WO2013125703A1 - ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池 - Google Patents

ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池 Download PDF

Info

Publication number
WO2013125703A1
WO2013125703A1 PCT/JP2013/054595 JP2013054595W WO2013125703A1 WO 2013125703 A1 WO2013125703 A1 WO 2013125703A1 JP 2013054595 W JP2013054595 W JP 2013054595W WO 2013125703 A1 WO2013125703 A1 WO 2013125703A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel composite
composite hydroxide
positive electrode
particle size
particles
Prior art date
Application number
PCT/JP2013/054595
Other languages
English (en)
French (fr)
Inventor
充 山内
一臣 漁師
建作 森
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP13751304.0A priority Critical patent/EP2818452B1/en
Priority to US14/380,657 priority patent/US9553312B2/en
Priority to JP2013532010A priority patent/JP5505565B2/ja
Priority to CN201380010517.2A priority patent/CN104144880B/zh
Priority to KR1020147026419A priority patent/KR101644258B1/ko
Publication of WO2013125703A1 publication Critical patent/WO2013125703A1/ja
Priority to US15/135,804 priority patent/US9583764B2/en
Priority to US15/389,387 priority patent/US9685656B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a nickel composite hydroxide which is a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode active material for a secondary battery using the nickel composite hydroxide as a raw material and a method for producing the same
  • the present invention also relates to a non-aqueous electrolyte secondary battery using this positive electrode active material for a non-aqueous electrolyte secondary battery as a positive electrode material.
  • lithium ion secondary battery using lithium, a lithium alloy, a metal oxide or carbon as a negative electrode.
  • a lithium composite oxide is used as a positive electrode active material for the positive electrode material of a lithium ion secondary battery.
  • Lithium cobalt composite oxide is relatively easy to synthesize, and has high energy density because a high voltage of 4 V is obtained in a lithium ion secondary battery using lithium cobalt composite oxide as a positive electrode material. It is expected as a material for putting a secondary battery to practical use.
  • lithium cobalt composite oxide research and development have been advanced to realize excellent initial capacity characteristics and cycle characteristics in secondary batteries, and various results have already been obtained.
  • the lithium cobalt complex oxide uses a rare and expensive cobalt compound as a raw material, it causes an increase in cost of the positive electrode material and the secondary battery.
  • the lithium ion secondary battery using the lithium cobalt composite oxide has a unit price per capacity of about four times that of the nickel hydrogen battery, so the applicable applications are considerably limited. Therefore, from the viewpoint of achieving further weight reduction and miniaturization of the portable device, it is necessary to reduce the cost of the positive electrode active material and to enable the manufacture of a cheaper lithium ion secondary battery.
  • lithium nickel composite oxide using nickel which is cheaper than cobalt.
  • the lithium nickel composite oxide exhibits the same high battery voltage as the lithium cobalt composite oxide, exhibits a lower electrochemical potential than the lithium cobalt composite oxide, and is less likely to cause a problem of decomposition due to oxidation of the electrolyte. It is expected as a positive electrode active material capable of increasing the capacity of the secondary battery. For this reason, research and development of lithium nickel composite oxides are also actively conducted.
  • the battery capacity is closely related to the chargeability. If the packing density is high, the battery capacity can be increased because more positive electrode active material can be filled in the electrode of the same volume.
  • the particle density is equal, it is effective to increase the particle size in order to increase the packing density.
  • the inclusion of particles having a too large particle size, for example, particles exceeding 50 ⁇ m, causes clogging of the filter during filtration after kneading of the positive electrode material slurry, and streaking also during its application (longitudinal defect) Cause.
  • the positive electrode active material in JP 2005-302507 A, it is composed of secondary particles having a spherical or elliptical shape formed by aggregating primary particles, and the particle diameter is 40 ⁇ m or less.
  • a positive electrode active material comprising a powder in which the ratio of particles having a particle diameter of 1 ⁇ m or less is 0.5% by volume to 7.0% by volume.
  • the positive electrode active material used in a battery which can be produced industrially at a high capacity has a particle diameter appropriately large and a sharp particle size distribution.
  • the lithium-nickel composite oxide is obtained by calcining the precursor nickel composite hydroxide with a lithium compound.
  • the particle properties such as the particle size and the particle size distribution of the lithium nickel composite oxide basically inherit the particle properties of the nickel composite hydroxide, so to obtain a positive electrode active material having a desired particle size and particle size distribution It is necessary to obtain an appropriate particle size and particle size distribution at the precursor stage.
  • a reactive crystallization method is generally used as a method of producing a nickel composite hydroxide.
  • a method of performing crystallization by batch operation is effective, but the batch method has a disadvantage that it is inferior in productivity to a continuous method using an overflow method.
  • the reaction vessel becomes large, and the productivity is further deteriorated.
  • JP-A-8-119636 an aqueous solution of nickel salt, aqueous ammonia and an aqueous solution of alkali hydroxide are continuously supplied to a reaction vessel at a constant ratio respectively, and sufficient agitation is performed before the reaction system overflows from the reaction vessel. It is disclosed that nickel hydroxide particles are produced by removing the solvent to such an extent that the reaction can be performed to increase the volume of the reaction system with the reaction solution and removing the solvent.
  • JP-A-7-165428 a nickel salt aqueous solution, ammonia water and an aqueous alkali hydroxide solution are simultaneously and continuously supplied to a reaction tank having a filtering function at a constant ratio to After the volume reaches a predetermined volume, the solvent of the reaction tank is continuously removed by filtration by its filtration function to crystallize nickel hydroxide under predetermined stirring conditions while keeping the volume of the reaction system approximately constant. Methods are disclosed. According to this method, since the solvent is continuously removed by filtration, the number of particles per volume of the solvent in the reaction system becomes constant, and the growth of particles is stabilized.
  • the ratio of the supply amount of the raw material after the start of the removal of the solvent to the supply amount of the raw material until the start of the removal of the solvent is large.
  • the growth rate from the particle size of particles generated in the initial stage of crystallization to the particle size in the final stage of crystallization increases, and fine particles may be generated in the reaction liquid.
  • the number of particles does not change and the density is constant, for example, in order to grow 2 ⁇ m particles to 12 ⁇ m, it is necessary to increase the volume by 216 times. Therefore, it is necessary to lower the initial slurry concentration in order to make the slurry concentration to which the raw material is added stirrable until the growth to 12 ⁇ m. For this reason, the time which supplies a raw material and makes it react also becomes long, and productivity will fall. As described above, it can be said that it is extremely difficult to produce particles having a large particle diameter by the method disclosed in JP-A-7-165428.
  • JP-A-10-25117 and JP-A-2010-536697 not only the solvent but also the particles are discharged out of the system and kept out of the system in order to keep the slurry concentration in the system constant. Particles are returned to the reaction system. If the particles discharged out of the system are not returned to the reaction system, the number of particles in the reaction system is reduced, so it is possible to increase the particle size by grain growth in this state. However, returning the discharged particles back to the reaction system results in mixing of insufficiently grown fine particles and conversely overgrown coarse particles, as in the continuous crystallization operation by overflow. It is difficult to obtain particles with various particle size distribution.
  • an object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery capable of achieving high battery capacity and high coulombic efficiency with uniform particle size and high packing density. It is an object of the present invention to provide a nickel composite hydroxide as a precursor thereof that enables provision of such a positive electrode active material for a non-aqueous electrolyte secondary battery.
  • the present inventors finally concentrated particles and liquid components initially formed in the reaction tank.
  • the positive electrode active material obtained by using the present invention completed the present invention by obtaining the knowledge that the particle diameter is uniform, the packing density is high, and the high Coulomb efficiency is obtained.
  • the present invention relates to a method for producing a nickel composite hydroxide by a crystallization reaction by supplying an aqueous solution containing at least a nickel salt and a neutralizing agent and a complexing agent to a reaction vessel while stirring.
  • the crystallization is divided into two steps, and the aqueous solution containing at least the nickel salt and the neutralizing agent and the complexing agent are supplied as the primary crystallization step to fill the reaction vessel,
  • the volume average particle size (MV) of the secondary particles of nickel composite hydroxide formed in the reaction vessel is the ratio of the volume average particle size (MV) of the secondary particles of nickel composite hydroxide finally obtained , While controlling to 0.2 to 0.6, while obtaining a nickel composite hydroxide slurry, as the secondary crystallization step, the volume of the slurry obtained in the primary crystallization step is kept constant. And the above crystallization is continued until the volume average particle size (MV) of the secondary particles of the nickel composite hydroxide becomes 8.0 ⁇ m to 50.0 ⁇ m while continuously removing only the liquid component of the slurry. It is characterized by continuing the reaction.
  • the pH of the slurry is controlled to be in the range of 10 to 13, preferably in the range of 10.5 to 12.5, on the basis of a liquid temperature of 25 ° C.
  • the concentration of the nickel ammine complex in the slurry is preferably controlled to be in the range of 10 mg / L to 1500 mg / L.
  • the secondary crystallization step it is preferable to keep the volume of the slurry constant by using a cross flow filtration device.
  • a ceramic filter as a filter medium of this crossflow-type filtration apparatus.
  • each component of the aqueous solution containing the nickel salt is determined in substantially the same manner as the nickel composite hydroxide, which is a precursor of the positive electrode active material, according to the characteristics required for the positive electrode active material to be obtained.
  • And M are prepared according to the composition of the nickel composite hydroxide represented by at least one additional element selected from Mn, V, Mg, Al, Ti, Mo, Nb, Zr, and W).
  • the nickel composite hydroxide of the present invention is composed of secondary particles of the nickel composite hydroxide formed by aggregation of a plurality of primary particles, and the secondary particles have a volume average particle size (MV) of 8 (D90-D10) / MV, which is in the range of 0 ⁇ m to 50.0 ⁇ m, showing the relationship of volume particle size distribution, is characterized by being less than 0.5.
  • the nickel composite hydroxide having such characteristics can be suitably produced by the above-mentioned production method of the present invention.
  • the composition of this nickel composite hydroxide is represented by the general formula: Ni 1 -xy Co x M y (OH) 2 + A (where 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, 0 ⁇ A ⁇ 0.5, M preferably has a composition represented by at least one additional element selected from Mn, V, Mg, Al, Ti, Mo, Nb, Zr and W, and has a general formula: Ni 1 ⁇ xy Co x M y (OH) 2 + A (where 0 ⁇ x ⁇ 0.22, 0 ⁇ y ⁇ 0.15, x + y ⁇ 0.3, 0 ⁇ A ⁇ 0.5, M is Mn, It is more preferable to have a composition represented by at least one additive element selected from V, Mg, Al, Ti, Mo, Nb, Zr and W).
  • the volume average particle size (MV) is preferably in the range of 18.0 ⁇ m to 50.0 ⁇ m.
  • the secondary particles preferably have a volume average particle size (MV) in the range of 8.0 ⁇ m to 20.0 ⁇ m, and a tap density of 1.9 g / cm 3 or more.
  • MV volume average particle size
  • the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention comprises the nickel composite hydroxide of the present invention or the nickel composite hydroxide of the present invention in an oxidizing atmosphere at a temperature of 300.degree. C. to 1000.degree.
  • a mixing step of mixing a nickel composite oxide obtained by roasting with a lithium compound to form a lithium mixture and a baking step of baking the lithium mixture at a temperature of 650 ° C. to 1100 ° C. in an oxidizing atmosphere.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention comprises secondary particles of a nickel composite oxide formed by aggregation of a plurality of primary particles, and the secondary particles have a volume average particle diameter (MV ) Is in the range of 8.0 ⁇ m to 50.0 ⁇ m, and (D90 ⁇ D10) / MV showing a relationship of volume particle size distribution is less than 0.5.
  • MV volume average particle diameter
  • the volume average particle size (MV) of the secondary particles is in the range of 8.0 ⁇ m to 20.0 ⁇ m, and the relationship of volume particle size distribution is shown (D90-D10) It is preferable that / MV is less than 0.5 and the tap density is 2.2 g / cm 3 or more.
  • the positive electrode active material of such a characteristic can be suitably manufactured by the manufacturing method of this invention mentioned above.
  • the standard deviation of the average particle diameter of the primary particle which comprises the said secondary particle is 10% or less, and when this positive electrode active material is used for the positive electrode of a 2032 type coin battery, the Coulomb efficiency of the battery Is preferably 90% or more.
  • the present invention provides a non-aqueous electrolyte secondary battery having a positive electrode composed of the above positive electrode active material for a non-aqueous electrolyte secondary battery.
  • the present invention it is possible to obtain a nickel composite hydroxide having a uniform particle size and a high packing density as a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery without inhibiting the productivity.
  • the nickel composite hydroxide of the present invention when used as a positive electrode material of a battery, the positive electrode active material which can increase the capacity of the battery and improve the coulombic efficiency is easily achieved by high productivity. It is possible to obtain Therefore, it can be said that the industrial value of the present invention is extremely high.
  • FIG. 1 is a SEM photograph (1000 ⁇ magnification) of the nickel composite hydroxide obtained in Example 1.
  • FIG. 2 is a SEM photograph (1000 ⁇ magnification) of a nickel composite hydroxide obtained in Comparative Example 1.
  • FIG. 3 is a SEM photograph (observation magnification of 1000 times) of the nickel composite hydroxide obtained in Example 9.
  • FIG. 4 is a SEM photograph (1000 ⁇ magnification) of a nickel composite hydroxide obtained in Comparative Example 3.
  • the present invention provides (1) a nickel composite hydroxide for a non-aqueous electrolyte secondary battery positive electrode active material and a method for producing the same, (2) a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same, (3) the non-aqueous system
  • the present invention relates to a non-aqueous electrolyte secondary battery using a positive electrode active material for an electrolyte secondary battery as a positive electrode.
  • the inventions (1) to (3) will be described in detail below, but first, the nickel composite hydroxide and the method for producing the same, which are the most significant feature of the present invention, will be described.
  • a reaction vessel is produced while stirring an aqueous solution containing at least a nickel salt and a neutralizing agent and a complexing agent. And a method for producing a nickel composite hydroxide by a crystallization reaction.
  • the aqueous solution containing at least the nickel salt and the neutralizing agent and the complexing agent are supplied to fill the reaction vessel, Ratio of volume average particle size (MV) of secondary particles of nickel composite hydroxide formed in the reaction vessel to volume average particle size (MV) of secondary particles of nickel composite hydroxide finally obtained And maintaining the volume of the slurry obtained in the primary crystallization step of obtaining a nickel composite hydroxide slurry and the primary crystallization step while controlling so as to be 0.2 to 0.6, and And continuing the crystallization reaction until the volume average particle size (MV) of the secondary particles of the nickel composite hydroxide becomes 8.0 ⁇ m to 50.0 ⁇ m while continuously removing only the liquid component of the slurry. And a secondary crystallization step. Each step will be described in detail below.
  • the volume average particle size (MV) of the secondary particles of the nickel composite hydroxide formed in the slurry is set to a target volume average particle size (MV), that is, The ratio of the secondary particles of the nickel composite hydroxide finally obtained in the secondary crystallization step to be described later to the volume average particle diameter (MV) (hereinafter referred to as “volume average particle diameter ratio”) It is necessary to control so as to be 0.6, preferably 0.25 to 0.6, more preferably 0.3 to 0.6.
  • the volume average particle diameter (MV) is an average particle diameter weighted by particle volume, and in the aggregation of particles, the sum of the diameter of individual particles multiplied by the volume of the particles divided by the total volume of the particles It is
  • the volume average particle size (MV) can be measured, for example, by a laser diffraction scattering method using a laser diffraction particle size distribution analyzer.
  • the initial stage The volume average particle diameter (MV) of the secondary particles produced is controlled to be in the range of 1.6 ⁇ m to 20 ⁇ m, preferably 2 ⁇ m to 18 ⁇ m, and more preferably 2.5 ⁇ m to 15 ⁇ m.
  • the upper limit of the volume average particle size (MV) of secondary particles generated in the primary crystallization step is about 25 ⁇ m.
  • втори ⁇ ество can be grown without generating fine particles in the secondary crystallization step, and a nickel composite hydroxide having a good particle size distribution, that is, a sharp particle size distribution and uniform particle size can be obtained. It becomes possible.
  • the volume average particle size ratio of secondary particles generated in the primary crystallization step is less than 0.2, secondary particles generated when the volume average particle size (MV) of the secondary particles to be targeted is 20.0 ⁇ m.
  • a slurry concentration is 1 mol / L to 2 mol / L in terms of the number of moles of hydroxide to be produced.
  • the slurry concentration is less than 1 mol / L, the number of generated particles per volume is reduced and the growth reaction site is reduced, so that fine particles are easily generated.
  • it exceeds 2 mol / L uniform stirring may become difficult due to the increase in viscosity.
  • the volume average particle size ratio exceeds 0.6, the number of particles generated per volume in the reaction vessel decreases, and the growth reaction site decreases, so in the primary crystallization step and the secondary crystallization step During the growth of particles, fine particles are generated, making it difficult to make the particle size uniform. Moreover, since the raw material supplied by a secondary crystallization process decreases, productivity falls.
  • the pH in the reaction is lowered, specifically, based on a liquid temperature of 25 ° C., that is, when the liquid temperature is 25 ° C., the pH is in the range of 10 to 13, preferably 10.5 to 12.5. Means to control to become Thereby, particles having a large particle size can be obtained while suppressing nucleation.
  • the volume average particle diameter ratio is in the above range, even particles having a wide particle size distribution do not cause a problem.
  • the secondary crystallization step since the number of particles is constant and the growth reaction field does not fluctuate, the supplied raw material is consumed for particle growth, and the difference in particle diameter between particles is reduced.
  • volume average particle diameter ratio is 0.5
  • secondary particles A particle diameter: a
  • target volume average particle diameter in the secondary crystallization step is considered.
  • the particle size of the secondary particles A at the end of the primary crystallization step is 9 ⁇ m, mixed in the primary crystallization step.
  • the particle size of the secondary particles C having a small particle size is 5.9 ⁇ m. Therefore, the secondary particles B have a particle size of 30 ⁇ m and the secondary particles D have a particle size of 29.1 ⁇ m at the end of the secondary crystallization step.
  • the particle size of the secondary particles A at the end of the primary crystallization step is 5 ⁇ m
  • the particle size of the secondary particles C Of the secondary particles B at the end of the secondary crystallization step is 10 ⁇ m
  • the particle diameter of the secondary particles D is 9.7 ⁇ m.
  • MV volume average particle diameter
  • the primary crystallization step is terminated when the reaction vessel becomes full by the supply of the aqueous solution containing at least the nickel salt, and the neutralizing agent and the complexing agent. That is, in the primary crystallization step, the volume average particle size (MV) of the generated secondary particles is now 0.2 to 0.6 of the volume average particle size (MV) of the target secondary particles. It is characterized in that it controls the reaction to reach.
  • the production method of the present invention is suitably applied to the production of a nickel composite hydroxide having a low productivity and easy mixing of fine particles, and having a relatively large volume average particle size (MV) of secondary particles. be able to.
  • the crystallization conditions are maintained. Specifically, the pH is controlled so as to maintain the range of preferably 10 to 13, more preferably 10.5 to 12.5, at a liquid temperature of 25 ° C. On the other hand, the temperature of the reaction aqueous solution is adjusted to be in the range of 40 ° C. to 70 ° C. As a result, even in the secondary crystallization step, it is possible to grow secondary particles having a large particle diameter while suppressing nucleation.
  • volume average particle size (MV) When the volume average particle size (MV) is less than 8.0 ⁇ m, the number of particles is too large to make uniform stirring difficult, so it is difficult to make the reaction uniform, and fine particles are generated. Moreover, the fillability of the positive electrode active material obtained by using a nickel composite hydroxide as a precursor can not be made sufficient. On the other hand, when the volume average particle size (MV) exceeds 50.0 ⁇ m, fine particles are generated in the process of growing to the target particle size, and therefore the uniformity of particle size can not be obtained. Moreover, when manufacturing an electrode using the positive electrode active material obtained by using a nickel composite hydroxide as a precursor, clogging of the filter may occur during filtration of the positive electrode material slurry, or streaking may easily occur during application. Not desirable.
  • the volume average particle diameter (MV) is more preferably 18.0 ⁇ m to 50.0 ⁇ m, and still more preferably 18.0 ⁇ m to 40.0 ⁇ m, in order to obtain a higher filling property.
