schematically showing a state where the cathode layer is formed.
  • FIG. 3A is a schematic plan view schematically showing the organic EL elements of Example 1 and Example 3.
  • FIG. 3B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3C is a cross-sectional view taken along
  • FIG. 4D is a schematic plan view schematically showing a state where the sealing layer is formed.
  • FIG. 5A is a schematic plan view schematically showing the organic EL element of Example 2.
  • FIG. 5B is a cross-sectional view taken along line AA in FIG.
  • FIG. 5C is a cross-sectional view taken along line BB in FIG.
  • FIG. 6A is a schematic plan view schematically showing a state before the sealing layer is formed in the manufacture of the organic EL elements of Comparative Example 1 and Comparative Example 5.
  • FIG. FIG. 6B is a schematic plan view schematically showing a state in which the sealing layer is formed.
  • FIG. 7A is a schematic plan view schematically showing a state before the sealing layer is formed in the manufacture of the organic EL element of Comparative Example 2.
  • FIG. 7B is a schematic plan view schematically showing a state where the sealing layer is formed.
  • FIG. 8A is a schematic plan view schematically showing a state before the sealing layer is formed in the manufacture of the organic EL element of Comparative Example 3.
  • FIG. 8B is a schematic plan view schematically showing a state where the sealing layer is formed.
  • FIG. 9A is a schematic plan view schematically showing a state before the sealing layer is formed in the manufacture of the organic EL element of Comparative Example 4.
  • FIG. FIG. 9B is a schematic plan view schematically showing a state where the sealing layer is formed.
  • FIG. 10A is a schematic plan view schematically showing a state before a sealing layer is formed in the manufacture of a conventional organic EL element.
  • FIG. 10B is a schematic plan view schematically showing a state where the sealing layer is formed.
  • FIG. 10C is a cross-sectional view taken along the line AA in FIG.
  • FIG. 10 (d) is a cross-sectional view taken along the line BB in FIG. 10 (b).
  • an insulating layer 31, a first electrode layer (here, an anode layer) 23, and at least a light emitting layer 25 a are formed on an organic constituent layer on one surface side of a band-shaped metal substrate 21.
  • the organic layer 25, the second electrode layer 27 (in this case, the cathode layer), and the sealing layer 29 are sequentially formed.
  • the organic layer 25 protrudes at least on both outer sides in the longitudinal direction of the base material 21 from the anode layer 23 while preventing the anode layer 23 and the cathode layer 27 from contacting each other.
  • the cathode layer 27 protrudes at least on both outer sides in the longitudinal direction from the organic layer 27.
  • the metal material used for the substrate 21 may be, for example, stainless steel, Fe, Al, Ni, Co, Cu, and alloys thereof, which can be rolled into a belt-like sheet at room temperature and normal pressure. Any metal can be used.
  • an organic insulating layer and an inorganic insulating layer can be used.
  • An insulating resin can be used as a material for forming the organic insulating layer. Since the base material 21 may be heated to 150 to 300 ° C. during the manufacturing process of the organic EL element, a heat resistant resin having a glass transition temperature of 150 ° C. or higher is used as the material of the organic insulating layer. preferable.
  • heat resistant resins include acrylic resins, norbornene resins, epoxy resins, polyimide resins, polyamideimide resins, polyamide resins, polyester resins, polyarylate resins, polyurethane resins, polycarbonate resins, polyether ketone resins, poly Examples thereof include phenylsulfone resins and composites of these resins.
  • the heat resistant resin is preferably at least one selected from the group consisting of an acrylic resin, a norbornene resin, an epoxy resin, and a polyimide resin. If the thickness of the organic insulating layer is too thin, the surface unevenness of the metal substrate 21 cannot be sufficiently flattened, and if it is too thick, the adhesion to the metal substrate 21 may be reduced. Considering this viewpoint, the thickness of the organic insulating layer is preferably in the range of 1 to 40 ⁇ m. When the thickness is within this range, sufficient electrical insulation can be secured, and adhesion to the base material 21 can be secured. The thickness of the organic insulating layer is more preferably 0.5 to 10 ⁇ m, still more preferably 1 to 5 ⁇ m.
  • the method for forming the organic insulating layer on the substrate 21 is not particularly limited, and can be formed by application by roll coating, spray coating, spin coating, dipping, or the like, or transfer of a resin formed in a film shape. .
  • an insulating inorganic material can be used as a material for forming the inorganic insulating layer. Moreover, it is preferable that this inorganic material has gas barrier property.
  • an inorganic material for example, it is preferable to include at least one of a metal and a metalloid. Further, at least one of the metal and the metalloid is preferably at least one selected from the group consisting of oxides, nitrides, carbides, oxynitrides, oxycarbides, nitride carbides, and oxynitride carbides. Examples of the metal include zinc, aluminum, titanium, copper, and magnesium, and examples of the semimetal include silicon, bismuth, and germanium.
  • the thickness of the inorganic insulating layer is preferably in the range of 10 nm to 5 ⁇ m, more preferably in the range of 50 nm to 2 ⁇ m, and further preferably in the range of 0.1 to 1 ⁇ m.
  • the method for forming the inorganic insulating layer is not particularly limited, and a vapor deposition method using a vapor deposition source capable of discharging the inorganic insulating layer forming material, a sputtering method, a dry method such as a CVD method, and a wet method such as a sol-gel method. Etc. can be used.
  • anode layer forming material indium-tin oxide (ITO), indium-zinc oxide (IZO), zinc oxide (ZnO), gallium-doped zinc oxide (GZO) Zinc oxide-based materials such as antimony-doped zinc oxide (AZO) can be used.
  • the method for forming the anode layer 23 on the insulating layer 31 is not particularly limited.
  • a general vapor deposition method using a vapor deposition source capable of discharging the anode layer forming material can be used. Among these, it is preferable to use a heat evaporation method.
  • the organic layer 25 has at least a light emitting layer 25a as an organic constituent layer.
  • the organic layer 25 is composed of one organic constituent layer, or is formed by laminating a plurality of organic constituent layers.
  • the organic constituent layer is the light emitting layer 25a described above.
  • the organic layer includes a plurality of organic constituent layers
  • the plurality of organic constituent layers includes a light emitting layer 25a and organic constituent layers other than the light emitting layer 25a.
  • Examples of organic constituent layers other than the light emitting layer 25a include a hole injection layer 25b, a hole transport layer 25d, an electron injection layer 25c, and an electron transport layer 25e.
  • the organic layer 25 is not particularly limited as long as it has at least the light emitting layer 25a as an organic constituent layer.
  • the organic layer 25 can be configured to be formed by stacking a plurality of organic constituent layers as required. For example, as shown in FIG. 1B, the hole injection layer 25b, the light emitting layer 25a, and the electron injection layer 25c may be laminated in this order to form a three-layer organic layer.
  • a hole transport layer 25d (see FIG. 1C) is sandwiched between the light emitting layer 25a and the hole injection layer 25b shown in FIG. 1B, or the light emitting layer 25a.
  • an electron transport layer 25e see FIG. 1C
  • the organic layer can be formed into a four-layer laminate.
  • the hole transport layer 25d is sandwiched between the hole injection layer 25b and the light emitting layer 25a, and the electron transport layer 25e is sandwiched between the light emitting layer 25a and the electron injection layer 25c.
  • the organic layer can also be made into a five-layer laminate.
  • the thickness of each layer is usually designed to be about several nm to several tens of nm, but the thickness is appropriately designed according to the organic layer forming material 22 and the light emission characteristics. There is no particular limitation.
  • Examples of a material for forming the light emitting layer 25a include tris (8-quinolinol) aluminum (Alq3), [2-tert-butyl-6- [2- (2,3,6,7-tetrahydro-1, 1,7,7-tetramethyl-1H, 5H-benzo [ij] quinolizin-9-yl) vinyl] -4H-pyran-4-ylidene] malononitrile (DCJTB) and the like can be used.
  • the hole injection layer 25b is a layer that facilitates injection of holes from the anode layer 23 into the light emitting layer 25a and the hole transport layer 25d.
