WO2013121718A1 - ウェーハの両面研磨方法 - Google Patents

ウェーハの両面研磨方法 Download PDF

Info

Publication number
WO2013121718A1
WO2013121718A1 PCT/JP2013/000482 JP2013000482W WO2013121718A1 WO 2013121718 A1 WO2013121718 A1 WO 2013121718A1 JP 2013000482 W JP2013000482 W JP 2013000482W WO 2013121718 A1 WO2013121718 A1 WO 2013121718A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
wafer
dressing
carrier
double
Prior art date
Application number
PCT/JP2013/000482
Other languages
English (en)
French (fr)
Inventor
佐藤 一弥
佑宜 田中
小林 修一
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to SG11201403886VA priority Critical patent/SG11201403886VA/en
Priority to US14/370,922 priority patent/US9266215B2/en
Priority to KR1020147022202A priority patent/KR101846926B1/ko
Priority to DE112013000613.8T priority patent/DE112013000613B4/de
Priority to CN201380006959.XA priority patent/CN104114322B/zh
Publication of WO2013121718A1 publication Critical patent/WO2013121718A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a double-side polishing method in which a wafer is sandwiched between upper and lower surface plates to which a polishing cloth is attached and both surfaces of the wafer are simultaneously polished.
  • each process such as chamfering, lapping, and etching is sequentially performed on the wafer, and then at least one main surface of the wafer is mirror-finished. Polishing is performed.
  • a single-side polishing apparatus that polishes one side of the wafer and a double-side polishing apparatus that simultaneously polishes both sides of the wafer are used.
  • the double-side polishing apparatus usually includes an upper surface plate and a lower surface plate to which a polishing cloth made of a nonwoven fabric or the like is attached. As shown in FIG. 5, the sun gear 107 is at the center and the internal gear 108 is at the outer periphery. A so-called four-way type having a planetary gear structure in which each is arranged is used.
  • a wafer is inserted and held in a plurality of wafer holding holes 103 formed in the carrier 102, an abrasive is supplied to the wafer from above, and the polishing cloth is attached to the wafer while rotating the upper and lower surface plates. Both sides of each wafer are simultaneously polished by pressing the front and back surfaces and rotating the carrier 102 between the sun gear 107 and the internal gear 108.
  • a dressing plate is set in a holding hole of the same carrier used for polishing a wafer or a carrier dedicated to dressing, and this is set between an upper surface plate and a lower surface plate. It is carried out by operating the apparatus in the same manner as normal polishing with a gap in between.
  • a dressing plate with diamond pellets or the like attached on both sides may be used.
  • dressing aimed at sharpening the polishing cloth is used at the start of use of the new polishing cloth (at the start-up) and every predetermined batch. It is done at intervals.
  • the roughness of the sharpness of the polishing cloth formed by the dressing is reduced by repeating the polishing batch, and the outer peripheral sagging of the wafer advances accordingly, so that interval dressing is necessary as appropriate.
  • the sharpening direction of the polishing cloth has a normal order and a reverse order, and this direction is determined depending on the revolution direction of the dress plate during dressing.
  • Patent Document 1 discloses a method for stably obtaining a wafer with high flatness by making the revolution direction of the carrier during polishing reverse to the revolution direction of the dress plate during dressing.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a double-side polishing method for a wafer that can stably obtain a wafer with high flatness while suppressing a decrease in productivity due to dressing.
  • a wafer is held in a holding hole of a carrier, the held wafer is sandwiched between upper and lower surface plates to which a polishing cloth is attached, and the carrier is rotated and revolved.
  • a wafer double-side polishing method in which both surfaces of the wafer are simultaneously polished, and the wafer polishing is repeated batchwise.
  • the revolving direction of the carrier is opposite for each batch.
  • the revolution direction of the carrier can always be the direction opposite to the opposite side of the abrasive cloth, and the state of the abrasive cloth is stable for a long time. Can be kept. As a result, it is possible to stably obtain a wafer with high flatness by suppressing deterioration of flatness, and it is possible to reduce the frequency of dressing and suppress the decrease in productivity due to dressing.
  • the roughness SMD indicated by the standard deviation of the surface unevenness of the polishing cloth when the contact-type roughness meter is swept in the direction opposite to the opposite eye of the polishing cloth is 4 ⁇ m or more and 5 ⁇ m or less. It is preferable to have a step of dressing the polishing cloth. With such a method, the sharpened state of the polishing cloth can be maintained stably for a long time, and a wafer with high flatness can be stably obtained without performing dressing for a long time.
  • dressing means in which diamond abrasive grains of # 100 or less are provided on the dress surface can be used.
  • the roughness SMD of the polishing cloth can be reliably within the range of 4 ⁇ m or more and 5 ⁇ m or less.
  • the revolving direction of the carrier in the polishing batch of the wafer carried out immediately after the dressing is a direction opposite to the opposite side of the dressing of the polishing cloth after the dressing. In this way, a wafer with high flatness can be reliably obtained in a polishing batch performed immediately after dressing.
