JP2019175705A - リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池 - Google Patents

リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池 Download PDF

Info

Publication number
JP2019175705A
JP2019175705A JP2018062996A JP2018062996A JP2019175705A JP 2019175705 A JP2019175705 A JP 2019175705A JP 2018062996 A JP2018062996 A JP 2018062996A JP 2018062996 A JP2018062996 A JP 2018062996A JP 2019175705 A JP2019175705 A JP 2019175705A
Authority
JP
Japan
Prior art keywords
copper foil
ion battery
lithium ion
current collector
wetting tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018062996A
Other languages
English (en)
Inventor
工藤 雄大
Takehiro Kudo
雄大 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018062996A priority Critical patent/JP2019175705A/ja
Priority to CN201910222355.8A priority patent/CN110323449A/zh
Priority to KR1020190034355A priority patent/KR20190113628A/ko
Priority to TW108110565A priority patent/TWI686003B/zh
Publication of JP2019175705A publication Critical patent/JP2019175705A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】負極活物質との良好な接着性を有し、また、超音波溶接時の金属粉の発生が少ないリチウムイオン電池集電体用圧延銅箔を提供する。【解決手段】ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧41、及び、 0.01≦算術平均粗さRa[μm]≦0.25、及び、ぬれ張力[mN/m]≧35を満たすリチウムイオン電池集電体用圧延銅箔である。【選択図】図3

