WO2013121691A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2013121691A1
WO2013121691A1 PCT/JP2013/000036 JP2013000036W WO2013121691A1 WO 2013121691 A1 WO2013121691 A1 WO 2013121691A1 JP 2013000036 W JP2013000036 W JP 2013000036W WO 2013121691 A1 WO2013121691 A1 WO 2013121691A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor chip
semiconductor device
main surface
pressure
Prior art date
Application number
PCT/JP2013/000036
Other languages
English (en)
French (fr)
Inventor
小島 俊之
白石 司
塚原 法人
貴之 廣瀬
敬子 生田
小山 雅義
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380003217.1A priority Critical patent/CN103843132A/zh
Priority to US14/347,177 priority patent/US9076752B2/en
Priority to EP13749607.1A priority patent/EP2816594A4/en
Publication of WO2013121691A1 publication Critical patent/WO2013121691A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4875Connection or disconnection of other leads to or from bases or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4093Snap-on arrangements, e.g. clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L24/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/03001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/03003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring a preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/03001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/03005Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for aligning the bonding area, e.g. marks, spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device that can be applied to a high power semiconductor device (power module) such as an IGBT module and a power MOSFET module, and a manufacturing method thereof.
  • power module high power semiconductor device
  • IGBT module IGBT module
  • MOSFET module power MOSFET module
  • Non-Patent Document 1 discloses a power module.
  • one main surface (lower surface) of the power element (semiconductor chip) is fixed to the heat spreader by solder, while the surface electrode formed on the other main surface (upper surface) of the power element is The structure is directly fixed to the inner lead of the lead frame by solder.
  • FIG. 35 is a cross-sectional view schematically showing the structure of the power module 101 disclosed in Non-Patent Document 1.
  • a surface electrode (not shown) formed on the upper surface of the power element 102 is directly fixed to the main terminal 103 by a solder layer 104.
  • another surface electrode (not shown) formed on the upper surface of the power element 102 is electrically and mechanically connected to the control terminal 105 through a wire (metal thin wire) 106.
  • the lower surface of the power element 102 is fixed to a heat spreader (metal block) 108 via a solder layer 107.
  • the lower surface of the heat spreader 108 is fixed to the metal layer 110 via an insulating sheet 109 made of an insulating resin.
  • Each component of the power module 101 is sealed with a mold resin 111. A part of the main terminal 103 and a part of the control terminal 105 protrude from the outer shape of the mold resin 111.
  • Patent Document 1 discloses another power module.
  • the power module has a structure in which an insulating substrate made of an insulating material such as ceramic is disposed between a semiconductor chip and a heat sink.
  • FIG. 36 is a cross-sectional view schematically showing the structure of the power module 201 disclosed in Patent Document 1.
  • a conductor 203a is formed on one surface (upper surface) of an insulating substrate 203, and a semiconductor chip 202 is fixed to the surface of the conductor 203a by a solder layer 204.
  • the insulating substrate 203 is made of an insulating material such as ceramic.
  • a conductor 203b is also formed on the other surface (lower surface) of the insulating substrate 203.
  • the surface of the conductor 203b is fixed to a heat radiating plate 205 disposed below the semiconductor chip 202 with a solder layer 206.
  • the material of the semiconductor chip mounted on the power module is generally Si (silicon).
  • Si silicon
  • semiconductor chips made of SiC (silicon carbide) or GaN (gallium nitride) have been developed.
  • One of the features of this SiC or GaN semiconductor chip is that it can operate even when its temperature becomes high. Specifically, a Si semiconductor chip cannot operate when its temperature exceeds 150 ° C.
  • a semiconductor chip made of SiC or GaN can operate even when its temperature reaches a high temperature of 300 ° C. or higher. Therefore, a power module on which a semiconductor chip made of SiC or GaN is mounted is required to cope with a higher temperature than a power module on which a semiconductor chip made of Si is mounted.
  • the thermal expansion coefficient of the power element 102 is 3 to 4 ppm / ° C.
  • the materials of the main terminal 103 and the heat spreader 108 are both copper (Cu)
  • the thermal expansion coefficients of the main terminal 103 and the heat spreader 108 are both 17 ppm / ° C.
  • the stress accompanying the temperature change of the power element 102 causes a solder layer (joint part) 104 that joins the main terminal 103 and the power element 102, and a solder layer (joint part) that joins the heat spreader 108 and the power element 102.
  • the stress increases as the temperature of the power element 102 increases. Therefore, the stress load received by each of the joints (solder layers 104 and 107) increases as the temperature width of the power element 102 increases. Therefore, when the material of the power element 102 is SiC, and the temperature of the power element 102 is higher than that of the Si semiconductor chip during the operation of the power module 101, stress is repeatedly generated in the joint portion. There is a possibility that the joint portion is broken and a connection failure occurs or a thermal resistance deteriorates.
  • the thermal expansion coefficient of the heat sink 205 is 17 ppm / ° C.
  • the thermal expansion coefficient of the insulating substrate 203 is 4 ppm / ° C.
  • the stress load received by the joint increases as the temperature width of the semiconductor chip 202 increases. Therefore, when the material of the semiconductor chip 202 is, for example, SiC and the temperature of the semiconductor chip 202 becomes higher than that of the Si semiconductor chip during the operation of the power module 201, stress is repeatedly generated at the joint. There is a possibility that problems such as destruction of the joint and deterioration of the thermal resistance may occur.
  • One of the objects of the present invention is to provide a semiconductor device with high reliability even when the temperature range of the semiconductor chip is large. Another object of the present invention is to provide a method for manufacturing a highly reliable semiconductor device even when the temperature range of the semiconductor chip is large.
  • One aspect of the semiconductor device of the present invention includes a semiconductor chip having a first main surface and a second main surface opposite to the first main surface, and heat dissipation disposed opposite to the first main surface.
  • Another aspect of the semiconductor device of the present invention is that the surface roughness of the portion of the first electrode that contacts the semiconductor chip is rougher than the surface roughness of the portion of the semiconductor chip that contacts the first electrode. .
  • the semiconductor device further includes an insulating element for insulating between the heat sink and the first electrode, and the material of the heat sink is copper or aluminum.
  • the first electrode has a surface facing the first main surface of the semiconductor chip, and the surface of the first electrode facing the first main surface. Is larger than the area of the first main surface, and from the outer periphery of the first main surface projected onto the surface of the first electrode facing the first main surface, the first main surface
  • the semiconductor chip is disposed so that the surface of the first electrode facing the surface protrudes.
  • the heat dissipation plate has a first recess opening on the first main surface side of the semiconductor chip, and is between the first main surface and the heat dissipation plate. It is that at least a part of the first electrode to be disposed enters the first recess.
  • the first electrode has a second recess opening on the first main surface side of the semiconductor chip, and a part of the semiconductor chip enters the second recess. It is to be.
  • the pressure contact member is a second heat radiating plate.
  • the semiconductor device further includes an insulating element for insulating between the second heat sink and the second electrode, and the material of the second heat sink is copper or aluminum. That is.
  • the material of the heat sink is diamond or ceramic.
  • the material of the heat sink is aluminum nitride, silicon nitride, or alumina.
  • the material of the second heat sink is diamond or ceramic.
  • the material of the second heat sink is aluminum nitride, silicon nitride, or alumina.
  • the pressure generating member is disposed at a location different from the second electrode between the pressure contact member and the semiconductor chip, and is electrically connected to the semiconductor chip.
  • the mechanism further includes a third electrode pressed against each of the pressure contact member and the semiconductor chip, and the pressure applied to the second electrode is larger than the pressure applied to the third electrode. The pressure generating mechanism generates pressure.
  • the semiconductor chip has an emitter electrode, a source electrode, or an anode electrode formed on the second main surface as a surface electrode, and the second electrode is the emitter electrode.
  • the pressure electrically connected to the source electrode or the anode electrode and applied to the second electrode by the pressure generating mechanism is 0.5 MPa or more and less than 30 MPa.
  • One aspect of the method for manufacturing a semiconductor device of the present invention includes a step of disposing a first electrode on a heat sink, a step of disposing a semiconductor chip on the first electrode, and disposing a second electrode on the semiconductor chip. And a step of disposing a pressure contact member on the second electrode, applying pressure from the heat radiating plate and the pressure contact member toward the semiconductor chip, and pressing the first electrode to the semiconductor chip. And a step of pressing the second electrode against the semiconductor chip.
  • the reliability of connection between a semiconductor chip and an electrode electrically connected to the semiconductor chip is improved. Therefore, a highly reliable semiconductor device can be obtained.
  • FIG. 22B is a cross-sectional view schematically illustrating one structural example of a semiconductor device in which the area of the electrode disposed on the lower surface of the semiconductor chip is smaller than the area of the lower surface of the semiconductor chip, as a comparative example of the structure illustrated in FIG. 22A. It is sectional drawing which expands and shows a part of semiconductor device which concerns on embodiment of this invention. It is sectional drawing which shows the outline of the 17th structural example of the semiconductor device which concerns on embodiment of this invention.
  • FIG. 1A is a plan view showing an outline of a structural example of the semiconductor device 1 of the present embodiment.
  • 1B is a cross-sectional view taken along line BB in FIG. 1A.
  • FIG. 1A does not illustrate the upper radiator plate 4 which is an example of a pressure contact member.
  • FIG. 2 is a front view showing an outline of a structural example of the semiconductor device 1 of the present embodiment.
  • FIG. 2 shows the upper radiator plate 4 by phantom lines (two-dot chain lines).
  • the semiconductor device 1 includes a semiconductor chip 2.
  • the semiconductor chip 2 is a power semiconductor chip.
  • the semiconductor device 1 includes a lower heat radiating plate (first heat radiating plate) 3 disposed below the semiconductor chip 2 and an upper heat radiating plate (second heat radiating plate) disposed above the semiconductor chip 2. 4. Therefore, the upper radiator plate 4 is disposed opposite to the lower radiator plate 3, and the semiconductor chip 2 is disposed between the lower radiator plate 3 and the upper radiator plate 4.
  • the material of the heat sinks 3 and 4 is preferably a high thermal conductivity material having a high thermal conductivity.
  • the semiconductor device 1 further includes a first electrode 5, a second electrode 6, and a third electrode 7.
  • the first electrode 5 is disposed on the upper surface of the lower heat radiating plate 3 facing the first main surface (lower surface) of the semiconductor chip 2.
  • the first electrode 5 includes a pressure contact portion 5a that contacts the lower heat radiating plate 3 and a protruding portion 5b that protrudes from the pressure contact portion 5a.
  • the semiconductor chip 2 is disposed on the upper surface of the pressure contact portion 5 a of the first electrode 5.
  • the upper surface of the press contact portion 5a is a surface opposite to the lower surface of the press contact portion 5a (first electrode 5) facing the lower heat radiating plate 3. Therefore, the first electrode 5 is disposed between the semiconductor chip 2 and the lower heat sink 3.
  • the protruding portion 5 b of the first electrode 5 protrudes from the predetermined position outside the projection area of the semiconductor chip 2 toward the upper radiator plate 4.
  • the protruding portion 5 b of the first electrode 5 extends from the press contact portion 5 a of the first electrode 5 so as to protrude from the upper surface of the upper heat radiating plate 4.
  • the upper surface of the upper heat radiating plate 4 is a surface opposite to the lower surface of the upper heat radiating plate 4 facing the semiconductor chip 2. Therefore, the upper heat sink 4 has a hole (not shown) into which the protruding portion 5b of the first electrode 5 can be inserted.
  • the pressure contact portion 5a of the first electrode 5 is disposed to face a first surface electrode (not shown) formed on the lower surface of the semiconductor chip 2, and is electrically connected to the first surface electrode (not shown). Is conducting.
  • the first surface electrode (not shown) formed on the lower surface of the semiconductor chip 1 may be, for example, a solid electrode formed on almost the entire lower surface of the semiconductor chip 1.
  • the pressure contact portion 5a of the first electrode 5 is pressed against each of the semiconductor chip 2 and the lower heat radiating plate 3 by a pressure generation mechanism (not shown) and is in contact with them.
  • a pressure generation mechanism (not shown) generates a pressure for press-contacting the press-contact portion 5 a of the first electrode 5 to each of the semiconductor chip 2 and the lower heat radiating plate 3.
  • the second electrode 6 and the third electrode 7 are arranged at different locations on the upper surface (second main surface) of the semiconductor chip 2.
  • the upper surface of the semiconductor chip 2 is a surface opposite to the first main surface (lower surface) of the semiconductor chip 2.
  • the centers of the regions of the electrodes 6 and 7 projected on the upper surface of the semiconductor chip 2 are all located away from the center of the upper surface of the semiconductor chip 2.
  • these electrodes 6 and 7 are also in pressure contact portions 6a and 7a that come into contact with the semiconductor chip 2, and a protruding portion 6b that protrudes from the pressure contact portions 6a and 7a. 7b.
  • the upper radiator plate 4 is disposed on the upper surfaces of the pressure contact portions 6a and 7a of these electrodes 6 and 7.
  • the upper surfaces of the press contact portions 6 a and 7 a are surfaces opposite to the lower surfaces of the press contact portions 6 a and 7 a (electrodes 6 and 7) facing the semiconductor chip 2. Accordingly, both the second electrode 6 and the third electrode 7 are disposed between the semiconductor chip 2 and the upper heat sink 4, and the upper heat sink 4 disposed to face the upper surface of the semiconductor chip 2 Along with the lower heat radiation plate 3 facing the lower surface, the semiconductor chip 2 and the press contact portions 5a to 7a of the plurality of electrodes 5 to 7 are sandwiched and held.
  • the protruding portion 6b of the second electrode 6 extends from the press contact portion 6a of the second electrode 6 so as to protrude from the upper surface of the upper radiator plate 4.
  • the protruding portion 7 b of the third electrode 7 extends from the press contact portion 7 a of the third electrode 7 so as to protrude from the upper surface of the upper heat radiating plate 4. Therefore, the upper radiator plate 4 has a hole (not shown) in which the protruding portion 6b of the second electrode 6 can be inserted, and a hole in which the protruding portion 7b of the third electrode 7 can be inserted.
  • the pressure contact portion 6 a of the second electrode 6 is disposed to face the second surface electrode 8 formed on the upper surface of the semiconductor chip 2, and is electrically connected to the second surface electrode 8. .
  • the pressure contact portion 7 a of the third electrode 7 is disposed to face the third surface electrode 9 formed on the upper surface of the semiconductor chip 2, and is electrically connected to the third surface electrode 9. Yes.
  • the pressure contact portion 6a of the second electrode 6 and the pressure contact portion 7a of the third electrode 7 are both pressed against and bonded to the semiconductor chip 2 and the upper radiator plate 4 by a pressure generation mechanism (not shown).
  • a pressure generation mechanism (not shown) generates a pressure that presses and joins the pressure contact portion 6 a of the second electrode 6 and the pressure contact portion 7 a of the third electrode 7 to the semiconductor chip 2 and the upper radiator plate 4, respectively.
  • the area of the second surface electrode 8 formed on the second main surface (upper surface) of the semiconductor chip 2 is such that the pressure contact portion 6 a of the second electrode 6 in contact with the second surface electrode 8. It is larger than the area (projected area of the second electrode 6), and the second surface electrode 8 protrudes from the pressure contact part 6a of the second electrode 6 in at least one direction.
  • the semiconductor device 1 has a structure in which the second electrode 6 contacts the second surface electrode 8 of the semiconductor chip 2.
  • the structure of the semiconductor device is not limited to that structure.
  • the second surface electrode 8 of the semiconductor chip 2 may be plated to form a protruding electrode having a height of, for example, about 4 ⁇ m on the second surface electrode 8.
  • the second surface electrode 8 of the semiconductor chip 2 is made of, for example, Al (aluminum)
  • the second surface electrode 8 may be plated with Ni.
  • Au flash plating may be further performed after Ni plating is performed.
  • the area of the pressure contact portion 6 a of the second electrode 6 is larger or smaller than the area of the second surface electrode 8. In either case, it is possible to maintain electrical continuity between the second surface electrode 8 and the second electrode 6 when the pressure contact portion 6a of the second electrode 6 and the semiconductor chip 2 slide relative to each other. Become.
  • the third surface electrode 9 formed on the second main surface (upper surface) of the semiconductor chip 2 is in contact with the third surface electrode 9 in at least one direction. Protrudes from the pressure contact portion 7a. On the other hand, the pressure contact portion 7a of the third electrode 7 also protrudes from the third surface electrode 9 in at least one direction.
  • a protruding electrode (not shown) is formed on the third surface electrode 9 of the semiconductor chip 2 by plating, and a third electrode is formed on the protruding electrode (not shown) formed by the plating process.
  • a pressure contact portion 7a of the electrode 7 is disposed. With this configuration, even if the pressure contact portion 7a of the third electrode 7 and the semiconductor chip 2 slide relative to each other (slide), the electrical connection between the third surface electrode 9 and the third electrode 7 of the semiconductor chip 2 is possible. Continuity is maintained.
  • the protruding electrode is formed on the third surface electrode 9 in this way, in order to align the heights of the upper surfaces of the pressure contact portion 6a of the second electrode 6 and the pressure contact portion 7a of the third electrode 7, It is preferable to form a protruding electrode on the second surface electrode 8 of the semiconductor chip 2 to which the pressure contact portion 6a of the second electrode 6 is electrically connected by plating or the like.
  • a semiconductor device 1 having a structure in which two electrodes 6 and 7 are arranged on the upper surface of a semiconductor chip 2 will be described.
  • the present invention is not limited to this structure.
  • One or more electrodes may be disposed on each main surface of the semiconductor chip 2.
  • the pressure contact member is not limited to a heat radiating plate, that is, a member having thermal conductivity.
  • the pressure contact member has at least a function of pressing the pressure contact portions 5a to 7a of the electrodes 5 to 7 electrically connected to the semiconductor chip 2 to the semiconductor chip 2 together with the lower heat radiation plate 3 and holding them, Any member may be used as long as it has a function of maintaining the mechanical insulation.
  • a pressure generating mechanism (not shown) generates a pressure for holding the semiconductor chip 2 between the lower radiator plate 3 and the upper radiator plate 4. Then, depending on the pressure, the pressure contact portion 5a of the first electrode 5 and the lower heat sink 3 are pressed, the pressure contact portion 5a of the first electrode 5 and the semiconductor chip 2, and the pressure contact portion 6a of the second electrode 6. Further, the press-contact joining between the press-contact portion 7a of the third electrode 7 and the semiconductor chip 2, and the press-contact joint between the press-contact portion 6a of the second electrode 6 and the press-contact portion 7a of the third electrode 7 and the upper radiator plate 4 are realized. . Further, the positional relationship among the semiconductor chip 2, the first electrode 5, the second electrode 6, and the third electrode 7 is maintained by these pressure welding.
  • Typical semiconductor chips used in the power module are power semiconductor chips such as power MOSFETs, IGBTs, bipolar transistors, and diodes.
  • power semiconductor chips made of SiC (silicon carbide) or GaN (gallium nitride) have been developed.
  • the structure of the power semiconductor chip is classified into a vertical type and a horizontal type. In this embodiment, a case where the semiconductor chip 2 is a vertical power MOSFET will be described.
  • the first surface electrode formed on the lower surface (first main surface) of the semiconductor chip 2 is a drain electrode.
  • the drain electrode is electrically connected to the first electrode 5 disposed on the lower surface of the semiconductor chip 2.
  • the second surface electrode 8 and the third surface electrode 9 formed on the upper surface (second main surface) of the semiconductor chip 2 are a source electrode and a gate electrode, respectively. Therefore, the source electrode 8 is electrically connected to the second electrode 6, and the gate electrode 9 is electrically connected to the third electrode 7.
  • the first surface electrode formed on the lower surface of the semiconductor chip 2 is a collector electrode and is formed on the upper surface of the semiconductor chip 2.
  • the second surface electrode 8 and the third surface electrode 9 are an emitter electrode and a gate electrode, respectively.
  • the emitter electrode 8 is electrically connected to the second electrode 6, and the gate electrode 9 is electrically connected to the third electrode 7. Connect to.
  • the first surface electrode formed on the lower surface of the semiconductor chip 2 is a collector electrode and is formed on the upper surface of the semiconductor chip 2.
  • the second surface electrode 8 and the third surface electrode 9 are an emitter electrode and a base electrode, respectively.