  • the wafer in the double-sided polishing of wafers repeated batchwise, the wafer is polished by switching the direction in which the carrier is revolved to the opposite direction for each batch. Therefore, the direction in which the carrier is revolved is always opposed to the opposite of the sharpening of the polishing cloth.
  • the sharpening state of the polishing cloth can be kept stable for a long time. As a result, it is possible to stably obtain a wafer with high flatness by suppressing deterioration of flatness such as outer circumferential sagging, and it is possible to reduce the dressing frequency and suppress a decrease in productivity due to dressing.
  • FIG. 1 It is the schematic which shows an example of the double-side polish apparatus which can be used with the double-side polish method of this invention. It is an internal structure figure by planar view of the double-side polish apparatus of FIG. It is a flowchart which shows an example of the double-sided grinding
  • the present invention is not limited to this.
  • dressing aimed at sharpening the polishing cloth is used when a new polishing cloth is set up and every predetermined batch to ensure processing stability. It is done at intervals.
  • a method of polishing a wafer with the revolution direction of the carrier during polishing opposite to the revolution direction of the dress plate during dressing is known.
  • interval dressing the frequency of dressing performed at intervals of a predetermined batch
  • the present inventors conducted extensive studies to reduce the frequency of interval dressing while ensuring high flatness quality of the wafer. As a result, it has been found that when the polishing batch is repeated with the carrier revolving direction always the same as in the prior art, the sharpness of the polishing cloth tends to deteriorate. Further, the present inventors reverse the direction of the sharpening / reversing of the polishing cloth after polishing the wafer, so that the direction of revolution of the carrier in the next polishing batch is opposite to that in the previous polishing batch.
  • the revolution direction of the carrier at the time of polishing can always be the direction opposite to the opposite of the sharpening of the polishing cloth, and the deterioration of the sharpening of the polishing cloth can be suppressed, and a wafer with high flatness can be stably obtained.
  • the present invention has been completed.
  • the roughness measured using, for example, a contact type roughness meter can be used as an indicator of the sharpening state of the polishing cloth.
  • the roughness measured using the contact roughness meter varies depending on the sweep direction at the time of measurement.
  • the roughness SMD mean deviation of surface roughness indicated by the standard deviation of the surface irregularities of the polishing cloth when the contact-type roughness meter is swept in the direction opposite to the opposite eye of the polishing cloth. Is used.
  • the double-side polishing apparatus 1 includes an upper surface plate 5, a lower surface plate 6, and a carrier 2 for holding a wafer W.
  • the upper surface plate 5 and the lower surface plate 6 are provided so as to face each other up and down, and a polishing cloth 4 is attached to each of the surface plates 5 and 6.
  • a sun gear 7 is provided at the center of the double-side polishing apparatus 1, and an internal gear 8 is provided at the periphery.
  • the wafer W is held in the holding hole 3 of the carrier 2 and is sandwiched between the upper surface plate 5 and the lower surface plate 6.
  • the teeth of the sun gear 7 and the internal gear 8 are meshed with the outer peripheral teeth of the carrier 2.
  • the carrier 2 revolves around the sun gear 7 while rotating.
  • both surfaces of the wafer W held in the holding hole 3 of the carrier 2 are simultaneously polished by the upper and lower polishing cloths 4.
  • an abrasive is supplied from a nozzle (not shown).
  • the carrier 2 holds a single wafer W. However, even if a plurality of wafers are held in the carrier using a carrier having a plurality of holding holes as shown in FIG. good. Further, a double-side polishing apparatus provided with a plurality of carriers 2 may be used.
  • standing dressing of the polishing pad 4 of the double-side polishing apparatus 1 to be used is performed ((a) of FIG. 3).
  • This standing dressing is a dressing performed once before starting to use a new polishing cloth 4.
  • the standing dressing of the polishing cloth 4 can be performed using, for example, a dressing plate as shown in FIG. Specifically, as shown in FIG. 4, a dressing plate 10 is set on the same carrier 9 used for polishing a dressing carrier 9 or a wafer having a plurality of holding holes.
  • the upper and lower polishing cloths 4 are simultaneously dressed by operating the double-side polishing apparatus 1 in the same manner as in normal polishing while sandwiching between the upper and lower plates 6.
  • the dressing plate for example, a disc shape having both the front and back surfaces in contact with the upper and lower polishing cloths 4 and serving as a dressing surface for dressing can be used.
  • a hard material such as ceramics having fine irregularities formed on the dress surface can be used.
  • a donut shape having a hole formed in the center, or a dressing surface provided with diamond abrasive grains can be used.
  • the first polishing batch is carried out after the rising dressing ((b) of FIG. 3).
  • the wafer W is held in the holding hole 3 of the carrier 2.
  • the upper and lower surfaces of the held wafer W are sandwiched between polishing cloths 4 attached to the upper and lower surface plates 5 and 6.