Description

本発明は、リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池に関する。
リチウムイオン電池はエネルギー密度が高く、比較的高い電圧が得ることができるという特徴を有し、ノートパソコン、ビデオカメラ、デジタルカメラ、携帯電話等の小型電子機器用に多用されている。将来、電気自動車や一般家庭の分散配置型電源といった大型機器の電源としての利用も有望視されている。
図1は、リチウムイオン電池のスタック構造の模式図である。リチウムイオン電池の電極体は一般に、正極11、セパレータ12及び負極13が幾十にも巻回又は積層されたスタック構造を有している。典型的には、正極は、アルミニウム箔でできた正極集電体とその表面に設けられたLiCoO2、LiNiO2及びLiMn24といったリチウム複合酸化物を材料とする正極活物質から構成され、負極は銅箔でできた負極集電体とその表面に設けられたカーボン等を材料とする負極活物質から構成される。正極同士及び負極同士は各タブ(14、15)でそれぞれ溶接される。また、正極及び負極はアルミニウムやニッケル製のタブ端子と接続されるが、これも溶接により行われる。溶接は超音波溶接により行われるのが通常である。
負極の集電体として使用される銅箔に要求される特性としては、負極活物質との密着性、さらには超音波溶接時の金属粉発生の少ないことが挙げられる。
活物質層との密着性を改善するための一般的な方法としては、予め粗化処理と呼ばれる銅箔表面に凹凸を形成する表面処理が挙げられる。粗化処理の方法としては、ブラスト処理、粗面ロールによる圧延、機械研磨、電解研磨、化学研磨及び電着粒のめっき等の方法が知られており、これらの中でも特に電着粒のめっきは多用されている。この技術は、硫酸銅酸性めっき浴を用いて、銅箔表面に樹枝状又は小球状に銅を多数電着せしめて微細な凹凸を形成し、投錨効果による密着性の改善や、体積変化の大きな活物質の膨張時に活物質層の凹部に応力を集中させて亀裂を形成せしめ、集電体界面に応力が集中することによる剥離を防ぐことで行われている(例えば、特許第3733067号公報)。
また、リチウムイオン電池の集電体として使用される銅箔は、Liの活物質を銅箔表面に塗布するが、このとき、電池の高容量化のために当該活物質を厚塗りにすることがある。しかしながら、活物質を厚塗りすると、活物質が剥離するといった銅箔と活物質との間の密着性に関する問題が発生するおそれがある。また、電池の高容量化のための別の手段としてSi系の活物質の使用が検討されているが、Si系活物質は膨張収縮率が既存のものよりも高いために密着性に問題が生じるおそれがある。
また、リチウムイオン電池の集電体として使用される銅箔は、超音波溶接の際、粉状にはがれて金属粉が発生するおそれがある。このような金属粉が多量に発生して電極体に残存すると、内部短絡等が起こり、リチウムイオン電池の性能が低下する恐れがある。金属粉の発生を抑える方法として、例えば、特開2007−305322号公報には、焼鈍により負極集電体の内部ひずみを除去し、軟化させることで、超音波溶接時に集電体の一部が粉状にはがれることを抑制し、50μm以上の金属粉の残存を少なくする方法が記載されている。
また、リチウムイオン二次電池の電池寿命を決定する要因として、集電体と活物質層の界面における密着性が挙げられる。現在市販されているリチウムイオン電池の大部分は、集電体となる銅箔上に活物質、バインダー、有機溶剤を混合したスラリーを塗布後乾燥することにより作製した負極を使用している。もし、このスラリーが集電体表面において均一に濡れ広がることが出来ない場合、活物質の剥離等の原因となり、これは望ましくないため、電極表面のぬれ性(ぬれ張力)も重要となる。例えば、特開平10−212562号公報には、冷間圧延して得られた銅箔を巻き取った巻取品(コイル)中で積層重合している銅箔同士が接着しないようにする方法として、巻き上げる前の銅箔表面を洗浄して、表面に付着している銅の微粉末等を除去すると共に、表面に残存する圧延油等の残留油分を所定値以下とした後に銅箔を巻き上げる銅箔巻取品の最終焼鈍方法が記載されている。
特許第3733067号公報 特開2007−305322号公報 特開平10−212562号公報
このように、リチウムイオン電池の集電体として使用される銅箔の特性向上のための技術開発が行われているが、活物質密着性の向上及び超音波溶接時の金属粉の発生の抑制を同時に実現させる技術については、未だ開発の余地がある。
そこで、本発明は負極活物質との良好な接着性を有し、また、超音波溶接時の金属粉の発生が少ないリチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池を提供することを課題とする。
