WO2013125011A1 - 電流センサ及び電力変換器 - Google Patents

電流センサ及び電力変換器 Download PDF

Info

Publication number
WO2013125011A1
WO2013125011A1 PCT/JP2012/054426 JP2012054426W WO2013125011A1 WO 2013125011 A1 WO2013125011 A1 WO 2013125011A1 JP 2012054426 W JP2012054426 W JP 2012054426W WO 2013125011 A1 WO2013125011 A1 WO 2013125011A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
light
carrier signal
laser
current sensor
Prior art date
Application number
PCT/JP2012/054426
Other languages
English (en)
French (fr)
Inventor
祐介 瀬尾
薫 鳥居
健太郎 広瀬
直人 菊地
健一 高木
守屋 一成
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to RU2014134445A priority Critical patent/RU2014134445A/ru
Priority to CN201280070326.0A priority patent/CN104136927A/zh
Priority to US14/377,823 priority patent/US20150015248A1/en
Priority to IN6730DEN2014 priority patent/IN2014DN06730A/en
Priority to KR1020147022954A priority patent/KR20140117558A/ko
Priority to PCT/JP2012/054426 priority patent/WO2013125011A1/ja
Priority to DE112012005929.8T priority patent/DE112012005929T5/de
Publication of WO2013125011A1 publication Critical patent/WO2013125011A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • the technology disclosed in this specification relates to a current sensor suitable for measuring an output current of a switching circuit and a power converter including such a current sensor.
  • the current sensor disclosed in this specification uses a magneto-optical element (Magneto-Optical Crystal).
  • the current sensor uses a magneto-optical element as a device that measures current accurately in an extremely short time.
  • the current sensor basically includes a magneto-optical element arranged at a current measurement point, a laser light source that irradiates the magneto-optical element with a laser, and a laser receiver that receives a reflected laser (or transmission laser) by the magneto-optical element. And a calculation unit for calculating a current value at the measurement point from the polarization state of the received laser.
  • the magneto-optical element has a specification for changing the polarization state of reflected light or transmitted light in accordance with the received magnetic field. Accordingly, a magneto-optical element is arranged in a magnetic field that generates a current, the laser is irradiated on the magneto-optical element, and the magnitude of the current can be obtained from the polarization state of the reflected light (or transmitted light).
  • a current sensor using a magneto-optical element has advantages such as being able to measure in a very short time (wide frequency band), non-invasive, and resistant to electromagnetic noise.
  • the phenomenon that the polarization state of transmitted light changes due to the influence of the magnetic field and the polarization plane rotates is called the Faraday effect, and the phenomenon that the polarization state of the reflected light changes is called the magneto-optic Kerr effect (Magneto-Optical Kerr Effect). be called.
  • Patent Document 1 JP-A-6-224727 discloses an application example of such a current sensor.
  • Japanese Patent Application No. 2011-56473 (unpublished at the time of filing this application) also discloses an example of such a current sensor.
  • Patent Document 1 applies a current sensor using the above-described magneto-optical element to a current sensor that measures an output alternating current of an inverter because an inverter of an electric vehicle or a railway generates strong electromagnetic noise. Has proposed.
  • Switching power is one of the causes of electromagnetic noise in power converters including switching circuits as well as inverters.
  • the technology disclosed in this specification also employs a current sensor using a magneto-optical element.
  • the technology disclosed in this specification skillfully utilizes a configuration unique to a switching circuit, and suppresses the influence of noise caused by the switching operation in current measurement.
  • the signal for driving the switching circuit is often a PWM signal (or PAM signal).
  • the PWM signal is generated from a periodic signal called a carrier signal and a signal called a command signal (drive signal).
  • the command signal corresponds to an AC waveform to be output.
  • the controller of the switching circuit compares the carrier signal and the command signal, and generates a variable pulse width signal corresponding to the pulse width, that is, a PWM signal, during which one of the voltages (for example, carrier) is high.
  • the timing at which the switching operation occurs corresponds to the intersection of the carrier signal and the command signal. Then, noise is generated due to the switching operation. Therefore, the technique disclosed in this specification adjusts the laser emission timing so as to avoid the intersection.
  • the laser light source emits light in synchronization with a carrier signal for generating a driving signal for the switching circuit.
  • laser light for current measurement is irradiated at a timing different from the timing of the switching operation.
  • the noise generated at the switching timing does not affect the current measurement value based on such laser light or is small even if it affects it.
  • a command signal having a constant voltage level is compared with the carrier signal, and the laser is irradiated only during a period when the carrier signal is large (or only during a small period).
  • a pulse laser that irradiates the laser during a period in which the carrier signal is large becomes a pulse laser synchronized with the peak of the carrier signal, and further becomes a pulse laser centered on the peak.
  • a pulse laser that irradiates a laser during a period in which the carrier signal is small becomes a pulse laser synchronized with the bottom of the carrier signal, and further becomes a pulse laser centered on the bottom. If such a pulse laser is used, the current can be measured by removing the switching timing, and the influence of noise caused by switching can be eliminated.
  • the pulse laser is triggered near the peak or bottom of the carrier signal. Therefore, it should be noted that, for example, a laser light source that compares a command vibration at a level close to a peak (or bottom) with a carrier signal and generates a pulse for a predetermined time width from the timing of the intersection is also useful.
  • the above current sensor is a technology that uses the characteristics of a switching circuit. Therefore, a power converter including the above-described current sensor and switching circuit is also a novel device disclosed in this specification.
  • an inverter including a current sensor that measures an output AC current of a UVW three-phase by three laser light sources synchronized with one carrier signal is the most typical example of the novel device disclosed in this specification.
  • the current sensor of the embodiment will be described with reference to the drawings.
  • the current sensor is applied to an inverter for driving a motor of a hybrid vehicle.
  • the current sensor is provided in the inverter in order to measure the UVW three-phase output current of the inverter.
  • Fig. 1 shows a block diagram of the drive system of the hybrid vehicle 2.
  • the hybrid vehicle 2 includes a motor 8 and an engine 6 as a driving source for traveling.
  • the output torque of the motor 8 and the output torque of the engine 6 are appropriately distributed / combined by the power distribution mechanism 7 and transmitted to the axle 9 (that is, the wheel).