  • the carrier 2 is rotated and revolved while rotating the upper and lower surface plates 5 and 6, and both surfaces of the wafer W are polished simultaneously while supplying an abrasive to the polishing surface.
  • the revolution direction of the carrier 2 is a direction facing the opposite eye of the sharpening of the polishing pad 4 after dressing. In this way, polishing can be performed stably and a wafer with high flatness can be obtained.
  • the second polishing batch is performed ((c) of FIG. 3).
  • the revolution direction of the carrier 2 is set to be opposite to the revolution direction of the carrier 2 in the first polishing batch, and the wafer W is polished in the same manner as in the first polishing batch.
  • the order of the sharpening of the polishing pad 4 is reversed. That is, in the second polishing batch, the reverse direction of the sharpening of the polishing pad 4 is opposite to the direction in the first polishing batch. Therefore, by making the revolution direction of the carrier 2 the opposite direction to the revolution direction of the carrier 2 in the first polishing batch, the revolution direction of the carrier 2 becomes a direction facing the opposite eye of the polishing cloth 4.
  • the direction in which the carrier is revolved is similarly switched to the opposite direction for each batch.
  • the double-side polishing method of the present invention can always make the carrier revolve in the direction opposite to the opposite of the sharpening of the polishing cloth even if the polishing batch is repeated, and is represented by ESFQR (max) in particular.
  • the flatness is improved stably, and the wafer can be stably and highly polished.
  • the sharpening state of the polishing cloth can be stably maintained for a long time, and variations in flatness from batch to batch can be reduced.
  • interval dressing can be performed between arbitrary batches ((e) of FIG. 3), the frequency is reduced as compared with the conventional case, and the decrease in productivity due to dressing can be suppressed.
  • the timing at which the interval dressing is performed is when the roughness SMD is outside the range of 4 ⁇ m or more and 5 ⁇ m or less. In this way, the frequency of dressing can be significantly reduced without deteriorating the flatness.
  • FIG. 6 is a diagram showing the roughness SMD of the polishing cloth when dressing with diamond abrasive grains having different counts. As shown in FIG. 6, when the diamond abrasive grain count is # 100 or less, the roughness SMD of the polishing cloth can be reliably within a range of 4 ⁇ m or more and 5 ⁇ m or less.
  • Example 2 Using a double-side polishing machine (DSP-20B manufactured by Fujikoshi Kikai Kogyo Co., Ltd.) as shown in FIG. 1, a total of 75 silicon wafers with a diameter of 300 mm were continuously and double-side polished, and the ESFQR of the polished wafer was double-side polished. (Max) was evaluated. ESFQR (max) was measured using Wafer Light (manufactured by KLA-Tencor).
  • a Ti carrier having a resin ring formed on the inner periphery of the holding hole, a polishing cloth, MH S-15A made by Nita Haas, an abrasive, and colloidal silica having a particle size of 35 nm based on KOH.
  • MH S-15A made by Nita Haas
  • abrasive an abrasive
  • colloidal silica having a particle size of 35 nm based on KOH.
  • dressing on a polishing cloth was performed using a dressing carrier and a dressing plate as shown in FIG.
  • a dressing plate provided with # 60 diamond abrasive grains on the dress surface was used, the load was 100 g / cm 2 , and the dressing time was 60 minutes.
  • the wafer was continuously and repeatedly polished without performing interval dressing between batches.
  • the direction in which the carrier revolves was switched to the opposite direction for each batch.
  • the revolution direction of the carrier was set to a direction facing the opposite side of the sharpening of the polishing cloth after the rising dressing.
  • ESFQR (max) of the polished wafer is shown in FIG. As shown in FIG. 7A, ESFQR (max) was stably kept low, and the target value of 90 nm or less could be achieved in all polishing. Further, in the embodiment, since the interval dressing is not performed, the process time can be shortened. On the other hand, in the comparative example to be described later, ESFQR (max) has a large variation and sometimes exceeds the target value of 90 nm.
  • the measurement result of the roughness SMD of the polishing cloth after polishing is shown in FIG. As shown in FIG. 8, the roughness SMD was maintained within the range of 4 ⁇ m or more and 5 ⁇ m or less, and there was no tendency to gradually decrease as the polishing batch increased. This is considered to be because the deterioration of the sharpness of the polishing cloth was suppressed by switching the direction of revolving the carrier to the opposite direction for each batch. Thus, it was confirmed that the double-side polishing method of the present invention can stably obtain a wafer with high flatness while suppressing a decrease in productivity due to dressing.
  • the result of ESFQR (max) of the polished wafer is shown in FIG. As shown in FIG. 7B, it was found that after dressing, the ESFQR (max) gradually deteriorated and the variation increased. As a result, the target value of 90 nm may be exceeded.
  • the measurement result of the roughness SMD of the polishing cloth after polishing is shown in FIG. As shown in FIG. 8, there was a tendency that the roughness SMD gradually decreased after dressing. This indicates that the sharpening of the polishing cloth deteriorates.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Abstract

