WO2013129564A1 - 有機el素子の製造方法及び有機el素子 - Google Patents
有機el素子の製造方法及び有機el素子 Download PDFInfo
- Publication number
- WO2013129564A1 WO2013129564A1 PCT/JP2013/055379 JP2013055379W WO2013129564A1 WO 2013129564 A1 WO2013129564 A1 WO 2013129564A1 JP 2013055379 W JP2013055379 W JP 2013055379W WO 2013129564 A1 WO2013129564 A1 WO 2013129564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- organic
- electrode layer
- longitudinal direction
- light emitting
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title abstract description 28
- 239000010410 layer Substances 0.000 claims abstract description 410
- 239000012044 organic layer Substances 0.000 claims abstract description 106
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims description 74
- 238000007789 sealing Methods 0.000 claims description 45
- 239000000470 constituent Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 230000003746 surface roughness Effects 0.000 claims description 14
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000002347 injection Methods 0.000 description 19
- 239000007924 injection Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 238000007740 vapor deposition Methods 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 230000005525 hole transport Effects 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 238000007599 discharging Methods 0.000 description 5
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 5
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229920006015 heat resistant resin Polymers 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- -1 nitride carbides Chemical class 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 2
- DKHNGUNXLDCATP-UHFFFAOYSA-N dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile Chemical compound C12=NC(C#N)=C(C#N)N=C2C2=NC(C#N)=C(C#N)N=C2C2=C1N=C(C#N)C(C#N)=N2 DKHNGUNXLDCATP-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- HXWWMGJBPGRWRS-CMDGGOBGSA-N 4- -2-tert-butyl-6- -4h-pyran Chemical compound O1C(C(C)(C)C)=CC(=C(C#N)C#N)C=C1\C=C\C1=CC(C(CCN2CCC3(C)C)(C)C)=C2C3=C1 HXWWMGJBPGRWRS-CMDGGOBGSA-N 0.000 description 1
- YOZHUJDVYMRYDM-UHFFFAOYSA-N 4-(4-anilinophenyl)-3-naphthalen-1-yl-n-phenylaniline Chemical compound C=1C=C(C=2C(=CC(NC=3C=CC=CC=3)=CC=2)C=2C3=CC=CC=C3C=CC=2)C=CC=1NC1=CC=CC=C1 YOZHUJDVYMRYDM-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- HXWWMGJBPGRWRS-UHFFFAOYSA-N b2738 Chemical compound O1C(C(C)(C)C)=CC(=C(C#N)C#N)C=C1C=CC1=CC(C(CCN2CCC3(C)C)(C)C)=C2C3=C1 HXWWMGJBPGRWRS-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- QPJFIVIVOOQUKD-UHFFFAOYSA-N dipyrazino[2,3-f:2,3-h]quinoxaline Chemical group C1=CN=C2C3=NC=CN=C3C3=NC=CN=C3C2=N1 QPJFIVIVOOQUKD-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/846—Passivation; Containers; Encapsulations comprising getter material or desiccants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/822—Cathodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/841—Self-supporting sealing arrangements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/87—Arrangements for heating or cooling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for producing an organic EL element and an organic EL element, wherein an electrode layer and an organic layer are formed on a substrate, and light is emitted from the organic layer.
- an organic EL (electroluminescence) element is known as an element used in a light emitting display device or the like.
- the organic EL element basically includes an organic layer having at least a light emitting layer as an organic constituent layer and a pair of electrode layers.
- a conventional organic EL element 50 has a first electrode layer 23 (for example, an anode layer) on at one surface side of a base material 21, and at least a light emitting layer as an organic constituent layer.
- An organic layer 25 and a second electrode layer 27 are sequentially stacked (see FIG. 10A), and then a sealing layer 29 is stacked (see FIG. 10A). (See FIGS. 10B to 10D).
- an overlapping portion of the first electrode layer 23, the organic layer 25, and the second electrode layer 27 is provided as the light emitting unit 40.
- the first electrode layer 23 and the second electrode layer 27 are formed so as not to overlap each other outside the sealing layer 29 in order to allow current to flow from outside without short-circuiting each other.
- the right end side of the organic layer 25 is more than the right end edge of the second electrode layer 27 so that the first electrode layer 23 can be energized without short-circuiting. Also protrudes to the right.
- the right end portion side of the first electrode layer 23 protrudes to the right side of the right end edge of the organic layer 25 (see the right side of FIG. 10A).
- the right end portion side of the first electrode layer is formed to protrude to the right side from the right end edge of the sealing layer 29 (see the right side in FIG.
- the left end side of the organic layer 25 is more than the left end edge of the first electrode layer 23 so that the second electrode layer 27 can be energized without short-circuiting. It protrudes to the left. Further, the left end side of the second electrode layer 27 protrudes to the left of the left end edge of the organic layer 25 (see the left side of FIG. 10A). Further, the second electrode layer 27 is formed so as to protrude to the left of the left edge of the sealing layer 29 (see the left side of FIG. 10D).
- a base material made of an organic resin is used as a base material in order to make it flexible.
- oxygen and moisture pass through the base material to the constituent layer side.
- the light emission characteristics of the organic EL element may deteriorate over time.
- an object of the present invention is to provide a method for manufacturing an organic EL element in which deterioration of light emission characteristics is suppressed and an organic EL element.
- the band-shaped metal base is usually formed by rolling in the longitudinal direction.
- the longitudinal direction By this rolling, it was found that a plurality of fine grooves extending in the longitudinal direction were formed in the surface portion of the base material in the width direction.
- the groove due to the groove of the base material extends in the longitudinal direction on the surface portion of the insulating layer laminated on the base material.
- the second electrode layer does not protrude beyond the organic layer on at least one of the outer sides of the light emitting portion in the longitudinal direction.
- oxygen or moisture passes through the groove on the surface of the insulating layer and penetrates into the sealing layer. To do. Further, oxygen and moisture enter from the edge side to the region corresponding to the light emitting portion at the boundary between the organic layer and the first electrode layer or at the boundary between the organic layer and the second electrode layer. As a result, it was found that the emission characteristics deteriorate.
- an organic EL element manufacturing method includes an insulating layer, a first electrode layer, an organic layer having at least a light emitting layer as an organic constituent layer on the one surface side of a belt-shaped metal base, Manufacture of an organic EL element in which an electrode layer and a sealing layer are sequentially formed to produce an organic EL element having an overlapping portion of the first electrode layer, the organic layer, and the second electrode layer as a light emitting portion.