  • FIG. 1 shows only parts necessary for the description of the present specification, and some parts not related to the description are not shown.
  • Electric power for driving the motor 8 is supplied from the main battery 3.
  • the output voltage of the main battery 3 is 300 volts, for example.
  • the hybrid vehicle 2 is a group of devices (commonly referred to as “auxiliary devices”) driven by a voltage lower than the output voltage of the main battery 3, such as a car navigation system and a room lamp, in addition to the main battery 3.
  • auxiliary devices commonly driven by a voltage lower than the output voltage of the main battery 3, such as a car navigation system and a room lamp, in addition to the main battery 3.
  • Auxiliary battery for supplying power is also provided.
  • the output voltage of the auxiliary battery (that is, the driving voltage of the auxiliary machine) is, for example, 12 volts or 24 volts.
  • the term “main battery” is used for convenience to distinguish from “auxiliary battery”.
  • the main battery 3 is connected to the inverter 5 via the system main relay 4.
  • the system main relay 4 is a switch that connects or disconnects the main battery 3 and the power circuit of the vehicle.
  • the system main relay 4 is switched by a host controller (not shown).
  • the inverter 5 includes a voltage converter circuit 12 that boosts the voltage of the main battery 3 to a voltage suitable for driving the motor (for example, 600 volts), and an inverter circuit 13 that converts the boosted DC power into AC.
  • the output current of the inverter circuit 13 corresponds to the power supplied to the motor 8.
  • the hybrid vehicle 2 can also generate electric power with the motor 8 using the driving force of the engine 6 or the deceleration energy of the vehicle.
  • the inverter circuit 13 converts alternating current into direct current, and the voltage converter circuit 12 steps down to a voltage slightly higher than the main battery 3 and supplies the voltage to the main battery 3.
  • Both the voltage converter circuit 12 and the inverter circuit 13 are circuits mainly including a switching circuit 14 such as an IGBT, and a controller 20 (inverter controller) generates and supplies a control signal (PWM signal) to the switching circuit 14.
  • the switching circuit 14 is configured by an anti-parallel connection of an IGBT and a diode, and the PWM signal is supplied to the gate of the IGBT.
  • the inverter 5 includes a plurality of switching circuits in each of the voltage converter circuit 12 and the inverter circuit 13, but it should be noted that only one switching circuit is denoted by reference numeral “14” in FIG. 1.
  • the controller 20 includes a carrier signal generator 21 and a PWM generator 22.
  • the carrier signal generator 21 generates a triangular wave having a predetermined frequency.
  • the PWM generator 22 compares a motor command signal (motor drive signal) sent from a host controller (not shown) with a carrier signal, and a pulse having a period in which the voltage of the carrier signal is higher than the voltage of the motor command signal as a pulse width. A signal (ie, a PWM signal) is generated.
  • the controller 20 individually generates a PWM signal for each switching circuit. The generated PWM signal is supplied to each switching circuit of the inverter circuit 13.
  • the inverter circuit 13 includes a plurality of switching circuits, there is only one carrier signal.
  • the capacitor C2 is connected to the low voltage side (that is, the main battery side) of the voltage converter circuit 12, and the capacitor C1 is connected to the high voltage side (that is, the inverter circuit side) of the voltage converter circuit 12.
  • the capacitor C2 is connected in parallel with the voltage converter circuit 12, and the capacitor C1 is also connected in parallel with the voltage converter circuit 12.
  • Capacitor C2 constitutes a step-up / step-down circuit together with reactor L1 and a switching circuit. Capacitor C2 temporarily stores the power of main battery 3, and serves as a power source when reactor L1 generates induced electromotive force.
  • Capacitor C2 may be referred to as a filter capacitor.
  • the capacitor C1 is inserted to smooth the current input to the inverter circuit 13, and may be referred to as a smoothing capacitor.
  • the high potential side electric wire of the switching element group of the inverter circuit 13 is referred to as a P line
  • the ground potential side electric wire is referred to as an N line.
  • the capacitor C1 is inserted between the P line and the N line. Since a large current is supplied from the main battery 3 to the motor 8, both the capacitors C2 and C1 have a large capacity.
  • the inverter 5 performs current feedback control in order to control the current supplied to the motor 8. Therefore, the inverter 5 includes a current sensor 30.
  • the current sensor 30 includes one controller 31 (sensor controller) and three sensor bodies 32.
  • the controller 31 receives a carrier signal from the carrier signal generator 21 in the inverter controller 20 and generates a laser drive signal synchronized with the carrier signal.
  • the laser drive signal is a pulse signal synchronized with the carrier signal.
  • Laser drive signals are sent to each of the three sensor bodies 32.
  • the sensor body 32 irradiates the target with a pulse laser based on the laser drive signal and receives the reflected wave.
  • the target is a magneto-optical element provided in the current cable.
  • the sensor body 32 sends a signal indicating the polarization angle of the laser reflected wave to the controller 31.
  • the controller 31 specifies the magnitude of the current based on the signal sent from the sensor main body 32. As shown in FIG. 1, the sensor main body 32 is attached to each of the UVW three-phase outputs of the inverter 5.
  • the configuration of the sensor body 32 will be described.
  • a block diagram of the sensor body 32 is shown in FIG.
  • the sensor main body 32 shown in FIG. 2 measures the current Ir flowing through the bus bar 90 of the U-phase output of the inverter.
  • the controller 31 receives the carrier signal from the carrier signal generator 21 and sends a laser drive signal synchronized with the carrier signal to the laser light source 41.
  • the laser drive signal transmitted by the controller 31 is a pulse signal.
  • the laser light source 41 irradiates a pulse laser based on the laser drive signal generated by the controller 31.
  • the laser drive signal will be described in detail later.
  • the pulse laser emitted from the laser light source 41 passes through the polarizing prism 42 and becomes a linearly polarized laser.
  • the linearly polarized pulse laser is applied to a magneto-optical element 50 (MOC: Magneto-OpticalOptCrystal) disposed along the bus bar 90.
  • a magneto-optical element is an element having a characteristic that its birefringence changes when it receives a magnetic field.
  • the magneto-optical element 50 changes the birefringence according to the strength of the received magnetic field.
  • the polarization state of the passing laser light changes.
  • the polarization angle changes according to the strength of the magnetic field.
  • the magnetic field Hr is generated due to the current Ir flowing through the bus bar 90.
  • the magnetic field strength Hr that is, the magnitude of the current Ir can be measured.