 本発明は、キャリアの保持孔にウェーハを保持し、該保持されたウェーハを研磨布が貼付された上下定盤の間に挟み込み、前記キャリアを自転及び公転させて前記ウェーハの両面を同時に研磨し、該ウェーハの研磨をバッチ式に繰り返すウェーハの両面研磨方法であって、前記バッチ式に繰り返すウェーハの研磨において、前記キャリアを公転させる方向をバッチ毎に反対方向に切り替えることを特徴とするウェーハの両面研磨方法である。これにより、ドレッシングによる生産性の低下を抑えつつ、高平坦度のウェーハを安定して得ることができるウェーハの両面研磨方法が提供される。

Description

ウェーハの両面研磨方法
 本発明は、ウェーハを研磨布が貼付された上下定盤の間に挟み込んでウェーハの両面を同時に研磨する両面研磨方法に関する。
 従来、シリコンウェーハ等のウェーハの製造では、インゴットをスライスしてウェーハを得た後、このウェーハに対して面取り、ラッピング、エッチング等の各工程が順次なされ、次いで少なくともウェーハの一主面を鏡面化する研磨が施される。研磨工程では、ウェーハの片面を研磨する片面研磨装置及びウェーハの両面を同時に研磨する両面研磨装置が用いられる。
 両面研磨装置としては、通常、不織布などからなる研磨布が貼付された上定盤と下定盤を具備し、図5に示すように中心部にはサンギヤ107が、外周部にはインターナルギヤ108がそれぞれ配置された遊星歯車構造を有するいわゆる4ウェイ方式のものが用いられている。この両面研磨装置において、キャリア102に複数形成されたウェーハ保持孔103の内部にウェーハを挿入・保持し、その上方から研磨剤をウェーハに供給し、上下定盤を回転させながら研磨布をウェーハの表裏両面に押し付けるとともに、キャリア102をサンギヤ107とインターナルギヤ108との間で自転公転させることで各ウェーハの両面が同時に研磨される。
 両面研磨装置で同じ研磨布を用いて研磨を続けていくとウェーハ形状が次第に変化してしまうという問題がある。これは主に研磨布のライフに起因しており、研磨布の圧縮率の変化や目詰まり等が影響し、使用頻度が増えるにつれ、ウェーハの外周部が過剰に研磨されていわゆる外周ダレが生じ易くなる。そこで、これを防ぐため研磨布表面のドレッシングを行う必要がある。
 両面研磨装置に用いられる研磨布のドレッシングは、一般的に、ウェーハの研磨に使用するものと同じキャリア又はドレッシング専用キャリアの保持孔にドレッシングプレートをセットし、これを上定盤と下定盤との間に挟んで通常の研磨と同じように装置を稼動させることにより行われる。
 研磨布をドレッシングする場合、研磨能力を安定かつ向上させるために、研磨布表面を毛羽立てるような目立てを行うことが重要である。このような目立てを十分に行うために、ドレッシングプレートの両面にダイヤモンドペレット等を貼り付けたものが使用される場合がある。
 シリコンウェーハ等のウェーハをバッチ式に繰り返し両面研磨する際、加工安定性を確保するため、研磨布の目立てを目的としたドレッシングは新しい研磨布の使用開始時(立上時)と所定バッチ毎のインターバルで行われている。ドレッシングにより成された研磨布の目立ての粗さは研磨バッチを繰り返すことで減少していき、それに伴ってウェーハの外周ダレが進行するため適宜インターバルドレッシングが必要となる。
 研磨布の目立て方向には順目と逆目とがあり、この方向はドレッシング時のドレスプレートの公転方向に依存して決まる。特許文献1には、研磨時におけるキャリアの公転方向をドレッシング時のドレスプレートの公転方向と逆方向にすることで高平坦度のウェーハを安定して得るための方法が開示されている。
特開2004―98264号公報
 しかし、ドレッシング後しばらくは研磨を安定して行えても、ドレッシングのインターバルが長いと次第に研磨の安定性を確保できなくなり、特に外周ダレが生じることでウェーハの平坦度が悪化するようになる。一方、ドレッシングのインターバルを短くすると、ドレッシングに係る時間が増加し生産性が悪化することから、安定性と生産性との間にはトレードオフの関係があった。
 本発明は前述のような問題に鑑みてなされたもので、ドレッシングによる生産性の低下を抑えつつ、高平坦度のウェーハを安定して得ることができるウェーハの両面研磨方法を提供することを目的とする。
 上記目的を達成するために、本発明によれば、キャリアの保持孔にウェーハを保持し、該保持されたウェーハを研磨布が貼付された上下定盤の間に挟み込み、前記キャリアを自転及び公転させて前記ウェーハの両面を同時に研磨し、該ウェーハの研磨をバッチ式に繰り返すウェーハの両面研磨方法であって、前記バッチ式に繰り返すウェーハの研磨において、前記キャリアを公転させる方向をバッチ毎に反対方向に切り替えることを特徴とするウェーハの両面研磨方法が提供される。
 このような両面研磨方法であれば、研磨バッチを繰り返し行っても常にキャリアの公転方向を研磨布の目立ての逆目に対向する方向にすることができ、研磨布の目立ての状態を長時間安定して保つことができる。これにより、平坦度の悪化を抑制して高平坦度のウェーハを安定して得ることができ、また、ドレッシング頻度を低減してドレッシングによる生産性の低下を抑えることができる。
 このとき、前記研磨布の目立ての逆目に対向する方向に接触式粗さ計を掃引したときの前記研磨布の表面凹凸の標準偏差によって示される粗さSMDが4μm以上、5μm以下となるように前記研磨布をドレッシングする工程を有することが好ましい。
 このような方法であれば、研磨布の目立ての状態をより長時間安定して保つことができ、長時間ドレッシングを行わなくても高平坦度のウェーハを安定して得ることができる。
 前記研磨布をドレッシングする工程において、ドレス面に#100以下のダイヤモンド砥粒が設けられたドレッシング手段を用いることができる。
 このようにすれば、研磨布の粗さSMDを確実に4μm以上、5μm以下の範囲内にすることができる。
 またこのとき、前記ドレッシング直後に実施する前記ウェーハの研磨バッチにおける前記キャリアの公転方向を、前記ドレッシング後の研磨布の目立ての逆目に対向する方向にすることが好ましい。
 このようにすれば、ドレッシング直後に実施する研磨バッチにおいて、確実に高平坦度のウェーハを得ることができる。
 本発明では、バッチ式に繰り返すウェーハの両面研磨において、キャリアを公転させる方向をバッチ毎に反対方向に切り替えてウェーハを研磨するので、常にキャリアを公転させる方向を研磨布の目立ての逆目に対向する方向にすることができ、研磨布の目立ての状態を長時間安定して保つことができる。これにより、特に外周ダレなどの平坦度の悪化を抑制して高平坦度のウェーハを安定して得ることができ、また、ドレッシング頻度を低減してドレッシングによる生産性の低下を抑えることができる。