  • the emitter electrode 8 is electrically connected to the second electrode 6, and the base electrode 9 is electrically connected to the third electrode 7. Connect.
  • the cathode electrode is formed as a surface electrode on one main surface of the semiconductor chip
  • the anode electrode is formed as a surface electrode on the other main surface of the semiconductor chip.
  • one surface electrode is formed on each of the main surfaces of the semiconductor chip. Therefore, in this case, one electrode is disposed on each of the main surfaces.
  • Each of the electrodes 5 to 7 is a member that plays an electrical role such as passing a current or maintaining a predetermined voltage.
  • the material of the electrodes 5 to 7 electrically connected to the semiconductor chip 2 is generally copper.
  • the material of the electrodes 5 to 7 is not limited to copper.
  • the material of the electrodes 5 to 7 may be nickel, aluminum or the like.
  • an electrode obtained by applying nickel plating to a base material made of copper or the like may be used.
  • the electrode which nickel-plated to the base material which consists of copper etc., and also silver-plated or gold-plated on the nickel plating may be used.
  • the electrode becomes difficult to oxidize. Further, when silver plating or gold plating is further performed on the nickel plating, the oxidation of the electrode is further less likely to occur.
  • the electrodes 5 to 7 have the protruding portions 5 b to 7 b extending to the outside of the outer shape of the semiconductor device 1. These protrusions 5b to 7b extend from different places so as not to contact each other.
  • the cross-sectional area of each hole of the upper radiator plate 4 into which the protrusions 5b to 7b are inserted is preferably as small as possible.
  • the protrusions 5 b to 7 b extend in the vertical direction with respect to the upper heat sink 4. In this way, an increase in the cross-sectional area of each hole of the upper heat radiating plate 4 is suppressed, so that the heat radiating characteristics of the upper heat radiating plate 4 are improved.
  • the first electrode 5, the second electrode 6, and the third electrode 7 each have a protruding portion that protrudes from the lower surface of the lower heat radiating plate 3 instead of the protruding portion that protrudes from the upper surface of the upper heat radiating plate 4.
  • the lower heat radiating plate 3 may have each hole portion into which each protruding portion can be inserted.
  • the lower surface of the lower heat radiating plate 3 is a surface opposite to the upper surface of the lower heat radiating plate 3.
  • the heat sinks 3 and 4 have the role of pressing and holding the first electrode 5, the second electrode 6 and the third electrode 7 to the semiconductor chip 2, the role of efficiently radiating the heat of the semiconductor chip 2, It is a member that plays the role of maintaining electrical insulation.
  • the material of the heat sinks 3 and 4 is preferably an insulating inorganic material having a high thermal conductivity.
  • diamond may be used as the material of the heat sinks 3 and 4.
  • ceramics such as aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), and alumina (Al 2 O 3 ) may be used as the material for the heat sinks 3 and 4.
  • the heat sinks 3 and 4 may be used as the material of the heat sinks 3 and 4, and the heat sinks 3 and 4 and the electrodes 5 to 7 may be insulated by an insulating element.
  • the semiconductor device 1 having a structure in which the heat radiating plates 3 and 4 and the electrodes 5 to 7 are insulated by an insulating element will be described with reference to FIGS.
  • FIGS. 3 and 4 are cross-sectional views each showing an outline of another structural example of the semiconductor device 1 of the present embodiment.
  • an insulating layer 10 a which is an example of an insulating element is formed on the upper surface of the lower heat radiating plate 3 and the lower surface of the upper heat radiating plate 4.
  • an insulating layer 10a is also formed on the inner surface of each hole of the upper heat sink 4 where the protruding portions 5b to 7b of the electrodes 5 to 7 are inserted.
  • the insulating layer 10 a formed on the upper surface of the lower heat radiating plate 3 insulates between the press contact portion 5 a of the first electrode 5 and the lower heat radiating plate 3.
  • the insulating layer 10a formed on the lower surface of the upper heat radiating plate 4 insulates between the pressure contact portion 6a of the second electrode 6 and the upper heat radiating plate 4, and also presses the pressure contact portion 7a of the third electrode 7 and the upper heat radiating plate. Insulates the board 4. Thereby, the electrical insulation between the heat sinks 3 and 4 and the electrodes 5 to 7 is maintained. Therefore, a metal member made of aluminum, copper, or the like can be used as the base material for the heat sinks 3 and 4.
  • the material of the insulating layer 10a is preferably an inorganic material having high thermal conductivity.
  • an anodized aluminum film (alumite), a diamond thin film, a film formed by ceramic spraying, diamond-like carbon, or the like may be used as the material of the insulating layer 10a.
  • the thickness of the insulating layer 10a may be about 10 ⁇ m to 100 ⁇ m.
  • the insulating layer 10a is made of alumite, it is preferable to perform a sealing process in order to improve the insulating property of the insulating layer 10a.
  • the electrolyte solution used for the alumite treatment is preferably an electrolyte solution based on oxalic acid. This is because the coating of the insulating layer 10a is not easily broken and the insulating properties are improved. Further, the surface of the alumite may be coated with a resin film. Thereby, the insulation of the insulating layer 10a further increases.
  • the thickness of the resin film for coating the insulating layer 10a may be about 1 ⁇ m to 20 ⁇ m.
  • a method of forming the resin film for coating the resin layer 10a for example, a method of electrodepositing a fluorine-containing resin on the surface of the alumite after the alumite treatment can be employed.
  • the semiconductor device 1 having the structure in which the insulating layer 10a made of an inorganic material is formed on the heat radiating plate made of metal is more effective than the semiconductor device 1 using the heat radiating plate made of an insulating inorganic material having a good thermal conductivity. It has high thermal conductivity and can be manufactured at low cost.
  • the area of the insulating layer 10a formed on the upper surface of the lower heat sink 3 is such that the pressure contact portion 5a of the first electrode 5 is efficiently radiated from the pressure contact portion 5a of the first electrode 5 to the lower heat sink 3. It is preferable to make it larger than the area (projected area of the first electrode 5). Further, since the area of the insulating layer 10a formed on the upper surface of the lower heat radiating plate 3 is larger than the area of the pressure contact portion 5a of the first electrode 5, the pressure contact between the lower heat radiating plate 3 and the first electrode 5 is achieved. The part 5a is reliably insulated.
  • the area of the insulating layer 10a formed on the lower surface of the upper heat radiating plate 4 is, for example, the upper surface of the semiconductor chip 2 so that heat is efficiently radiated mainly from the pressure contact portion 6a of the second electrode 6 to the upper heat radiating plate 4. It may be wider than the area. Further, since the area of the insulating layer 10 a formed on the lower surface of the upper heat sink 4 is larger than the area of the upper surface of the semiconductor chip 2, the press contact portions 6 a and 7 a of the electrodes 6 and 7 and the upper heat sink 4 Is reliably insulated from each other.
  • the semiconductor device 1 shown in FIG. 4 is different from the semiconductor device 1 shown in FIG. Specifically, the area ratio of the insulating layer 10a in the semiconductor device 1 shown in FIG. 4 is larger than the area ratio of the insulating layer 10a in the semiconductor device 1 shown in FIG. Therefore, when the dimensions of the semiconductor device 1 shown in FIG. 3 and the dimensions of the semiconductor device 1 shown in FIG. 4 are the same, each insulation formed on the upper surface or the lower surface of each heat radiation plate 3, 4 of the semiconductor device 1 shown in FIG. The area of the layer 10a is larger than the area of each insulating layer 10a formed on the upper surface or the lower surface of each heat sink 3, 4 of the semiconductor device 1 shown in FIG. On the other hand, as shown in FIG.
  • the insulating layer 10 a is formed on the entire upper surface or substantially the entire upper surface of the lower radiator plate 3, and the insulating layer 10 a is formed on the entire lower surface or substantially the entire surface of the upper radiator plate 4. As shown in FIG. 3, it is easier to form the insulating layer 10a than to partially form each insulating layer 10a on the upper or lower surface of each of the heat sinks 3 and 4.
  • FIGS. 5 to 9 are cross-sectional views showing outlines of other structural examples of the semiconductor device 1 according to the present embodiment.
  • the semiconductor device 1 shown in FIG. 5 uses heat sinks 3 and 4 in which insulating members 10b, 10c, and 10d, which are examples of insulating elements, are embedded as the heat sinks 3 and 4 on which insulating layers are formed.
  • An insulating layer is formed on each of the heat sinks 3 and 4 by the embedded insulating members 10b, 10c, and 10d.
  • the insulating member 10 b embedded in the lower heat radiating plate 3 is exposed from the upper surface of the lower heat radiating plate 3 at a position corresponding to the pressure contact portion 5 a of the first electrode 5.
  • the insulating member 10 c embedded in the upper heat radiating plate 4 is exposed from the lower surface of the upper heat radiating plate 4 at a position corresponding to the pressure contact portion 6 a of the second electrode 6.
  • the shape of the insulating member 10 c embedded in the upper heat radiating plate 4 corresponds to the shape of the second electrode 6. That is, the insulating member 10c includes a base portion corresponding to the pressure contact portion 6a of the second electrode 6 and a protruding portion (not shown) corresponding to the protruding portion 6b of the second electrode 6, and the base of the insulating member 10c.
  • the lower surface of the part is exposed from the lower surface of the upper radiator plate 4, and the protruding portion of the insulating member 10 c extends from the base portion of the insulating member 10 c to the upper surface of the upper radiator plate 4.
  • the hole (not shown) which can insert the protrusion part 6b of the 2nd electrode 6 is extended from the lower surface of the base part of the insulating member 10c to the end surface of the protrusion part of the insulating member 10c.
  • the insulating member 10 d embedded in the upper radiator plate 4 has a shape corresponding to the shape of the third electrode 7, and a base portion corresponding to the pressure contact portion 7 a of the third electrode 7 and the third electrode 7.
  • the protrusion part corresponding to this protrusion part 7b is provided.
  • the insulating member 10 d is disposed at a position corresponding to the pressure contact portion 7 a of the third electrode 7 so that the lower surface of the base portion of the insulating member 10 d is exposed from the lower surface of the upper heat radiating plate 4.
  • the protruding portion of the insulating member 10 d extends from the base portion of the insulating member 10 d to the upper surface of the upper heat radiating plate 4.
  • the hole which can insert the protrusion part 7b of the 3rd electrode 7 is extended from the lower surface of the base part of the insulating member 10d to the end surface of the protrusion part of the insulating member 10d.
  • an insulating member (not shown) in which a hole portion into which the protruding portion 5b of the first electrode 5 can be inserted is embedded in the upper heat sink 4.
  • This insulating member may be integral with the insulating member 10c.
  • the insulating member 10b may be fitted into a recess formed in the lower heat sink 3 by counterboring or the like.
  • the base portions of the insulating members 10c and 10d may be fitted into the concave portions formed in the upper heat sink 4 by counterboring or the like.
  • the insulating member 10b for insulating between the first electrode 5 pressed against the main electrode formed on the first main surface of the semiconductor chip 2 and the lower heat sink 3 has high thermal conductivity and high heat resistance. Sexuality is required.
  • the required thickness of the insulating member 10b is about 50 ⁇ m to 1000 ⁇ m.
  • the thickness of the insulating member 10b is about 400 ⁇ m.
  • the required thickness of the base portion of the insulating member 10c is about 50 ⁇ m to 1000 ⁇ m.
  • the thickness of the base portion of the insulating member 10c is about 400 ⁇ m.
  • the necessary thickness of the insulating member 10b is about 10 ⁇ m to 100 ⁇ m.
  • the thickness required for the base portion of the insulating member 10c is about 10 ⁇ m to 100 ⁇ m.
  • the diamond may be either polycrystalline diamond or single crystal diamond.
  • the material of the insulating member 10d may be an inexpensive inorganic material such as mica (mica) or ceramic such as alumina (Al 2 O 3 ). Further, only an insulating property is required for an insulating member (not shown) for insulating between the protruding portion 5b of the first electrode 5 and the upper heat radiating plate 4.
  • the insulating member for insulating between the protruding portion 5b of the first electrode 5 and the upper heat sink 4 is not integral with the insulating member 10c, the protrusion 5b of the first electrode 5 and the upper heat sink 4
  • the material of the insulating member (not shown) for insulating the gap may be an inexpensive inorganic material such as mica (mica) or ceramic such as alumina (Al 2 O 3 ).
  • the material of the heat sinks 3 and 4 is preferably a metal material that is inexpensive and has high thermal conductivity.
  • a metal material that is inexpensive and has high thermal conductivity.
  • aluminum or copper is preferable.
  • the insulating members 10b to 10d can be formed into a predetermined shape by machining such as cutting or grinding. When the insulating members 10b to 10d are made of ceramic, the insulating member can be formed into a predetermined shape by molding with a mold instead of machining.
  • the area of the insulating member 10b is preferably larger than the area of the press contact portion 5a of the first electrode 5 so that the lower heat sink 3 and the press contact portion 5a of the first electrode 5 are reliably insulated. It is.
  • the area of the base portion of the insulating member 10c (projected area of the insulating member 10c) is preferably larger than the area of the pressure contact portion 6a of the second electrode 6, and the area of the base portion of the insulating member 10d ( The projected area of the insulating member 10d is preferably larger than the area of the pressure contact portion 7a of the third electrode 7 (projected area of the third electrode 7).
  • aluminum anodic oxide films (alumite) or diamond are formed in the recesses formed in the heat sinks 3 and 4 by counterboring or the like.
  • a thin film, a film formed by ceramic spraying, diamond-like carbon, or the like may be formed.
  • the insulating member 10 b is disposed on the upper surface of the lower heat radiating plate 3.
  • An insulating layer is formed on the lower heat radiating plate 3 by the insulating member 10 b disposed on the upper surface of the lower heat radiating plate 3.
  • the base portions of the insulating members 10 c and 10 d are disposed on the lower surface of the upper heat radiating plate 4.
  • An insulating layer is formed on the upper heat sink 4 by the insulating members 10 c and 10 d disposed on the lower surface of the upper heat sink 4.
  • the area of the insulating member 10b is preferably larger than the area of the press contact portion 5a of the first electrode 5 so that heat can be efficiently radiated from the press contact portion 5a of the first electrode 5 to the lower heat radiating plate 3. Further, since the area of the insulating member 10b disposed on the upper surface of the lower heat sink 3 is larger than the area of the press contact portion 5a of the first electrode 5, the press contact between the lower heat sink 3 and the first electrode 5 is achieved. The part 5a is reliably insulated.
  • the area of the base portion of the insulating member 10c disposed on the lower surface of the upper heat sink 4 is preferably larger than the area of the press contact portion 6a, and the insulating member 10d disposed on the lower surface of the upper heat sink 4 is used.
  • the area of the base part is preferably larger than the area of the press contact part 7a.
  • the press contact of the electrodes 6 and 7 is achieved.
  • the portions 6a and 7a and the upper heat radiating plate 4 are reliably insulated.
  • FIG. 7 shows the semiconductor device 1 having a structure in which an insulating member 10 b is embedded in the lower heat sink 3 and an insulating member 10 e is embedded in the upper heat sink 4.
  • the insulating member 10 e insulates between the second electrode 6 and the upper radiator plate 4 and insulates between the third electrode 7 and the upper radiator plate 4.
  • An insulating layer is formed on the upper radiator plate 4 by the embedded insulating member 10e.
  • the insulating member 10 e includes a base portion that covers the pressure contact portion 6 a of the second electrode 6 and the pressure contact portion 7 a of the third electrode 7, and a protrusion (not shown) corresponding to the protrusion 6 b of the second electrode 6.
  • the protrusion corresponding to the protrusion 7b of the third electrode 7 is provided, the lower surface of the base portion of the insulating member 10e is exposed from the lower surface of the upper radiator plate 4, and each protrusion of the insulating member 10e is exposed to the insulating member 10e. Extends from the base portion to the upper surface of the upper radiator plate 4.
  • a hole (not shown) into which the protruding portion 6b of the second electrode 6 can be inserted extends from the lower surface of the base portion of the insulating member 10e to the end surface of one protruding portion of the insulating member 10e.
  • a hole into which the protruding portion 7b of the electrode 7 can be inserted extends from the lower surface of the base portion of the insulating member 10e to the end surface of the other protruding portion of the insulating member 10e.
  • an insulating member (not shown) in which a hole portion into which the protruding portion 5b of the first electrode 5 can be inserted is embedded in the upper heat sink 4.
  • This insulating member may be integral with the insulating member 10e.
  • the base portion of the insulating member 10e may be fitted into a recess formed in the upper heat sink 4 by counterboring or the like. Thus, since the insulating member 10e is embedded in the upper radiator plate 4, the positional displacement of the insulating member 10e does not occur.
  • the insulating member 10 e that insulates between the press-contact portion 6 a of the second electrode 6 and the upper radiator plate 4 is required to have high thermal conductivity and high heat resistance. Therefore, for the material of the insulating member 10e, for example, an inorganic insulating material such as diamond, ceramic such as aluminum nitride (AlN) or silicon nitride (Si 3 N 4 ) is suitable. However, when high heat dissipation is not required, inexpensive ceramics such as alumina (Al 2 O 3 ) may be used.
  • the thickness required for the base portion of the insulating member 10e is about 50 ⁇ m to 1000 ⁇ m.
  • the thickness of the base portion of the insulating member 10e is about 400 ⁇ m.
  • the thickness required for the base portion of the insulating member 10e is about 10 ⁇ m to 100 ⁇ m.
  • the diamond may be either polycrystalline diamond or single crystal diamond.
  • the insulating member 10e can be formed into a predetermined shape by machining such as cutting or grinding.
  • the insulating member 10e is made of ceramic, the insulating member 10e can be formed into a predetermined shape by molding with a mold instead of machining.
  • the area of the base portion of the insulating member 10e (projected area of the insulating member 10e) is, for example, a semiconductor chip so that the pressure contact portions 6a and 7a of the electrodes 6 and 7 and the upper radiator plate 4 are reliably insulated.
  • the area of the upper surface of 2 may be larger.
  • aluminum anodic oxide films (alumite), diamond thin films, A film formed by ceramic spraying, diamond-like carbon, or the like may be formed.
  • the insulating member 10b is disposed on the upper surface of the lower heat radiating plate 3, and the base portion of the insulating member 10e is disposed on the lower surface of the upper heat radiating plate 4.
  • An insulating layer is formed on the upper heat radiating plate 4 by an insulating member 10 e disposed on the lower surface of the upper heat radiating plate 4.
  • the insulating member 10 b is partially disposed on the upper surface of the lower radiator plate 3, and the base portion of the insulating member 10 e is partially disposed on the lower surface of the upper radiator plate 4. .
  • the insulating member 10 b is disposed on the entire upper surface or substantially the entire upper surface of the lower radiator plate 3, and the base portion of the insulating member 10 e is disposed on the entire lower surface or substantially the entire surface of the upper radiator plate 4. Has been placed.
  • the area of the base portion of the insulating member 10e may be made larger than the area of the upper surface of the semiconductor chip 2 so that heat can be efficiently radiated mainly from the pressure contact portion 6a of the second electrode 6 to the upper radiator plate 4.
  • the pressure contact portions 6a and 7a of the electrodes 6 and 7 are The heat sink 4 is reliably insulated from the heat sink 4.
  • the semiconductor device 1 may include the lower heat sink 3 on which the insulating layer 10a shown in FIG. 3 is formed and the upper heat sink 4 on which the insulating member 10e shown in FIG. 8 is provided.
  • the press contact portions 5a to 7a of the electrodes 5 to 7 are press bonded to the semiconductor chip 2. Therefore, in the semiconductor device 1 of this embodiment, the contact portions 5a to 7a of the electrodes 5 to 7 can be prevented from being broken at each connection portion connected to the semiconductor chip 2.
  • the thermal expansion coefficient of the semiconductor chip 2 is 3 to 4 ppm / ° C.
  • the base material of the electrodes 5 to 7 electrically connected to the semiconductor chip 2 is made of copper, the thermal expansion coefficient of the electrodes 5 to 7 is 17 ppm / ° C.
  • the form in which the press contact portions 5a to 7a of the electrodes 5 to 7 are connected to the heat sinks 3 and 4 is not a fixed connection but a contact connection. Therefore, the destruction of the connection portion where the press contact portion 5a of the first electrode 5 is connected to the lower heat radiating plate 3 is avoided.