  • the magneto-optical element 50 for example, a Bi-YIG bulk single crystal 48 coated with a dielectric total reflection mirror (DM) 49 may be used. Since the dielectric total reflection mirror 49 is coated, the pulse laser is reflected by the magneto-optical element 50. The reflected laser light passes through the quarter-wave plate 52 and is then separated into a p wave and an s wave by the prism beam splitter 43. Each laser beam is detected by laser detectors 44a and 44b.
  • the intensity difference between the p wave and the s wave corresponds to the polarization angle.
  • the laser detectors 44a and 44b measure the intensity of the p wave and the intensity of the s wave, respectively.
  • the outputs of the laser detectors 44a and 44b are input to the operation amplifier 46, and the difference between the two laser beams is amplified.
  • the difference between the two laser beams corresponds to the magnitude of the magnetic field Hr, that is, the current Ir passing through the bus bar 90.
  • the output of the operation amplifier 46 is sent to the controller 31 via the low pass filter 47. Note that the controller 31 performs a calculation for calculating the current from the output of the operation amplifier 46.
  • the magneto-optical element 50 may be attached to an arbitrary position on the bus bar for measuring the current.
  • the position where the magneto-optical element 50 is attached corresponds to the measurement point. That is, the measurement point can be set at an arbitrary position on the bus bar for measuring the current.
  • FIG. 3 shows the relationship between the output current of the inverter (FIG. 3A), the carrier signal (FIG. 3B), the pulse laser (FIG. 3C), and the measured current (FIG. 3D). It is a graph which shows.
  • FIG. 3B shows the carrier signal Ca and the motor drive command Dr.
  • the motor drive command Dr represents a current waveform to be supplied to the motor.
  • the PWM generator 22 (see FIG. 1) compares the carrier signal Ca and the motor drive command Dr, and generates a PWM signal whose pulse width is a period during which the carrier signal Ca is high.
  • the PWM generator 22 supplies the generated PWM signal to the switching circuit.
  • the switching circuit repeats switching according to the PWM signal, and the current Ir shown in FIG.
  • the switching timing corresponds to the intersection of the carrier signal Ca and the motor drive command Dr, and noise is generated in the output current Ir at this timing (see symbol N in FIG. 3A).
  • the controller 31 of the current sensor 30 generates a laser drive signal from the carrier signal Ca and the reference signal Dd having a constant voltage level (see FIGS. 3B and 3C).
  • the controller 31 compares the carrier signal Ca and the reference signal Dd, and generates a laser drive signal whose pulse width is a period in which the voltage of the carrier signal is higher than the voltage of the reference signal Dd (FIG. 3C).
  • the laser light source 41 (see FIG. 2) irradiates a pulse laser corresponding to the laser drive signal. As apparent from FIG. 3, the pulse laser emitted by the laser light source 41 is synchronized with the carrier signal Ca of the inverter.
  • the pulse laser emitted by the laser light source 41 is a pulse having a predetermined width centered on the peak Pk of the carrier signal Ca.
  • the peak Pk of the carrier signal Ca does not coincide with the switching timing, the laser is irradiated between the switching, and the current is measured.
  • the current is measured within the period during which the pulse laser is irradiated.
  • a symbol Ts in FIG. 3D indicates the timing of measuring the current. As shown in FIG. 3D, the measurement timing Ts of the current Ir is between switching, and the noise N does not affect the current measurement value Id.
  • the sensor main body 32 that measures the V-phase output current and the W-phase output current.
  • the inverter 5 includes three sensor bodies 32 that measure each of the UVW three-phase output currents. Laser drive signals supplied to all sensor bodies are based on one carrier signal Ca. Therefore, the inverter 5 can simultaneously measure the UVW three-phase output current.
  • FIG. 4 shows an output current signal including noise (FIG. 4A), a carrier signal (FIG. 4B), a pulse laser (FIG. 4C), and a measured current value (FIG. 4D It is a graph which shows another example of the relationship of)).
  • the controller 31 generates a laser drive signal using a low level reference signal Dd.
  • the controller 31 compares the carrier signal Ca and the reference signal Dd, and generates a laser drive signal whose pulse width is a period during which the voltage of the carrier signal is lower than the voltage of the reference signal Dd (FIG. 3C )).
  • the PWM signal is a pulse signal determined at the intersection of the carrier signal Ca and the motor drive command Dr, and the intersection (that is, the switching timing) is the bottom Btm of the carrier signal Ca.
  • a current sensor that employs a pulse laser synchronized with the bottom Btm of the carrier signal Ca can measure the current at a timing other than the timing at which switching noise occurs (see FIG. 4D).
  • the laser light source 41 irradiates a pulse laser having a predetermined width centered on the bottom Btm of the carrier signal Ca. The width of the pulse laser is determined by the level of the reference signal Dd.
  • the laser light source 41 irradiates a pulse laser synchronized with the carrier signal.
  • the width Pw of the pulse laser is determined by the level of the reference signal Dd.
  • the width Pw of the pulse laser is desirably set as follows.
  • FIG. 5 is a graph showing the relationship between the carrier signal Ca (FIG. 5A), the pulse laser (FIG. 5B), and the current measurement timing Ts (FIG. 5C).
  • Reference numeral Ta in FIG. 5B indicates the rising timing of the pulse laser. At this timing Ta, the pulse laser starts to be irradiated. Further, at the timing Ta, the laser detectors 44a and 44b start operating.
  • the laser detectors 44a and 44b include an AD converter that digitizes and captures the intensity of the laser. Generally, the AD converter takes a little time to start. A symbol dT in FIG. 5C indicates the activation delay time. The delay time is about 0.01 msec to 0.1 msec, and it is necessary that the laser is irradiated during the delay time. As described above, the pulse width Pw of the pulse laser depends on the level of the reference signal Dd. The pulse width Pw of the pulse laser is desirably set to a time longer than the delay time dT of the laser detector.
  • the laser light source 41 irradiates a pulse laser, it has a longer life than a continuous laser. Moreover, since the laser light source 41 irradiates a pulse laser, the calorific value is smaller than that of the continuous laser.
  • the current sensor for measuring the output current of the inverter has been described.
  • the technique disclosed in this specification is characterized by irradiating a pulse laser at a timing other than the switching timing.
  • the technology disclosed in this specification is not limited to an inverter, and can be widely applied to a power converter having a switching circuit.
  • the voltage converter circuit 12 also includes a switching circuit. Therefore, the technique disclosed in this specification is also effective when measuring the current at the output of the voltage converter circuit 12 (point Q in FIG. 1).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inverter Devices (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