- the organic layer is disposed at least on both outer sides in the longitudinal direction of the substrate with respect to the first electrode layer while preventing the first electrode layer and the second electrode layer from contacting each other.
- the second electrode layer is protruded at least on both outer sides in the longitudinal direction from the organic layer, so that at least the outer sides of the light emitting part in the longitudinal direction of the substrate are at least the longitudinal length of the organic layer. Both directions As the edge is covered by the longitudinal end side of said second electrode layer, the first electrode layer, and forming the organic layer and the second electrode layer.
- the organic EL device includes an insulating layer, a first electrode layer, an organic layer having at least a light-emitting layer as an organic component layer, a second electrode layer, and a sealing layer on one surface side of a belt-shaped metal substrate.
- a stop layer is formed sequentially, and is an organic EL element having a light emitting portion as an overlapping portion of the first electrode layer, the organic layer, and the second electrode layer, wherein the first electrode layer, The second electrode layer is not in contact with the organic layer, and the organic layer protrudes at least on both outer sides in the longitudinal direction of the base material from the first electrode layer.
- the both ends in the longitudinal direction of the organic layer are formed on the second electrode layer. Covered at both ends in the longitudinal direction And wherein the Rukoto.
- the surface roughness in the longitudinal direction of the base material is smaller than the surface roughness in the lateral direction.
- FIG. 1 is a schematic partial side sectional view schematically showing a layer configuration example of an organic EL element.
- Fig.1 (a) is a figure which shows the case where an organic layer is one layer.
- FIG. 1B is a diagram illustrating a case where the organic layer has three layers.
- FIG.1 (c) is a figure which shows the case where there are five organic layers.
- FIG. 2A is a schematic plan view schematically showing a state in which an anode layer is formed in the manufacture of the organic EL elements of Example 1 and Example 3.
- FIG. FIG. 2B is a schematic plan view schematically showing a state in which the organic layer is formed.
- FIG. 2C is a schematic plan view schematically showing a state where the cathode layer is formed.
- FIG. 1 is a schematic partial side sectional view schematically showing a layer configuration example of an organic EL element.
- Fig.1 (a) is a figure which shows the case where an organic layer is one layer.
- FIG. 2D is a schematic plan view schematically showing a state in which the sealing layer is formed.
- FIG. 3A is a schematic plan view schematically showing the organic EL elements of Example 1 and Example 3.
- FIG. 3B is a cross-sectional view taken along the line AA in FIG.
- FIG. 3C is a cross-sectional view taken along line BB in FIG.
- FIG. 4A is a schematic plan view schematically showing a state in which an anode layer is formed in the manufacture of the organic EL element of Example 2.
- FIG. FIG. 4B is a schematic plan view schematically showing a state where the organic layer is formed.
- FIG. 4C is a schematic plan view schematically showing a state where the cathode layer is formed.
- FIG. 3A is a schematic plan view schematically showing the organic EL elements of Example 1 and Example 3.
- FIG. 3B is a cross-sectional view taken along the line AA in FIG.
- FIG. 3C is a cross-sectional view taken along
- FIG. 4D is a schematic plan view schematically showing a state where the sealing layer is formed.
- FIG. 5A is a schematic plan view schematically showing the organic EL element of Example 2.
- FIG. 5B is a cross-sectional view taken along line AA in FIG.
- FIG. 5C is a cross-sectional view taken along line BB in FIG.
- FIG. 6A is a schematic plan view schematically showing a state before the sealing layer is formed in the manufacture of the organic EL elements of Comparative Example 1 and Comparative Example 5.
- FIG. FIG. 6B is a schematic plan view schematically showing a state in which the sealing layer is formed.
- FIG. 7A is a schematic plan view schematically showing a state before the sealing layer is formed in the manufacture of the organic EL element of Comparative Example 2.
- FIG. 7B is a schematic plan view schematically showing a state where the sealing layer is formed.
- FIG. 8A is a schematic plan view schematically showing a state before the sealing layer is formed in the manufacture of the organic EL element of Comparative Example 3.
- FIG. 8B is a schematic plan view schematically showing a state where the sealing layer is formed.
- FIG. 9A is a schematic plan view schematically showing a state before the sealing layer is formed in the manufacture of the organic EL element of Comparative Example 4.
- FIG. FIG. 9B is a schematic plan view schematically showing a state where the sealing layer is formed.
- FIG. 10A is a schematic plan view schematically showing a state before a sealing layer is formed in the manufacture of a conventional organic EL element.
- FIG. 10B is a schematic plan view schematically showing a state where the sealing layer is formed.
- FIG. 10C is a cross-sectional view taken along the line AA in FIG.
- FIG. 10 (d) is a cross-sectional view taken along the line BB in FIG. 10 (b).
- an insulating layer 31, a first electrode layer (here, an anode layer) 23, and at least a light emitting layer 25 a are formed on an organic constituent layer on one surface side of a band-shaped metal substrate 21.
- the organic layer 25, the second electrode layer 27 (in this case, the cathode layer), and the sealing layer 29 are sequentially formed.
- the organic layer 25 protrudes at least on both outer sides in the longitudinal direction of the base material 21 from the anode layer 23 while preventing the anode layer 23 and the cathode layer 27 from contacting each other.
- the cathode layer 27 protrudes at least on both outer sides in the longitudinal direction from the organic layer 27.
- the metal material used for the substrate 21 may be, for example, stainless steel, Fe, Al, Ni, Co, Cu, and alloys thereof, which can be rolled into a belt-like sheet at room temperature and normal pressure. Any metal can be used.
- an organic insulating layer and an inorganic insulating layer can be used.
- An insulating resin can be used as a material for forming the organic insulating layer. Since the base material 21 may be heated to 150 to 300 ° C. during the manufacturing process of the organic EL element, a heat resistant resin having a glass transition temperature of 150 ° C. or higher is used as the material of the organic insulating layer. preferable.
- heat resistant resins include acrylic resins, norbornene resins, epoxy resins, polyimide resins, polyamideimide resins, polyamide resins, polyester resins, polyarylate resins, polyurethane resins, polycarbonate resins, polyether ketone resins, poly Examples thereof include phenylsulfone resins and composites of these resins.
- the heat resistant resin is preferably at least one selected from the group consisting of an acrylic resin, a norbornene resin, an epoxy resin, and a polyimide resin. If the thickness of the organic insulating layer is too thin, the surface unevenness of the metal substrate 21 cannot be sufficiently flattened, and if it is too thick, the adhesion to the metal substrate 21 may be reduced. Considering this viewpoint, the thickness of the organic insulating layer is preferably in the range of 1 to 40 ⁇ m. When the thickness is within this range, sufficient electrical insulation can be secured, and adhesion to the base material 21 can be secured. The thickness of the organic insulating layer is more preferably 0.5 to 10 ⁇ m, still more preferably 1 to 5 ⁇ m.