  • the volume average particle size (MV) of the secondary particles is preferably in the range of 8.0 ⁇ m to 20.0 ⁇ m.
  • a common solid-liquid separation method such as cross flow filtration device, dead end filtration device, and sedimentation separation can be used. Whichever method is used, it is necessary to sufficiently reduce the particles contained in the filtrate.
  • the productivity decreases, but also the number of particles in the system gradually decreases, and the reaction field of the particle growth decreases. Eventually, nucleation will occur and the number of particles in the system will increase significantly.
  • the amount of material used for the growth per secondary particle of the nickel composite hydroxide decreases, so the growth rate of the secondary particles decreases, resulting in a very high slurry.
  • particles generated by nucleation in the secondary crystallization step have a smaller particle size than particles existing from the beginning of the secondary crystallization step because the growth time is short. For this reason, particle size distribution may deteriorate.
  • a cross flow filtration device As a method of removing the above-mentioned liquid component, it is preferable to use a cross flow filtration device.
  • the cross flow filtration device since the flow of the slurry and the filtrate is in the vertical direction and the particles clogged with the filter are flowed by the slurry, clogging of the filter does not easily occur, and concentration can be performed continuously and stably.
  • a ceramic filter As this filter, it is preferable to use a ceramic filter as this filter.
  • the ceramic filter is higher in pressure resistance and chemical resistance as compared with a polymer filter and the like, and is capable of easily performing an increase in processing capacity by high-pressure operation and pickling at the time of clogging.
  • the material of the ceramic filter is not particularly limited.
  • ⁇ -alumina ( ⁇ -Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), etc. can be used.
  • the pore size of the ceramic filter is preferably 0.01 ⁇ m to 0.5 ⁇ m.
  • aqueous solution containing at least a nickel salt As a raw material aqueous solution, an aqueous solution containing at least a nickel salt is used.
  • nickel salt nickel sulfate, nickel nitrate, nickel chloride and the like can be used, and from the viewpoint of cost, treatment of impurities and waste liquid, nickel sulfate is preferably used.
  • sulfates, nitrates and chlorides of the metal can be used, and similarly, sulfates of metals such as cobalt sulfate are preferably used.
  • the total salt concentration of the raw material aqueous solution is preferably 1.0 mol / L to 2.2 mol / L, and more preferably 1.5 mol / L to 2.0 mol / L.
  • the salt concentration of the raw material aqueous solution is less than 1.0 mol / L, the salt concentration is too low, and the crystals of the nickel composite hydroxide may not grow sufficiently.
  • the slurry concentration is reduced in the primary crystallization step, and high productivity can not be obtained. In order to improve productivity, it is more preferable to make salt concentration of raw material aqueous solution into 1.5 mol / L or more.
  • the complexing agent is not particularly limited as long as it is an ammonium ion supplier, as long as it can form a nickel ammine complex in the reaction aqueous solution.
  • ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride and the like can be mentioned.
  • ammonium ion donors any one that forms the complex can be used, and examples thereof include ethylenediaminetetraacetic acid, nitrite triacetic acid, uracildiacetic acid and glycine.
  • ammonia water is preferably used from the viewpoint of ease of handling and the like.
  • the addition amount of the complexing agent may be an amount sufficient to form a complex by binding to a metal ion forming a complex such as nickel ion in the reaction aqueous solution.
  • the salt concentration of the raw material aqueous solution is 1.
  • the concentration in the reaction aqueous solution is preferably 5 g / L to 20 g / L, and more preferably 8 g / L to 15 g / L.
  • the concentration in the reaction aqueous solution is less than 5 g / L, the solubility of the metal ion forming the complex is low, so nucleation is likely to occur, and the volume average particle diameter ratio of secondary particles in the primary crystallization step is less than 0.2. In some cases, fine particles are generated in the secondary crystallization step to deteriorate the particle size distribution.
  • the pH in the primary crystallization step and the secondary crystallization step is preferably controlled in the range of 10 to 13 on the basis of a liquid temperature of 25 ° C., and controlled in the range of 10.5 to 12.5 on the basis of the liquid temperature of 25 ° C. It is more preferable to do. If the pH is less than 10, nucleation is suppressed, and thus particles having a large particle size can be easily obtained, but nickel will remain in the liquid component of the slurry after crystallization. In addition, when the pH exceeds 13, the crystallization rate of the hydroxide is increased, the number of fine particles is increased, and the particle size distribution may be deteriorated.
  • the pH in the primary crystallization step it is preferable to control the pH to a lower side in the range of 10 to 12. This makes it easy to increase the particle size, and particles having a volume average particle size ratio of 0.2 or more can be obtained even when obtaining a hydroxide having a large particle size.
  • the pH can be controlled by adding an alkaline solution that is a neutralizing agent.
  • An alkaline solution is not specifically limited, For example, common alkali metal hydroxide aqueous solutions, such as sodium hydroxide and potassium hydroxide, can be used.
  • the alkali metal hydroxide can be directly added to the mixed aqueous solution, but is preferably added as an aqueous solution in view of the ease of pH control.
  • the concentration of the alkali metal hydroxide aqueous solution is preferably 12.5% by mass to 30% by mass, and more preferably about 20% by mass to 25% by mass.
  • the concentration of the aqueous alkali metal hydroxide solution is low, the concentration of the slurry in the primary crystallization step may be lowered to deteriorate the productivity. Therefore, it is preferable to increase the concentration, specifically, an alkali metal hydroxide. It is preferable to make the density
  • the method of adding the alkaline solution is not particularly limited, either, but adding it so that the pH is in the range of 10 to 13 with a pump whose flow rate can be controlled, such as a metering pump, while sufficiently agitating the reaction aqueous solution. Is preferred.
  • the concentration of the nickel ammine complex in the reaction aqueous solution is preferably controlled in the range of 10 mg / L to 1500 mg / L at least in the secondary crystallization step, and more preferably controlled in the range of 200 mg / L to 1500 mg / L. Thereby, it is possible to suppress the nucleation during the crystallization to improve the particle size distribution, and to reduce the nickel contained in the liquid component to be removed to a level at which the cost and the composition are not affected.
  • the nickel salt added in the secondary crystallization step will be crystallized as a hydroxide without passing through a complex, so nucleation can not be suppressed and fine core particles are formed. And the particle size distribution may be broad.
  • it exceeds 1500 mg / L the amount of nickel contained in the liquid component to be removed will increase, so the nickel yield will deteriorate, and not only the raw material cost will increase, but also waste water treatment in the post process. The load also increases.
  • the nickel composite hydroxide contains a metal other than nickel, the difference in the composition ratio between nickel and other metals becomes large, which adversely affects the battery characteristics.
  • the primary crystallization step aims to control the volume average particle size ratio to 0.2 to 0.6, the nickel ammine complex concentration is 10 mg / L to 1500 mg / L. It is also possible to go outside the range of This is because if the average particle size is controlled, the influence of fine particle generation is small as described above, and even if the amount of uncrystallized nickel in the reaction aqueous solution increases, crystallization occurs in the secondary crystallization step. It is because it
  • reaction temperature The temperature of the reaction aqueous solution in the primary crystallization step and the secondary crystallization step is preferably maintained at 40 ° C. to 70 ° C., respectively.
  • the particle diameter of the nickel composite hydroxide can be grown to a target range. If the temperature is lower than 40 ° C., the solubility of the metal salt in the mixed aqueous solution is low and the salt concentration is low, so that in the secondary crystallization step, a large amount of nucleation is generated and fine particles are increased, which may deteriorate the particle size distribution. Furthermore, the possibility that the volume average particle size ratio is out of the range of 0.2 to 0.6 is also increased. When the temperature of the mixed aqueous solution exceeds 70 ° C., the volatilization of ammonia is large, and the concentration of the nickel ammine complex is not stable.
  • the nickel composite hydroxide is a substantially spherical secondary particle formed by aggregation of a plurality of primary particles, and the secondary particle has a volume average particle size (MV) of 8.0 ⁇ m to 50.0 ⁇ m. It is characterized in that (D90 ⁇ D10) / MV showing a relationship of volume particle size distribution is less than 0.5.
  • substantially spherical means that it has a shape that includes, in addition to a sphere, an elliptical shape, a massive shape, etc. in which the ratio of the smallest diameter to the largest diameter (minimum diameter / maximum diameter) on the appearance is 0.6 or more.
  • D90 and D10 are particle sizes at which the cumulative distribution becomes 90% and 10%, respectively.
  • D90 and D10 can be measured by a laser diffraction scattering method using a laser diffraction type particle size distribution analyzer, similarly to the volume average particle diameter (MV).
  • the volume average particle size (MV) of the secondary particles is required to be 8.0 ⁇ m to 50.0 ⁇ m, preferably 9.0 ⁇ m to 50.0 ⁇ m. By making the particle size of the secondary particles large, the packing properties of the lithium nickel composite oxide obtained using the nickel composite hydroxide as a precursor can be made high. If the volume average particle size (MV) is smaller than 8.0 ⁇ m, the voids between the particles will be increased, and the packing properties of the lithium nickel composite oxide will be lowered.
  • the obtained lithium nickel composite oxide is likely to cause clogging of the filter during filtration of the positive electrode material slurry in the production process of the positive electrode, and streaking occurs when the slurry is applied. It will be easier.
  • the volume average particle size (MV) is more preferably 18.0 ⁇ m to 50.0 ⁇ m, further preferably 18.0 ⁇ m to 45.0 ⁇ m, and 20. It is particularly preferable to set it to 0 ⁇ m to 40.0 ⁇ m.
  • the volume average particle size (MV) of the secondary particles is more preferably 8.0 ⁇ m to 20.0 ⁇ m, and more than 8.0 ⁇ m to 20 ⁇ m or less More preferably, it is particularly preferably 8.5 ⁇ m to 15.0 ⁇ m.
  • the tap density of the secondary particles needs to be 1.9 g / cm 3 or more, preferably 1.9 g / cm 3 to 2.5 g / cm 3 .
  • volume particle size distribution It is obtained by setting the relationship of volume particle size distribution to (D90-D10) / MV to less than 0.5, preferably 0.3 or more and less than 0.5, more preferably 0.35 to 0.48. Fine particles contained in the lithium-nickel composite oxide can be reduced, and deterioration of battery characteristics such as thermal stability and cycle characteristics due to selective deterioration of the fine particles can be suppressed.
  • (D90-D10) / MV is 0.5 or more, not only battery characteristics deteriorate but also coarse particles increase, so filter clogging and streaking at the time of slurry application tend to occur, and non-aqueous electrolyte secondary A positive electrode active material suitable for a battery can not be obtained.
  • the nickel composite hydroxide has a general formula: Ni 1 -xy Co x M y (OH) 2 + A (where 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, 0 ⁇ A ⁇ 0.5) M preferably has a composition represented by at least one additional element selected from Mn, V, Mg, Al, Ti, Mo, Nb, Zr and W). With this composition, excellent battery characteristics can be obtained when the positive electrode active material for a non-aqueous electrolyte secondary battery obtained using this nickel composite hydroxide as a precursor is used as a positive electrode material.
  • the value of x indicating the atomic ratio of cobalt (Co) is preferably 0.35 or less, more preferably 0.22 or less.
  • the value of x exceeds 0.35, the cycle characteristics of the positive electrode active material can not be improved.
  • the value of y indicating the atomic ratio of the additive element M is preferably 0.35 or less, and more preferably 0.15 or less.
  • the additive element M can improve the durability and output characteristics of the battery in a small amount.
  • the value of y exceeds 0.35, the metal element contributing to the Redox reaction of the positive electrode active material decreases, and the battery capacity decreases.
  • the value of x + y indicating the total addition amount (atomic ratio) of Co and the additive element M is preferably less than 0.3, and more preferably 0.2 or less.
  • the addition amount (atomic ratio) of Co and the additional element M corresponds with the composition ratio of the raw material aqueous solution used in the primary crystallization step and the secondary crystallization step of the nickel composite hydroxide. Therefore, in order to obtain the nickel composite hydroxide having the composition ratio represented by the above general formula, the raw material aqueous solution prepared to have the composition ratio of the above general formula may be supplied and coprecipitated. As such a method, either the supply by the mixed aqueous solution which mixed the metal salt, or either individual supply of each metal element aqueous solution may be sufficient.
  • the material of the additive element M (at least one element selected from Mn, V, Mg, Al, Ti, Mo, Nb, Zr and W) is, for example, titanium sulfate, ammonium peroxotitanate, titanium potassium oxalate Vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, zirconium nitrate, niobium oxalate, ammonium molybdate, sodium tungstate, sodium tungstate and the like can be used.
  • the additional element M is appropriately selected depending on the application of the non-aqueous electrolyte secondary battery and the characteristics required accordingly.
  • Such an additional element M is preferably coated on the surface of the nickel composite hydroxide obtained by crystallization.
  • the composite hydroxide particles are slurried with an aqueous solution containing an additional element M, and an aqueous solution containing one or more of the above-mentioned additional elements is added while being controlled to have a predetermined pH, and crystallization reaction is performed. If the additive element is precipitated on the surface of the composite hydroxide particles, the surface can be uniformly coated with the additive element.
  • the lithium compound is not particularly limited, and for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is preferable in that it is easily available.
  • lithium hydroxide or lithium carbonate is more preferably used in consideration of ease of handling and stability of quality.
  • the nickel composite hydroxide and the lithium compound are the number of atoms of metals other than lithium in the lithium mixture, that is, the sum of the number of atoms of nickel, cobalt and the additive element (Me) and the number of atoms of lithium (Li)
  • the ratio (Li / Me) is 0.95 to 1.50, preferably 0.95 to 1.20, and when the value of x + y is less than 0.3, preferably 0.95 to 1.20, more preferably 0.1. It is mixed so as to be 98 to 1.10.
  • Li / Me mixed in this mixing step becomes Li / Me in the positive electrode active material, so that Li / Me in the lithium mixture is intended to be obtained Mixed to be the same as Li / Me in
  • general mixers can be used for mixing, and shaker mixers, Loedige mixers, Julia mixers, V blenders, etc. can be used, which are sufficiently sufficient to prevent destruction of the form of the nickel composite hydroxide. It may be mixed.
  • roasting Step Before the mixing step, it is preferable to further include a roasting step of roasting the nickel composite hydroxide at a temperature of 300 ° C. to 1000 ° C. in an oxidizing atmosphere in advance.
  • the nickel composite hydroxide can be made into a nickel composite oxide, and when the nickel composite oxide is mixed with a lithium compound, the packing properties of the lithium nickel composite oxide can be maintained. It is preferable because it can stabilize the composition ratio of lithium and the metal element in the lithium nickel composite oxide.
  • the roasting temperature is preferably 300 ° C. to 1000 ° C., and more preferably 400 ° C. to 800 ° C. If the roasting temperature is less than 300 ° C., part of the hydroxide may remain, and the composition may not be stable. On the other hand, when the temperature exceeds 1000 ° C., sintering between particles occurs to generate coarse particles, and the particle size distribution is deteriorated.
  • the firing step is a step of firing the lithium mixture obtained in the above mixing step to form a lithium-nickel composite oxide.
  • the firing step is performed at 650 ° C. to 1100 ° C. in an oxidative atmosphere, preferably at 650 ° C. to 950 ° C., and more preferably at 700 ° C. to 900 ° C.
  • the firing temperature is less than 650 ° C., the diffusion of lithium does not proceed sufficiently, excess lithium remains, the crystal structure becomes irregular, and sufficient characteristics can not be obtained when used in a battery.
  • the temperature exceeds 1100 ° C., sintering may occur violently among the particles of the complex oxide and abnormal particle growth may occur.
  • the particles after firing are coarsened to maintain a substantially spherical particle shape. It may not be possible. Since such a positive electrode active material has a reduced specific surface area, when used in a battery, there arises a problem that the resistance of the positive electrode increases and the battery capacity decreases.
  • the ratio of the total number of atoms of cobalt and additive element M to the number of atoms of all the metal elements in the nickel composite hydroxide or nickel composite oxide is less than 0.3. In some cases, it is more preferable to bake at 650 ° C. to 800 ° C.
  • the temperature is preferably raised to the above temperature by setting the temperature rising rate to 1 ° C./min to 5 ° C./min. . Furthermore, the reaction can be performed more uniformly by maintaining the temperature around the melting point of the lithium compound for about 1 hour to 10 hours.
  • MV volume average particle size
  • Such a positive electrode active material is preferably used as a positive electrode material because the particle size distribution is sharp, the packing density is high, and the capacity of the obtained non-aqueous electrolyte secondary battery can be increased and the coulombic efficiency can be improved. be able to.
  • the term “substantially spherical” means that it has a shape that includes, in addition to a sphere, an elliptical shape, a massive shape, etc. in which the ratio of the smallest diameter to the largest diameter (minimum diameter / maximum diameter) on the appearance is 0.6 or more. .
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is made of a hexagonal lithium nickel composite oxide having a layered structure, and a part of nickel (Ni) in the crystal lattice is cobalt (Co ), And expansion and contraction behavior of the crystal lattice due to insertion and desorption of lithium accompanying charge and discharge can be achieved, and cycle characteristics can be improved.
  • the volume average particle size (MV) of the secondary particles constituting the positive electrode active material is 8.0 ⁇ m to 50.0 ⁇ m, preferably more than 8.0 ⁇ m and 50.0 ⁇ m or less, more preferably 9.0 ⁇ m to 50.0 ⁇ m . If the volume average particle size (MV) is in such a range, it is possible to avoid problems such as clogging of the filter in the manufacturing process while having high packing properties.
  • the volume average particle size (MV) of the secondary particles is more preferably 18.0 ⁇ m to 50.0 ⁇ m, and is preferably 18.0 ⁇ m to 45.0 ⁇ m. More preferably, the thickness is 20.0 ⁇ m to 40.0 ⁇ m.
  • the volume average particle size (MV) of the secondary particles is more preferably 8.0 ⁇ m to 20.0 ⁇ m, and more than 8.0 ⁇ m to 20 ⁇ m or less More preferably, it is particularly preferably 8.5 ⁇ m to 15.0 ⁇ m.
  • the tap density of the secondary particles needs to be 2.2 g / cm 3 or more.
  • the volume average particle size (MV), D90 and D50 of the positive electrode active material can be measured by a laser diffraction scattering method using a laser diffraction type particle size distribution meter, as in the case of the nickel composite hydroxide. Further, the tap density can also be determined by measurement with a shaking specific gravity meter, as in the case of the nickel composite hydroxide.
  • volume particle size distribution (Volume particle size distribution)
  • the relationship of volume particle size distribution (D90 ⁇ D10) / MV is less than 0.5, preferably 0.3 or more and less than 0.5, more preferably 0.35 to 0.48.
  • the volume particle size distribution is in such a range, it is possible to reduce the particles contained in the obtained positive electrode active material, and therefore, it is possible to suppress the deterioration of the battery characteristics due to the selective deterioration of the particles.
  • composition The composition of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a general formula: Li 1 + u Ni 1-xy Co x M y O 2 (where, ⁇ 0.05 ⁇ u ⁇ 0.50, 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, and M is represented by at least one additive element selected from Mn, V, Mg, Al, Ti, Mo, Nb, Zr and W) preferable.
  • u indicating an excess amount of lithium be ⁇ 0.05 to 0.50, and more preferably ⁇ 0.05 to 0.20.
  • the excess amount u of lithium is less than ⁇ 0.05, the reaction resistance of the positive electrode in the non-aqueous electrolyte secondary battery using the obtained positive electrode active material is increased, and the output of the secondary battery is lowered.
  • the excess amount u of lithium exceeds 0.50, while the initial stage discharge capacity of the secondary battery using this positive electrode active material falls, the reaction resistance of a positive electrode will also increase.
  • the excess amount u of lithium is preferably 0.20 or less in order to suppress a decrease in battery capacity. More preferably, it is in the range of -0.02 to 0.10.
  • the composition ratio of metal elements other than lithium maintains the composition of the said nickel complex hydroxide as it is.
  • the composition of the positive electrode active material can be determined by ICP emission analysis.
  • the standard deviation of the average particle diameter of the primary particles constituting the secondary particles is preferably 10% or less, more preferably 9.0% or less, and still more preferably 8.6% or less.
  • the average particle diameter of the primary particles is the average particle diameter of the primary particles constituting a specific secondary particle, and the particle diameter of 10 or more primary particles contained in the secondary particles is measured.
  • the value is obtained by averaging the measured values.
  • the particle diameter of the primary particles can be determined by observing the cross section of the secondary particles with a scanning electron microscope and measuring the maximum diameter of the primary particles.
  • a standard deviation is a value obtained by calculating
  • the coulomb efficiency of the battery can be preferably 90% or more, more preferably 90.5% or more, and still more preferably 91.0% or more. If the coulomb efficiency is less than 90%, high electrical capacity can not be obtained.
  • the coulombic efficiency means the ratio of discharge electric capacity to charge electric capacity [discharge electric capacity / charge electric capacity ⁇ 100 (%)].
  • the coulombic efficiency can be determined by constructing a non-aqueous electrolyte secondary battery as described later using the positive electrode active material obtained by the present invention, and measuring its charge electric capacity and discharge electric capacity.