 スイッチングノイズの影響を抑制した電流計測技術を提供する。 本明細書が開示する技術は、スイッチング回路の出力電流を計測する電流センサである。電流センサは、電流の計測ポイントに配置した磁気光学素子と、磁気光学素子に光を照射する光源と、磁気光学素子の透過光、または、反射光を受信する光受信器を備える。光源は、スイッチング回路のキャリア信号に同期して光を照射する。キャリア信号に同期して光を照射し、その光で電流を計測する。キャリア信号に同期させるので、キャリア信号に基づいて生成されるPWM信号に起因するスイッチングタイミング以外で電流を計測することができる。

Description

電流センサ及び電力変換器
 本明細書が開示する技術は、スイッチング回路の出力電流の計測に適した電流センサと、そのような電流センサを含む電力変換器に関する。本明細書が開示する電流センサは、磁気光学素子(Magneto-Optical Crystal)を利用する。
 極めて短時間に精度良く電流を計測するデバイスに、磁気光学素子を用いた電流センサがある。その電流センサは、基本的に、電流の計測ポイントに配置した磁気光学素子と、磁気光学素子にレーザを照射するレーザ光源と、磁気光学素子による反射レーザ(あるいは、透過レーザ)を受信するレーザ受信器と、受信したレーザの偏光状態から計測ポイントにおける電流値を算出する演算部で構成されている。
 磁気光学素子は、受けている磁界に応じて反射光あるいは透過光の偏光状態を変化させる特定を有している。従って、電流が発する磁界内に磁気光学素子を配置し、その磁気光学素子にレーザを照射し、反射光(あるいは透過光)の偏光状態から電流の大きさを求めることができる。磁気光学素子を使った電流センサは、極めて短時間で計測できること(周波数帯域が広いこと)、非侵襲であること、電磁ノイズに強いこと、などの利点がある。なお、磁界の影響によって透過光の偏光状態が変化し、偏光面が回転する現象はファラデー効果と呼ばれ、反射光の偏光状態が変化する現象は磁気光学カー効果(Magneto-Optical Kerr Effect)と呼ばれる。
 例えば、特開平6-224727号公報(特許文献1)、そのような電流センサの適用例が開示されている。また、特願2011-56473号(本願出願時は未公開)にも、そのような電流センサの一例が開示されている。特に、特許文献1は、電気自動車や鉄道のインバータが強い電磁ノイズを発生することを理由に、インバータの出力交流電流を計測する電流センサに上記の磁気光学素子を使った電流センサを適用することを提案している。
 インバータに限らず、スイッチング回路を含む電力変換器は、スイッチング動作が電磁ノイズの原因の一つである。本明細書が開示する技術も、磁気光学素子を利用した電流センサを採用する。本明細書が開示する技術は、スイッチング回路に特有の構成を巧みに利用し、電流計測においてスイッチング動作に起因するノイズの影響を抑制する。
 スイッチング回路を駆動する信号は、多くの場合PWM信号(あるいはPAM信号)である。PWM信号は、キャリア信号と呼ばれる周期信号と、指令信号(駆動信号)と呼ばれる信号から生成される。指令信号は、出力させたい交流波形に相当する。スイッチング回路のコントローラは、キャリア信号と指令信号を比較し、いずれか一方(例えばキャリア)の電圧が高い期間がパルス幅に相当する可変パルス幅の信号、すなわちPWM信号を生成する。ここで、スイッチング動作が生じるタイミングは、キャリア信号と指令信号の交点に相当する。そして、スイッチング動作に起因してノイズが発生する。そこで、本明細書が開示する技術は、その交点を避けるようにレーザの発射タイミングを調整する。具体的には、本明細書が開示する電流センサでは、レーザ光源が、スイッチング回路の駆動信号を生成するためのキャリア信号に同期して光を照射する。そのように構成することによって、スイッチング動作のタイミングと異なるタイミングで電流計測のためのレーザ光が照射される。スイッチングタイミングで発生するノイズは、そのようなレーザ光に基づく電流計測値には影響しないか、影響してもわずかである。
 キャリア信号に同期したパルスレーザを発生させるには、例えば、電圧レベルが一定の指令信号とキャリア信号を比較し、キャリア信号が大きい期間だけ(あるいは小さい期間だけ)レーザを照射するようにすればよい。キャリア信号が大きい期間にレーザを照射するパルスレーザは、キャリア信号のピークに同期したパルスレーザとなり、さらには、ピークを中心とするパルスレーザとなる。逆に、キャリア信号が小さい期間にレーザを照射するパルスレーザは、キャリア信号のボトムに同期したパルスレーザとなり、さらには、ボトムを中心とするパルスレーザとなる。そのようなパルスレーザを用いれば、スイッチングタイミングを外して電流を計測することができ、スイッチングに起因するノイズの影響を排除できる。
 なお、キャリア信号のピーク付近、あるいは、ボトム付近をトリガとしたパルスレーザであれば上記の利点を得ることができる。それゆえ、例えば、ピーク(あるいはボトム)に近いレベルの指令振動とキャリア信号を比較し、その交点のタイミングから所定の時間幅だけパルスを発生するレーザ光源も有用であることに留意されたい。
 キャリア信号を利用する利点は他にもある。すでにあるキャリア信号を利用するので、パルスレーザを生成するための周期的なトリガ信号を別途に用意する必要がない。連続レーザではなく、パルスレーザを用いることで、レーザ光源の寿命が伸びる。また、パルスレーザは連続レーザよりも発熱量が小さい。電流センサをインバータの3相交流電流の計測に用いる場合、一つのキャリア信号に基づいて3個のパルスレーザを生成することによって、3つの交流信号を同じタイミングで計測することができる。
 上記の電流センサは、スイッチング回路の特性を利用した技術である。そえゆえ、上記の電流センサとスイッチング回路を備えた電力変換器も本明細書が開示する新規なデバイスである。特に、一つのキャリア信号に同期した3個のレーザ光源によってUVW3相の出力交流電流を計測する電流センサを備えたインバータは、本明細書が開示する新規なデバイスの最も典型的な例である。
 本明細書が開示する技術の詳細、及び、さらなる改良は、発明の実施の形態で説明する。
ハイブリッド車の駆動系のブロック図である。 電流センサのブロック図である。 ノイズを含む出力電流信号と、キャリア信号と、パルスレーザと、計測した電流値の関係の一例を示すグラフである。 ノイズを含む出力電流信号と、キャリア信号と、パルスレーザと、計測した電流値の関係の別の一例を示すグラフである。 ADコンバータの起動遅れの補償を説明する図である。
 図面を参照して実施例の電流センサを説明する。本実施例は、電流センサをハイブリッド車のモータ駆動用のインバータに適用したものである。電流センサは、インバータのUVW3相の出力電流を計測するためにインバータに備えられている。
 図1にハイブリッド車2の駆動系のブロック図を示す。ハイブリッド車2は、走行用の駆動源として、モータ8とエンジン6を備えている。モータ8の出力トルクとエンジン6の出力トルクは、動力分配機構7で適宜に分配/合成され、車軸9(即ち車輪)へ伝達される。なお、図1は、本明細書の説明に要する部品だけを描いてあり、説明に関係のない一部の部品は図示を省略していることに留意されたい。