  • connection portion where the pressure contact portion 6a of the second electrode 6 is connected to the upper heat sink 4 is avoided, and the connection portion where the pressure contact portion 7a of the third electrode 7 is connected to the upper heat sink 4 is avoided. Destruction is also avoided. Therefore, the reliability of the connection between the heat sinks 3 and 4 and the electrodes 5 to 7 is increased.
  • the form in which the press contact portions 5 a to 7 a of the electrodes 5 to 7 are connected to the semiconductor chip 2 is not a fixed connection but a contact connection, and the heat sinks 3 and 4 are pressed to the electrodes 5 to 7.
  • the form in which the parts 5a to 7a are connected is not a fixed connection but a contact connection. For this reason, for example, when the semiconductor chip 2 is found to be defective after the semiconductor device 1 is assembled, the semiconductor chip 2 can be easily repaired.
  • connection interface between the pressure contact portion 5a of the first electrode 5 and the lower heat dissipation plate 3, the connection interface between the pressure contact portion 6a of the second electrode 6 and the upper heat dissipation plate 4, and the pressure contact portion 7a of the third electrode 7 The materials of the heat sinks 3 and 4 for reducing the stress generated at the connection interface with the upper heat sink 4 will be described with reference to Tables 1 and 2.
  • Table 1 shows the thermal expansion coefficients ( ⁇ ) of SiC (silicon carbide), Al (aluminum), Cu (copper), and AlN (aluminum nitride).
  • Case 1 in Table 2 shows the thermal expansion between the semiconductor chip and the electrode when the semiconductor chip material is SiC, the electrode base material is Cu or Al, and the heat sink base material is Cu or Al.
  • a coefficient difference ( ⁇ 1) and a thermal expansion coefficient difference ( ⁇ 2) between the electrode and the heat sink are shown.
  • Case 2 in Table 2 shows the difference in thermal expansion coefficient between the semiconductor chip and the electrode when the semiconductor chip material is SiC, the electrode base material is Cu or Al, and the heat sink base material is AlN. ( ⁇ 1) and the difference in thermal expansion coefficient ( ⁇ 2) between the electrode and the heat sink are shown.
  • the difference in thermal expansion coefficient ( ⁇ 1) between the semiconductor chip and the electrode is 13 to 17 ppm / ° C
  • the difference in thermal expansion coefficient between the electrode and the heat sink ( ⁇ 2). ) Is 0 to 3 ppm / ° C.
  • the thermal expansion coefficient difference ( ⁇ 1) between the semiconductor chip and the electrode is 13 to 17 ppm / ° C., which is the same as in case 1.
  • the difference in thermal expansion coefficient ( ⁇ 2) between the electrode and the heat radiating plate is 13 to 16 ppm / ° C., which is larger than that in the case 1.
  • the base material of the electrode and the base material of the heat sink are both metals
  • the base material of the electrode is metal and the base material of the heat sink is not metal. This is because it is an inorganic substance. Therefore, compared with the case 2, the stress generated in the case 1 due to the thermal expansion coefficient difference ⁇ 2 between the electrode and the heat sink is smaller. For this reason, it is preferable that both the base material of the lower radiator plate 3 and the base material of the upper radiator plate 4 are metals.
  • FIG. 10A is a plan view schematically showing a configuration example of the pressure generating mechanism of this embodiment
  • FIG. 10B is a cross-sectional view taken along line BB of FIG. 10A.
  • FIG. 10A does not show the upper radiator plate 4.
  • the semiconductor device 1 shown in FIGS. 10A and 10B uses four screws 11 and four springs 12 as a pressure generating mechanism.
  • the upper radiator plate 4 is formed with four holes 13 for passing the four screws 11.
  • the four holes 13 are preferably formed at positions that are point-symmetric with respect to the center of the upper surface of the semiconductor chip 2.
  • Screw holes 14 are cut in the lower radiator plate 3 at four locations corresponding to the four screw holes 13 formed in the upper radiator plate 4.
  • a spring 12 is disposed between the upper end of each screw 11 and the upper radiator plate 4. With this configuration, when the four screws 11 are tightened, the lower radiator plate 3 and the upper radiator plate 4 are fixed and the semiconductor chip 2 is pressurized.
  • the spring 12 a disc spring, a wave washer, or the like can be used.
  • the pressure contact portion 5 a of the first electrode 5 disposed between the lower heat sink 3 and the semiconductor chip 2 causes the lower heat sink 3 and the semiconductor to move.
  • Each chip 2 is press-bonded to each other.
  • the pressure contact portion 6a of the second electrode 6 and the pressure contact portion 7a of the third electrode 7 disposed between the upper heat dissipation plate 4 and the semiconductor chip 2 are both pressure contact bonded to the upper heat dissipation plate 4 and the semiconductor chip 2, respectively. Is done. According to this configuration, it is possible to adjust the pressurizing force at four locations, and thus it is easy to adjust the pressure distribution. Therefore, the pressure generating mechanism shown in FIGS. 10A and 10B can create a highly accurate pressure distribution.
  • the pressure contact portion 6a of the second electrode 6 and the pressure contact portion 7a of the third electrode 7 that are in contact with the upper surface of the semiconductor chip 2 it is preferable that a larger pressure is applied to the pressure contact portion having a larger area.
  • 10A and 10B for example, the area of the pressure contact portion 6a of the second electrode 6 located on the right side is larger than the area of the pressure contact portion 7a of the third electrode 7 located on the left side.
  • the screw 11b positioned on the right side is tightened more than the screw 11a positioned on the left side, and the pressure contact force generated by the spring 12b positioned on the right side is greater than the pressure contact force generated by the spring 12a positioned on the left side.
  • the pressure contact force that press-bonds the pressure contact portion 6a of the second electrode 6 having a relatively large area to the semiconductor chip 2 is the pressure contact force that press-contacts the pressure contact portion 7a of the third electrode 7 that has a relatively small area to the semiconductor chip 2. Therefore, the pressure contact portion 6a of the second electrode 6 through which a larger current than the third electrode 7 flows can be pressed into the semiconductor chip 2 more stably.
  • FIG. 11A is a plan view showing an outline of another configuration example of the pressure generating mechanism of this embodiment. However, FIG. 11A does not show the upper radiator plate 4. Moreover, FIG. 11A has shown the clip 15 with the virtual line (two-dot chain line). 11B is a cross-sectional view taken along line BB in FIG. 11A, and FIG. 11C is a cross-sectional view taken along line CC in FIG. 11A.
  • the semiconductor device 1 shown in FIGS. 11A to 11C uses one clip 15 as a pressure generating mechanism.
  • the clip 15 includes a central portion 15a, two side portions 15b bent from both ends of the central portion 15a, and two sandwiching portions 15c bent from respective tips of the two side portions 15b.
  • the clip 15 includes a leaf spring.
  • the clip 15 is attached to the semiconductor device 1 such that the central portion 15a is in contact with the upper surface of the upper radiator plate 4 and the two sandwiched portions 15c are in contact with the lower surface of the lower radiator plate 3.
  • the lower heat radiating plate 3 and the upper heat radiating plate 4 are biased by the leaf springs that form the clip 15 (tightening force). ) Is pressed and fixed.
  • positioned between the lower heat sink 3 and the semiconductor chip 2 is press-contacted to each of the lower heat sink 3 and the semiconductor chip 2, and upper side
  • the pressure contact portion 6 a of the second electrode 6 and the pressure contact portion 7 a of the third electrode 7 disposed between the heat dissipation plate 4 and the semiconductor chip 2 are both pressure contact bonded to the upper heat dissipation plate 4 and the semiconductor chip 2.
  • the step portion 3 a provided on the lower surface of the lower heat radiating plate 3 has a flat surface protruding so that contact between another heat radiating path and the lower heat radiating plate 3 is not obstructed by the clip 15.
  • the step 3a makes it easier for the lower heat radiating plate 3 to come into contact with another heat radiating path, for example, heat radiating fins or graphite.
  • the step portion 3 a of the lower heat radiating plate 3 also has a role of preventing the movement of the tip of the sandwiching portion 15 c due to the tightening force of the clip 15.
  • a recess 3 b into which the side portion 15 b of the clip 15 enters is formed on the side wall of the lower heat radiating plate 3.
  • a concave portion 4 b into which the side portion 15 b of the clip 15 enters is formed on the side wall of the upper heat radiating plate 4. Further, as shown in FIG. 11A, the protrusions 5b to 7b of the electrodes 5 to 7 are provided at predetermined positions that are out of the projection area of the clip 15, respectively.
  • the pressure welding can be performed by one clip 15. Therefore, according to this configuration, the assembly of the semiconductor device 1 is simplified.
  • the clip 15 may be attached to the semiconductor device 1 such that the central portion 15 a contacts the lower surface of the lower heat radiating plate 3 and the two sandwiched portions 15 c contact the upper surface of the upper heat radiating plate 4.
  • a step portion is provided on the upper surface of the upper radiator plate 4. The step protrudes a flat surface so that the upper heat radiating plate 4 can easily come into contact with another heat radiating path such as a heat radiating fin or graphite.
  • the step portion also has a role of preventing the movement of the tip of the sandwiching portion 15 c due to the tightening force of the clip 15.
  • FIG. 12A is a plan view illustrating an outline of another configuration example (third specific example) of the pressure generation mechanism according to this embodiment. However, FIG. 12A does not show the upper radiator plate 4.
  • 12B is a cross-sectional view taken along line BB in FIG. 12A
  • FIG. 12C is a cross-sectional view taken along line CC in FIG. 12A.
  • FIG. 12B shows the clip 16 with a virtual line (two-dot chain line).
  • the semiconductor device 1 shown in FIGS. 12A to 12C uses two clips 16 smaller than the clip 15 shown in FIGS. 11A to 11C as a pressure generating mechanism.
  • the clip 16 includes a central portion 16a and two sandwiching portions 16b bent from both ends of the central portion 16a.
  • the clip 16 includes a leaf spring.
  • the pair of clips 16 are attached to predetermined both ends of the semiconductor device 1.
  • the clip 16 has a central portion 16a facing the side wall of the lower heat radiating plate 3 and the side wall of the upper heat radiating plate 4, one sandwiched portion 16b contacting the lower surface of the lower heat radiating plate 3, and the other side.
  • the sandwiching portion 16b is attached to the semiconductor device 1 so as to be in contact with the upper surface of the upper radiator plate 4. In this way, by attaching the plurality of clips 16 along one circumferential direction of the semiconductor device 1, the lower heat radiating plate 3 and the upper heat radiating plate 4 cause the urging force (clamping force) of the leaf spring that forms the clip 16. Pressurized and fixed.
  • positioned between the lower heat sink 3 and the semiconductor chip 2 is press-contacted to each of the lower heat sink 3 and the semiconductor chip 2, and upper side
  • the pressure contact portion 6 a of the second electrode 6 and the pressure contact portion 7 a of the third electrode 7 disposed between the heat dissipation plate 4 and the semiconductor chip 2 are both pressure contact bonded to the upper heat dissipation plate 4 and the semiconductor chip 2.
  • the step portion 3 a provided on the lower surface of the lower heat radiating plate 3 has a flat surface protruding so that contact between another heat radiating path and the lower heat radiating plate 3 is not obstructed by the clip 16.
  • the step 3a makes it easier for the lower heat radiating plate 3 to come into contact with another heat radiating path, for example, heat radiating fins or graphite.
  • the step 4a provided on the upper surface of the upper heat radiating plate 4 also projects a flat surface so that the upper heat radiating plate 4 can easily come into contact with another heat radiating path, for example, heat radiating fins or graphite.
  • these step portions 3 a and 4 a also have a role of preventing the movement of the tip of the sandwiching portion 16 b due to the clamping force of the clip 16.
  • the protruding portions 5b to 7b of the electrodes 5 to 7 are respectively provided at predetermined positions outside the projection area of each clip 16.
  • the heat radiation performance of the semiconductor device 1 is improved because the surfaces of the heat radiation plates 3 and 4 are opened wider than when one clip is used.
  • the surface of the heat sinks 3 and 4 is a surface opposite to the surface of the heat sinks 3 and 4 facing the semiconductor chip 2.
  • the pair of clips 16 are preferably arranged along one circumferential direction of the semiconductor device 1 as shown in FIGS. 12A to 12C. However, the pair of clips 16 may be arranged along different circumferential directions of the semiconductor device 1.
  • FIG. 13 is a cross-sectional view schematically showing another structural example of the semiconductor device 1 according to the present embodiment.
  • the source electrode 8 and the gate electrode 9 are formed on the upper surface of the semiconductor chip 2. Therefore, two electrodes 6 and 7 connected to the source electrode 8 and the gate electrode 9 are disposed on the upper surface of the semiconductor chip 2.
  • the thicknesses of the pressure contact portions 6a and 7a of the two electrodes 6 and 7 are different, the pressure contact portion with the smaller thickness cannot be contact-bonded favorably with the semiconductor chip 2 and the upper radiator plate 4.
  • the pressure contact portion 7 a of the third electrode 7 having a smaller area than the pressure contact portion 6 a of the second electrode 6 is larger than the pressure contact portion 6 a of the second electrode 6.
  • a buffer material 17 is disposed between the press-contact portion 7 a of the thinly formed third electrode 7 and the upper radiator plate 4. In this way, the buffer material 17 is disposed between the pressure contact portion 7 a of the third electrode 7 formed thin and the upper heat sink 4, so that the pressure contact portion of the second electrode 6 disposed on the source electrode 8. 6a and the pressure contact portion 7a of the third electrode 7 disposed on the gate electrode 9 can be satisfactorily pressure-bonded to the semiconductor chip 2 and the upper radiator plate 4, respectively.
  • the buffer material 17 for example, a heat-resistant polyimide resin thin film or the like can be used.
  • a press contact portion having a smaller area is formed thinner than the other press contact portions. Is preferred. According to this configuration, the pressure contact portion having a larger area among the plurality of pressure contact portions directly contacts the heat radiating plate, so that it is possible to obtain a semiconductor device excellent in heat dissipation.
  • FIG. 14A and FIG. 14 show another configuration for obtaining good contact bonding between the plurality of electrodes respectively connected to the plurality of surface electrodes formed on one main surface of the semiconductor chip 2 and the semiconductor chip 2.
  • FIG. 14B is a cross-sectional view taken along the line BB of FIG. 14A.
  • FIG. 14A does not show the upper radiator plate 4.
  • the semiconductor device 1 shown in FIGS. 14A and 14B uses an electrode 18 with a spring as a third electrode that is electrically connected to the gate electrode 9 of the semiconductor chip 2.
  • the spring-equipped electrode 18 includes a bottomed cylindrical portion (housing) 18a, a spring 18b, and a contact portion 18c.
  • one end of the spring 18b is disposed on the bottom surface inside the cylindrical portion 18a, and the base end of the contact portion 18c is in contact with the other end of the spring 18b.
  • tip of the contact part 18c protrudes from the open end of the cylinder part 18a.
  • a winding spring or the like may be used as the spring 18b.
  • at least the cylindrical portion 18a and the contact portion 18c are made of a metal having a good electrical conductivity, like the material of the third electrode 7.
  • the spring-equipped electrode 18 is arranged such that the top of the contact portion 18 c contacts the gate electrode 9 of the semiconductor chip 2 when the upper heat sink 4 is disposed at a predetermined position above the semiconductor chip 2. 4 is fixed. Further, a part of the cylindrical portion 18 a protrudes from the upper surface of the upper radiator plate 4, similarly to the protruding portion 7 a of the third electrode 7 extending to the outside of the semiconductor device 1.
  • the pressure contact portion 6a of the second electrode 6 disposed on the source electrode 8 of the semiconductor chip 2 is formed between the semiconductor chip 2 and the upper radiator plate by the pressure generated by the pressure generating mechanism.
  • the tip of the contact portion 18 c of the spring-loaded electrode 18 is favorably pressure-bonded to the gate electrode 9 of the semiconductor chip 2 by the urging force of the spring 18 b.
  • the electrode 18 with a spring is preferably replaced with an electrode having a pressure contact portion having a smaller area among a plurality of electrodes respectively connected to a plurality of surface electrodes formed on one main surface of the semiconductor chip 2. is there.
  • the press contact portion having a larger area among the plurality of press contact portions comes into contact with the heat radiating plate, so that it is possible to obtain a semiconductor device excellent in heat dissipation.
  • an insulating layer may be formed on the heat sinks 3 and 4 as shown in FIGS.
  • the insulating member 10 b may be embedded in the lower radiator plate 3, and the insulating members 10 c and 10 d may be embedded in the upper radiator plate 4.
  • the insulating member 10 b is disposed on the upper surface of the lower heat sink 3, and the base portions of the insulating members 10 c and 10 d are disposed on the upper surface of the upper heat sink 4. May be.
  • FIG. 17A is a plan view schematically showing another structural example of the semiconductor device 1 of the present embodiment
  • FIG. 17B is a cross-sectional view taken along line BB in FIG. 17A.
  • FIG. 17A does not show the upper radiator plate 4.
  • the direction in which the electrodes 5 to 7 are taken out of the semiconductor device 1 is the direction intersecting the upper heat sink 4.
  • the direction in which the electrode electrically connected to the surface electrode of the semiconductor chip 2 is taken out of the semiconductor device 1 may be horizontal with respect to the semiconductor chip 2 as shown in FIGS. 17A and 17B.
  • the protruding portions 5 b to 7 b of the electrodes 5 to 7 protrude to the outside of the semiconductor device 1 from the gap between the lower heat sink 3 and the upper heat sink 4. Therefore, since a larger area is ensured on the surface of the heat sinks 3 and 4, a semiconductor device with better heat dissipation can be obtained.
  • the surfaces of the heat sinks 3 and 4 are opposite to the surface facing the semiconductor chip 2.
  • the direction in which the protruding portions 5b to 7b of the electrodes 5 to 7 are taken out is not particularly limited. However, the direction in which the protrusions 6b and 7b of the plurality of electrodes 6 and 7 arranged on the same main surface of the semiconductor chip 2 are taken out is a direction in which the plurality of protrusions 6b and 7b do not contact each other. Is preferred.
  • an insulating layer may be formed on the heat sinks 3 and 4 as shown in FIGS.
  • the insulating member 10 b may be embedded in the lower heat radiating plate 3 and the insulating member 10 e may be embedded in the upper heat radiating plate 4.
  • the protrusions 5b to 7b of the electrodes 5 to 7 do not intersect with the upper radiator plate 4, the protrusions 5b to 7b of the electrodes 5 to 7 and the upper radiator plate 4 are insulated inside the upper radiator plate 4.
  • the insulating member 10e embedded in the upper heat sink 4 has a shape corresponding to the base portion of the insulating member 10e in FIG. Further, as shown in FIG.
  • the protrusions of the electrodes 5 to 7 extending in the horizontal direction are provided.
  • An insulating element (insulating layer) 10f for insulating between the portions 5b to 7b and the heat sinks 3 and 4 is required. That is, the insulating element 10f insulates between the electrodes 5 to 7 extending in the horizontal direction and the heat sinks 3 and 4 outside the peripheral region of the semiconductor chip 2.
  • the material of the insulating element 10f may be an inexpensive insulating inorganic material. Specifically, a mica sheet may be used as the material of the insulating element 10f.
  • the insulating member 10 b is disposed on the upper surface of the lower heat sink 3, and the insulating member 10 e is the upper heat sink 4.
  • the gap between the protruding portions 5b to 7b of the electrodes 5 to 7 and the upper heat sink 4 is provided inside the upper heat sink 4.
  • the insulating member 10e disposed on the lower surface of the upper radiator plate 4 has a shape corresponding to the base portion of the insulating member 10e in FIG.
  • an insulating element (insulating layer) may be provided.
  • the vertical axis of the graph of FIG. 21 indicates the connection resistance value between the first surface electrode formed on the lower surface of the semiconductor chip 2 and the first electrode 5 in contact with the first surface electrode, and the upper surface of the semiconductor chip.
  • the sum of the connection resistance value of the second surface electrode and the second electrode 6 in contact with the second surface electrode and the resistance value of the semiconductor chip 2 is shown.
  • the horizontal axis of the graph indicates the pressure (load) at which the pressure contact portion 6 a of the second electrode 6 having a relatively large area is pressure bonded to the upper surface of the semiconductor chip 2.
  • the pressure (load) at which the pressure contact portion 6a of the second electrode 6 is pressure bonded to the upper surface of the semiconductor chip 2 is preferably 0.5 MPa or more and less than 30 MPa.