本発明者は上記課題を解決するために研究を重ねたところ、圧延銅箔のぬれ張力及び圧延銅箔のぬれ張力と算術平均粗さRaとの関係を制御し、さらに算術平均粗さRaの数値範囲を制御することで、負極活物質との密着性を向上させながらも超音波溶接時の金属粉の発生の少ないリチウムイオン電池集電体用圧延銅箔を提供することができることを見出した。
以上の知見を基礎として完成した本発明は一側面において、ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧41、及び、0.01≦算術平均粗さRa[μm]≦0.25、及び、ぬれ張力[mN/m]≧35を満たすリチウムイオン電池集電体用圧延銅箔である。
本発明に係るリチウムイオン電池集電体用圧延銅箔は一実施形態において、ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧44、及び、ぬれ張力[mN/m]≧37を満たす。
本発明に係るリチウムイオン電池集電体用圧延銅箔は別の一実施形態において、算術平均粗さRa[μm]≧0.03及びぬれ張力[mN/m]≧37を満たす。
本発明は別の一側面において、本発明の実施の形態に係るリチウムイオン電池集電体用圧延銅箔を集電体として用いたリチウムイオン電池である。
本発明によれば、負極活物質との良好な密着性を有し、また、超音波溶接時の金属粉発生が少ないリチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池を提供することができる。
本発明の実施の形態に係るリチウムイオン電池のスタック構造の模式図である。 実施例の銅箔の表面粗さRaと脱脂液への浸漬時間の関係を示すグラフである。 実施例及び比較例のぬれ張力と算術平均粗さRaとの関係を示すグラフである。
(リチウムイオン電池集電体用圧延銅箔)
本発明の実施の形態に係るリチウムイオン電池集電体用圧延銅箔の銅箔基材は圧延銅箔を使用する。当該圧延銅箔には圧延銅合金箔も含まれるものとする。圧延銅箔の材料としては、特に制限はなく、用途や要求特性に応じて適宜選択すればよい。例えば、限定的ではないが、高純度の銅(無酸素銅やタフピッチ銅等)の他、Sn入り銅、Ag入り銅、Ni、Si等を添加したCu−Ni−Si系銅合金、Cr、Zr等を添加したCu−Cr−Zr系銅合金のような銅合金が挙げられる。
圧延銅箔の厚みは特に制限はなく、要求特性に応じて適宜選択すればよい。一般的には1〜100μmであるが、リチウム二次電池負極の集電体として使用する場合、圧延銅箔を薄肉化した方がより高容量の電池を得ることができる。そのような観点から、典型的には2〜50μm、より典型的には5〜20μm程度である。
本発明の実施の形態に係るリチウムイオン電池集電体用圧延銅箔は、ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧41を満たす。圧延銅箔のぬれ張力と算術平均粗さRaとの関係をこのように制御することで、活物質との良好な密着性を有し、また、超音波溶接時に金属粉の発生が少ないリチウムイオン電池集電体用圧延銅箔が得られる。リチウムイオン電池集電体用圧延銅箔は、ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧44を満たすのが好ましく、ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧45を満たすのがより好ましく、ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧50を満たすのが更に好ましい。
本発明の実施の形態に係るリチウムイオン電池集電体用圧延銅箔は、さらに、0.01≦算術平均粗さRa[μm]≦0.25を満たす。算術平均粗さRaが0.01μm未満であると、アンカー効果が低減して負極活物質との密着性が悪化するおそれがある。また、算術平均粗さRaが0.25μmを超えると、銅箔表面のオイルピットが多く、そこに圧延油が侵入することから圧延油を取り除きにくくなる上、超音波溶接時の金属粉の発生量が著しく増加する。銅箔表面の残留油分が多いとぬれ張力が悪化する傾向にある。本発明の実施の形態に係るリチウムイオン電池集電体用圧延銅箔は、一実施態様において0.01≦算術平均粗さRa[μm]≦0.2を満たし、別の一実施態様においては0.03≦算術平均粗さRa[μm]≦0.15を満たし、更に別の一実施態様においては0.05≦算術平均粗さRa「μm」≦0.1を満たす。
本発明の実施の形態に係るリチウムイオン電池集電体用圧延銅箔は、さらに、ぬれ張力[mN/m]≧35を満たす。ぬれ張力が35mN/mを下回ると、銅箔表面に多量の圧延油が残存し、スラリーが銅箔表面において均一に濡れ広がることが出来ず、活物質の密着性悪化の原因となり、好ましくない場合がある。本発明の実施の形態に係るリチウムイオン電池集電体用圧延銅箔は、ぬれ張力[mN/m]≧37を満たすのが好ましく、ぬれ張力[mN/m]≧39を満たすのがより好ましい。ぬれ張力の上限は特に限定されないが、70mN/mを超えるような濡れ性を得るにはより多くの脱脂時間を要するため、生産性が悪くなる場合がある。