 モータ8を駆動するための電力はメインバッテリ3から供給される。メインバッテリ3の出力電圧は例えば300ボルトである。なお、図示を省略しているが、ハイブリッド車2は、メインバッテリ3の他に、カーナビやルームランプなど、メインバッテリ3の出力電圧よりも低い電圧で駆動するデバイス群(通称「補機」と呼ばれる)に電力を供給するための補機バッテリも備える。補機バッテリの出力電圧(即ち、補機の駆動電圧)は例えば12ボルトや24ボルトである。「メインバッテリ」との呼称は、「補機バッテリ」と区別するための便宜上のものである。
 メインバッテリ3は、システムメインリレー4を介してインバータ5に接続される。システムメインリレー4は、メインバッテリ3と車両の電力回路を接続したり切断したりするスイッチである。システムメインリレー4は、上位コントローラ(不図示)によって切り換えられる。
 インバータ5は、メインバッテリ3の電圧をモータ駆動に適した電圧(例えば600ボルト)まで昇圧する電圧コンバータ回路12と、昇圧後の直流電力を交流に変換するインバータ回路13を含む。インバータ回路13の出力電流が、モータ8への供給電力に相当する。なお、ハイブリッド車2は、エンジン6の駆動力、あるいは、車両の減速エネルギを利用してモータ8で発電することもできる。モータ8が発電する場合、インバータ回路13が交流を直流に変換し、さらに、電圧コンバータ回路12がメインバッテリ3よりも僅かに高い電圧まで降圧し、メインバッテリ3へ供給する。電圧コンバータ回路12とインバータ回路13はともにIGBTなどのスイッチング回路14を主とする回路であり、スイッチング回路14への制御信号(PWM信号)は、コントローラ20(インバータコントローラ)が生成し、供給する。なお、具体的には、スイッチング回路14は、IGBTとダイオードの逆並列接続で構成されており、PWM信号は、IGBTのゲートに供給される。また、インバータ5は、電圧コンバータ回路12とインバータ回路13の夫々に複数のスイッチング回路を備えるが、図1では一つのスイッチング回路にのみ符号「14」を付していることに留意されたい。
 コントローラ20は、キャリア信号発生器21と、PWM発生器22を含む。キャリア信号発生器21は、予め定められた周波数の三角波を生成する。PWM発生器22は、上位コントローラ(不図示)から送られるモータ指令信号(モータ駆動信号)とキャリア信号を比較し、キャリア信号の電圧がモータ指令信号の電圧よりも高い期間をパルス幅として有するパルス信号(即ちPWM信号)を生成する。コントローラ20は、各スイッチング回路に対して個別にPWM信号を生成する。生成されたPWM信号はインバータ回路13の各スイッチング回路に供給される。
 インバータ回路13は複数のスイッチング回路を備えるが、キャリア信号は一つであることに留意されたい。
 電圧コンバータ回路12の低電圧側(即ちメインバッテリ側)にはコンデンサC2が接続されており、電圧コンバータ回路12の高電圧側(即ちインバータ回路側)にはコンデンサC1が接続されている。コンデンサC2は電圧コンバータ回路12と並列に接続されており、コンデンサC1も電圧コンバータ回路12と並列に接続されている。コンデンサC2は、リアクトルL1及びスイッチング回路とともに昇圧/降圧回路を構成する。コンデンサC2は、メインバッテリ3の電力を一時的に蓄積し、リアクトルL1が誘導起電力を発生するときの電力源となる。コンデンサC2は、フィルタコンデンサと呼ばれることがある。コンデンサC1は、インバータ回路13に入力される電流を平滑化するために挿入されており、平滑コンデンサと呼ばれることがある。なお、インバータ回路13のスイッチング素子群の高電位側の電線をP線と称し、グランド電位側の電線をN線と称する。コンデンサC1は、P線とN線の間に挿入されている。メインバッテリ3からモータ8へは大電流が供給されるので、コンデンサC2、コンデンサC1ともに大容量である。
 インバータ5は、モータ8へ供給する電流を制御するため、電流フィードバック制御を行う。そのため、インバータ5は電流センサ30を備えている。電流センサ30は、一つのコントローラ31(センサコントローラ)と3つのセンサ本体32で構成される。コントローラ31は、インバータコントローラ20内のキャリア信号発生器21からキャリア信号を受け、そのキャリア信号に同期したレーザ駆動信号を生成する。レーザ駆動信号は、キャリア信号に同期したパルス信号である。レーザ駆動信号は3つのセンサ本体32の夫々に送られる。センサ本体32は、レーザ駆動信号に基づいてパルスレーザをターゲットに照射し、その反射波を受信する。ターゲットは、電流ケーブルに備えられた磁気光学素子である。センサ本体32は、レーザ反射波の偏光角を示す信号をコントローラ31へ送る。コントローラ31は、センサ本体32から送られた信号に基づき、電流の大きさを特定する。図1に示すように、センサ本体32は、インバータ5のUVW3相出力の夫々に取り付けられている。
 センサ本体32の構成について説明する。センサ本体32のブロック図を図2に示す。図2に示すセンサ本体32は、インバータのU相出力のバスバ90に流れる電流Irを計測する。前述したように、コントローラ31は、キャリア信号発生器21からキャリア信号を受け、キャリア信号に同期したレーザ駆動信号をレーザ光源41に送る。コントローラ31が送信するレーザ駆動信号は、パルス信号である。レーザ光源41は、コントローラ31が生成したレーザ駆動信号に基づき、パルスレーザを照射する。レーザ駆動信号については後に詳しく説明する。レーザ光源41から照射されたパルスレーザは、偏光プリズム42を通り、直線偏光レーザとなる。直線偏光のパルスレーザは、バスバ90に沿って配置された磁気光学素子50(MOC:Magneto-Optical Crystal)に照射される。磁気光学素子は、磁界を受けると複屈折率が変化する特性を有する素子である。磁気光学素子50は、受けた磁界の強さに応じて複屈折率を変化させる。複屈折率が変化することによって、通過レーザ光の偏光状態が変化する。典型的には、磁界の強さに応じて偏光角が変化する。ここで、磁界Hrは、バスバ90を流れる電流Irに起因して生じる。従って磁気光学素子50を通過したレーザ光の偏光状態(偏光角)を計測することによって、磁界の強さHr、即ち、電流Irの大きさが計測できる。磁気光学素子50としては、例えば、Bi-YIGバルク単結晶48の背面に誘電体全反射ミラー(DM)49をコーティングしたものを用いればよい。誘電体全反射ミラー49をコーティングしているので、パルスレーザは磁気光学素子50で反射する。反射レーザ光は、1/4波長板52を通過した後、プリズムビームスプリッタ43でp波とs波に分離される。それぞれのレーザ光は、レーザ検出器44a、44bで検出される。詳しい説明は省略するが、p波とs波の強度差が偏光角に相当する。レーザ検出器44a、44bは、それぞれ、p波の強度とs波の強度を計測する。レーザ検出器44a、44bの出力は作動アンプ46に入力され、2本のレーザ光の差が増幅される。2本のレーザ光の差が磁界Hrの大きさ、即ち、バスバ90を通る電流Irに相当する。作動アンプ46の出力はローパスフィルタ47を介してコントローラ31へ送られる。なお、作動アンプ46の出力から電流を算出する演算はコントローラ31が行う。また、磁気光学素子50は、電流を計測するバスバ上の任意の位置に取り付けてよい。磁気光学素子50が取り付けられた位置が計測ポイントに相当する。即ち、計測ポイントは、電流を計測するバスバ上の任意の位置に定めることができる。