  • a material for forming the hole injection layer 25b for example, HAT-CN (1, 4, 5, 8, 9, 12-hexaazatriphenylene hexacarbonitrile), copper phthalocyanine (CuPc), N, N '-Di (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl 4,4'diamine ( ⁇ -NPD) or the like can be used.
  • the hole transport layer 25 d is a layer having at least one of a function of transporting holes or a function of suppressing electrons injected from the cathode layer 27 from moving to the anode layer 23.
  • Examples of the material for forming the hole transport layer 25d include N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -benzidine (NPB), N, N ′.
  • the electron injection layer 25c is a layer that facilitates injection of electrons from the cathode layer 27 to the light emitting layer 25a or the electron transport layer 25e.
  • a material for forming the electron injection layer 25c for example, lithium fluoride (LiF), cesium fluoride (CsF), or the like can be used.
  • the electron transport layer 25 e is a layer having at least one of a function of transporting electrons or a function of suppressing movement of holes injected from the anode layer 23 to the cathode layer 27.
  • a material for forming the electron transport layer 25e for example, tris (8-quinolinol) aluminum (Alq3) can be used.
  • the method for forming the organic layer 25 on the anode layer 23 is not particularly limited, and for example, a general vapor deposition method using a vapor deposition source capable of discharging the organic layer forming material can be used. Among such vapor deposition methods, it is preferable to use a heat vapor deposition method.
  • cathode layer forming material aluminum (Al), magnesium silver (Mg / Ag), ITO, IZO, or the like can be used.
  • the method for forming the cathode layer 27 on the organic layer 25 is not particularly limited, and for example, an evaporation method using an evaporation source capable of discharging the cathode layer forming material can be used. In addition, for example, a method of forming a film by sputtering can also be used.
  • sealing layer forming material As a material (sealing layer forming material) for forming the sealing layer 29, SiOCN, SiN, SiON or the like can be used.
  • the method for forming the sealing layer 29 on the cathode layer 27 is not particularly limited, and for example, a vapor deposition method using a vapor deposition source capable of discharging the sealing layer forming material can be used. For example, it is preferable to use a plasma assist vapor deposition method.
  • a laminate of the base material 21 and the insulating layer 31 formed on the one surface side of the base material 21 is formed in advance, and on the insulating layer 31 of the laminate,
  • the anode layer 23, the light emitting layer 25a, the cathode layer 27, and the sealing layer 29 are sequentially deposited.
  • the insulating layer 31 is formed on the base material 21 by a vapor deposition source for forming the insulating layer 31 on the base material 21 on which the insulating layer 31 is not laminated in advance.
  • the anode layer 23, the light emitting layer 25 a, the cathode layer 27, and the sealing layer 29 can be sequentially formed on the layer 31.
  • the insulating layer 31 is applied in advance on one surface side of the base material 21 by a coating apparatus or the like.
  • the anode layer 23 is formed on the insulating layer 31 in the laminate of the base material 21 and the insulating layer 31 by using the above-described vapor deposition method.
  • a light emitting layer 25a which is an organic layer is formed on the anode layer 23 using the vapor deposition method.
  • the cathode layer 27 is formed on the light emitting layer 25a by using the above evaporation method.
  • a sealing layer 29 is formed from above the cathode layer 27 by using the above-described vapor deposition method so as to cover each formed layer. Thereby, the organic EL element 20 is formed.
  • a shadow mask having an opening having a desired shape is interposed between each deposition source and the substrate 21, respectively. It can carry out suitably using conventionally well-known methods, such as the method of allowing the formation material of each component layer to pass through.
  • examples of the pattern of each constituent layer include shapes as shown in FIGS. 2 and 4, but are not particularly limited to FIGS. 2 and 4.
  • the anode layer 23 is first formed on the insulating layer 31 of the laminate, while preventing the anode layer 23 and the cathode layer 27 from contacting each other (FIG. 2A). reference).
  • the organic layer 25 is formed so as to cover the anode layer 23 at least on both outer sides of the light emitting section 40 in the longitudinal direction of the base material 21 (in the direction of the white arrow) (see FIG. 2B).
  • the cathode layer 27 is formed so as to protrude at least both outside of the organic layer 25 on both outer sides and cover the both ends in the longitudinal direction of the organic layer 25 (see FIG. 2C).
  • the sealing layer 29 is formed so that a part of anode layer 23 and the cathode layer 27 may protrude (FIG.2 (d)).
  • the organic EL element 20 is formed, and the overlapping portion of the anode layer 23, the organic layer 25, and the cathode layer 27 becomes the light emitting section 40 (see FIG. 3).
  • both ends in the longitudinal direction of the organic layer 25 are covered with both ends of the cathode layer 27 on both outer sides in the longitudinal direction of the light emitting unit 40.
  • the organic layer 25 protrudes outside the cathode layer 27 on both outer sides of the light emitting unit 40 in the width direction of the base material 21 (left and right direction in FIGS. 2 and 3). Furthermore, the anode layer 23 protrudes outside the organic layer 25. Further, the formed anode layer 23 and cathode layer 27 are not in contact with each other.
  • the anode layer 23 is first formed on the insulating layer 31 of the laminate, while preventing the anode layer 23 and the cathode layer 27 from contacting each other (FIG. 4 ( a)).
  • the organic layer 25 is formed so as to cover the anode layer 23 at least on both outer sides of the light emitting unit 40 in the longitudinal direction of the base material 21 (the direction of the white arrow) (see FIG. 4B).
  • the cathode layer 27 is formed so as to protrude at least both outside of the organic layer 25 on both the outer sides and cover the both ends in the longitudinal direction of the organic layer 25 (see FIG. 4C).
  • the sealing layer 29 is formed so that a part of anode layer 23 and the cathode layer 27 may protrude (refer FIG.4 (d)).
  • the organic EL element 20 is formed, and the overlapping portion of the anode layer 23, the organic layer 25, and the cathode layer 27 becomes the light emitting section 40 (see FIG. 5).
  • both ends in the longitudinal direction of the organic layer 25 are covered with both ends of the cathode layer 27 on both outer sides in the longitudinal direction of the light emitting unit 40.
  • the outer side of the light emitting unit 40 in the width direction of the base material 21 is organic (on the right side in FIGS. 4 and 5)
  • the layer 25 protrudes outside the cathode layer 27.
  • the anode layer 23 protrudes outside the organic layer 25.
  • the organic layer 25 protrudes outside the anode layer 23.
  • the cathode layer 27 protrudes outside the organic layer 25.
  • the formed anode layer 23 and cathode layer 27 are not in contact with each other.
  • the portions of the anode layer 23 and the cathode layer 27 that protrude from the sealing layer 29 are not in contact with each other. By energizing the protruding portion, the light emitting unit 40 can emit light.
  • the shape of the light emitting unit 40 is not particularly limited.
  • the anode layer 23, the organic layer 25, and the cathode layer 27 can be formed while preventing the anode layer 23 and the cathode layer 27 from being in contact with each other. For this reason, it can avoid that the anode layer 23 and the cathode layer 27 short-circuit, and the light emission part 40 can light-emit. Further, on both outer sides of the light emitting portion 40 in the longitudinal direction of the strip-shaped metal base material 21, the both ends in the longitudinal direction of the organic layer 25 are covered with the both ends in the longitudinal direction of the cathode layer 27.
  • both end edges of the organic layer 25 are formed by both end sides of the cathode layer 27 on the outer side of at least one of the light emitting units 40 in the width direction of the base material 21. Not covered. However, as described above, in the width direction, the convex portions between the grooves on the surface portion of the insulating layer 31 are in contact with the constituent layers, so that oxygen and moisture enter the sealing layer 29. Can be suppressed.