- the method for forming the organic insulating layer on the substrate 21 is not particularly limited, and can be formed by application by roll coating, spray coating, spin coating, dipping, or the like, or transfer of a resin formed in a film shape. .
- an insulating inorganic material can be used as a material for forming the inorganic insulating layer. Moreover, it is preferable that this inorganic material has gas barrier property.
- an inorganic material for example, it is preferable to include at least one of a metal and a metalloid. Further, at least one of the metal and the metalloid is preferably at least one selected from the group consisting of oxides, nitrides, carbides, oxynitrides, oxycarbides, nitride carbides, and oxynitride carbides. Examples of the metal include zinc, aluminum, titanium, copper, and magnesium, and examples of the semimetal include silicon, bismuth, and germanium.
- the thickness of the inorganic insulating layer is preferably in the range of 10 nm to 5 ⁇ m, more preferably in the range of 50 nm to 2 ⁇ m, and further preferably in the range of 0.1 to 1 ⁇ m.
- the method for forming the inorganic insulating layer is not particularly limited, and a vapor deposition method using a vapor deposition source capable of discharging the inorganic insulating layer forming material, a sputtering method, a dry method such as a CVD method, and a wet method such as a sol-gel method. Etc. can be used.
- anode layer forming material indium-tin oxide (ITO), indium-zinc oxide (IZO), zinc oxide (ZnO), gallium-doped zinc oxide (GZO) Zinc oxide-based materials such as antimony-doped zinc oxide (AZO) can be used.
- the method for forming the anode layer 23 on the insulating layer 31 is not particularly limited.
- a general vapor deposition method using a vapor deposition source capable of discharging the anode layer forming material can be used. Among these, it is preferable to use a heat evaporation method.
- the organic layer 25 has at least a light emitting layer 25a as an organic constituent layer.
- the organic layer 25 is composed of one organic constituent layer, or is formed by laminating a plurality of organic constituent layers.
- the organic constituent layer is the light emitting layer 25a described above.
- the organic layer includes a plurality of organic constituent layers
- the plurality of organic constituent layers includes a light emitting layer 25a and organic constituent layers other than the light emitting layer 25a.
- Examples of organic constituent layers other than the light emitting layer 25a include a hole injection layer 25b, a hole transport layer 25d, an electron injection layer 25c, and an electron transport layer 25e.
- the organic layer 25 is not particularly limited as long as it has at least the light emitting layer 25a as an organic constituent layer.
- the organic layer 25 can be configured to be formed by stacking a plurality of organic constituent layers as required. For example, as shown in FIG. 1B, the hole injection layer 25b, the light emitting layer 25a, and the electron injection layer 25c may be laminated in this order to form a three-layer organic layer.
- a hole transport layer 25d (see FIG. 1C) is sandwiched between the light emitting layer 25a and the hole injection layer 25b shown in FIG. 1B, or the light emitting layer 25a.
- an electron transport layer 25e see FIG. 1C
- the organic layer can be formed into a four-layer laminate.
- the hole transport layer 25d is sandwiched between the hole injection layer 25b and the light emitting layer 25a, and the electron transport layer 25e is sandwiched between the light emitting layer 25a and the electron injection layer 25c.
- the organic layer can also be made into a five-layer laminate.
- the thickness of each layer is usually designed to be about several nm to several tens of nm, but the thickness is appropriately designed according to the organic layer forming material 22 and the light emission characteristics. There is no particular limitation.
- Examples of a material for forming the light emitting layer 25a include tris (8-quinolinol) aluminum (Alq3), [2-tert-butyl-6- [2- (2,3,6,7-tetrahydro-1, 1,7,7-tetramethyl-1H, 5H-benzo [ij] quinolizin-9-yl) vinyl] -4H-pyran-4-ylidene] malononitrile (DCJTB) and the like can be used.
- the hole injection layer 25b is a layer that facilitates injection of holes from the anode layer 23 into the light emitting layer 25a and the hole transport layer 25d.
- a material for forming the hole injection layer 25b for example, HAT-CN (1, 4, 5, 8, 9, 12-hexaazatriphenylene hexacarbonitrile), copper phthalocyanine (CuPc), N, N '-Di (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl 4,4'diamine ( ⁇ -NPD) or the like can be used.
- the hole transport layer 25 d is a layer having at least one of a function of transporting holes or a function of suppressing electrons injected from the cathode layer 27 from moving to the anode layer 23.
- Examples of the material for forming the hole transport layer 25d include N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -benzidine (NPB), N, N ′.
- the electron injection layer 25c is a layer that facilitates injection of electrons from the cathode layer 27 to the light emitting layer 25a or the electron transport layer 25e.
- a material for forming the electron injection layer 25c for example, lithium fluoride (LiF), cesium fluoride (CsF), or the like can be used.
- the electron transport layer 25 e is a layer having at least one of a function of transporting electrons or a function of suppressing movement of holes injected from the anode layer 23 to the cathode layer 27.
- a material for forming the electron transport layer 25e for example, tris (8-quinolinol) aluminum (Alq3) can be used.
- the method for forming the organic layer 25 on the anode layer 23 is not particularly limited, and for example, a general vapor deposition method using a vapor deposition source capable of discharging the organic layer forming material can be used. Among such vapor deposition methods, it is preferable to use a heat vapor deposition method.
- cathode layer forming material aluminum (Al), magnesium silver (Mg / Ag), ITO, IZO, or the like can be used.
- the method for forming the cathode layer 27 on the organic layer 25 is not particularly limited, and for example, an evaporation method using an evaporation source capable of discharging the cathode layer forming material can be used. In addition, for example, a method of forming a film by sputtering can also be used.
- sealing layer forming material As a material (sealing layer forming material) for forming the sealing layer 29, SiOCN, SiN, SiON or the like can be used.
- the method for forming the sealing layer 29 on the cathode layer 27 is not particularly limited, and for example, a vapor deposition method using a vapor deposition source capable of discharging the sealing layer forming material can be used. For example, it is preferable to use a plasma assist vapor deposition method.
- a laminate of the base material 21 and the insulating layer 31 formed on the one surface side of the base material 21 is formed in advance, and on the insulating layer 31 of the laminate,
- the anode layer 23, the light emitting layer 25a, the cathode layer 27, and the sealing layer 29 are sequentially deposited.