  • the second electrode 6 is disposed on a surface electrode through which a large current flows, for example, a source electrode, an emitter electrode, and an anode electrode, and is in contact with the surface electrode.
  • FIG. 22A is a cross-sectional view showing an outline of one structural example of the semiconductor device 1 in which the area of the pressure contact portion 5a of the first electrode 5 is suitable, and the pressure contact portion 5a of the first electrode 5 arranged on the lower surface of the semiconductor chip 2 is shown.
  • An outline of an example of a structure in which the area is larger than the area of the lower surface of the semiconductor chip 2 is shown.
  • FIG. 22B is a cross-sectional view schematically showing a structure example of the semiconductor device 1 in which the area of the press contact portion 5a of the first electrode 5 is smaller than the area of the lower surface of the semiconductor chip 1 as a comparative example of the structure shown in FIG. 22A.
  • FIG. 2 shows a state in which a defect occurs in the semiconductor device 1.
  • the area of the press contact portion 5a of the first electrode 5 is larger than the area of the lower surface of the semiconductor chip 2, and the press contact portion 5a of the first electrode 5 protrudes from the outer periphery of the lower surface of the semiconductor chip 2. Even if pressure is applied to the upper surface of the semiconductor chip 2 from the pressure contact portions 6a, 7a of the plurality of electrodes 6, 7, the pressure is stably received by the pressure contact portions 5a of the first electrode 5.
  • the area of the press contact portion 5a of the first electrode 5 is smaller than the area of the lower surface of the semiconductor chip 2, and the lower surface of the semiconductor chip 2 protrudes from the press contact portion 5a of the first electrode 5.
  • the semiconductor chip 2 may be destroyed by the pressure applied to the semiconductor chip 2 from the press contact portions 6a and 7a of the plurality of electrodes 6 and 7 disposed on the upper surface of the semiconductor chip 2.
  • the possibility that the semiconductor chip 2 is broken increases. For example, as shown in FIG.
  • the heat generated from the semiconductor chip 2 is dissipated through the pressure contact portion 5a of the first electrode 5. Therefore, the structure in which the area of the pressure contact portion 5a of the first electrode 5 is larger than the area of the lower surface of the semiconductor chip 2 and the lower surface of the semiconductor chip 2 is included in the region where the first electrode 5 is disposed is This is a preferable structure capable of improving the heat dissipation of the semiconductor device 1.
  • FIG. 23 shows an enlarged interface between the lower surface of the semiconductor chip 2 and the pressure contact portion 5a of the first electrode 5 that contacts the lower surface.
  • the interface shown in FIG. 23 is an interface between the first surface electrode formed on the first main surface (lower surface) of the semiconductor chip 2 and the pressure contact portion 5 a of the first electrode 5.
  • the surface roughness of the portion of the first electrode 5 that contacts the semiconductor chip 2 is preferably rougher than the surface roughness of the portion of the semiconductor chip 2 that contacts the first electrode 5. That is, the surface roughness of the upper surface of the pressure contact portion 5 a of the first electrode 5 is preferably rougher than the surface roughness of the surface of the first surface electrode formed on the lower surface of the semiconductor chip 2.
  • the surface roughness of the pressure contact portion 5 a of the first electrode 5 having a lower hardness than the first surface electrode formed on the lower surface of the semiconductor chip 2 is the surface of the first surface electrode formed on the lower surface of the semiconductor chip 2.
  • the surface of the portion of the first electrode 5 that contacts the semiconductor chip 2 (first surface electrode) due to the sliding that occurs due to the difference in thermal expansion coefficient between the semiconductor chip 2 and the first electrode 5 This is because the adhesiveness between the pressure contact portion 5a of the first electrode 5 and the semiconductor chip 2 (first surface electrode) increases.
  • the surface roughness of the portion of the first electrode 5 that contacts the semiconductor chip 2 is rougher than the surface roughness of the portion of the semiconductor chip 2 that contacts the first electrode 5, so that the semiconductor chip 2 and the first electrode 5 Better connection is obtained.
  • FIG. 24A is a cross-sectional view showing an outline of another structural example of the semiconductor device 1 of the present embodiment.
  • an upper surface of the lower heat radiating plate 3 facing the first main surface (lower surface) of the semiconductor chip 2 is interposed between the lower heat radiating plate 3 and the semiconductor chip 2.
  • positioned 1st electrode 5 fits partially may be formed.
  • the recess 20 can be formed by, for example, counterboring.
  • the manufacturing process of the semiconductor device 1 includes a step of arranging the first electrode 5 on the upper surface of the lower heat sink 3.
  • a part of the pressure contact portion 5 a of the first electrode 5 is accommodated in the recess 20 formed on the upper surface of the lower heat sink 3, so that the first electrode 5 is recessed in the lower heat sink 3. Retained. Therefore, the positional displacement of the first electrode 5 does not occur in the process after the first electrode 5 is disposed. Therefore, it is possible to manufacture the semiconductor device 1 stably.
  • the configuration in which the press contact portion 5a of the first electrode 5 enters the recess 20 of the lower heat sink 3 is as shown in the figure so that the lower portion of the press contact portion 5a of the first electrode 5 enters the recess 20 of the lower heat sink 3. It is not limited to the structure to enter.
  • a convex portion or a step portion is provided on the lower surface of the pressure contact portion 5 a of the first electrode 5, and a concave portion in which only the convex portion or the step portion of the lower surface of the pressure contact portion 5 a of the first electrode 5 is accommodated is the lower heat sink. 3 may be formed.
  • a recess in which the entire pressure contact portion 5 a of the first electrode 5 is accommodated may be formed in the lower heat radiating plate 3.
  • an insulating layer is formed on the heat sinks 3 and 4 as shown in FIGS. Also good.
  • the insulating member 10b may be embedded in the lower heat sink 3 and the insulating member 10c and the insulating member 10d may be embedded in the upper heat sink 4 as in the semiconductor device 1 of FIG. .
  • the insulating member (insulating layer) 10 b is formed in the shape of the first recess 20 in which the press contact portion 5 a of the first electrode 5 is partially accommodated, and is formed on the lower heat sink 3. It arrange
  • the insulating member 10b formed in the shape of the first recess 20 can be created by machining such as cutting or grinding.
  • the insulating member 10b formed into the shape of the first recess 20 can be formed by molding with a mold instead of machining.
  • the insulating member 10 b is disposed on the upper surface of the lower heat radiating plate 3 and insulated from the base portion of the insulating member 10 c on the lower surface of the upper heat radiating plate 4.
  • the base portion of the member 10d may be disposed.
  • the insulating member (insulating layer) 10b has the shape of the first recess 20 in which the press contact portion 5a of the first electrode 5 is partially accommodated, and the lower side on which the second recess 21 is formed.
  • the first recess 20 is disposed so as to be accommodated in the second recess 21.
  • a first recess 20 in which the press contact portion 5 a of the first electrode 5 is partially accommodated is formed on the upper surface of the lower heat radiating plate 3.
  • the insulating member 10b having the shape of the first recess 20 can be created by machining such as cutting or grinding.
  • the insulating member 10b is made of ceramic, it is possible to form the insulating member 10b having the shape of the first recess 20 by molding with a mold instead of machining.
  • a recess 22 in which the semiconductor chip 2 is partially accommodated may be formed on the upper surface of the pressure contact portion 5a of the first electrode 5 facing the lower surface of the semiconductor chip 2.
  • the concave portion 22 of the first electrode 5 can also be formed by, for example, counterboring similarly to the concave portion 20 of the lower heat radiating plate 3.
  • the manufacturing process of the semiconductor device 1 includes a step of disposing the semiconductor chip 2 on the upper surface of the pressure contact portion 5a of the first electrode 5.
  • a part of the semiconductor chip 2 is accommodated in the recess 22 formed on the upper surface of the pressure contact portion 5 a of the first electrode 5, whereby the semiconductor chip 2 is held in the recess 22 of the first electrode 5.
  • the semiconductor chip 2 is not misaligned in the process after the semiconductor chip 2 is arranged. Therefore, a stable semiconductor device can be manufactured.
  • the configuration in which the semiconductor chip 2 partially enters the recess 22 of the press contact portion 5a of the first electrode 5 is such that the lower portion of the semiconductor chip 2 enters the recess 22 of the press contact portion 5a of the first electrode 5 as illustrated. It is not limited to the configuration.
  • a convex portion or a step portion is provided on the lower surface of the semiconductor chip 2, and a concave portion in which only the convex portion or the step portion on the lower surface of the semiconductor chip 2 is formed is formed on the upper surface of the pressure contact portion 5 a of the first electrode 5. May be.
  • an insulating layer is formed on the heat sinks 3 and 4 as shown in FIGS. May be.
  • the insulating member 10b may be embedded in the lower heat radiating plate 3
  • the insulating member 10c and the insulating member 10d may be embedded in the upper heat radiating plate 4.
  • the insulating member 10b is disposed on the upper surface of the lower heat radiating plate 3, and the base portion of the insulating member 10c and the insulating member are disposed on the lower surface of the upper heat radiating plate 4.
  • a base portion of 10d may be arranged.
  • an insulating resin material may be applied around the semiconductor chip 2 in order to increase insulation and moisture resistance reliability.
  • a resin made of silicone, a resin made of polyimide, or the like can be used as the resin material.
  • a polyimide resin is preferable as a resin material for coating the periphery of the semiconductor chip 2 because it has heat resistance. With this insulating resin material, electrical continuity does not occur between the surface electrodes of the semiconductor chip 2 and between the plurality of electrodes 5 to 7 that are in contact with the plurality of surface electrodes of the semiconductor chip 2, respectively. Is possible.
  • the insulating resin material should not be applied between the electrodes 5 to 7 and the heat radiating plates 3 and 4 serving as the main path for heat dissipation.
  • the insulating resin material is not applied to the main path of heat dissipation, it is possible to select the resin material applied around the semiconductor chip 2 without considering the thermal conductivity, and as a result, It becomes possible to select a resin material having higher heat resistance.
  • the resin material applied around the semiconductor chip 2 does not need a function of fixing the electrodes 5 to 7 to the semiconductor chip 2 or fixing the electrodes 5 to 7 to the heat sinks 3 and 4. Therefore, as a resin material applied around the semiconductor chip 2, it is possible to use a resin that becomes a gel after application, or a resin that becomes a thin film with a thickness of 1 to 100 ⁇ m after application.
  • FIGS. 27 to 32 show structural examples of the semiconductor device 1 to which the insulating resin 23a that becomes gel after application is applied
  • FIG. 27 to FIG. 29 show structural examples of the semiconductor device 1 to which the insulating resin 23b that becomes thin after application is applied.
  • 30 to 32 As shown in FIGS. 27 to 32, the insulating resins 23a and 23b are applied to a place other than between the electrodes 5 to 7 and the heat radiating plates 3 and 4 serving as a main path for heat dissipation.
  • the press contact portions 5a to 7a of the electrodes 5 to 7 are compared with the resin that is cured and solidified after application. Relative sliding (sliding) between the semiconductor chip 2, relative sliding (sliding) between the pressure contact portion 5 a of the first electrode 5 and the lower heat sink 3, and pressure contacting portion 6 a of the second electrode 6. The relative sliding (sliding) between the upper heat sink 4 and the pressure contact portion 7a of the third electrode 7 and the upper heat sink 4 are not inhibited by the applied resin.
  • the stress generated at the connection interface between the pressure contact portion 6a of the second electrode 6 and the upper heat dissipation plate 4 and the stress generated at the connection interface between the pressure contact portion 7a of the third electrode 7 and the upper heat dissipation plate 4 are alleviated. Is possible.
  • the electrodes 5 to 7 are fixed to the semiconductor chip 2 or the electrodes 5 to 7 are fixed to the heat sinks 3 and 4 to a resin material applied around the semiconductor chip 2.
  • the function to do is not necessary.
  • the choice of the resin material applied around the semiconductor chip 2 increases, and it becomes possible to select a resin material having higher heat resistance.
  • the electrodes 5 to 7 are fixed to the semiconductor chip 2 or the electrodes 5 to 7 are fixed to the heat sinks 3 and 4 to a resin material applied around the semiconductor chip 2. Therefore, the resin material applied around the semiconductor chip 2 does not need to maintain strength after application. Therefore, when the insulating resin 23b that becomes a thin film after application is selected, the insulating resin 23b only needs to be applied in an amount necessary for insulation, so that the resin material applied around the semiconductor chip 2 is reduced. This makes it possible to reduce costs.
  • the electrodes arranged on one main surface of the semiconductor chip are arranged on the other main surface of the semiconductor chip.
  • the protrusion 5b of the first electrode 5 disposed on the lower surface of the semiconductor chip 2 and the protrusion 6b of the second electrode 6 disposed on the upper surface of the semiconductor chip 2 are in the same direction.
  • the protruding part 5b of the first electrode 5 and the protruding part 6b of the second electrode 6 it is preferable to provide an insulating element 24 between the two.
  • the insulating element 24 insulates the first electrode 5 and the second electrode 6 extending in the same direction outside the peripheral region of the semiconductor chip 2.
  • the material of the insulating element 24 may be an inexpensive insulating inorganic material having higher heat resistance. Specifically, a mica sheet may be used as the material of the insulating element 24.
  • the structure of the semiconductor device 1 described above is a simple heat dissipation structure in which heat generated from the semiconductor chip 2 escapes directly to the lower heat dissipation plate 3 through the first electrode 5 disposed on the lower surface of the semiconductor chip 2. ing. That is, the structure of the semiconductor device 1 is a structure in which many constituent materials are not disposed between the semiconductor chip 2 and the heat sink. Further, an insulating resin having poor thermal conductivity is not applied (arranged) between the semiconductor chip 2 and the heat sink. Therefore, the structure of the semiconductor device 1 is excellent in heat dissipation of heat generated from the semiconductor chip 2.
  • the semiconductor device 1 described above also uses a structure in which the heat generated from the semiconductor chip 2 escapes directly to the upper radiator plate 4 via the electrodes arranged on the upper surface of the semiconductor chip 2. Therefore, the structure of the semiconductor device 1 is a structure with better heat dissipation.
  • FIG. 33 is a cross-sectional view showing the outline of an example of the method for manufacturing the semiconductor device according to the present embodiment.
  • step S1 a base material of the lower heat radiating plate 3 in which the second recess 21 is formed in advance is prepared.
  • the second recess 21 can be formed by, for example, counterboring.
  • step S2 an insulating layer 10a made of an inorganic material is formed with a constant thickness on the upper surface of the base material of the lower heat sink 3 in which the second recess 21 is formed. Thereby, the 1st recessed part 20 is formed in the surface of the insulating layer 10a.
  • the insulating layer 10a As a method of forming the insulating layer 10a, for example, there is a method of forming an anodized film by anodizing treatment.
  • an anodic oxide film (alumite) of aluminum is formed as the insulating layer 10a.
  • a diamond thin film may be formed as the insulating layer 10a by sputtering, vapor deposition, or CVD.
  • a ceramic layer may be formed by ceramic spraying as the insulating layer 10a.
  • the ceramic material is preferably AlN (aluminum nitride) with good thermal conductivity.
  • step S3 an excess portion of the insulating layer 10a is removed.
  • the insulating layer 10 a remains only on the inner surface of the second recess 21, and the upper surface of the base material of the lower heat radiating plate 3 is exposed except for the second recess 21.
  • the upper end of the insulating layer 10 a remaining on the inner surface of the second recess 21 is flush with the upper surface of the base material of the lower heat sink 3.
  • Unnecessary portions of the insulating layer 10a can be removed by grinding, for example. Alternatively, a portion where the insulating layer 10a is unnecessary may be masked in advance, and then the insulating layer 10a may be formed.
  • an insulating member formed into a predetermined shape by machining such as cutting or grinding is disposed in the second recess 21 of the base material of the lower heat radiating plate 3, whereby the second recess 21
  • An insulating layer may be formed.
  • the insulating member for example, ceramic or the like is used.
  • the first electrode 5 is disposed on the lower heat sink 3 by, for example, a component mounter facility. Specifically, the first electrode 5 is disposed on the first recess 20 of the insulating layer 10a. Thereby, the press-contact part 5a of the 1st electrode 5 fits partially in the 1st recessed part 20 of the insulating layer 10a. Therefore, the position of the first electrode 5 is maintained.
  • step S5 a plurality of first jigs 25 used for positioning the semiconductor chip 2 to be arranged in the next step (step S6) are arranged at predetermined positions by a gripping means (not shown), and the arrangement is performed. Held in place. Specifically, the plurality of first jigs 25 are held so as to surround a region or space where the semiconductor chip 2 is to be arranged.
  • step S6 the semiconductor chip 2 is placed on the first electrode 5 by, for example, a component mounter facility. Specifically, the semiconductor chip 2 is disposed in a space or region surrounded by the plurality of first jigs 25.
  • the first jig 25 holds the position of the semiconductor chip 2 after the semiconductor chip 2 is arranged.
  • FIG. 33 shows a state in which the semiconductor chip 2 is sandwiched by a plurality of first jigs 25 along one direction.
  • the number and arrangement positions of the first jigs 25 are not particularly limited. It is only necessary that the position of the semiconductor chip 2 is held by the first jig 25 and that the first jig 25 can be retracted from the semiconductor device 1 in a later process.
  • step S7 a plurality of second jigs 26 used for positioning the second electrode 6 and the third electrode 7 disposed on the upper surface of the semiconductor chip 2 in the next step (step S8) are not shown. It is placed at a predetermined position by the gripping means and held at the place where it is placed. Specifically, the plurality of second jigs 26 are held so as to surround each region or each space where the press contact portion 6a of the second electrode 6 and the press contact portion 7a of the third electrode 7 are respectively arranged.
  • step S8 the second electrode 6 and the third electrode 7 are disposed on the semiconductor chip 2 by, for example, a component mounter facility.
  • the press contact portion 6a of the second electrode 6 and the press contact portion 7a of the third electrode 7 are arranged in each space or each region surrounded by the plurality of second jigs 26, respectively.
  • the second jig 26 holds the positions of the second electrode 6 and the third electrode 7 after the second electrode 6 and the third electrode 7 are arranged.
  • FIG. 33 shows a state in which the press contact portion 6a of the second electrode 6 and the press contact portion 7a of the third electrode 7 are sandwiched by a plurality of second jigs 26 along one direction.
  • the number and arrangement positions of the second jigs 26 are not particularly limited. It is only necessary that the position of the electrode disposed on the upper surface of the semiconductor chip 2 is held by the second jig 26 and that the second jig 26 can be retracted from the semiconductor device 1 in a later process.
  • the upper radiator plate 4 which is an example of a pressure contact member, is disposed on the upper surfaces of the pressure contact portions 6a and 7a of the electrodes 6 and 7, for example, by a component mounter facility.
  • the protruding portions of the electrodes 5 to 7 extending in the vertical direction are respectively inserted into the holes formed in the upper radiator plate 4 in advance.
  • FIG. 33 only the protrusion 7b of the third electrode 7 is shown.
  • the upper surfaces of the pressure contact portions 6 a and 7 a of the electrodes 6 and 7 are in contact with the insulating layer 10 a formed on the upper radiator plate 4.
  • the lower heat radiating plate 3 and the upper heat radiating plate 4 are pressurized toward the semiconductor chip 2 by a pressure generating mechanism (not shown), and the pressurized state is maintained.
  • a pressure generating mechanism (not shown)
  • the pressure contact portion 5a of the first electrode 5 is pressure-bonded to the lower heat sink 3 and the semiconductor chip 2
  • the pressure contact portion 6a of the second electrode 6 and the pressure contact portion 7a of the third electrode 7 are both
  • the semiconductor chip 2 and the upper heat radiating plate 4 are pressure bonded to each other.
  • pressurization by the pressure generating mechanism is performed so that a pressure of 0.5 MPa or more and less than 30 MPa is applied to the press contact portion 6 a of the second electrode 6 disposed on the upper surface of the semiconductor chip 2.
  • a pressure generation mechanism a combination of a screw and a spring, a clip, or the like may be used.
  • step S10 the first jig 25 and the second jig 26 are removed in the horizontal direction with respect to the semiconductor chip 2 by gripping means (not shown).
  • the second jig 26 that holds the position of the electrode disposed on the upper surface (second main surface) of the semiconductor chip 2 may be removed in the vertical direction with respect to the semiconductor chip 2.
  • an opening through which the second jig 26 can pass needs to be formed in the upper radiator plate 4.