 レーザ光源41はインバータ5のキャリア信号に同期したパルスレーザを照射する。その利点を説明する。図3は、インバータの出力電流(図3(A))、キャリア信号(図3(B))、パルスレーザ(図3(C))、及び、計測した電流(図3(D))の関係を示すグラフである。図3(B)は、キャリア信号Caと、モータ駆動指令Drを示している。モータ駆動指令Drは、モータに供給したい電流波形を表す。PWM発生器22(図1参照)は、キャリア信号Caとモータ駆動指令Drを比較し、キャリア信号Caが高い期間をパルス幅とするPWM信号を生成する。PWM発生器22は、生成したPWM信号をスイッチング回路に供給する。スイッチング回路はPWM信号に応じてスイッチングを繰り返し、図3(A)に示す電流Irが出力される。スイッチングのタイミングは、キャリア信号Caとモータ駆動指令Drの交点に相当し、このタイミングで出力電流Irにノイズが生じる(図3(A)の記号N参照)。
 他方、電流センサ30のコントローラ31は、キャリア信号Caと、電圧レベル一定の参照信号Ddから、レーザの駆動信号を生成する(図3(B)、(C)参照)。コントローラ31は、キャリア信号Caと参照信号Ddを比較し、キャリア信号の電圧が参照信号Ddの電圧よりも高い期間をパルス幅とするレーザ駆動信号を生成する(図3(C))。レーザ光源41(図2参照)は、レーザ駆動信号に応じたパルスレーザを照射する。図3から明らかなとおり、レーザ光源41が照射するパルスレーザは、インバータのキャリア信号Caに同期している。より詳しくは、レーザ光源41が照射するパルスレーザは、キャリア信号CaのピークPkを中心とする所定幅のパルスとなる。キャリア信号CaのピークPkがスイッチングタイミングと一致することはなく、スイッチングとスイッチングの間でレーザが照射され、電流が計測される。パルスレーザが照射されている期間内で、電流が計測される。図3(D)の符号Tsが、電流を計測するタイミングを示している。図3(D)に示すように、電流Irの計測タイミングTsは、スイッチングとスイッチングの間となり、電流計測値IdにはノイズNが影響しない。V相出力電流とW相出力電流を計測するセンサ本体32についても同様である。
 インバータ5は、UVW3相出力電流の夫々を計測する3個のセンサ本体32を備えている。全てのセンサ本体に供給されるレーザ駆動信号は一つのキャリア信号Caに基づいている。それゆえ、インバータ5は、UVW3相出力電流を同時に計測することができる。
 図3の例は、レーザ光源41がキャリア信号Caのピークタイミングを含むパルスレーザを照射した。同じ利点は、キャリア信号Caのボトムのタイミングを含むパルスレーザであっても得られる。図4は、ノイズを含む出力電流信号(図4(A))と、キャリア信号(図4(B))と、パルスレーザ(図4(C))と、計測した電流値(図4(D))の関係の別の一例を示すグラフである。図4の例では、コントローラ31は、低いレベルの参照信号Ddを使ってレーザ駆動信号を生成する。具体的には、コントローラ31は、キャリア信号Caと参照信号Ddを比較し、キャリア信号の電圧が参照信号Ddの電圧よりも低い期間をパルス幅とするレーザ駆動信号を生成する(図3(C))。他方、図4(B)に示すように、PWM信号は、キャリア信号Caとモータ駆動指令Drとの交点で定まるパルス信号であり、その交点(即ちスイッチングタイミング)が、キャリア信号CaのボトムBtmと一致することはない。それゆえ、キャリア信号CaのボトムBtmに同期したパルスレーザを採用する電流センサは、スイッチングノイズが生じるタイミング以外のタイミングで電流を計測することができる(図4(D)参照)。より詳細には、図4の例では、レーザ光源41は、キャリア信号CaのボトムBtmを中心とする所定幅のパルスレーザを照射する。パルスレーザの幅は、参照信号Ddのレベルで定まる。
 実施例で示した技術の留意点を述べる。図3、図4で示したように、レーザ光源41は、キャリア信号に同期したパルスレーザを照射する。パルスレーザの幅Pwは、参照信号Ddのレベルで定められる。パルスレーザの幅Pwは、次のとおりに設定することが望ましい。図5は、キャリア信号Ca(図5(A))と、パルスレーザ(図5(B))と、電流計測タイミングTs(図5(C))の関係を示すグラフである。図5(B)の符号Taは、パルスレーザの立ちあがりタイミングを示している。このタイミングTaで、パルスレーザが照射され始める。また、このタミングTaで、レーザ検知器44a、44bが動作を開始する。レーザ検知器44a、44bは、レーザの強さをデジタイズして取り込むAD変換器を含んでおり、一般に、AD変換器は起動に僅かに時間を要する。図5(C)の符号dTが、起動の遅れ時間を示している。遅れ時間は、0.01msec~0.1msec程度であるが、その遅れ時間の間、レーザが照射されていることが必要である。前述したように、パルスレーザのパルス幅Pwは、参照信号Ddのレベルに依存する。パルスレーザのパルス幅Pwは、レーザ検知器の遅れ時間dTよりも長い時間に設定されることが望ましい。
 電流センサ30のその他の利点を説明する。レーザ光源41は、パルスレーザを照射するので、連続レーザよりも寿命が長い。また、レーザ光源41は、パルスレーザを照射するので、連続レーザよりも発熱量が小さい。
 実施例では、インバータの出力電流を計測する電流センサを説明した。本明細書が開示する技術は、スイッチングタイミング以外のタイミングでパルスレーザを照射することを特徴とする。本明細書が開示する技術は、インバータに限られず、スイッチング回路を有する電力変換器に広く適用することができる。例えば、図1に示したインバータ5において、電圧コンバータ回路12もスイッチング回路を備えている。それゆえ、電圧コンバータ回路12の出力(図1のポイントQ)の電流を計測する場合も本明細書が開示する技術が有効である。
 本発明の代表的かつ非限定的な具体例について、図面を参照して詳細に説明した。この詳細な説明は、本発明の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本発明の範囲を限定することを意図したものではない。また、開示された追加的な特徴ならびに発明は、さらに改善された電流センサや電力変換器を提供するために、他の特徴や発明とは別に、又は共に用いることができる。
 また、上記の詳細な説明で開示された特徴や工程の組み合わせは、最も広い意味において本発明を実施する際に必須のものではなく、特に本発明の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記の代表的な具体例の様々な特徴、ならびに、独立及び従属請求項に記載されるものの様々な特徴は、本発明の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。
 本明細書及び/又は請求の範囲に記載された全ての特徴は、実施例及び/又は請求の範囲に記載された特徴の構成とは別に、出願当初の開示ならびに請求の範囲に記載された特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびに請求の範囲に記載された特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (6)