  • the said manufacturing method may implement the said manufacturing method as follows, for example.
  • the laminated body of the base material 21 and the insulating layer 31 wound up in a roll shape is fed out from a supply roller serving as a supply unit. While the substrate 21 of the laminated body that has been drawn out is brought into contact with the surface of a can roll (not shown) and moved, the anode layer 23, the organic layer 25, and the organic layer 25 are formed on the insulating layer 31 of the laminated body supported by the can roll.
  • the cathode layer 27 and the sealing layer 29 are sequentially formed as described above.
  • the obtained organic EL element 20 is wound up sequentially by a take-up roller (not shown) serving as a collection unit.
  • the said manufacturing method can be implemented as follows, for example.
  • the base material 21 wound up in a roll shape is fed out from the supply roller.
  • the insulating layer 31, the anode layer 23, the organic layer 25, the cathode layer 27, and the sealing layer 29 are sequentially formed on the fed base material 21 as described above.
  • the obtained organic EL element 20 is sequentially wound by the winding roller.
  • the sheet-like organic EL element 20 can be formed by feeding out the organic EL element 20 taken up by the take-up roller as described above and performing cutting or the like.
  • the organic EL element 20 of the present embodiment obtained by the above manufacturing method has an insulating layer 31, a first electrode layer (here, anode layer 23), and at least a light emitting layer 25 a on one surface side of a band-shaped metal base material 21.
  • the organic layer 25, the second electrode layer (in this case, the cathode layer 27), and the sealing layer 29 are sequentially formed.
  • the organic EL element 20 has an overlapping portion of the anode layer 23, the organic layer 25, and the cathode layer 27 as the light emitting unit 40.
  • the anode layer 23 and the cathode layer 27 are not in contact with each other, and the organic layer 25 protrudes beyond the anode layer 23 at least on both outer sides in the longitudinal direction of the substrate 21.
  • the cathode layer 27 protrudes at least on both outer sides in the longitudinal direction from the organic layer 25.
  • at least both ends of the organic layer 25 in the longitudinal direction are covered with the both ends of the cathode layer 27 in the longitudinal direction at least on both outer sides of the light emitting unit 40 in the longitudinal direction of the base material 21.
  • Such an organic EL element 20 is one in which deterioration is suppressed as described above.
  • the first electrode layer is the anode layer 23 and the second electrode layer is the cathode layer 27.
  • the first electrode layer is the cathode layer and the second electrode layer is the anode layer.
  • a cathode layer, an organic layer, and an anode layer can be sequentially formed on the insulating layer 31 of the laminate.
  • the surface roughness (Ra) of the substrate was measured using a stylus type surface shape measuring device (trade name: Dektak 150).
  • the surface roughness in the longitudinal direction and the short direction of the substrate was measured at 10 locations, respectively, and the average value at 10 locations was defined as the surface roughness in the longitudinal direction and the lateral direction of the substrate.
  • Example 1 As a band-shaped metal base material, the width is 30 mm, the length is 140 m, the thickness is 50 ⁇ m, the surface roughness (Ra) in the longitudinal direction of the base material is 40 nm, and the surface roughness (Ra) in the short direction of the base material is A 55 nm roll-shaped flexible SUS substrate was used. That is, in Example 1, the surface roughness in the longitudinal direction of the base material is smaller than the surface roughness in the lateral direction.
  • An acrylic resin (trade name “JEM-477” manufactured by JSR Corporation) was applied on one side of the base material with a coating apparatus to form an insulating layer having a thickness of 3 ⁇ m. The laminate of the base material and the insulating layer was wound around a supply roller (not shown).
  • the pattern shown in FIG. 2 was employ
  • an Al layer (anode layer) having a thickness of 100 nm is formed as the first electrode layer 23 on the insulating layer 31 of the laminated body while the laminated body wound up in a roll shape is continuously fed from the supply roller.
  • a 45 nm thick Alq3 layer as a layer, a light emitting layer and an electron transport layer, and a 0.5 nm thick LiF layer as an electron injection layer were heat-deposited in this order.
  • a Mg / Ag layer (cathode layer) having a thickness of 5/15 nm was co-deposited as the second electrode layer 27. Further, an ITO layer (cathode layer) having a thickness of 50 nm was formed by sputtering. Thereafter, SiOCN having a thickness of 0.4 ⁇ m was deposited as the sealing layer 29 by plasma-assisted deposition.
  • the obtained laminate (organic EL element 20) was wound up by a winding roller.
  • Example 1 After winding, the laminate was drawn out and cut at a predetermined length to obtain an organic EL element 20 (80 mm long ⁇ 30 mm wide) of Example 1 (see FIG. 3).
  • Example 2 The organic material of Example 2 is the same as Example 1 except that the pattern shown in FIG. 4 is adopted as the pattern of the first electrode layer 23, the organic layer 25, the second electrode layer 27, and the sealing layer 29. An EL element 20 was manufactured (see FIG. 5).
  • Example 3 Of the organic layers, a 0.5 nm thick LiF layer as the electron injection layer, a 45 nm thick Alq3 layer as the light emitting layer and the electron transport layer, a 50 nm thick NPB as the hole transport layer, and a 10 nm thick CuPc as the hole injection layer, Heat deposition was performed in this order. Further, as the second electrode layer, an ITO layer (cathode layer) having a thickness of 50 nm was formed by sputtering. Thereafter, SiOCN having a thickness of 400 nm was deposited as a sealing layer by plasma-assisted deposition. The rest is the same as in the first embodiment. Moreover, the pattern shown in FIG. 2 was employ
  • Comparative Example 1 An organic EL element 50 of Comparative Example 1 was manufactured in the same manner as Example 1 except that the pattern shown in FIG. 6 was used.
  • Comparative Example 2 An organic EL element 50 of Comparative Example 2 was manufactured in the same manner as Example 1 except that the pattern shown in FIG. 7 was used.
  • Comparative Example 3 An organic EL device 50 of Comparative Example 3 was manufactured in the same manner as Example 1 except that the pattern shown in FIG. 8 was used.
  • Comparative Example 4 An organic EL device 50 of Comparative Example 4 was manufactured in the same manner as Example 1 except that the pattern shown in FIG. 9 was used.
  • Comparative Example 5 An organic EL element 50 of Comparative Example 5 was manufactured in the same manner as Example 3 except that the pattern shown in FIG. 6 was used.
  • each of the obtained organic EL elements was stored in a constant temperature and humidity chamber set to 60 ° C./90% RH without emitting light. After the start of storage, each organic EL element was taken out and emitted at predetermined time intervals. The area of the light emitting part (the area of the light emitting region) was measured. The relationship between the storage time and the area of the light emitting part was plotted on a graph. The time when the area of the light emitting portion starts to decrease is defined as the lifetime of the organic EL element. Note that the area of the light emitting portion was measured using a digital microscope (trade name: VHX-1000) manufactured by Keyence Corporation. The results are shown in Table 1.
  • both ends of the organic layer are covered with both ends of the second electrode layer (cathode layer) on both outer sides of the light emitting portion in the longitudinal direction of the substrate.
  • Comparative Examples 1 to 5 at least one of both end edges of the organic layer is not covered with the cathode layer.
  • Table 1 when Examples 1 to 3 and Comparative Examples 1 to 5 were compared, the life of Examples 1 to 3 was 1.5 times longer than that of Comparative Examples 1 to 5.
  • the organic EL device obtained by the production method of the present invention was excellent in long-term stability because the deterioration of the light emission characteristics was suppressed.
  • the organic insulating layer is used as the insulating layer. However, the effects of the present invention can be obtained even when an inorganic insulating layer is used.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、発光特性の劣化が抑制された有機EL素子の製造方法等に関する。有機EL素子の製造方法は、第1の電極層と第2の電極層とが接触していないようにしつつ、有機層を第1の電極層よりも少なくとも基材の長手方向両外側にはみ出させる。さらに第2の電極層を前記有機層よりも少なくとも前記長手方向両外側にはみ出させる。これによって、少なくとも前記基材の長手方向における前記発光部の両外側において、前記有機層の前記長手方向両端縁が前記第2の電極層の前記長手方向両端側で覆われるように、前記第1の電極層、前記有機層及び前記第2の電極層を形成する。

