WO2010082241A1 - 有機el素子およびその製造方法 - Google Patents

有機el素子およびその製造方法 Download PDF

Info

Publication number
WO2010082241A1
WO2010082241A1 PCT/JP2009/003913 JP2009003913W WO2010082241A1 WO 2010082241 A1 WO2010082241 A1 WO 2010082241A1 JP 2009003913 W JP2009003913 W JP 2009003913W WO 2010082241 A1 WO2010082241 A1 WO 2010082241A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
electrode
substrate
layer
conductive member
Prior art date
Application number
PCT/JP2009/003913
Other languages
English (en)
French (fr)
Inventor
大西康之
藤田悦昌
内田秀樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/139,857 priority Critical patent/US20110248252A1/en
Priority to CN2009801488024A priority patent/CN102239741A/zh
Publication of WO2010082241A1 publication Critical patent/WO2010082241A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling

Definitions

  • the present invention relates to an organic electroluminescence element (organic electroluminescence element: hereinafter referred to as “organic EL element”) and a method for producing the same.
  • organic electroluminescence element hereinafter referred to as “organic EL element”
  • organic EL display devices have attracted attention as next-generation flat panel display devices.
  • This organic EL display device is a self-luminous display device, has excellent viewing angle characteristics, high visibility, low power consumption, and can be reduced in thickness, so that demand is increasing.
  • the organic EL display device includes a plurality of organic EL elements arranged in a predetermined arrangement, and each of the plurality of organic EL elements includes an anode that is a first electrode formed on an insulating substrate, and a first electrode.
  • the organic layer which has the light emitting layer formed on the electrode, and the cathode which is the 2nd electrode formed on the organic layer are provided.
  • a vacuum deposition method is known as a method for forming an organic EL thin film used in the organic EL display device on a substrate.
  • this vacuum vapor deposition method first, under vacuum, the substrate is placed in a horizontal state with the surface to be deposited on the lower side, and a metal mask is brought into close contact with the substrate surface.
  • an organic EL thin film having a predetermined pattern is formed on the surface of the substrate by evaporating an evaporation material (that is, an organic EL material) from the evaporation source provided below the substrate surface through a mask opening in which the predetermined pattern is formed. I am letting.
  • an evaporation material that is, an organic EL material
  • a method of manufacturing an organic EL element has been proposed in order to prevent a crosstalk phenomenon caused by a leak current and prevent a deterioration in display quality. More specifically, when an organic EL thin film is formed on a substrate, a substrate temperature control device comprising a temperature sensor for controlling the temperature of the film formation side surface of the substrate and a heat release / absorber is provided. A method for manufacturing an organic EL element using a vacuum deposition apparatus is disclosed. In this method for manufacturing an organic EL element, the substrate temperature is controlled to 70 ° C. or lower using a vacuum vapor deposition apparatus, and the absolute value of the temperature change rate is controlled within 1.5 ° C./sec. Further, it is described that an organic EL element having excellent rectifying characteristics can be manufactured by such a method, and a display panel with high display quality without crosstalk can be manufactured (for example, see Patent Document 1).
  • the present invention has been made in view of the above-described problems, and an organic EL element and a method for manufacturing the same that can reduce driving voltage and increase luminous efficiency.
  • the purpose is to provide.
  • an organic EL device of the present invention includes a substrate, a first electrode formed on the substrate, an organic layer formed on the first electrode and having a light emitting layer, and an organic layer. And a conductive member made of a material having higher thermal conductivity than the substrate and higher electrical conductivity than the substrate, on the surface of the substrate opposite to the first electrode side. Is provided.
  • the heat of the substrate is conducted to the conductive member, and the substrate is cooled by the conductive member, so that it is possible to suppress an increase in the temperature of the substrate.
  • the second electrode is formed by the vacuum deposition method
  • the static electricity held by the substrate is removed by the conductive member, and the static electricity of the substrate is removed by the conductive member. It becomes possible to prevent the influence. Therefore, current can be easily injected from the organic layer to the second electrode, so that the driving voltage of the organic EL element can be lowered and the light emission efficiency of the element can be improved.
  • the conductive member is provided on the surface of the substrate, when current is injected from the organic layer to the second electrode, the current density per unit area is reduced and the current is distributed to the second electrode. Will be injected. Accordingly, deterioration due to current is reduced, and as a result, it is possible to extend the life of the organic EL element.
  • the material forming the conductive member may have a thermal conductivity of 80 W / m ⁇ K or more and an electric conductivity of 8 ⁇ 10 6 / m ⁇ or more.
  • the thermal conductivity and electrical conductivity of the conductive member can be made sufficiently higher than those of the substrate, so that when the second electrode is formed by vacuum deposition, the temperature of the substrate increases. Can be reliably suppressed, and the influence of static electricity can be reliably prevented.
  • the material forming the conductive member may be a metal.
  • the thermal conductivity and electrical conductivity of the conductive member can be easily improved.
  • the metal forming the conductive member is silver, copper, gold, aluminum, calcium, tungsten, magnesium, rhodium, iridium, sodium, molybdenum, ruthenium, zinc, cobalt, cadmium, nickel And at least one selected from the group consisting of osmium, lithium, indium, and iron.
  • the conductive member can be formed from an inexpensive and versatile material.
  • the organic EL device manufacturing method of the present invention is a method for manufacturing an organic EL device in which a first electrode, an organic layer having a light emitting layer, and a second electrode are formed in this order on a substrate, and the surface of the substrate And a step of forming a conductive member made of a material having a higher thermal conductivity than the substrate and a higher electric conductivity than the substrate, and a surface of the substrate opposite to the side where the conductive member is formed. It includes at least a step of forming an electrode and a step of forming an organic layer on the first electrode and a second electrode on the organic layer by vacuum deposition using a mask.
  • the heat of the substrate is conducted to the conductive member, and the substrate is cooled by the conductive member, so that it is possible to suppress an increase in the temperature of the substrate.
  • the second electrode is formed by the vacuum deposition method
  • the static electricity held by the substrate is removed by the conductive member, and the static electricity of the substrate is removed by the conductive member. It becomes possible to prevent the influence. Therefore, since it becomes easy to inject current from the organic layer to the second electrode, it is possible to provide an organic EL element that can reduce the driving voltage and improve the light emission efficiency of the element. .
  • the material forming the conductive member may have a thermal conductivity of 80 W / m ⁇ K or more and an electric conductivity of 8 ⁇ 10 6 / m ⁇ or more.
  • the thermal conductivity and electrical conductivity of the conductive member can be made sufficiently higher than those of the substrate, so that when the second electrode is formed by vacuum deposition, the temperature of the substrate increases. Can be reliably suppressed, and the influence of static electricity can be reliably prevented.
  • the material forming the conductive member may be a metal.
  • the thermal conductivity and electrical conductivity of the conductive member can be easily improved.
  • the metal forming the conductive member is silver, copper, gold, aluminum, calcium, tungsten, magnesium, rhodium, iridium, sodium, molybdenum, ruthenium, zinc, cobalt, It may be at least one selected from the group consisting of cadmium, nickel, osmium, lithium, indium, and iron.
  • the conductive member can be formed from an inexpensive and versatile material.
  • an organic EL element that can reduce the driving voltage and improve the light emission efficiency of the element.
  • an organic EL element capable of extending the life.
  • FIG. 1 is a cross-sectional view of an organic EL element according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view for explaining a shape of a second electrode in the organic EL element according to an embodiment of the present invention.
  • the organic EL element 1 is used for a display such as a mobile phone, a personal digital assistant (PDA), a television, an electronic book, a monitor, an electronic poster clock, an electronic shelf label, and an emergency guide.
  • a display such as a mobile phone, a personal digital assistant (PDA), a television, an electronic book, a monitor, an electronic poster clock, an electronic shelf label, and an emergency guide.
  • PDA personal digital assistant
  • the organic EL display element 1 includes an insulating substrate 3, a first electrode 6 (anode) provided on the surface of the insulating substrate 3, and a surface of the first electrode 6.
  • An organic layer 7 provided on the top and a second electrode 8 (cathode) provided on the surface of the organic layer 7 are provided.
  • the organic layer 7 is formed on the surface of the hole injection layer 9, the hole transport layer 10 formed on the surface of the hole injection layer 9, and the hole transport layer 10.
  • a light emitting layer 11 that emits one of red light, green light, and blue light
  • an electron transport layer 12 formed on the surface of the light emitting layer 11, and an electron injection formed on the surface of the electron transport layer 12 Layer 13.
  • the organic layer 7 is comprised by laminating
  • the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13 are not limited to a five-layer laminated structure. , And an electron transport layer / electron injection layer.
  • the substrate 3 has a function of ensuring the mechanical durability of the organic EL element 1 and a function of preventing moisture and oxygen from entering the organic EL element 1 from the outside.
  • the substrate 3 has, for example, a length of 100 to 3000 mm, a width of 100 to 3000 mm, and a thickness of 0.1 to 2 mm.
  • the substrate 3 examples include a glass substrate made of quartz, soda glass, non-alkali glass, a ceramic substrate made of alumina, a plastic substrate made of polyethylene terephthalate, a metal substrate made of aluminum, iron, or the like on one side of SiO 2.
