WO2013128685A1 - 集電体用アルミニウム箔及びその製造方法 - Google Patents

集電体用アルミニウム箔及びその製造方法 Download PDF

Info

Publication number
WO2013128685A1
WO2013128685A1 PCT/JP2012/072734 JP2012072734W WO2013128685A1 WO 2013128685 A1 WO2013128685 A1 WO 2013128685A1 JP 2012072734 W JP2012072734 W JP 2012072734W WO 2013128685 A1 WO2013128685 A1 WO 2013128685A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum foil
foil
current collector
rolling
roughened
Prior art date
Application number
PCT/JP2012/072734
Other languages
English (en)
French (fr)
Inventor
徹也 本居
寧 船戸
Original Assignee
住友軽金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友軽金属工業株式会社 filed Critical 住友軽金属工業株式会社
Priority to JP2014501954A priority Critical patent/JP6154800B2/ja
Priority to US14/381,423 priority patent/US9742009B2/en
Priority to KR1020147026589A priority patent/KR101723803B1/ko
Priority to EP12869855.2A priority patent/EP2822068B1/en
Priority to CN201280070741.6A priority patent/CN104160536B/zh
Publication of WO2013128685A1 publication Critical patent/WO2013128685A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/005Rolls with a roughened or textured surface; Methods for making same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/227Surface roughening or texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/14Roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils

Definitions

  • the present invention relates to a current collector aluminum foil and a method for producing the same.
  • Aluminum foil is used as a current collector for secondary batteries such as lithium ion batteries and electric double layer capacitors.
  • secondary batteries such as lithium ion batteries and electric double layer capacitors.
  • a positive electrode is formed by fixing a positive electrode active material on the surface of an aluminum foil.
  • the positive electrode is manufactured as follows, for example. That is, a paste prepared by dispersing and mixing a positive electrode active material powder such as lithium cobaltate, a binder such as polyvinylidene fluoride, and a conductive assistant such as carbon black in an organic solvent such as N-methylpyrrolidone. Coating is performed on both sides of an aluminum foil of about 15 ⁇ m to form a coating layer. Next, by drying the coating layer, the organic solvent in the coating layer is evaporated and removed. After the drying, a crimping step is performed as necessary to increase the density in the layer. Thus, the positive electrode which has a positive electrode active material content layer on the surface of the aluminum foil as a collector is manufactured.
  • a paste prepared by dispersing and mixing a positive electrode active material powder such as lithium cobaltate, a binder such as polyvinylidene fluoride, and a conductive assistant such as carbon black in an organic solvent such as N-methylpyrrolidone. Coating is performed on both sides of an aluminum foil
  • the current collector and the electrode active material-containing layer are sufficiently in close contact with each other. If the electrode active material-containing layer is peeled from the current collector in the electrode manufacturing process, the yield will be reduced, and if it is peeled off after being incorporated in a secondary battery or electric double layer capacitor, the characteristics such as the lifetime of these devices will deteriorate. Because.
  • Patent Document 1 discloses that at least one surface has an average roughness Ra of 0.3 ⁇ m to 1.5 ⁇ m and a maximum height Ry of 0.5 ⁇ m to 5.0 ⁇ m according to JIS B 0601: 1994.
  • An aluminum foil for a current collector is disclosed.
  • Patent Document 2 discloses that the rolling oil adhering to the surface of the aluminum foil after foil rolling is sufficiently degreased to improve the coating property of the paste and improve the adhesion of the electrode active material-containing layer. It is disclosed.
  • the aluminum foil manufactured by the conventional technique is not yet sufficient in the adhesion of the electrode active material-containing layer, and the current situation is that further improvement is required.
  • the adhesion between the current collector and the electrode active material-containing layer tends to decrease.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an aluminum foil for a current collector in which peeling of an electrode active material-containing layer hardly occurs.
  • At least one foil surface is roughened
  • the arithmetic average roughness Ra defined in JIS B 0601: 2001 of the roughened surface is an arithmetic average roughness Ra measured in a direction perpendicular to the rolling direction at the time of foil rolling, and the rolling direction B which is the arithmetic average roughness Ra measured in the parallel direction, 0.15 ⁇ m ⁇ A ⁇ 2.0 ⁇ m, 0.15 ⁇ m ⁇ B ⁇ 2.0 ⁇ m, 0.5 ⁇ B / A ⁇ 1.5
  • the aluminum foil for a current collector is characterized by satisfying the following relationship.
  • the other aspect of this invention is the foil formation process which rolls an aluminum plate and forms aluminum foil, A roughening step of roughening the surface of the aluminum foil formed by the foil forming step,
  • A which is an arithmetic average roughness Ra measured in a direction perpendicular to the rolling direction in the foil forming step
  • B which is an arithmetic average roughness Ra measured in a direction parallel to the rolling direction.
  • the “aluminum” is a general term for metals and alloys mainly composed of aluminum, and is a concept including pure aluminum and aluminum alloys.
  • the surface of the aluminum foil is roughened not only in the direction perpendicular to the rolling direction but also in the parallel direction, thereby further improving the adhesion with the electrode active material-containing layer. It has been found for the first time by the present invention that this can be improved.
  • the current collector aluminum foil satisfies the above-mentioned specific relationship in terms of the arithmetic average roughness Ra in the direction perpendicular to and parallel to the rolling direction measured on the roughened foil surface of the aluminum foil. It is formed as follows. Thereby, the roughened surface in the said aluminum foil turns into a surface which has comparable arithmetic mean roughness Ra in both the direction orthogonal to a rolling direction and a parallel direction. As a result, the adhesion of the electrode active material-containing layer can be further improved by the anchor effect between the surface of the aluminum foil and the electrode active material-containing layer.
  • the electrode active material-containing layer is hardly peeled off even if the electrode active material is in a powder form. Therefore, it is possible to provide an aluminum foil for a current collector in which peeling of the electrode active material-containing layer hardly occurs.
  • the aluminum foil is used as a current collector for a secondary battery or an electric double layer capacitor, the electrode active material-containing layer is prevented from being peeled off from the current collector in the electrode manufacturing process, thereby reducing the yield. Can do.
  • peeling after being incorporated in a secondary battery, an electric double layer capacitor, or the like can be suppressed, it is possible to improve characteristics such as the lifetime of these devices.
  • FIG. 1 The microscope picture of the sample 3 in Example 1.
  • FIG. 6 The microscope picture of the sample 6 in Example 1.
  • the current collector aluminum foil may have one surface of the foil surface roughened or both surfaces roughened.
  • the arithmetic average roughness Ra representing the surface roughness of the roughened foil surface is a value measured according to JIS B 0601: 2001.
  • arithmetic mean roughness Ra of the foil surface at the side which forms an electrode active material content layer should just exist in the said specific range.
  • the lower limit values of A and B which are arithmetic average roughness Ra in the direction perpendicular to and parallel to the rolling direction, are each 0.15 ⁇ m or more. If the lower limit values of A and B are each 0.15 ⁇ m or more, the anchor effect due to the roughening of the surface can be sufficiently obtained, and the adhesion between the electrode active material-containing layer and the aluminum foil is good. Can be a thing. When the lower limit values of A and B are less than 0.15 ⁇ m, the surface is not sufficiently roughened, so that the anchor effect is not sufficiently obtained and the adhesion of the electrode active material-containing layer is lowered. Therefore, the lower limit value of the values A and B is set to 0.15 ⁇ m or more, preferably 0.20 ⁇ m or more.
  • the upper limit values of A and B are 2.0 ⁇ m or less.
  • the coatability of the electrode active material-containing layer is good. Therefore, an electrode can be manufactured with a high yield by using the aluminum foil as a current collector.
  • the upper limit values of A and B exceed 2.0 ⁇ m, the difference in height between the concave and convex portions on the roughened surface becomes excessively large. There is a possibility that the coatability may be deteriorated, or the foil may be broken and a crack may be generated at the time of coating formation or pressure bonding after coating.
  • the upper limit values of A and B are set to 2.0 ⁇ m or less, preferably 1.5 ⁇ m or less.
  • the value of B / A which is the ratio between the value of A and the value of B, is 0.5 or more and 1.5 or less. If the value of B / A is within the specific range, the difference between the arithmetic average roughness Ra in the direction perpendicular to the rolling direction and the arithmetic average roughness Ra in the parallel direction becomes relatively small. Thereby, since an isotropically roughened surface can be obtained, a sufficient anchor effect can be obtained. As a result, the adhesion between the electrode active material-containing layer and the aluminum foil can be improved.
  • the value of B / A is 0.5 or more and 1.5 or less, preferably 0.8 or more and 1.3 or less.
  • the adhesion amount of the oil is preferably 50 [mu] g / m 2 or more, 100 [mu] g / m 2 or more, more preferably, 150 [mu] g / m 2 or more is more preferable.
  • the adhesion amount of the oil is preferably 1000 [mu] g / m 2 or less, more preferably 900 [mu] g / m 2 or less, more preferably 800 [mu] g / m 2 or less.
  • the amount of oil ( ⁇ g / m 2 ) is obtained by dividing the total amount of oil ( ⁇ g) adhering to the front and back surfaces of the aluminum foil by the total surface area (m 2 ) of the front and back surfaces of the aluminum foil. be able to.
  • the amount of the oil can be measured, for example, by washing the aluminum foil with an organic solvent or acid that can dissolve the oil, and analyzing the washing with gas chromatography.
  • the oil component may be rolling oil.
  • the rolling oil is attached to the surface of the aluminum foil. That is, it is not necessary to separately attach oil to the surface of the aluminum foil before applying the electrode active material. Therefore, the manufacturing process of the aluminum foil can be simplified and productivity can be improved.
  • the electrode active material can be applied as it is with the roughened aluminum foil as it is.
  • the amount of oil adhering is not within the specific range, for example, after adding the oil after roughening, or supplying the foil surface with a cleaning agent such as an alkali or organic solvent
  • the amount of oil attached can be adjusted within the specific range by a method such as For example, a bar coating method, a roll coating method, an electrostatic coating oil method, or the like can be used as a method for supplying the oil component additionally.
  • the rolling oil contains a mineral oil as a base oil and an oily agent comprising one or more selected from monohydric or polyhydric higher alcohols, fatty acids, fatty acid esters, and amines, and the oily agent. Is preferably contained in an amount of 0.1 to 5% by mass based on the total rolling oil. In this case, it is excellent in the lubricity at the time of foil rolling, and generation
  • the content of the oily agent is preferably 0.3% by mass or more, more preferably 0.5% by mass or more, and further preferably 1.0% by mass or more.
  • the lubricity during foil rolling is excellent. Therefore, it is possible to effectively prevent wrinkles due to insufficient lubrication during foil rolling or contamination of the foil surface due to wear powder, and easily produce aluminum foil with excellent surface quality. can do.
  • the content of the oily agent is preferably 4.5% by mass or less, more preferably 4% by mass or less, and further preferably 3% by mass or less. In this case, the effect of improving the surface quality of the foil, the uniform solubility in the base oil, the cold workability are excellent, and it can contribute to cost reduction.
  • the said aluminum foil for collectors can be manufactured using the aluminum foil excellent in surface quality by controlling the quantity of the said rolling oil and the said oil-based agent to the said specific range. As a result, it becomes more advantageous to improve the peel strength of the electrode active material-containing layer.
  • mineral oil such as naphthenic or paraffinic
  • examples of the monohydric or polyhydric higher alcohol include monohydric or polyhydric alkyl alcohols having 9 to 19 carbon atoms.
  • examples of the fatty acid include saturated or unsaturated fatty acids having 9 to 19 carbon atoms.
  • examples of the fatty acid esters include saturated or unsaturated fatty acid esters having 9 to 19 carbon atoms.
  • examples of the amine include aromatic amines such as phenyl- ⁇ -naphthylamine. These can be used alone or in combination of two or more.
  • lauryl alcohol can be selected as the higher alcohol, oleic acid as the fatty acid, oleic acid ester as the fatty acid ester, and phenyl- ⁇ -naphthylamine as the amine.