上記のような圧延銅箔のぬれ張力と算術平均粗さRaとの関係、及び、ぬれ張力と算術平均粗さRaが制御された本発明の実施の形態に係るリチウムイオン電池集電体用圧延銅箔は、研磨処理や電着粒のめっきといった粗化処理を行わずに、オイルピットに起因する表面の凹凸状態を制御することにより構築することが可能である。オイルピットとは、ロールバイト内で圧延用ロールと被圧延材により封じ込められた圧延油が、被圧延材の表面に部分的に発生する微細な窪みである。粗化処理工程が省略されるので、経済性・生産性が向上するメリットがある。
圧延銅箔のオイルピットの形状、すなわち表面性状は、圧延ロールの表面粗さ、圧延速度、圧延油の粘度、1パス当たりの圧下率(とりわけ最終パスの圧下率)などを調節する事で制御可能である。例えば、表面粗さの大きな圧延ロールを使用すれば得られる圧延銅箔の表面粗さも大きくなり、逆に、表面粗さの小さな圧延ロールを使用すれば得られる圧延銅箔の表面粗さも小さくなりやすい。また、圧延速度を速く、圧延油の粘度を高く、又は1パス当たりの圧下率を小さくすることでオイルピットの発生量が増加しやすい。逆に、圧延速度を遅く、圧延油の粘度を低く、又は1パス当たりの圧下率を大きくすることでオイルピットの発生量が減少しやすい。
(リチウムイオン電池)
本発明に係る圧延銅箔を材料とする集電体とその上に形成された活物質層によって構成された負極を用いて、慣用手段によりリチウムイオン電池を作製することができる。リチウムイオン電池には、電解質中のリチウムイオンが電気伝導を担うリチウムイオン一次電池用及びリチウムイオン二次電池が含まれる。負極活物質としては、限定的ではないが、炭素、珪素、スズ、ゲルマニウム、鉛、アンチモン、アルミニウム、インジウム、リチウム、酸化スズ、チタン酸リチウム、窒化リチウム、インジウムを固溶した酸化錫、インジウム−錫合金、リチウム−アルミニウム合金、リチウム−インジウム合金等が挙げられる。
(製造方法)
本発明の実施の形態に係るリチウムイオン電池集電体用圧延銅箔は、例えば以下の製造方法によって製造することができる。まず、原料となるインゴットを製造し、熱間圧延により圧延する。次に、焼鈍と冷間圧延を繰り返し、最後の冷間圧延において、ワークロール径50〜100mm、ワークロール表面粗さRaが0.03〜0.1μmとし、最終パスの圧延速度300〜500m/分として、1〜100μmの厚みに仕上げる。圧延油の粘度は3.0〜5.0cSt(25℃)とすることができる。最終冷間圧延後の銅箔には最終冷間圧延で使用した圧延油などの油分が付着しているため、この銅箔を、石油系溶剤と陰イオン界面活性剤を含有する溶液で洗浄し、銅箔表面に付着している銅微粉末及び圧延油等を取り除き、その後送風乾燥する。
なお、銅箔表面から圧延油等を除去する方法として、従来公知の脱脂処理又は洗浄処理を採用することができ、さらに使用する有機溶剤(脱脂溶媒)としては、例えばノルマルパラフィン、イソプロピルアルコール等のアルコール類やアセトン、ジメチルアセトアミド、テトラヒドロフラン、エチレングリコールが挙げられる。
脱脂処理又は洗浄処理としては、銅箔表面の算術平均粗さRaとぬれ張力の関係式(ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧41)を満たすように制御する。例えば、算術平均粗さRaが0.068μmの銅箔の脱脂後のぬれ張力が37mN/m以上となるように脱脂処理を施す。脱脂液への浸漬時間は、銅箔表面の粗さに応じ、図2に示すように調整することが好ましい。
銅箔の製造工程においては、銅箔表面に酸化被膜が生成される。銅箔表面に酸化被膜が存在すると銅箔のぬれ張力が低下するため、銅箔表面の酸化被膜は除去されることが望ましい。
脱脂処理又は洗浄処理、酸化膜除去処理における銅箔の脱脂溶媒へ浸漬時間は、2.5s以上とすることができる。一方で、浸漬時間が長すぎると生産性が悪く、また、銅箔表面にアルカリ焼けによる変色が発生する場合がある。Raが大きい、つまりオイルピットが多いまたは深い銅箔は、オイルピットに入り込んだ圧延油及び銅箔表面に生成した酸化膜を除去するために浸漬時間が長いほうが好ましい。銅箔の脱脂溶媒への浸漬時間は2.5〜12s、更に好ましくは2.5〜8.5sとすることができる。
以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。
(実施例1〜9、比較例1〜6)
[圧延銅箔の製造]