  • the nonaqueous electrolyte secondary battery of the present invention employs a positive electrode in which the above-mentioned positive electrode active material for nonaqueous electrolyte secondary battery is used as a positive electrode material.
  • the structure of the non-aqueous electrolyte secondary battery of the present invention will be described.
  • the non-aqueous electrolyte secondary battery of the present invention has substantially the same structure as a general non-aqueous electrolyte secondary battery except that the positive electrode active material of the present invention is used as a positive electrode material.
  • the secondary battery of the present invention has a structure including a case, and a positive electrode, a negative electrode, a non-aqueous electrolytic solution, and a separator housed in the case. More specifically, the positive electrode and the negative electrode are stacked via the separator to form an electrode assembly, and the obtained electrode assembly is impregnated with the non-aqueous electrolytic solution, and the positive electrode current collector of the positive electrode and the positive electrode terminal passing outside
  • the secondary battery of the present invention is formed by connecting between the negative electrode current collector of the negative electrode and the negative electrode terminal leading to the outside using a current collection lead and the like and sealing in a case. Ru.
  • the structure of the secondary battery of the present invention is not limited to the above-mentioned example, and the outer shape thereof can adopt various shapes such as a cylindrical shape and a laminated shape.
  • the positive electrode which is a feature of the secondary battery of the present invention, will be described.
  • the positive electrode is a sheet-like member, and is formed by applying and drying a positive electrode mixture paste containing the positive electrode active material of the present invention, for example, on the surface of a current collector made of aluminum foil.
  • a positive electrode is suitably processed according to the battery to be used.
  • a cutting process of forming into an appropriate size according to a target battery, and a pressure compression process using a roll press or the like are performed to increase the electrode density.
  • the positive electrode mixture paste is formed by adding a solvent to the positive electrode mixture and kneading.
  • the positive electrode mixture is formed by mixing the positive electrode active material of the present invention in powder form, a conductive material and a binder.
  • the conductive material is added to provide the electrode with appropriate conductivity.
  • the conductive material is not particularly limited, and for example, carbon black-based materials such as graphite (natural graphite, artificial graphite, expanded graphite and the like) and acetylene black and ketjen black can be used.
  • the binder plays a role of holding the positive electrode active material particles.
  • the binder used for the positive electrode mixture is not particularly limited, and examples thereof include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, styrene butadiene, cellulose resin, Polyacrylic acid or the like can be used.
  • Activated carbon or the like may be added to the positive electrode mixture, and the electric double layer capacity of the positive electrode can be increased by adding activated carbon or the like.
  • the solvent dissolves the binder and disperses the positive electrode active material, the conductive material, the activated carbon, and the like in the binder.
  • this solvent is not particularly limited, for example, an organic solvent such as N-methyl-2-pyrrolidone can be used.
  • the mixing ratio of each substance in the positive electrode mixture paste is not particularly limited.
  • the content of the positive electrode active material is 60 parts by mass to 95 parts by mass, like the positive electrode of a general non-aqueous electrolyte secondary battery
  • the content of B is 1 to 20 parts by mass
  • the content of the binder is 1 to 20 parts by mass.
  • the negative electrode is a sheet-like member formed by applying a negative electrode mixture paste onto the surface of a metal foil current collector such as copper and drying.
  • This negative electrode is formed by substantially the same method as that of the positive electrode although the components constituting the negative electrode mixture paste and the composition thereof, the material of the current collector, etc. are different. Is done.
  • the negative electrode mixture paste is obtained by adding a suitable solvent to a negative electrode mixture obtained by mixing a negative electrode active material and a binder to form a paste.
  • the negative electrode active material for example, a lithium-containing substance such as metal lithium or lithium alloy, or an occluding substance capable of occluding and desorbing lithium ions can be adopted.
  • the storage material is not particularly limited, and, for example, natural graphite, artificial graphite, an organic compound fired body such as a phenol resin, and a powdery body of a carbon material such as coke can be used.
  • a fluorine-containing resin such as PVDF can be used as a binder as in the positive electrode, and as a solvent for dispersing the negative electrode active material in the binder, Organic solvents such as N-methyl-2-pyrrolidone can be used.
  • the separator is disposed between the positive electrode and the negative electrode, and has a function of separating the positive electrode and the negative electrode and holding an electrolyte.
  • a separator is, for example, a thin film such as polyethylene or polypropylene, and a film having a large number of fine pores can be used, but it is not particularly limited as long as it has the above-mentioned function.
  • Non-aqueous electrolyte solution is one in which a lithium salt as a support salt is dissolved in an organic solvent.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate; linear carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate; and further tetrahydrofuran, 2- Ether compounds such as methyltetrahydrofuran and dimethoxyethane; sulfur compounds such as ethylmethylsulfone and butanesultone; phosphorus compounds such as triethyl phosphate and trioctyl phosphate alone or in combination of two or more , Can be used.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate
  • linear carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate
  • 2- Ether compounds such as methyltetrahydrofuran and dim
  • LiPF 6 LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used.
  • the non-aqueous electrolytic solution may contain a radical scavenger, a surfactant, a flame retardant, and the like to improve battery characteristics.
  • the non-aqueous electrolyte secondary battery of the present invention has the above configuration, and has the positive electrode using the positive electrode active material of the present invention, so high packing density and coulombic efficiency are obtained, and high capacity and charge / discharge characteristics are obtained. It will be excellent. Moreover, even in comparison with the conventional lithium nickel oxide positive electrode active material, it can be said that the thermal stability is high and the safety is also excellent.
  • the secondary battery of the present invention Since the secondary battery of the present invention has the above-mentioned properties, it is suitable as a power source for small portable electronic devices (such as notebook personal computers and mobile phone terminals) which always require high capacity.
  • the secondary battery of the present invention is also suitable for a battery as a power source for driving a motor that requires high charge and discharge characteristics. If the size of the battery becomes large, it becomes difficult to ensure safety, and expensive protective circuits are indispensable. However, the secondary battery of the present invention has excellent safety, so safety is ensured. Not only is it easy, but expensive protection circuits can be simplified and less expensive. And since size reduction and high output-ization are possible, it is suitable as a power supply for transportation apparatus which receives restrictions in mounting space.
  • the volume average particle diameter and the particle size distribution were measured using a laser diffraction particle size distribution meter (Microtrac, manufactured by Nikkiso Co., Ltd.), and the tap density was measured using a shaking specific gravity measuring device Measured by KIS-409, manufactured by Koki Co., Ltd. The appearance of the particles was observed with a scanning electron microscope (S-4700, manufactured by Hitachi High-Technologies Corporation). Composition analysis was performed using an ICP emission analyzer (ICPS-8100, manufactured by Shimadzu Corporation).
  • Wako Pure Chemical Industries, Ltd. reagent special grade samples made of Wako Pure Chemical Industries, Ltd. were used for producing the composite hydroxide, the positive electrode active material, and producing the secondary battery.
  • Example 1 900 ml of pure water and 40 ml of ammonia water (concentration: 25% by mass) are introduced into a 5 L crystallization reactor equipped with four baffles and heated to 60 ° C with a thermostat and heating jacket A caustic soda solution (concentration: 25% by mass) was added to adjust the pH in the reaction vessel to 11.0 at a liquid temperature of 25 ° C. to obtain an aqueous solution before reaction.
  • cobalt sulfate Co molar concentration: 0.31 mol / L
  • this raw material aqueous solution is supplied at 12.9 ml / min using a metering pump while stirring while maintaining the aqueous solution at 60 ° C. before the reaction, and ammonia water as a complexing agent ( Caustic soda solution (concentration: 25 mass%) as a neutralizing agent is intermittently supplied while supplying a concentration of 25 mass% at 1.5 ml / min, and the pH at a liquid temperature of 25 ° C. is 11.0. Control was performed to obtain a nickel composite hydroxide slurry.
  • the slurry was supplied by an air diaphragm pump (manufactured by Yamada Corporation, NDP-5FPT), and concentration was performed continuously while adjusting the filtration pressure.
  • concentration of nickel ammine complex in the secondary crystallization step was 790 mg / L.
  • the pumps for all the liquids were stopped to complete the crystallization reaction. Thereafter, the composite hydroxide was subjected to solid-liquid separation and washed with water, and then dried to obtain a powdery composite hydroxide.
  • the volume average particle size (MV) of the secondary particles of the composite hydroxide obtained was 25.4 ⁇ m, and (D90-D10) / MV was 0.47. These values are shown in Table 1. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.84 Co 0.16 (OH) 2 . An SEM image of the nickel composite hydroxide obtained by Example 1 is shown in FIG.
  • Example 2 In the same manner as in Example 1, except that the reaction time was extended to 80 hours (76 hours from the start of the secondary crystallization step) and the nickel ammine complex concentration was adjusted to 810 mg / L, the secondary of the composite hydroxide I got the particles.
  • the volume average particle size (MV) of secondary particles of this composite hydroxide was 35.2 ⁇ m, and (D90-D10) / MV was 0.43. These values are shown in Table 1. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.84 Co 0.16 (OH) 2 .
  • Example 3 In the same manner as in Example 1, except that the concentration of the nickel ammine complex was adjusted to 350 mg / L by controlling so that the pH at a liquid temperature of 25 ° C. in the secondary crystallization step becomes 11.6, Secondary particles of oxide were obtained.
  • the volume average particle size (MV) of the secondary particles before growth at the end of the primary crystallization step is 13.8 ⁇ m, and the volume of the secondary particles of nickel composite hydroxide after growth (after the completion of the secondary crystallization step)
  • the average particle size (MV) was 24.8 ⁇ m, and (D90-D10) / MV was 0.48. These values are shown in Table 1. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.84 Co 0.16 (OH) 2 .
  • Example 4 Secondary particles of the composite hydroxide were prepared in the same manner as in Example 1 except that the reaction temperature in the primary crystallization step and the secondary crystallization step was 40.degree. C. and the nickel ammine complex concentration was adjusted to 1380 mg / L. Obtained.
  • the volume average particle size (MV) of secondary particles before growth at the end of the primary crystallization step is 8.9 ⁇ m, and the volume average particle size (MV) of secondary particles of nickel composite hydroxide after growth is 23. It was 3 ⁇ m, and (D90-D10) / MV was 0.45. These values are shown in Table 1. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.84 Co 0.16 (OH) 2 .
  • Example 5 Example except that the pH at a liquid temperature of 25 ° C. in the primary crystallization step and the secondary crystallization step was controlled to be 10.0 and that the nickel ammine complex concentration was 3220 mg / L
  • a secondary particle of a composite hydroxide was obtained.
  • the volume average particle size (MV) of secondary particles before growth at the end of the primary crystallization step is 9.1 ⁇ m
  • the volume average particle size (MV) of secondary particles of nickel composite hydroxide after growth is 22. It was 1 ⁇ m
  • (D90-D10) / MV was 0.47.
  • Example 6 Example 1 except that in the primary crystallization step and the secondary crystallization step, the pH at a liquid temperature of 25 ° C. was controlled to be 12.8, and the concentration of the nickel ammine complex was adjusted to 12 mg / L. Similarly to the above, secondary particles of composite hydroxide were obtained.
  • the volume average particle size (MV) of the secondary particles before growth at the end of the primary crystallization step is 3.5 ⁇ m
  • the volume average particle size (MV) of secondary particles of the nickel composite hydroxide after growth is 10. It was 0 ⁇ m, and (D90-D10) / MV was 0.49. These values are shown in Table 1. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.84 Co 0.16 (OH) 2 .
  • Example 1 After crystallization was performed in the same manner as in Example 1 until the reaction tank was full, the overflowing composite hydroxide was continuously removed without concentration. The nickel ammine complex concentration in this period was adjusted to 1020 mg / L. The volume average particle size (MV) of secondary particles of composite hydroxide removed from 48 hours to 72 hours from the start of the reaction was 32.0 ⁇ m, and (D90-D10) / MV was 0.98. These values are shown in Table 1. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.84 Co 0.16 (OH) 2 . An SEM image of the nickel composite hydroxide obtained by Comparative Example 1 is shown in FIG. It can be confirmed that the particle diameter of the obtained composite hydroxide is nonuniform and the particle size distribution is wide.
  • Example 1 and Example 1 except that the pH at a liquid temperature of 25 ° C. in the primary crystallization step and the secondary crystallization step was controlled to be 13.5 and the nickel ammine complex concentration was adjusted to 2 mg / L.
  • secondary particles of composite hydroxide were obtained.
  • the volume average particle size (MV) of secondary particles before growth at the end of the primary crystallization step is 2.7 ⁇ m
  • the volume average particle size (MV) of secondary particles of nickel composite hydroxide after growth is 3. It was 4 ⁇ m
  • (D90-D10) / MV was 0.58.
  • Example 7 The nickel composite hydroxide produced in each of Examples 1 to 6 and Comparative Examples 1 and 2 is transferred to another reaction tank, mixed with water at ordinary temperature to form a slurry, and sodium aluminate is used as the mixed aqueous solution.
  • the pH value of the slurry was adjusted to 9.5 by adding aqueous solution of sulfuric acid and sulfuric acid with stirring.
  • the aluminum hydroxide coating was performed on the secondary particle surface of nickel composite hydroxide by continuing stirring for 1 hour.
  • the aqueous solution of sodium aluminate was filtered and washed with water to obtain an aluminum-coated nickel composite hydroxide (nickel-cobalt aluminum composite hydroxide).
  • the obtained nickel composite hydroxide was roasted at 700 ° C. for 6 hours in an air atmosphere.
  • the volume average particle diameter (MV), (D90-D10) / MV and the composition of the secondary particles of the obtained composite oxide are shown in Table 2. From this, when the composite hydroxide produced using the production method of the present invention is used as a precursor, the volume average particle size (MV) is 18.0 to 50.0 ⁇ m, and the particle size distribution is (D90-D10) / It can be seen that a composite oxide is obtained in which MV satisfies less than 0.5.
  • TURBULA Type T2C manufactured by Willie et Bachkofen
  • the obtained mixture was calcined at 750 ° C. for 8 hours in an oxygen stream (oxygen: 100% by volume), cooled, and then crushed to obtain a positive electrode active material.
  • the obtained positive electrode active material was confirmed by X-ray diffraction to be a single phase of a lithium nickel complex oxide of a hexagonal system.
  • the volume average particle diameter (MV), (D90-D10) / MV and the composition ratio of the secondary particles were measured by the above-mentioned predetermined method.
  • the results are shown in Table 3. From this, when the composite hydroxide or composite oxide produced using the production method of the present invention is used as a raw material, lithium nickel composite oxide having a small particle size distribution (D90-D10) / MV and a good particle size distribution It can be seen that
  • Example 9 900 ml of pure water and 40 ml of ammonia water (concentration: 25% by mass) are introduced into a 5 L crystallization reactor equipped with four baffles and heated to 60 ° C with a thermostat and heating jacket A caustic soda solution (concentration: 25% by mass) was added to adjust the pH in the reaction vessel to 11.0 at a liquid temperature of 25 ° C. to obtain an aqueous solution before reaction.
  • cobalt sulfate Co molar concentration: 0.370 mol / L
  • manganese sulfate Mn molar concentration: 0.586 mol / L
  • this raw material aqueous solution is supplied at 12.9 ml / min using a metering pump while stirring while maintaining the aqueous solution at 60 ° C. before the reaction, and ammonia water as a complexing agent ( Caustic soda solution (concentration: 25 mass%) as a neutralizing agent is intermittently supplied while supplying 25 mass% of the concentration at 3.0 ml / min, and the pH at a liquid temperature of 25 ° C. is 11.0. Control was performed to obtain a nickel composite hydroxide slurry.
  • the slurry was supplied by an air diaphragm pump (manufactured by Yamada Corporation, NDP-5FPT), and concentration was performed continuously while adjusting the filtration pressure.
  • the nickel ammine complex concentration in the crystallization step was 790 mg / L.
  • the pumps of all the liquids were stopped to complete the crystallization reaction. Thereafter, the composite hydroxide was subjected to solid-liquid separation and washed with water, and then dried to obtain a powdery composite hydroxide.
  • the volume average particle size (MV) of secondary particles of the composite hydroxide thus obtained was 9.2 ⁇ m, (D90-D10) / MV was 0.47, and the tap density was 2.04 g / cm 3 . These values are shown in Table 4. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.50 Co 0.20 Mn 0.30 (OH) 2 . The SEM photograph of the nickel compound hydroxide obtained by Example 9 is shown in FIG.
  • Example 10 In the same manner as in Example 9, except that the reaction time was extended to 20 hours (16 hours from the start of the secondary crystallization step) and the nickel ammine complex concentration was adjusted to 810 mg / L, the secondary of the composite hydroxide I got the particles.
  • the volume average particle size (MV) of the secondary particles before growth at the end of the primary crystallization process of this composite hydroxide is 5.1 ⁇ m, and the nickel composite hydroxide after growth (after the completion of the secondary crystallization process)
  • the volume average particle size (MV) of secondary particles of the present invention was 13.3 ⁇ m, and (D90-D10) / MV was 0.42. These values are shown in Table 4. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.50 Co 0.20 Mn 0.30 (OH) 2 .
  • Example 11 Secondary particles of a composite hydroxide were obtained in the same manner as in Example 9 except that the concentration of the nickel ammine complex was adjusted to 1380 mg / L.
  • the volume average particle size (MV) of the secondary particles before growth at the end of the primary crystallization step of this composite hydroxide is 3.4 ⁇ m, and the volume average particle size of the secondary particles of nickel composite hydroxide after growth (MV) was 9.3 ⁇ m and (D90-D10) / MV was 0.45. These values are shown in Table 4. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.50 Co 0.20 Mn 0.30 (OH) 2 .
  • Example 3 After crystallization was performed in the same manner as in Example 9 until the reaction tank was full, the overflowing composite hydroxide was continuously taken out without concentration. The nickel ammine complex concentration in this period was adjusted to 1020 mg / L. The volume average particle size (MV) of secondary particles of the composite hydroxide removed from 14 hours to 18 hours from the start of the reaction was 10.8 ⁇ m, and (D90-D10) / MV was 0.98. These values are shown in Table 4. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.50 Co 0.20 Mn 0.30 (OH) 2 . An SEM photograph of the nickel composite hydroxide obtained by Comparative Example 3 is shown in FIG. It can be confirmed that the particle diameter of the obtained composite hydroxide is nonuniform and the particle size distribution is wide.
  • Example 4 Secondary particles of a composite hydroxide were obtained in the same manner as in Example 9, except that the pH at a liquid temperature of 25 ° C. was controlled to be 13.5.
  • the volume average particle size (MV) of the secondary particles before growth at the end of the primary crystallization step of this composite hydroxide is 2.7 ⁇ m, and the volume average particle size of the secondary particles of nickel composite hydroxide after growth (MV) was 3.4 ⁇ m, and (D90-D10) / MV was 0.61. These values are shown in Table 4. Further, this nickel composite hydroxide was represented by the general formula: Ni 0.50 Co 0.20 Mn 0.30 (OH) 2 .
  • the obtained lithium mixture was calcined at 900 ° C. for 8 hours in the air, cooled, and then crushed to obtain a positive electrode active material.
  • the obtained positive electrode active material was confirmed to be a single phase of a hexagonal lithium nickel complex oxide represented by the general formula: Li 1.02 Ni 0.50 Co 0.20 Mn 0.30 O 2 by X-ray diffraction method It was done.
  • the volume average particle diameter (MV), (D90-D10) / MV and the composition ratio of the secondary particles were measured by the above-described predetermined method, and the following items were evaluated.
  • a 2032 type coin battery was configured, whereby the initial capacity was evaluated. Specifically, 20% by mass of acetylene black and 10% by mass of PTFE were added to 70% by mass of the positive electrode active material powder and mixed, and 150 mg was weighed to prepare a pellet, which was used as a positive electrode. In addition, lithium metal is used for the negative electrode, and an equal mixed solution (made by Toyama Pharmaceutical Co., Ltd.) of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1 M LiClO 4 as a supporting salt is used for the electrolyte. In a glove box under an Ar atmosphere with a dew point controlled to -80.degree. C., a 2032 type coin battery was produced.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the manufactured coin battery is left for about 24 hours, and after the open circuit voltage (OCV; Open Circuit Voltage) is stabilized, the current density to the positive electrode is set to 0.5 mA / cm 2 and charged to a cutoff voltage of 4.3 V to initially charge capacity The capacity when discharged to a cutoff voltage of 3.0 V after 1 hour of rest was taken as the initial discharge capacity. From these values, the coulombic efficiency [discharge capacity / charge capacity ⁇ 100 (%)] was determined.
  • OCV Open Circuit Voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】粒径が均一で充填密度が高く、電池の高容量化、クーロン効率の向上が可能な非水系電解質二次電池用正極活物質を提供する。 【解決手段】正極活物質の前駆体であるニッケル複合水酸化物を、少なくともニッケル塩を含有する水溶液と、中和剤および錯化剤とを、撹拌しながら反応容器に供給して、晶析反応によって製造するに際して、反応容器内で生成するニッケル複合水酸化物の二次粒子の体積平均粒径を、最終的に得られるニッケル複合水酸化物の二次粒子の体積平均粒径に対する比で、0.2~0.6となるように制御しつつ、ニッケル複合水酸化物スラリーを得て、その後、該スラリーの容量を一定に保持し、かつ、該スラリーの液成分のみを連続的に除去しつつ、ニッケル複合水酸化物の二次粒子の体積平均粒径が8.0μm~50.0μmとなるまで晶析反応を継続する。