- the insulating layer 31 is formed on the base material 21 by a vapor deposition source for forming the insulating layer 31 on the base material 21 on which the insulating layer 31 is not laminated in advance.
- the anode layer 23, the light emitting layer 25 a, the cathode layer 27, and the sealing layer 29 can be sequentially formed on the layer 31.
- the insulating layer 31 is applied in advance on one surface side of the base material 21 by a coating apparatus or the like.
- the anode layer 23 is formed on the insulating layer 31 in the laminate of the base material 21 and the insulating layer 31 by using the above-described vapor deposition method.
- a light emitting layer 25a which is an organic layer is formed on the anode layer 23 using the vapor deposition method.
- the cathode layer 27 is formed on the light emitting layer 25a by using the above evaporation method.
- a sealing layer 29 is formed from above the cathode layer 27 by using the above-described vapor deposition method so as to cover each formed layer. Thereby, the organic EL element 20 is formed.
- a shadow mask having an opening having a desired shape is interposed between each deposition source and the substrate 21, respectively. It can carry out suitably using conventionally well-known methods, such as the method of allowing the formation material of each component layer to pass through.
- examples of the pattern of each constituent layer include shapes as shown in FIGS. 2 and 4, but are not particularly limited to FIGS. 2 and 4.
- the anode layer 23 is first formed on the insulating layer 31 of the laminate, while preventing the anode layer 23 and the cathode layer 27 from contacting each other (FIG. 2A). reference).
- the organic layer 25 is formed so as to cover the anode layer 23 at least on both outer sides of the light emitting section 40 in the longitudinal direction of the base material 21 (in the direction of the white arrow) (see FIG. 2B).
- the cathode layer 27 is formed so as to protrude at least both outside of the organic layer 25 on both outer sides and cover the both ends in the longitudinal direction of the organic layer 25 (see FIG. 2C).
- the sealing layer 29 is formed so that a part of anode layer 23 and the cathode layer 27 may protrude (FIG.2 (d)).
- the organic EL element 20 is formed, and the overlapping portion of the anode layer 23, the organic layer 25, and the cathode layer 27 becomes the light emitting section 40 (see FIG. 3).
- both ends in the longitudinal direction of the organic layer 25 are covered with both ends of the cathode layer 27 on both outer sides in the longitudinal direction of the light emitting unit 40.
- the organic layer 25 protrudes outside the cathode layer 27 on both outer sides of the light emitting unit 40 in the width direction of the base material 21 (left and right direction in FIGS. 2 and 3). Furthermore, the anode layer 23 protrudes outside the organic layer 25. Further, the formed anode layer 23 and cathode layer 27 are not in contact with each other.
- the anode layer 23 is first formed on the insulating layer 31 of the laminate, while preventing the anode layer 23 and the cathode layer 27 from contacting each other (FIG. 4 ( a)).
- the organic layer 25 is formed so as to cover the anode layer 23 at least on both outer sides of the light emitting unit 40 in the longitudinal direction of the base material 21 (the direction of the white arrow) (see FIG. 4B).
- the cathode layer 27 is formed so as to protrude at least both outside of the organic layer 25 on both the outer sides and cover the both ends in the longitudinal direction of the organic layer 25 (see FIG. 4C).
- the sealing layer 29 is formed so that a part of anode layer 23 and the cathode layer 27 may protrude (refer FIG.4 (d)).
- the organic EL element 20 is formed, and the overlapping portion of the anode layer 23, the organic layer 25, and the cathode layer 27 becomes the light emitting section 40 (see FIG. 5).
- both ends in the longitudinal direction of the organic layer 25 are covered with both ends of the cathode layer 27 on both outer sides in the longitudinal direction of the light emitting unit 40.
- the outer side of the light emitting unit 40 in the width direction of the base material 21 is organic (on the right side in FIGS. 4 and 5)
- the layer 25 protrudes outside the cathode layer 27.
- the anode layer 23 protrudes outside the organic layer 25.
- the organic layer 25 protrudes outside the anode layer 23.
- the cathode layer 27 protrudes outside the organic layer 25.
- the formed anode layer 23 and cathode layer 27 are not in contact with each other.
- the portions of the anode layer 23 and the cathode layer 27 that protrude from the sealing layer 29 are not in contact with each other. By energizing the protruding portion, the light emitting unit 40 can emit light.
- the shape of the light emitting unit 40 is not particularly limited.
- the anode layer 23, the organic layer 25, and the cathode layer 27 can be formed while preventing the anode layer 23 and the cathode layer 27 from being in contact with each other. For this reason, it can avoid that the anode layer 23 and the cathode layer 27 short-circuit, and the light emission part 40 can light-emit. Further, on both outer sides of the light emitting portion 40 in the longitudinal direction of the strip-shaped metal base material 21, the both ends in the longitudinal direction of the organic layer 25 are covered with the both ends in the longitudinal direction of the cathode layer 27.
- both end edges of the organic layer 25 are formed by both end sides of the cathode layer 27 on the outer side of at least one of the light emitting units 40 in the width direction of the base material 21. Not covered. However, as described above, in the width direction, the convex portions between the grooves on the surface portion of the insulating layer 31 are in contact with the constituent layers, so that oxygen and moisture enter the sealing layer 29. Can be suppressed.
- the said manufacturing method may implement the said manufacturing method as follows, for example.
- the laminated body of the base material 21 and the insulating layer 31 wound up in a roll shape is fed out from a supply roller serving as a supply unit. While the substrate 21 of the laminated body that has been drawn out is brought into contact with the surface of a can roll (not shown) and moved, the anode layer 23, the organic layer 25, and the organic layer 25 are formed on the insulating layer 31 of the laminated body supported by the can roll.
- the cathode layer 27 and the sealing layer 29 are sequentially formed as described above.
- the obtained organic EL element 20 is wound up sequentially by a take-up roller (not shown) serving as a collection unit.
- the said manufacturing method can be implemented as follows, for example.
- the base material 21 wound up in a roll shape is fed out from the supply roller.
- the insulating layer 31, the anode layer 23, the organic layer 25, the cathode layer 27, and the sealing layer 29 are sequentially formed on the fed base material 21 as described above.
- the obtained organic EL element 20 is sequentially wound by the winding roller.
- the sheet-like organic EL element 20 can be formed by feeding out the organic EL element 20 taken up by the take-up roller as described above and performing cutting or the like.