Description

有機EL素子の製造方法及び有機EL素子 関連出願の相互参照
 本願は、日本国特願2012-41700号及び日本国特願2013-23502号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。
 本発明は、電極層及び有機層が基材上に形成され、前記有機層から光を放出するように構成された有機EL素子の製造方法及び有機EL素子に関する。
 従来、発光表示装置等に用いられる素子として有機EL(エレクトロルミネッセンス)素子が知られている。有機EL素子は、基本的には、少なくとも発光層を有機構成層として有する有機層と一対の電極層とを有している。
 かかる有機EL素子の一例を図10に示す。図10に示すように、従来の有機EL素子50は、基材21の一面側に、該素子の構成層として、第1の電極層23(例えば陽極層)、少なくとも発光層を有機構成層として有する有機層25、第2の電極層27(例えば陰極層)が順に積層され(図10(a)参照)、次いで、封止層29が積層されることによって形成されるようになっている(図10(b)~(d)参照)。また、第1の電極層23と有機層25と第2の電極層27との重なり部分を発光部40として有している。
 さらに、第1の電極層23及び第2の電極層27は、互いに短絡することなく外部から通電可能とするために、封止層29よりも外側に、互いに重ならないようにはみ出して形成されている。
 例えば、図10(b)の右側において、上記短絡することなく第1の電極層23を通電可能とするために、有機層25の右側端部側が、第2の電極層27の右側端縁よりも右側にはみ出している。また、第1の電極層23の右側端部側が、有機層25の右側端縁よりも右側にはみ出している(図10(a)の右側参照)。さらに、該第1の電極層の右側端部側が、封止層29の右側端縁よりも右側にはみ出して形成されている(図10(d)の右側参照))。
 また、図10(b)の左側において、上記短絡することなく第2の電極層27を通電可能とするために、有機層25の左側端部側が第1の電極層23の左側端縁よりも左側にはみ出している。また、第2の電極層27の左側端部側が有機層25の左側端縁よりも左側にはみ出している(図10(a)の左側参照)。さらに、該第2の電極層27が封止層29の左側端縁よりも左側にはみ出して形成されている(図10(d)の左側参照)。
 この種の有機EL素子では、フレキシブル化を図るために、基材として有機樹脂製の基材が用いられているが、この場合、酸素や水分が、基材を通過して上記構成層側へと侵入し、有機EL素子の発光特性が経時的に劣化する場合がある。
 そこで、金属製の基材を用いることによって、酸素や水分が基材を通過することを防止することが提案されている(特許文献1、2参照)。また、このように金属製の基材を用いる場合、金属製の基材と上記第1の電極層との接触による短絡を防止するために、基材上に絶縁層を形成するようになっている。
日本国特開2002-25763号公報 日本国特許第3942017号公報
 しかし、上記のような絶縁層を金属製の基材上に形成した場合においても、酸素や水分が有機層と電極層との境界において端縁側から侵入し、発光部において経時的に発光しない領域(ダークフレーム)が発生して、発光特性の劣化が生じる場合がある。
 本発明は、上記問題点に鑑み、発光特性の劣化が抑制された有機EL素子の製造方法及び有機EL素子を提供することを課題とする。
 上記課題を解決するために、本発明者らが鋭意研究したところ、以下のことが判明した。
 すなわち、帯状の金属製の基材は、通常、長手方向に圧延されることによって形成されている。かかる圧延により、該基材の表面部には、長手方向に延在している微細な溝が幅方向に亘って複数形成されていることが判明した。
 また、基材に絶縁層を積層した後においても、基材に積層された絶縁層の表面部には、基材の溝に起因する溝が長手方向に延在していることが判明した。
 このため、かかる基材を用いて有機EL素子を形成したとき、基材の幅方向における発光部の両外側においては、絶縁層表面部の複数の溝間に形成された凸部と、主として封止層とが接触している。この接触によって、幅方向外側からは封止層の内側へと酸素や水分が侵入し難く、発光特性の劣化に及ぼす影響が比較的小さいことが判明した。
 これに対し、基材の長手方向における発光部の両外側においては、有機層と第2の電極層の各形成パターンによって、発光特性の劣化に及ぼす影響が大きく異なることが判明した。
 具体的には、上記長手方向における発光部の両外側の少なくともいずれか一方において、第2の電極層が有機層よりも外側にはみ出していない。有機層の両端縁が第2の電極層に覆われていない場合には(図6~図10参照)、上記絶縁層表面部の溝を酸素や水分が通過して封止層の内側まで侵入する。さらに、有機層と第1の電極層との境界や、有機層と第2の電極層との境界において、端縁側から発光部に相当する領域まで酸素や水分が侵入する。これにより、発光特性の劣化が生じることが判明した。
 一方、上記長手方向における発光部よりも両外側において、第2の電極層が有機層よりもはみ出しており、有機層の両端縁が第2の電極層の両端側で覆われている場合には(図2~図5参照)、上記絶縁層表面部の溝を酸素や水分が通過して封止層の内側まで侵入しても、第2の電極層によって、更に内側へ侵入することを抑制することができる。このため、有機層と第2の電極層との境界に酸素や水分が到達し難くなり、発光部まで酸素や水分が到達し難くなることが判明した。
 そして、かかる知見に基づき、本発明者らは、本発明を完成するに至った。
 すなわち、本発明者に係る有機EL素子の製造方法は、帯状の金属製の基材の一面側に絶縁層、第1の電極層、少なくとも発光層を有機構成層として有する有機層、第2の電極層及び封止層を順次形成することにより、前記第1の電極層と前記有機層と前記第2の電極層との重なり部分を発光部として有する有機EL素子を作製する有機EL素子の製造方法であって、前記第1の電極層と前記第2の電極層とが接触していないようにしつつ、前記有機層を前記第1の電極層よりも少なくとも前記基材の長手方向両外側にはみ出させ、さらに前記第2の電極層を前記有機層よりも少なくとも前記長手方向両外側にはみ出させることによって、少なくとも前記基材の長手方向における前記発光部の両外側において、前記有機層の前記長手方向両端縁が前記第2の電極層の前記長手方向両端側で覆われるように、前記第1の電極層、前記有機層及び前記第2の電極層を形成することを特徴とする。
 また、本発明に係る有機EL素子は、帯状の金属製の基材の一面側に絶縁層、第1の電極層、少なくとも発光層を有機構成層として有する有機層、第2の電極層及び封止層が順次形成されてなり、前記第1の電極層と前記有機層と前記第2の電極層との重なり部分を発光部として有する有機EL素子であって、前記第1の電極層と前記第2の電極層とが接触しておらず、且つ、前記有機層が前記第1の電極層よりも少なくとも前記基材の長手方向両外側にはみ出しており、さらに前記第2の電極層が前記有機層よりも少なくとも前記長手方向両外側にはみ出していることによって、少なくとも前記基材の長手方向における前記発光部の両外側において、前記有機層の前記長手方向両端縁が前記第2の電極層の前記長手方向両端側で覆われていることを特徴とする。
 また、本発明に係る有機EL素子及びその製造方法によれば、前記基材の長手方向の表面粗さが短手方向の表面粗さより小さくされていることが望ましい。
図1は、有機EL素子の層構成例を模式的に示す概略部分側面断面図である。図1(a)は、有機層が1層の場合を示す図である。図1(b)は、有機層が3層の場合を示す図である。図1(c)は、有機層が5層の場合を示す図である。 図2(a)は、実施例1及び実施例3の有機EL素子の製造において陽極層が形成された状態を模式的に示す概略平面図である。図2(b)は、有機層が形成された状態を模式的に示す概略平面図である。図2(c)は、陰極層が形成された状態を模式的に示す概略平面図である。図2(d)は、封止層が形成された状態を模式的に示す概略平面図である。 図3(a)は、実施例1及び実施例3の有機EL素子を模式的に示す概略平面図である。図3(b)は、図3(a)のA-A矢視断面図である。図3(c)は、図3(a)のB-B矢視断面図である。 図4(a)は、実施例2の有機EL素子の製造において陽極層が形成された状態を模式的に示す概略平面図である。図4(b)は、有機層が形成された状態を模式的に示す概略平面図である。図4(c)は、陰極層が形成された状態を模式的に示す概略平面図である。図4(d)は、封止層が形成された状態を模式的に示す概略平面図である。 図5(a)は、実施例2の有機EL素子を模式的に示す概略平面図である。図5(b)は、図5(a)のA-A矢視断面図である。図5(c)は、図5(a)のB-B矢視断面図である。 図6(a)は、比較例1及び比較例5の有機EL素子の製造において封止層が形成される前の状態を模式的に示す概略平面図である。図6(b)は、封止層が形成された状態を模式的に示す概略平面図である。 図7(a)は、比較例2の有機EL素子の製造において封止層が形成される前の状態を模式的に示す概略平面図である。図7(b)は、封止層が形成された状態を模式的に示す概略平面図である。 図8(a)は、比較例3の有機EL素子の製造において封止層が形成される前の状態を模式的に示す概略平面図である。図8(b)は、封止層が形成された状態を模式的に示す概略平面図である。 図9(a)は、比較例4の有機EL素子の製造において封止層が形成される前の状態を模式的に示す概略平面図である。図9(b)は、封止層が形成された状態を模式的に示す概略平面図である。 図10(a)は、従来の有機EL素子の製造において封止層が形成される前の状態を模式的に示す概略平面図である。図10(b)は、封止層が形成された状態を模式的に示す概略平面図である。図10(c)は、図10(b)のA-A矢視断面図である。図10(d)は、図10(b)のB-B矢視断面図である。
 以下に本発明に係る有機EL素子の製造方法及び有機EL素子について図面を参照しつつ説明する。
 本実施形態に係る有機EL素子の製造方法は、帯状の金属製の基材21の一面側に絶縁層31、第1の電極層(ここでは陽極層)23、少なくとも発光層25aを有機構成層として有する有機層25、第2の電極層27(ここでは陰極層)及び封止層29を順次形成する。これにより、陽極層23と前記有機層25と陰極層27との重なり部分を発光部40として有する有機EL素子20が作製される。また、有機EL素子の製造方法は、陽極層23と陰極層27とが接触していないようにしつつ、有機層25を陽極層23よりも少なくとも基材21の長手方向両外側にはみ出させる。さらに有機EL素子の製造方法は、陰極層27を有機層27よりも少なくとも上記長手方向両外側にはみ出させる。これによって、少なくとも基材21の長手方向における発光部40の両外側において、有機層25の上記長手方向両端縁が陰極層27の上記長手方向両端側で覆われるように、陽極層23、有機層25及び陰極層27が形成される。