  • the above-mentioned effects can be easily obtained, and it is further advantageous for improving the peel strength of the electrode active material-containing layer of the aluminum foil.
  • an alkylene oxide adduct of a partial fatty acid ester of a polyhydric alcohol can be added to the rolling oil.
  • it is excellent in lubricity at the time of foil rolling, and it is advantageous for improving the surface quality of the foil by suppressing the generation of rolling wear powder.
  • various additives such as an antioxidant, a viscosity modifier, a rust inhibitor, a corrosion inhibitor, an antifoaming agent, an emulsifier, and an antistatic agent are added to the rolling oil as needed. Two or more species can be added.
  • the thickness of the current collector aluminum foil is preferably 10 to 100 ⁇ m. When the thickness is 10 ⁇ m or more, when the surface of the foil is roughened, the foil is not easily broken or cracked, and it is easy to contribute to the improvement of the peel strength. In addition, when the thickness is 100 ⁇ m or less, the volume and weight of the foil are appropriate as a current collector, which contributes to the reduction in size and weight of secondary batteries and electric double layer capacitors incorporating the current collector. This is also advantageous in terms of cost reduction. Therefore, the thickness of the current collector aluminum foil is preferably 10 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, and even more preferably 10 to 30 ⁇ m.
  • composition of the current collector aluminum foil is not particularly limited as long as foil rolling is possible.
  • examples of the composition of the aluminum foil for the current collector include JIS 1085, 1070, 1050, 1N30, 1100, 3003, 3004, 8021, and 8079.
  • the aluminum foil for the current collector is preferably a hard material (H material).
  • H material hard material
  • residual rolling oil can be used as the oil.
  • the current collector aluminum foil can be used as, for example, a current collector of an electrode of a secondary battery such as a lithium ion battery or a lithium polymer battery, or a current collector of an electrode of an electric double layer capacitor.
  • an electrode active material-containing layer is formed on the roughened foil surface.
  • the electrode active material-containing layer is preferably formed through a step of applying a paste containing at least an electrode active material, a binder, and an organic solvent.
  • a powder-form thing can be used suitably as an electrode active material.
  • organic solvent examples include N-methylpyrrolidone.
  • N-methylpyrrolidone is suitable as the organic solvent from the viewpoints of availability, handling, and cost.
  • the said paste may contain the conductive support agent etc. in addition. Further, after the paste coating, if necessary, after the formation of the coating layer, it is possible to further add a process such as a drying process, a heat treatment process, and a pressure bonding process.
  • a method for producing the current collector aluminum foil As described above, as the method for producing the current collector aluminum foil, a method having the foil forming step and the roughening step can be employed. And by the said roughening process, A which is arithmetic mean roughness Ra measured in the direction orthogonal to the rolling direction in the said foil formation process, and B which is arithmetic mean roughness Ra measured in the direction parallel to a rolling direction And roughen at least one surface of the aluminum foil so as to satisfy the specific relationship described above.
  • an aluminum plate having a thickness larger than that of the aluminum foil to be obtained is prepared, and at least cold rolling is applied thereto.
  • a method of cold rolling a known method can be adopted.
  • the surface shape of the roll surface is transferred to the surface of the aluminum foil through an aluminum foil between a pair of roughening rolls in which at least one roll surface is roughened. It is preferable to roughen the surface of the foil.
  • the degree of roughening and the form can be made uniform over the entire length of the aluminum foil as long as the surface shape of the roll surface is managed. As a result, it becomes easy to stabilize the quality of the aluminum foil.
  • the foil forming step and the roughening step may be performed separately or continuously.
  • transfer into a rolling mill can be employ
  • Examples of the method for roughening the roll surface of the roughening roll include sand blasting, liquid honing, shot peening, electric discharge machining, laser dull machining, and fine powder spraying. Further, the roughened roll surface may be subjected to chrome plating. One or more of these can be used in combination.
  • the following various mechanical methods, chemical methods, and physical methods can be employed as methods other than the above-described methods.
  • the mechanical method include a method in which the foil surface is rubbed with abrasive paper such as emery paper, or the foil surface is roughened using blasting such as sand blasting.
  • the chemical method include a method of etching with an acid or the like. Since aluminum easily forms an oxide film (alumite) on the surface, it is preferable to appropriately select an etchant and etching conditions.
  • the physical method include a method of roughening the surface by colliding ions such as sputtering. These methods may be used alone or in combination of two or more.
  • the foil forming step and the roughening step are continuously performed.
  • the rolling oil adhering to the aluminum foil after the foil forming step is used as the lubricating oil in the roughening step. It is not necessary to supply new lubricating oil. In this case, the rolling oil used in the foil forming step or the residual rolling oil that is the residue can be used as the lubricating oil in the roughening step. Therefore, the manufacturing process of the aluminum foil can be simplified and productivity can be improved.
  • Example 1 An aluminum plate made of JIS 1085 material was prepared and cold-rolled to obtain an aluminum foil made of JIS 1085-H18 material having a thickness of 20 ⁇ m. At the time of the cold rolling, rolling oil containing an oily agent (containing lauryl alcohol, oleic acid, and oleic acid ester) contained in a naphthenic base oil was used as a lubricating oil.
  • an oily agent containing lauryl alcohol, oleic acid, and oleic acid ester
  • arithmetic average roughness Ra The arithmetic average roughness Ra of the aluminum foil was measured by a method based on JIS B 0601: 2001. That is, using a scanning confocal laser microscope (manufactured by Olympus Co., Ltd .; product name OLYMPUS-OLS3000), the arithmetic average roughness Ra in the direction perpendicular to the rolling direction and parallel to the rolling direction in the foil forming process was measured at six locations. These average values are shown in Table 1.
  • a test piece was collected from each of the above samples so that the total surface area of the front and back surfaces was 800 cm 2 .
  • the collected test pieces were cut into strips, and all of the obtained strip samples were placed in a 250 ml volumetric flask. 70 ml of hexane was added to the volumetric flask, and the volumetric flask was stirred and heated on a hot plate at 70 ° C. for 20 minutes. Then, this volumetric flask was well stirred, and the solution in the volumetric flask was collected as the extract A.
  • the extract A and the extract B were dissolved in 100 ⁇ l of hexane, and 4 ⁇ l of the solution was injected into a gas chromatograph for analysis.
  • the total amount of residual rolling oil contained in 100 ⁇ l of hexane was calculated from the concentration of residual rolling oil obtained by this gas chromatographic analysis.
  • Table 1 shows the amount of residual rolling oil ( ⁇ g / m 2 ) per unit area calculated by dividing the total amount of residual rolling oil by the total surface area.
  • the gas chromatographic analysis was as follows. ⁇ Analytical equipment: GC-14B manufactured by Shimadzu Corporation ⁇ Column: G column G-205 40m ⁇ Detector: FID -Detector temperature: 320 ° C ⁇ Carrier gas: Nitrogen gas 30ml / min
  • general-purpose LiCoO 2 powder as a positive electrode active material 60 parts by mass, acetylene black as a conductive auxiliary agent: 5 parts by mass, polyvinylidene fluoride as a binder: 5 parts by mass, and as an organic solvent N-methylpyrrolidone: 30 parts by mass was mixed to prepare a paste.
  • the paste prepared above with a thickness of 20 ⁇ m was applied to one side (roughened side) of each test piece and dried under the condition of 90 ° C. ⁇ 5 minutes. This produced each sample which formed the positive electrode active material content layer in the roughened surface in each aluminum foil.
  • the 180 ° peel strength was measured using each of the obtained samples in accordance with JIS K 6854-2: 1999 “Part 2: 180 ° peeling”.
  • a rigid vinyl chloride plate having a thickness of 3 mm was used as the rigid adherend in the above standards.
  • a double-sided tape (“NW-25” manufactured by Nichiban Co., Ltd.) was used as an adhesive for adhering the surface of the positive electrode active material-containing layer of each sample to the surface of the aluminum plate.
  • the tensile speed of the sample by the grip in the above specifications was 100 mm / min.
  • the peel strength (N / 25 mm) of each sample shown in Table 1 was measured five times for each sample, and the average value of the five measured values obtained was used.
  • the peel strength was 2.0 N / 25 mm or higher.
  • Table 1 shows the structure and evaluation results of the aluminum foils for each current collector produced.
  • FIG. 1 a microscopic image of the sample 3 is shown in FIG.
  • the aluminum foil in which the values of A and B are within the specific range has the surface shape of the roll surface transferred and isotropically roughened.
  • FIG. 1 a scale showing a length of 30 ⁇ m is shown.
  • the positive electrode resulting from the volume change of the positive electrode active material caused by lithium doping or dedoping in the battery charge / discharge cycle It becomes easy to suppress the peeling of the active material-containing layer and the peeling in the electrode manufacturing process, and can contribute to the improvement of the cycle characteristics of the battery.
  • FIG. 2 As a typical example of an aluminum foil having insufficient adhesion to the positive electrode active material-containing layer, a microscopic image of Sample 6 is shown in FIG. As is known from FIG. 2, streaks formed in the direction parallel to the rolling direction were observed on the aluminum foil in which the values of A and B were outside the specific range. In FIG. 2, a scale showing a length of 30 ⁇ m is shown.
  • the foil breaks and cracks occur when the positive electrode active material-containing layer is formed.
  • the positive electrode active material-containing layer could not be applied. Even if the positive electrode active material-containing layer can be applied without breaking the foil, it is difficult for the positive electrode active material-containing layer to come into contact with the bottom of the concave portion of the surface unevenness, so when applied to the positive electrode of a lithium ion battery. It is presumed that the electrical conductivity decreases.
  • Example 2 In this example, the amount of residual rolling oil adhering to the surface of the roughened aluminum foil is examined.
  • an aluminum foil with one surface roughened was prepared by the same procedure as Sample 3 in Example 1 above. Thereafter, the aluminum foil was subjected to alkali cleaning with various changes in strength, thereby adjusting the amount of residual rolling oil adhering to the roughened foil surface to the value shown in Table 2 (sample) 11 to sample 12) were prepared. Others are the same as in the first embodiment.
  • Table 2 shows the configurations and evaluation results of the produced aluminum foils for current collectors.
  • a positive electrode active material-containing layer made of a material suitable for a positive electrode of a lithium ion battery was formed on the produced current collector aluminum foil.
  • An electrode active material-containing layer made of a material suitable for an electrode of an electric double layer capacitor can be formed. In this case as well, the effect of improving the peel strength can be obtained in the same manner as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 アルミニウム箔の少なくとも一方の箔表面が粗面化されており、該粗面化された表面のJIS B 0601:2001に規定される算術平均粗さRaは、箔圧延時の圧延方向と直角方向に測定された算術平均粗さRaであるAと、圧延方向と平行方向に測定された算術平均粗さRaであるBとが、0.15μm≦A≦2.0μm、0.15μm≦B≦2.0μm、0.5≦B/A≦1.5の関係を満足する。粗面化された箔表面には、50~1000μg/mの油分が付着していることが好ましい。油分は圧延油であることが好ましい。