幅600mmのタフピッチ銅のインゴットを製造し、熱間圧延により圧延した。次に、焼鈍と冷間圧延を繰り返し、最後に冷間圧延で、ワークロール径60mm、ワークロール表面粗さRaを0.03μmとし、最終パスの圧延速度400m/分で厚さ0.01mmに仕上げた。圧延油の粘度は4.0cSt(25℃)であった。この状態では銅箔に最終冷間圧延で使用した圧延油などの油分が付着している。この銅箔を、石油系溶剤と陰イオン界面活性剤を含有する溶液で洗浄し、銅箔表面に付着している銅微粉末及び圧延油等を取り除き、その後送風乾燥した。
銅箔表面における圧延油は、有機溶剤(脱脂溶媒)としてノルマルパラフィンを用いて脱脂処理により除去した。表1に当該脱脂処理において実施した銅箔の有機溶剤(脱脂溶媒)への浸漬時間を示す。なお、実施例1〜9では、このときの銅箔表面の算術平均粗さRaとぬれ張力の関係式(ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧41)を満たすように制御した。
[算術平均粗さRa]
算術平均粗さRaは、JIS B0601 2001に準じて測定し、試料表面を、コンフォーカル顕微鏡(レーザーテック社製、型番:HD100D)を用いて、圧延平行方向に長さ175μmで測定した値とした。
[活物質との密着性]
活物質との密着性を以下の手順で評価した。
(1)平均径9μmの人工黒鉛とポリビニリデンフルオライドを重量比1:9で混合し、これを溶剤N−メチル−2−ピロリドンに分散させた。
(2)銅箔の表面に上記の活物質を塗布した。
(3)活物質を塗布した銅箔を乾燥機にて90℃×30分間加熱した。
(4)乾燥後、20mm角に切り出し、1.5トン/mm2×20秒間の荷重をかけた。
(5)上記サンプルをカッターにて碁盤目状に切り傷を形成し、市販の粘着テープ(セロテープ(登録商標))を貼り、重さ2kgのローラーを置いて1往復させて粘着テープを圧着した。
(6)粘着テープを剥がし、銅箔上に残存した活物質は、表面の画像をPCに取り込み、二値化によって銅表面の金属光沢部分と活物質が残存する黒色部分を区別し、活物質の残存率を算出した。残存率は、各サンプル3つの平均値とした。活物質密着性の判定は、残存率50%未満を「×」、50%以上を「○」とした。
[ぬれ張力]
ぬれ張力は、ぬれ張力試験用混合液(和光純薬工業社製)を用いて、JIS K 6768に準拠して測定した。
[超音波溶接性に発生した金属粉の個数]
超音波溶接性を以下の手順で評価した。
(1)銅箔を100mm×30mmの大きさに切り出し、30枚重ねた。
(2)ブランソン社製のアクチュエータ(型番:Ultraweld L20E)にホーン(ピッチ0.8mm、高さ0.4mm)を取り付ける。アンビルは0.2mmピッチを使用した。
(3)20mm幅のテープの接着面を表にしてアンビルの両横に取り付けた。接着面のサイズは20mm×60mmであった。
(4)溶接条件は、圧力40psi、振幅60μm、振動数20kHz、溶接時間は0.1秒とした。
(5)上記条件で溶接場所を変えながら30回溶接した後、アンビルの両横に取り付けたテープの接着面に付着した金属粉の数を計数した。
評価条件及び評価結果を表1に示す。
実施例1〜9は、ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧41、及び、0.01≦算術平均粗さRa≦0.25、及び、ぬれ張力[mN/m]≧35を満たしていた。そのため、活物質密着性が良好で、かつ、発生した金属粉の個数は少なかった。
比較例1は、ぬれ張力[mN/m]+算術平均粗さRa[μm]×60が41を下回り、さらに算術平均粗さRaが0.25μmを超えたため、活物質密着性は不良で、発生した金属粉の個数は0.01≦算術平均粗さRa[μm]≦0.25を満たす銅箔と比較して著しく多かった。
比較例2、3は、ぬれ張力[mN/m]+算術平均粗さRa[μm]×60が41を下回っていたため、活物質密着性が不良であった。より具体的には、比較例2、3は算術平均粗さRaに対して、脱脂液への浸漬時間が短かったことによって残留油分が多くなり、その結果ぬれ張力が小さくなったため、活物質密着性はぬれ張力[mN/m]+算術平均粗さRa[μm]×60を満たす銅箔よりも悪化した。
比較例4〜6は、算術平均粗さRaが0.25μmを超えたため、発生した金属粉の個数は0.01≦算術平均粗さRa[μm]≦0.25を満たす銅箔と比較して著しく多かった。
図3に、実施例1〜9のぬれ張力と算術平均粗さRaとの関係を示すグラフを示す。点線で囲まれる領域内の範囲内にあるぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧41、及び、0.01≦算術平均粗さRa[μm]≦0.25の関係を満たす実施例1〜9はいずれも超音波溶接性が良好で、かつ、発生した金属粉の個数は少なかった。
11…正極
12…セパレータ
13…負極
14、15…タブ