  • the first jig 25 that holds the position of the semiconductor chip 2 may also be removed in the vertical direction, like the second jig 24.
  • FIG. 34 is a cross-sectional view by process showing an outline of another example of the method of manufacturing a semiconductor device according to the present embodiment.
  • the manufacturing process shown in FIG. 34 differs from the manufacturing process shown in FIG. 33 only in that step S3 of the manufacturing process shown in FIG. 33, that is, the step of removing unnecessary portions of the insulating layer 10a is omitted.
  • the semiconductor device 1 having a structure different from the structure manufactured by the manufacturing process shown in FIG. 34 and FIG. 33 can also be manufactured by the same manufacturing process as the manufacturing process shown in FIG. .
  • the semiconductor device and the manufacturing method thereof according to the present invention can provide a semiconductor device with high reliability of connection between a semiconductor chip and an electrode disposed on the semiconductor chip, and a power module having a large temperature range of the semiconductor chip (large This is useful for power semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 半導体装置(1)が、第1の主面とその第1の主面とは反対側の第2の主面を持つ半導体チップ(2)を備えるとともに、前記第1の主面に対向配置された放熱板(3)と、前記第1の主面と前記放熱板(3)との間に配置されて、前記半導体チップ(2)に電気的に接続する第1電極(5)と、前記第2の主面に対向配置された圧接部材(4)と、前記第2の主面と前記圧接部材(4)との間に配置されて、前記半導体チップ(2)に電気的に接続する第2電極(6)と、前記放熱板(3)と前記半導体チップ(2)のそれぞれに前記第1電極(5)を圧接させ、かつ前記圧接部材(4)と前記半導体チップ(2)のそれぞれに前記第2電極(6)を圧接させる圧力を発生させる圧力発生機構と、を備える。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関し、特にIGBTモジュールやパワーMOSFETモジュール等の大電力半導体装置(パワーモジュール)に適用されることが可能な半導体装置及びその製造方法に関する。
 非特許文献1はパワーモジュールを開示している。そのパワーモジュールは、パワー素子(半導体チップ)の一方の主面(下面)が、半田によってヒートスプレッダに固着される一方で、そのパワー素子の他方の主面(上面)に形成されている表面電極が、半田によってリードフレームのインナーリードに直接固着された構造を有している。
 図35は、非特許文献1に開示されているパワーモジュール101の構造の概略を示す断面図である。そのパワーモジュール101においては、パワー素子102の上面に形成されている表面電極(図示せず)が、半田層104によって主端子103に直接固着されている。また、パワー素子102の上面に形成されている他の表面電極(図示せず)は、ワイヤ(金属細線)106を介して制御端子105に電気的かつ機械的に接続されている。パワー素子102の下面は、半田層107を介してヒートスプレッダ(金属ブロック)108に固着されている。そのヒートスプレッダ108の下面が、絶縁性樹脂から成る絶縁シート109を介して、金属層110に固着されている。また、パワーモジュール101の各構成要素はモールド樹脂111によって封止されている。そのモールド樹脂111の外形から、主端子103の一部分と制御端子105の一部分がそれぞれ突出している。
 特許文献1は、他のパワーモジュールを開示している。そのパワーモジュールは、半導体チップと放熱板との間に、セラミック等の絶縁材から成る絶縁基板が配置された構造を有している。
 図36は、特許文献1に開示されているパワーモジュール201の構造の概略を示す断面図である。このパワーモジュール201においては、絶縁基板203の一方の面(上面)に導電体203aが形成されており、半導体チップ202が、その導電体203aの表面に、半田層204によって固定されている。絶縁基板203は、セラミック等の絶縁材から成る。また、絶縁基板203の他方の面(下面)にも導電体203bが形成されている。この導電体203bの表面が、半導体チップ202の下方に配置された放熱板205に、半田層206によって固定されている。
国際公開第2008/123386号
菊池正雄、外4名、「ダイレクトリード接合型 大容量パワーモジュール」、三菱電機技報、2010年4月、84巻、第4号、p.232
 パワーモジュールに搭載される半導体チップの材料は、Si(シリコン)が一般的である。一方、近年、SiC(炭化珪素)製またはGaN(窒化ガリウム)製の半導体チップが開発されてきている。このSiC製またはGaN製の半導体チップの特長の1つは、その温度が高温になっても動作が可能なことである。詳しくは、Si製の半導体チップは、その温度が150°Cを超えると動作できない。これに対して、SiC製またはGaN製の半導体チップは、その温度が300°C以上の高温になっても動作が可能である。そのため、SiC製またはGaN製の半導体チップが搭載されるパワーモジュールには、Si製の半導体チップが搭載されるパワーモジュールと比べて高温に対応することが求められる。
 しかしながら、上記した非特許文献1および特許文献1にそれぞれ開示されているパワーモジュールの構造では、高温に対応することができない。
 具体的には、上記した非特許文献1に開示されているパワーモジュール101の構造において、パワー素子102の材料がSiCの場合、パワー素子102の熱膨張係数は3~4ppm/°Cとなる。一方、主端子103及びヒートスプレッダ108の材料が共に銅(Cu)の場合、主端子103及びヒートスプレッダ108の熱膨張係数は共に17ppm/°Cとなる。このため、パワー素子102の温度変化に伴う応力が、主端子103とパワー素子102とを接合する半田層(接合部)104と、ヒートスプレッダ108とパワー素子102とを接合する半田層(接合部)107にそれぞれ発生する。その応力は、パワー素子102の温度が高くなる程、大きくなる。したがって、それらの接合部(半田層104、107)がそれぞれ受ける応力負荷は、パワー素子102の温度幅が大きい程、大きくなる。よって、パワー素子102の材料がSiCであり、パワーモジュール101の動作中に、パワー素子102の温度がSi製の半導体チップに比べて高温になる場合、接合部に応力が繰り返し発生することにより、接合部が破壊されて、接続不良が発生する、あるいは熱抵抗が悪化するといった問題が起こる可能性がある。
 また、上記した特許文献1に開示されているパワーモジュール201の構造において、放熱板205の材料が銅(Cu)の場合、その放熱板205の熱膨張係数は17ppm/°Cとなる。一方、絶縁基板203の材料が窒化アルミニウム(AlN)の場合、その絶縁基板203の熱膨張係数は4ppm/°Cとなる。このため、半導体チップ202の温度変化に伴う応力が、絶縁基板203と放熱板205とを接合する半田層(接合部)206に発生する。その応力は、半導体チップ202の温度が高くなる程、大きくなる。したがって、接合部(半田層206)が受ける応力負荷は、半導体チップ202の温度幅が大きい程、大きくなる。よって、半導体チップ202の材料が例えばSiCであり、パワーモジュール201の動作中に、半導体チップ202の温度がSi製の半導体チップに比べて高温になる場合、接合部に応力が繰り返し発生することにより、接合部が破壊されて、熱抵抗が悪化するといった問題が起こる可能性がある。
 本発明の目的の一つは、半導体チップの温度幅が大きい場合でも信頼性が高い半導体装置を提供することである。また、本発明の目的の一つは、半導体チップの温度幅が大きい場合でも信頼性が高い半導体装置を製造する方法を提供することである。
 本発明の半導体装置の一側面は、第1の主面とその第1の主面とは反対側の第2の主面を持つ半導体チップと、前記第1の主面に対向配置された放熱板と、前記第1の主面と前記放熱板との間に配置されて、前記半導体チップに電気的に接続する第1電極と、前記第2の主面に対向配置された圧接部材と、前記第2の主面と前記圧接部材との間に配置されて、前記半導体チップに電気的に接続する第2電極と、前記放熱板と前記半導体チップのそれぞれに前記第1電極を圧接させ、かつ前記圧接部材と前記半導体チップのそれぞれに前記第2電極を圧接させる圧力を発生させる圧力発生機構と、を備えることである。
 本発明の半導体装置の他の側面は、前記第1電極の前記半導体チップに接触する部分の表面粗さが、前記半導体チップの前記第1電極に接触する部分の表面粗さよりも粗いことである。
 本発明の半導体装置の他の側面は、前記放熱板と前記第1電極との間を絶縁するための絶縁要素をさらに備え、前記放熱板の材料が銅またはアルミニウムであることである。
 本発明の半導体装置の他の側面は、前記第1電極が、前記半導体チップの前記第1の主面に対向する面を持ち、その前記第1の主面に対向する前記第1電極の面の面積が、前記第1の主面の面積よりも大きく、前記第1の主面に対向する前記第1電極の面に投影された前記第1の主面の外周から、前記第1の主面に対向する前記第1電極の面がはみ出すように、前記半導体チップが配置されていることである。
 本発明の半導体装置の他の側面は、前記放熱板が、前記半導体チップの前記第1の主面側に開口する第1凹部を持ち、前記第1の主面と前記放熱板との間に配置される前記第1電極の少なくとも一部が、前記1凹部に入り込んでいることである。
 本発明の半導体装置の他の側面は、前記第1電極が、前記半導体チップの前記第1の主面側に開口する第2凹部を持ち、前記第2凹部に前記半導体チップの一部が入り込んでいることである。
 本発明の半導体装置の他の側面は、前記圧接部材が第2の放熱板であることである。
 本発明の半導体装置の他の側面は、前記第2の放熱板と前記第2電極との間を絶縁するための絶縁要素をさらに備え、前記第2の放熱板の材料が銅またはアルミニウムであることである。
 本発明の半導体装置の他の側面は、前記放熱板の材料がダイヤモンドまたはセラミックであることである。
 本発明の半導体装置の他の側面は、前記放熱板の材料が、窒化アルミニウム、窒化珪素またはアルミナであることである。
 本発明の半導体装置の他の側面は、前記第2の放熱板の材料がダイヤモンドまたはセラミックであることである。
 本発明の半導体装置の他の側面は、前記第2の放熱板の材料が、窒化アルミニウム、窒化珪素またはアルミナであることである。
 本発明の半導体装置の他の側面は、前記圧接部材と前記半導体チップとの間の、前記第2電極とは異なる場所に配置されて、前記半導体チップに電気的に接続するとともに、前記圧力発生機構によって、前記圧接部材と前記半導体チップのそれぞれに圧接される第3電極をさらに備え、前記第2電極に付与される圧力が、前記第3電極に付与される圧力よりも大きくなるように、前記圧力発生機構が圧力を発生させることである。
 本発明の半導体装置の他の側面は、前記半導体チップが、表面電極として、前記第2の主面に形成されたエミッタ電極、ソース電極またはアノード電極を持ち、前記第2電極が、前記エミッタ電極、ソース電極またはアノード電極に電気的に接続し、前記圧力発生機構によって前記第2電極に付与される圧力が、0.5MPa以上かつ30MPa未満であることである。
 本発明の半導体装置の製造方法の一側面は、放熱板上に第1電極を配置する工程と、前記第1電極上に半導体チップを配置する工程と、前記半導体チップ上に第2電極を配置する工程と、前記第2電極上に圧接部材を配置する工程と、前記放熱板および前記圧接部材から前記半導体チップへ向けて圧力を付与して、前記第1電極を前記半導体チップに圧接するとともに、前記第2電極を前記半導体チップに圧接する工程と、を具備することである。
 本発明によると、半導体チップとその半導体チップに電気的に接続する電極との間の接続の信頼性が向上する。よって、信頼性の高い半導体装置を得ることが可能となる。
本発明の実施の形態に係る半導体装置の第1の構造例の概略を示す平面図である。 本発明の実施の形態に係る半導体装置の第1の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第1の構造例の概略を示す正面図である。 本発明の実施の形態に係る半導体装置の第2の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第3の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第4の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第5の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第6の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第7の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第8の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置が備える圧力発生機構の第1の構成例の概略を示す平面図である。 本発明の実施の形態に係る半導体装置が備える圧力発生機構の第1の構成例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置が備える圧力発生機構の第2の構成例の概略を示す平面図である。 本発明の実施の形態に係る半導体装置が備える圧力発生機構の第2の構成例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置が備える圧力発生機構の第2の構成例の概略を他の方向から示す断面図である。 本発明の実施の形態に係る半導体装置が備える圧力発生機構の第3の構成例の概略を示す平面図である。 本発明の実施の形態に係る半導体装置が備える圧力発生機構の第3の構成例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置が備える圧力発生機構の第3の構成例の概略を他の方向から示す断面図である。 本発明の実施の形態に係る半導体装置の第9の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第10の構造例の概略を示す平面図である。 本発明の実施の形態に係る半導体装置の第10の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第11の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第12の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第13の構造例の概略を示す平面図である。 本発明の実施の形態に係る半導体装置の第13の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第14の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第15の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第16の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置における圧接力と接続抵抗値の関係を示すグラフである。 本発明の実施の形態に係る半導体装置の一構造例の概略を示す断面図であり、半導体チップの下面に配置される電極の面積がその半導体チップの下面の面積よりも広い構造の一例を示す。 図22Aに示す構造の比較例として、半導体チップの下面に配置される電極の面積がその半導体チップの下面の面積より狭い半導体装置の一構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の一部を拡大して示す断面図である。 本発明の実施の形態に係る半導体装置の第17の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第18の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第19の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第20の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第21の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第22の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第23の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第24の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第25の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第26の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第27の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の第28の構造例の概略を示す断面図である。 本発明の実施の形態に係る半導体装置の製造方法の一例の概略を示す工程別断面図である。 本発明の実施の形態に係る半導体装置の製造方法の他の一例の概略を示す工程別断面図である。 既知のパワーモジュールの構造の概略を示す断面図である。 他の既知のパワーモジュールの構造の概略を示す断面図である。
 以下、本発明の実施の形態について、パワーモジュール(大電力半導体装置またはパワー半導体装置)を例にして、図面を参照しながら説明する。但し、説明の簡潔化のため、実質的に同一の構成要素には同じ参照符号を付して、重複する説明を省略する場合もある。図面は、理解し易くするために、それぞれの構成要素を模式的に示す。図示された各構成要素の寸法(厚みや長さ等)、形状等は図面作成の都合上から、実際とは異なる。なお、以下の実施の形態で示す各構成要素の材質や形状、個数、寸法等は一例であって特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。
 まず、図1A、図1Bおよび図2を用いて、本実施の形態の半導体装置(パワーモジュール)1の概要について説明する。図1Aは本実施の形態の半導体装置1の構造例の概略を示す平面図である。図1Bは、図1AのB-B線に沿った断面図である。但し、図1Aは、圧接部材の一例である上側放熱板4を図示していない。図2は本実施の形態の半導体装置1の構造例の概略を示す正面図である。図2は、上側放熱板4を仮想線(二点鎖線)で示している。
 図1A、図1Bおよび図2に示すように、半導体装置1は、半導体チップ2を備える。この実施の形態において、半導体チップ2は、パワー半導体チップである。
 また、半導体装置1は、半導体チップ2の下側に配置される下側放熱板(第1の放熱板)3と、半導体チップ2の上側に配置される上側放熱板(第2の放熱板)4と、を備える。したがって、上側放熱板4は下側放熱板3に対向配置されており、半導体チップ2は下側放熱板3と上側放熱板4との間に配置されている。放熱板3、4の材料は、好適には、熱伝導率の高い高熱伝導材料である。半導体装置1は、さらに、第1電極5、第2電極6および第3電極7を備える。
 第1電極5は、半導体チップ2の第1の主面(下面)に対向する下側放熱板3の上面に配置されている。この第1電極5は、下側放熱板3に接触する圧接部5aと、その圧接部5aから突出する突出部5bを有する。この第1電極5の圧接部5aの上面に半導体チップ2が配置される。圧接部5aの上面は、下側放熱板3に対向する圧接部5a(第1電極5)の下面とは反対側の面である。したがって第1電極5は、半導体チップ2と下側放熱板3との間に配置されている。