  • Examples thereof include a substrate coated with an insulating material such as (silica gel) or an organic insulating material, and a substrate obtained by subjecting the surface of a metal substrate such as aluminum or iron to an insulating treatment by a method such as anodization.
  • various wirings for controlling driving of organic EL display and switching elements such as thin film transistors (TFTs) are usually formed.
  • the first electrode 6 is made of a conductive material, and has a thickness of 50 to 500 nm, for example.
  • the first electrode 6 has a function of injecting holes into the organic layer 7.
  • Examples of the material for forming the first electrode 6 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au), calcium ( Ca), titanium (Ti), yttrium (Y), sodium (Na), Examples thereof include metal materials such as ruthenium (Ru), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb), and lithium fluoride (LiF).
  • the first electrode 6 may be, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidized astatine (AtO2).
  • the first electrode 6 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like.
  • the first electrode 31 is preferably formed of a material having a large work function from the viewpoint of improving the efficiency of hole injection into the organic layer 7.
  • a material having a large work function include gold (Au), nickel (Ni), indium tin oxide (ITO), indium zinc oxide (IZO), and the like.
  • the first electrode 6 is formed of a light transmissive or light semi-transmissive material such as ITO. Is preferred.
  • the first electrode 6 may be formed of a light reflective material such as aluminum. preferable.
  • the 1st electrode 6 may be comprised by the multiple layer in which each was formed with the said electroconductive material.
  • the hole injection layer 9 is also called an anode buffer layer, and has a function of bringing the energy levels of the first electrode 6 and the organic layer 7 closer to each other and improving the hole injection efficiency from the first electrode 6 to the light emitting layer 11.
  • Examples of the material for forming the hole injection layer 9 include benzine, styrylamine, triphenylamine, porphyrin, triazole, imidazole, oxadiazole, polyarylalkane, phenylenediamine, arylamine, oxazole, anthracene, fluorenone, Examples include hydrazone, stilbene, triphenylene, azatriphenylene, or derivatives thereof, or heterocyclic conjugated monomers, oligomers, or polymers such as polysilane compounds, vinylcarbazole compounds, thiophene compounds, or aniline compounds. .
  • the hole injection layer 9 has a thickness of 10 to 300 nm.
  • the hole transport layer 10 has a function of improving the hole transport efficiency from the first electrode 6 to the organic layer 7.
  • Examples of the material for forming the hole transport layer 10 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylene vinylene, polysilane, triazole derivatives, oxadiazole derivatives, Imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, hydrogenated Amorphous silicon carbide, zinc sulfide, zinc selenide and the like can be mentioned.
  • the hole transport layer 10 has a
  • the light emitting layer 11 is a region in which holes and electrons are injected from each of the two electrodes when a voltage is applied by the first electrode 6 and the second electrode 8, and the holes and electrons are recombined.
  • the light emitting layer 11 has a function of emitting light by recombining holes injected from the first electrode 6 and electrons injected from the second electrode 34.
  • the light emitting layer 11 is formed of a material having high luminous efficiency, and is formed of, for example, an organic material such as a low molecular fluorescent dye, a fluorescent polymer, or a metal complex.
  • the light-emitting layer 11 may contain a hole transport material, an electron transport material, an additive (donor, acceptor, etc.), a light-emitting dopant, and the like. These additives may be dispersed and added in a polymer material (binding resin) or an inorganic material. In addition, when the luminescent dopant is added, it is preferable that the dopant is added in the state disperse
  • Examples of the luminescent dopant include 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi), 4,4′-bis [2- ⁇ 4- (N, N-diphenylamino) Aromatic dimethylidene derivatives such as phenyl ⁇ vinyl] biphenyl (DPAVBi); styryl derivatives; coumarin derivatives such as perylene, iridium complexes, and coumarin 6; lumogen F red, dicyanomethylenepyran, phenoxazone, and porphyrin derivatives. Note that by appropriately selecting the type of dopant, a red light emitting layer that emits red light, a green light emitting layer that emits green light, and a blue light emitting layer that emits blue light are obtained.
  • DPVBi 4,4′-bis (2,2′-diphenylvinyl) -biphenyl
  • DPAVBi 4,4′-bis [2-
  • the electron transport layer 12 is also called a cathode buffer layer and has a function of efficiently moving electrons injected from the second electrode 8 to the light emitting layer 11.
  • Examples of the material for forming the electron transport layer 12 include oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, fluorenone derivatives, silole derivatives, metal oxinoids. Compounds and the like.
  • the electron transport layer 12 has a thickness of 10 to 300 nm.
  • the electron injection layer 13 has a function of bringing the energy levels of the second electrode 8 and the organic layer 7 closer to each other and improving the electron injection efficiency from the second electrode 8 to the light emitting layer 11.
  • a material for forming the electron injection layer 13 calcium (Ca), cerium (Ce), cesium (Cs), rubidium (Rb), strontium (Sr), barium (Ba), magnesium (Mg), lithium (Li A low work function metal having a work function of 4.0 eV or less can be used.
  • Ca and Ba are preferably used as materials for forming the electron injection layer 13.
  • the electron injection layer 13 has nickel (Ni), osmium (Os), platinum (Pt), palladium (Pd), aluminum (Al), in order to suppress alteration of the low work function metal due to oxygen, water, or the like.
  • carbon dioxides such as calcium carbonate (CaCO 3 ) and barium carbonate (BaCO 3 ) are preferably used.
  • an organic material having an electron injection property using, for example, an organic material such as CuPc and a low work function metal as a dopant in the metal layer portion. It can also be used.
  • This electron injection layer has a thickness of 0.1 to 100 nm.
  • the second electrode 8 is made of a conductive material, and has a thickness of 50 to 500 nm, for example.
  • the second electrode 8 has a function of injecting electrons into the organic layer 7.
  • the second electrode 8 may be formed with a smaller area than the organic layer 7 or may be formed so as to completely cover the organic layer 7.
  • Examples of the conductive material of the second electrode 8 include the same materials as those of the first electrode 6.
  • the second electrode 8 includes, for example, a stack of a low work function layer formed of a material having a low work function and a metal layer having relatively high chemical durability (for example, Ca / Al, Ce / Al, Cs / Al, Ba / Al, etc.).
  • the second electrode 8 is made of an alloy containing a material having a low work function (for example, Ca: Al alloy, Mg: Ag alloy, Li: Al alloy, etc.), a layer made of an alkali metal fluoride and a conductive layer ( For example, LiF / Al, LiF / Ca / Al, BaF2 / Ba / Al, etc.), transparent conductive oxide doped with a material having a low work function (for example, ITO: Cs, IDIXO: Cs, SnO2: Cs, etc.)
  • it may be constituted by a laminate of a layer made of a transparent conductive oxide and a layer made of a material having a low work function (for example, Ba / ITO, Ca / IDIXO, Ba / SnO 2, etc.).
  • the second electrode 8 is preferably formed of a very thin layer such as Al or Ag, or a light transmissive or light semi-transmissive material such as ITO.
  • the second electrode 8 is preferably formed of a light reflective material such as aluminum.
  • the second electrode 8 may be composed of a plurality of layers each formed of the conductive material.
  • the organic EL element 1 having the above configuration, when the TFT provided on the substrate 3 is turned on, holes (holes) are injected from the first electrode 6 into the organic layer 11 and the second electrode. Electrons are injected from 8 respectively. Then, the holes and electrons recombine in the organic layer 7, and the energy released thereby excites the light emitting material of the light emitting layer 11, and the fluorescence is emitted when the excited light emitting material returns from the excited state to the ground state. And emit phosphorescence. Then, the fluorescence or phosphorescence is emitted to the outside as the light emission of the organic layer 7, and a predetermined image is displayed.
  • the first electrode 6 is an anode and the second electrode 8 is a cathode.
  • the first electrode 6 is a cathode and the second electrode 8 is an anode. May be.
  • electrons are injected from the first electrode 6 into the organic layer 7 and holes are injected from the second electrode 8 into the organic layer 7 so that they recombine, whereby the organic layer 7 emits light and a predetermined image is obtained. Is displayed.
  • the surface 3 a of the substrate 3 on the side opposite to the first electrode 6 side has higher thermal conductivity than the substrate 3 and is more electrically conductive than the substrate 3.
  • the conductive member 2 made of a material having a high rate is provided.
  • the cathode as the second electrode 8 is formed by the vacuum deposition method, the static electricity held by the substrate 3 is removed by the conductive member 2, and the static electricity of the substrate 3 is removed by the conductive member 2, so that the second electrode When forming 8, the influence of static electricity can be prevented. Therefore, current can be easily injected from the organic layer 7 to the second electrode 8, so that the driving voltage of the organic EL element 1 can be lowered and the light emission efficiency can be improved.
  • the second electrode 8 is formed by stacking a layer made of an alkali metal fluoride and a conductive layer (for example, LiF / Al), if the conductive member 2 is provided on the surface 3a of the substrate 3, a vacuum is formed.
  • the cathode which is the second electrode 8 is formed by the vapor deposition method, the substrate 3 is cooled by the conductive member 2 and the static electricity of the substrate 3 is removed by the conductive member 2 as described above.
  • LiF can be formed into a round and large film without being affected by heat or static electricity. Accordingly, since the contact area between the organic layer 7 and LiF is widened, the injection of current (arrow in the figure) from the organic layer 7 to the second electrode 8 is improved. As a result, it becomes possible to reduce the drive voltage of the organic EL element and to increase the luminous efficiency.