Description

ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
 本発明は、非水系電解質二次電池用正極活物質の前駆体であるニッケル複合水酸化物とその製造方法、このニッケル複合水酸化物を原料とする二次電池用正極活物質とその製造方法、および、この非水系電解質二次電池用正極活物質を正極材料として用いる非水系電解質二次電池に関する。
 近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギ密度を有する小型かつ軽量な二次電池の開発が強く望まれている。このような二次電池として、リチウム、リチウム合金、金属酸化物あるいはカーボンを負極として用いるリチウムイオン二次電池がある。
 リチウムイオン二次電池の正極材料には、リチウム複合酸化物が正極活物質として使用される。リチウムコバルト複合酸化物は、合成が比較的容易であり、かつ、リチウムコバルト複合酸化物を正極材料に用いたリチウムイオン二次電池において、4V級の高い電圧が得られるため、高いエネルギ密度を有する二次電池を実用化させるための材料として期待されている。リチウムコバルト複合酸化物に関しては、二次電池において優れた初期容量特性やサイクル特性を実現させるための研究開発が進められ、すでにさまざまな成果が得られている。
 しかしながら、リチウムコバルト複合酸化物は、原料に希産で高価なコバルト化合物を用いるため、正極材料および二次電池のコストアップの原因となっている。リチウムコバルト複合酸化物を用いたリチウムイオン二次電池は、その容量あたりの単価がニッケル水素電池の約4倍であるため、適用可能な用途がかなり限定される。よって、携帯機器のさらなる軽量化および小型化を実現する観点からは、正極活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とする必要がある。
 リチウムコバルト複合酸化物に代替できる正極活物質の1つに、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物がある。リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物と同様の高い電池電圧を示すとともに、リチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示し、電解液の酸化による分解が問題になりにくいため、二次電池の高容量化を可能とする正極活物質として期待されている。このため、リチウムニッケル複合酸化物の研究開発も盛んに行われている。
 ここで、電池容量は、充填性と密接な関係があることが知られている。充填密度が高くなれば、同体積の電極内により多くの正極活物質を充填できるため、電池容量が増加する。粒子密度が同等である場合、充填密度を増加するためには、粒径を大きくすることが効果的である。しかしながら、粒径が大きすぎる粒子、たとえば、50μmを超えるような粒子の混入は、正極材料スラリーの混練後の濾過時にフィルタ目詰まりの原因となり、その塗布時にも筋引き(細長い形状の欠損部)の原因となる。
 正極活物質の充填性に関して、特開2005-302507号公報に、一次粒子が集合して形成された、球状または楕円形状を有する二次粒子により構成され、かつ、粒子径が40μm以下であって、粒子径1μm以下の粒子の割合が0.5体積%~7.0体積%である粉末からなる正極活物質が開示されている。この正極活物質は、このような構造によりその充填性を向上させることができるが、その粒度分布が広いため、正極材料として使用された場合、電極内で粒子に印加される電圧が不均一となることに起因して、充放電の繰り返しによる微粒子の選択的な劣化が生じて、クーロン効率の低下による二次電池の電池容量の低下を招く。
 したがって、高容量で、工業的に生産可能な電池に使用される正極活物質には、粒径が適度に大きく、かつ、粒度分布がシャープであることが必要である。
 リチウムニッケル複合酸化物は、その前駆体であるニッケル複合水酸化物をリチウム化合物とともに焼成することにより得られる。リチウムニッケル複合酸化物の粒径や粒度分布などの粒子性状は、基本的にはニッケル複合水酸化物の粒子性状を受け継ぐため、所望の粒径や粒度分布を有する正極活物質を得るためには、前駆体の段階で適切な粒径と粒度分布を得ておく必要がある。
 ニッケル複合水酸化物の製造方法としては、反応晶析法が一般的に用いられている。粒度分布がシャープな粒子を得るためには、バッチ操作で晶析を行う方法が有効であるが、バッチ法はオーバーフロー方式を用いた連続法よりも生産性に劣るという欠点がある。さらに、バッチ操作で大きな粒子を得るには、供給する原料の量を増加させる必要があり、結果として反応容器が大きくなるため、生産性がさらに劣ってしまう。
 生産性を改善するため、バッチ操作で晶析を行いつつ、系外に溶媒を排出することにより、反応系の容量増加を抑制する方法が検討されている。特開平8-119636号公報には、反応容器にニッケル塩水溶液、アンモニア水および水酸化アルカリ水溶液をそれぞれ一定の割合で連続的に供給し、反応系が反応容器からオーバーフローする前に、充分な撹拌が行える程度まで溶媒を除去し、この反応用供給液による反応系の容量増加と溶媒の除去による容量減少を繰返して、水酸化ニッケル粒子を生成させる方法が開示されている。しかしながら、この方法では、反応用供給液による反応系の容量増加と溶媒の除去による容量減少を繰返し行うため、反応系の溶媒の体積あたりの粒子数が変動し、粒子の成長が不安定になりやすいため、反応中に新たに発生した微粒子によって、粒度分布が悪化するという問題がある。
 また、特開平7-165428号公報には、濾過機能を備えた反応槽に、ニッケル塩水溶液、アンモニア水および水酸化アルカリ水溶液を一定の割合で同時に、かつ、連続的に供給し、反応系の容量が所定容量に達した後は、その濾過機能により反応槽の溶媒を連続的に濾過により除去して、反応系の容量をほぼ一定に保ちながら、所定の撹拌条件下で水酸化ニッケルを晶析させる方法が開示されている。この方法によれば、溶媒が連続的に濾過により除去されるため、反応系の溶媒の体積あたりの粒子数が一定となり、粒子の成長は安定する。しかしながら、その実施例によれば、溶媒の除去が開始されるまでの原料の供給量に対する、溶媒の除去開始後における原料の供給量の比が大きくなっている。この場合、晶析の初期段階で生成した粒子の粒径から、晶析の終了段階における粒径までの成長率が大きくなってしまい、反応液中に微粒子が発生するおそれがある。また、粒子数が変化せず密度が一定と仮定した場合、たとえば、2μmの粒子を12μmまで成長させるためには、体積を216倍に増加させることが必要である。したがって、12μmに成長するまで、原料を添加したスラリー濃度を撹拌可能な状態にするため、初期のスラリー濃度を低くすることが必要となる。このため、原料を供給して反応させる時間も長くなり、生産性が低くなってしまう。このように、特開平7-165428号公報に開示された方法では、粒径の大きな粒子を製造することがきわめて困難であるといえる。
 一方、特開平10-25117号公報および特表2010-536697号公報では、系内のスラリー濃度を一定に保つために、溶媒だけでなく粒子も系外に排出し、かつ、系外に排出された粒子を反応系に戻している。系外に排出された粒子を反応系に戻さなければ、反応系にある粒子数が減少するため、この状態での粒成長により、粒径を大きくすることは可能である。しかしながら、排出された粒子を反応系に戻すことにより、オーバーフローによる連続晶析操作と同様に、十分に成長していない微粒子や、逆に成長しすぎた粗粒子が混入することになるため、シャープな粒度分布を持つ粒子を得ることは困難である。
特開2005-302507号公報 特開平8-119636号公報 特開平7-165428号公報 特開平10-25117号公報 特表2010-536697号公報
 本発明の目的は、このような問題に鑑みて、粒径が均一で充填密度が高く、電池の高容量化、クーロン効率の向上が可能な非水系電解質二次電池用正極活物質を提供すること、および、このような非水系電解質二次電池用正極活物質の提供を可能とする、その前駆体であるニッケル複合水酸化物を提供することにある。
発明を解決するための手段
 本発明者らは、バッチ法によるニッケル複合水酸化物の生産性向上と粒径均一化に関して鋭意検討した結果、反応槽中において、初期に生成した粒子と液成分を濃縮しながら、最終的に得られる粒子の粒径の比を特定の範囲に制御することにより、高い生産性を維持しながらも、粒度分布に優れたニッケル複合水酸化物が得られること、このようなニッケル複合水酸化物を用いて得られた正極活物質は、粒径が均一で充填密度が高く、高いクーロン効率が得られるとの知見を得て、本発明を完成したものである。
 すなわち、本発明は、少なくともニッケル塩を含有する水溶液と、中和剤および錯化剤とを、撹拌しながら反応容器に供給して、晶析反応によってニッケル複合水酸化物を製造する方法に関する。
 特に、本発明では、晶析を2段階に分けて、一次晶析工程として、前記少なくともニッケル塩を含有する水溶液と、中和剤および錯化剤とを供給して反応容器を満たしながら、前記反応容器内で生成するニッケル複合水酸化物の二次粒子の体積平均粒径(MV)を、最終的に得られるニッケル複合水酸化物の二次粒子の体積平均粒径(MV)に対する比で、0.2~0.6となるように制御しつつ、ニッケル複合水酸化物スラリーを得るとともに、二次晶析工程として、前記一次晶析工程で得られた前記スラリーの容量を一定に保持し、かつ、該スラリーの液成分のみを連続的に除去しつつ、前記ニッケル複合水酸化物の二次粒子の体積平均粒径(MV)が8.0μm~50.0μmとなるまで前記晶析反応を継続することを特徴とする。
 前記一次晶折工程において、前記スラリーのpHを液温25℃基準で10~13の範囲、好ましくは10.5~12.5の範囲となるように制御する。
 また、前記二次晶析工程において、前記スラリー中のニッケルアンミン錯体の濃度を10mg/L~1500mg/Lの範囲となるように制御することが好ましい。
 さらに、前記二次晶析工程において、クロスフロー式濾過装置を用いて、前記スラリーの容量を一定に保持することが好ましい。なお、このクロスフロー式濾過装置の濾材としては、セラミックフィルタを用いることが好ましい。
 なお、前記ニッケル塩を含む水溶液の各成分の組成は、得られる正極活物質に要求される特性に応じて、この正極活物質の前駆体であるニッケル複合水酸化物と実質的に同様に決定されるものであるが、一般式:Ni1-x-yCoxy(OH)2+A(ただし、0≦x≦0.35、0≦y≦0.35、0≦A≦0.5、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表されるニッケル複合水酸化物の組成に応じて調製されることが好ましく、一般式:Ni1-x-yCoxy(OH)2+A(ただし、0≦x≦0.22、0≦y≦0.15、x+y<0.3、0≦A≦0.5、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表されるニッケル複合水酸化物の組成に応じて調製されることがさらに好ましい。
 また、本発明のニッケル複合水酸化物は、複数の一次粒子が凝集して形成されたニッケル複合水酸化物の二次粒子からなり、該二次粒子は、体積平均粒径(MV)が8.0μm~50.0μmの範囲にあり、体積粒度分布の関係を示す(D90-D10)/MVが0.5未満であることを特徴とする。このような特性のニッケル複合水酸化物は、上記した本発明の製造方法により好適に製造可能である。
 このニッケル複合水酸化物の組成は、一般式:Ni1-x-yCoxy(OH)2+A(ただし、0≦x≦0.35、0≦y≦0.35、0≦A≦0.5、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表される組成を有することが好ましく、一般式:Ni1-x-yCoxy(OH)2+A(ただし、0≦x≦0.22、0≦y≦0.15、x+y<0.3、0≦A≦0.5、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表される組成を有することがさらに好ましい。
 なお、前記体積平均粒径(MV)は、18.0μm~50.0μmの範囲にあることが好ましい。
 また、前記二次粒子は、体積平均粒径(MV)が8.0μm~20.0μmの範囲にあり、かつ、タップ密度が1.9g/cm3以上であることが好ましい。
 本発明の非水系電解質二次電池用正極活物質の製造方法は、本発明のニッケル複合水酸化物、もしくは、本発明のニッケル複合水酸化物を酸化雰囲気中、300℃~1000℃の温度で焙焼することにより得られたニッケル複合酸化物を、リチウム化合物と混合してリチウム混合物を形成する混合工程と、このリチウム混合物を酸化性雰囲気中、650℃~1100℃の温度で焼成する焼成工程とを備えることを特徴とする。
 また、本発明の非水系電解質二次電池用正極活物質は、複数の一次粒子が凝集して形成されたニッケル複合酸化物の二次粒子からなり、該二次粒子の体積平均粒径(MV)が8.0μm~50.0μmの範囲にあり、体積粒度分布の関係を示す(D90-D10)/MVが0.5未満であることを特徴とする。特に、高い出力特性を得ようとする場合は、該二次粒子の体積平均粒径(MV)が8.0μm~20.0μmの範囲にあり、体積粒度分布の関係を示す(D90-D10)/MVが0.5未満であって、かつ、タップ密度が2.2g/cm3以上であることが好ましい。このような特性の正極活物質は、上述した本発明の製造方法により好適に製造可能である。
 また、前記二次粒子を構成する一次粒子の平均粒径の標準偏差が10%以下であることが好ましく、該正極活物質を2032型のコイン電池の正極に用いた場合、その電池のクーロン効率が90%以上であることが好ましい。
 この正極活物質を構成するリチウムニッケル複合酸化物の組成は、一般式:Li1+uNi1-x-yCoxy2(ただし、-0.05≦u≦0.50、0≦x≦0.35、0≦y≦0.35、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表される組成を有することが好ましく、一般式:Li1+uNi1-x-yCoxy2(ただし、-0.05≦u≦0.20、0≦x≦0.22、0≦y≦0.15、x+y<0.3、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表される組成を有することがより好ましい。
 さらに、本発明は、上記非水系電解質二次電池用正極活物質から構成される正極を有する非水系電解質二次電池を提供するものである。
 本発明により、生産性を阻害することなく、非水系電解質二次電池用正極活物質の前駆体として、粒径が均一で、充填密度が高いニッケル複合水酸化物を得ることが可能となる。本発明のニッケル複合水酸化物を前駆体とすることにより、電池の正極材料として用いた場合に、電池の高容量化、クーロン効率の向上を可能とする正極活物質を、高い生産性により容易に得ることが可能となる。よって、本発明の工業的価値はきわめて高いものといえる。
図1は、実施例1において得られた、ニッケル複合水酸化物のSEM写真(観察倍率1000倍)である。 図2は、比較例1において得られた、ニッケル複合水酸化物のSEM写真(観察倍率1000倍)である。 図3は、実施例9において得られた、ニッケル複合水酸化物のSEM写真(観察倍率1000倍)である。 図4は、比較例3において得られた、ニッケル複合水酸化物のSEM写真(観察倍率1000倍)である。
 本発明は、(1)非水系電解質二次電池正極活物質用ニッケル複合水酸化物およびその製造方法、(2)非水系電解質二次電池用正極活物質およびその製造方法、(3)該非水系電解質二次電池用正極活物質を正極に用いた非水系電解質二次電池に関するものである。以下、上記(1)~(3)の発明のそれぞれについて詳細に説明するが、最初に、本発明の最大の特徴である、ニッケル複合水酸化物およびその製造方法について説明する。
 (1-1)ニッケル複合水酸化物の製造方法
 本発明のニッケル複合水酸化物の製造方法は、少なくともニッケル塩を含有する水溶液と、中和剤および錯化剤とを、撹拌しながら反応容器に供給して、晶析反応によりニッケル複合水酸化物を製造する方法に関する。
 本発明のニッケル複合水酸化物の製造方法は、晶析を2段階に分けて、前記少なくともニッケル塩を含有する水溶液と、中和剤および錯化剤とを供給して反応容器を満たしながら、前記反応容器内で生成するニッケル複合水酸化物の二次粒子の体積平均粒径(MV)を、最終的に得られるニッケル複合水酸化物の二次粒子の体積平均粒径(MV)に対する比で、0.2~0.6となるように制御しつつ、ニッケル複合水酸化物スラリーを得る一次晶折工程と、一次晶析工程で得られた前記スラリーの容量を一定に保持し、かつ、該スラリーの液成分のみを連続的に除去しつつ、前記ニッケル複合水酸化物の二次粒子の体積平均粒径(MV)が8.0μm~50.0μmとなるまで前記晶析反応を継続する二次晶析工程とを備える。以下、各工程について詳細に説明する。
 a)一次晶析工程
 一次晶析工程では、スラリー中に生成されたニッケル複合水酸化物の二次粒子の体積平均粒径(MV)を、目標とする体積平均粒径(MV)、すなわち、後述する二次晶析工程において最終的に得られるニッケル複合水酸化物の二次粒子の体積平均粒径(MV)に対する比(以下、「体積平均粒径比」という)で、0.2~0.6、好ましくは0.25~0.6、より好ましくは0.3~0.6となるように制御することが必要である。なお、体積平均粒径(MV)とは、粒子体積で重み付けした平均粒径であり、粒子の集合において、個々の粒子の直径にその粒子の体積を乗じたものの総和を粒子の総体積で割ったものである。体積平均粒径(MV)は、たとえば、レーザ回折式粒度分布計を用いたレーザ回折散乱法によって、測定することが可能である。
 より具体的には、二次晶析工程で最終的に得られるニッケル複合水酸化物の二次粒子の体積平均粒径(MV)を8.0μm~50.0μmの範囲に規制する場合、初期に生成する二次粒子の体積平均粒径(MV)が1.6μm~20μm、好ましくは2μm~18μm、より好ましくは2.5μm~15μmの範囲となるように制御する。なお、一次晶析工程において生成する二次粒子の体積平均粒径(MV)の上限は、25μm程度である。
 これにより、二次晶析工程において微粒子を発生させることなく二次粒子を成長させることができ、良好な粒度分布、すなわち、粒度分布がシャープで、粒径が均一なニッケル複合水酸化物を得ることが可能となる。一次晶析工程で生成した二次粒子の体積平均粒径比が0.2未満になると、目標とする二次粒子の体積平均粒径(MV)が20.0μmの場合、生成した二次粒子の体積平均粒径(MV)が4.0μm程度にすぎず、二次粒子を目標とする粒径に成長させるために、二次晶析工程において反応容器内のニッケル水酸化物スラリーのスラリー濃度(液成分量に対する粒子数)がきわめて高い状態となるまで濃縮しなければならず、粘度上昇により均一な撹拌が困難となり、均一な粒径の粒子が生成されない。また、攪拌するためには動力の増加が必要となり、工業的な生産において不利である。加えて、一次晶析工程で生成した二次粒子の粒径から目標とする粒径の成長率が大きいため、成長途中での核生成の機会が多くなり、微粒子が発生する。
 一方、高い生産性を達成するためには、一次晶析工程で生成される溶媒の体積あたりの粒子数を多くする、すなわち、スラリー濃度を高くすることが好ましい。このようなスラリー濃度としては、生成する水酸化物のモル数で1mol/L~2mol/Lである。スラリー濃度が1mol/L未満では、体積当たりの生成粒子数が減少して成長反応場が少なくなることから、微粒子が発生しやすくなる。一方、2mol/Lを超えると、粘度上昇により均一な撹拌が困難となる場合がある。このような範囲にスラリー濃度を制御するためには、反応容器内に予め入れておくpHが調整された溶媒を、撹拌が可能な範囲で少なくしておくことが好ましい。
 一方、体積平均粒径比が0.6を超えると、反応容器内での体積当たりの生成粒子数が少なくなり、成長反応場が少なくなることから、一次晶析工程および二次晶析工程において、粒子成長中に微粒子が発生し、粒径の均一化が困難となる。また、二次晶析工程で供給する原料が少なくなるため生産性が低下する。
 体積平均粒径比が0.2~0.6である粒径の二次粒子を生成させるためには、晶析条件により粒径制御を行う必要がある。たとえば、反応中のpHを下げる、具体的には、液温25℃基準で、すなわち、液温を25℃としたときのpHを10~13、好ましくは10.5~12.5の範囲となるように制御するといった手段が挙げられる。これにより、核生成を抑制しつつ、粒径が大きな粒子を得ることができる。
 なお、一次晶析工程の段階では、体積平均粒径比を上記範囲とした場合には粒度分布が広い粒子であっても問題とはならない。二次晶析工程において、粒子数が一定で成長反応場が変動しないため、供給される原料が粒子成長に消費され、粒子間の粒径差が小さくなるからである。
 たとえば、体積平均粒径比を0.5とした場合において、一次工程終了時の二次粒子A(粒径:a)が、二次晶析工程において、目標とする体積平均粒径を有する二次粒子B(粒径:b)まで成長する場合を考える。ここで、二次粒子Aの体積VAを基準とする(VA=(4/3)・π・a3=1)。二次粒子Bの粒径は二次粒子Aの2倍となるため(a/b=0.5より、b=2a)、二次粒子Bの体積VBは、二次粒子Aの体積VAを基準として8となる(VB=(4/3)・π・b3=(4/3)・π・(2a)3=8・(4/3)・π・a3=8)。すなわち、二次粒子Aの体積の7倍に相当する物量が、二次粒子Aから二次粒子Bの成長に消費されることになる。
 一方、体積平均粒径比が0.33である二次粒子C(粒径:c)が、二次粒子A中に混在して同量の物量で成長した場合を考える。このとき、一次晶析工程終了時の二次粒子Cの粒径は二次粒子Aの0.66倍となるため(c/b=c/2a=0.33より、c=0.66a)、二次粒子Cの体積Vcは、二次粒子Aを基準として約0.3となる(Vc=(4/3)・π・c3=(4/3)・π・(0.66a)3≒0.3・(4/3)・π・a3=0.3)。これが、二次粒子Aの成長と同量の物量で成長すると、成長後の二次粒子Dの体積VDは、二次粒子Aを基準として7.3となる。すなわち、最終的な粒径まで成長させた二次粒子Dの粒径は、二次粒子Aの1.94倍となり(VD/VA=d3/a3=7.3より、d=1.94a)、二次粒子Bの97%の粒径を持つ二次粒子Dが得られる(d/b=1.94/2=0.97)。したがって、成長前の二次粒子Aに対して粒径が66%の二次粒子Cが混在していても、成長後の二次粒子Bに対して粒径が97%である二次粒子Dまで成長することになり、成長後では、粒径の相対的な差が成長前と比べて大幅に縮小するため、粒度分布も大幅に改善されることが理解できる。
 上記二次粒子C(二次粒子Aに対して粒径が66%の二次粒子)のような粒径が小さな二次粒子が混在した場合を具体的に試算する。たとえば、目標とする体積平均粒径をMV=30μm、体積平均粒径比を0.3とすると、一次晶析工程終了時の二次粒子Aの粒径は9μm、一次晶析工程で混在する粒径が小さい二次粒子Cの粒径は5.9μmである。したがって、二次晶析工程終了時の二次粒子Bの粒径は30μm、二次粒子Dの粒径は29.1μmである。また、目標とする体積平均粒径をMV=10μm、体積平均粒径比を0.5とすると、一次晶析工程終了時の二次粒子Aの粒径は5μm、二次粒子Cの粒径は3.3μm、二次晶析工程終了時の二次粒子Bの粒径は10μm、二次粒子Dの粒径は9.7μmである。
 したがって、一次晶折工程では、スラリー中に生成されたニッケル複合水酸化物の二次粒子の体積平均粒径(MV)についてのみ、所定の範囲となるように制御すれば十分であって、生成する二次粒子の粒度分布自体を考慮する必要はない。
 なお、一次晶折工程は、前記少なくともニッケル塩を含有する水溶液と、中和剤および錯化剤との供給により、反応容器が満液となった時点で終了する。すなわち、一次晶折工程は、生成した二次粒子の体積平均粒径(MV)が、この時点で、目標とする二次粒子の体積平均粒径(MV)の0.2~0.6に達するように反応を制御する点に特徴がある。
 b)二次晶析工程
 二次晶析工程では、一次晶析工程で得られたスラリーの容量を一定に保持しつつ、該スラリーの液成分のみを連続的に除去して、二次粒子の体積平均粒径(MV)が8.0μm~50.0μm、好ましくは9.0μm~50.0μmとなるまで晶析を継続する。このように、スラリーを濃縮することで生産性を高めるとともに、粒径の均一性を維持しながら、粒子成長における微粒子の発生を抑制することが可能となる。このため、本発明の製造方法は、生産性が低く、微粒子が混入しやすい、二次粒子の体積平均粒径(MV)が比較的大きなニッケル複合水酸化物の製造にも、好適に適用することができる。
 スラリー中のニッケル複合水酸化物の二次粒子の体積平均粒径(MV)が8.0μm以上となるまで、この二次粒子を成長させるためには、基本的には、一次晶析工程の晶析条件が維持される。具体的には、液温25℃基準でpHが好ましくは10~13、より好ましくは10.5~12.5の範囲を維持するように制御する。一方、反応水溶液の温度については、40℃~70℃の範囲となるように調節する。これにより、二次晶折工程においても、核生成を抑制しつつ、粒径が大きな二次粒子となるまで成長させることが可能となる。