Claims (4)

  1. ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧41、及び、
    0.01≦算術平均粗さRa[μm]≦0.25、及び、
    ぬれ張力[mN/m]≧35
    を満たすリチウムイオン電池集電体用圧延銅箔。
  2. ぬれ張力[mN/m]+算術平均粗さRa[μm]×60≧44、及び、
    ぬれ張力[mN/m]≧37を満たす請求項1に記載のリチウムイオン電池集電体用圧延銅箔。
  3. 算術平均粗さRa[μm]≧0.03及びぬれ張力[mN/m]≧37
    を満たす請求項1または2に記載のリチウムイオン電池集電体用圧延銅箔。
  4. 請求項1〜3のいずれか一項に記載のリチウムイオン電池集電体用圧延銅箔を集電体と
    して用いたリチウムイオン電池。
JP2018062996A 2018-03-28 2018-03-28 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池 Pending JP2019175705A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018062996A JP2019175705A (ja) 2018-03-28 2018-03-28 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
CN201910222355.8A CN110323449A (zh) 2018-03-28 2019-03-22 锂离子电池集电体用轧制铜箔及锂离子电池
KR1020190034355A KR20190113628A (ko) 2018-03-28 2019-03-26 리튬 이온 전지 집전체용 압연 동박 및 리튬 이온 전지
TW108110565A TWI686003B (zh) 2018-03-28 2019-03-27 鋰離子電池集電體用軋製銅箔及鋰離子電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062996A JP2019175705A (ja) 2018-03-28 2018-03-28 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池