- the organic EL element 20 of the present embodiment obtained by the above manufacturing method has an insulating layer 31, a first electrode layer (here, anode layer 23), and at least a light emitting layer 25 a on one surface side of a band-shaped metal base material 21.
- the organic layer 25, the second electrode layer (in this case, the cathode layer 27), and the sealing layer 29 are sequentially formed.
- the organic EL element 20 has an overlapping portion of the anode layer 23, the organic layer 25, and the cathode layer 27 as the light emitting unit 40.
- the anode layer 23 and the cathode layer 27 are not in contact with each other, and the organic layer 25 protrudes beyond the anode layer 23 at least on both outer sides in the longitudinal direction of the substrate 21.
- the cathode layer 27 protrudes at least on both outer sides in the longitudinal direction from the organic layer 25.
- at least both ends of the organic layer 25 in the longitudinal direction are covered with the both ends of the cathode layer 27 in the longitudinal direction at least on both outer sides of the light emitting unit 40 in the longitudinal direction of the base material 21.
- Such an organic EL element 20 is one in which deterioration is suppressed as described above.
- the first electrode layer is the anode layer 23 and the second electrode layer is the cathode layer 27.
- the first electrode layer is the cathode layer and the second electrode layer is the anode layer.
- a cathode layer, an organic layer, and an anode layer can be sequentially formed on the insulating layer 31 of the laminate.
- the surface roughness (Ra) of the substrate was measured using a stylus type surface shape measuring device (trade name: Dektak 150).
- the surface roughness in the longitudinal direction and the short direction of the substrate was measured at 10 locations, respectively, and the average value at 10 locations was defined as the surface roughness in the longitudinal direction and the lateral direction of the substrate.
- Example 1 As a band-shaped metal base material, the width is 30 mm, the length is 140 m, the thickness is 50 ⁇ m, the surface roughness (Ra) in the longitudinal direction of the base material is 40 nm, and the surface roughness (Ra) in the short direction of the base material is A 55 nm roll-shaped flexible SUS substrate was used. That is, in Example 1, the surface roughness in the longitudinal direction of the base material is smaller than the surface roughness in the lateral direction.
- An acrylic resin (trade name “JEM-477” manufactured by JSR Corporation) was applied on one side of the base material with a coating apparatus to form an insulating layer having a thickness of 3 ⁇ m. The laminate of the base material and the insulating layer was wound around a supply roller (not shown).
- the pattern shown in FIG. 2 was employ
- an Al layer (anode layer) having a thickness of 100 nm is formed as the first electrode layer 23 on the insulating layer 31 of the laminated body while the laminated body wound up in a roll shape is continuously fed from the supply roller.
- a 45 nm thick Alq3 layer as a layer, a light emitting layer and an electron transport layer, and a 0.5 nm thick LiF layer as an electron injection layer were heat-deposited in this order.
- a Mg / Ag layer (cathode layer) having a thickness of 5/15 nm was co-deposited as the second electrode layer 27. Further, an ITO layer (cathode layer) having a thickness of 50 nm was formed by sputtering. Thereafter, SiOCN having a thickness of 0.4 ⁇ m was deposited as the sealing layer 29 by plasma-assisted deposition.
- the obtained laminate (organic EL element 20) was wound up by a winding roller.
- Example 1 After winding, the laminate was drawn out and cut at a predetermined length to obtain an organic EL element 20 (80 mm long ⁇ 30 mm wide) of Example 1 (see FIG. 3).
- Example 2 The organic material of Example 2 is the same as Example 1 except that the pattern shown in FIG. 4 is adopted as the pattern of the first electrode layer 23, the organic layer 25, the second electrode layer 27, and the sealing layer 29. An EL element 20 was manufactured (see FIG. 5).
- Example 3 Of the organic layers, a 0.5 nm thick LiF layer as the electron injection layer, a 45 nm thick Alq3 layer as the light emitting layer and the electron transport layer, a 50 nm thick NPB as the hole transport layer, and a 10 nm thick CuPc as the hole injection layer, Heat deposition was performed in this order. Further, as the second electrode layer, an ITO layer (cathode layer) having a thickness of 50 nm was formed by sputtering. Thereafter, SiOCN having a thickness of 400 nm was deposited as a sealing layer by plasma-assisted deposition. The rest is the same as in the first embodiment. Moreover, the pattern shown in FIG. 2 was employ
- Comparative Example 1 An organic EL element 50 of Comparative Example 1 was manufactured in the same manner as Example 1 except that the pattern shown in FIG. 6 was used.
- Comparative Example 2 An organic EL element 50 of Comparative Example 2 was manufactured in the same manner as Example 1 except that the pattern shown in FIG. 7 was used.
- Comparative Example 3 An organic EL device 50 of Comparative Example 3 was manufactured in the same manner as Example 1 except that the pattern shown in FIG. 8 was used.
- Comparative Example 4 An organic EL device 50 of Comparative Example 4 was manufactured in the same manner as Example 1 except that the pattern shown in FIG. 9 was used.
- Comparative Example 5 An organic EL element 50 of Comparative Example 5 was manufactured in the same manner as Example 3 except that the pattern shown in FIG. 6 was used.
- each of the obtained organic EL elements was stored in a constant temperature and humidity chamber set to 60 ° C./90% RH without emitting light. After the start of storage, each organic EL element was taken out and emitted at predetermined time intervals. The area of the light emitting part (the area of the light emitting region) was measured. The relationship between the storage time and the area of the light emitting part was plotted on a graph. The time when the area of the light emitting portion starts to decrease is defined as the lifetime of the organic EL element. Note that the area of the light emitting portion was measured using a digital microscope (trade name: VHX-1000) manufactured by Keyence Corporation. The results are shown in Table 1.
- both ends of the organic layer are covered with both ends of the second electrode layer (cathode layer) on both outer sides of the light emitting portion in the longitudinal direction of the substrate.
- Comparative Examples 1 to 5 at least one of both end edges of the organic layer is not covered with the cathode layer.
- Table 1 when Examples 1 to 3 and Comparative Examples 1 to 5 were compared, the life of Examples 1 to 3 was 1.5 times longer than that of Comparative Examples 1 to 5.
- the organic EL device obtained by the production method of the present invention was excellent in long-term stability because the deterioration of the light emission characteristics was suppressed.