Description

集電体用アルミニウム箔及びその製造方法
 本発明は、集電体用アルミニウム箔及びその製造方法に関する。
 リチウムイオン電池等の二次電池や電気二重層コンデンサなどの集電体として、アルミニウム箔が用いられている。例えばリチウムイオン電池の場合には、アルミニウム箔表面に正極活物質を固定することにより正極が構成される。
 上記正極は、例えば、以下のようにして製造される。すなわち、コバルト酸リチウム等の正極活物質粉末、ポリフッ化ビニリデン等の結着剤、カーボンブラック等の導電助剤などをN-メチルピロリドン等の有機溶媒に分散、混合して調製したペーストを、厚み15μm程度のアルミニウム箔の両面に塗工して塗工層を形成する。次いで、この塗工層を乾燥させることにより、塗工層中の有機溶媒を蒸発させて除去する。上記乾燥後、必要に応じて、層内密度を増大させるために圧着工程を行う。このようにして、集電体としてのアルミニウム箔の表面に正極活物質含有層を有する正極が製造される。
 上述のように、集電体表面に電極活物質を固定して電極を構成する場合、集電体と電極活物質含有層との間が十分に密着していることが重要になる。電極製造工程で集電体から電極活物質含有層が剥離すると歩留りの低下を招き、また、二次電池や電気二重層コンデンサに組み込んだ後に剥離するとこれらデバイスの寿命等の特性が劣化してしまうからである。
 集電体と電極活物質含有層との間の密着性を改善する方法として、アルミニウム箔の表面を粗面化する方法が知られている。例えば、特許文献1には、少なくとも一方の表面の粗さとしてJIS B 0601:1994による平均粗さRaが0.3μm以上1.5μm以下で最大高さRyが0.5μm以上5.0μm以下である、集電体用アルミニウム箔が開示されている。
 また、粗面化以外の方法により集電体と電極活物質含有層との間の密着性を改善する技術がある。例えば、特許文献2には、箔圧延後のアルミニウム箔表面に付着した圧延油を十分に脱脂することにより、ペーストの塗工性を向上させ、電極活物質含有層の密着性を向上させる点が開示されている。
特開平11-162470号公報 特開2008-159297号公報
 しかしながら、従来技術により製造されるアルミニウム箔は、電極活物質含有層の密着性が未だ十分でなく、さらなる改良が求められているのが現状である。とりわけ、粉体状の電極活物質を用いる場合には、集電体と電極活物質含有層との間の密着性が低下しやすい。
 本発明は、このような問題に鑑みてなされたものであり、電極活物質含有層の剥離が生じ難い集電体用アルミニウム箔を提供しようとするものである。
 本発明の一態様は、少なくとも一方の箔表面が粗面化されており、
 該粗面化された表面のJIS B 0601:2001に規定される算術平均粗さRaは、箔圧延時の圧延方向と直角方向に測定された算術平均粗さRaであるAと、圧延方向と平行方向に測定された算術平均粗さRaであるBとが、
 0.15μm≦A≦2.0μm、
 0.15μm≦B≦2.0μm、
 0.5≦B/A≦1.5
の関係を満足することを特徴とする集電体用アルミニウム箔にある。
 また、本発明の他の態様は、アルミニウム板を圧延してアルミニウム箔を形成する箔形成工程と、
 該箔形成工程により形成されたアルミニウム箔の表面を粗面化する粗面化工程とを有し、
 該粗面化工程により、上記箔形成工程における圧延方向と直角方向に測定された算術平均粗さRaであるAと、圧延方向と平行方向に測定された算術平均粗さRaであるBとが、
 0.15μm≦A≦2.0μm、
 0.15μm≦B≦2.0μm、
 0.5≦B/A≦1.5
の関係を満足するように、上記アルミニウム箔の少なくとも一方の表面を粗面化することを特徴とする集電体用アルミニウム箔の製造方法にある。
 なお、上記「アルミニウム」は、アルミニウムを主体とする金属および合金の総称であり、純アルミニウムおよびアルミニウム合金を含む概念である。
 従来のアルミニウム箔は、一般にアルミニウムを一方向に圧延することにより箔状に形成されるため、圧延方向に対して平行方向に筋状模様が形成されている。それ故、圧延方向に対して平行方向の算術平均粗さRaが直角方向の算術平均粗さRaに対して極めて小さい。ところが、従来のアルミニウム箔における表面粗さの指標としては、圧延方向に対して直角方向の算術平均粗さRaの値を測定することが一般的であり、表面粗さの方向性は考慮されてこなかった。
 これに対し、表面粗さの方向性を考慮して、アルミニウム箔の表面を圧延方向に直角方向のみならず平行方向にも粗面化することにより、電極活物質含有層との密着性をより向上できることが本発明により初めて見出されたのである。
 すなわち、上記集電体用アルミニウム箔は、該アルミニウム箔の粗面化された箔表面において測定した圧延方向と直角方向及び平行方向の算術平均粗さRaの値が、上記特定の関係を満足するように形成されている。これにより、上記アルミニウム箔における粗面化された表面は、圧延方向と直角方向及び平行方向の両方向において同程度の算術平均粗さRaを有する表面となる。その結果、上記アルミニウム箔の表面と電極活物質含有層とのアンカー効果により電極活物質含有層の密着性をより向上させることができる。
 また、上記アルミニウム箔は、電極活物質が粉体状であっても電極活物質含有層の剥離が生じ難い。そのため、電極活物質含有層の剥離が生じ難い集電体用アルミニウム箔を提供することができる。その結果、例えば上記アルミニウム箔を二次電池や電気二重層コンデンサの集電体として用いれば、電極製造工程において集電体から電極活物質含有層が剥離して歩留りが低下するのを抑制することができる。また、二次電池や電気二重層コンデンサ等に組み込んだ後の剥離も抑制できるので、これらデバイスの寿命等の特性を向上させることが可能となる。
実施例1における、試料3の顕微鏡写真。 実施例1における、試料6の顕微鏡写真。
 上記集電体用アルミニウム箔は、箔表面の一方面が粗面化されていてもよいし、両面が粗面化されていてもよい。粗面化された箔表面の表面粗さを表す算術平均粗さRaは、JIS B 0601:2001に準拠して測定される値である。なお、両面が粗面化されている場合には、少なくとも電極活物質含有層を形成する側の箔表面の算術平均粗さRaが上記特定の範囲内にあればよい。
 上記集電体用アルミニウム箔において、圧延方向に直角方向及び平行方向の算術平均粗さRaである上記A及び上記Bの下限値は、それぞれ0.15μm以上である。上記A及び上記Bの下限値がそれぞれ0.15μm以上であれば、表面の粗面化によるアンカー効果を十分に得ることができ、電極活物質含有層と上記アルミニウム箔との密着性を良好なものにすることができる。上記A及び上記Bの下限値が0.15μm未満になると、表面が十分に粗面化されなくなるため、アンカー効果が十分に得られず、電極活物質含有層の密着性が低下する。そのため、上記A及びBの値の下限値は0.15μm以上とし、好ましくは0.20μm以上がよい。
 他方、上記A及び上記Bの上限値は、2.0μm以下である。上記A及び上記Bの上限値が2.0μm以下の場合には、電極活物質含有層の塗工性が良好となる。そのため、上記アルミニウム箔を集電体として使用することにより、電極を歩留まり良く製造することができる。上記A及び上記Bの上限値が2.0μmを超える場合には、粗面化された表面における凹部と凸部との高さの差が過度に大きくなるため、電極活物質含有層の連続的な塗工性が低下したり、塗工形成時や塗工後の圧着時に箔が破断して亀裂が発生したりするおそれがある。また、表面における凹部の底まで電極活物質含有層が充填されにくくなり、電気伝導性が低下するおそれがある。そのため、上記A及び上記Bの上限値は2.0μm以下とし、好ましくは1.5μm以下がよい。
 また、上記Aの値と上記Bの値との比であるB/Aの値は、0.5以上1.5以下である。上記B/Aの値が上記特定の範囲内にあれば、圧延方向に垂直方向の算術平均粗さRaと平行方向の算術平均粗さRaとの差が比較的小さくなる。これにより、等方的に粗面化された表面を得ることができるため、充分なアンカー効果を得ることができる。その結果、電極活物質含有層と上記アルミニウム箔との密着性を良好なものにすることができる。
 上記B/Aの下限値が0.5未満となる場合には、圧延方向に垂直方向の算術平均粗さRaに対して平行方向の算術平均粗さRaが過度に小さくなるため、凹凸によるアンカー効果が十分に得られず、電極活物質含有層の密着性が低下する。また、上記B/Aの上限値が1.5を超える場合には、圧延方向に垂直方向の算術平均粗さRaに対して平行方向の算術平均粗さRaが過度に大きくなるため、凹凸によるアンカー効果が十分に得られず、電極活物質含有層の密着性が低下する。そのため、上記B/Aの値は、0.5以上1.5以下とし、好ましくは0.8以上1.3以下がよい。
 また、上記の粗面化された箔表面には50~1000μg/mの油分が付着していてもよい。
 上記特定の量の油分が上記アルミニウム箔に付着している場合には、電極活物質含有層と上記アルミニウム箔との密着性をより向上させることができる。
 上記油分の付着量が50μg/m未満の場合、電極活物質含有層と集電体との密着性が低下し、十分な剥離強度が得にくくなる。これは、電極活物質含有層を形成する際のペーストとの親和性が低下することが主な原因であると推察される。そのため、上記油分の付着量は50μg/m以上が好ましく、100μg/m以上がより好ましく、150μg/m以上がさらに好ましい。