本発明の両面研磨方法で使用できる両面研磨装置の一例を示す概略図である。 図1の両面研磨装置の平面視による内部構造図である。 本発明の両面研磨方法の一例を示すフロー図である。 研磨布のドレッシング方法を説明する説明図である。 4ウェイ方式の両面研磨装置を説明する説明図である。 研磨布のドレッシング時のダイヤモンド砥粒番手と粗さSMDとの関係を示す図である。 実施例、比較例のESFQR(max)の測定結果を示す図である。 実施例、比較例の粗さSMDの測定結果を示す図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 一般的に、両面研磨装置を用いてウェーハをバッチ式に繰り返し両面研磨する際、加工安定性を確保するため、研磨布の目立てを目的としたドレッシングが新しい研磨布の立上時と所定バッチ毎のインターバルで行われている。
 従来より、高平坦度のウェーハを安定して得るために研磨時のキャリアの公転方向をドレッシング時のドレスプレートの公転方向と逆方向にしてウェーハを研磨する方法が知られている。しかし、ドレッシング後しばらくは研磨を安定して行えても、研磨バッチを繰り返すうちに研磨布の目立て状態が悪化するので、所定バッチ毎のインターバルで実施するドレッシング(以降、インターバルドレッシングと言う)の頻度を低減できないという問題がある。
 そこで、本発明者等はウェーハの高平坦度品質を確保しつつ、インターバルドレッシングの頻度を低減するために鋭意検討を重ねた。その結果、従来のようにキャリアの公転方向を常に同じ方向にして研磨バッチを繰り返すと研磨布の目立てが悪化し易いことを見出した。さらに、本発明者等は、ウェーハの研磨後に研磨布の目立ての順目・逆目の方向が逆転するので、次の研磨バッチ時のキャリアの公転方向を前の研磨バッチ時と反対方向にすることにより、研磨時のキャリアの公転方向を常に研磨布の目立ての逆目に対向する方向にすることができ、研磨布の目立ての悪化を抑制するとともに、高平坦度のウェーハを安定して得ることができることを見出し、本発明を完成させた。
 なお、研磨布の目立ての状態の指標として、例えば接触式粗さ計を用いて測定する粗さを用いることができる。接触式粗さ計を用いて測定する粗さは測定時の掃引方向によって異なる値となる。本発明ではこの指標として、研磨布の目立ての逆目に対向する方向に接触式粗さ計を掃引したときの研磨布の表面凹凸の標準偏差によって示される粗さSMD(mean deviation of surface roughness)を用いる。
 まず、本発明の両面研磨方法で用いることができる両面研磨装置について、図1、2を参照して説明する。
 図1に示すように、両面研磨装置1は、上定盤5、下定盤6、ウェーハWを保持するためのキャリア2を備えている。上定盤5と下定盤6は上下に相対向して設けられており、各定盤5、6には、それぞれ研磨布4が貼付されている。図2に示すように、両面研磨装置1の中心部にはサンギヤ7が、周縁部にはインターナルギヤ8が設けられている。ウェーハWはキャリア2の保持孔3に保持され、上定盤5と下定盤6の間に挟まれる。
 また、サンギヤ7及びインターナルギヤ8の各歯部にはキャリア2の外周歯が噛合している。これにより、上定盤5及び下定盤6が不図示の駆動源によって回転されるのに伴い、キャリア2は自転しつつサンギヤ7の周りを公転する。このとき、キャリア2の保持孔3で保持されたウェーハWは、上下の研磨布4により両面を同時に研磨される。ウェーハWの研磨時には、不図示のノズルから研磨剤が供給される。
 図2では、キャリア2が1枚のウェーハWを保持するようになっているが、図5に示すような複数の保持孔を有するキャリアを用いてキャリア内に複数枚のウェーハを保持しても良い。また、複数のキャリア2を備えた両面研磨装置を用いても良い。
 以下、本発明の両面研磨方法について図1~3を参照して説明する。
 まず、使用する両面研磨装置1の研磨布4の立上ドレッシングを行う(図3の(a))。この立上ドレッシングは新しい研磨布4の使用開始前に1度行うドレッシングである。研磨布4の立上ドレッシングは、例えば図4に示すようなドレッシングプレートを用いて行うことができる。具体的には、図4に示すように、複数個の保持孔を有するドレッシング専用キャリア9或いはウェーハの研磨に使用するものと同じキャリアにドレッシングプレート10をセットし、これを上定盤5と下定盤6との間に挟んで通常の研磨と同じように両面研磨装置1を稼動させることで上下両方の研磨布4が同時にドレッシングされる。
 ドレッシングプレートとして、例えば円板形状で、その表裏両面が上下の研磨布4と接してドレッシングを行うドレス面となるものを用いることができる。その材質として、例えばセラミックスのような硬質のもので、ドレス面に微小な凹凸を形成したものを用いることができる。その他ドレッシングプレートとして、例えば中央に孔が形成されたドーナツ形状のものや、ドレス面にダイヤモンド砥粒を設けたものなどを用いることができる。
 立上ドレッシング後に1番目の研磨バッチを実施する(図3の(b))。
 まず、キャリア2の保持孔3にウェーハWを保持する。
 次に、保持されたウェーハWの上下表面を上下定盤5、6に貼付された研磨布4で挟み込む。そして、上下定盤5、6を回転させながらキャリア2を自転及び公転させて、研磨面に研磨剤を供給しながらウェーハWの両面を同時に研磨する。
 このとき、キャリア2の公転方向を、ドレッシング後の研磨布4の目立ての逆目に対向する方向にすることが好ましい。このようにすれば、研磨を安定して行うことができ、高平坦度のウェーハを得ることができる。
 1番目の研磨バッチ後には、2番目の研磨バッチを行う(図3の(c))。
 このとき、キャリア2の公転方向を1番目の研磨バッチにおけるキャリア2の公転方向と反対方向として、その他は1番目の研磨バッチと同様にしてウェーハWを研磨する。
 上記したように、ウェーハの研磨を行うと研磨布4の目立ての順目、逆目の方向が逆転する。すなわち、2番目の研磨バッチにおいて、研磨布4の目立ての逆目方向は第1の研磨バッチにおける方向とは反対となっている。そのため、キャリア2の公転方向を1番目の研磨バッチにおけるキャリア2の公転方向と反対方向とすることにより、キャリア2の公転方向は研磨布4の目立ての逆目に対向する方向になる。