 基材21に用いる金属材料としては、例えばステンレス、Fe、Al、Ni、Co、Cuやこれらの合金等、圧延することによって、常温・常圧において帯状のシートとすることが可能な金属であれば、何れの金属も用いることができる。
 絶縁層31としては、例えば、有機絶縁層及び無機絶縁層を用いることができる。
 有機絶縁層の形成材料としては、絶縁性の樹脂を使用することができる。基材21が、有機EL素子の製造過程において、150~300℃に加熱される場合があるため、有機絶縁層の材料としては、150℃以上のガラス転移温度を有する耐熱性樹脂を用いることが好ましい。かかる耐熱性樹脂としては、具体的には、アクリル樹脂、ノルボルネン樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、ポリフェニルスルホン樹脂およびこれらの樹脂の複合体等が挙げられる。これらの中でも、前記耐熱性樹脂は、アクリル樹脂、ノルボルネン樹脂、エポキシ樹脂およびポリイミド樹脂からなる群から選択される少なくとも1種であることが好ましい。
 有機絶縁層の厚みは、薄すぎると、金属製の基材21の表面凹凸の平坦化が十分にできず、厚すぎると、金属製の基材21に対する密着性が低下するおそれがある。かかる観点を考慮すると、前記有機絶縁層の厚みは、1~40μmの範囲であることが好ましい。厚みがこの範囲内であると、十分な電気絶縁性を確保するとともに、基材21に対する密着性をも確保することができる。前記有機絶縁層の厚みは、より好ましくは、0.5~10μmであり、さらに好ましくは、1~5μmである。基材21上に前記有機絶縁層を形成する方法は特に限定されず、ロールコート、スプレーコート、スピンコートおよびディッピング等による塗布や、フィルム状に形成された樹脂の転写等により形成することができる。
 無機絶縁層を形成する材料としては、絶縁性を有する無機材料を用いることができる。また、かかる無機材料は、ガスバリア性を有することが好ましい。かかる無機材料として、例えば、金属及び半金属の少なくとも1種を含むことが好ましい。また、かかる金属及び前記半金属の少なくとも1種は、酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物、窒化炭化物及び酸化窒化炭化物からなる群から選ばれる少なくとも1種であることが好ましい。金属としては、例えば、亜鉛、アルミニウム、チタン、銅、マグネシウム等が挙げられ、半金属としては、例えば、ケイ素、ビスマス、ゲルマニウム等が挙げられる。
 前記無機絶縁層は薄すぎると絶縁性が低下する。また、無機絶縁層が厚すぎるとクラックが生じやすくなり、ガスバリア性および絶縁性が低下する。前記無機絶縁層の厚さは、10nm~5μmの範囲であることが好ましく、50nm~2μmの範囲であることがより好ましく、0.1~1μmの範囲であることがさらに好ましい。前記無機絶縁層を形成する方法は、特に限定されず、無機絶縁層形成材料を吐出可能な蒸着源を用いた蒸着法、スパッタリング法、CVD法等の乾式法およびゾル-ゲル法等の湿式法等を利用することができる。
 陽極層23を形成するための材料(陽極層形成材料)としては、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)や、酸化亜鉛(ZnO)、ガリウムドープ酸化亜鉛(GZO)、アンチモンドープ酸化亜鉛(AZO)等の酸化亜鉛系材料等を用いることができる。
 絶縁層31上に陽極層23を形成する方法は、特に限定されず、例えば、陽極層形成材料を吐出可能な蒸着源を用いた一般的な蒸着法を利用することができ、かかる蒸着法のうち、加熱蒸着法を利用することが好ましい。
 有機層25は、少なくとも発光層25aを有機構成層として有する。かかる有機層25は、1つの有機構成層から構成されるか、または、複数の有機構成層が積層されて構成されている。有機層25が1つの有機構成層から構成される場合には、該有機構成層は、上記した発光層25aである。有機層が複数の有機構成層から構成される場合には、該複数の有機構成層は、発光層25aと、発光層25a以外の有機構成層とから構成される。また、発光層25a以外の有機構成層としては、例えば、正孔注入層25b、正孔輸送層25d、電子注入層25c、電子輸送層25eが挙げられる。
 このように、有機層25は、少なくとも発光層25aを有機構成層として有していれば特に限定されるものではない。有機層25は、必要に応じて、複数の有機構成層を積層して形成されるように構成することができる。例えば図1(b)に示すように、正孔注入層25b、発光層25a及び電子注入層25cをこの順に積層して、有機層を3層積層体とすることもできる。その他、必要に応じて、上記図1(b)に示す発光層25aと正孔注入層25bの間に正孔輸送層25d(図1(c)参照)を挟むことによって、または、発光層25aと電子注入層25cとの間に電子輸送層25e(図1(c)参照)を挟むことによって、有機層を4層積層体とすることもできる。
 さらに、図1(c)に示すように、正孔注入層25bと発光層25aとの間に正孔輸送層25d、発光層25aと電子注入層25cとの間に電子輸送層25eを挟むことによって、有機層を5層積層体とすることもできる。また、各層の膜厚は、通常、数nm~数十nm程度になるように設計されるが、かかる膜厚は、有機層形成材料22や、発光特性等に応じて適宜設計されるものであり、特に限定されない。
 発光層25aを形成するための材料としては、例えば、トリス(8-キノリノール)アルミニウム(Alq3)、[2-tert-ブチル-6-[2-(2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H-ベンゾ[ij]キノリジン-9-イル)ビニル]-4H-ピラン-4-イリデン]マロノニトリル(DCJTB)等を用いることができる。
 正孔注入層25bとは、陽極層23から、発光層25aや正孔輸送層25dに正孔を注入し易くする層である。かかる正孔注入層25bを形成するための材料としては、例えば、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)、銅フタロシアニン(CuPc)、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル4,4’ジアミン(α-NPD)等を用いることができる。
 正孔輸送層25dとは、正孔を輸送する機能、または陰極層27から注入された電子が陽極層23へと移動することを抑制する機能の少なくともいずれかを有している層である。かかる正孔輸送層25dを形成するための材料としては、例えば、N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-ベンジジン(NPB)、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル4,4’ジアミン(α-NPD)、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-[1,1’-ビフェニル]-4,4’ジアミン(TPD)等を用いることができる。
 電子注入層25cとは、陰極層27から、発光層25aまたは電子輸送層25eに電子を注入し易くする層である。かかる電子注入層25cを形成するための材料としては、例えば、フッ化リチウム(LiF)、フッ化セシウム(CsF)等を用いることができる。
 電子輸送層25eとは、電子を輸送する機能、または陽極層23から注入された正孔が陰極層27へと移動することを抑制する機能の少なくともいずれかを有している層である。かかる電子輸送層25eを形成するための材料としては、例えば、トリス(8-キノリノール)アルミニウム(Alq3)等を用いることができる。
 陽極層23上に有機層25を形成する方法は、特に限定されず、例えば、有機層形成材料を吐出可能な蒸着源を用いた一般的な蒸着法を利用することができる。かかる蒸着法のうち、加熱蒸着法を利用することが好ましい。
 陰極層27を形成するための材料(陰極層形成材料)としては、アルミニウム(Al)、マグネシウム銀(Mg/Ag)、ITO、IZO等を用いることができる。
 有機層25上に陰極層27を形成する方法は、特に限定されず、例えば、陰極層形成材料を吐出可能な蒸着源を用いた蒸着法を利用することができる。また、その他、例えば、スパッタリングにより成膜を行う方法を利用することもできる。
 封止層29を形成するための材料(封止層形成材料)としては、SiOCN、SiN、SiON等を用いることができる。
 陰極層27上に封止層29形成する方法も、特に限定されず、例えば、封止層形成材料を吐出可能な蒸着源を用いた蒸着法を利用することができ、かかる蒸着法のうち、例えばプラズマアシスト蒸着法を利用することが好ましい。
 本実施形態の有機EL素子の製造方法においては、基材21と該基材21の一面側に形成された絶縁層31との積層体を予め形成し、該積層体の絶縁層31上に、陽極層23、発光層25a、陰極層27及び封止層29を順次蒸着することとする。なお、その他、予め絶縁層31が積層されていない基材21上に、絶縁層31を形成するための蒸着源によって基材21上に絶縁層31を形成し、このように形成された絶縁層31上に、上記陽極層23、発光層25a、陰極層27及び封止層29を順次形成することもできる。
 本実施形態の有機EL素子の製造方法においては、具体的には例えば、先ず、塗工装置等によって基材21の一面側に予め絶縁層31を塗工する。
 次に、基材21と絶縁層31との積層体における絶縁層31上に、上記蒸着法を利用して陽極層23を形成する。次に、該陽極層23上に、上記蒸着法を利用して有機層たる発光層25aを形成する。そして、該発光層25a上に、上記蒸着法を利用して陰極層27を形成する。次に、形成された各層を覆うように該陰極層27の上方から、上記蒸着法を利用して封止層29を形成する。これによって、有機EL素子20を形成する。
 次いで、各層の形成について説明する。
 陽極層23、有機層25、陰極層27及び封止層29のパターニングは、例えば、所望の形状の開口を有するシャドーマスクを上記した各蒸着源と基材21との間にそれぞれ介入させて、各構成層の形成材料を通過させる方法等、従来公知の方法を用いて適宜行うことができる。また、各構成層のパターンとしては、例えば、図2、図4に示すような形状が挙げられるが、これら図2、図4に特に限定されるものではない。
 例えば、図1に示すように、陽極層23と陰極層27とが接触していないようにしつつ、まず、上記積層体の絶縁層31上に、陽極層23を形成する(図2(a)参照)。次に、基材21の長手方向(白抜き矢印方向)における発光部40の少なくとも両外側において陽極層23を覆うように有機層25を形成する(図2(b)参照)。次に、上記両外側において有機層25よりも少なくとも両外側にはみ出し、有機層25の上記長手方向両端縁を覆うように陰極層27を形成する(図2(c)参照)。そして、陽極層23及び陰極層27の一部がはみ出すように封止層29を形成する(図2(d))。これにより、有機EL素子20が形成され、陽極層23、有機層25及び陰極層27の重なり部分が発光部40となる(図3参照)。また、図2、図3に示すように、発光部40の上記長手方向両外側において、有機層25の上記長手方向両端縁は、陰極層27の両端側によって覆われている。