 体積平均粒径(MV)が8.0μm未満では、粒子数が多くなりすぎて均一な撹拌が困難となるため、反応の均一化が困難であり、微粒子の発生などが生じる。また、ニッケル複合水酸化物を前駆体として得られる正極活物質の充填性を十分なものとすることができない。一方、体積平均粒径(MV)が50.0μmを超えると、目標とする粒径まで成長させる過程で微粒子が発生するため、粒径の均一性が得られない。また、ニッケル複合水酸化物を前駆体として得られる正極活物質を用いて電極を製造するに際して、正極材料スラリーの濾過時にフィルタ目詰まりが生じたり、塗布時に筋引きが起こりやすくなったりする点でも好ましくない。
 なお、さらに高い充填性を得るためには、体積平均粒径(MV)を18.0μm~50.0μmとすることがより好ましく、18.0μm~40.0μmとすることがさらに好ましい。
 一方、高い出力特性を得ようとする場合には、上記二次粒子の体積平均粒径(MV)を8.0μm~20.0μmの範囲とすることが好ましい。これにより、得られる正極活物質の高いクーロン効率と高い充填性を高次元で両立させることができる。
 本発明の製造方法において、スラリーを濃縮するために、二次晶析工程において、一次晶析工程で得られたスラリーの容量を一定に保持しつつ、該スラリーの液成分のみを連続的に除去することが必要となる。これにより、スラリー中の容積当たりの粒子数を一定に保持させて、ニッケル複合水酸化物の二次粒子を安定して成長させることが可能となる。なお、前記液成分を間欠的に除去する方法も考えられるが、この方法では、溶媒の体積あたりの粒子数が変動して成長反応場が安定しないため、前記粒子成長を安定させることは困難である。
 前記液成分の除去方法としては、クロスフロー濾過装置、デッドエンド濾過装置、および沈降分離などの一般的な固液分離方法が使用できる。いずれの方法を使用する場合であっても、濾液に含まれる粒子を十分に少なくすることが必要である。粒子が濾液側に排出されると、生産性が低下するばかりでなく、徐々に系内の粒子数が減少することとなり、粒子成長の反応場が減少する。最終的には核生成が生じて、系内の粒子数が大幅に増加することとなる。系内の粒子数が増加すると、ニッケル複合水酸化物の二次粒子1個あたりの成長に使用される物量が減少するため、該二次粒子の成長速度が低下し、結果として、きわめて高いスラリー濃度まで濃縮しないと目標とする粒径まで成長させることができなくなる。また、二次晶析工程における核生成により生じた粒子は、成長時間が短時間であるため、二次晶析工程の最初から存在した粒子より粒径が小さくなる。このため、粒度分布が悪化することもある。
 上述の液成分の除去方法としては、クロスフロー濾過装置を用いることが好ましい。クロスフロー濾過装置では、スラリーと濾液の流れが垂直方向であり、フィルタに詰まった粒子が、スラリーにより流されるため、フィルタの目詰まりが起こりにくく、連続的に安定して濃縮を行うことができる。このフィルタとしては、セラミックフィルタを用いることが好ましい。セラミックフィルタは、高分子フィルタなどと比較して、より耐圧性や耐薬品性が高く、高圧運転による処理能力の増加や閉塞時の酸洗も容易に行うことができるためである。
 なお、セラミックフィルタの材質は、特に限定されるものではないが、たとえば、αアルミナ(α―Al23)、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)などを用いることができる。また、セラミックフィルタの孔径は、0.01μm~0.5μmであることが好ましい。
 これに対して、デッドエンド濾過装置では、フィルタの目詰まりを防ぐために定期的な洗浄を行う必要があり、装置の保守のために連続的に晶析を行うことが困難であるという欠点がある。沈降分離の場合は、系内の粒径が変化するに従って沈降速度も変化するため、制御が複雑になる。また、沈降時間が必要であるため、連続的な処理では装置が巨大化する欠点もある。
 以下、本発明の製造方法における晶析条件について、さらに詳細に説明する。
 (原料水溶液)
 原料水溶液としては、少なくともニッケル塩を含む水溶液を使用する。ニッケル塩としては、硫酸ニッケル、硝酸ニッケルおよび塩化ニッケルなどを使用することができ、コスト、不純物および廃液処理の観点から、硫酸ニッケルを使用することが好ましい。また、ニッケル以外の金属を添加する場合は、その金属の硫酸塩、硝酸塩および塩化物を用いることができ、同様に、硫酸コバルトなどの金属の硫酸塩を使用することが好ましい。
 この原料水溶液の塩濃度は、各塩の合計で、1.0mol/L~2.2mol/Lとすることが好ましく、1.5mol/L~2.0mol/Lとすることがより好ましい。原料水溶液の塩濃度が1.0mol/L未満であると、塩濃度が低すぎて、ニッケル複合水酸化物の結晶が十分に成長しないことがある。また、一次晶析工程においてスラリー濃度が低下して、高い生産性が得られない。生産性を高めるためには、原料水溶液の塩濃度を1.5mol/L以上とすることがより好ましい。一方、原料水溶液の塩濃度が2.2mol/Lを超えると、常温での飽和濃度を超えるため、結晶が再析出して配管を詰まらせるなどの危険があるうえ、核生成の機会が多くなり、微粒子が多くなってしまう。
 (錯化剤)
 錯化剤は、アンモニウムイオン供給体であれば、特に限定されるものではなく、反応水溶液中でニッケルアンミン錯体を形成可能なものであればよい。たとえば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどが挙げられる。また、アンモニウムイオン供給体以外にも、前記錯体を形成するものであれば用いることができ、たとえば、エチレンジアミン四酢酸、ニトリト三酢酸、ウラシル二酢酸およびグリシンなどが挙げられる。これらのうち、取扱いの容易性などの観点から、アンモニア水を用いることが好ましい。
 錯化剤の添加量は、反応水溶液中のニッケルイオンなどの錯体を形成する金属イオンと結合して錯体を形成するのに十分な量であればよく、たとえば、原料水溶液の塩濃度が1.0mol/L~2.2mol/Lの場合には、反応水溶液中の濃度で5g/L~20g/Lとすることが好ましく、8g/L~15g/Lとすることがより好ましい。反応水溶液中の濃度が5g/L未満では、上記錯体を形成する金属イオンの溶解度が低いため、核生成が生じやすく、一次晶析工程における二次粒子の体積平均粒径比が0.2未満となったり、二次晶析工程で微粒子が発生して粒度分布が悪化したりすることがある。
 一方、20g/Lを超えると、金属イオンの溶解度が高くなりすぎ、スラリーの液成分中にニッケルが残留して原料ロスが多くなることがある。また、ニッケルと他の金属の組成比のずれが発生することがある。
 (pH制御)
 一次晶析工程および二次晶析工程におけるpHは、それぞれ液温25℃基準で10~13の範囲に制御することが好ましく、液温25℃基準で10.5~12.5の範囲に制御することがより好ましい。pHが10未満では、核生成が抑制されるため、粒径の大きな粒子を得やすいが、晶析後、スラリーの液成分中にニッケルが残留してしまう。また、pHが13を超えると、水酸化物の晶析速度が速くなり、微粒子が多くなり、粒度分布が悪化することがある。一次晶析工程において、pHの調整により粒径制御をする場合は、pHを10~12の範囲のpHが低い側に制御することが好ましい。これにより、粒径を大きくすることが容易になり、大粒径の水酸化物を得る場合においても、上記体積平均粒径比が0.2以上の粒子が得られる。
 (中和剤)
 pHは、中和剤であるアルカリ溶液を添加することにより制御することができる。アルカリ溶液は、特に限定されるものではなく、たとえば、水酸化ナトリウム、水酸化カリウムなどの一般的なアルカリ金属水酸化物水溶液を用いることができる。アルカリ金属水酸化物を、直接、混合水溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。この場合、アルカリ金属水酸化物水溶液の濃度は、12.5質量%~30質量%とすることが好ましく、20質量%~25質量%程度とすることがより好ましい。アルカリ金属水酸化物水溶液の濃度の低い場合、一次晶析工程におけるスラリー濃度が低下して生産性が悪化することがあるため、濃度を高めることが好ましく、具体的には、アルカリ金属水酸化物の濃度を20質量%以上とすることが好ましい。一方、アルカリ金属水酸化物の濃度が30質量%を超えると、添加位置でのpHが局部的に高くなり、微粒子が発生することがある。アルカリ溶液の添加方法も特に限定されるものではないが、反応水溶液を十分に攪拌しながら、定量ポンプなどの流量制御が可能なポンプで、pHが10~13の範囲となるように添加することが好ましい。
 (錯体濃度の制御)
 反応水溶液中のニッケルアンミン錯体濃度は、少なくとも二次晶析工程において10mg/L~1500mg/Lの範囲で制御することが好ましく、200mg/L~1500mg/Lの範囲で制御することがより好ましい。これにより、晶析途中の核生成を抑制して粒度分布を改善するとともに、除去される液成分中に含まれるニッケルを、コストや組成に影響が出ないレベルに低減することができる。
 10mg/L未満になると、二次晶析工程において添加されたニッケル塩のほとんどが錯体を経ずに水酸化物となって晶析するため、核生成を抑制できずに微細な核粒子が生成され、粒度分布が広くなることがある。一方、1500mg/Lを超えると、除去される液成分中に含まれるニッケル量が増加するため、ニッケル収率が悪化することとなり、単純に原料コストが増加するばかりか、後工程の廃水処理の負荷も増大する。また、ニッケル複合水酸化物がニッケル以外の金属を含有する場合には、ニッケルと他の金属の組成比のずれが大きくなり、電池特性に悪影響を及ぼす。
 これに対して、一次晶析工程は、前記体積平均粒径比を0.2~0.6に制御することを目的とするものであるため、ニッケルアンミン錯体濃度を10mg/L~1500mg/Lの範囲外にすることも可能である。これは、平均粒径が制御されれば、上述のように微粒発生の影響が少ないこと、および、反応水溶液中の未晶析ニッケルが増加しても、二次晶析工程において晶析してしまうためである。
 (反応温度)
 一次晶析工程および二次晶析工程における反応水溶液の温度は、それぞれ40℃~70℃に保持することが好ましい。これにより、ニッケル複合水酸化物の粒径を目標とする範囲まで成長させることができる。40℃未満では、混合水溶液における金属塩の溶解度が低く塩濃度が低いため、二次晶析工程では核生成が多く微細な粒子が多くなり、粒度分布が悪化することがある。さらには、前記体積平均粒径比が0.2~0.6の範囲から外れるといった可能性も高くなる。混合水溶液の温度が70℃を超えると、アンモニアの揮発が多く、ニッケルアンミン錯体濃度が安定しない。
 (1-2)非水系電解質二次電池正極活物質用ニッケル複合水酸化物
 次に、上記製造方法によって得られる、本発明の非水系電解質二次電池正極活物質用ニッケル複合水酸化物について説明する。
 前記ニッケル複合水酸化物は、複数の一次粒子が凝集して形成された略球状の二次粒子であり、該二次粒子は、体積平均粒径(MV)が8.0μm~50.0μmであり、体積粒度分布の関係を示す(D90-D10)/MVが0.5未満であることを特徴とする。
 ここで、略球状とは、球状に加えて、外観上の最小径と最大径の比(最小径/最大径)が0.6以上の楕円状、塊状などを含む形状であることを意味する。また、D90、D10は、それぞれ累積分布が90%、10%になる粒径である。なお、D90およびD10は、体積平均粒径(MV)と同様に、レーザ回折式粒度分布計を用いて、レーザ回折散乱法によって測定することができる。
 (平均粒径)
 二次粒子の体積平均粒径(MV)は、8.0μm~50.0μmとすることが必要であり、好ましくは9.0μm~50.0μmである。二次粒子の粒径を大きなものとすることにより、ニッケル複合水酸化物を前駆体として得られるリチウムニッケル複合酸化物の充填性を高いものとすることができる。体積平均粒径(MV)が8.0μmより小さいと、粒子間の空隙が増加することになり、リチウムニッケル複合酸化物の充填性が低くなる。一方、50.0μmを超えると、得られるリチウムニッケル複合酸化物が、正極の製造過程において、正極材料スラリーの濾過時にフィルタの目詰まりを起こしやすくなり、また、該スラリーの塗布時に筋引きを起こしやすくなる。
 なお、さらに高い充填性を得るためには、体積平均粒径(MV)を18.0μm~50.0μmとすることがより好ましく、18.0μm~45.0μmとすることがさらに好ましく、20.0μm~40.0μmとすることが特に好ましい。
 一方、高い出力特性を得ようとする場合、前記二次粒子の体積平均粒径(MV)を8.0μm~20.0μmとすることがより好ましく、8.0μmを超え20μm以下とすることがさらに好ましく、8.5μm~15.0μmとすることが特に好ましい。この場合において、前記二次粒子のタップ密度は1.9g/cm3以上、好ましくは1.9g/cm3~2.5g/cm3とする必要がある。体積平均粒径(MV)およびタップ密度を、このような範囲に制御することで、微粒の混入が抑制されているため、得られる正極活物質のクーロン効率と充填性を高次元で両立させることができる。なお、タップ密度は、たとえば、振とう比重測定器による測定で求めることができる。
 (体積粒度分布)
 体積粒度分布の関係を示す(D90-D10)/MVを0.5未満、好ましくは0.3以上0.5未満、より好ましくは0.35~0.48の範囲とすることにより、得られるリチウムニッケル複合酸化物に含まれる微粒子を低減させることが可能であり、微粒子の選択的劣化などによる熱安定性やサイクル特性などの電池特性の低下を抑制することができる。(D90-D10)/MVが0.5以上になると、電池特性が低下するばかりか、粗大粒子が増加するため、フィルタ目詰まりやスラリー塗布時の筋引きが発生しやすく、非水系電解質二次電池に好適な正極活物質が得られない。
 (組成)
 ニッケル複合水酸化物は、一般式:Ni1-x-yCoxy(OH)2+A(ただし、0≦x≦0.35、0≦y≦0.35、0≦A≦0.5、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表される組成を有することが好ましい。この組成により、このニッケル複合水酸化物を前駆体として得られた非水系電解質二次電池用正極活物質を正極材料として用いた場合に、優れた電池特性を得ることができる。
 本発明のニッケル複合水酸化物において、コバルト(Co)の原子比を示すxの値は、0.35以下であることが好ましく、0.22以下であることがより好ましい。xの値が、0.35を超える場合には、正極活物質のサイクル特性を向上させることができない。
 添加元素Mの原子比を示すyの値は、0.35以下であることが好ましく、0.15以下とすることがより好ましい。添加元素Mは、少量で電池の耐久特性および出力特性を向上させることができる。一方、yの値が0.35を超えると、正極活物質のRedox反応に貢献する金属元素が減少して、電池容量が低下する。
 また、Coおよび添加元素Mの添加量の合計が多すぎると、得られるリチウムニッケル複合酸化物を用いた電池の容量が低下する。このため、Coおよび添加元素Mの合計の添加量(原子比)を示すx+yの値は、0.3未満とすることが好ましく、0.2以下とすることがより好ましい。
 なお、Coおよび添加元素Mの添加量(原子比)は、ニッケル複合水酸化物の一次晶析工程および二次晶析工程において使用する原料水溶液の組成比と一致する。したがって、前記一般式に表される組成比を有するニッケル複合水酸化物を得るためには、該一般式の組成比となるように調製した原料水溶液を供給して共沈させればよい。このような方法としては、金属塩を混合した混合水溶液による供給、または、各金属元素水溶液の個別供給のいずれでもよい。
 (添加元素)
 添加元素M(Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種以上の元素)の材料としては、たとえば、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどを用いることができる。添加元素Mについては、非水系電解質二次電池の用途やそれに応じて要求される特性などに応じて、適宜選択されるものである。
 このような添加元素Mは、晶析によって得られたニッケル複合水酸化物の表面に被覆させることが好ましい。たとえば、添加元素Mを含んだ水溶液で該複合水酸化物粒子をスラリー化し、所定のpHとなるように制御しつつ、前記1種以上の添加元素を含む水溶液を添加して、晶析反応により添加元素を複合水酸化物粒子表面に析出させれば、その表面を添加元素で均一に被覆することができる。
 (2-1)非水系電解質二次電池用正極活物質の製造方法
 以下、前記ニッケル複合水酸化物を前駆体として使用して、非水系電解質電池用正極活物質を製造する方法について説明する。この製造方法には、前記ニッケル複合水酸化物をリチウム化合物と混合して、リチウム混合物を形成する混合工程と、このリチウム混合物を酸化性雰囲気中、650℃~1100℃の温度で焼成する焼成工程が含まれる。
 a)混合工程
 リチウム化合物は、特に限定されることはなく、たとえば、水酸化リチウム、硝酸リチウム、炭酸リチウム、もしくはこれらの混合物が、入手が容易であるという点で好ましい。特に、取り扱いの容易さ、品質の安定性を考慮すると、水酸化リチウムもしくは炭酸リチウムを用いることがより好ましい。
 ニッケル複合水酸化物とリチウム化合物とは、リチウム混合物中のリチウム以外の金属の原子数、すなわち、ニッケル、コバルトおよび添加元素の原子数の和(Me)と、リチウムの原子数(Li)との比(Li/Me)が0.95~1.50、好ましくは0.95~1.20、上記x+yの値が0.3未満では好ましくは0.95~1.20、より好ましくは0.98~1.10となるように混合される。すなわち、焼成工程前後でLi/Meは変化しないので、この混合工程で混合するLi/Meが正極活物質におけるLi/Meとなるため、リチウム混合物におけるLi/Meが、得ようとする正極活物質におけるLi/Meと同じになるように混合される。
 また、混合には、一般的な混合機を使用することができ、シェーカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダなどを用いることができ、ニッケル複合水酸化物の形骸が破壊されない程度で、十分に混合されればよい。
 b)焙焼工程
 前記混合工程の前に、予め、ニッケル複合水酸化物を、酸化性雰囲気中で、300℃~1000℃の温度で焙焼する焙焼工程を、さらに備えることが好ましい。
 このような焙焼工程により、ニッケル複合水酸化物をニッケル複合酸化物にすることができ、該ニッケル複合酸化物をリチウム化合物と混合した場合に、リチウムニッケル複合酸化物の充填性を保ったまま、リチウムニッケル複合酸化物中のリチウムと金属元素の組成比を安定させることができるため好ましい。
 焙焼温度は300℃~1000℃とすることが好ましく、400℃~800℃がより好ましい。焙焼温度が300℃未満では、水酸化物が一部残留する可能性があり、前記組成が安定しないことがある。一方、1000℃を超えると、粒子間の焼結が発生して粗大粒子が生成され、粒度分布が悪化する。
 c)焼成工程
 焼成工程は、上記混合工程で得られたリチウム混合物を焼成して、リチウムニッケル複合酸化物を形成する工程である。焼成工程は、酸化性雰囲気中で、650℃~1100℃で行い、650℃~950℃で行うことが好ましく、700℃~900℃で行うことがより好ましい。焼成温度が650℃未満では、リチウムの拡散が十分に進行せず、余剰のリチウムが残存し、結晶構造が整わなくなり、電池に用いられた場合に十分な特性が得られない。一方、1100℃を超えると、複合酸化物の粒子間で激しく焼結が生じるとともに異常粒成長を生じる可能性があり、このため、焼成後の粒子が粗大となって略球状の粒子形態を保持できなくなる可能性がある。このような正極活物質は、比表面積が低下するため、電池に用いた場合、正極の抵抗が上昇して電池容量が低下する問題が生じる。
 なお、ニッケル複合水酸化物またはニッケル複合酸化物中の全金属元素の原子数に対する、コバルトと添加元素Mとの合計の原子数の比(前記一般式におけるx+yの値)が0.3未満の場合には、650℃~800℃で焼成することがより好ましい。
 なお、ニッケル複合水酸化物またはニッケル複合酸化物と、リチウム化合物との反応を均一に行わせる観点から、昇温速度を1℃/min~5℃/minとして上記温度まで昇温することが好ましい。さらには、リチウム化合物の融点付近の温度で1時間~10時間程度保持することで、より反応を均一に行わせることができる。
 (2-2)非水系電解質二次電池用正極活物質
 本発明の非水系電解質二次電池用正極活物質は、複数の一次粒子が凝集して形成された、略球状のリチウムニッケル複合酸化物の二次粒子からなり、該二次粒子は、体積平均粒径(MV)が8.0μm~50.0μmの範囲にあり、体積粒度分布の関係を示す(D90-D10)/MVが0.5未満であることを特徴とする。このような正極活物質は、粒度分布がシャープであり、充填密度が高く、得られる非水系電解質二次電池の高容量化やクーロン効率の向上を図ることができるため、正極材料として好適に用いることができる。ここで、略球状とは、球状に加えて、外観上の最小径と最大径の比(最小径/最大径)が0.6以上の楕円状、塊状などを含む形状であることを意味する。
 また、本発明の非水系電解質二次電池用正極活物質は、層状構造を有する六方晶系のリチウムニッケル複合酸化物からなるものであり、結晶格子のニッケル(Ni)の一部がコバルト(Co)に置換しているため、充放電に伴うリチウムの挿入および脱離による結晶格子の膨張収縮挙動をさせることができ、サイクル特性の向上を図ることができる。
 (平均粒径)
 正極活物質を構成する二次粒子の体積平均粒径(MV)は8.0μm~50.0μm、好ましくは8.0μmを超え50.0μm以下、より好ましくは9.0μm~50.0μmとする。体積平均粒径(MV)がこのような範囲にあれば、高い充填性を有しながらも、その製造工程におけるフィルタの目詰まりなどの問題を回避することができる。
 なお、さらに高い充填性を得るためには、前記二次粒子の体積平均粒径(MV)を18.0μm~50.0μmとすることがより好ましく、18.0μm~45.0μmとすることがさらに好ましく、20.0μm~40.0μmとすることが特に好ましい。
 一方、高い出力特性を得ようとする場合、前記二次粒子の体積平均粒径(MV)を8.0μm~20.0μmとすることがより好ましく、8.0μmを超え20μm以下とすることがさらに好ましく、8.5μm~15.0μmとすることが特に好ましい。この場合において、前記二次粒子のタップ密度は2.2g/cm3以上とする必要がある。体積平均粒径(MV)およびタップ密度を、このような範囲に制御することで、リチウムの挿入および脱離の反応性を高く維持することができるため、クーロン効率を向上させることができる。なお、タップ密度の上限は、特に限定されないが、通常の製造条件では、2.7g/cm3程度である。
 なお、正極活物質の体積平均粒径(MV)、D90およびD50は、ニッケル複合水酸化物の場合と同様に、レーザ回折式粒度分布計を用いたレーザ回折散乱法によって測定することができる。また、タップ密度も、ニッケル複合水酸化物の場合と同様に、振とう比重測定器による測定で求めることができる。
 (体積粒度分布)
 体積粒度分布の関係を示す(D90-D10)/MVは0.5未満、好ましくは0.3以上0.5未満、より好ましくは0.35~0.48とする。体積粒度分布がこのような範囲にあれば、得られる正極活物質に含まれる微粒子を低減させることができるため、微粒子の選択的劣化などによる電池特性の低下を抑制することができる。
 (組成)
 本発明の非水系電解質二次電池用正極活物質の組成は、一般式:Li1+uNi1-x-yCoxy2(ただし、-0.05≦u≦0.50、0≦x≦0.35、0≦y≦0.35、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表されることが好ましい。
 リチウムの過剰量を示すuは、-0.05~0.50とすることが好ましく、-0.05~0.20とすることがより好ましい。リチウムの過剰量uが-0.05未満の場合、得られた正極活物質を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、二次電池の出力が低くなってしまう。一方、リチウムの過剰量uが0.50を超える場合、この正極活物質を用いた二次電池の初期放電容量が低下するとともに、正極の反応抵抗も増加してしまう。なお、リチウムの過剰量uは、Coと添加元素Mとの合計の添加量であるx+yを0.3未満とした場合、電池容量の低下を抑制するため、0.20以下とすることが好ましく、-0.02~0.10の範囲とすることがより好ましい。なお、リチウム以外の金属元素の組成比は、前記ニッケル複合水酸化物の組成がそのまま維持される。なお、正極活物質の組成は、ICP発光分析法により求めることができる。
 (標準偏差)
 前記二次粒子を構成する一次粒子の平均粒径の標準偏差は、好ましくは10%以下、より好ましくは9.0%以下、さらに好ましくは8.6%以下である。標準偏差をこのような範囲に制御することで、該二次粒子間でのリチウム挿入・脱離反応を均一化することができるため、クーロン効率を向上させることができる。
 ここで、前記一次粒子の平均粒径とは、ある特定の二次粒子を構成する一次粒子の平均粒径であり、該二次粒子に含まれる10個以上の一次粒子の粒径を測定し、この測定値を個数平均することによって求められる値である。なお、一次粒子の粒径は、二次粒子の断面を走査型電子顕微鏡で観察し、一次粒子の最大径を計測することにより求めることができる。また、標準偏差とは、10個以上の二次粒子のそれぞれについて一次粒子の平均粒径を求め、それらの標準偏差を算出することによって得られる値である。