  • the contact area between the organic layer 7 and LiF is widened. Therefore, when current is injected from the organic layer 7 to the second electrode 8, The current density per unit area decreases, and the current is dispersed and injected into the second electrode. Therefore, deterioration due to current is reduced.
  • any material may be used as long as it has higher thermal conductivity than the substrate 3 and higher electrical conductivity than the substrate 3.
  • silver electrical conductivity: 63 ⁇ 10 6 / m ⁇ , thermal conductivity: about 429 W / m ⁇ K
  • copper electrical conductivity: about 59.6 ⁇ 10 6 / m ⁇ , thermal conductivity: about 401 W / m ⁇ K
  • gold thermal conductivity: about 45.2 ⁇ 10 6 / m ⁇
  • thermal conductivity about 317 W / m ⁇ K
  • aluminum electrical conductivity: about 37.7 ⁇ 10 6 / m ⁇ , heat Conductivity: about 237 W / m ⁇ K
  • calcium electrical conductivity: about 29.8 ⁇ 10 6 / m ⁇ , thermal conductivity: about 201 W / m ⁇ K
  • tungsten electrical conductivity: about 18.9 ⁇ 10 6 / m ⁇ , thermal conductivity: about 174 W /
  • a metal material such as m ⁇ K can be preferably used. These metal materials may be used alone or in combination of two or more.
  • the “material having higher thermal conductivity than that of the substrate 3” as used herein means that the thermal conductivity of the substrate 3 is 0.55 W / m ⁇ K to 0.75 W / m ⁇ K. This refers to a material having a thermal conductivity greater than / m ⁇ K.
  • a material having a higher electrical conductivity than the substrate 3 means that the substrate 3 has an electrical conductivity of 10 ⁇ 10 / m ⁇ to 10 ⁇ 14 / m ⁇ , and therefore has a thermal conductivity greater than 10 ⁇ 10 / m ⁇ .
  • thermal conductivity referred to here refers to that measured in accordance with JIS K6911. This thermal conductivity is also called thermal conductivity.
  • Electrical conductivity refers to that measured in accordance with JIS K0130.
  • the thermal conductivity is 80 W / m as a material for forming the conductive member 2.
  • -It is preferable to use what is K or more and whose electrical conductivity is 8x10 ⁇ 6 > / m (ohm) or more.
  • FIG. 7 is a view for explaining particularly the formation of a cathode as a second electrode. It is.
  • a surface 3a of the insulating substrate 3 such as a glass substrate having a substrate size of 300 ⁇ 400 mm and a thickness of 0.7 mm opposite to the side on which the first electrode 6 is formed.
  • the conductive member 2 made of aluminum was formed by vapor-depositing aluminum having higher thermal conductivity than the substrate 3 and higher electrical conductivity than the substrate 3. At this time, the thickness of the conductive member 2 was 100 nm.
  • the first electrode 6 was formed by patterning an ITO film on the surface of the substrate 3 opposite to the side on which the conductive member 2 was formed by sputtering. At this time, the thickness of the first electrode 6 was 150 nm.
  • the organic layer 7 including the light emitting layer 11 and the second electrode 8 were formed on the first electrode 6 by a vacuum deposition method using a metal mask.
  • an insulating substrate 3 provided with the conductive member 2 and the first electrode 6 was placed in a chamber of a vapor deposition apparatus provided with a vapor deposition source. Note that the inside of the chamber of the vapor deposition apparatus was kept at a vacuum degree of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 4 (Pa) by a vacuum pump.
  • the insulating substrate 3 provided with the conductive member 2 and the first electrode 6 was installed in a state where two sides were fixed by a pair of substrate receivers attached in the chamber.
  • a metal mask 14 was provided, and the four corners of the mask 14 were fixed with a mask receiver in the chamber.
  • the mask 16 a mask obtained by laser welding an Invar mask having a thickness of about 40 ⁇ m to an Invar frame having a thickness of about 8 mm was used.
  • the deposition materials of the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13 are sequentially evaporated from the deposition source 15, By stacking the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13, the organic layer 7 was formed on the first electrode 6 as shown in FIG. 6.
  • a hole injection layer 9 made of m-MTDATA (4,4,4-tris (3-methylphenylphenylamino) triphenylamine) is formed on the first electrode 6 patterned on the insulating substrate 3.
  • a hole transport layer 10 made of ⁇ -NPD (4,4-bis (N-1-naphthyl-N-phenylamino) biphenyl) is formed on the hole injection layer 9 through a mask 14 with a thickness of 30 nm. It was formed with a film thickness.
  • lithium fluoride (LiF) and aluminum (Al), which are vapor deposition materials for the second electrode 8 are evaporated from the vapor deposition source 15, and the second electrode 8 is stacked via the mask 14, thereby forming FIG.
  • the second electrode 8 was formed on the organic layer 7 with a thickness of 10 nm to manufacture the organic EL element 1 shown in FIG.
  • an organic EL element as a comparative example was prepared in the same manner as in the above-described example except that the above-described conductive member 2 was not formed on the surface of the substrate.
  • the organic EL element 1 produced by the present Example and the organic EL element as a comparative example compared the drive voltage of the element, the luminous efficiency of the element, and the element lifetime.
  • the results are shown in Table 1.
  • the drive voltage is the voltage value [V]
  • the light emission efficiency is the ratio of the luminance of the element to the current density [cd / A]
  • the element life is the measurement result of the light emission time [h].
  • the driving voltage and the luminous efficiency the luminance was 1000 cd / m 2 and the voltage was gradually increased from 0 to 15 V in increments of 0.2 volts, and the luminous efficiency was calculated from the current and luminance at each voltage value.
  • the initial luminance was set to 6000 cd / m 2 and the time until the initial luminance was reduced to half was defined as the element lifetime.
  • the driving voltage of the organic EL element 1 can be reduced as compared with the comparative example in which the conductive member 2 is not formed. I understand that I can do it.
  • the luminous efficiency is remarkably improved as compared with Comparative Example 1, and the luminous efficiency is extremely good.
  • the device life is drastically improved as compared with Comparative Example 1, and the life of the organic EL device 1 can be extended.
  • the substrate 3 is cooled by the conductive member 2 when the cathode as the second electrode 8 is formed by the vacuum evaporation method. This is presumably because the static electricity of the substrate 3 was removed by the conductive member 2.
  • the roundness in the shape of LiF that forms the cathode as the second electrode 8 is measured with the organic EL element 1 produced in this example and the organic EL element of the comparative example. did.
  • the results are shown in Table 2.
  • the roundness in the shape of LiF was measured by measuring the load length ratio tp and the load area ratio Rmr (50%).
  • the load length ratio tp is defined in JIS B0601-2001 and can be measured with a surface shape measuring microscope or the like.
  • the load length ratio tp is expressed by the following formula (1), a predetermined reference length L is extracted from the roughness curve, and the average height and the maximum height of the roughness curve of the extracted portion are obtained, and the average height or more is obtained. And the sum (load length np) of the cut lengths (b 1 , b 2 ,..., B n ) of the portion that is 50% or more of the maximum height and higher than the average height, and the reference length L, The ratio (np / L) is expressed as a percentage.
  • the load area ratio Rmr (50%) can be measured with an atomic force microscope such as VN-8000 manufactured by KEYENCE.
  • the load area ratio Rmr (50%) is expressed by the following formula (2), a predetermined reference area S is extracted from the roughness curve, and the average height and the maximum height of the roughness curve of the extracted portion are obtained.
  • the ratio (np / S) is expressed as a percentage.
  • the surface 3a of the substrate 3 opposite to the first electrode 6 side is made of a material having a higher thermal conductivity than the substrate 3 and a higher electrical conductivity than the substrate 3.
  • the member 2 is provided. Therefore, when the second electrode 8 is formed by the vacuum deposition method, the heat of the substrate 3 is conducted to the conductive member 2 and the substrate 3 is cooled by the conductive member 2, so that an increase in the temperature of the substrate 3 can be suppressed. It becomes possible. Further, when the second electrode 8 is formed by the vacuum deposition method, the static electricity held by the substrate 3 is removed by the conductive member 2, and the static electricity of the substrate 3 is removed by the conductive member 2, so that the second electrode 8 is formed. In this case, it becomes possible to prevent the influence of static electricity. Therefore, current can be easily injected from the organic layer 7 to the second electrode 8, so that the driving voltage of the organic EL element 1 can be lowered and the light emission efficiency of the element can be improved.
  • the thermal conductivity of the material forming the conductive member 2 is set to 80 W / m ⁇ K or more, and the electrical conductivity of the material forming the conductive member 2 is 8 ⁇ 10 6 / m ⁇ .
  • the configuration is as described above. Therefore, the thermal conductivity and electrical conductivity of the conductive member 2 can be made sufficiently higher than those of the substrate. Therefore, when the second electrode 8 is formed by the vacuum evaporation method, the temperature of the substrate 3 is increased. In addition to being able to be reliably suppressed, the influence of static electricity can be reliably prevented.
  • the material forming the conductive member 2 is a metal. Accordingly, the thermal conductivity and electrical conductivity of the conductive member 2 can be easily improved.
  • the metal forming the conductive member 2 is silver, copper, gold, aluminum, calcium, tungsten, magnesium, rhodium, iridium, sodium, molybdenum, ruthenium, zinc, cobalt, cadmium, nickel,
  • the structure uses osmium, lithium, indium, and iron. Accordingly, the conductive member 2 can be formed from an inexpensive and versatile material.
  • a metal is used as a material for forming the conductive member 2, but a material other than a metal may be used. That is, the material has higher thermal conductivity than the substrate 3 and higher electrical conductivity than the substrate 3, has a thermal conductivity of 80 W / m ⁇ K or more, and an electrical conductivity of 8 ⁇ 10 6 / m ⁇ . Any material may be used as long as it is the above material.
  • the conductive member 2 may be formed of a conductive resin.
  • the present invention is particularly useful for an organic EL element for forming a second electrode by a vacuum deposition method and a method for manufacturing the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機EL表示素子(1)は、絶縁性の基板(3)と、基板(3)上に形成された第1電極(6)と、第1電極(6)上に形成されるとともに、発光層を有する有機層(7)と、有機層(7)上に形成された第2電極(8)とを備えている。そして、基板(3)の、第1電極(6)側と反対側の表面(3a)に、基板(3)よりも熱伝導率が高く、かつ基板(3)よりも電気伝導率が高い材料からなる伝導部材(2)が設けられている。