Publications (1)

Publication Number Publication Date
JP2019175705A true JP2019175705A (ja) 2019-10-10

Family

ID=68112902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062996A Pending JP2019175705A (ja) 2018-03-28 2018-03-28 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池

Country Status (4)

Country Link
JP (1) JP2019175705A (ja)
KR (1) KR20190113628A (ja)
CN (1) CN110323449A (ja)
TW (1) TWI686003B (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305322A (ja) * 2006-05-09 2007-11-22 Toyota Motor Corp 電池及びその製造方法
JP2008258010A (ja) * 2007-04-05 2008-10-23 Matsushita Electric Ind Co Ltd 二次電池極板の製造装置およびその製造方法
JP2008270004A (ja) * 2007-04-23 2008-11-06 Matsushita Electric Ind Co Ltd リチウムイオン二次電池およびその製造方法並びに塗布装置
JP2010168605A (ja) * 2009-01-20 2010-08-05 Nippon Mining & Metals Co Ltd 水濡れ性に優れた銅箔及びその製造方法
JP2012099351A (ja) * 2010-11-02 2012-05-24 Jx Nippon Mining & Metals Corp リチウムイオン電池集電体用銅箔
JP2012243454A (ja) * 2011-05-17 2012-12-10 Jx Nippon Mining & Metals Corp 圧延銅箔、並びにこれを用いた負極集電体、負極板及び二次電池
JP2014011077A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp 非水電解質二次電池の製造方法および非水電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212562A (ja) 1997-01-27 1998-08-11 Nippon Foil Mfg Co Ltd 銅箔巻取品の最終焼鈍方法
JP3733067B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
CN1152769C (zh) * 2002-07-24 2004-06-09 北京工业大学 纳米颗粒增强的锡铅基复合钎料及其制备方法
WO2006085467A1 (ja) * 2005-02-08 2006-08-17 Mitsubishi Chemical Corporation リチウム二次電池及びその正極材料
JP5226027B2 (ja) * 2010-03-31 2013-07-03 Jx日鉱日石金属株式会社 リチウムイオン電池集電体用銅箔
WO2013128685A1 (ja) * 2012-02-28 2013-09-06 住友軽金属工業株式会社 集電体用アルミニウム箔及びその製造方法
JP6640567B2 (ja) * 2015-01-16 2020-02-05 Jx金属株式会社 キャリア付銅箔、積層体、プリント配線板、電子機器の製造方法及びプリント配線板の製造方法
US9647272B1 (en) * 2016-01-14 2017-05-09 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil
CN106058266B (zh) * 2016-06-13 2019-07-12 湘潭大学 锂离子电池用超轻薄高柔性石墨烯集流体的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305322A (ja) * 2006-05-09 2007-11-22 Toyota Motor Corp 電池及びその製造方法
JP2008258010A (ja) * 2007-04-05 2008-10-23 Matsushita Electric Ind Co Ltd 二次電池極板の製造装置およびその製造方法
JP2008270004A (ja) * 2007-04-23 2008-11-06 Matsushita Electric Ind Co Ltd リチウムイオン二次電池およびその製造方法並びに塗布装置
JP2010168605A (ja) * 2009-01-20 2010-08-05 Nippon Mining & Metals Co Ltd 水濡れ性に優れた銅箔及びその製造方法
JP2012099351A (ja) * 2010-11-02 2012-05-24 Jx Nippon Mining & Metals Corp リチウムイオン電池集電体用銅箔
JP2012243454A (ja) * 2011-05-17 2012-12-10 Jx Nippon Mining & Metals Corp 圧延銅箔、並びにこれを用いた負極集電体、負極板及び二次電池
JP2014011077A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp 非水電解質二次電池の製造方法および非水電解質二次電池

Also Published As

Publication number Publication date
TW201943134A (zh) 2019-11-01
KR20190113628A (ko) 2019-10-08
TWI686003B (zh) 2020-02-21
CN110323449A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
KR101108911B1 (ko) 리튬 2차 전지용 전해 구리박 및 그 구리박의 제조 방법
JP5427752B2 (ja) リチウムイオン電池集電体用銅箔
JP6648088B2 (ja) 二次電池負極集電体用圧延銅箔、それを用いた二次電池負極及び二次電池並びに二次電池負極集電体用圧延銅箔の製造方法
JP5795895B2 (ja) アルミニウム合金製集電体を用いた二次電池用正極、及びその二次電池用正極の生産方法
JPWO2015186752A1 (ja) 集電体用金属箔、集電体及び集電体用金属箔の製造方法
JP5496139B2 (ja) 銅箔及びそれを用いた二次電池
KR102643400B1 (ko) 리튬 이온 전지 집전체용 압연 구리박 및 리튬 이온 전지
JP6611751B2 (ja) リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
JP7153148B1 (ja) 電解銅箔、電極及びそれを備えるリチウムイオン電池
JP2014032929A (ja) 集電体用銅箔及びこれを用いたリチウムイオン二次電池用負極集電体
KR102003342B1 (ko) 리튬이온 2차전지용 음극집전 동박, 리튬이온 2차전지용 음극 및 리튬이온 2차전지
JP6058915B2 (ja) 二次電池負極集電体用圧延銅箔又は圧延銅合金箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池
JP5143923B2 (ja) 圧延銅箔及びそれを用いた二次電池
JP5490761B2 (ja) 二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池
TWI686003B (zh) 鋰離子電池集電體用軋製銅箔及鋰離子電池
JP2019175802A (ja) リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
JP2008041347A (ja) リチウムイオン二次電池用負極の製造方法及びリチウムイオン二次電池用負極
JP2014060092A (ja) 負極集電銅箔の製造方法、負極集電銅箔、リチウムイオン二次電池用の負極、及びリチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200804