 2番目の研磨バッチ後のバッチ式に繰り返すウェーハの研磨において(図3の(d))、同様にキャリアを公転させる方向をバッチ毎に反対方向に切り替える。
 このように本発明の両面研磨方法は、研磨バッチを繰り返し行っても常にキャリアを公転させる方向を研磨布の目立ての逆目に対向する方向にすることができ、特にESFQR(max)に代表される平坦度が安定的に改善され、ウェーハを安定して高平坦に研磨できる。また、研磨布の目立ての状態を長時間安定して良好に保つことができ、バッチ毎の平坦度のばらつきも低減される。任意のバッチ間でインターバルドレッシングを行うこともできるが(図3の(e))、その頻度は従来に比べ低減され、ドレッシングによる生産性の低下を抑えることができる。
 ここで、本発明の両面研磨方法での立上ドレッシング及びインターバルドレッシングにおいて、上記した粗さSMDが4μm以上、5μm以下となるように研磨布4をドレッシングすることが好ましい。このようにすれば、研磨布4の目立ての状態をより長時間安定して良好に保つことができ、長時間ドレッシングを行わなくても高平坦度のウェーハを安定して得ることができる。
 また、インターバルドレッシングを実施するタイミングとして、粗さSMDが4μm以上、5μm以下の範囲外となったときとすることが好ましい。このようにすれば、平坦度を悪化させることなく、ドレッシングの頻度を著しく低減できる。
 これらドレッシングを行う工程において、ドレス面に#100以下のダイヤモンド砥粒が設けられたドレッシング手段を用いることができる。図6は、番手が異なるダイヤモンド砥粒を用いてドレッシングしたときの研磨布の粗さSMDを示した図である。図6に示すように、ダイヤモンド砥粒番手が#100以下の場合、研磨布の粗さSMDを確実に4μm以上、5μm以下の範囲内にすることができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 図1に示すような両面研磨装置(DSP-20B 不二越機械工業社製)を用い、直径300mmのシリコンウェーハ1バッチ5枚で合計75枚を連続して繰り返し両面研磨し、研磨後のウェーハのESFQR(max)を評価した。ESFQR(max)の測定はWafer Sight(KLA-Tencor社製)を用いた。
 キャリアとして、保持孔の内周部に樹脂製リングが形成されたTi製のキャリアを、研磨布として、ニッタハース製のMH S-15Aを、研磨剤として、粒径35nmのコロイダルシリカをKOHベースのアルカリに懸濁させた溶液をそれぞれ用いた。
 まず、図4に示すようなドレッシング専用キャリア及びドレッシングプレートを用いて研磨布の立上ドレッシングを行った。ここで、ドレス面に#60のダイヤモンド砥粒が設けられたドレッシングプレートを用い、荷重を100g/cmとし、ドレッシング時間を60分とした。
 立上ドレッシング後、バッチ間でインターバルドレッシングを行うことなく、ウェーハの研磨を連続して繰り返し行った。この際、キャリアを公転させる方向をバッチ毎に反対方向に切り替えた。また、1番目の研磨バッチでは、キャリアの公転方向を立上ドレッシング後の研磨布の目立ての逆目に対向する方向にした。
 研磨後のウェーハのESFQR(max)の結果を図7に示す。図7(A)に示すように、ESFQR(max)は安定して低く抑えられており、全ての研磨で目標値である90nm以下を達成できた。また、実施例ではインターバルドレッシングを行っていないため工程時間を短縮できた。一方、後述する比較例では、ESFQR(max)のばらつきが大きく、目標値である90nmを超えてしまう場合があった。
 研磨後の研磨布の粗さSMDの測定結果を図8に示す。図8に示すように、粗さSMDは4μm以上、5μm以下の範囲内に維持され、研磨バッチの増加に伴って次第に減少していく傾向は見られなかった。これは、キャリアを公転させる方向をバッチ毎に反対方向に切り替えることで、研磨布の目立ての悪化が抑制されたためと考えられる。
 このように、本発明の両面研磨方法は、ドレッシングによる生産性の低下を抑えつつ、高平坦度のウェーハを安定して得ることができることが確認できた。
(比較例)
 実施例と同一の両面研磨装置を用い、直径300mmのシリコンウェーハ1バッチ5枚で合計75枚を両面研磨し、実施例と同様に評価した。ただし、比較例では、立上ドレッシング後にキャリアを公転させる方向を全てのバッチで同一として研磨バッチを繰り返し、5バッチ毎にインターバルドレッシングを行った。立上ドレッシング及びインターバルドレッシングは実施例と同様の方法で行い、インターバルドレッシングの時間を5分とした。
 研磨後のウェーハのESFQR(max)の結果を図7に示す。図7(B)に示すように、ドレッシング後、次第にESFQR(max)が悪化していき、ばらつきが大きくなることが分かった。その結果、目標値である90nmを超えてしまう場合があった。
 研磨後の研磨布の粗さSMDの測定結果を図8に示す。図8に示すように、粗さSMDがドレッシング後に次第に減少していく傾向が見られた。これは研磨布の目立てが悪化していくことを示している。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1.  キャリアの保持孔にウェーハを保持し、該保持されたウェーハを研磨布が貼付された上下定盤の間に挟み込み、前記キャリアを自転及び公転させて前記ウェーハの両面を同時に研磨し、該ウェーハの研磨をバッチ式に繰り返すウェーハの両面研磨方法であって、
     前記バッチ式に繰り返すウェーハの研磨において、前記キャリアを公転させる方向をバッチ毎に反対方向に切り替えることを特徴とするウェーハの両面研磨方法。
  2.  前記研磨布の目立ての逆目に対向する方向に接触式粗さ計を掃引したときの前記研磨布の表面凹凸の標準偏差によって示される粗さSMDが4μm以上、5μm以下となるように前記研磨布をドレッシングする工程を有することを特徴とする請求項1に記載のウェーハの両面研磨方法。
  3.  前記研磨布をドレッシングする工程において、ドレス面に#100以下のダイヤモンド砥粒が設けられたドレッシング手段を用いることを特徴とする請求項2に記載のウェーハの両面研磨方法。
  4.  前記ドレッシング直後に実施する前記ウェーハの研磨バッチにおける前記キャリアの公転方向を、前記ドレッシング後の研磨布の目立ての逆目に対向する方向にすることを特徴とする請求項2又は請求項3に記載のウェーハの両面研磨方法。
     