Description

有機EL素子およびその製造方法
 本発明は、有機電界発光素子(有機エレクトロルミネッセンス素子:以下、「有機EL素子」と記載する)およびその製造方法に関する。
 近年、次世代フラットパネル表示装置として有機EL表示装置が注目されている。この有機EL表示装置は、自己発光型の表示装置であり、視野角特性に優れ、視認性が高く、低消費電力であり、かつ薄型化が可能であるため、需要が高まってきている。
 この有機EL表示装置は、所定の配列で配列された複数の有機EL素子を有し、複数の有機EL素子の各々は、絶縁性基板上に形成された第1電極である陽極と、第1電極上に形成された発光層を有する有機層と、有機層上に形成された第2電極である陰極とを備えている。
 また、一般に、この有機EL表示装置に用いる有機EL薄膜を基板上に成膜する手法として、真空蒸着法が知られている。この真空蒸着法は、真空下において、まず、基板の被蒸着面である表面を下側にして水平状態に載置し、この基板表面に金属製のマスクを密着させる。次いで、その下方に設けた蒸着源から蒸着材料(即ち、有機EL材料)を所定パターンが形成されたマスク開口部を通して基板表面に蒸着させることで、基板表面に所定パターンの有機EL薄膜を成膜させている。
 ここで、一般に、有機EL素子の整流性が低い場合、逆バイアス印可時に微量のリーク電流が流れ、当該リーク電流に起因して、クロストーク現象が発生し、結果として、表示品位が大きく損なわれてしまうという問題があった。
 そこで、リーク電流に起因するクロストーク現象が防止して、表示品位の低下を防止するための有機EL素子の製造方法が提案されている。より具体的には、基板上に有機EL薄膜を成膜する際に、基板の成膜側表面の温度を制御するための温度センサーと熱放出・吸収体とにより構成される基板温度制御装置を有する真空蒸着装置を使用する有機EL素子の製造方法が開示されている。この有機EL素子の製造方法においては、真空蒸着装置を使用して、基板温度を70℃以下に制御するとともに、温度変化速度の絶対値を1.5℃/sec以内に制御する。そして、このような方法により、優れた整流特性を有する有機EL素子を作製できるとともに、クロストークが無く表示品位の高い表示パネルが作製できると記載されている(例えば、特許文献1参照)。
特開2001-85164号公報
 しかし、上記特許文献1に記載の有機EL素子の製造方法においては、基板温度を制御した場合であっても、真空蒸着法により第2電極である陰極を形成する際に、基板温度が上昇し、また、基板が静電気を有する。そのため、これらの基板温度の上昇や基板が有する静電気に起因して、作製された有機EL素子において、有機層から陰極への電流の注入が不十分になるという問題があった。その結果、有機EL素子の駆動電圧が上昇してしまうとともに、発光効率が低下するという問題があった。
 そこで、本発明は、上述の問題に鑑みてなされたものであり、駆動電圧の低電圧化を図ることができるとともに、発光効率の高効率化を図ることができる有機EL素子およびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の有機EL素子は、基板と、基板上に形成された第1電極と、第1電極上に形成されるとともに、発光層を有する有機層と、有機層上に形成された第2電極とを備え、基板の、第1電極側と反対側の表面に、基板よりも熱伝導率が高く、かつ基板よりも電気伝導率が高い材料からなる伝導部材が設けられている。
 同構成によれば、真空蒸着法により第2電極を形成する際に、基板の熱が伝導部材に伝導され、基板が伝導部材により冷却されるため、基板の温度上昇を抑制することが可能になる。また、真空蒸着法により第2電極を形成する際に、基板が保有する静電気が伝導部材により除電され、基板の静電気が伝導部材により除去されるため、第2電極を形成する際に、静電気の影響を防止することが可能になる。従って、有機層から第2電極への電流の注入が容易になるため、有機EL素子の駆動電圧を低下させることができるとともに、素子の発光効率を向上させることが可能になる。
 また、基板の表面に伝導部材が設けられているため、有機層から第2電極へ電流が注入される際に、単位面積当たりの電流密度が低下し、第2電極に対して電流が分散して注入されることになる。従って、電流による劣化が低減されるため、結果として、有機EL素子の長寿命化を図ることが可能になる。
 また、本発明の有機EL素子においては、伝導部材を形成する材料の熱伝導率が80W/m・K以上であり、電気伝導率が8×10/mΩ以上であっても良い。
 同構成によれば、伝導部材の熱伝導率、及び電気伝導率を、基板よりも十分に高くすることが可能になるため、真空蒸着法により第2電極を形成する際に、基板の温度上昇を確実に抑制することが可能になるとともに、静電気の影響を確実に防止することが可能になる。
 また、本発明の有機EL素子においては、伝導部材を形成する材料が、金属であっても良い。
 同構成によれば、伝導部材の熱伝導率と電気伝導率とを容易に向上させることができる。
 また、本発明の有機EL素子においては、伝導部材を形成する金属が、銀、銅、金、アルミニウム、カルシウム、タングステン、マグネシウム、ロジウム、イリジウム、ナトリウム、モリブデン、ルテニウム、亜鉛、コバルト、カドミウム、ニッケル、オスミウム、リチウム、インジウム、及び鉄からなる群より選ばれる少なくとも1種であっても良い。
 同構成によれば、安価かつ汎用性のある材料により、伝導部材を形成することが可能になる。
 本発明の有機EL素子の製造方法は、基板上に、第1電極、発光層を有する有機層、及び第2電極がこの順で形成された有機EL素子の製造方法であって、基板の表面に、基板よりも熱伝導率が高く、かつ基板よりも電気伝導率が高い材料からなる伝導部材を形成する工程と、基板の、伝導部材が形成された側と反対側の表面に、第1電極を形成する工程と、マスクを用いた真空蒸着法により、第1電極上に有機層を形成するとともに、有機層上に第2電極を形成する工程とを少なくとも含む。
 同構成によれば、真空蒸着法により第2電極を形成する際に、基板の熱が伝導部材に伝導され、基板が伝導部材により冷却されるため、基板の温度上昇を抑制することが可能になる。また、真空蒸着法により第2電極を形成する際に、基板が保有する静電気が伝導部材により除電され、基板の静電気が伝導部材により除去されるため、第2電極を形成する際に、静電気の影響を防止することが可能になる。従って、有機層から第2電極への電流の注入が容易になるため、駆動電圧を低下させることができるとともに、素子の発光効率を向上させることができる有機EL素子を提供することが可能になる。
 また、基板の表面に伝導部材が形成されるため、有機層から第2電極へ電流が注入される際に、単位面積当たりの電流密度が低下し、第2電極に対して電流が分散して注入されることになる。従って、電流による劣化が低減されるため、結果として、長寿命化を図ることができる有機EL素子を提供することが可能になる。
 また、本発明の有機EL素子の製造方法においては、伝導部材を形成する材料の熱伝導率が80W/m・K以上であり、電気伝導率が8×10/mΩ以上であっても良い。
 同構成によれば、伝導部材の熱伝導率、及び電気伝導率を、基板よりも十分に高くすることが可能になるため、真空蒸着法により第2電極を形成する際に、基板の温度上昇を確実に抑制することが可能になるとともに、静電気の影響を確実に防止することが可能になる。
 また、本発明の有機EL素子の製造方法においては、伝導部材を形成する材料が、金属であっても良い。
 同構成によれば、伝導部材の熱伝導率と電気伝導率とを容易に向上させることができる。
 また、本発明の有機EL素子の製造方法においては、伝導部材を形成する金属が、銀、銅、金、アルミニウム、カルシウム、タングステン、マグネシウム、ロジウム、イリジウム、ナトリウム、モリブデン、ルテニウム、亜鉛、コバルト、カドミウム、ニッケル、オスミウム、リチウム、インジウム、及び鉄からなる群より選ばれる少なくとも1種であっても良い。
 同構成によれば、安価かつ汎用性のある材料により、伝導部材を形成することが可能になる。
 本発明によれば、駆動電圧を低下させることができるとともに、素子の発光効率を向上させることができる有機EL素子を提供することが可能になる。また、長寿命化を図ることができる有機EL素子を提供することが可能になる。
本発明の実施形態に係る有機EL素子の断面図である。 本発明の実施形態に係る有機EL素子における第2電極の形状を説明するための断面図である。 本発明の実施形態に係る有機EL素子の製造方法を説明するために断面図である。 本発明の実施形態に係る有機EL素子の製造方法を説明するために断面図である。 本発明の実施形態に係る有機EL素子の製造方法を説明するために断面図である。 本発明の実施形態に係る有機EL素子の製造方法を説明するために断面図である。 本発明の実施形態に係る有機EL素子の製造方法を説明するために断面図であり、特に、第2電極である陰極の形成を説明するための図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。
 図1は、本発明の実施形態に係る有機EL素子の断面図であり、図2は、本発明の実施形態に係る有機EL素子における第2電極の形状を説明するための断面図である。