 (クーロン効率)
 本発明の非水系電解質二次電池用正極活物質は、リチウムの挿入・脱離反応性が高く、均一に反応するため、たとえば、該正極活物質を用いて2032型コイン電池を構成した場合、その電池のクーロン効率を、好ましくは90%以上、より好ましくは90.5%以上、さらに好ましくは91.0%以上とすることができる。クーロン効率が90%未満では、高い電気容量を得ることができない。
 ここで、クーロン効率とは、充電電気容量に対する放電電気容量の割合[放電電気容量/充電電気容量×100(%)]を意味する。クーロン効率は、本発明により得られた正極活物質を用いて、後述するような非水系電解質二次電池を構成し、その充電電気容量および放電電気容量を測定することにより求めることができる。
 (3)非水系電解質二次電池
 本発明の非水系電解質二次電池は、上記非水系電解質二次電池用正極活物質を正極材料に用いた正極を採用したものである。まず、本発明の非水系電解質二次電池の構造を説明する。
 本発明の非水系電解質二次電池は、正極材料に本発明の正極活物質を用いたこと以外は、一般的な非水系電解質二次電池と実質的に同様の構造を備えている。
 具体的には、本発明の二次電池は、ケースと、このケース内に収容された正極、負極、非水系電解液およびセパレータを備えた構造を有している。より具体的にいえば、セパレータを介して正極と負極とを積層させて電極体とし、得られた電極体に非水系電解液を含浸させ、正極の正極集電体と外部に通ずる正極端子との間、および、負極の負極集電体と外部に通ずる負極端子との間を、それぞれ集電用リードなどを用いて接続し、ケースに密閉することによって、本発明の二次電池は形成される。
 なお、本発明の二次電池の構造は、上記例に限定されないのはいうまでもなく、また、その外形も筒形や積層形など、種々の形状を採用することができる。
 (正極)
 まず、本発明の二次電池の特徴である正極について説明する。正極は、シート状の部材であり、本発明の正極活物質を含有する正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布乾燥して形成されている。
 なお、正極は、使用する電池にあわせて適宜処理される。たとえば、目的とする電池に応じて適当な大きさに形成する裁断処理や、電極密度を高めるためにロールプレスなどによる加圧圧縮処理などが行われる。
 前記正極合材ペーストは、正極合材に、溶剤を添加して混練して形成されたものである。正極合材は、粉末状になっている本発明の正極活物質と、導電材および結着剤とを混合して形成されたものである。
 導電材は、電極に適当な導電性を与えるために添加されるものである。この導電材は、特に限定されないが、たとえば、黒鉛(天然黒鉛、人造黒鉛および膨張黒鉛など)や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。
 結着剤は、正極活物質粒子をつなぎ止める役割を果たすものである。この正極合材に使用される結着剤は、特に限定されないが、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
 なお、正極合材には、活性炭などを添加してもよく、活性炭などを添加することによって、正極の電気二重層容量を増加させることができる。
 溶剤は、結着剤を溶解して、正極活物質、導電材および活性炭などを結着剤中に分散させるものである。この溶剤は特に限定されないが、たとえば、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
 また、正極合材ペースト中における各物質の混合比は、特に限定されない。たとえば、溶剤を除いた正極合材の固形分を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60質量部~95質量部、導電材の含有量を1質量部~20質量部、結着剤の含有量を1質量部~20質量部とすることができる。
 (負極)
 負極は、銅などの金属箔集電体の表面に、負極合材ペーストを塗布し、乾燥して形成されたシート状の部材である。この負極は、負極合材ペーストを構成する成分やその配合、集電体の素材などは異なるものの、実質的に前記正極と同様の方法によって形成され、正極と同様に、必要に応じて各種処理が行われる。
 負極合材ペーストは、負極活物質と結着剤とを混合した負極合材に、適当な溶剤を加えてペースト状にしたものである。
 負極活物質は、たとえば、金属リチウムやリチウム合金などのリチウムを含有する物質や、リチウムイオンを吸蔵および脱離できる吸蔵物質を採用することができる。
 吸蔵物質は、特に限定されないが、たとえば、天然黒鉛、人造黒鉛、フェノール樹脂などの有機化合物焼成体、およびコークスなどの炭素物質の粉状体を用いることができる。かかる吸蔵物質を負極活物質に採用した場合には、正極同様に、結着剤として、PVDFなどの含フッ素樹脂を用いることができ、負極活物質を結着剤中に分散させる溶剤としては、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
 (セパレータ)
 セパレータは、正極と負極との間に挟み込んで配置されるものであり、正極と負極とを分離し、電解質を保持する機能を有している。かかるセパレータは、たとえば、ポリエチレンやポリプロピレンなどの薄い膜で、微細な孔を多数有する膜を用いることができるが、上記機能を有するものであれば、特に限定されない。
 (非水系電解液)
 非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート;また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート;さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物;エチルメチルスルホンやブタンスルトンなどの硫黄化合物;リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を、単独で、あるいは2種以上を混合して、用いることができる。
 支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO22、およびそれらの複合塩などを用いることができる。
 なお、非水系電解液は、電池特性改善のため、ラジカル捕捉剤、界面活性剤、難燃剤などを含んでいてもよい。
 (本発明の非水系電解質二次電池の特性)
 本発明の非水系電解質二次電池は、上記構成であり、本発明の正極活物質を用いた正極を有しているので、高い充填密度とクーロン効率が得られ、高容量で充放電特性に優れたものとなる。しかも、従来のリチウムニッケル系酸化物の正極活物質との比較においても、熱安定性が高く、安全性においても優れているといえる。
 (本発明の二次電池の用途)
 本発明の二次電池は、上記性質を有するので、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適である。
 また、本発明の二次電池は、高い充放電特性が要求されるモーター駆動用電源としての電池にも好適である。電池は、大型化すると安全性の確保が困難になり、高価な保護回路が必要不可欠であるが、本発明の二次電池は、優れた安全性を有しているため、安全性の確保が容易になるばかりでなく、高価な保護回路を簡略化し、より低コストにできる。そして、小型化、高出力化が可能であることから、搭載スペースに制約を受ける輸送機器用の電源として好適である。
 以下、実施例および比較例によって、本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
 以下の実施例および比較例において、体積平均粒径および粒度分布測定は、レーザ回折式粒度分布計(日機装株式会社製、マイクロトラック)により、タップ密度は、振とう比重測定器(株式会社蔵持科学器械製作所製、KRS-409)により測定した。また、粒子の外観については、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、S-4700)により観察した。組成分析は、ICP発光分析装置(株式会社島津製作所製、ICPS-8100)を用いて行った。
 なお、本実施例では、特に断りがない限り、複合水酸化物、正極活物質の製造および二次電池の製造には、和光純薬工業株式会社製試薬特級の各試料を使用した。
 (実施例1)
 邪魔板を4枚取り付けた容積5Lの晶析反応容器に、純水900ml、アンモニア水(濃度:25質量%)を40ml投入して、恒温槽および加温ジャケットにて60℃に加温した後、苛性ソーダ溶液(濃度:25質量%)を添加して、反応容器内のpHを液温25℃基準で11.0となるように調整し、反応前水溶液を得た。
 一方、原料水溶液として、硫酸ニッケル(Niモル濃度:1.69mol/L)と、硫酸コバルト(Coモル濃度:0.31mol/L)との複合溶液を用意した。
 一次晶析工程として、反応前水溶液を60℃に保持した状態で攪拌しつつ、定量ポンプを用いて、この原料水溶液を12.9ml/minで供給し、併せて錯化剤としてのアンモニア水(濃度:25質量%)を1.5ml/minで供給しつつ、中和剤としての苛性ソーダ溶液(濃度:25質量%)を断続的に供給し、液温25℃基準でのpHが11.0になるように制御して行って、ニッケル複合水酸化物スラリーを得た。
 攪拌には、直径85mmの6枚羽根傾斜パドル(傾斜角45度)を用い、回転数は800rpmとした。反応開始から4時間経過後、反応容器がほぼ満液となった時点での、複合水酸化物の二次粒子の体積平均粒径(MV)は13.8μmであった。これは、目標とする体積平均粒径(MV=25.0μm)に対する比で0.55であった。
 次に、二次晶折工程として、反応pHを液温25℃基準で11.0になるように維持しつつ、クロスフロー式濾過装置(日本ポール株式会社製、MEMBRALOX)を運転して濃縮を行い、槽内のスラリー容量を一定に保持しつつ、該スラリーの液成分のみを除去して、晶析を継続した。使用したクロスフロー式濾過装置のフィルタとしては、孔径が0.5μm、材質がαアルミナ製のものを使用した。
 エアーダイヤフラムポンプ(株式会社ヤマダコーポレーション製、NDP-5FPT)でスラリーを供給し、濾過圧力を調整しながら連続的に濃縮を行った。二次晶析工程中におけるニッケルアンミン錯体濃度は790mg/Lであった。
 反応開始から32時間経過後(二次晶析工程開始から28時間経過後)、すべての液のポンプを停止して、晶析反応を終了させた。その後、前記複合水酸化物を固液分離して水洗した後、乾燥して、粉末状の複合水酸化物を得た。
 得られた複合水酸化物の二次粒子の体積平均粒径(MV)は25.4μmであり、(D90-D10)/MVは0.47であった。これらの値を表1に示す。また、このニッケル複合水酸化物は、一般式:Ni0.84Co0.16(OH)2により表されるものであった。実施例1により得られたニッケル複合水酸化物のSEM像を図1に示す。
 (実施例2)
 反応時間を80時間(二次晶析工程開始から76時間)まで延長し、ニッケルアンミン錯体濃度を810mg/Lに調整したこと以外は、実施例1と同様にして、複合水酸化物の二次粒子を得た。この複合水酸化物の二次粒子の体積平均粒径(MV)は35.2μmであり、(D90-D10)/MVは0.43であった。これらの値を表1に示す。また、このニッケル複合水酸化物は、一般式:Ni0.84Co0.16(OH)2により表されるものであった。
 (実施例3)
 二次晶折工程における液温25℃基準でのpHが11.6となるように制御してニッケルアンミン錯体濃度を350mg/Lに調整したこと以外は、実施例1と同様にして、複合水酸化物の二次粒子を得た。一次晶析工程終了時における成長前二次粒子の体積平均粒径(MV)は13.8μmであり、成長後(二次晶析工程終了後)のニッケル複合水酸化物の二次粒子の体積平均粒径(MV)は24.8μmであり、(D90-D10)/MVは0.48であった。これらの値を表1に示す。また、このニッケル複合水酸化物は、一般式:Ni0.84Co0.16(OH)2により表されるものであった。
 (実施例4)
 一次晶析工程および二次晶折工程における反応温度を40℃として、ニッケルアンミン錯体濃度を1380mg/Lに調整したこと以外は、実施例1と同様にして、複合水酸化物の二次粒子を得た。一次晶析工程終了時における成長前二次粒子の体積平均粒径(MV)は8.9μmであり、成長後のニッケル複合水酸化物の二次粒子の体積平均粒径(MV)は23.3μmであり、(D90-D10)/MVは0.45であった。これらの値を表1に示す。また、このニッケル複合水酸化物は、一般式:Ni0.84Co0.16(OH)2により表されるものであった。
 (実施例5)
 一次晶析工程および二次晶折工程における、液温25℃基準でのpHが10.0となるように制御したこと、および、ニッケルアンミン錯体濃度を3220mg/Lとしたこと以外は、実施例1と同様にして、複合水酸化物の二次粒子を得た。一次晶析工程終了時における成長前二次粒子の体積平均粒径(MV)は9.1μmであり、成長後のニッケル複合水酸化物の二次粒子の体積平均粒径(MV)は22.1μmであり、(D90-D10)/MVは0.47であった。これらの値を表1に示す。また、このニッケル複合水酸化物は、一般式:Ni0.84Co0.16(OH)2により表されるものであった。
 (実施例6)
 一次晶析工程および二次晶折工程における、液温25℃基準でのpHが12.8となるように制御したこと、ニッケルアンミン錯体濃度を12mg/Lに調整したこと以外は、実施例1と同様にして、複合水酸化物の二次粒子を得た。一次晶析工程終了時における成長前二次粒子の体積平均粒径(MV)は3.5μmであり、成長後のニッケル複合水酸化物の二次粒子の体積平均粒径(MV)は10.0μmであり、(D90-D10)/MVは0.49であった。これらの値を表1に示す。また、このニッケル複合水酸化物は、一般式:Ni0.84Co0.16(OH)2により表されるものであった。
 (比較例1)
 反応槽が満液になるまでは実施例1と同様にして晶析を行った後、濃縮を行わずオーバーフローしてくる複合水酸化物を連続的に取り出した。この間のニッケルアンミン錯体濃度は、1020mg/Lに調整した。反応開始から48時間~72時間にかけて取り出された複合水酸化物の二次粒子の体積平均粒径(MV)は32.0μmであり、(D90-D10)/MVは0.98であった。これらの値を表1に示す。また、このニッケル複合水酸化物は、一般式:Ni0.84Co0.16(OH)2により表されるものであった。比較例1により得られたニッケル複合水酸化物のSEM像を図2に示す。得られた複合水酸化物の粒径が不均一で、粒度分布が広いことが確認できる。
 (比較例2)
 一次晶析工程および二次晶折工程における、液温25℃基準でのpHが13.5となるように制御し、ニッケルアンミン錯体濃度を2mg/Lに調整したこと以外は、実施例1と同様にして、複合水酸化物の二次粒子を得た。一次晶析工程終了時における成長前二次粒子の体積平均粒径(MV)は2.7μmであり、成長後のニッケル複合水酸化物の二次粒子の体積平均粒径(MV)は3.4μmであり、(D90-D10)/MVは0.58であった。これらの値を表1に示す。また、このニッケル複合水酸化物は、一般式:Ni0.84Co0.16(OH)2により表されるものであった。
 (実施例7)
 実施例1~実施例6、比較例1および比較例2でそれぞれ製造したニッケル複合水酸化物を別の反応槽に移して、常温の水と混合してスラリーとし、この混合水溶液にアルミン酸ナトリウムの水溶液および硫酸を撹拌しながら加えて、スラリーのpH値を9.5に調整した。その後、1時間撹拌を続けることによりニッケル複合水酸化物の二次粒子表面に水酸化アルミニウムの被覆を行った。このとき、アルミン酸ナトリウムの水溶液は、スラリー中の金属元素モル比が、ニッケル:コバルト:アルミニウム=0.84:0.12:0.04となるように加えた。撹拌停止後、アルミン酸ナトリウム水溶液を濾過して、水洗することにより、アルミニウムにより被覆されたニッケル複合水酸化物(ニッケルコバルトアルミニウム複合水酸化物)を得た。
 得られたニッケル複合水酸化物を、大気雰囲気中で、700℃にて、6時間焙焼した。得られた複合酸化物の二次粒子の体積平均粒径(MV)、(D90-D10)/MVおよび組成を表2に示す。これより、本発明の製造方法を用いて製造された複合水酸化物を前駆体とした場合、体積平均粒径(MV)が18.0μm~50.0μm、粒度分布が(D90-D10)/MVが0.5未満を満たす、複合酸化物が得られることが分かる。
 (実施例8)
 Li/Me=1.02(u=0.02)となるように水酸化リチウムを秤量し、実施例1で得られたニッケル複合水酸化物、および、実施例7(実施例1~実施例6、比較例1および比較例2のニッケルコバルトアルミニウム複合水酸化物を用いたもの)から得られたニッケル複合酸化物とを混合して、リチウム混合物を形成した。なお、混合は、シェーカーミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製、TURBULA TypeT2C)を用いて行った。
 得られた混合物を酸素気流中(酸素:100容量%)にて、750℃で8時間焼成し、冷却した後に解砕して正極活物質を得た。得られた正極活物質は、X線回折法により、いずれも六方晶系のリチウムニッケル複合酸化物の単相であることが確認された。
 また、この正極活物質について、二次粒子の体積平均粒径(MV)、(D90-D10)/MVおよび組成比を、上述した所定の方法により測定した。これらの結果を表3に示す。これより、本発明の製造方法を用いて製造された複合水酸化物あるいは複合酸化物を原料とした場合、粒度分布は(D90-D10)/MVが小さく粒度分布が良好なリチウムニッケル複合酸化物が得られることが分かる。 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (実施例9)
 邪魔板を4枚取り付けた容積5Lの晶析反応容器に、純水900ml、アンモニア水(濃度:25質量%)を40ml投入して、恒温槽および加温ジャケットにて60℃に加温した後、苛性ソーダ溶液(濃度:25質量%)を添加して、反応容器内のpHを液温25℃基準で11.0となるように調整し、反応前水溶液を得た。
 一方、原料水溶液として、硫酸ニッケル(Niモル濃度:0.956mol/L)と、硫酸コバルト(Coモル濃度:0.370mol/L)と、硫酸マンガン(Mnモル濃度:0.586mol/L)の複合溶液を用意した。
 一次晶析工程として、反応前水溶液を60℃に保持した状態で攪拌しつつ、定量ポンプを用いて、この原料水溶液を12.9ml/minで供給し、併せて錯化剤としてのアンモニア水(濃度:25質量%)を3.0ml/minで供給しつつ、中和剤としての苛性ソーダ溶液(濃度:25質量%)を断続的に供給し、液温25℃基準でのpHが11.0になるように制御して行って、ニッケル複合水酸化物スラリーを得た。
 攪拌には、直径85mmの6枚羽根傾斜パドル(傾斜角45度)を用い、回転数は1000rpmとした。反応開始から4時間経過後、反応容器がほぼ満液となった時点での、複合水酸化物の二次粒子の体積平均粒径(MV)は4.8μmであった。これは、目標とする体積平均粒径(MV=9.0μm)に対する比で0.53であった。
 次に、二次晶折工程として、反応pHを液温25℃基準で11.0になるように維持しつつ、クロスフロー式濾過装置(日本ポール株式会社製、MEMBRALOX)を運転して濃縮を行い、槽内のスラリー容量を一定に保持しつつ、該スラリーの液成分のみを除去して、晶析を継続した。使用したクロスフロー式濾過装置のフィルタとしては、孔径が0.5μm、材質がαアルミナ製のものを使用した。
 エアーダイヤフラムポンプ(株式会社ヤマダコーポレーション製、NDP-5FPT)でスラリーを供給し、濾過圧力を調整しながら連続的に濃縮を行った。晶析工程中におけるニッケルアンミン錯体濃度は790mg/Lであった。
 反応開始から8時間経過後(二次晶析工程開始から4時間経過後)、全ての液のポンプを停止して、晶析反応を終了させた。その後、複合水酸化物を固液分離して水洗した後、乾燥して、粉末状の複合水酸化物を得た。
 得られた複合水酸化物の二次粒子の体積平均粒径(MV)は9.2μm、(D90-D10)/MVは0.47、タップ密度は2.04g/cm3であった。これらの値を表4に示す。また、このニッケル複合水酸化物は、一般式:Ni0.50Co0.20Mn0.30(OH)2により表されるものであった。実施例9により得られたニッケル複合水酸化物のSEM写真を図3に示す。
 (実施例10)
 反応時間を20時間(二次晶析工程開始から16時間)まで延長し、ニッケルアンミン錯体濃度を810mg/Lに調整したこと以外は、実施例9と同様にして、複合水酸化物の二次粒子を得た。この複合水酸化物の一次晶析工程終了時における成長前二次粒子の体積平均粒径(MV)は5.1μmであり、成長後(二次晶析工程終了後)のニッケル複合水酸化物の二次粒子の体積平均粒径(MV)は13.3μmであり、(D90-D10)/MVは0.42であった。これらの値を表4に示す。また、このニッケル複合水酸化物は、一般式:Ni0.50Co0.20Mn0.30(OH)2により表されるものであった。
 (実施例11)
 ニッケルアンミン錯体濃度を1380mg/Lに調整したこと以外は、実施例9と同様にして、複合水酸化物の二次粒子を得た。この複合水酸化物の一次晶析工程終了時における成長前二次粒子の体積平均粒径(MV)は3.4μmであり、成長後のニッケル複合水酸化物の二次粒子の体積平均粒径(MV)は9.3μmであり、(D90-D10)/MVは0.45であった。これらの値を表4に示す。また、このニッケル複合水酸化物は、一般式:Ni0.50Co0.20Mn0.30(OH)2により表されるものであった。
 (比較例3)
 反応槽が満液になるまでは実施例9と同様にして晶析を行った後、濃縮を行わずオーバーフローしてくる複合水酸化物を連続的に取り出した。この間のニッケルアンミン錯体濃度は、1020mg/Lに調整した。反応開始から14時間~18時間にかけて取り出された複合水酸化物の二次粒子の体積平均粒径(MV)は10.8μmであり、(D90-D10)/MVは0.98であった。これらの値を表4に示す。また、このニッケル複合水酸化物は、一般式:Ni0.50Co0.20Mn0.30(OH)2により表されるものであった。比較例3により得られたニッケル複合水酸化物のSEM写真を図4に示す。得られた複合水酸化物の粒径が不均一で、粒度分布が広いことが確認できる。
 (比較例4)
 液温25℃基準でのpHが13.5となるように制御したこと以外は、実施例9と同様にして、複合水酸化物の二次粒子を得た。この複合水酸化物の一次晶析工程終了時における成長前二次粒子の体積平均粒径(MV)は2.7μmであり、成長後のニッケル複合水酸化物の二次粒子の体積平均粒径(MV)は3.4μmであり、(D90-D10)/MVは0.61であった。これらの値を表4に示す。また、このニッケル複合水酸化物は、一般式:Ni0.50Co0.20Mn0.30(OH)2により表されるものであった。
 (実施例12)
 Li/Me=1.02(u=0.02)となるように水酸化リチウムを秤量し、実施例9~11で得られたニッケル複合水酸化物と混合して、リチウム混合物を形成した。なお、混合は、実施例8と同様に、シェーカーミキサ装置を用いて行った。
 得られたリチウム混合物を大気中にて、900℃で8時間焼成し、冷却した後に解砕して正極活物質を得た。得られた正極活物質は、X線回折法により、いずれも一般式:Li1.02Ni0.50Co0.20Mn0.302により表される六方晶系のリチウムニッケル複合酸化物の単相であることが確認された。
 この正極活物質について、二次粒子の体積平均粒径(MV)、(D90-D10)/MVおよび組成比を、上述した所定の方法により測定するとともに、以下の項目について評価を行った。
 [一次粒子の平均粒径の標準偏差]
 得られた正極活物質から、外観により粒径の異なる二次粒子をそれぞれ選び(n=10)、各二次粒子に含まれる10個以上の一次粒子の粒径を、二次粒子の断面を走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、S-4700)により観察し、それぞれの一次粒子の最大径を測定し、これらの平均値(一次粒子の平均粒径)を求め、その標準偏差を算出した。
 [電池評価]
 得られた正極活物質を用いて、2032型コイン電池を構成し、これにより初期容量についての評価を行った。具体的には、正極活物質粉末70質量%に、アセチレンブラック20質量%およびPTFE10質量%を加えて混合し、150mgを秤量してペレットを作製し、正極とした。また、負極にはリチウム金属を使用し、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を使用し、露点が-80℃に管理されたAr雰囲気のグローブボックス中で、2032型のコイン電池を作製した。
 作製したコイン電池を24時間程度放置し、開路電圧(OCV;Open Circuit Voltage)が安定した後、正極に対する電流密度を0.5mA/cm2としてカットオフ電圧4.3Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。これらの値から、クーロン効率[放電電気容量/充電電気容量×100(%)]を求めた。
 これらの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (20)