 他方、上記油分の付着量が1000μg/mを超えると、箔表面にペーストを塗工し乾燥した後に、電極活物質含有層と集電体との間に油分が過剰に残留する。これにより、電極活物質含有層と集電体との密着性が低下し、十分な剥離強度が得にくくなる。そのため、上記油分の付着量は1000μg/m以下が好ましく、900μg/m以下がより好ましく、800μg/m以下がさらに好ましい。
 なお、上記油分の量(μg/m)は、アルミニウム箔の表裏面に付着している油分の合計量(μg)を、アルミニウム箔の表裏面の合計表面積(m)で割ることで求めることができる。上記油分の量は、例えば、該油分を溶解可能な有機溶剤や酸などを用いてアルミニウム箔を洗浄し、この洗浄液をガスクロマトグラフィーにより分析することで測定することができる。
 また、上記油分は圧延油であってもよい。
 この場合には、アルミニウム箔の粗面化の後に、上記圧延油が上記アルミニウム箔の表面に付着した状態となる。つまり、電極活物質を塗工する前に、上記アルミニウム箔の表面に別途油分を付着させる必要がなくなる。そのため、上記アルミニウム箔の製造工程を簡略化することができるとともに、生産性を向上させることができる。なお、この場合、上記特定の量の上記油分が付着していれば、粗面化を行った上記アルミニウム箔そのままの状態で電極活物質を塗工することができる。上記油分の付着量が上記特定の範囲内にない場合には、例えば粗面化の後に油分を追加して供給したり、もしくは箔表面をアルカリあるいは有機溶媒等の洗浄剤を用いて洗浄したりする等の方法によって、上記油分の付着量を上記特定の範囲内に調整することもできる。上記油分を追加して供給する方法としては、例えばバーコート法、ロールコート法、静電塗油等の方法を用いることができる。
 上記圧延油は、基油としての鉱油と、一価または多価高級アルコール、脂肪酸、脂肪酸エステル、および、アミンから選択される1種または2種以上からなる油性剤とを含有し、上記油性剤を合計で上記圧延油全体に対して0.1~5質量%含有することが好ましい。この場合には、箔圧延時の潤滑性に優れるとともに圧延摩耗粉の発生を抑制することができる。そのため、圧延後におけるピットやピンホール等の欠陥を低減することができ、アルミニウム箔の表面品質を向上させることができる。
 また、上記油性剤の含有量は、好ましくは、0.3質量%以上、より好ましくは、0.5質量%以上、さらに好ましくは、1.0質量%以上であるとよい。この場合には、箔圧延時の潤滑性に優れる。そのため、箔圧延時における潤滑不足によってシワが発生したり、摩耗粉により箔表面にコンタミネーションが発生したりすることを効果的に抑制することができ、表面品質に優れたアルミニウム箔を容易に製造することができる。一方、油性剤の含有量は、好ましくは、4.5質量%以下、より好ましくは、4質量%以下、さらに好ましくは、3質量%以下であるとよい。この場合には、箔の表面品質の向上効果、基油への均一溶解性、冷間加工性に優れ、また、低コスト化にも寄与できる。このように、上記圧延油及び上記油性剤の量を上記特定の範囲に制御することにより、表面品質に優れたアルミニウム箔を用いて上記集電体用アルミニウム箔を製造することができる。その結果、電極活物質含有層の剥離強度を向上させるのに一層有利となる。
 上記圧延油を構成する基油には、ナフテン系、パラフィン系等の鉱油を用いることができる。上記一価または多価高級アルコールとしては、例えば、炭素数9~19の一価または多価アルキルアルコールなどが挙げられる。上記脂肪酸としては、例えば、炭素数9~19の飽和あるいは不飽和脂肪酸などが挙げられる。上記脂肪酸エステルとしては、例えば、炭素数9~19の飽和あるいは不飽和脂肪酸エステルなどが挙げられる。上記アミンとしては、例えば、フェニル-α-ナフチルアミン等の芳香族アミンなどが挙げられる。これらは1種または2種以上併用することができる。とりわけ、上記高級アルコールとしてはラウリルアルコール、上記脂肪酸としてはオレイン酸、上記脂肪酸エステルとしてはオレイン酸エステル、上記アミンとしてはフェニル-α-ナフチルアミンを選択することができる。この場合には、上述の効果が得られやすく、上記アルミニウム箔の電極活物質含有層の剥離強度を向上させるのに一層有利である。
 また、上記圧延油中には、多価アルコールの部分脂肪酸エステルのアルキレンオキサイド付加物などを添加することができる。この場合には、箔圧延時の潤滑性に優れ、かつ、圧延磨耗粉の発生を抑制して箔の表面品質を向上させるのに有利である。また、他にも上記圧延油中には、必要に応じて、酸化防止剤、粘度調整向上剤、防錆剤、腐食防止剤、消泡剤、乳化剤、帯電防止剤などの各種添加剤を1種または2種以上添加することができる。
 上記集電体用アルミニウム箔の厚みは、10~100μmが好ましい。上記厚みが10μm以上である場合には、箔表面を粗面化する際に、箔の破断や亀裂が生じ難くなり、剥離強度の向上に寄与しやすくなる。また、上記厚みが100μm以下である場合には、箔の体積や重量が集電体として適度であるため、集電体を組み込む二次電池や電気二重層コンデンサ等の小型化、軽量化に寄与しやすく、低コスト化の面でも有利である。そのため、上記集電体用アルミニウム箔の厚みは、10~100μmが好ましく、10~50μmがより好ましく、10~30μmがさらに好ましい。
 上記集電体用アルミニウム箔の組成は、箔圧延が可能であれば、特に限定されるものではない。上記集電体用アルミニウム箔の組成としては、例えば、JIS 1085、1070、1050、1N30、1100、3003、3004、8021、8079などが挙げられる。
 上記集電体用アルミニウム箔は、硬質材(H材)であることが好ましい。この場合には、アルミニウム箔の粗面化後に焼鈍されないので、油分として残留圧延油を用いることができる。
 上記集電体用アルミニウム箔は、例えば、リチウムイオン電池、リチウムポリマ電池等の二次電池の電極の集電体、電気二重層コンデンサの電極の集電体などとして用いることができる。
 また、上記集電体用アルミニウム箔は、集電体として使用される際に、粗面化された箔表面に電極活物質含有層が形成される。上記電極活物質含有層は、電極活物質と、結着剤と、有機溶媒とを少なくとも含むペーストを塗工する工程を経て形成することが好ましい。また、上記アルミニウム箔は、電極活物質が粉体状であっても優れた密着性を発揮することができるため、電極活物質として粉体状のものを好適に用いることができる。
 また、上記有機溶媒としては、例えば、N-メチルピロリドンなどを例示することができる。N-メチルピロリドンは、入手容易性、取扱い性、コストなどの観点から上記有機溶媒として好適である。
 なお、上記ペーストは、他にも導電助剤等を含んでいてもよい。また、ペースト塗工後、必要に応じて、上記塗工層の形成後、さらに、乾燥工程、熱処理工程、圧着工程等の工程を追加することも可能である。
 次に、上記集電体用アルミニウム箔の製造方法を説明する。上記集電体用アルミニウム箔の製造方法としては、上述したごとく、上記箔形成工程と、上記粗面化工程とを有する方法を採用することができる。そして、上記粗面化工程により、上記箔形成工程における圧延方向と直角方向に測定された算術平均粗さRaであるAと、圧延方向と平行方向に測定された算術平均粗さRaであるBとが、上述した特定の関係を満足するように、上記アルミニウム箔の少なくとも一方の表面を粗面化する。
 上記箔形成工程においては、得ようとするアルミニウム箔よりも厚みが大きいアルミニウム板を準備し、これに対して少なくとも冷間圧延を施す。冷間圧延の方法としては、公知の方法を採用することができる。
 上記粗面化工程においては、少なくとも一方のロール表面が粗面化された一対の粗面化ロールの間にアルミニウム箔を通して上記ロール表面の表面形状をアルミニウム箔の表面に転写することにより、該アルミニウム箔の表面の粗面化を行うことが好ましい。
 粗面化工程において上述の方法を採用することにより、粗面化の度合いや、形態を管理することが容易となる。すなわち、転写という手法を用いるので、上記ロール表面の表面形状を管理さえすれば、アルミニウム箔の全長において粗面化度合い及び形態を均一化させることができる。その結果、上記アルミニウム箔の品質を安定化することが容易となる。
 また、上述のごとく転写という手法を用いる場合には、上記箔形成工程と上記粗面化工程とを別々に行ってもよいし、連続して行ってもよい。上記箔形成工程と上記粗面化工程とを連続して行う場合には、例えば、上記の転写用の粗面化ロール設備を圧延機に組み込む方法を採用することができる。この場合には、上記アルミニウム箔の製造方法を簡略化することができるとともに、生産性を向上させることができる。
 上記粗面化ロールのロール表面を粗面化する方法としては、例えば、サンドブラスト、液体ホーニング、ショットピーニング、放電加工、レーザダル加工、微粉末溶射などが挙げられる。さらに、粗面化したロール表面をクロムメッキ処理してもよい。これらは1または2以上併用することができる。
 なお、上記粗面化工程では、上述の方法以外の方法として、例えば下記の各種の機械的方法、化学的方法、物理的方法を採用することができる。機械的方法としては、箔表面をエメリー紙等の研磨紙で擦ったり、サンドブラスト等のブラスト加工を用いて箔表面を粗面化する方法などが挙げられる。また、化学的方法としては、酸等によりエッチングする方法などが挙げられる。なお、アルミニウムは、表面に酸化膜(アルマイト)を形成しやすいため、エッチャントやエッチング条件を適宜選択することが好ましい。また、物理的方法としては、スパッタリング等、イオンを衝突させて表面を粗面化する方法などが挙げられる。これらの方法は、1種または2種以上併用してもよい。