 この有機EL素子1は、例えば、携帯電話、携帯情報端末(PDA)、テレビ、電子ブック、モニター、電子ポスター時計、電子棚札、非常案内等のディスプレイに使用されるものである。
 また、図1に示すように、有機EL表示素子1は、絶縁性の基板3と、絶縁性の基板3の表面上に設けられた第1電極6(陽極)と、第1電極6の表面上に設けられた有機層7と、有機層7の表面上に設けられた第2電極8(陰極)とを備えている。
 また、有機層7は、図1に示すように、正孔注入層9と、正孔注入層9の表面上に形成された正孔輸送層10と、正孔輸送層10の表面上に形成され、赤色光、緑色光、および青色光のいずれかを発する発光層11と、発光層11の表面上に形成された電子輸送層12と、電子輸送層12の表面上に形成された電子注入層13とを備えている。そして、これらの正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13が順次積層されることにより、有機層7が構成されている。なお、正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、及び電子注入層13の5層積層構造に限られず、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層構造であってもよい。
 基板3は、有機EL素子1の機械的耐久性を担保する機能、及び有機EL素子1への外部からの水分や酸素の混入を阻止する機能を有する。基板3は、例えば、縦が100~3000mm、横が100~3000mm、及び厚みが0.1~2mmである。
 基板3としては、例えば、石英やソーダガラス、無アルカリガラスなどからなるガラス基板、アルミナなどからなるセラミックス基板、ポリエチレンテレフタレートなどからなるプラスティック基板、アルミニウムや鉄などからなる金属基板の一方面をSiO(シリカゲル)や有機絶縁性材料などの絶縁材料でコートした基板、アルミニウムや鉄などの金属基板の表面に陽極酸化などの方法で絶縁化処理を施した基板等が挙げられる。また、基板3上には、通常、有機EL表示の駆動制御を行うための各種配線、及び、薄膜トランジスタ(TFT)等のスイッチング素子が形成される。
 第1電極6は、導電性材料で形成されており、例えば、厚みが50~500nmである。第1電極6は、有機層7にホール(正孔)を注入する機能を有する。
 第1電極6を形成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、
ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等の金属材料が挙げられる。また、第1電極6は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO2)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金で形成されていてもよい。さらに、第1電極6は、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)などの導電性酸化物等で形成されていてもよい。
 また、第1電極31は、有機層7への正孔注入効率を向上させることができるという観点から、仕事関数の大きな材料で形成されていることが好ましい。かかる仕事関数の大きな材料としては、例えば、金(Au)、ニッケル(Ni)、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が挙げられる。
 第1電極6は、有機EL素子1が第1電極6側から有機層7の発光を取り出すボトムエミッション構造である場合、ITO等の光透過性又は光半透過性の材料で形成されていることが好ましい。一方、有機EL素子1が第1電極6とは反対側から有機層7の発光を取り出すトップエミッション構造である場合、第1電極6は、アルミニウム等の光反射性材料で形成されていることが好ましい。
 なお、第1電極6は、上記導電性材料で各々が形成された複数層で構成されていてもよい。
 正孔注入層9は、陽極バッファ層とも呼ばれ、第1電極6と有機層7とのエネルギーレベルを近づけ、第1電極6から発光層11への正孔注入効率を向上させる機能を有する。この正孔注入層9を形成する材料としては、例えば、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリアゾール、イミダゾール、オキサジアゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、オキザゾール、アントラセン、フルオレノン、ヒドラゾン、スチルベン、トリフェニレン、アザトリフェニレン、あるいはこれらの誘導体、または、ポリシラン系化合物、ビニルカルバゾール系化合物、チオフェン系化合物あるいはアニリン系化合物等の複素環式共役系のモノマー、オリゴマーあるいはポリマーを挙げることができる。この正孔注入層9は、厚みが10~300nmである。
 正孔輸送層10は、第1電極6から有機層7への正孔輸送効率を向上させる機能を有する。この正孔輸送層10を形成する材料としては、例えば、ポルフィリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水素化アモルファスシリコン、水素化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛等を挙げることができる。この正孔輸送層10は、、厚みが10~300nmである。
 発光層11は、第1電極6、及び第2電極8による電圧印加の際に、両電極の各々から正孔および電子が注入されるとともに、正孔と電子が再結合する領域である。この発光層11は、第1電極6から注入された正孔と第2電極34から注入された電子とを再結合させて光を出射させる機能を有する。この発光層11は、発光効率が高い材料により形成され、例えば、低分子蛍光色素、蛍光性の高分子、金属錯体等の有機材料により形成されている。より具体的には、ナフタレン誘導体、アントラセン誘導体、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、ベンズチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレンなどの低分子化合物;ポリ-p-フェニレンビニレンやポリシラン等の高分子化合物等を挙げることができる。この発光層は、厚みが10~300nmである。
 なお、発光層11には、正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)、発光性のドーパントなどが添加されていてもよい。これらの添加物は、高分子材料(結着用樹脂)や無機材料中に分散されて添加されていてもよい。なお、発光性のドーパントが添加されている場合は、発光効率や寿命の観点から、ドーパントがホスト材料中に分散された状態で添加されていることが好ましい。
 発光性のドーパントとしては、例えば、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)、4,4’-ビス[2-{4-(N,N-ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)などの芳香族ジメチリデン誘導体;スチリル誘導体;ペリレン、イリジウム錯体、クマリン6などのクマリン誘導体;ルモーゲンFレッド、ジシアノメチレンピラン、フェノキザゾン、ポリフィリン誘導体等が挙げられる。なお、ドーパントの種類を適宜選択することにより、赤色に発光する赤色発光層、緑色に発光する緑色発光層、及び青色に発光する青色発光層となる。
 電子輸送層12は、陰極バッファ層とも呼ばれ、第2電極8から注入された電子を発光層11まで効率良く移動させる機能を有する。この電子輸送層12を形成する材料としては、例えば、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物等が挙げられる。この電子輸送層12は、厚みが10~300nmである。
 電子注入層13は、第2電極8と有機層7とのエネルギーレベルを近づけ、第2電極8から発光層11への電子注入効率を向上させる機能を有する。この電子注入層13を形成する材料としては、カルシウム(Ca)、セリウム(Ce)、セシウム(Cs)、ルビジウム(Rb)、ストロンチウム(Sr)、バリウム(Ba)、マグネシウム(Mg)、リチウム(Li)等の仕事関数が4.0eV以下の低仕事関数金属を用いることができる。発光層として高分子有機発光層を適用した場合には、中でもCa、Baが電子注入層13を形成する材料として好適に用いられる。通常、電子注入層13には、酸素や水等による低仕事関数金属の変質を抑えるために、ニッケル(Ni)、オスミウム(Os)、白金(Pt)、パラジウム(Pd)、アルミニウム(Al)、銀(Ag)、金(Au)、ロジウム(Rh)等の化学的に比較的安定な金属と低仕事関数金属との合金からなる単層膜又は複数の材料の積層膜、あるいはフッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)などのフッ化物、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)等の酸化物、炭酸カルシウム(CaCO)、炭酸バリウム(BaCO)等の炭酸化物等が好適に用いられる。また、電子注入層13と第2電極8を兼ね備えた層として、金属層の部分に、例えばCuPc等の有機材料に、上記の低仕事関数金属をドーパントとして用いた電子注入性を有する有機材料を用いることも出来る。この電子注入層は、厚みが0.1~100nmである。