  1.  少なくともニッケル塩を含有する水溶液と、中和剤および錯化剤とを、撹拌しながら反応容器に供給して、晶析反応によってニッケル複合水酸化物を製造する方法であって、
     前記反応容器内で生成するニッケル複合水酸化物の二次粒子の体積平均粒径(MV)を、最終的に得られるニッケル複合水酸化物の二次粒子の体積平均粒径(MV)に対する比で、0.2~0.6となるように制御しつつ、ニッケル複合水酸化物スラリーを得る一次晶析工程と、
     前記一次晶析工程で得られた前記スラリーの容量を一定に保持し、かつ、該スラリーの液成分のみを連続的に除去しつつ、前記ニッケル複合水酸化物の二次粒子の体積平均粒径(MV)が8.0μm~50.0μmとなるまで前記晶析反応を継続する二次晶析工程と、
    を備える、ニッケル複合水酸化物の製造方法。
  2.  前記一次晶折工程において、前記スラリーのpHを液温25℃基準で10~13の範囲となるように制御する、請求項1に記載のニッケル複合水酸化物の製造方法。
  3.  前記二次晶析工程において、前記スラリー中のニッケルアンミン錯体の濃度を10mg/L~1500mg/Lの範囲となるように制御する、請求項1に記載のニッケル複合水酸化物の製造方法。
  4.  前記二次晶析工程において、クロスフロー式濾過装置を用いて、前記スラリーの容量を一定に保持する、請求項1に記載のニッケル複合水酸化物の製造方法。
  5.  複数の一次粒子が凝集して形成されたニッケル複合水酸化物の二次粒子からなり、該二次粒子は、体積平均粒径(MV)が8.0μm~50.0μmの範囲にあり、体積粒度分布の関係を示す(D90-D10)/MVが0.5未満である、ニッケル複合水酸化物。
  6.  請求項1に記載の製造方法により得られた、請求項5に記載のニッケル複合水酸化物。
  7.  一般式:Ni1-x-yCoxy(OH)2+A(ただし、0≦x≦0.35、0≦y≦0.35、0≦A≦0.5、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表される組成を有する、請求項5に記載のニッケル複合水酸化物。
  8.  一般式:Ni1-x-yCoxy(OH)2+A(ただし、0≦x≦0.22、0≦y≦0.15、x+y<0.3、0≦A≦0.5、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表される組成を有する、請求項7に記載のニッケル複合水酸化物。
  9.  前記体積平均粒径(MV)が18.0μm~50.0μmの範囲にある、請求項5または6に記載のニッケル複合水酸化物。
  10.  前記体積平均粒径(MV)が8.0μm~20.0μmの範囲にあり、かつ、タップ密度が1.9g/cm3以上である、請求項5または6に記載のニッケル複合水酸化物。
  11.  請求項5~10のいずれかに記載のニッケル複合水酸化物、もしくは、該ニッケル複合水酸化物を酸化雰囲気中、300℃~1000℃の温度で焙焼することにより得られたニッケル複合酸化物を、リチウム化合物と混合してリチウム混合物を形成する混合工程と、このリチウム混合物を酸化性雰囲気中、650℃~1100℃の温度で焼成する焼成工程とを備える、非水系電解質二次電池用正極活物質の製造方法。
  12.  複数の一次粒子が凝集して形成されたニッケル複合酸化物の二次粒子からなり、該二次粒子は、体積平均粒径(MV)が8.0μm~50.0μmの範囲にあり、体積粒度分布の関係を示す(D90-D10)/MVが0.5未満である、非水系電解質二次電池用正極活物質。
  13.  請求項11に記載の製造方法により得られた、請求項12に記載の非水系電解質二次電池用正極活物質。
  14.  複数の一次粒子が凝集して形成されたニッケル複合酸化物の二次粒子からなり、該二次粒子は、体積平均粒径(MV)が8.0μm~20.0μmの範囲にあり、体積粒度分布の関係を示す(D90-D10)/MVが0.5未満であって、かつ、タップ密度が2.2g/cm3以上である、非水系電解質二次電池用正極活物質。
  15.  請求項11に記載の製造方法により得られた、請求項14に記載の非水系電解質二次電池用正極活物質。
  16.  前記二次粒子を構成する一次粒子の平均粒径の標準偏差が10%以下である、請求項14または15に記載の非水系電解質二次電池用正極活物質。
  17.  2032型のコイン電池の正極に用いた場合、その電池のクーロン効率が90%以上である、請求項14または15に記載の非水系電解質二次電池用正極活物質。
  18.  一般式:Li1+uNi1-x-yCoxy2(ただし、-0.05≦u≦0.50、0≦x≦0.35、0≦y≦0.35、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表される組成を有する、請求項12~15のいずれかに記載の非水系電解質二次電池用正極活物質。
  19.  一般式:Li1+uNi1-x-yCoxy2(ただし、-0.05≦u≦0.20、0≦x≦0.22、0≦y≦0.15、x+y<0.3、Mは、Mn、V、Mg、Al、Ti、Mo、Nb、ZrおよびWから選ばれる少なくとも1種の添加元素)で表される組成を有する、請求項18に記載の非水系電解質二次電池用正極活物質。
  20.  請求項12~19のいずれかに記載の非水系電解質二次電池用正極活物質から構成される正極を有する、非水系電解質二次電池。
PCT/JP2013/054595 2012-02-23 2013-02-22 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池 WO2013125703A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13751304.0A EP2818452B1 (en) 2012-02-23 2013-02-22 Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
US14/380,657 US9553312B2 (en) 2012-02-23 2013-02-22 Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
JP2013532010A JP5505565B2 (ja) 2012-02-23 2013-02-22 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
CN201380010517.2A CN104144880B (zh) 2012-02-23 2013-02-22 镍复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法以及非水电解质二次电池
KR1020147026419A KR101644258B1 (ko) 2012-02-23 2013-02-22 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
US15/135,804 US9583764B2 (en) 2012-02-23 2016-04-22 Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
US15/389,387 US9685656B2 (en) 2012-02-23 2016-12-22 Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-038053 2012-02-23
JP2012038053 2012-02-23