- the organic insulating layer is used as the insulating layer. However, the effects of the present invention can be obtained even when an inorganic insulating layer is used.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
例えば、図10(b)の右側において、上記短絡することなく第1の電極層23を通電可能とするために、有機層25の右側端部側が、第2の電極層27の右側端縁よりも右側にはみ出している。また、第1の電極層23の右側端部側が、有機層25の右側端縁よりも右側にはみ出している(図10(a)の右側参照)。さらに、該第1の電極層の右側端部側が、封止層29の右側端縁よりも右側にはみ出して形成されている(図10(d)の右側参照))。
また、図10(b)の左側において、上記短絡することなく第2の電極層27を通電可能とするために、有機層25の左側端部側が第1の電極層23の左側端縁よりも左側にはみ出している。また、第2の電極層27の左側端部側が有機層25の左側端縁よりも左側にはみ出している(図10(a)の左側参照)。さらに、該第2の電極層27が封止層29の左側端縁よりも左側にはみ出して形成されている(図10(d)の左側参照)。
すなわち、帯状の金属製の基材は、通常、長手方向に圧延されることによって形成されている。かかる圧延により、該基材の表面部には、長手方向に延在している微細な溝が幅方向に亘って複数形成されていることが判明した。
また、基材に絶縁層を積層した後においても、基材に積層された絶縁層の表面部には、基材の溝に起因する溝が長手方向に延在していることが判明した。
このため、かかる基材を用いて有機EL素子を形成したとき、基材の幅方向における発光部の両外側においては、絶縁層表面部の複数の溝間に形成された凸部と、主として封止層とが接触している。この接触によって、幅方向外側からは封止層の内側へと酸素や水分が侵入し難く、発光特性の劣化に及ぼす影響が比較的小さいことが判明した。
これに対し、基材の長手方向における発光部の両外側においては、有機層と第2の電極層の各形成パターンによって、発光特性の劣化に及ぼす影響が大きく異なることが判明した。
具体的には、上記長手方向における発光部の両外側の少なくともいずれか一方において、第2の電極層が有機層よりも外側にはみ出していない。有機層の両端縁が第2の電極層に覆われていない場合には(図6~図10参照)、上記絶縁層表面部の溝を酸素や水分が通過して封止層の内側まで侵入する。さらに、有機層と第1の電極層との境界や、有機層と第2の電極層との境界において、端縁側から発光部に相当する領域まで酸素や水分が侵入する。これにより、発光特性の劣化が生じることが判明した。
一方、上記長手方向における発光部よりも両外側において、第2の電極層が有機層よりもはみ出しており、有機層の両端縁が第2の電極層の両端側で覆われている場合には(図2~図5参照)、上記絶縁層表面部の溝を酸素や水分が通過して封止層の内側まで侵入しても、第2の電極層によって、更に内側へ侵入することを抑制することができる。このため、有機層と第2の電極層との境界に酸素や水分が到達し難くなり、発光部まで酸素や水分が到達し難くなることが判明した。
そして、かかる知見に基づき、本発明者らは、本発明を完成するに至った。
有機絶縁層の厚みは、薄すぎると、金属製の基材21の表面凹凸の平坦化が十分にできず、厚すぎると、金属製の基材21に対する密着性が低下するおそれがある。かかる観点を考慮すると、前記有機絶縁層の厚みは、1~40μmの範囲であることが好ましい。厚みがこの範囲内であると、十分な電気絶縁性を確保するとともに、基材21に対する密着性をも確保することができる。前記有機絶縁層の厚みは、より好ましくは、0.5~10μmであり、さらに好ましくは、1~5μmである。基材21上に前記有機絶縁層を形成する方法は特に限定されず、ロールコート、スプレーコート、スピンコートおよびディッピング等による塗布や、フィルム状に形成された樹脂の転写等により形成することができる。
前記無機絶縁層は薄すぎると絶縁性が低下する。また、無機絶縁層が厚すぎるとクラックが生じやすくなり、ガスバリア性および絶縁性が低下する。前記無機絶縁層の厚さは、10nm~5μmの範囲であることが好ましく、50nm~2μmの範囲であることがより好ましく、0.1~1μmの範囲であることがさらに好ましい。前記無機絶縁層を形成する方法は、特に限定されず、無機絶縁層形成材料を吐出可能な蒸着源を用いた蒸着法、スパッタリング法、CVD法等の乾式法およびゾル-ゲル法等の湿式法等を利用することができる。
絶縁層31上に陽極層23を形成する方法は、特に限定されず、例えば、陽極層形成材料を吐出可能な蒸着源を用いた一般的な蒸着法を利用することができ、かかる蒸着法のうち、加熱蒸着法を利用することが好ましい。
有機層25上に陰極層27を形成する方法は、特に限定されず、例えば、陰極層形成材料を吐出可能な蒸着源を用いた蒸着法を利用することができる。また、その他、例えば、スパッタリングにより成膜を行う方法を利用することもできる。
従って、発光特性の劣化が抑制された有機EL素子20を製造することが可能となる。
また、上記製造方法を、その他例えば、以下のように実施できる。ロール状に巻き取られた基材21を上記供給ローラから繰り出す。繰り出された基材21上に、絶縁層31、陽極層23、有機層25、陰極層27及び封止層29を上記の様に順次形成する。得られた有機EL素子20を上記巻き取りローラにより順次巻き取る。
また、上記のようにして巻き取りローラで巻き取られた有機EL素子20を繰り出し、裁断等を行って、シート状の有機EL素子20を形成することもできる。
基材の表面粗さ(Ra)の測定は、触針式表面形状測定装置(商品名:Dektak150)を用いて行った。基材の長手方向および短手方向の表面粗さをそれぞれ10箇所測定し、10箇所の平均値を、基材の長手方向および短手方向の表面粗さとした。
帯状の金属製の基材として、幅が30mm、長さが140m、厚み50μm、基材の長手方向の表面粗さ(Ra)が40nm、基材の短手方向の表面粗さ(Ra)が55nmのロール状のフレキシブルSUS基板を用いた。すなわち、実施例1においては、基材の長手方向の表面粗さが短手方向の表面粗さよりも小さくなっている。この基材の一面側に、アクリル樹脂(JSR株式会社製 商品名「JEM-477」)を塗工装置で塗工することによって、厚み3μmの絶縁層を形成した。かかる基材と絶縁層との積層体を供給ローラ(不図示)に巻き回した。また、第1の電極層、有機層、第2の電極層及び封止層のパターンとして、図2に示すパターンを採用した。
第1の電極層23、有機層25、第2の電極層27及び封止層29のパターンとして、図4に示すパターンを採用したこと以外は実施例1と同様にして、実施例2の有機EL素子20を製造した(図5参照)。
有機層のうち、電子注入層として厚み0.5nmのLiF層、発光層および電子輸送層として厚み45nmのAlq3層、ホール輸送層として厚み50nmのNPB、正孔注入層として厚み10nmのCuPcを、この順に加熱蒸着した。さらに、第2の電極層として、スパッタリングによって厚み50nmのITO層(陰極層)を成膜した。その後、封止層として、厚み400nmのSiOCNをプラズマアシスト蒸着により蒸着した。それ以外は実施例1と同様である。また、図2に示すパターンを採用して、実施例3の有機EL素子20(縦80mm×横30mm)を得た(図3参照)。
図6に示すパターンを用いたこと以外は実施例1と同様にして、比較例1の有機EL素子50を製造した。
比較例2
図7に示すパターンを用いたこと以外は実施例1と同様にして、比較例2の有機EL素子50を製造した。
比較例3
図8に示すパターンを用いたこと以外は実施例1と同様にして、比較例3の有機EL素子50を製造した。
比較例4
図9に示すパターンを用いたこと以外は実施例1と同様にして、比較例4の有機EL素子50を製造した。
比較例5
図6に示すパターンを用いたこと以外は実施例3と同様にして、比較例5の有機EL素子50を製造した。
得られた各有機EL素子を、60℃/90%RHに設定された恒温恒湿器内に、発光していない状態で保存した。保存開始後、所定時間ごとに各有機EL素子を取り出して発光させた。発光部の面積(発光している領域の面積)を測定した。保存時間と発光部の面積との関係をグラフ上にプロットした。そして、発光部の面積が減少し始める時間を有機EL素子の寿命とした。なお、発光部の面積の測定は、株式会社キーエンス製のデジタルマイクロスコープ(商品名:VHX-1000)を用いて行った。結果を表1に示す。