 第2電極8は、導電性材料で形成されており、例えば、厚みが50~500nmである。第2電極8は、有機層7に電子を注入する機能を有する。第2電極8は、有機層7よりも面積が小さく形成されていてもよく、また、有機層7を完全に覆うように大きく形成されていてもよい。
 第2電極8の導電性材料としては、例えば、第1電極6と同様のものが挙げられる。
 第2電極8は、例えば、仕事関数が低い材料により形成された低仕事関数層と、比較的に化学的耐久性の強い金属層との積層(例えば、Ca/Al、Ce/Al、Cs/Al、Ba/Al等)により構成することができる。また、第2電極8は、仕事関数が低い材料を含む合金(例えば、Ca:Al合金、Mg:Ag合金、Li:Al合金等)、アルカリ金属フッ化物からなる層と導電層との積層(例えば、LiF/Al、LiF/Ca/Al、BaF2/Ba/Al等)、仕事関数が低い材料がドープされた透明導電性酸化物(例えば、ITO:Cs、IDIXO:Cs、SnO2:Cs等)、透明導電性酸化物からなる層と仕事関数が低い材料からなる層との積層(例えば、Ba/ITO、Ca/IDIXO、Ba/SnO2等)等により構成してもよい。
 第2電極8は、有機EL素子1がトップエミッション構造である場合、AlやAg等の極薄層もしくは、ITO等の光透過性又は光半透過性の材料で形成されていることが好ましい。一方、有機EL素子1がボトムエミッション構造である場合、第2電極8は、アルミニウム等の光反射性材料で形成されていることが好ましい。
 第2電極8は、上記導電性材料で各々が形成された複数層で構成されていてもよい。
 以上の構成の有機EL素子1では、基板3に設けられたTFTがオンとなった際に、有機層11に対し、第1電極6からホール(正孔)が注入されるとともに、第2電極8から電子がそれぞれ注入される。そして、それらのホールと電子とが有機層7で再結合し、それによって放出されたエネルギーが発光層11の発光材料を励起させ、励起された発光材料が励起状態から基底状態に戻るときに蛍光や燐光を放出する。そして、その蛍光や燐光が有機層7の発光として外部に出射され、所定の画像を表示することとなる。
 なお、本実施形態においては、第1電極6が陽極及び第2電極8が陰極である構成としたが、第1電極6が陰極及び第2電極8が陽極の逆構造型有機EL素子であってもよい。この場合、第1電極6から有機層7に電子が注入されるとともに、第2電極8から有機層7にホールが注入されて両者が再結合することにより有機層7が発光し、所定の画像を表示を行う。
 ここで、本実施形態においては、図1に示すように、基板3の、第1電極6側と反対側の表面3aに、基板3よりも熱伝導率が高く、かつ基板3よりも電気伝導率が高い材料からなる伝導部材2が設けられている点に特徴がある。
 このような構成により、真空蒸着法により第2電極8である陰極を形成する際に、基板3の熱が伝導部材2に伝導され、基板3が伝導部材2により冷却されるため、基板3の温度上昇を抑制することが可能になる。従って、有機層7から第2電極8への電流の注入が容易になるため、有機EL素子1の駆動電圧を低下させることができるとともに、発光効率)を向上させることが可能になる。
 また、真空蒸着法により第2電極8である陰極を形成する際に、基板3が保有する静電気が伝導部材2により除電され、基板3の静電気が伝導部材2により除去されるため、第2電極8を形成する際に、静電気の影響を防止することが可能になる。従って、有機層7から第2電極8への電流の注入が容易になるため、有機EL素子1の駆動電圧を低下させることができるとともに、発光効率を向上させることが可能になる。
 より具体的には、第2電極8をアルカリ金属フッ化物からなる層と導電層との積層(例えば、LiF/Al)により形成する場合、基板3の表面3aに伝導部材2を設けると、真空蒸着法により第2電極8である陰極を形成する際に、上述のごとく、基板3が伝導部材2により冷却されるとともに、基板3の静電気が伝導部材2により除去されるため、図2に示すように、熱や静電気の影響を受けることなくLiFを丸く、かつ大きく製膜することが可能になる。従って、有機層7とLiFとの接触面積が広くなるため、有機層7から第2電極8への電流(図中の矢印)の注入が向上することになる。その結果、有機EL素子の駆動電圧を低下させることが可能になるとともに、発光効率の高効率化を図ることが可能になる。
 また、基板3の表面3aに伝導部材2を設けると、上述のごとく、有機層7とLiFとの接触面積が広くなるため、有機層7から第2電極8へ電流が注入される際に、単位面積当たりの電流密度が低下し、第2電極に対して電流が分散して注入されることになる。従って、電流による劣化が低減されることになる。
 伝導部材2を形成する材料としては、基板3よりも熱伝導率が高く、かつ基板3よりも電気伝導率が高いものであれば、どのような材料でも良い。例えば、銀(電気伝導率:63×10/mΩ、熱伝導率:約429W/m・K)、銅(電気伝導率:約59.6×10/mΩ、熱伝導率:約401W/m・K)、金(熱伝導率:約45.2×10/mΩ、熱伝導率:約317W/m・K)、アルミニウム(電気伝導率:約37.7×10/mΩ、熱伝導率:約237W/m・K)、カルシウム(電気伝導率:約29.8×10/mΩ、熱伝導率:約201W/m・K)、タングステン(電気伝導率:約18.9×10/mΩ、熱伝導率:約174W/m・K)、マグネシウム(電気伝導率:約22.6×10/mΩ、熱伝導率:約156W/m・K)、ロジウム(電気伝導率:約21.1×10/mΩ、熱伝導率:約150W/m・K)、シリコン(電気伝導率:約2.52×10/mΩ、熱伝導率:約148W/m・K)、イリジウム(電気伝導率:約19.7×10/mΩ、熱伝導率:約147W/m・K)、ナトリウム(電気伝導率:約21×10/mΩ、熱伝導率:約141W/m・K)、モリブデン(電気伝導率:約18.7×10/mΩ、熱伝導率:約138W/m・K)、ルテニウム(電気伝導率:約13.7×10/mΩ、熱伝導率:約117W/m・K)、亜鉛(電気伝導率:約16.6×10/mΩ、熱伝導率:約116W/m・K)、コバルト(電気伝導率:約17.2×10/mΩ、熱伝導率:約100W/m・K)、カドミウム(電気伝導率:約13.8×10/mΩ、熱伝導率:約96.8W/m・K)、クロム(電気伝導率:約7.74×10/mΩ、熱伝導率:約93.9W/m・K)、ニッケル(電気伝導率:約14.3×10/mΩ、熱伝導率:約90.7W/m・K)、オスミウム(電気伝導率:約10.9×10/mΩ、熱伝導率:約87.6W/m・K)、リチウム(電気伝導率:約10.6×10/mΩ、熱伝導率:約84.7W/m・K)、インジウム(電気伝導率:約11.6×10/mΩ、熱伝導率:約81.6W/m・K)、鉄(電気伝導率:約9.93×10/mΩ、熱伝導率:約80.2W/m・K)、パラジウム(電気伝導率:約9.5×10/mΩ、熱伝導率:約71.8W/m・K)、白金(電気伝導率:約9.66×10/mΩ、熱伝導率:約71.6W/m・K)、及びスズ(電気伝導率:約9.17×10/mΩ、熱伝導率:約66.6W/m・K)等の金属材料が好適に使用できる。なお、これらの金属材料は、単独で使用しても良く、2種以上を混合して使用しても良い。
 また、ここで言う、「基板3よりも熱伝導率が高い材料」とは、基板3の熱伝導率が0.55W/m・K~0.75W/m・Kであるため、0.75W/m・Kより大きい熱伝導率を有する材料のことを言う。また、「基板3よりも電気伝導率が高い材料」とは、基板3の電気伝導率が10-10/mΩ~10-14/mΩであるため、10-10/mΩより大きい熱伝導率を有する材料のことを言う。また、ここで言う「熱伝導率」とは、JIS K6911に準拠して測定されるものを言う。この熱伝導率は、熱伝導度ともいい、熱伝導において、熱流束密度(単位時間に単位面積を通過する熱エネルギー)を温度勾配で割った物理量であって、熱流束密度をJ、温度をT、温度勾配をgradTとすると、熱伝導率λとの関係は、J=-λgradTで表される。また、「電気伝導率」とは、JIS K0130に準拠して測定されるものを言う。
 また、本実施形態においては、伝導部材2の熱伝導率、及び電気伝導率を、基板3よりも十分に高くするという観点から、伝導部材2を形成する材料として、熱伝導率が80W/m・K以上であり、電気伝導率が8×10/mΩ以上であるものを使用することが好ましい。
 次に、本実施形態の有機EL素子の製造方法の一例について説明する。図3~図7は、本発明の実施形態に係る有機EL素子の製造方法を説明するために断面図であり、図7は、特に、第2電極である陰極の形成を説明するための図である。
 まず、図3に示すように、基板サイズが300×400mmで、厚さが0.7mmのガラス基板等の絶縁性の基板3の、第1電極6が形成される側と反対側の表面3aに、基板3よりも熱伝導率が高く、かつ基板3よりも電気伝導率が高いアルミニウムを蒸着させて、アルミニウムからなる伝導部材2を形成した。このとき、伝導部材2の厚みは、100nmであった。