 第1電極5の突出部5bは、半導体チップ2の投影領域から外れた所定の位置から上側放熱板4へ向けて突出している。この第1電極5の突出部5bは、上側放熱板4の上面から突出するように、第1電極5の圧接部5aから伸びている。上側放熱板4の上面は、半導体チップ2に対向する上側放熱板4の下面とは反対側の面である。したがって上側放熱板4は、第1電極5の突出部5bを挿入することが可能な穴部(図示せず)を有している。
 また、第1電極5の圧接部5aは、半導体チップ2の下面に形成されている第1表面電極(図示せず)に対向して配置されており、その図示しない第1表面電極に電気的に導通している。半導体チップ1の下面に形成されている図示しない第1表面電極は、例えば、半導体チップ1の下面のほぼ全面に形成されたベタ電極であってもよい。第1電極5の圧接部5aは、図示しない圧力発生機構によって半導体チップ2と下側放熱板3のそれぞれに圧接されて、それらに接触接合している。図示しない圧力発生機構は、第1電極5の圧接部5aを半導体チップ2と下側放熱板3のそれぞれに圧接接合させる圧力を発生させる。
 第2電極6と第3電極7は、半導体チップ2の上面(第2の主面)の異なる場所に配置される。半導体チップ2の上面は、半導体チップ2の第1の主面(下面)とは反対側の面である。この半導体装置1においては、半導体チップ2の上面に投影された各電極6、7の領域のそれぞれの中心が、いずれも半導体チップ2の上面の中心から外れて位置している。これらの電極6、7も、半導体チップ2の下面に配置される第1電極5と同様に、半導体チップ2に接触する圧接部6a、7aと、その圧接部6a、7aから突出する突出部6b、7bを有する。
 これらの電極6、7の圧接部6a、7aの上面に上側放熱板4が配置される。圧接部6a、7aの上面は、半導体チップ2に対向する圧接部6a、7a(電極6、7)の下面とは反対側の面である。したがって第2電極6と第3電極7は共に、半導体チップ2と上側放熱板4との間に配置されており、半導体チップ2の上面に対向配置された上側放熱板4は、半導体チップ2の下面に対向配置された下側放熱板3と共に、半導体チップ2と、複数の電極5~7の圧接部5a~7aを挟み、それらを保持している。
 第2電極6の突出部6bは、上側放熱板4の上面から突出するように、第2電極6の圧接部6aから伸びている。同様に、第3電極7の突出部7bも、上側放熱板4の上面から突出するように、第3電極7の圧接部7aから伸びている。したがって、上側放熱板4は、第2電極6の突出部6bを挿入することが可能な穴部(図示せず)と、第3電極7の突出部7bを挿入することが可能な穴部を有している。
 また、第2電極6の圧接部6aは、半導体チップ2の上面に形成されている第2表面電極8に対向して配置されており、その第2表面電極8に電気的に導通している。同様に、第3電極7の圧接部7aは、半導体チップ2の上面に形成されている第3表面電極9に対向して配置されており、その第3表面電極9に電気的に導通している。第2電極6の圧接部6aと第3電極7の圧接部7aは共に、図示しない圧力発生機構によって半導体チップ2と上側放熱板4のそれぞれに圧接されて、それらに接触接合している。図示しない圧力発生機構は、第2電極6の圧接部6aと第3電極7の圧接部7aを共に、半導体チップ2と上側放熱板4のそれぞれに圧接接合させる圧力を発生させる。
 この半導体装置1では、半導体チップ2の第2の主面(上面)に形成されている第2表面電極8の面積が、その第2表面電極8に接触する第2電極6の圧接部6aの面積(第2電極6の投影面積)よりも大きく、第2表面電極8は、少なくとも一方向において第2電極6の圧接部6aからはみ出している。この構成により、第2電極6の圧接部6aと半導体チップ2が相対的に摺動しても(滑っても)、半導体チップ2の第2表面電極8と第2電極6との間の電気的導通が保たれる。
 この実施の形態では、半導体装置1は、半導体チップ2の第2表面電極8に第2電極6が接触する構造を有している。しかし、半導体装置の構造は、その構造に限られない。例えば、半導体チップ2の第2表面電極8にめっき処理が施されて、高さが例えば4μm程度の突起状電極が第2表面電極8上に形成されてもよい。具体的には、半導体チップ2の第2表面電極8が例えばAl(アルミニウム)から成る場合には、第2表面電極8にNiめっきが施されてもよい。または、Niめっきが施された後に、さらにAuフラッシュめっきが施されてもよい。このように半導体チップ2の第2表面電極8上に突起状電極が形成されることにより、第2電極6の圧接部6aの面積が、第2表面電極8の面積よりも大きい場合と小さい場合のいずれにおいても、第2電極6の圧接部6aと半導体チップ2が相対的に摺動したときの、第2表面電極8と第2電極6との間の電気的導通を保つことが可能となる。
 また、この半導体装置1では、半導体チップ2の第2の主面(上面)に形成されている第3表面電極9が、少なくとも一方向において、その第3表面電極9に接触する第3電極7の圧接部7aからはみ出している。一方、第3電極7の圧接部7aも、少なくとも一方向において第3表面電極9からはみ出している。このように、半導体チップの表面電極から、その表面電極に電気的に接続する電極がはみ出す場合には、半導体チップの表面電極上に突起状電極を形成する必要がある。この半導体装置1では、半導体チップ2の第3表面電極9上に、めっき処理によって、図示しない突起状電極が形成されており、そのめっき処理によって形成された図示しない突起状電極上に、第3電極7の圧接部7aが配置されている。この構成により、第3電極7の圧接部7aと半導体チップ2が相対的に摺動しても(滑っても)、半導体チップ2の第3表面電極9と第3電極7との間の電気的導通が保たれる。このように第3表面電極9上に突起状電極が形成される場合には、第2電極6の圧接部6aと第3電極7の圧接部7aのそれぞれの上面の高さを揃えるために、第2電極6の圧接部6aが電気的に接続する半導体チップ2の第2表面電極8上にも、めっき処理等によって突起状電極を形成するのが好適である。
 この実施の形態では、半導体チップ2の上面に2個の電極6、7が配置された構造を持つ半導体装置1について説明する。しかし、本発明はこの構造に限定されるものではない。半導体チップ2の各主面には、一つ以上の電極が配置されていればよい。
 また、この実施の形態では、半導体チップ2を介して下側放熱板3に対向配置される圧接部材として上側放熱板4を使用する半導体装置1について説明する。しかし、圧接部材は、放熱板、つまり熱伝導性を有する部材に限定されるものではない。圧接部材は、少なとも、半導体チップ2に電気的に接続する電極5~7の圧接部5a~7aを、下側放熱板3と共に半導体チップ2に圧接して、それらを保持する役目と、電気的絶縁を保つ役目を果たす部材であればよい。
 この半導体装置1では、図示しない圧力発生機構が、下側放熱板3と上側放熱板4との間で半導体チップ2を保持するための圧力を発生させる。そして、その圧力によって、第1電極5の圧接部5aと下側放熱板3との圧接接合、第1電極5の圧接部5aと半導体チップ2との圧接接合、第2電極6の圧接部6aおよび第3電極7の圧接部7aと半導体チップ2との圧接接合、並びに、第2電極6の圧接部6aおよび第3電極7の圧接部7aと上側放熱板4との圧接接合が実現される。また、これらの圧接接合によって、半導体チップ2、第1電極5、第2電極6および第3電極7の位置関係が保持される。
 続いて、この半導体装置1の各構成要素について詳しく説明する。
 まず、半導体チップ2について説明する。パワーモジュールに使用される半導体チップは、パワーMOSFET、IGBT、バイポーラトランジスタ、ダイオードなどのパワー半導体チップが代表的である。近年は、SiC(シリコンカーバイド)製またはGaN(窒化ガリウム)製のパワー半導体チップが開発されている。パワー半導体チップの構造は、縦型、横型に分類される。この実施の形態では、半導体チップ2が縦型パワーMOSFETである場合について説明する。
 半導体チップ2が縦型パワーMOSFETである場合、この実施の形態の半導体装置1において、半導体チップ2の下面(第1の主面)に形成されている第1表面電極は、ドレイン電極である。そのドレイン電極が、半導体チップ2の下面に配置された第1電極5と電気的に接続する。また、半導体チップ2の上面(第2の主面)に形成されている第2表面電極8と第3表面電極9は、それぞれ、ソース電極とゲート電極である。したがって、ソース電極8が第2電極6と電気的に接続し、ゲート電極9が第3電極7と電気的に接続する。
 なお、この実施の形態の半導体装置1において、半導体チップ2がIGBTの場合には、半導体チップ2の下面に形成される第1表面電極は、コレクタ電極であり、半導体チップ2の上面に形成される第2表面電極8と第3表面電極9は、それぞれ、エミッタ電極とゲート電極であり、エミッタ電極8が第2電極6と電気的に接続し、ゲート電極9が第3電極7と電気的に接続する。
 また、この実施の形態の半導体装置1において、半導体チップ2がバイポーラトランジスタの場合には、半導体チップ2の下面に形成される第1表面電極は、コレクタ電極であり、半導体チップ2の上面に形成される第2表面電極8と第3表面電極9は、それぞれ、エミッタ電極とベース電極であり、エミッタ電極8が第2電極6と電気的に接続し、ベース電極9が第3電極7と電気的に接続する。
 半導体チップがダイオードの場合には、半導体チップの一方の主面にカソード電極が表面電極として形成され、半導体チップの他方の主面にアノード電極が表面電極として形成される。このように半導体チップがダイオードの場合には、半導体チップの両主面にそれぞれ1個の表面電極が形成される。したがって、この場合、それらの主面にはそれぞれ1個の電極が配置される。
 続いて、第1電極5、第2電極6および第3電極7について説明する。各電極5~7は、電流を流す、所定の電圧を保つなどの電気的な役割を果たす部材である。
 半導体チップ2に電気的に接続する電極5~7の材料は、一般的には銅である。しかし、電極5~7の材質は銅に限定されるものではない。電極5~7の材質は、ニッケル、アルミニウム等であってもよい。あるいは、銅等から成る基材にニッケルめっきが施された電極が使用されてもよい。または、銅等から成る基材にニッケルめっきが施され、そのニッケルめっき上にさらに銀めっき又は金めっきが施された電極が使用されてもよい。銅等から成る基材にニッケルめっき等が施されることにより、電極は酸化し難くなる。また、ニッケルめっき上にさらに銀めっき又は金めっきが施されることにより、電極の酸化がより一層起こり難くなる。
 また、上記したように、電極5~7は、半導体装置1の外形の外部へと伸びる突出部5b~7bを有している。これらの突出部5b~7bは、異なる場所から、互いに接触することがないように伸びている。また、各突出部5b~7bがそれぞれ挿入される上側放熱板4の各穴部の断面積は、可能な限り小さいほうがよい。この半導体装置1では、各突出部5b~7bは、上側放熱板4に対して垂直方向に伸びている。このようにすれば、上側放熱板4の各穴部の断面積の増加が抑制されるので、上側放熱板4の放熱特性が向上する。
 なお、第1電極5、第2電極6および第3電極7が、それぞれ、上側放熱板4の上面から突出する突出部の代わりに、下側放熱板3の下面から突出する突出部を有し、上側放熱板4の代わりに下側放熱板3が、各突出部をそれぞれ挿入することが可能な各穴部を有しても構わない。下側放熱板3の下面は、下側放熱板3の上面とは反対側の面である。
 続いて、下側放熱板3および上側放熱板4について説明する。放熱板3および4は、第1電極5、第2電極6および第3電極7を半導体チップ2に圧接して、それらを保持する役目と、半導体チップ2の熱を効率よく放熱する役目と、電気的絶縁を保つ役目を果たす部材である。
 放熱板3および4の材料は、熱伝導率の高い絶縁性無機材料が好適である。具体的には、放熱板3および4の材料として、ダイヤモンドが使用されてもよい。または、放熱板3および4の材料として、窒化アルミニウム(AlN)、窒化珪素(Si)、アルミナ(Al)などのセラミックが使用されてもよい。
 但し、放熱板3、4の材料として熱伝導率のよい金属が使用されて、放熱板3、4と電極5~7との間が絶縁要素によって絶縁されてもよい。以下、放熱板3、4と電極5~7との間が絶縁要素によって絶縁された構造を持つ半導体装置1について、図3~図9を用いて説明する。
 図3および図4は本実施の形態の半導体装置1の他の構造例の概略をそれぞれ示す断面図である。図3および図4に示す半導体装置1においては、絶縁要素の一例である絶縁層10aが、下側放熱板3の上面と、上側放熱板4の下面に形成されている。さらに、各電極5~7の突出部5b~7bが挿入される上側放熱板4の各穴部の内面にも、絶縁層10aが形成されている。下側放熱板3の上面に形成された絶縁層10aは、第1電極5の圧接部5aと下側放熱板3との間を絶縁する。同様に、上側放熱板4の下面に形成された絶縁層10aは、第2電極6の圧接部6aと上側放熱板4との間を絶縁するとともに、第3電極7の圧接部7aと上側放熱板4との間を絶縁する。これにより、放熱板3、4と電極5~7との間の電気的絶縁が保たれる。したがって、放熱板3および4の基材として、アルミニウムや銅などから成る金属部材を使用することが可能となる。
 絶縁層10aの材質は、熱伝導が高い無機材料が好適である。例えば、絶縁層10aの材質として、アルミニウムの陽極酸化膜(アルマイト)、ダイヤモンド薄膜、セラミック溶射による形成される膜、ダイヤモンドライクカーボンなどが使用されてもよい。
 例えば、絶縁層10aの材質としてアルマイトが選択された場合、絶縁層10aの膜厚は、10μm~100μm程度にすればよい。絶縁層10aがアルマイトから成る場合、絶縁層10aの絶縁性を向上させるために、封孔処理を実施するのが好適である。アルマイト処理に用いられる電解質液は、蓚酸をベースとする電解質液が好ましい。絶縁層10aの被膜が壊れ難くなり、絶縁性が向上するためである。また、アルマイトの表面が樹脂膜によってコーティングされてもよい。これにより、絶縁層10aの絶縁性が更に高まる。絶縁層10aをコーティングする樹脂膜の膜厚は、1μm~20μm程度にすればよい。樹脂層10aをコーティングする樹脂膜を形成する方法としては、例えば、アルマイト処理の後にアルマイトの表面にフッ素含有樹脂を電着させる方法を採用することが可能である。
 このように金属から成る放熱板に無機材料から成る絶縁層10aが形成された構造を持つ半導体装置1は、熱伝導率のよい絶縁性無機材料から成る放熱板を使用する半導体装置1よりも、熱伝導性が高く、かつ、安価に製造することが可能である。
 下側放熱板3の上面に形成される絶縁層10aの面積は、第1電極5の圧接部5aから下側放熱板3へ効率よく放熱されるように、第1電極5の圧接部5aの面積(第1電極5の投影面積)よりも広くするのが好適である。また、このように下側放熱板3の上面に形成される絶縁層10aの面積が第1電極5の圧接部5aの面積よりも広いことにより、下側放熱板3と第1電極5の圧接部5aとの間が確実に絶縁される。一方、上側放熱板4の下面に形成される絶縁層10aの面積は、主に第2電極6の圧接部6aから上側放熱板4へ効率よく放熱されるように、例えば、半導体チップ2の上面の面積より広くしてもよい。また、このように上側放熱板4の下面に形成される絶縁層10aの面積が半導体チップ2の上面の面積よりも広いことにより、各電極6、7の圧接部6a、7aと上側放熱板4との間が確実に絶縁される。
 図4に示す半導体装置1は、半導体チップ2に対向する各放熱板3、4の上面または下面に対する各絶縁層10aの面積の割合が図3に示す半導体装置1と異なる。具体的には、図4に示す半導体装置1における絶縁層10aの面積の割合は、図3に示す半導体装置1における絶縁層10aの面積の割合よりも大きい。したがって、図3に示す半導体装置1の寸法と図4に示す半導体装置1の寸法が同等の場合、図4に示す半導体装置1の各放熱板3、4の上面または下面に形成される各絶縁層10aの面積は、図3に示す半導体装置1の各放熱板3、4の上面または下面に形成される各絶縁層10aの面積に比べて大きくなる。一方、図4に示すように、下側放熱板3の上面の全面または略全面に絶縁層10aを形成し、上側放熱板4の下面の全面または略全面に絶縁層10aを形成する方が、図3に示すように各放熱板3、4の上面または下面に部分的に各絶縁層10aを形成するよりも、絶縁層10aの形成が容易となる。
 続いて、放熱板3、4と電極5~7との間が絶縁要素によって絶縁された構造を持つ半導体装置1の他例について説明する。図5~図9は本実施の形態の半導体装置1の他の構造例の概略をそれぞれ示す断面図である。
 図5に示す半導体装置1は、絶縁層が形成された放熱板3、4として、絶縁要素の一例である絶縁部材10b、10c、10dが埋め込まれた放熱板3、4を使用している。これら埋め込まれた絶縁部材10b、10c、10dにより、各放熱板3、4に絶縁層が形成されている。
 下側放熱板3に埋め込まれた絶縁部材10bは、第1電極5の圧接部5aに対応する位置で下側放熱板3の上面から露出する。
 上側放熱板4に埋め込まれた絶縁部材10cは、第2電極6の圧接部6aに対応する位置で上側放熱板4の下面から露出する。上側放熱板4に埋め込まれた絶縁部材10cの形状は、第2電極6の形状に対応している。つまり、絶縁部材10cは、第2電極6の圧接部6aに対応するベース部と、第2電極6の突出部6bに対応する突出部(図示せず)を備えており、絶縁部材10cのベース部の下面が上側放熱板4の下面から露出し、絶縁部材10cの突出部が、絶縁部材10cのベース部から上側放熱板4の上面まで伸びている。そして、第2電極6の突出部6bを挿入することが可能な穴部(図示せず)が、絶縁部材10cのベース部の下面から絶縁部材10cの突出部の端面まで伸びている。
 同様に、上側放熱板4に埋め込まれた絶縁部材10dは、第3電極7の形状に対応した形状をしており、第3電極7の圧接部7aに対応するベース部と、第3電極7の突出部7bに対応する突出部を備えている。この絶縁部材10dは、第3電極7の圧接部7aに対応する位置で、絶縁部材10dのベース部の下面が上側放熱板4の下面から露出するように配置される。絶縁部材10dの突出部は、絶縁部材10dのベース部から上側放熱板4の上面まで伸びている。そして、第3電極7の突出部7bを挿入することが可能な穴部が、絶縁部材10dのベース部の下面から絶縁部材10dの突出部の端面まで伸びている。
 また、上側放熱板4には、第1電極5の突出部5bを挿入することが可能な穴部が形成された絶縁部材(図示せず)が埋め込まれている。この絶縁部材は、絶縁部材10cと一体であっても構わない。
 絶縁部材10bは、ザグリ加工等によって下側放熱板3に形成された凹部にはめ込まれてもよい。同様に、各絶縁部材10c、10dのベース部は、ザグリ加工等によって上側放熱板4に形成された各凹部にはめ込まれてもよい。このように絶縁部材10b、10c、10dが放熱板3、4に埋め込まれることにより、絶縁部材10b、10c、10dの位置ズレが発生しない。
 半導体チップ2の第1の主面に形成されている主電極に圧接される第1電極5と下側放熱板3との間を絶縁するための絶縁部材10bには、高熱伝導率と高耐熱性が要求される。同様に、半導体チップ2の第2の主面に形成されている主電極に圧接される第2電極6の圧接部6aと上側放熱板4との間を絶縁するための絶縁部材10cにも、高熱伝導率と高耐熱性が要求される。したがって、これらの絶縁部材10b、10cの材料には、例えばダイヤモンドや、窒化アルミニウム(AlN)や窒化珪素(Si)等のセラミックなどの無機絶縁材料が好適である。但し、高い放熱性が要求されない場合には、アルミナ(Al)等の安価なセラミックが使用されても構わない。
 例えば、絶縁部材10bが窒化アルミニウムから成る場合には、絶縁部材10bに必要な厚みは50μm~1000μm程度である。好適には、絶縁部材10bの厚みは、400μm程度である。同様に、絶縁部材10cが窒化アルミニウムから成る場合には、絶縁部材10cのベース部に必要な厚みは50μm~1000μm程度である。好適には、絶縁部材10cのベース部の厚みは、400μm程度である。絶縁部材10bの材料がダイヤモンドの場合は、絶縁部材10bに必要な厚みは10μm~100μm程度である。同様に、絶縁部材10cの材料がダイヤモンドの場合は、絶縁部材10cのベース部に必要な厚みは10μm~100μm程度である。ダイヤモンドは、多結晶ダイヤモンドと単結晶ダイヤモンドのいずれでも構わない。
 一方、半導体チップ2のゲート電極に圧接される第3電極7と上側放熱板4との間を絶縁するための絶縁部材10dには、絶縁性のみが求められる。したがって、絶縁部材10dの材料は、例えば、雲母(マイカ)や、アルミナ(Al)等のセラミックなどの安価な無機材料で構わない。また、第1電極5の突出部5bと上側放熱板4との間を絶縁するための絶縁部材(図示せず)にも、絶縁性のみが求められる。したがって、第1電極5の突出部5bと上側放熱板4との間を絶縁するための絶縁部材が絶縁部材10cと一体ではない場合、第1電極5の突出部5bと上側放熱板4との間を絶縁するための絶縁部材(図示せず)の材料は、例えば、雲母(マイカ)や、アルミナ(Al)等のセラミックなどの安価な無機材料で構わない。