  1.  スイッチング回路の出力電流を計測する電流センサであり、
     電流の計測ポイントに配置した磁気光学素子と、
     磁気光学素子に光を照射する光源と、
     磁気光学素子の透過光、または、反射光を受信する光受信器と、
     受信した光の偏光状態から計測ポイントにおける電流値を算出する演算部と、
    を備えており、
     光源が、スイッチング回路のキャリア信号に同期して光を照射することを特徴とする電流センサ。
  2.  光源は、キャリア信号のピーク又はボトムに同期したパルス光を照射することを特徴とする請求項1に記載の電流センサ。
  3.  光源は、キャリア信号のピーク又はボトムのタイミングを含むパルス光を照射することを特徴とする請求項2に記載の電流センサ。
  4.  光源は、キャリア信号のピーク又はボトムのタイミングを中心とするパルス光を照射することを特徴とする請求項3に記載の電流センサ。
  5.  請求項1から4のいずれか1項に記載のスイッチング回路と電流センサを備えた電力変換器。
  6.  請求項5の電力変換器であって、一つのキャリア信号に同期した3個の光源によってUVW3相の出力交流電流を計測する電流センサを備えたインバータ。
PCT/JP2012/054426 2012-02-23 2012-02-23 電流センサ及び電力変換器 WO2013125011A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2014134445A RU2014134445A (ru) 2012-02-23 2012-02-23 Датчик тока и преобразователь мощности
CN201280070326.0A CN104136927A (zh) 2012-02-23 2012-02-23 电流传感器及电力转换器
US14/377,823 US20150015248A1 (en) 2012-02-23 2012-02-23 Current sensor and electric power converter
IN6730DEN2014 IN2014DN06730A (ja) 2012-02-23 2012-02-23
KR1020147022954A KR20140117558A (ko) 2012-02-23 2012-02-23 전류 센서 및 전력 변환기
PCT/JP2012/054426 WO2013125011A1 (ja) 2012-02-23 2012-02-23 電流センサ及び電力変換器
DE112012005929.8T DE112012005929T5 (de) 2012-02-23 2012-02-23 Stromsensor und elektrischer Energiewandler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054426 WO2013125011A1 (ja) 2012-02-23 2012-02-23 電流センサ及び電力変換器