 かかる図2及び図3では、基材21の幅方向(図2及び図3の左右方向)における発光部40の両外側において、有機層25が陰極層27よりも外側にはみ出している。さらに、陽極層23が有機層25よりも外側にはみ出している。また、形成された陽極層23と陰極層27とは接触していない。
 また、例えば、図4に示すように、陽極層23と陰極層27とが接触していないようにしつつ、まず、上記積層体の絶縁層31上に、陽極層23を形成する(図4(a)参照)。次に、基材21の長手方向(白抜き矢印方向)における発光部40の少なくとも両外側において陽極層23を覆うように有機層25を形成する(図4(b)参照)。次に、上記両外側において有機層25よりも少なくとも両外側にはみ出し、有機層25の上記長手方向両端縁を覆うように陰極層27を形成する(図4(c)参照)。そして、陽極層23及び陰極層27の一部がはみ出すように封止層29を形成する(図4(d)参照)。これにより、有機EL素子20が形成され、陽極層23、有機層25及び陰極層27の重なり部分が発光部40となる(図5参照)。また、図4、図5に示すように、発光部40の上記長手方向両外側において、有機層25の上記長手方向両端縁は、陰極層27の両端側によって覆われている。
 かかる図4及び図5では、基材21の幅方向(図4及び図5の左右方向)における発光部40の両外側のうち、一方の外側(図4及び図5の右側)においては、有機層25が陰極層27よりも外側にはみ出ている。また、陽極層23が有機層25よりも外側にはみ出している。これに対し、他方の外側(図4及び図5の左側)では、有機層25が陽極層23よりも外側にはみ出ている。さらに、陰極層27が有機層25よりも外側にはみ出している。また、形成された陽極層23と陰極層27とは接触していない。
 上記図3及び図5に例示された有機EL素子20において、陽極層23及び陰極層27における封止層29からはみ出している部分は、互いに接触していない。かかるはみ出し部分に通電することによって、発光部40を発光させることができる。
 また、本実施形態では、発光部40が矩形状であるような構成を採用したが、かかる発光部40の形状は、特に限定されるものでない。
 かかる製造方法によれば、陽極層23と陰極層27とが接触していないようにしつつ、陽極層23、有機層25及び陰極層27を形成することができる。このため、陽極層23と陰極層27とが短絡することを回避して、発光部40の発光を可能にすることができる。また、帯状の金属製の基材21の長手方向における発光部40の両外側において、有機層25の上記長手方向両端縁を陰極層27の上記長手方向両端側で覆うことによって、基材21の表面部に長手方向に沿って延在している微細な溝に起因する、絶縁層31の表面部の溝を酸素や水分が通過し、封止層29の内側まで侵入しても、有機層25と陰極層27との境界には到達し難くなるため、発光部40の内側まで酸素や水分が侵入することを抑制することができる。
 従って、発光特性の劣化が抑制された有機EL素子20を製造することが可能となる。
 なお、図2~図5に例示された有機EL素子20では、基材21の幅方向において発光部40のいずれか少なくとも一方の外側では、有機層25の両端縁が陰極層27の両端側によって覆われていない。しかしながら、前述したように、幅方向においては、絶縁層31の表面部の溝間の凸部と上記構成層とが接触しているため、酸素や水分が封止層29の内部に侵入することを抑制することができる。
 また、上記製造方法を例えば、以下のように実施してもよい。ロール状に巻き取られた基材21と絶縁層31との積層体を供給部たる供給ローラから繰り出す。繰り出された積層体の基材21をキャンロール(不図示)の表面に当接させて移動させつつ、該キャンロールに支持された積層体の絶縁層31上に陽極層23、有機層25、陰極層27及び封止層29を上記の様に順次形成する。得られた有機EL素子20を、回収部たる巻き取りローラ(不図示)により順次巻き取る。
 また、上記製造方法を、その他例えば、以下のように実施できる。ロール状に巻き取られた基材21を上記供給ローラから繰り出す。繰り出された基材21上に、絶縁層31、陽極層23、有機層25、陰極層27及び封止層29を上記の様に順次形成する。得られた有機EL素子20を上記巻き取りローラにより順次巻き取る。
 また、上記のようにして巻き取りローラで巻き取られた有機EL素子20を繰り出し、裁断等を行って、シート状の有機EL素子20を形成することもできる。
 上記製造方法によって得られた本実施形態の有機EL素子20は、帯状の金属製の基材21の一面側に絶縁層31、第1の電極層(ここでは陽極層23)、少なくとも発光層25aを有機構成層として有する有機層25、第2の電極層(ここでは陰極層27)及び封止層29が順次形成されてなる。さらに、有機EL素子20は、陽極層23と有機層25と陰極層27との重なり部分を発光部40として有する。陽極層23と陰極層27とが接触しておらず、且つ、有機層25が陽極層23よりも少なくとも基材21の長手方向両外側にはみ出している。さらに陰極層27が有機層25よりも少なくとも前記長手方向両外側にはみ出している。これによって、少なくとも基材21の長手方向における発光部40の両外側において、有機層25の前記長手方向両端縁が陰極層27の前記長手方向両端側で覆われている。
 かかる有機EL素子20は、上記の通り、劣化が抑制されたものとなる。
 本発明の有機EL素子の製造方法及び有機EL素子は、上記の通りであるが、本発明は上記各実施形態に限定されず本発明の意図する範囲内において適宜設計変更可能である。
 また、上記実施形態では、第1の電極層を陽極層23、第2の電極層を陰極層27としたが、その他、第1の電極層を陰極層、第2の電極層を陽極層として、上記積層体の絶縁層31上に、陰極層、有機層及び陽極層を、順次形成することもできる。
 次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
<基材の表面粗さRaの測定>
基材の表面粗さ(Ra)の測定は、触針式表面形状測定装置(商品名:Dektak150)を用いて行った。基材の長手方向および短手方向の表面粗さをそれぞれ10箇所測定し、10箇所の平均値を、基材の長手方向および短手方向の表面粗さとした。
実施例1
 帯状の金属製の基材として、幅が30mm、長さが140m、厚み50μm、基材の長手方向の表面粗さ(Ra)が40nm、基材の短手方向の表面粗さ(Ra)が55nmのロール状のフレキシブルSUS基板を用いた。すなわち、実施例1においては、基材の長手方向の表面粗さが短手方向の表面粗さよりも小さくなっている。この基材の一面側に、アクリル樹脂(JSR株式会社製 商品名「JEM-477」)を塗工装置で塗工することによって、厚み3μmの絶縁層を形成した。かかる基材と絶縁層との積層体を供給ローラ(不図示)に巻き回した。また、第1の電極層、有機層、第2の電極層及び封止層のパターンとして、図2に示すパターンを採用した。
 そして、ロール状に巻き取られた上記積層体を上記供給ローラから連続的に繰り出しつつ、繰り出された積層体の絶縁層31上に、第1の電極層23として厚み100nmのAl層(陽極層)、有機層25のうち、正孔注入層として厚み10nmのHAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)層、正孔輸送層として厚み50nmのNPB層、発光層および電子輸送層として厚み45nmのAlq3層、電子注入層として厚み0.5nmのLiF層をこの順に加熱蒸着した。その後、第2の電極層27として、厚み5/15nmのMg/Ag層(陰極層)を共蒸着した。さらに、スパッタリングによって厚み50nmのITO層(陰極層)を成膜した。その後、封止層29として厚み0.4μmのSiOCNをプラズマアシスト蒸着により蒸着した。得られた積層体(有機EL素子20)は巻き取りローラで巻き取られた。
 巻き取った後、上記積層体を繰り出し、所定の長さで切断することによって、実施例1の有機EL素子20(縦80mm×横30mm)を得た(図3参照)。
実施例2
 第1の電極層23、有機層25、第2の電極層27及び封止層29のパターンとして、図4に示すパターンを採用したこと以外は実施例1と同様にして、実施例2の有機EL素子20を製造した(図5参照)。
実施例3
 有機層のうち、電子注入層として厚み0.5nmのLiF層、発光層および電子輸送層として厚み45nmのAlq3層、ホール輸送層として厚み50nmのNPB、正孔注入層として厚み10nmのCuPcを、この順に加熱蒸着した。さらに、第2の電極層として、スパッタリングによって厚み50nmのITO層(陰極層)を成膜した。その後、封止層として、厚み400nmのSiOCNをプラズマアシスト蒸着により蒸着した。それ以外は実施例1と同様である。また、図2に示すパターンを採用して、実施例3の有機EL素子20(縦80mm×横30mm)を得た(図3参照)。
比較例1
 図6に示すパターンを用いたこと以外は実施例1と同様にして、比較例1の有機EL素子50を製造した。
比較例2
 図7に示すパターンを用いたこと以外は実施例1と同様にして、比較例2の有機EL素子50を製造した。
比較例3
 図8に示すパターンを用いたこと以外は実施例1と同様にして、比較例3の有機EL素子50を製造した。
比較例4
 図9に示すパターンを用いたこと以外は実施例1と同様にして、比較例4の有機EL素子50を製造した。
比較例5
 図6に示すパターンを用いたこと以外は実施例3と同様にして、比較例5の有機EL素子50を製造した。
<有機EL素子の寿命評価>
 得られた各有機EL素子を、60℃/90%RHに設定された恒温恒湿器内に、発光していない状態で保存した。保存開始後、所定時間ごとに各有機EL素子を取り出して発光させた。発光部の面積(発光している領域の面積)を測定した。保存時間と発光部の面積との関係をグラフ上にプロットした。そして、発光部の面積が減少し始める時間を有機EL素子の寿命とした。なお、発光部の面積の測定は、株式会社キーエンス製のデジタルマイクロスコープ(商品名:VHX-1000)を用いて行った。結果を表1に示す。
 実施例1~3では、基材の長手方向における発光部の両外側において、有機層の両端縁が第2の電極層(陰極層)の両端側で覆われている。比較例1~5では、有機層の両端縁の少なくとも一方が陰極層で覆われていない。表1に示すように、実施例1~3と比較例1~5とを比較すると、実施例1~3の寿命は、比較例1~5の寿命の1.5倍以上長かった。この結果、本発明の製造方法によって得られた有機EL素子は、発光特性の劣化が抑制されており、長期間安定性に優れることがわかった。
 なお、上記実施例では絶縁層として有機絶縁層を用いたが、無機絶縁層を用いても同様に、本発明の効果が得られる。
Figure JPOXMLDOC01-appb-T000001
20:有機EL素子、21:基材、23:陽極層(第1の電極層)、25:有機層、25a: 発光層(有機構成層)、27:陰極層(第2の電極層)、29:封止層、40:発光部