Claims (4)
- 帯状の金属製の基材の一面側に絶縁層、第1の電極層、少なくとも発光層を有機構成層として有する有機層、第2の電極層及び封止層を順次形成することにより、
前記第1の電極層と前記有機層と前記第2の電極層との重なり部分を発光部として有する有機EL素子を作製する有機EL素子の製造方法であって、
前記第1の電極層と前記第2の電極層とが接触していないようにしつつ、
前記有機層を前記第1の電極層よりも少なくとも前記基材の長手方向両外側にはみ出させ、さらに前記第2の電極層を前記有機層よりも少なくとも前記長手方向両外側にはみ出させることによって、少なくとも前記基材の長手方向における前記発光部の両外側において、前記有機層の前記長手方向両端縁が前記第2の電極層の前記長手方向両端側で覆われるように、前記第1の電極層、前記有機層及び前記第2の電極層を形成することを特徴とする有機EL素子の製造方法。 - 前記基材の長手方向の表面粗さが短手方向の表面粗さより小さい請求項1に記載の有機EL素子の製造方法。
- 帯状の金属製の基材の一面側に絶縁層、第1の電極層、少なくとも発光層を有機構成層として有する有機層、第2の電極層及び封止層が順次形成されてなり、
前記第1の電極層と前記有機層と前記第2の電極層との重なり部分を発光部として有する有機EL素子であって、
前記第1の電極層と前記第2の電極層とが接触しておらず、且つ、
前記有機層が前記第1の電極層よりも少なくとも前記基材の長手方向両外側にはみ出しており、さらに前記第2の電極層が前記有機層よりも少なくとも前記長手方向両外側にはみ出していることによって、少なくとも前記基材の長手方向における前記発光部の両外側において、前記有機層の前記長手方向両端縁が前記第2の電極層の前記長手方向両端側で覆われていることを特徴とする有機EL素子。 - 前記基材の長手方向の表面粗さが短手方向の表面粗さより小さい請求項3に記載の有機EL素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20147022409A KR20140128330A (ko) | 2012-02-28 | 2013-02-28 | 유기 el 소자의 제조 방법 및 유기 el 소자 |
CN201380011467.XA CN104145530B (zh) | 2012-02-28 | 2013-02-28 | 有机el元件的制造方法和有机el元件 |
EP13754199.1A EP2822361A4 (en) | 2012-02-28 | 2013-02-28 | METHOD FOR MANUFACTURING ORGANIC EL DEVICE AND ORGANIC EL DEVICE |
US14/381,478 US9331307B2 (en) | 2012-02-28 | 2013-02-28 | Method for manufacturing organic EL device and organic EL device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-041700 | 2012-02-28 | ||
JP2012041700 | 2012-02-28 | ||
JP2013023502A JP5369240B2 (ja) | 2012-02-28 | 2013-02-08 | 有機el素子の製造方法及び有機el素子 |
JP2013-023502 | 2013-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013129564A1 true WO2013129564A1 (ja) | 2013-09-06 |
Family
ID=49082755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/055379 WO2013129564A1 (ja) | 2012-02-28 | 2013-02-28 | 有機el素子の製造方法及び有機el素子 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9331307B2 (ja) |
EP (1) | EP2822361A4 (ja) |
JP (1) | JP5369240B2 (ja) |
KR (1) | KR20140128330A (ja) |
CN (2) | CN104145530B (ja) |
TW (1) | TWI590509B (ja) |
WO (1) | WO2013129564A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6654913B2 (ja) | 2016-01-26 | 2020-02-26 | 住友化学株式会社 | 有機el素子の製造方法及び有機el素子 |
CN107768534A (zh) * | 2016-08-19 | 2018-03-06 | 上海和辉光电有限公司 | 一种柔性oled的薄膜封装结构及其制备方法 |
CN107845732A (zh) * | 2016-09-19 | 2018-03-27 | 上海和辉光电有限公司 | 一种薄膜封装结构和oled显示面板 |
KR102620962B1 (ko) | 2016-12-07 | 2024-01-03 | 엘지디스플레이 주식회사 | 유기발광표시장치 및 이의 제조방법 |
CN108206242A (zh) * | 2016-12-19 | 2018-06-26 | 上海和辉光电有限公司 | 柔性oled显示屏的封装结构及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002025763A (ja) | 2000-07-11 | 2002-01-25 | Nisshin Steel Co Ltd | 有機el素子用絶縁基板 |
JP3942017B2 (ja) | 2002-03-25 | 2007-07-11 | 富士フイルム株式会社 | 発光素子 |
WO2009025286A1 (ja) * | 2007-08-21 | 2009-02-26 | Konica Minolta Holdings, Inc. | 照明装置 |
WO2011001567A1 (ja) * | 2009-07-01 | 2011-01-06 | シャープ株式会社 | 有機el発光体、有機el照明装置、及び有機el発光体の製造方法 |
WO2011117073A2 (de) * | 2010-03-22 | 2011-09-29 | Osram Opto Semiconductors Gmbh | Organische lichtemittierende vorrichtung mit homogener leuchtdichteverteilung |
WO2013024707A1 (ja) * | 2011-08-12 | 2013-02-21 | 日東電工株式会社 | 有機el素子の製造方法及び製造装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100721571B1 (ko) * | 2005-03-07 | 2007-05-23 | 삼성에스디아이 주식회사 | 유기 전계 발광 소자 및 그의 제조방법 |
KR100864882B1 (ko) * | 2006-12-28 | 2008-10-22 | 삼성에스디아이 주식회사 | 유기전계발광표시장치 및 그 제조방법 |
JP2009037809A (ja) * | 2007-07-31 | 2009-02-19 | Sumitomo Chemical Co Ltd | 有機エレクトロルミネッセンス装置およびその製造方法 |
JP5142846B2 (ja) * | 2008-06-17 | 2013-02-13 | 株式会社日立製作所 | 有機発光装置 |
EP2629590A1 (en) | 2008-06-17 | 2013-08-21 | Hitachi Ltd. | An organic light-emitting device |
KR101246960B1 (ko) * | 2008-08-26 | 2013-03-25 | 샤프 가부시키가이샤 | 유기 el 디바이스 및 그 제조 방법 |