 次いで、図4に示すように、基板3の、伝導部材2が形成された側と反対側の表面に、スパッタ法によりITO膜をパターン形成して、第1電極6を形成した。このとき、第1電極6の厚みは、150nmであった。
 次に、第1電極6上に、発光層11を含む有機層7、及び第2電極8を金属製のマスクを使用して、真空蒸着法により形成した。
 より具体的には、まず、伝導部材2と第1電極6とを備えた絶縁性の基板3を蒸着源が設けられた蒸着装置のチャンバー内に設置した。なお、蒸着装置のチャンバー内は、真空ポンプにより、1×10-5~1×10-4(Pa)の真空度に保たれていた。また、伝導部材2と第1電極6とを備えた絶縁性の基板3は、チャンバー内に取り付けられた1対の基板受けによって2辺を固定した状態で設置した。
 次いで、図5に示すように、金属製のマスク14を設け、マスク14の四隅を、チャンバー内のマスク受けで固定した。このマスク16としては、厚さが40μm程度のインバーマスクを厚さが8mm程度のインバーフレームにレーザ溶接したものを使用した。
 そして、蒸着源15から、正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13の各蒸着材料を順次蒸発させて、正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13を積層することにより、図6に示すように、第1電極6上に有機層7を形成した。
 より具体的には、まず、絶縁性の基板3上にパターニングされた第1電極6上に、m-MTDATA(4,4,4-tris(3-methylphenylphenylamino)triphenylamine)からなる正孔注入層9を、マスク14を介して、25nmの膜厚で形成した。続いて、正孔注入層9上に、α-NPD(4,4-bis(N-1-naphthyl-N-phenylamino)biphenyl)からなる正孔輸送層10を、マスク14を介して、30nmの膜厚で形成した。次に、青色の発光層11として、ジ(2-ナフチル)アントラセン(AND)に4,4’-ビス(2-{4-(N,N-ジフェニルアミノ)フェニル}ビニル)ビフェニル(DPAVBi)を2.5重量%混合したものを、マスク14を介して、30nmの膜厚で形成した。次いで、発光層11上に、8-ヒドロキシキノリンアルミニウム(Alq3)を電子輸送層12として、マスク14を介して、20nmの膜厚で形成した。次いで、電子輸送層12上に、フッ化リチウム(LiF)を電子注入層13として、マスク14を介して、例えば、0.3nmの膜厚で形成した。
 次いで、蒸着源15から、第2電極8の蒸着材料であるフッ化リチウム(LiF)とアルミニウム(Al)を蒸発させて、マスク14を介して、第2電極8を積層することにより、図7に示すように、有機層7上に第2電極8を、10nmの膜厚で形成して、図1に示す有機EL素子1を製造した。
 なお、基板の表面に、上述の伝導部材2を形成しなかったこと以外は、上述の本実施例と同様にして作製された、比較例としての有機EL素子を用意した。
 そして、本実施例で作製した有機EL素子1と、比較例としての有機EL素子とで、素子の駆動電圧、素子の発光効率、及び素子寿命を比較した。以上の結果を表1に示す。なお、駆動電圧は、その電圧値〔V〕、発光効率は、素子の輝度と電流密度との比〔cd/A〕、及び素子寿命は発光時間〔h〕の測定結果である。また、駆動電圧、及び発光効率については、輝度を1000cd/mとして、0~15Vまで、0.2ボルト刻みで電圧を徐々に上昇させ、各電圧値における電流と輝度から発光効率を算出した。また、素子寿命については、初期輝度を6000cd/mとして、初期輝度が半分になるまでの時間を素子寿命とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、基板3の表面3aに伝導部材2を形成した実施例においては、伝導部材2を形成しなかった比較例に比し、有機EL素子1の駆動電圧を低下させることができることが判る。また、実施例においては、比較例1に比し、発光効率が飛躍的に向上しており、発光効率が極めて良好であることが判る。更に、実施例においては、比較例1に比し、素子寿命が飛躍的に向上し、有機EL素子1の長寿命化を図ることができることが判る。
 これは、実施例においては、基板3の表面3aに伝導部材2を形成したため、真空蒸着法により第2電極8である陰極を形成する際に、基板3が伝導部材2により冷却されるとともに、基板3の静電気が伝導部材2により除去されたためであると考えられる。
 また、本実施例で作製した有機EL素子1と、比較例の有機EL素子とで、第2電極8である陰極を形成するLiFの形状における丸み(即ち、LiFの頂上部分の丸み)を測定した。以上の結果を表2に示す。なお、負荷長さ率tpと負荷面積率Rmr(50%)を測定することにより、LiFの形状における丸みを測定した。
 負荷長さ率tpは、JIS B0601-2001に規定され、表面形状測定顕微鏡等で測定することが可能である。負荷長さ率tpは、下記式(1)で表され、粗さ曲線から所定の基準長さLを抜き取り、この抜取り部分の粗さ曲線の平均高さと最大高さを求め、平均高さ以上であって、最大高さの50%以上、平均高さよりも高い部分の切断長さ(b、b、・・・、b)の和(負荷長さnp)と基準長さLとの比(np/L)を百分率で示したものである。
Figure JPOXMLDOC01-appb-M000001
 また、負荷面積率Rmr(50%)は、KEYENCE製VN-8000といった原子間力顕微鏡等で測定することが可能である。負荷面積率Rmr(50%)は、下記式(2)で表され、粗さ曲線から所定の基準面積Sを抜き取り、この抜取り部分の粗さ曲線の平均高さと最大高さを求め、平均高さ以上であって、最大高さの50%以上、平均高さよりも高い部分の切断面積(p、p、・・・、p)の和(負荷面積np)と基準面積Sとの比(np/S)を百分率で示したものである。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、基板3の表面3aに伝導部材2を形成した実施例においては、伝導部材2を形成しなかった比較例に比し、負荷面積率及び負荷長さ率が高く、実施例においては、LiFが丸く、かつ大きく製膜されていることが判る。
 以上に説明した本実施形態によれば、以下の効果を得ることができる。
 (1)本実施形態においては、基板3の、第1電極6側と反対側の表面3aに、基板3よりも熱伝導率が高く、かつ基板3よりも電気伝導率が高い材料からなる伝導部材2を設ける構成としている。従って、真空蒸着法により第2電極8を形成する際に、基板3の熱が伝導部材2に伝導され、基板3が伝導部材2により冷却されるため、基板3の温度上昇を抑制することが可能になる。また、真空蒸着法により第2電極8を形成する際に、基板3が保有する静電気が伝導部材2により除電され、基板3の静電気が伝導部材2により除去されるため、第2電極8を形成する際に、静電気の影響を防止することが可能になる。従って、有機層7から第2電極8への電流の注入が容易になるため、有機EL素子1の駆動電圧を低下させることができるとともに、素子の発光効率を向上させることが可能になる。
 (2)また、基板3の表面3aに伝導部材2を設けると、有機層7とLiFとの接触面積が広くなるため、有機層7から第2電極8へ電流が注入される際に、単位面積当たりの電流密度が低下し、第2電極に対して電流が分散して注入されることになる。従って、電流による劣化が低減されるため、結果として、有機EL素子1の長寿命化を図ることが可能になる。
 (3)本実施形態においては、伝導部材2を形成する材料の熱伝導率を80W/m・K以上に設定するとともに、伝導部材2を形成する材料の電気伝導率が8×10/mΩ以上に設定する構成としている。従って、伝導部材2の熱伝導率、及び電気伝導率を、基板よりも十分に高くすることが可能になるため、真空蒸着法により第2電極8を形成する際に、基板3の温度上昇を確実に抑制することが可能になるとともに、静電気の影響を確実に防止することが可能になる。
 (4)本実施形態においては、伝導部材2を形成する材料を、金属とする構成としている。従って、伝導部材2の熱伝導率と電気伝導率とを容易に向上させることができる。
 (5)本実施形態においては、伝導部材2を形成する金属として、銀、銅、金、アルミニウム、カルシウム、タングステン、マグネシウム、ロジウム、イリジウム、ナトリウム、モリブデン、ルテニウム、亜鉛、コバルト、カドミウム、ニッケル、オスミウム、リチウム、インジウム、及び鉄を使用する構成としている。従って、安価かつ汎用性のある材料により、伝導部材2を形成することが可能になる。
 なお、上記実施形態は以下のように変更しても良い。
 ・上記実施形態においては、伝導部材2を形成する材料として、金属を使用する構成としたが、金属以外の他の材料を使用する構成としても良い。即ち、基板3よりも熱伝導率が高く、かつ基板3よりも電気伝導率が高い材料であって、熱伝導率が80W/m・K以上であり、電気伝導率が8×10/mΩ以上である材料ならば、どのような材料を使用しても良い。例えば、導電性樹脂により、伝導部材2を形成する構成としても良い。
 以上説明したように、本発明は、真空蒸着法により、第2電極を形成する有機EL素子およびその製造方法に、特に、有用である。
 1  有機EL素子
 2  伝導部材
 3  基板
 6  第1電極
 7  有機層
 8  第2電極
 11  発光層
 1  マスク