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/380,657 A-371-Of-International US9553312B2 (en) 2012-02-23 2013-02-22 Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
US15/135,804 Division US9583764B2 (en) 2012-02-23 2016-04-22 Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
US15/389,387 Division US9685656B2 (en) 2012-02-23 2016-12-22 Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2013125703A1 true WO2013125703A1 (ja) 2013-08-29

Family

ID=49005879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054595 WO2013125703A1 (ja) 2012-02-23 2013-02-22 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池

Country Status (6)

Country Link
US (3) US9553312B2 (ja)
EP (1) EP2818452B1 (ja)
JP (1) JP5505565B2 (ja)
KR (1) KR101644258B1 (ja)
CN (1) CN104144880B (ja)
WO (1) WO2013125703A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470482A (zh) * 2015-12-02 2016-04-06 山东精工电子科技有限公司 一种覆铝涂层式球形镍钴铝酸锂锂离子电池正极材料的制备方法
JP2016153347A (ja) * 2015-02-20 2016-08-25 旭硝子株式会社 遷移金属含有炭酸塩化合物、その製造方法、正極活物質の製造方法、ならびにリチウムイオン二次電池用正極およびリチウムイオン二次電池
EP3100981A1 (en) * 2015-04-28 2016-12-07 Nichia Corporation Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
US10236507B2 (en) 2014-01-31 2019-03-19 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide particles, method for producing same, cathode active material for non-aqueous electrolyte secondary batteries, method for producing same, and non-aqueous electrolyte secondary battery
WO2019117027A1 (ja) * 2017-12-13 2019-06-20 住友金属鉱山株式会社 ニッケル含有水酸化物およびその製造方法
JP2019104657A (ja) * 2017-12-13 2019-06-27 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法
JP2019104654A (ja) * 2017-12-13 2019-06-27 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法
JP2020043009A (ja) * 2018-09-12 2020-03-19 太平洋セメント株式会社 混合正極活物質用オリビン型リチウム系酸化物一次粒子及びその製造方法
RU2718939C2 (ru) * 2015-04-28 2020-04-15 Нития Корпорейшн Частицы сложного гидроксида никеля-кобальта и способ их получения, активный материал положительного электрода для вторичной батареи с безводным электролитом и способ его получения, а также вторичная батарея с безводным электролитом

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101842823B1 (ko) 2011-06-07 2018-03-27 스미토모 긴조쿠 고잔 가부시키가이샤 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
US9958504B2 (en) 2014-06-20 2018-05-01 Duracell U.S. Operations, Inc. Primary alkaline battery with integrated in-cell resistances
WO2017061633A1 (ja) * 2015-10-09 2017-04-13 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および非水系電解質二次電池
JP7088006B2 (ja) * 2016-06-14 2022-06-21 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法
JP6848249B2 (ja) * 2016-07-29 2021-03-24 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102096889B1 (ko) * 2017-03-08 2020-04-03 단국대학교 천안캠퍼스 산학협력단 니켈계 양극 재료 및 이의 제조방법
CN109962237B (zh) * 2017-12-26 2021-08-31 湖南杉杉能源科技股份有限公司 一种镍复合氢氧化物及其制造方法
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
US11152609B2 (en) * 2018-10-20 2021-10-19 Panasonic Corporation Method for synthesizing nickel-cobalt-aluminum electrodes
CN113555612B (zh) * 2020-07-29 2022-11-25 无锡零一未来新材料技术研究院有限公司 锂离子电池补锂添加剂前驱体材料及其制备方法
CN113144660B (zh) * 2021-02-05 2023-03-03 成都思达能环保设备有限公司 一种结晶方法及系统
WO2024033132A1 (en) 2022-08-11 2024-02-15 Basf Se Process for making an(oxy)hydroxide, and (oxy)hydroxides

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165428A (ja) 1993-10-20 1995-06-27 Nikko Rika Kk 水酸化ニッケル粒子の製造方法
JPH08119636A (ja) 1994-10-24 1996-05-14 Nikko Rika Kk 水酸化ニッケル粒子の製造方法
JPH1025117A (ja) 1996-07-09 1998-01-27 Japan Metals & Chem Co Ltd 水酸化ニッケルの製造方法
JPH1029820A (ja) * 1996-07-12 1998-02-03 Nippon Chem Ind Co Ltd Ni−Co系複合水酸化物とその製造方法及びリチウム二次電池用正極活物質原料
JP2005302507A (ja) 2004-04-12 2005-10-27 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP2005336004A (ja) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP2008147068A (ja) * 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP2010536697A (ja) 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末状化合物、その製造方法並びにリチウム二次電池におけるその使用
JP2011105594A (ja) * 2010-12-13 2011-06-02 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP2011105588A (ja) * 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
JP2011116582A (ja) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2133906A1 (en) 1993-10-20 1995-04-21 Kuninobu Makimoto Method for the preparation of nickel hydroxide particles
TW363940B (en) * 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
JP4794866B2 (ja) * 2004-04-08 2011-10-19 パナソニック株式会社 非水電解質二次電池用正極活物質およびその製造方法ならびにそれを用いた非水電解質二次電池
JP2006265086A (ja) * 2005-02-24 2006-10-05 Toyota Motor Corp 水酸化ニッケル粒子の製造方法及び製造装置
DE102006015538A1 (de) * 2006-03-31 2007-10-11 H. C. Starck Gmbh & Co. Kg Vorrichtung und Verfahren zur Herstellung von Verbindungen durch Fällung
JP4211865B2 (ja) * 2006-12-06 2009-01-21 戸田工業株式会社 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2010541166A (ja) * 2007-09-28 2010-12-24 スリーエム イノベイティブ プロパティズ カンパニー カソード組成物の製造方法
JP2010170741A (ja) 2009-01-20 2010-08-05 Panasonic Corp 非水電解質二次電池用正極活物質の製造方法
JP2011015588A (ja) 2009-07-06 2011-01-20 Toshiba Corp 車輌
JP4941617B2 (ja) 2009-12-02 2012-05-30 住友金属鉱山株式会社 ニッケル複合水酸化物粒子および非水系電解質二次電池
JP5638232B2 (ja) * 2009-12-02 2014-12-10 住友金属鉱山株式会社 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165428A (ja) 1993-10-20 1995-06-27 Nikko Rika Kk 水酸化ニッケル粒子の製造方法
JPH08119636A (ja) 1994-10-24 1996-05-14 Nikko Rika Kk 水酸化ニッケル粒子の製造方法
JPH1025117A (ja) 1996-07-09 1998-01-27 Japan Metals & Chem Co Ltd 水酸化ニッケルの製造方法
JPH1029820A (ja) * 1996-07-12 1998-02-03 Nippon Chem Ind Co Ltd Ni−Co系複合水酸化物とその製造方法及びリチウム二次電池用正極活物質原料
JP2005302507A (ja) 2004-04-12 2005-10-27 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP2005336004A (ja) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP2008147068A (ja) * 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP2010536697A (ja) 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末状化合物、その製造方法並びにリチウム二次電池におけるその使用
JP2011105588A (ja) * 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
JP2011116582A (ja) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2011105594A (ja) * 2010-12-13 2011-06-02 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10236507B2 (en) 2014-01-31 2019-03-19 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide particles, method for producing same, cathode active material for non-aqueous electrolyte secondary batteries, method for producing same, and non-aqueous electrolyte secondary battery
JP2016153347A (ja) * 2015-02-20 2016-08-25 旭硝子株式会社 遷移金属含有炭酸塩化合物、その製造方法、正極活物質の製造方法、ならびにリチウムイオン二次電池用正極およびリチウムイオン二次電池
RU2718939C2 (ru) * 2015-04-28 2020-04-15 Нития Корпорейшн Частицы сложного гидроксида никеля-кобальта и способ их получения, активный материал положительного электрода для вторичной батареи с безводным электролитом и способ его получения, а также вторичная батарея с безводным электролитом
EP3100981A1 (en) * 2015-04-28 2016-12-07 Nichia Corporation Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
US10336626B2 (en) 2015-04-28 2019-07-02 Nichia Corporation Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
US11220438B2 (en) 2015-04-28 2022-01-11 Nichia Corporation Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
US11945729B2 (en) 2015-04-28 2024-04-02 Nichia Corporation Positive electrode active material for non-aqueous electrolyte secondary battery comprising lithium transition metal complex oxide, and non-aqueous electrolyte secondary battery
CN105470482A (zh) * 2015-12-02 2016-04-06 山东精工电子科技有限公司 一种覆铝涂层式球形镍钴铝酸锂锂离子电池正极材料的制备方法
WO2019117027A1 (ja) * 2017-12-13 2019-06-20 住友金属鉱山株式会社 ニッケル含有水酸化物およびその製造方法
JP2019104657A (ja) * 2017-12-13 2019-06-27 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法
JP2019104654A (ja) * 2017-12-13 2019-06-27 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法
JPWO2019117027A1 (ja) * 2017-12-13 2020-12-17 住友金属鉱山株式会社 ニッケル含有水酸化物およびその製造方法
JP7220849B2 (ja) 2017-12-13 2023-02-13 住友金属鉱山株式会社 ニッケル含有水酸化物およびその製造方法
JP2020043009A (ja) * 2018-09-12 2020-03-19 太平洋セメント株式会社 混合正極活物質用オリビン型リチウム系酸化物一次粒子及びその製造方法
JP7108504B2 (ja) 2018-09-12 2022-07-28 太平洋セメント株式会社 混合正極活物質用オリビン型リチウム系酸化物一次粒子及びその製造方法

Also Published As

Publication number Publication date
JP5505565B2 (ja) 2014-05-28
US9685656B2 (en) 2017-06-20
JPWO2013125703A1 (ja) 2015-07-30
EP2818452A4 (en) 2015-11-25
EP2818452B1 (en) 2019-05-22
US20150037676A1 (en) 2015-02-05
US9553312B2 (en) 2017-01-24
US9583764B2 (en) 2017-02-28
CN104144880B (zh) 2016-03-30
KR101644258B1 (ko) 2016-07-29
CN104144880A (zh) 2014-11-12
KR20140129244A (ko) 2014-11-06
US20160268605A1 (en) 2016-09-15
US20170104208A1 (en) 2017-04-13
EP2818452A1 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
US11876222B2 (en) Nickel composite hydroxide and manufacturing method thereof, cathode active material for nonaqueos-electrolyte secondary battery and manufacturing method thereof, and nonaqueous-electrolyte secondary battery
US9685656B2 (en) Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
US10109849B2 (en) Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
JP6331983B2 (ja) 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法
JP5877817B2 (ja) 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
JP6252384B2 (ja) ニッケル複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
WO2012131881A1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6252383B2 (ja) マンガンコバルト複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
WO2013094701A1 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6436335B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、およびそれを用いた非水系電解質二次電池用正極活物質の製造方法
JP7224754B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
WO2017119459A1 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7452570B2 (ja) 非水系電解質二次電池用正極活物質
CN113330605A (zh) 镍锰钴复合氢氧化物、镍锰钴复合氢氧化物的制造方法、锂镍锰钴复合氧化物及锂离子二次电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380010517.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013532010

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14380657

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013751304

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147026419

Country of ref document: KR

Kind code of ref document: A