Claims (4)

  1.  帯状の金属製の基材の一面側に絶縁層、第1の電極層、少なくとも発光層を有機構成層として有する有機層、第2の電極層及び封止層を順次形成することにより、
     前記第1の電極層と前記有機層と前記第2の電極層との重なり部分を発光部として有する有機EL素子を作製する有機EL素子の製造方法であって、
     前記第1の電極層と前記第2の電極層とが接触していないようにしつつ、
     前記有機層を前記第1の電極層よりも少なくとも前記基材の長手方向両外側にはみ出させ、さらに前記第2の電極層を前記有機層よりも少なくとも前記長手方向両外側にはみ出させることによって、少なくとも前記基材の長手方向における前記発光部の両外側において、前記有機層の前記長手方向両端縁が前記第2の電極層の前記長手方向両端側で覆われるように、前記第1の電極層、前記有機層及び前記第2の電極層を形成することを特徴とする有機EL素子の製造方法。
  2.  前記基材の長手方向の表面粗さが短手方向の表面粗さより小さい請求項1に記載の有機EL素子の製造方法。
  3.  帯状の金属製の基材の一面側に絶縁層、第1の電極層、少なくとも発光層を有機構成層として有する有機層、第2の電極層及び封止層が順次形成されてなり、
     前記第1の電極層と前記有機層と前記第2の電極層との重なり部分を発光部として有する有機EL素子であって、
     前記第1の電極層と前記第2の電極層とが接触しておらず、且つ、
     前記有機層が前記第1の電極層よりも少なくとも前記基材の長手方向両外側にはみ出しており、さらに前記第2の電極層が前記有機層よりも少なくとも前記長手方向両外側にはみ出していることによって、少なくとも前記基材の長手方向における前記発光部の両外側において、前記有機層の前記長手方向両端縁が前記第2の電極層の前記長手方向両端側で覆われていることを特徴とする有機EL素子。
  4.  前記基材の長手方向の表面粗さが短手方向の表面粗さより小さい請求項3に記載の有機EL素子。
PCT/JP2013/055379 2012-02-28 2013-02-28 有機el素子の製造方法及び有機el素子 WO2013129564A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20147022409A KR20140128330A (ko) 2012-02-28 2013-02-28 유기 el 소자의 제조 방법 및 유기 el 소자
CN201380011467.XA CN104145530B (zh) 2012-02-28 2013-02-28 有机el元件的制造方法和有机el元件
EP13754199.1A EP2822361A4 (en) 2012-02-28 2013-02-28 METHOD FOR MANUFACTURING ORGANIC EL DEVICE AND ORGANIC EL DEVICE
US14/381,478 US9331307B2 (en) 2012-02-28 2013-02-28 Method for manufacturing organic EL device and organic EL device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-041700 2012-02-28
JP2012041700 2012-02-28
JP2013023502A JP5369240B2 (ja) 2012-02-28 2013-02-08 有機el素子の製造方法及び有機el素子
JP2013-023502 2013-02-08