 放熱板3、4の材料は、安価で熱伝導率の高い金属材料が好適である。例えば、アルミニウムや銅などが好ましい。絶縁部材10b~10dは、カットや研削等の機械加工で所定の形状にすることが可能である。絶縁部材10b~10dがセラミックから成る場合には、機械加工に代えて、型による成形で絶縁部材を所定の形状にすることも可能である。
 絶縁部材10bの面積は、下側放熱板3と第1電極5の圧接部5aとの間が確実に絶縁されるように、第1電極5の圧接部5aの面積よりも広くするのが好適である。同様に、絶縁部材10cのベース部の面積(絶縁部材10cの投影面積)は、第2電極6の圧接部6aの面積よりも広くするのが好適であり、絶縁部材10dのベース部の面積(絶縁部材10dの投影面積)も、第3電極7の圧接部7aの面積(第3電極7の投影面積)よりも広くするのが好適である。
 なお、絶縁部材10b、10c、10dが放熱板3、4に埋め込まれる代わりに、ザグリ加工等によって放熱板3、4に形成された各凹部内に、アルミニウムの陽極酸化膜(アルマイト)や、ダイヤモンド薄膜、セラミック溶射による形成される膜、ダイヤモンドライクカーボンなどが形成されてもよい。
 図6に示す半導体装置1においては、絶縁部材10bが下側放熱板3の上面に配置されている。この下側放熱板3の上面に配置された絶縁部材10bにより、下側放熱板3に絶縁層が形成されている。また絶縁部材10c、10dのベース部が上側放熱板4の下面に配置されている。この上側放熱板4の下面に配置された絶縁部材10c、10dにより、上側放熱板4に絶縁層が形成されている。
 図6に示す半導体装置1によれば、図5に示す半導体装置1のように放熱板3、4に凹部を形成する必要がないので、低コスト化が可能となる。絶縁部材10bの面積は、第1電極5の圧接部5aから下側放熱板3へ効率よく放熱されるように、第1電極5の圧接部5aの面積よりも大きくするのが好適である。また、このように下側放熱板3の上面に配置される絶縁部材10bの面積が第1電極5の圧接部5aの面積よりも広いことにより、下側放熱板3と第1電極5の圧接部5aとの間が確実に絶縁される。同様に、上側放熱板4の下面に配置される絶縁部材10cのベース部の面積も、圧接部6aの面積より大きくするのが好適であり、上側放熱板4の下面に配置される絶縁部材10dのベース部の面積も、圧接部7aの面積より大きくするのが好適である。また、このように絶縁部材10cのベース部の面積が圧接部6aの面積よりも広く、絶縁部材10dのベース部の面積が圧接部7aの面積よりも広いことにより、各電極6、7の圧接部6a、7aと上側放熱板4との間が確実に絶縁される。
 第2電極6と上側放熱板4との間を絶縁するための絶縁部材と、第3電極7と上側放熱板4との間を絶縁するための絶縁部材は、例えば図7に示すように一体であってもよい。図7は、下側放熱板3に絶縁部材10bが埋め込まれ、上側放熱板4に絶縁部材10eが埋め込まれた構造を持つ半導体装置1を示している。絶縁部材10eは、第2電極6と上側放熱板4との間を絶縁するとともに、第3電極7と上側放熱板4との間を絶縁する。この埋め込まれた絶縁部材10eにより、上側放熱板4に絶縁層が形成されている。
 詳しくは、絶縁部材10eは、第2電極6の圧接部6aと第3電極7の圧接部7aを覆うベース部と、第2電極6の突出部6bに対応する突出部(図示せず)と、第3電極7の突出部7bに対応する突出部を備えており、絶縁部材10eのベース部の下面が上側放熱板4の下面から露出し、絶縁部材10eの各突出部が、絶縁部材10eのベース部から上側放熱板4の上面まで伸びている。そして、第2電極6の突出部6bを挿入することが可能な穴部(図示せず)が、絶縁部材10eのベース部の下面から絶縁部材10eの一方の突出部の端面まで伸び、第3電極7の突出部7bを挿入することが可能な穴部が、絶縁部材10eのベース部の下面から絶縁部材10eの他方の突出部の端面まで伸びている。
 また、上側放熱板4には、第1電極5の突出部5bを挿入することが可能な穴部が形成された絶縁部材(図示せず)が埋め込まれている。この絶縁部材は、絶縁部材10eと一体であっても構わない。
 絶縁部材10eのベース部は、ザグリ加工等によって上側放熱板4に形成された凹部にはめ込まれてもよい。このように絶縁部材10eが上側放熱板4に埋め込まれることにより、絶縁部材10eの位置ズレが発生しない。
 図7に示す半導体装置1においては、第2電極6の圧接部6aと上側放熱板4との間を絶縁する絶縁部材10eに、高熱伝導率と高耐熱性が要求される。したがって、絶縁部材10eの材料には、例えば、ダイヤモンドや、窒化アルミニウム(AlN)や窒化珪素(Si)等のセラミックなどの無機絶縁材料が好適である。但し、高い放熱性が要求されない場合には、アルミナ(Al)等の安価なセラミックが使用されても構わない。例えば、絶縁部材10eが窒化アルミニウムから成る場合には、絶縁部材10eのベース部に必要な厚みは50μm~1000μm程度である。好適には、絶縁部材10eのベース部の厚みは、400μm程度である。絶縁部材10eの材料がダイヤモンドの場合は、絶縁部材10eのベース部に必要な厚みは10μm~100μm程度である。ダイヤモンドは、多結晶ダイヤモンドと単結晶ダイヤモンドのいずれでも構わない。
 絶縁部材10eは、カットや研削等の機械加工で所定の形状にすることが可能である。絶縁部材10eがセラミックから成る場合には、機械加工に代えて、型による成形で絶縁部材10eを所定の形状することも可能である。
 絶縁部材10eのベース部の面積(絶縁部材10eの投影面積)は、各電極6、7の圧接部6a、7aと上側放熱板4との間が確実に絶縁されるように、例えば、半導体チップ2の上面の面積より広くしてもよい。
 なお、絶縁部材10b、10eが放熱板3、4に埋め込まれる代わりに、ザグリ加工等によって放熱板3、4に形成された各凹部内に、アルミニウムの陽極酸化膜(アルマイト)や、ダイヤモンド薄膜、セラミック溶射による形成される膜、ダイヤモンドライクカーボンなどが形成されてもよい。
 図8、図9に示す半導体装置1においては、絶縁部材10bが下側放熱板3の上面に配置され、絶縁部材10eのベース部が上側放熱板4の下面に配置されている。この上側放熱板4の下面に配置された絶縁部材10eにより、上側放熱板4に絶縁層が形成されている。図8に示す半導体装置1では、絶縁部材10bが下側放熱板3の上面に部分的に配置されており、絶縁部材10eのベース部が上側放熱板4の下面に部分的に配置されている。図9に示す半導体装置1では、絶縁部材10bが下側放熱板3の上面の全面または略全面に配置されており、絶縁部材10eのベース部が上側放熱板4の下面の全面または略全面に配置されている。
 図8、図9に示す半導体装置1によれば、図7に示す半導体装置1のように放熱板3、4に凹部を形成する必要がないので、低コスト化が可能となる。絶縁部材10eのベース部の面積は、主に第2電極6の圧接部6aから上側放熱板4へ効率よく放熱されるように、例えば、半導体チップ2の上面の面積より広くしてもよい。また、このように上側放熱板4の下面に配置される絶縁部材10eのベース部の面積が半導体チップ2の上面の面積よりも広いことにより、各電極6、7の圧接部6a、7aと上側放熱板4との間が確実に絶縁される。
 なお、以上の図3~図9に示す下側放熱板3と上側放熱板4は、任意に組み合わせてもよい。例えば、半導体装置1は、図3に示す絶縁層10aが形成された下側放熱板3と、図8に示す絶縁部材10eが設けられた上側放熱板4とを備えてもよい。
 以上のように、この実施の形態では、電極5~7の圧接部5a~7aが半導体チップ2に圧接接合されている。そのため、この実施の形態の半導体装置1は、各電極5~7の圧接部5a~7aが半導体チップ2に接続している各接続部分の破壊を回避できる。例えば、半導体チップ2の材料がSiCの場合、その半導体チップ2の熱膨張係数は3~4ppm/°Cとなる。一方、半導体チップ2に電気的に接続する電極5~7の基材が銅から成る場合、電極5~7の熱膨張係数は17ppm/°Cとなる。そのため、各電極5~7の圧接部5a~7aと半導体チップ2との各接続界面には、半導体チップ2の温度変化に伴う応力が発生する。しかし、この半導体装置1では、半導体チップ2に電極5~7の圧接部5a~7aが接続する形態が、固定接続ではなく接触接続である。したがって、各電極5~7の圧接部5a~7aと半導体チップ2との各接続界面に、半導体チップ2の温度変化に伴う応力が発生しても、各電極5~7の圧接部5a~7aと半導体チップ2とが相対的に摺動する(滑る)ため、各接続界面に発生する応力は緩和される。よって、上記したように各電極5~7の圧接部5a~7aが半導体チップ2に接続している各接続部分の破壊は回避され、半導体チップ2と電極5~7との間の信頼性の高い接続を得ることが可能となる。
 また、第1電極5の圧接部5aと下側放熱板3との接続界面、第2電極6の圧接部6aと上側放熱板4との接続界面、および第3電極7の圧接部7aと上側放熱板4との接続界面にも、熱膨張係数の差に起因する応力が発生する。しかし、この半導体装置1では、放熱板3、4に電極5~7の圧接部5a~7aが接続する形態も、固定接続ではなく接触接続である。したがって、下側放熱板3に第1電極5の圧接部5aが接続している接続部分の破壊は回避される。同様に、上側放熱板4に第2電極6の圧接部6aが接続している接続部分の破壊は回避され、上側放熱板4に第3電極7の圧接部7aが接続している接続部分の破壊も回避される。よって、放熱板3、4と電極5~7との間の接続の信頼性が高まる。
 また、この半導体装置1においては、半導体チップ2に電極5~7の圧接部5a~7aが接続する形態が、固定接続ではなく接触接続であり、放熱板3、4に電極5~7の圧接部5a~7aが接続する形態も、固定接続ではなく接触接続である。このため、例えば半導体装置1の組み立て後に半導体チップ2が不良であることが判明した場合に、半導体チップ2をリペアすることが容易となる。
 続いて、第1電極5の圧接部5aと下側放熱板3との接続界面、第2電極6の圧接部6aと上側放熱板4との接続界面、および第3電極7の圧接部7aと上側放熱板4との接続界面に発生する応力をより小さくするための放熱板3、4の材料について、表1および2を用いて説明する。
 表1はSiC(炭化珪素)、Al(アルミニウム)、Cu(銅)、AlN(窒化アルミニウム)の熱膨張係数(α)を示している。表2の事例1は、半導体チップの材料がSiC、電極の基材の材料がCuまたはAl、放熱板の基材の材料がCuまたはAlの場合における、半導体チップと電極との間の熱膨張係数差(Δα1)と、電極と放熱板との間の熱膨張係数差(Δα2)を示している。表2の事例2は、半導体チップの材料がSiC、電極の基材の材料がCuまたはAl、放熱板の基材の材料がAlNの場合における、半導体チップと電極との間の熱膨張係数差(Δα1)と、電極と放熱板との間の熱膨張係数差(Δα2)を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、事例1の場合、半導体チップと電極との間の熱膨張係数差(Δα1)は13~17ppm/°Cとなり、電極と放熱板との間の熱膨張係数差(Δα2)は0~3ppm/°Cとなる。これに対し、事例2の場合、半導体チップと電極との間の熱膨張係数差(Δα1)は13~17ppm/°Cとなり、事例1の場合と同等となる。一方、電極と放熱板との間の熱膨張係数差(Δα2)は13~16ppm/°Cとなり、事例1の場合よりも大きくなる。これは、事例1の場合、電極の基材と放熱板の基材が共に金属であるのに対し、事例2の場合、電極の基材が金属で、放熱板の基材が、金属ではない無機物であるためである。したがって、事例2に比べて、事例1の方が、電極と放熱板との間の熱膨張係数差Δα2に伴って発生する応力が小さくなる。このことから、下側放熱板3の基材の材料と上側放熱板4の基材の材料は共に、金属であることが好ましい。
 続いて、第1電極5の圧接部5aを下側放熱板3と半導体チップ2のそれぞれに圧接接合させ、第2電極6の圧接部6aと第3電極7の圧接部7aを共に上側放熱板4と半導体チップ2のそれぞれに圧接接合させる圧力を発生させる圧力発生機構の第1の具体例について、図10Aおよび図10Bを用いて説明する。図10Aは、この実施の形態の圧力発生機構の一構成例の概略を示す平面図であり、図10Bは図10AのB-B線に沿った断面図である。但し、図10Aは上側放熱板4を図示していない。
 図10Aおよび図10Bに示す半導体装置1は、圧力発生機構として、4本のネジ11と4つのスプリング12を使用する。上側放熱板4には、その4本のネジ11を通すための4つの穴13が形成されている。この4つの穴13は、好適には、半導体チップ2の上面の中心に対して点対称となる位置に形成される。下側放熱板3には、上側放熱板4に形成された4つのネジ用の穴13に対応する4箇所にネジ穴14が切られている。各ネジ11の上端の鍔部と上側放熱板4との間にスプリング12がそれぞれ配置されている。この構成により、4本のネジ11が締められると、下側放熱板3と上側放熱板4が固定されるとともに、半導体チップ2が加圧される。スプリング12には、皿バネ、ウェーブワッシャーなどを使用することが可能である。
 この4本のネジ11と4つのスプリング12が発生させる圧力によって、下側放熱板3と半導体チップ2との間に配置された第1電極5の圧接部5aが、下側放熱板3と半導体チップ2のそれぞれに圧接接合される。同時に、上側放熱板4と半導体チップ2との間に配置された第2電極6の圧接部6aと第3電極7の圧接部7aが共に、上側放熱板4と半導体チップ2のそれぞれに圧接接合される。この構成によれば、4箇所で加圧力を調整することが可能となるので、加圧分布の調整が容易となる。したがって、図10Aおよび図10Bに示す圧力発生機構は、精度の良い加圧分布を作り出すことが可能である。
 ここで、好ましい圧力分布について説明する。半導体チップ2の上面に接触する第2電極6の圧接部6aと第3電極7の圧接部7aのうち、より面積が大きい圧接部に、より大きな圧力が付与されることが好ましい。例えば、図10Aおよび図10Bの紙面では、右側に位置する第2電極6の圧接部6aの面積が、左側に位置する第3電極7の圧接部7aの面積よりも大きい。この場合、右側に位置するネジ11bを、左側に位置するネジ11aに比べて、より締めて、右側に位置するスプリング12bによって発生する圧接力が、左側に位置するスプリング12aによって発生する圧接力よりも大きくなるようにする。これにより、面積が比較的大きい第2電極6の圧接部6aを半導体チップ2に圧接接合させる圧接力が、面積が比較的小さい第3電極7の圧接部7aを半導体チップ2に圧接させる圧接力よりも大きくなるので、第3電極7よりも大きな電流が流れる第2電極6の圧接部6aを、より安定して半導体チップ2に圧接することが可能となる。
 続いて、第1電極5の圧接部5aと下側放熱板3との圧接接合、第2電極6の圧接部6aおよび第3電極7の圧接部7aのそれぞれと上側放熱板4との圧接接合、各電極5~7の圧接部5a~7aと半導体チップ2との圧接接合を実現するための圧力発生機構の他の例(第2の具体例)について、図11A~図11Cを用いて説明する。図11Aは、この実施の形態の圧力発生機構の他の構成例の概略を示す平面図である。但し、図11Aは上側放熱板4を図示していない。また、図11Aは、クリップ15を仮想線(二点鎖線)で示している。図11Bは図11AのB-B線に沿った断面図であり、図11Cは図11AのC-C線に沿った断面図である。
 図11A~図11Cに示す半導体装置1は、圧力発生機構として、1個のクリップ15を使用する。クリップ15は、中央部15aと、その中央部15aの両端から曲げられた2つの側部15bと、その2つの側部15bのそれぞれの先端から曲げられた2つの挟み込み部15cとを備える。このクリップ15は板バネを含む。
 クリップ15は、中央部15aが上側放熱板4の上面に接触し、2つの挟み込み部15cが下側放熱板3の下面に接触するように、半導体装置1に取り付けられる。このように半導体装置1の一つの周方向に沿って1個のクリップ15が取り付けられることにより、下側放熱板3と上側放熱板4が、クリップ15を形成する板バネの付勢力(締め付け力)によって加圧され、固定される。そして、その加圧によって、下側放熱板3と半導体チップ2との間に配置された第1電極5の圧接部5aが、下側放熱板3と半導体チップ2のそれぞれに圧接接合され、上側放熱板4と半導体チップ2との間に配置された第2電極6の圧接部6aと第3電極7の圧接部7aが共に、上側放熱板4と半導体チップ2のそれぞれに圧接接合される。
 下側放熱板3の下面に設けられた段部3aは、別の放熱経路と下側放熱板3との接触がクリップ15によって阻害されないように、平面を突出させている。この段部3aにより、下側放熱板3が別の放熱経路、例えば放熱フィンやグラファイト等に接触し易くなる。また、下側放熱板3の段部3aには、クリップ15の締め付け力による挟み込み部15cの先端の移動を阻止する役割もある。また、下側放熱板3の側壁には、クリップ15の側部15bが入り込む凹部3bが形成されている。上側放熱板4の側壁にも、下側放熱板3と同様に、クリップ15の側部15bが入り込む凹部4bが形成されている。また、図11Aに示すように、電極5~7の突出部5b~7bは、クリップ15の投影領域から外れた所定の位置にそれぞれ設けられる。
 以上説明した図11A~図11Cに示す構成によれば、1個のクリップ15によって圧接接合が可能となる。したがって、この構成によれば、半導体装置1の組立が簡単になる。
 なお、クリップ15は、中央部15aが下側放熱板3の下面に接触し、2つの挟み込み部15cが上側放熱板4の上面に接触するように、半導体装置1に取り付けられてもよい。この場合、上側放熱板4の上面に、段部が設けられる。その段部は、上側放熱板4が別の放熱経路、例えば放熱フィンやグラファイト等に接触し易くなるように、平面を突出させる。また、その段部には、クリップ15の締め付け力による挟み込み部15cの先端の移動を阻止する役割もある。
 続いて、圧力発生機構として2個のクリップを用いる半導体装置について、図12A~図12Cを用いて説明する。図12Aは、この実施の形態の圧力発生機構の他の構成例(第3の具体例)の概略を示す平面図である。但し、図12Aは上側放熱板4を図示していない。図12Bは図12AのB-B線に沿った断面図であり、図12Cは図12AのC-C線に沿った断面図である。但し、図12Bは、クリップ16を仮想線(二点鎖線)で示している。
 図12A~図12Cに示す半導体装置1は、圧力発生機構として、図11A~図11Cに示すクリップ15よりも小型の2個のクリップ16を使用する。このクリップ16は、中央部16aと、その中央部16aの両端から曲げられた2つの挟み込み部16bを備える。このクリップ16は板バネを含む。
 一対のクリップ16は、半導体装置1の所定の両端部に取り付けられている。具体的には、クリップ16は、中央部16aが下側放熱板3の側壁および上側放熱板4の側壁に対向し、一方の挟み込み部16bが下側放熱板3の下面に接触し、他方の挟み込み部16bが上側放熱板4の上面に接触するように、半導体装置1に取り付けられる。このように半導体装置1の一つの周方向に沿って複数のクリップ16が取り付けられることにより、下側放熱板3と上側放熱板4が、クリップ16を形成する板バネの付勢力(締め付け力)によって加圧され、固定される。そして、その加圧によって、下側放熱板3と半導体チップ2との間に配置された第1電極5の圧接部5aが、下側放熱板3と半導体チップ2のそれぞれに圧接接合され、上側放熱板4と半導体チップ2との間に配置された第2電極6の圧接部6aと第3電極7の圧接部7aが共に、上側放熱板4と半導体チップ2のそれぞれに圧接接合される。
 下側放熱板3の下面に設けられた段部3aは、別の放熱経路と下側放熱板3との接触がクリップ16によって阻害されないように、平面を突出させている。この段部3aにより、下側放熱板3が別の放熱経路、例えば放熱フィンやグラファイト等に接触し易くなる。同様に、上側放熱板4の上面に設けられた段部4aも、上側放熱板4が別の放熱経路、例えば放熱フィンやグラファイト等に接触し易くなるように、平面を突出させる。また、これらの段部3aおよび4aには、クリップ16の締め付け力による挟み込み部16bの先端の移動を阻止する役割もある。
 また、図12Aに示すように、電極5~7の突出部5b~7bは、各クリップ16の投影領域から外れた所定の位置にそれぞれ設けられる。
 以上説明した図12A~図12Cに示す構成によれば、放熱板3、4の表面が、1個のクリップが用いられる場合よりも広く開放されるので、半導体装置1の放熱性が向上する。ここで、放熱板3、4の表面は、半導体チップ2に対向する放熱板3、4の面とは反対側の面である。
 一対のクリップ16は、好適には、図12A~図12Cに示すように、半導体装置1の一つの周方向に沿って配置される。但し、一対のクリップ16は、半導体装置1の異なる周方向に沿って配置されてもよい。
 続いて、半導体チップ2の一方の主面に形成されている複数の表面電極にそれぞれ接続する複数の電極の圧接部間で、それらの厚み(高さ)にバラツキがある場合でも、放熱性に優れ、且つ、電気的接続の信頼性が高い半導体装置を得るための構成について、図13を用いて説明する。図13は本実施の形態の半導体装置1の他の構造例の概略を示す断面図である。
 この半導体装置1では、半導体チップ2の上面にソース電極8とゲート電極9が形成されている。そのため、半導体チップ2の上面に、ソース電極8とゲート電極9にそれぞれ接続する2つの電極6、7が配置される。この2つの電極6、7の圧接部6a、7aの厚みが異なる場合、厚みが薄い方の圧接部は、半導体チップ2および上側放熱板4と良好に接触接合できない。