Publications (1)

Publication Number Publication Date
WO2013125011A1 true WO2013125011A1 (ja) 2013-08-29

Family

ID=49005231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054426 WO2013125011A1 (ja) 2012-02-23 2012-02-23 電流センサ及び電力変換器

Country Status (7)

Country Link
US (1) US20150015248A1 (ja)
KR (1) KR20140117558A (ja)
CN (1) CN104136927A (ja)
DE (1) DE112012005929T5 (ja)
IN (1) IN2014DN06730A (ja)
RU (1) RU2014134445A (ja)
WO (1) WO2013125011A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2014134445A (ru) * 2012-02-23 2016-04-10 Тойота Дзидося Кабусики Кайся Датчик тока и преобразователь мощности
DE102015006449B4 (de) 2015-05-18 2022-10-13 Michael Franke Verfahren zur Messung elektrischer Ströme
JP6439771B2 (ja) * 2016-10-19 2018-12-19 トヨタ自動車株式会社 駆動装置および自動車
US11196356B2 (en) * 2018-02-15 2021-12-07 Hitachi Astemo, Ltd. Power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380774A (ja) * 1986-09-22 1988-04-11 Hitachi Ltd Pwmインバータの電流制御装置
JPH06224727A (ja) * 1993-01-27 1994-08-12 Mazda Motor Corp 電力制御信号検出装置
JP2004101489A (ja) * 2002-09-13 2004-04-02 Hitachi Ltd 電流計測方法および電流計測装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119367A (en) * 1976-03-31 1977-10-06 Ono Yutaka Method and apparatus for detecting voltage using phototransformer
US4683421A (en) * 1985-03-29 1987-07-28 Westinghouse Electric Corp. Drift compensation technique for a magneto-optic current sensor
GB2190754A (en) * 1986-04-11 1987-11-25 Hitachi Ltd Load current detecting device for pulse width modulation inverter
US4698497A (en) * 1986-05-22 1987-10-06 Westinghouse Electric Corp. Direct current magneto-optic current transformer
US4694243A (en) * 1986-05-28 1987-09-15 Westinghouse Electric Corp. Optical measurement using polarized and unpolarized light
US5243293A (en) * 1989-05-29 1993-09-07 Ngk Insulators, Ltd. System utilizing optical current sensors for detecting fault location in substation
US5631559A (en) * 1993-03-05 1997-05-20 Northeastern University Method and apparatus for performing magnetic field measurements using magneto-optic kerr effect sensors
JP2818302B2 (ja) * 1993-10-01 1998-10-30 シーメンス アクチエンゲゼルシヤフト 温度補償付きの電気交流量の測定方法および装置
DE4446425A1 (de) * 1994-12-23 1996-06-27 Siemens Ag Verfahren und Anordnung zum Messen eines Magnetfeldes unter Ausnutzung des Faraday-Effekts mit Kompensation von Intensitätsänderungen und Temperatureinflüssen
CA2255762C (en) * 1996-05-31 2002-06-25 Rensselaer Polytechnic Institute Electro-optical and magneto-optical sensing apparatus and method for characterizing free-space electromagnetic radiation
US5973492A (en) * 1997-04-16 1999-10-26 Ma; Xianyun High accuracy optical current transducer thta eliminates birefringence
JP3290618B2 (ja) * 1997-11-28 2002-06-10 松下電器産業株式会社 光センサ装置およびそれに用いられる信号処理回路
WO2000007032A2 (de) * 1998-07-29 2000-02-10 Siemens Aktiengesellschaft Polarimetrischer sensor zur optischen erfassung einer messgrösse sowie verwendung des polarimetrischen sensors
US6542647B2 (en) * 2000-10-27 2003-04-01 Matsushita Electric Industrial Co., Ltd. Optical signal transmission system and magneto-optical modulator designed to establish modulation over wide range for use in the same
US6476956B1 (en) * 2001-02-28 2002-11-05 Teracomm Research, Inc. Fast optical modulator
WO2003044544A1 (en) * 2001-11-15 2003-05-30 Airak, Inc. Sensor for optically measuring magnetic field
EP1491903A1 (en) * 2003-05-12 2004-12-29 Kasmatic Innovation A/S Fiberoptic Faraday effect sensor
JP4568133B2 (ja) * 2004-03-30 2010-10-27 三洋電機株式会社 半導体レーザ装置および光装置
EP1884787A1 (en) * 2006-07-10 2008-02-06 S. THIIM ApS A current sensor for measuring electric current in a conductor and a short circuit indicator system comprising such a sensor
US8692539B2 (en) * 2006-11-30 2014-04-08 Powersense A/S Faraday effect current sensor
US8202053B2 (en) * 2008-03-19 2012-06-19 General Electric Company Micro-electromechanical current sensing apparatus
EP2128631A1 (en) * 2008-05-30 2009-12-02 PowerSense A/S Faraday optical current sensor arrangement
EP2148210A1 (en) * 2008-07-21 2010-01-27 PowerSense A/S 3-phase Faraday optical current sensor assembly
CN101762795B (zh) * 2009-12-31 2013-01-23 上海舜宇海逸光电技术有限公司 光纤磁光探测系统和方法
RU2014134445A (ru) * 2012-02-23 2016-04-10 Тойота Дзидося Кабусики Кайся Датчик тока и преобразователь мощности

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380774A (ja) * 1986-09-22 1988-04-11 Hitachi Ltd Pwmインバータの電流制御装置
JPH06224727A (ja) * 1993-01-27 1994-08-12 Mazda Motor Corp 電力制御信号検出装置
JP2004101489A (ja) * 2002-09-13 2004-04-02 Hitachi Ltd 電流計測方法および電流計測装置

Also Published As

Publication number Publication date
DE112012005929T5 (de) 2014-12-24
RU2014134445A (ru) 2016-04-10
CN104136927A (zh) 2014-11-05
KR20140117558A (ko) 2014-10-07
US20150015248A1 (en) 2015-01-15
IN2014DN06730A (ja) 2015-05-22

Similar Documents

Publication Publication Date Title
US9515484B2 (en) System and method for reducing reactive current on a common DC bus with multiple inverters
JP6045765B1 (ja) 電力変換装置およびこれを適用した車両駆動システム
WO2013125011A1 (ja) 電流センサ及び電力変換器
US9906167B2 (en) Power converter with selective dead-time insertion
MX2014003618A (es) Dispositivo y metodo de control para motor electrico, y sistema de accionamiento de vehiculo y motor en el cual el dispositivo y metodo de control son aplicados.
WO2008001949A1 (fr) Dispositif d'entraînement de moteur
US20130279216A1 (en) Compensating ripple on pulse with modulator outputs
CN102113203A (zh) 交流电动机的控制装置及控制方法
JP5777814B2 (ja) 電気車の制御装置
US20200220488A1 (en) Power conversion device and electric power steering device
JPWO2019008676A1 (ja) インバータ装置、及び、電動パワーステアリング装置
US20170144567A1 (en) Power converting apparatus for vehicles
US9960726B1 (en) Electric drive power converter with low distortion dead-time insertion
CN111713012B (zh) 马达控制装置以及使用它的电动车辆系统
US20230008549A1 (en) Motor Control Device, Motor Control Method, Hybrid System, Boost Converter System and Electric Power Steering System
KR20100055281A (ko) 철도차량용 npc형 3-레벨 인버터의 과변조 제어 방법
JP5375051B2 (ja) インバータの放電装置
US9099952B2 (en) Apparatus and method for controlling switching devices for DC motor
JP2011091952A (ja) 電源システム
JPWO2013125011A1 (ja) 電流センサ及び電力変換器
JP5251026B2 (ja) 電力変換装置の制御装置及び制御方法
JP4507918B2 (ja) 単電源電圧計測回路
JP2002013566A (ja) 電動ディスクブレーキ装置
JP2009027870A (ja) ハイブリッド車用電機システム制御装置
JP4985626B2 (ja) 正弦波発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869065

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014500819

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377823

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147022954

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120059298

Country of ref document: DE

Ref document number: 112012005929

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2014134445

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 12869065

Country of ref document: EP

Kind code of ref document: A1