Publications (1)

Publication Number Publication Date
WO2013129564A1 true WO2013129564A1 (ja) 2013-09-06

Family

ID=49082755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055379 WO2013129564A1 (ja) 2012-02-28 2013-02-28 有機el素子の製造方法及び有機el素子

Country Status (7)

Country Link
US (1) US9331307B2 (ja)
EP (1) EP2822361A4 (ja)
JP (1) JP5369240B2 (ja)
KR (1) KR20140128330A (ja)
CN (2) CN104145530B (ja)
TW (1) TWI590509B (ja)
WO (1) WO2013129564A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6654913B2 (ja) 2016-01-26 2020-02-26 住友化学株式会社 有機el素子の製造方法及び有機el素子
CN107768534A (zh) * 2016-08-19 2018-03-06 上海和辉光电有限公司 一种柔性oled的薄膜封装结构及其制备方法
CN107845732A (zh) * 2016-09-19 2018-03-27 上海和辉光电有限公司 一种薄膜封装结构和oled显示面板
KR102620962B1 (ko) 2016-12-07 2024-01-03 엘지디스플레이 주식회사 유기발광표시장치 및 이의 제조방법
CN108206242A (zh) * 2016-12-19 2018-06-26 上海和辉光电有限公司 柔性oled显示屏的封装结构及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025763A (ja) 2000-07-11 2002-01-25 Nisshin Steel Co Ltd 有機el素子用絶縁基板
JP3942017B2 (ja) 2002-03-25 2007-07-11 富士フイルム株式会社 発光素子
WO2009025286A1 (ja) * 2007-08-21 2009-02-26 Konica Minolta Holdings, Inc. 照明装置
WO2011001567A1 (ja) * 2009-07-01 2011-01-06 シャープ株式会社 有機el発光体、有機el照明装置、及び有機el発光体の製造方法
WO2011117073A2 (de) * 2010-03-22 2011-09-29 Osram Opto Semiconductors Gmbh Organische lichtemittierende vorrichtung mit homogener leuchtdichteverteilung
WO2013024707A1 (ja) * 2011-08-12 2013-02-21 日東電工株式会社 有機el素子の製造方法及び製造装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721571B1 (ko) * 2005-03-07 2007-05-23 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그의 제조방법
KR100864882B1 (ko) * 2006-12-28 2008-10-22 삼성에스디아이 주식회사 유기전계발광표시장치 및 그 제조방법
JP2009037809A (ja) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス装置およびその製造方法
JP5142846B2 (ja) * 2008-06-17 2013-02-13 株式会社日立製作所 有機発光装置
EP2629590A1 (en) 2008-06-17 2013-08-21 Hitachi Ltd. An organic light-emitting device
KR101246960B1 (ko) * 2008-08-26 2013-03-25 샤프 가부시키가이샤 유기 el 디바이스 및 그 제조 방법
US20100258797A1 (en) * 2009-04-13 2010-10-14 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
JP5627896B2 (ja) * 2009-09-30 2014-11-19 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
JP5638924B2 (ja) * 2010-11-29 2014-12-10 ローム株式会社 有機発光素子
WO2013088479A1 (ja) * 2011-12-15 2013-06-20 パナソニック株式会社 デバイスの製造方法、および有機elデバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025763A (ja) 2000-07-11 2002-01-25 Nisshin Steel Co Ltd 有機el素子用絶縁基板
JP3942017B2 (ja) 2002-03-25 2007-07-11 富士フイルム株式会社 発光素子
WO2009025286A1 (ja) * 2007-08-21 2009-02-26 Konica Minolta Holdings, Inc. 照明装置
WO2011001567A1 (ja) * 2009-07-01 2011-01-06 シャープ株式会社 有機el発光体、有機el照明装置、及び有機el発光体の製造方法
WO2011117073A2 (de) * 2010-03-22 2011-09-29 Osram Opto Semiconductors Gmbh Organische lichtemittierende vorrichtung mit homogener leuchtdichteverteilung
WO2013024707A1 (ja) * 2011-08-12 2013-02-21 日東電工株式会社 有機el素子の製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2822361A4

Also Published As

Publication number Publication date
JP5369240B2 (ja) 2013-12-18
US20150123088A1 (en) 2015-05-07
CN105720209A (zh) 2016-06-29
JP2013211258A (ja) 2013-10-10
KR20140128330A (ko) 2014-11-05
CN104145530A (zh) 2014-11-12
TW201345016A (zh) 2013-11-01
CN104145530B (zh) 2016-06-29
EP2822361A1 (en) 2015-01-07
TWI590509B (zh) 2017-07-01
EP2822361A4 (en) 2015-10-21
US9331307B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
US10811631B2 (en) Thin film transistor element substrate, method of producing the substrate, and organic EL display device including the thin film transistor element substrate
JP5369240B2 (ja) 有機el素子の製造方法及び有機el素子
JP6163483B2 (ja) 有機el装置及びその製造方法
TWI789569B (zh) 蒸鍍遮罩群、電子裝置之製造方法及電子裝置
US9054334B2 (en) Organic EL device
JP5735819B2 (ja) 有機エレクトロルミネッセンス素子
WO2011040501A1 (ja) 有機el装置
JP6439194B2 (ja) 有機発光デバイス
JP4263175B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスディスプレイ
WO2010082241A1 (ja) 有機el素子およびその製造方法
JP2012174473A (ja) 有機elデバイス
JP5613590B2 (ja) 有機elデバイス
JP5949054B2 (ja) 有機エレクトロルミネッセンス素子形成用フレキシブル基板ロール
WO2012114618A1 (ja) 有機elデバイス
JP5842088B2 (ja) 有機elデバイス及び有機elデバイスの製造方法
EP3333927B1 (en) Organic light emitting display device and manufacturing method thereof
WO2012120746A1 (ja) 有機elデバイス
JP2005251704A (ja) 有機エレクトロルミネッセンス素子の製造方法
KR20130116750A (ko) 다중 금속 박막의 투명전극을 이용한 탑-이미션 방법의 유기전계발광소자의 제조방법 및 그 방법에 의한 유기전계발광소자
JP2010080146A (ja) 有機elパネル
JP2006286401A (ja) 有機el素子及びこれを備える画像表示装置
JP2010027524A (ja) 有機el素子およびその製造方法
JPH04107286U (ja) 有機電界発光表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147022409

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381478

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013754199

Country of ref document: EP