Claims (8)

  1.  基板と、
     前記基板上に形成された第1電極と、
     該第1電極上に形成されるとともに、発光層を有する有機層と、
     該有機層上に形成された第2電極と
     を備える有機EL素子であって、
     前記基板の、前記第1電極側と反対側の表面に、前記基板よりも熱伝導率が高く、かつ前記基板よりも電気伝導率が高い材料からなる伝導部材が設けられていることを特徴とする有機EL素子。
  2.  前記熱伝導率が80W/m・K以上であり、前記電気伝導率が8×10/mΩ以上であることを特徴とする請求項1に記載の有機EL素子。
  3.  前記材料が、金属であることを特徴とする請求項1または請求項2に記載の有機EL素子。
  4.  前記金属が、銀、銅、金、アルミニウム、カルシウム、タングステン、マグネシウム、ロジウム、イリジウム、ナトリウム、モリブデン、ルテニウム、亜鉛、コバルト、カドミウム、ニッケル、オスミウム、リチウム、インジウム、及び鉄からなる群より選ばれる少なくとも1種であることを特徴とする請求項3に記載の有機EL素子。
  5.  基板上に、第1電極、発光層を有する有機層、及び第2電極がこの順で形成された有機EL素子の製造方法であって、
     前記基板の表面に、該基板よりも熱伝導率が高く、かつ該基板よりも電気伝導率が高い材料からなる伝導部材を形成する工程と、
     前記基板の、前記伝導部材が形成された側と反対側の表面に、前記第1電極を形成する工程と、
     マスクを用いた真空蒸着法により、前記第1電極上に前記有機層を形成するとともに、該有機層上に前記第2電極を形成する工程と
     を少なくとも含むことを特徴とする有機EL素子の製造方法。
  6.  前記熱伝導率が80W/m・K以上であり、前記電気伝導率が8×10/mΩ以上であることを特徴とする請求項5に記載の有機EL素子の製造方法。
  7.  前記材料が、金属であることを特徴とする請求項5または請求項6に記載の有機EL素子の製造方法。
  8.  前記金属が、銀、銅、金、アルミニウム、カルシウム、タングステン、マグネシウム、ロジウム、イリジウム、ナトリウム、モリブデン、ルテニウム、亜鉛、コバルト、カドミウム、ニッケル、オスミウム、リチウム、インジウム、及び鉄からなる群より選ばれる少なくとも1種であることを特徴とする請求項7に記載の有機EL素子の製造方法。
PCT/JP2009/003913 2009-01-16 2009-08-17 有機el素子およびその製造方法 WO2010082241A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/139,857 US20110248252A1 (en) 2009-01-16 2009-08-17 Organic el element and method for fabricating the same
CN2009801488024A CN102239741A (zh) 2009-01-16 2009-08-17 有机el元件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-008167 2009-01-16
JP2009008167 2009-01-16

Publications (1)

Publication Number Publication Date
WO2010082241A1 true WO2010082241A1 (ja) 2010-07-22

Family

ID=42339511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003913 WO2010082241A1 (ja) 2009-01-16 2009-08-17 有機el素子およびその製造方法

Country Status (3)

Country Link
US (1) US20110248252A1 (ja)
CN (1) CN102239741A (ja)
WO (1) WO2010082241A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130087371A1 (en) * 2011-10-11 2013-04-11 Infineon Technologies Ag Electronic packaging connector and methods for its production
KR101945930B1 (ko) * 2012-01-05 2019-02-11 삼성디스플레이 주식회사 유기 발광 소자
CN104993070A (zh) * 2015-07-02 2015-10-21 深圳市华星光电技术有限公司 一种制作柔性oled显示器件的方法
CN108963088A (zh) * 2017-12-18 2018-12-07 广东聚华印刷显示技术有限公司 有机发光二极管及其电子注入层和应用
US11456208B2 (en) 2020-08-11 2022-09-27 Micron Technology, Inc. Methods of forming apparatuses including air gaps between conductive lines and related apparatuses, memory devices, and electronic systems
US11574870B2 (en) * 2020-08-11 2023-02-07 Micron Technology, Inc. Microelectronic devices including conductive structures, and related methods
US11715692B2 (en) 2020-08-11 2023-08-01 Micron Technology, Inc. Microelectronic devices including conductive rails, and related methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176384A (ja) * 1993-12-20 1995-07-14 Idemitsu Kosan Co Ltd 有機el素子
JPH08124679A (ja) * 1994-10-25 1996-05-17 Ibm Japan Ltd エレクトロ・ルミネッセンス装置
JPH09330793A (ja) * 1996-06-11 1997-12-22 Idemitsu Kosan Co Ltd 多色発光装置およびその製造方法
JPH11126691A (ja) * 1997-10-24 1999-05-11 Nec Corp 有機el素子およびその製造方法
JP2001237063A (ja) * 2000-02-22 2001-08-31 Seiko Epson Corp 有機エレクトロルミネッセンス光源
JP2002015859A (ja) * 2000-06-30 2002-01-18 Sony Corp 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス表示装置
JP2003059644A (ja) * 2001-08-09 2003-02-28 Matsushita Electric Ind Co Ltd 電界発光素子
JP2005011601A (ja) * 2003-06-17 2005-01-13 Tadahiro Omi 有機el発光素子、その製造方法および表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439648B1 (ko) * 2001-08-29 2004-07-12 엘지.필립스 엘시디 주식회사 유기전계발광소자
JP2004165067A (ja) * 2002-11-14 2004-06-10 Sanyo Electric Co Ltd 有機電界発光パネル
JP2004296100A (ja) * 2003-03-25 2004-10-21 Toyota Industries Corp 有機el装置及び液晶表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176384A (ja) * 1993-12-20 1995-07-14 Idemitsu Kosan Co Ltd 有機el素子
JPH08124679A (ja) * 1994-10-25 1996-05-17 Ibm Japan Ltd エレクトロ・ルミネッセンス装置
JPH09330793A (ja) * 1996-06-11 1997-12-22 Idemitsu Kosan Co Ltd 多色発光装置およびその製造方法
JPH11126691A (ja) * 1997-10-24 1999-05-11 Nec Corp 有機el素子およびその製造方法
JP2001237063A (ja) * 2000-02-22 2001-08-31 Seiko Epson Corp 有機エレクトロルミネッセンス光源
JP2002015859A (ja) * 2000-06-30 2002-01-18 Sony Corp 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス表示装置
JP2003059644A (ja) * 2001-08-09 2003-02-28 Matsushita Electric Ind Co Ltd 電界発光素子
JP2005011601A (ja) * 2003-06-17 2005-01-13 Tadahiro Omi 有機el発光素子、その製造方法および表示装置

Also Published As

Publication number Publication date
US20110248252A1 (en) 2011-10-13
CN102239741A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
JP5476061B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP4736890B2 (ja) 有機エレクトロルミネッセンス素子
TWI536628B (zh) 有機電場發光元件
WO2009110186A1 (ja) 発光素子及びディスプレイデバイス
WO2011074633A1 (ja) 有機エレクトロルミネッセンス素子
JP5333121B2 (ja) 有機エレクトロルミネッセンス素子、その製造方法及び発光表示装置
JP4966176B2 (ja) 有機エレクトロルミネッセンス素子
WO2010082241A1 (ja) 有機el素子およびその製造方法
JP4544937B2 (ja) 有機機能素子、有機el素子、有機半導体素子、有機tft素子およびそれらの製造方法
JP2011522391A (ja) 有機エレクトロルミネッセンス素子
JP5017820B2 (ja) エレクトロルミネッセンス素子およびその製造方法
KR100844788B1 (ko) 유기발광소자의 제조방법 및 이에 의하여 제조된유기발광소자
JP2011054668A (ja) 有機電界発光素子
WO2009119591A1 (ja) 有機エレクトロルミネッセンス素子
JP2010092741A (ja) 有機エレクトロルミネッセンス素子
WO2011148801A1 (ja) 有機el素子
TW201123970A (en) Organic electroluminescent devices and process for production of same
JP2010034042A (ja) 有機電界発光素子
JP2010033973A (ja) 有機エレクトロルミネッセンス素子
JP5238136B2 (ja) 発光装置
JP2011040437A (ja) 有機エレクトロルミネッセンス素子
JP5075027B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP4857498B2 (ja) 表示素子
JP2008218320A (ja) 有機電界発光素子
JP2006245011A (ja) 電界発光素子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148802.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13139857

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09838211

Country of ref document: EP

Kind code of ref document: A1