     
PCT/JP2013/000482 2012-02-15 2013-01-30 ウェーハの両面研磨方法 WO2013121718A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201403886VA SG11201403886VA (en) 2012-02-15 2013-01-30 Method of double-side polishing wafer
US14/370,922 US9266215B2 (en) 2012-02-15 2013-01-30 Method of double-side polishing wafer
KR1020147022202A KR101846926B1 (ko) 2012-02-15 2013-01-30 웨이퍼의 양면 연마방법
DE112013000613.8T DE112013000613B4 (de) 2012-02-15 2013-01-30 Verfahren zum doppelseitigen Polieren eines Wafers
CN201380006959.XA CN104114322B (zh) 2012-02-15 2013-01-30 晶片的双面研磨方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012030929 2012-02-15
JP2012-030929 2012-02-15
JP2012-059341 2012-03-15
JP2012059341A JP5741497B2 (ja) 2012-02-15 2012-03-15 ウェーハの両面研磨方法

Publications (1)

Publication Number Publication Date
WO2013121718A1 true WO2013121718A1 (ja) 2013-08-22

Family

ID=48983858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000482 WO2013121718A1 (ja) 2012-02-15 2013-01-30 ウェーハの両面研磨方法

Country Status (8)

Country Link
US (1) US9266215B2 (ja)
JP (1) JP5741497B2 (ja)
KR (1) KR101846926B1 (ja)
CN (1) CN104114322B (ja)
DE (1) DE112013000613B4 (ja)
SG (1) SG11201403886VA (ja)
TW (1) TW201351494A (ja)
WO (1) WO2013121718A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104551961A (zh) * 2013-10-23 2015-04-29 有研新材料股份有限公司 一种12英寸硅片的双面抛光方法
JP2017001138A (ja) * 2015-06-11 2017-01-05 信越半導体株式会社 ウェーハの両面研磨方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967040B2 (ja) * 2013-09-11 2016-08-10 信越半導体株式会社 鏡面研磨ウェーハの製造方法
DE102015220090B4 (de) * 2015-01-14 2021-02-18 Siltronic Ag Verfahren zum Abrichten von Poliertüchern
JP6444785B2 (ja) * 2015-03-19 2018-12-26 株式会社荏原製作所 研磨装置およびその制御方法ならびにドレッシング条件出力方法
KR101759875B1 (ko) * 2015-06-24 2017-07-20 주식회사 엘지실트론 웨이퍼 연마장치의 스캔장치 및 스캔시스템
JP6707831B2 (ja) * 2015-10-09 2020-06-10 株式会社Sumco 研削装置および研削方法
DE102015220924B4 (de) 2015-10-27 2018-09-27 Siltronic Ag Suszeptor zum Halten einer Halbleiterscheibe mit Orientierungskerbe, Verfahren zum Abscheiden einer Schicht auf einer Halbleiterscheibe und Halbleiterscheibe
CN105538131A (zh) * 2015-12-02 2016-05-04 珠海东精大电子科技有限公司 蓝宝石窗口片加工工艺
JP6949504B2 (ja) 2017-02-20 2021-10-13 三菱鉛筆株式会社 塗布具用ペン芯
JP6451825B1 (ja) * 2017-12-25 2019-01-16 株式会社Sumco ウェーハの両面研磨方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201789A (ja) * 1993-12-28 1995-08-04 Hitachi Cable Ltd 化合物半導体ウェハの両面ラッピング方法
JP2001030164A (ja) * 1999-07-19 2001-02-06 Tsugami Corp 複数回転軸ラップ盤用回転制御方法及び複数回転軸ラップ盤用回転制御装置
JP2002333528A (ja) * 2001-05-08 2002-11-22 Sumitomo Electric Ind Ltd 光コネクタの端面研磨方法および光コネクタ
JP2003300153A (ja) * 2002-04-09 2003-10-21 Toshiba Ceramics Co Ltd 研磨装置
JP2010152965A (ja) * 2008-12-25 2010-07-08 Toray Ind Inc 研磨布
WO2010140595A1 (ja) * 2009-06-04 2010-12-09 旭硝子株式会社 板状体の研磨方法
JP2011067901A (ja) * 2009-09-25 2011-04-07 Hoya Corp 磁気ディスク用ガラス基板の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251363A (ja) * 1990-03-01 1991-11-08 Tdk Corp ラップ加工方法および両面ラップ盤
TW431434U (en) * 1999-10-22 2001-04-21 Ind Tech Res Inst Carrier for carrying non-circular workpiece
DE10060697B4 (de) * 2000-12-07 2005-10-06 Siltronic Ag Doppelseiten-Polierverfahren mit reduzierter Kratzerrate und Vorrichtung zur Durchführung des Verfahrens
US6398631B1 (en) * 2001-02-02 2002-06-04 Memc Electronic Materials, Inc. Method and apparatus to place wafers into and out of machine
DE10132504C1 (de) * 2001-07-05 2002-10-10 Wacker Siltronic Halbleitermat Verfahren zur beidseitigen Material abtragenden Bearbeitung von Halbleiterscheiben und seine Verwendung
WO2003011517A1 (en) * 2001-08-01 2003-02-13 Entegris, Inc. Wafer carrier wear indicator
JP2004098264A (ja) * 2002-09-12 2004-04-02 Shin Etsu Handotai Co Ltd 研磨布のドレッシング方法及びワークの研磨方法
JP2004141984A (ja) * 2002-10-22 2004-05-20 Hoya Corp マスクブランクス用基板の製造方法
US20050181708A1 (en) 2004-02-17 2005-08-18 Infineon Technologies Richmond, Lp. Removal of embedded particles during chemical mechanical polishing
WO2008029725A1 (fr) 2006-09-06 2008-03-13 Nitta Haas Incorporated Tampon de polissage
JP4367494B2 (ja) 2007-02-09 2009-11-18 住友電気工業株式会社 GaAsウエハの化学機械研磨方法
JP5151800B2 (ja) * 2008-08-20 2013-02-27 信越半導体株式会社 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法
JP5233888B2 (ja) * 2009-07-21 2013-07-10 信越半導体株式会社 両面研磨装置用キャリアの製造方法、両面研磨装置用キャリア及びウェーハの両面研磨方法
KR101209271B1 (ko) * 2009-08-21 2012-12-06 주식회사 엘지실트론 양면 연마 장치와 양면 연마 장치용 캐리어