 また、上記箔形成工程と上記粗面化工程とを連続して行い、該粗面化工程においては、上記箔形成工程後にアルミニウム箔に付着している圧延油を上記粗面化工程の潤滑油として用い、新たな潤滑油を供給しなくてもよい。
 この場合には、上記箔形成工程に使用する圧延油やその残留分である残留圧延油を上記粗面化工程において潤滑油として利用することができる。そのため、上記アルミニウム箔の製造工程を簡略化できるとともに、生産性を向上させることができる。
 上記集電体用アルミニウム箔の実施例について、以下に説明する。
(実施例1)
<箔形成工程>
 JIS1085材よりなるアルミニウム板を準備し、これを冷間圧延することにより、JIS1085-H18材よりなる厚さ20μmのアルミニウム箔を得た。上記冷間圧延時には、ナフテン系の基油に含まれる油性剤(ラウリルアルコール、オレイン酸、オレイン酸エステルを含有)を含有した圧延油を潤滑油として用いた。
 <粗面化工程>
 一対の粗面化ロールにおける両方のロール表面に対してショットブラストを行った後にクロムメッキを施し、ロール表面の面粗度を種々の値に調整した粗面化ロールを作製した。この粗面化ロールの間に上記アルミニウム箔を通し、上記ロール表面の表面形状をアルミニウム箔の表面に転写した。これにより、表1に示す種々の算術平均粗さRaを有する、一方の表面が粗面化されたアルミニウム箔(試料1~試料7)を得た。
 上述の方法により得られた各試料について、算術平均粗さRaの測定、残留圧延油の量の測定及び電極活物質含有層との密着性の評価を、以下の方法により実施した。
 <算術平均粗さRaの測定>
 上記アルミニウム箔の算術平均粗さRaは、JIS B 0601:2001に準拠の方法により測定した。つまり、走査型共焦点レーザー顕微鏡(オリンパス株式会社製;製品名OLYMPUS-OLS3000)を用いて、上記箔形成工程における圧延方向と直角方向及び平行方向の算術平均粗さRaを各々6箇所について測定し、これらの平均値を表1に示した。
 <残留圧延油量の測定>
 上述の各試料から表裏面の総表面積が800cmとなるように試験片を採取した。この採取した試験片を短冊状に切断し、得られた短冊状サンプルの全てを250mlのメスフラスコに入れた。上記メスフラスコにヘキサン70mlを加え、メスフラスコを撹拌し、70℃のホットプレート上で20分間加熱した。その後、このメスフラスコをよく撹拌し、該メスフラスコ中の溶液を抽出液Aとして採取した。
 次いで、上記抽出液Aを抽出した後の上記短冊状サンプルの全てに蒸留水90ml、ヘキサン30mlおよび6N塩酸30mlを加え、アルミニウムの分解反応がおさまるまで放置した。その後、さらに6N塩酸10mlを加え、短冊状サンプルの表面が完全に分解するまで放置し、メスフラスコを撹拌することで、ヘキサン中に残留油を抽出した。その後、ガラス製のスポイトで表層に分離しているヘキサン抽出液を100mlビーカーに移し入れた。次いで、この抽出液が約20mlになるまで加熱蒸発させ、さらに、室温で約5mlまで蒸発させた。その後、吸引デシケーターで減圧濃縮し、ヘキサンを完全に蒸発させた溶液を抽出液Bとして採取した。
 次いで、上記抽出液Aおよび上記抽出液Bをヘキサン100μlで溶解し、そのうちの4μlをガスクロマトグラフに注入して分析した。このガスクロマトグラフ分析により得られた残留圧延油の濃度より上記ヘキサン100μlに含まれる残留圧延油の総量を算出した。そして、この残留圧延油の総量を総表面積で割ることにより算出した、単位面積当たりの残留圧延油の量(μg/m)を表1に示した。
 なお、上記ガスクロマトグラフ分析は、以下の通りであった。
・分析装備:(株)島津製作所製、GC-14B
・カラム:Gカラム G-205 40m
・検出器:FID
・検出器温度:320℃
・キャリヤガス:窒素ガス30ml/min
<集電体用アルミニウム箔の密着性評価>
 集電体用アルミニウム箔の密着性評価は、JIS K 6854-2:1999に準拠して集電体用アルミニウム箔と電極活物質含有層との180度剥離強度を測定することにより行った。なお、ここでは、作製した集電体用アルミニウム箔をリチウムイオン電池の集電体に適用することを想定した。
 具体的には、正極活物質として汎用のLiCoO粉末:60質量部と、導電助剤としてのアセチレンブラック:5質量部と、結着剤としてのポリフッ化ビニリデン:5質量部と、有機溶媒としてのN-メチルピロリドン:30質量部とを混合し、ペーストを調製した。ロールコータを用いて、各試験片の片面(粗面化された面)に厚さ20μmで上記調製したペーストを塗布し、90℃×5分の条件で乾燥させた。これにより、各アルミニウム箔における粗面化された表面に正極活物質含有層を形成した各試料を作製した。
 次いで、得られた各試料を用いてJIS K 6854-2:1999 「第2部:180度はく離」に準拠して180度剥離強度を測定した。この際、上記規格中の剛性被着材には厚み3mmの硬質塩化ビニル板を用いた。また、上記アルミニウム板材の表面に各試料の正極活物質含有層の表面を接着するための接着剤として両面テープ(ニチバン社製、「NW-25」)を用いた。また、上記規格中のつかみによる試料の引張速度は100mm/分とした。なお、表1に示す各試料の剥離強度(N/25mm)は、各試料につき5回測定を行い、得られた5回の測定値の平均値とした。剥離強度は、2.0N/25mm以上を合格とした。
 表1に、作製した各集電体用アルミニウム箔の構成と評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1より知られるごとく、それぞれ圧延方向に直角方向及び平行方向の算術平均粗さRaである上記A及び上記Bの値が上記特定の範囲内にある試料は、いずれも上記アルミニウム箔と正極活物質含有層とが十分に密着している。そのため、正極活物質含有層の剥離が生じ難いことが確認された。
 このように、正極活物質含有層と充分な密着性を示すアルミニウム箔の代表例として、図1に試料3の顕微鏡像を示す。図1より知られるごとく、上記A及び上記Bの値が上記特定の範囲内にある上記アルミニウム箔は、上記ロール表面の表面形状が転写され、等方的に粗面化されている。なお、図1においては、長さ30μmを示すスケールを記載している。
 このような集電体用アルミニウム箔を、例えばリチウムイオン電池の集電体として用いた場合には、電池の充放電サイクルにおけるリチウムのドープ、脱ドープによって生じる正極活物質の体積変化に起因する正極活物質含有層の剥離や、電極製造工程での剥離を抑制しやすくなり、電池のサイクル特性の向上に寄与することが可能となる。
 これに対し、上記A及び上記Bの値が上記特定の範囲の下限値を下回る試料は、正極活物質含有層の剥離強度が不十分となり、アルミニウム箔との密着性に劣る結果となった。これは、表面凹凸によるアンカー効果が十分に得られなかったためと考えられる。
 正極活物質含有層との密着性が不十分なアルミニウム箔の代表例として、図2に試料6の顕微鏡像を示す。図2より知られるごとく、上記A及び上記Bの値が上記特定の範囲外にあるアルミニウム箔は、圧延方向と平行方向に形成された筋状模様が観察された。なお、図2においては、長さ30μmを示すスケールを記載している。
 また、表1には記載しないが、上記A及び上記Bの値が上記特定の範囲の上限値を上回ったものは、正極活物質含有層の塗工形成時に箔が破断して亀裂が発生し、正極活物質含有層を塗工することができなかった。なお、仮に箔が破断することなく正極活物質含有層を塗布できたとしても、表面凹凸の凹部の底に正極活物質含有層が接触し難くなるので、リチウムイオン電池の正極に適用した場合には、電気伝導性が低下するものと推察される。
(実施例2)
 本例は、粗面化されたアルミニウム箔の表面に付着している残留圧延油の量について検討を行ったものである。本例では、上記実施例1における試料3と同様の手順により一方の表面が粗面化されたアルミニウム箔を作製した。その後、このアルミニウム箔に対して、強弱を種々変更したアルカリ洗浄を行うことにより、粗面化された箔表面に付着している残留圧延油の量を表2に示す値に調整した試料(試料11~試料12)を作製した。なお、その他は実施例1と同様である。
 表2に、作製した各集電体用アルミニウム箔の構成と評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2より知られるごとく、作製した試料は、いずれも上記A及び上記Bの値が上記特定の範囲内にあり、いずれも上記アルミニウム箔と正極活物質含有層とが十分に密着している。ただし、残留圧延油の量が上記特定の範囲の下限を下回る試料は、正極活物質含有層の剥離が生じ難い水準にあるものの、上記特定の範囲内にある試料と比較して密着性が若干劣ることが確認された。
 以上、実施例について説明したが、本発明は、上記実施例により限定されるものではなく、本発明の趣旨を損なわない範囲内で種々の変形を行うことができる。
 例えば、上記実施例においては、作製した集電体用アルミニウム箔にリチウムイオン電池の正極に適した材料による正極活物質含有層を形成したが、他にも、作製した集電体用アルミニウム箔に電気二重層コンデンサの電極に適した材料による電極活物質含有層を形成することが可能なものであり、この場合にも、上記と同様に剥離強度の向上効果を得ることができる。