US20100258797A1 (en) * | 2009-04-13 | 2010-10-14 | Panasonic Corporation | Organic electroluminescent device and method for manufacturing the same |
JP5627896B2 (ja) * | 2009-09-30 | 2014-11-19 | ユー・ディー・シー アイルランド リミテッド | 有機電界発光素子 |
JP5638924B2 (ja) * | 2010-11-29 | 2014-12-10 | ローム株式会社 | 有機発光素子 |
WO2013088479A1 (ja) * | 2011-12-15 | 2013-06-20 | パナソニック株式会社 | デバイスの製造方法、および有機elデバイス |
-
2013
- 2013-02-08 JP JP2013023502A patent/JP5369240B2/ja not_active Expired - Fee Related
- 2013-02-27 TW TW102106938A patent/TWI590509B/zh not_active IP Right Cessation
- 2013-02-28 KR KR20147022409A patent/KR20140128330A/ko not_active Application Discontinuation
- 2013-02-28 US US14/381,478 patent/US9331307B2/en not_active Expired - Fee Related
- 2013-02-28 CN CN201380011467.XA patent/CN104145530B/zh not_active Expired - Fee Related
- 2013-02-28 WO PCT/JP2013/055379 patent/WO2013129564A1/ja active Application Filing
- 2013-02-28 CN CN201610140755.0A patent/CN105720209A/zh active Pending
- 2013-02-28 EP EP13754199.1A patent/EP2822361A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002025763A (ja) | 2000-07-11 | 2002-01-25 | Nisshin Steel Co Ltd | 有機el素子用絶縁基板 |
JP3942017B2 (ja) | 2002-03-25 | 2007-07-11 | 富士フイルム株式会社 | 発光素子 |
WO2009025286A1 (ja) * | 2007-08-21 | 2009-02-26 | Konica Minolta Holdings, Inc. | 照明装置 |
WO2011001567A1 (ja) * | 2009-07-01 | 2011-01-06 | シャープ株式会社 | 有機el発光体、有機el照明装置、及び有機el発光体の製造方法 |
WO2011117073A2 (de) * | 2010-03-22 | 2011-09-29 | Osram Opto Semiconductors Gmbh | Organische lichtemittierende vorrichtung mit homogener leuchtdichteverteilung |
WO2013024707A1 (ja) * | 2011-08-12 | 2013-02-21 | 日東電工株式会社 | 有機el素子の製造方法及び製造装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2822361A4 |
Also Published As
Publication number | Publication date |
---|---|
JP5369240B2 (ja) | 2013-12-18 |
US20150123088A1 (en) | 2015-05-07 |
CN105720209A (zh) | 2016-06-29 |
JP2013211258A (ja) | 2013-10-10 |
KR20140128330A (ko) | 2014-11-05 |
CN104145530A (zh) | 2014-11-12 |
TW201345016A (zh) | 2013-11-01 |
CN104145530B (zh) | 2016-06-29 |
EP2822361A1 (en) | 2015-01-07 |
TWI590509B (zh) | 2017-07-01 |
EP2822361A4 (en) | 2015-10-21 |
US9331307B2 (en) | 2016-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10811631B2 (en) | Thin film transistor element substrate, method of producing the substrate, and organic EL display device including the thin film transistor element substrate | |
JP5369240B2 (ja) | 有機el素子の製造方法及び有機el素子 | |
JP6163483B2 (ja) | 有機el装置及びその製造方法 | |
TWI789569B (zh) | 蒸鍍遮罩群、電子裝置之製造方法及電子裝置 | |
US9054334B2 (en) | Organic EL device | |
JP5735819B2 (ja) | 有機エレクトロルミネッセンス素子 | |
WO2011040501A1 (ja) | 有機el装置 | |
JP6439194B2 (ja) | 有機発光デバイス | |
JP4263175B2 (ja) | 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスディスプレイ | |
WO2010082241A1 (ja) | 有機el素子およびその製造方法 | |
JP2012174473A (ja) | 有機elデバイス | |
JP5613590B2 (ja) | 有機elデバイス | |
JP5949054B2 (ja) | 有機エレクトロルミネッセンス素子形成用フレキシブル基板ロール | |
WO2012114618A1 (ja) | 有機elデバイス | |
JP5842088B2 (ja) | 有機elデバイス及び有機elデバイスの製造方法 | |
EP3333927B1 (en) | Organic light emitting display device and manufacturing method thereof | |
WO2012120746A1 (ja) | 有機elデバイス | |
JP2005251704A (ja) | 有機エレクトロルミネッセンス素子の製造方法 | |
KR20130116750A (ko) | 다중 금속 박막의 투명전극을 이용한 탑-이미션 방법의 유기전계발광소자의 제조방법 및 그 방법에 의한 유기전계발광소자 | |
JP2010080146A (ja) | 有機elパネル | |
JP2006286401A (ja) | 有機el素子及びこれを備える画像表示装置 | |
JP2010027524A (ja) | 有機el素子およびその製造方法 | |
JPH04107286U (ja) | 有機電界発光表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13754199 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147022409 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14381478 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013754199 Country of ref document: EP |