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201789A (ja) * 1993-12-28 1995-08-04 Hitachi Cable Ltd 化合物半導体ウェハの両面ラッピング方法
JP2001030164A (ja) * 1999-07-19 2001-02-06 Tsugami Corp 複数回転軸ラップ盤用回転制御方法及び複数回転軸ラップ盤用回転制御装置
JP2002333528A (ja) * 2001-05-08 2002-11-22 Sumitomo Electric Ind Ltd 光コネクタの端面研磨方法および光コネクタ
JP2003300153A (ja) * 2002-04-09 2003-10-21 Toshiba Ceramics Co Ltd 研磨装置
JP2010152965A (ja) * 2008-12-25 2010-07-08 Toray Ind Inc 研磨布
WO2010140595A1 (ja) * 2009-06-04 2010-12-09 旭硝子株式会社 板状体の研磨方法
JP2011067901A (ja) * 2009-09-25 2011-04-07 Hoya Corp 磁気ディスク用ガラス基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104551961A (zh) * 2013-10-23 2015-04-29 有研新材料股份有限公司 一种12英寸硅片的双面抛光方法
JP2017001138A (ja) * 2015-06-11 2017-01-05 信越半導体株式会社 ウェーハの両面研磨方法

Also Published As

Publication number Publication date
DE112013000613T5 (de) 2015-04-16
TWI560762B (ja) 2016-12-01
SG11201403886VA (en) 2014-11-27
JP5741497B2 (ja) 2015-07-01
TW201351494A (zh) 2013-12-16
CN104114322A (zh) 2014-10-22
US20150147942A1 (en) 2015-05-28
DE112013000613B4 (de) 2024-01-11
CN104114322B (zh) 2017-04-19
KR101846926B1 (ko) 2018-04-10
JP2013188860A (ja) 2013-09-26
KR20140129001A (ko) 2014-11-06
US9266215B2 (en) 2016-02-23

Similar Documents

Publication Publication Date Title
JP5741497B2 (ja) ウェーハの両面研磨方法
KR101947614B1 (ko) 반도체 웨이퍼의 제조 방법
JP5967040B2 (ja) 鏡面研磨ウェーハの製造方法
JP2013258227A (ja) 半導体ウェーハの製造方法
KR102112535B1 (ko) 연마용 발포 우레탄 패드의 드레싱 장치
JP6032155B2 (ja) ウェーハの両面研磨方法
WO2018168426A1 (ja) ウェーハの製造方法
JP5381304B2 (ja) シリコンエピタキシャルウェーハの製造方法
JP2021132102A (ja) 半導体ウェーハの製造方法
JP2011143477A (ja) 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法
JP7168113B1 (ja) ウェーハの両面研磨方法
WO2010119833A1 (ja) シリコンエピタキシャルウェーハの製造方法
JP4982037B2 (ja) 研磨布用ドレッシングプレート及び研磨布のドレッシング方法並びにワークの研磨方法
JP2017001138A (ja) ウェーハの両面研磨方法
TW201839836A (zh) 晶圓的雙面研磨方法及雙面研磨裝置
JP2009269150A (ja) 研磨布用ドレッシングプレート及び研磨布のドレッシング方法並びに半導体基板の研磨方法
JP2004327577A (ja) 半導体ウェハ研磨機
TW202342232A (zh) 兩面研磨用載具及使用此之矽晶圓的兩面研磨方法及裝置
JP2009135180A (ja) 半導体ウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14370922

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147022202

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130006138

Country of ref document: DE

Ref document number: 112013000613

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749301

Country of ref document: EP

Kind code of ref document: A1