Claims (6)

  1.  少なくとも一方の箔表面が粗面化されており、
     該粗面化された表面のJIS B 0601:2001に規定される算術平均粗さRaは、箔圧延時の圧延方向と直角方向に測定された算術平均粗さRaであるAと、圧延方向と平行方向に測定された算術平均粗さRaであるBとが、
     0.15μm≦A≦2.0μm、
     0.15μm≦B≦2.0μm、
     0.5≦B/A≦1.5
    の関係を満足することを特徴とする集電体用アルミニウム箔。
  2.  請求項1に記載の集電体用アルミニウム箔において、上記の粗面化された箔表面には、50~1000μg/mの油分が付着していることを特徴とする集電体用アルミニウ箔。
  3.  請求項2に記載の集電体用アルミニウム箔において、上記油分は圧延油であることを特徴とする集電体用アルミニウム箔。
  4.  アルミニウム板を圧延してアルミニウム箔を形成する箔形成工程と、
     該箔形成工程により形成されたアルミニウム箔の表面を粗面化する粗面化工程とを有し、
     該粗面化工程により、上記箔形成工程における圧延方向と直角方向に測定された算術平均粗さRaであるAと、圧延方向と平行方向に測定された算術平均粗さRaであるBとが、
     0.15μm≦A≦2.0μm、
     0.15μm≦B≦2.0μm、
     0.5≦B/A≦1.5
    の関係を満足するように、上記アルミニウム箔の少なくとも一方の表面を粗面化することを特徴とする集電体用アルミニウム箔の製造方法。
  5.  請求項4に記載の集電体用アルミニウム箔の製造方法において、上記粗面化工程は、少なくとも一方のロール表面が粗面化された一対の粗面化ロールの間にアルミニウム箔を通して上記ロール表面の表面形状をアルミニウム箔の表面に転写することにより、該アルミニウム箔の表面の粗面化を行うことを特徴とする集電体用アルミニウム箔の製造方法。
  6.  請求項5に記載の集電体用アルミニウム箔の製造方法において、上記箔形成工程と上記粗面化工程とを連続して行い、該粗面化工程においては、上記箔形成工程後にアルミニウム箔に付着している圧延油を上記粗面化工程の潤滑油として用い、新たな潤滑油を供給しないことを特徴とする集電体用アルミニウム箔の製造方法。
PCT/JP2012/072734 2012-02-28 2012-09-06 集電体用アルミニウム箔及びその製造方法 WO2013128685A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014501954A JP6154800B2 (ja) 2012-02-28 2012-09-06 集電体用アルミニウム箔及びその製造方法
US14/381,423 US9742009B2 (en) 2012-02-28 2012-09-06 Aluminum foil for a current collector and method of manufacturing the same
KR1020147026589A KR101723803B1 (ko) 2012-02-28 2012-09-06 집전체용 알루미늄박 및 그 제조 방법
EP12869855.2A EP2822068B1 (en) 2012-02-28 2012-09-06 Aluminum foil for collectors and method for producing same
CN201280070741.6A CN104160536B (zh) 2012-02-28 2012-09-06 集电体用铝箔及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012041494 2012-02-28
JP2012-041494 2012-02-28

Publications (1)

Publication Number Publication Date
WO2013128685A1 true WO2013128685A1 (ja) 2013-09-06

Family

ID=49081916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072734 WO2013128685A1 (ja) 2012-02-28 2012-09-06 集電体用アルミニウム箔及びその製造方法

Country Status (7)

Country Link
US (1) US9742009B2 (ja)
EP (1) EP2822068B1 (ja)
JP (1) JP6154800B2 (ja)
KR (1) KR101723803B1 (ja)
CN (1) CN104160536B (ja)
TW (1) TWI603529B (ja)
WO (1) WO2013128685A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211127A (ja) * 2012-03-30 2013-10-10 Mitsubishi Alum Co Ltd リチウムイオン二次電池正極集電体用アルミニウム箔およびその製造方法
CN103811768A (zh) * 2014-02-22 2014-05-21 深圳市旭冉电子有限公司 凹坑锂离子电池集流体及其制作方法和设备
WO2015186752A1 (ja) * 2014-06-06 2015-12-10 株式会社Uacj 集電体用金属箔、集電体及び集電体用金属箔の製造方法
JP2016110948A (ja) * 2014-12-10 2016-06-20 株式会社豊田自動織機 リチウムイオン二次電池
JP2019040721A (ja) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 リチウムイオン二次電池
JP2019175802A (ja) * 2018-03-29 2019-10-10 Jx金属株式会社 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
JPWO2019142669A1 (ja) * 2018-01-17 2020-12-17 株式会社エンビジョンAescエナジーデバイス リチウムイオン電池用電極およびリチウムイオン電池

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508061B2 (en) 2001-04-25 2003-01-21 Pratt & Whitney Canada Corp Diffuser combustor
JP6713932B2 (ja) 2015-02-03 2020-06-24 東洋アルミニウム株式会社 アルミニウム箔、電子デバイス、ロールツーロール用アルミニウム箔、およびアルミニウム箔の製造方法
KR102050250B1 (ko) * 2015-09-09 2019-12-17 주식회사 엘지화학 제조 공정성이 향상된 이차전지용 전극
MX2018006809A (es) * 2015-12-04 2018-11-09 Arconic Inc Estampado para chapa texturizada por descarga electrica.
KR101901775B1 (ko) * 2016-12-27 2018-11-22 한국제이씨씨(주) 다공성 집전체 제조방법
PL420430A1 (pl) * 2017-02-09 2018-08-13 General Electric Company Kwalifikacja procesów obróbki plastycznej na zimno i polerowania
CN108405716A (zh) * 2018-02-28 2018-08-17 中国科学院力学研究所 一种集流体铝箔的表面织构轧制方法
JP2019175705A (ja) * 2018-03-28 2019-10-10 Jx金属株式会社 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
EP3958359A1 (de) * 2020-08-17 2022-02-23 Speira GmbH Aluminium-folie mit verbesserter benetzbarkeit
CN112536204B (zh) * 2020-11-24 2023-12-22 杭州巨力绝缘材料有限公司 粗糙油面铝箔复合带及制作方法
CN113369304A (zh) * 2021-05-28 2021-09-10 内蒙古联晟新能源材料有限公司 一种减轻电池箔表面铝粉的控制方法
CN116371701B (zh) * 2023-04-26 2024-03-22 蜂巢能源科技股份有限公司 一种锂压延预涂油的工艺及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162470A (ja) 1997-11-25 1999-06-18 Toyo Alum Kk 集電体用アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ
JP2008159297A (ja) 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd アルミニウム箔の脱脂方法およびアルミニウム箔、ならびにそれからなる電池用極板芯材および電池用極板、ならびにそれらを用いたリチウムイオン二次電池
JP2008258137A (ja) * 2006-11-15 2008-10-23 Matsushita Electric Ind Co Ltd 非水系二次電池用集電体、並びにそれを使用した非水系二次電池用電極板および非水系二次電池
JP2008282797A (ja) * 2007-04-12 2008-11-20 Panasonic Corp 非水二次電池用集電体、およびその製造方法
JP2010150637A (ja) * 2008-12-26 2010-07-08 Sumitomo Light Metal Ind Ltd リチウムイオン電池電極集電体用アルミニウム合金箔

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855136A (en) * 1971-11-15 1974-12-17 Kaiser Aluminium Chem Corp Dispersion for hot rolling aluminum products
DE2732009C3 (de) * 1977-07-15 1982-03-25 Estel Hoesch Werke Ag, 4600 Dortmund Verfahren zum elektrostatischen Aufbringen einer ölhaltigen Oberflächenschutzschicht auf bandförmiges Feinstblech
JP3258249B2 (ja) 1996-12-25 2002-02-18 日本ケミコン株式会社 電解コンデンサ用アルミニウム電極箔
US6195251B1 (en) 1997-10-29 2001-02-27 Asahi Glass Company Ltd. Electrode assembly and electric double layer capacitor having the electrode assembly
JP2000044797A (ja) 1998-04-06 2000-02-15 Kuraray Co Ltd 液晶ポリマ―フィルムと積層体及びそれらの製造方法並びに多層実装回路基板
JP4875808B2 (ja) * 2001-08-07 2012-02-15 パナソニック株式会社 積層型二次電池
JP4210556B2 (ja) 2003-06-09 2009-01-21 東洋アルミニウム株式会社 アルミニウム箔の製造方法
JP2005158397A (ja) 2003-11-25 2005-06-16 Ngk Spark Plug Co Ltd リチウム電池およびその製造方法
JP2005310502A (ja) 2004-04-20 2005-11-04 Sanyo Electric Co Ltd 化学電池用電極の製造方法及び電池
JP5369385B2 (ja) * 2007-04-23 2013-12-18 パナソニック株式会社 リチウムイオン二次電池およびその製造方法並びに製造装置
US20100112452A1 (en) * 2007-10-30 2010-05-06 Nishimura Takuhiro Battery current collector, method for producing the same, and non-aqueous secondary battery
WO2010073939A1 (ja) * 2008-12-25 2010-07-01 花王株式会社 熱間圧延油用潤滑油および熱間圧延板の製造方法
JP5226027B2 (ja) 2010-03-31 2013-07-03 Jx日鉱日石金属株式会社 リチウムイオン電池集電体用銅箔
JP5945401B2 (ja) 2011-11-24 2016-07-05 三菱アルミニウム株式会社 リチウムイオン二次電池の正極集電体用箔の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162470A (ja) 1997-11-25 1999-06-18 Toyo Alum Kk 集電体用アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ
JP2008258137A (ja) * 2006-11-15 2008-10-23 Matsushita Electric Ind Co Ltd 非水系二次電池用集電体、並びにそれを使用した非水系二次電池用電極板および非水系二次電池
JP2008159297A (ja) 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd アルミニウム箔の脱脂方法およびアルミニウム箔、ならびにそれからなる電池用極板芯材および電池用極板、ならびにそれらを用いたリチウムイオン二次電池
JP2008282797A (ja) * 2007-04-12 2008-11-20 Panasonic Corp 非水二次電池用集電体、およびその製造方法
JP2010150637A (ja) * 2008-12-26 2010-07-08 Sumitomo Light Metal Ind Ltd リチウムイオン電池電極集電体用アルミニウム合金箔

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211127A (ja) * 2012-03-30 2013-10-10 Mitsubishi Alum Co Ltd リチウムイオン二次電池正極集電体用アルミニウム箔およびその製造方法
CN103811768A (zh) * 2014-02-22 2014-05-21 深圳市旭冉电子有限公司 凹坑锂离子电池集流体及其制作方法和设备
CN103811768B (zh) * 2014-02-22 2015-09-23 深圳市旭冉电子有限公司 凹坑锂离子电池集流体及其制作方法和设备
WO2015186752A1 (ja) * 2014-06-06 2015-12-10 株式会社Uacj 集電体用金属箔、集電体及び集電体用金属箔の製造方法
CN106415903A (zh) * 2014-06-06 2017-02-15 株式会社Uacj 集电体用金属箔、集电体及集电体用金属箔的制造方法
JPWO2015186752A1 (ja) * 2014-06-06 2017-05-25 株式会社Uacj 集電体用金属箔、集電体及び集電体用金属箔の製造方法
US10418636B2 (en) 2014-06-06 2019-09-17 Uacj Corporation Current-collector metal foil, current collector, and current-collector-metal-foil manufacturing method
CN106415903B (zh) * 2014-06-06 2019-10-25 株式会社Uacj 集电体用金属箔、集电体及集电体用金属箔的制造方法
JP2016110948A (ja) * 2014-12-10 2016-06-20 株式会社豊田自動織機 リチウムイオン二次電池
JP2019040721A (ja) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 リチウムイオン二次電池
JPWO2019142669A1 (ja) * 2018-01-17 2020-12-17 株式会社エンビジョンAescエナジーデバイス リチウムイオン電池用電極およびリチウムイオン電池
JP2019175802A (ja) * 2018-03-29 2019-10-10 Jx金属株式会社 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池

Also Published As

Publication number Publication date
KR20140136950A (ko) 2014-12-01
US9742009B2 (en) 2017-08-22
CN104160536B (zh) 2016-11-02
EP2822068A1 (en) 2015-01-07
EP2822068B1 (en) 2018-05-23
KR101723803B1 (ko) 2017-04-06
TW201336158A (zh) 2013-09-01
US20150099170A1 (en) 2015-04-09
CN104160536A (zh) 2014-11-19
JPWO2013128685A1 (ja) 2015-07-30
TWI603529B (zh) 2017-10-21
EP2822068A4 (en) 2015-10-28
JP6154800B2 (ja) 2017-06-28

Similar Documents

Publication Publication Date Title
JP6154800B2 (ja) 集電体用アルミニウム箔及びその製造方法
JP5771435B2 (ja) 集電体用アルミニウム箔
JP5771436B2 (ja) 集電体用アルミニウム箔
Wu et al. The anodization of ZK60 magnesium alloy in alkaline solution containing silicate and the corrosion properties of the anodized films
Zhu et al. Preparation and characterization of anodic films on AZ31B Mg alloy formed in the silicate electrolytes with ethylene glycol oligomers as additives
EP2530770A1 (en) Copper foil for secondary battery negative electrode power collector
CN101950688A (zh) 用于铝电解电容器的中高压阳极铝箔的制造方法
US10889910B2 (en) Boron-containing low-carbon steel oxide film and preparation method thereof
Zhu et al. Electrochemical behaviors of the magnesium alloy substrates in various pretreatment solutions
JP5264409B2 (ja) リチウムイオン電池電極用アルミニウム合金箔およびその製造方法
Pak et al. Effect of organic additives on structure and corrosion resistance of MAO coating
CN103741202B (zh) 一种铝硅合金金属间化合物的电解抛光液及抛光方法
JP5512585B2 (ja) 銅箔及びそれを用いたリチウムイオン二次電池用負極集電体及び負極材、ならびにリチウムイオン二次電池
JP2011134651A (ja) 非水溶媒二次電池負極集電体用銅箔その製造方法及び非水溶媒二次電池負極電極の製造方法
CN103814157A (zh) 太阳能电池用互连件材料、太阳能电池用互连件及带互连件的太阳能电池单元
JP2008251469A (ja) 濡れ性に優れた銅箔及びその製造方法
Fan et al. Investigation on the effect and growth mechanism of two-stage MAO coating
CN105537312B (zh) 一种铜铅复合板带及其制备方法
TWI677131B (zh) 鋰離子電池集電體用壓延銅箔及鋰離子電池
US20230197969A1 (en) Aluminum foil with improved wettability
Zhou et al. Corrosion behavior of Al-Ce alloys in 3.5% NaCl solution
JP5772465B2 (ja) 電気亜鉛めっき鋼板の製造方法
KR101119194B1 (ko) 전자, 전기기기용 프리-코트 금속판
US20190036126A1 (en) Electrolytic copper foil having high tensile strength, electrode including the same, secondary battery including the same, and method of manufacturing the same
Lin et al. 5-Aminotetrazole as a Corrosion Inhibitor in a Phosphate Cu ECMP Electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014501954

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381423

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012869855

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147026589

Country of ref document: KR

Kind code of ref document: A