 上記問題を解決するために、図13に示す半導体装置1では、第2電極6の圧接部6aよりも面積が小さい第3電極7の圧接部7aが、第2電極6の圧接部6aよりも薄く形成され、その薄く形成された第3電極7の圧接部7aと上側放熱板4との間に、緩衝材17が配置されている。このように、薄く形成された第3電極7の圧接部7aと上側放熱板4との間に緩衝材17が配置されることで、ソース電極8上に配置される第2電極6の圧接部6aとゲート電極9上に配置される第3電極7の圧接部7aを、それぞれ、半導体チップ2と上側放熱板4に良好に圧接接合させることが可能となる。緩衝材17としては、例えば、耐熱性を有するポリイミド樹脂薄膜などを使用することが可能である。
 また、半導体チップ2の一方の主面に形成されている複数の表面電極にそれぞれ接続する複数の電極の圧接部のうち、より小さい面積を持つ圧接部を、他の圧接部よりも薄く形成するのが好適である。このようにすれば、複数の圧接部のうち、より大きい面積を持つ圧接部が、放熱板に直接接触するので、放熱性に優れた半導体装置を得ることが可能となる。
 続いて、半導体チップ2の一方の主面に形成されている複数の表面電極にそれぞれ接続する複数の電極と半導体チップ2との良好な接触接合を得るための他の構成について、図14Aおよび図14Bを用いて説明する。図14Aは本実施の形態の半導体装置1の他の構造例の概略を示す平面図であり、図14Bは図14AのB-B線に沿った断面図である。但し、図14Aは上側放熱板4を図示していない。
 図14Aおよび図14Bに示す半導体装置1は、半導体チップ2のゲート電極9に電気的に導通する第3電極として、スプリング付き電極18を使用している。このスプリング付き電極18は、有底の筒部(筐体)18aと、スプリング18bと、接触部18cとを備える。このスプリング付き電極18において、スプリング18bの一方端は筒部18aの内部の底面に配置されており、そのスプリング18bの他方端に、接触部18cの基端が接している。そして、接触部18cの先端が筒部18aの開放端から突出している。スプリング18bとしては、例えば巻バネなどが使用されてもよい。なお、スプリング付き電極18の構成部品のうち、少なくとも筒部18aと接触部18cは、第3電極7の材料と同様に、電気伝導性が良好な金属などから成る。
 このスプリング付き電極18は、上側放熱板4が半導体チップ2の上方の所定の位置に配置されたときに、接触部18cの先端が半導体チップ2のゲート電極9に接触するように、上側放熱板4に固定されている。また、筒部18aの一部は、半導体装置1の外部へと伸びる第3電極7の突出部7aと同様に、上側放熱板4の上面から突出している。
 図14Aおよび図14Bに示す構成によれば、圧力発生機構が発生させる圧力によって、半導体チップ2のソース電極8上に配置された第2電極6の圧接部6aが、半導体チップ2と上側放熱板4のそれぞれに圧接接合されるときに、スプリング付き電極18の接触部18cの先端が、スプリング18bの付勢力によって、半導体チップ2のゲート電極9に良好に圧接接合される。
 スプリング付き電極18は、半導体チップ2の一方の主面に形成されている複数の表面電極にそれぞれ接続する複数の電極のうち、より小さい面積を持つ圧接部を備えた電極と置き換えるのが好適である。このようにすれば、複数の圧接部のうち、より大きい面積を持つ圧接部が放熱板に接触するので、放熱性に優れた半導体装置を得ることが可能となる。
 なお、スプリング付き電極18を備えた半導体装置1において、図3~図9に示すように放熱板3、4に絶縁層が形成されてもよい。例えば、図15に示すように、図5の半導体装置1と同様に、下側放熱板3に絶縁部材10bが埋め込まれ、上側放熱板4に絶縁部材10c、10dが埋め込まれてもよいし、図16に示すように、図6の半導体装置1と同様に、下側放熱板3の上面に絶縁部材10bが配置され、上側放熱板4の上面に絶縁部材10c、10dのベース部が配置されてもよい。
 続いて、半導体チップ2の表面電極に電気的に接続する電極を半導体装置1の外部へ取り出すための他の構成について、図17Aおよび図17Bを用いて説明する。図17Aは本実施の形態の半導体装置1の他の構造例の概略を示す平面図であり、図17Bは図17AのB-B線に沿った断面図である。但し、図17Aは上側放熱板4を図示していない。
 図1A~図16に示す半導体装置1においては、電極5~7が半導体装置1の外部へ取り出される方向は、上側放熱板4に交差する方向であった。しかし、半導体チップ2の表面電極に電気的に接続する電極が半導体装置1の外部へ取り出される方向は、図17Aおよび図17Bに示すように、半導体チップ2に対して水平方向であってもよい。この構成によれば、下側放熱板3と上側放熱板4との間の隙間から電極5~7の突出部5b~7bが半導体装置1の外部へ突出する。よって、放熱板3、4の表面に、より広い面積が確保されるので、より放熱性のよい半導体装置が得られる。ここで、放熱板3、4の表面は、半導体チップ2に対向する面とは反対の面である。
 電極5~7の突出部5b~7bが取り出される方向は特に限定されるものではない。但し、半導体チップ2の同一の主面上に配置される複数の電極6、7の突出部6b、7bが取り出される方向は、それら複数の突出部6b、7bが互いに接触しない方向とするのが好適である。
 なお、電極5~7が水平方向へ取り出される半導体装置1において、図3~図9に示すように放熱板3、4に絶縁層が形成されてもよい。
 例えば、図18に示すように、図7の半導体装置1と同様に、下側放熱板3に絶縁部材10bが埋め込まれ、上側放熱板4に絶縁部材10eが埋め込まれてもよい。但し、電極5~7の突出部5b~7bは上側放熱板4と交差しないので、上側放熱板4の内部に、電極5~7の突出部5b~7bと上側放熱板4との間を絶縁するための絶縁部材を埋め込む必要はない。したがって、図18に示す半導体装置1において上側放熱板4に埋め込まれる絶縁部材10eは、図7の絶縁部材10eのベース部に相当する形状をしている。また、図18に示すように、電極5~7の圧接部5a~7aと放熱板3、4との間を絶縁する絶縁部材10b、10eに加えて、水平方向へ延びる電極5~7の突出部5b~7bと放熱板3、4との間を絶縁する絶縁要素(絶縁層)10fが必要となる。つまり、絶縁要素10fは、半導体チップ2の周辺領域よりも外方において、水平方向へ延びる電極5~7と放熱板3、4との間を絶縁する。その絶縁要素10fの材料は、安価な絶縁性無機材料で構わない。具体的には、絶縁要素10fの材料として、マイカシートが使用されてもよい。
 また、例えば、図19、図20に示すように、図8、図9の半導体装置1と同様に、絶縁部材10bが下側放熱板3の上面に配置され、絶縁部材10eが上側放熱板4の下面に配置されてもよい。図19、図20に示す半導体装置1では、図18に示す半導体装置1と同様に、上側放熱板4の内部に、電極5~7の突出部5b~7bと上側放熱板4との間を絶縁するための絶縁部材を埋め込む必要はなく、上側放熱板4の下面に配置される絶縁部材10eは、図7の絶縁部材10eのベース部に相当する形状をしている。また、図19、図20に示す半導体装置1においても、図18に示す半導体装置1と同様に、水平方向へ延びる電極5~7の突出部5b~7bと放熱板3、4との間に絶縁要素(絶縁層)が設けられてもよい。
 続いて、半導体チップ2に付与される圧力について、図21を用いて説明する。図21のグラフの縦軸は、半導体チップ2の下面に形成されている第1表面電極とその第1表面電極に接触接続する第1電極5との接続抵抗値と、半導体チップの上面に形成されている第2表面電極とその第2表面電極に接触接続する第2電極6との接続抵抗値と、半導体チップ2の抵抗値との合計値を示している。また、グラフの横軸は、比較的面積の広い第2電極6の圧接部6aを半導体チップ2の上面に圧接接合させる圧力(荷重)を示している。
 図21に示すように、圧力が0.5MPa以上になると、接続抵抗値が安定する。さらに圧力が増加して30MPa以上になると、半導体チップ2が破壊される。よって、半導体チップ2の上面に第2電極6の圧接部6aを圧接接合させる圧力(荷重)は、0.5MPa以上且つ30MPa未満が好ましい。第2電極6は、大電流が流れる表面電極、例えば、ソース電極、エミッタ電極、アノード電極上に配置されて、その表面電極に接触している。
 続いて、半導体チップ2の下面に形成されている第1表面電極(図示せず)に接触する第1電極5の圧接部5aの面積について、図22Aおよび図22Bを用いて説明する。図22Aは第1電極5の圧接部5aの面積が好適な半導体装置1の一構造例の概略を示す断面図であり、半導体チップ2の下面に配置される第1電極5の圧接部5aの面積が、その半導体チップ2の下面の面積よりも大きい構造の一例の概略を示している。図22Bは、図22Aに示す構造の比較例として、第1電極5の圧接部5aの面積が半導体チップ1の下面の面積よりも小さい半導体装置1の一構造例の概略を示す断面図であり、半導体装置1に不具合が発生する様子を示している。
 図22Aに示すように、第1電極5の圧接部5aの面積が半導体チップ2の下面の面積よりも大きく、かつ、半導体チップ2の下面の外周から第1電極5の圧接部5aがはみ出す場合、複数の電極6、7の圧接部6a、7aから半導体チップ2の上面へ圧力が付与されても、その圧力は、第1電極5の圧接部5aによって安定して受けとめられる。
 これに対して、図22Bに示すように、第1電極5の圧接部5aの面積が半導体チップ2の下面の面積よりも小さく、第1電極5の圧接部5aから半導体チップ2の下面がはみ出す場合には、半導体チップ2の上面に配置された複数の電極6、7の圧接部6a、7aから半導体チップ2へ付与される圧力によって、半導体チップ2が破壊される可能性がある。特に、複数の電極6、7の圧接部6a、7a間で、それらの厚みにバラツキがある場合に、半導体チップ2が破壊される可能性が高まる。例えば、図22Bに示すように、半導体チップ2にクラック19が発生して、そのクラック19を起点にして半導体チップ2が割れるおそれがある。この半導体チップ2の破壊現象は、特に、第3電極7の圧接部7aが第2電極6の圧接部6aよりも厚い場合に発生し易い。
 また、半導体チップ2から発生する熱は第1電極5の圧接部5aを介して放熱される。したがって、第1電極5の圧接部5aの面積が半導体チップ2の下面の面積よりも大きく、かつ、半導体チップ2の下面が第1電極5が配置されている領域内に内包される構造は、半導体装置1の放熱性を高めることが可能な好ましい構造である。
 続いて、半導体チップ2の表面粗さと、半導体チップ2に接触する各電極5~7の圧接部5a~7aの表面粗さについて、図23を用いて説明する。図23は、半導体チップ2の下面とその下面に接触する第1電極5の圧接部5aとの界面を拡大して示している。具体的には、図23に示す界面は、半導体チップ2の第1の主面(下面)に形成されている第1表面電極と第1電極5の圧接部5aとの界面である。
 図23に示すように、第1電極5の半導体チップ2に接触する部分の表面粗さは、半導体チップ2の第1電極5に接触する部分の表面粗さよりも粗い方が好ましい。つまり、第1電極5の圧接部5aの上面の表面粗さは、半導体チップ2の下面に形成されている第1表面電極の表面の表面粗さよりも粗い方が好ましい。半導体チップ2の下面に形成されている第1表面電極に比べて硬度が低い第1電極5の圧接部5aの表面粗さが、半導体チップ2の下面に形成されている第1表面電極の表面の表面粗さよりも粗い場合、半導体チップ2と第1電極5の熱膨張係数差に起因して発生する摺動によって、第1電極5の半導体チップ2(第1表面電極)に接する部分の表面が変形していき、第1電極5の圧接部5aと半導体チップ2(第1表面電極)との密着性が高まっていくためである。
 したがって、第1電極5の半導体チップ2に接触する部分の表面粗さが、半導体チップ2の第1電極5に接触する部分の表面粗さよりも粗いことにより、半導体チップ2と第1電極5とのより良好な接続が得られる。
 続いて、この実施の形態における半導体装置の他の構造例について、図24Aを用いて説明する。図24Aは本実施の形態の半導体装置1の他の構造例の概略を示す断面図である。
 図24Aに示すように、半導体装置1において、半導体チップ2の第1の主面(下面)に対向する下側放熱板3の上面に、その下側放熱板3と半導体チップ2との間に配置される第1電極5の圧接部5aが部分的に収まる凹部20が形成されていてもよい。この凹部20は、例えばザグリ加工で形成することが可能である。
 この実施の形態の半導体装置1の製造プロセスは、下側放熱板3の上面に第1電極5を配置する工程を有している。この工程において、第1電極5の圧接部5aの一部が、下側放熱板3の上面に形成されている凹部20内に収まることにより、第1電極5が下側放熱板3の凹部20に保持される。したがって、第1電極5が配置された後の工程において、第1電極5の位置ズレが起こらない。よって、安定した半導体装置1の製造が可能となる。
 なお、下側放熱板3の凹部20に第1電極5の圧接部5aが入り込む構成は、図示されたように、下側放熱板3の凹部20に第1電極5の圧接部5aの下部が入り込む構成に限定されない。例えば、第1電極5の圧接部5aの下面に凸部または段部が設けられており、その第1電極5の圧接部5aの下面の凸部または段部のみが収まる凹部が下側放熱板3に形成されていてもよい。また、例えば、第1電極5の圧接部5aの全部が収まる凹部が下側放熱板3に形成されていてもよい。
 また、下側放熱板3の凹部20に第1電極5の圧接部5aが入り込む構造を持つ半導体装置1において、図3~図9に示すように放熱板3、4に絶縁層が形成されてもよい。
 例えば、図25Aに示すように、図5の半導体装置1と同様に、下側放熱板3に絶縁部材10bが埋め込まれ、上側放熱板4に絶縁部材10cと絶縁部材10dが埋め込まれてもよい。図25Aに示す半導体装置1において、絶縁部材(絶縁層)10bは、第1電極5の圧接部5aが部分的に収まる第1凹部20の形状に形作られており、下側放熱板3に形成された第2凹部21内に配置される。これにより、下側放熱板3の上面に第1電極5の圧接部5aが部分的に収まる第1凹部20が形成される。第1凹部20の形状に形作られた絶縁部材10bは、カットや研削等の機械加工で作成することが可能である。絶縁部材10bがセラミックから成る場合には、機械加工に代えて、型による成形で、第1凹部20の形状に形作られた絶縁部材10bを作成することも可能である。
 また例えば、図26Aに示すように、図6の半導体装置1と同様に、下側放熱板3の上面に絶縁部材10bが配置され、上側放熱板4の下面に絶縁部材10cのベース部と絶縁部材10dのベース部が配置されてもよい。図26Aに示す半導体装置1において、絶縁部材(絶縁層)10bは、第1電極5の圧接部5aが部分的に収まる第1凹部20の形状を持ち、第2凹部21が形成された下側放熱板3の面上に、第1凹部20が第2凹部21に収まるように配置される。これにより、下側放熱板3の上面に第1電極5の圧接部5aが部分的に収まる第1凹部20が形成される。第1凹部20の形状を持つ絶縁部材10bは、カットや研削等の機械加工で作成することが可能である。絶縁部材10bがセラミックから成る場合には、機械加工に代えて、型による成形で、第1凹部20の形状を持つ絶縁部材10bを作成することも可能である。
 また、図24Bに示すように、半導体チップ2の下面に対向する第1電極5の圧接部5aの上面に、半導体チップ2が部分的に収まる凹部22が形成されていてもよい。この第1電極5の凹部22も、下側放熱板3の凹部20と同様に、例えばザグリ加工で形成することが可能である。
 この実施の形態の半導体装置1の製造プロセスは、第1電極5の圧接部5aの上面に半導体チップ2を配置する工程を有している。この工程において、半導体チップ2の一部が、第1電極5の圧接部5aの上面に形成されている凹部22内に収まることにより、半導体チップ2が第1電極5の凹部22に保持される。したがって、半導体チップ2が配置された後の工程において、半導体チップ2の位置ズレが起こらない。よって、安定した半導体装置の製造が可能となる。
 なお、第1電極5の圧接部5aの凹部22に半導体チップ2が部分的に入り込む構成は、図示されたように、第1電極5の圧接部5aの凹部22に半導体チップ2の下部が入り込む構成に限定されない。例えば、半導体チップ2の下面に凸部または段部が設けられており、その半導体チップ2の下面の凸部または段部のみが収まる凹部が第1電極5の圧接部5aの上面に形成されていてもよい。
 また、第1電極5の圧接部5aの凹部22に半導体チップ2が部分的に入り込む構造を持つ半導体装置1において、図3~図9に示すように放熱板3、4に絶縁層が形成されてもよい。例えば、図25Bに示すように、図25Aの半導体装置1と同様に、下側放熱板3に絶縁部材10bが埋め込まれ、上側放熱板4に絶縁部材10cと絶縁部材10dが埋め込まれてもよいし、図26Bに示すように、図26Aの半導体装置1と同様に、下側放熱板3の上面に絶縁部材10bが配置され、上側放熱板4の下面に絶縁部材10cのベース部と絶縁部材10dのベース部が配置されてもよい。
 また、半導体チップ2の周囲に、絶縁性や耐湿信頼性を増すために、絶縁性の樹脂材料が塗布されてもよい。樹脂材料には、シリコーンからなる樹脂や、ポリイミドからなる樹脂などを使用することが可能である。ポリイミド系の樹脂は、耐熱性があるので、半導体チップ2の周囲をコーティングする樹脂材料として好ましい。この絶縁性の樹脂材料によって、半導体チップ2の表面電極間、および、半導体チップ2の複数の表面電極にそれぞれ接触接合する複数の電極5~7間で、電気的導通が起こらないようにすることが可能となる。
 絶縁材料は、一般的に熱伝導率が低いため、絶縁性の樹脂材料は、放熱の主経路となる電極5~7と放熱板3、4との間に塗布しないようにする。このように絶縁性の樹脂材料が放熱の主経路に塗布されないことにより、熱伝導性を考慮することなく、半導体チップ2の周囲に塗布される樹脂材料を選択することが可能となり、その結果、より高い耐熱性を持つ樹脂材料を選択することが可能となる。また、半導体チップ2の周囲に塗布される樹脂材料には、電極5~7を半導体チップ2に固定したり、電極5~7を放熱板3、4に固定したりする機能は必要ない。したがって、半導体チップ2の周囲に塗布される樹脂材料として、塗布後にゲル状となる樹脂、または、塗布後に膜厚が1~100μmの薄い膜状となる樹脂を使用することが可能となる。
 塗布後にゲル状となる絶縁樹脂23aが塗布された半導体装置1の構造例を図27~図29に示し、塗布後に薄い膜状となる絶縁樹脂23bが塗布された半導体装置1の構造例を図30~図32に示す。図27~図32に示すように、絶縁樹脂23a、23bは、放熱の主経路となる電極5~7と放熱板3、4との間以外の場所に塗布される。
 塗布後にゲル状となる絶縁樹脂23aまたは塗布後に薄い膜状となる絶縁樹脂23bが選択された場合、塗布後に硬化して固体となる樹脂と比べて、各電極5~7の圧接部5a~7aと半導体チップ2との相対的な摺動(滑り)や、第1電極5の圧接部5aと下側放熱板3との相対的な摺動(滑り)や、第2電極6の圧接部6aと上側放熱板4との相対的な摺動(滑り)や、第3電極7の圧接部7aと上側放熱板4との相対的な摺動(滑り)が、塗布された樹脂によって阻害されない。したがって、各電極5~7の圧接部5a~7aと半導体チップ2との各接続界面に発生する応力や、第1電極5の圧接部5aと下側放熱板3との接続界面に発生する応力や、第2電極6の圧接部6aと上側放熱板4との接続界面に発生する応力や、第3電極7の圧接部7aと上側放熱板4との接続界面に発生する応力を緩和することが可能となる。
 また、この実施の形態の半導体装置1では、半導体チップ2の周囲に塗布される樹脂材料に、電極5~7を半導体チップ2に固定したり、電極5~7を放熱板3、4に固定したりする機能は必要ない。その結果、半導体チップ2の周囲に塗布される樹脂材料の選択肢が増え、より高い耐熱性を持つ樹脂材料を選択することが可能となる。
 また、この実施の形態の半導体装置1では、半導体チップ2の周囲に塗布される樹脂材料に、電極5~7を半導体チップ2に固定したり、電極5~7を放熱板3、4に固定したりする機能は必要ないので、半導体チップ2の周囲に塗布される樹脂材料は、塗布後に強度を保つ必要はない。よって、塗布後に薄い膜状になる絶縁樹脂23bが選択された場合、絶縁樹脂23bは、絶縁に必要な量だけ塗布されればよいので、半導体チップ2の周囲に塗布される樹脂材料を削減することが可能となり、低コスト化が可能となる。
 なお、半導体チップに接触する複数の電極が水平方向へ取り出される半導体装置において、半導体チップの一方の主面上に配置された電極が取り出される方向と、半導体チップの他方の主面上に配置された電極が取り出される方向が一致する場合には、それら取り出される方向が一致する電極の突出部間に絶縁要素を設けるのが好適である。例えば図29および図32に示すように、半導体チップ2の下面に配置された第1電極5の突出部5bと半導体チップ2の上面に配置された第2電極6の突出部6bが同じ方向へ取り出される場合には、第1電極5の突出部5bと第2電極6の突出部6bとの間を絶縁するために、第1電極5の突出部5bと第2電極6の突出部6bとの間に絶縁要素24を設けるのが好適である。絶縁要素24は、半導体チップ2の周辺領域よりも外方において、同じ方向へ延びる第1電極5と第2電極6との間を絶縁する。絶縁要素24の材料は、より高い耐熱性を持つ安価な絶縁性無機材料で構わない。具体的には、絶縁要素24の材料として、マイカシートが使用されてもよい。
 以上説明した半導体装置1の構造は、半導体チップ2から発生した熱が、半導体チップ2の下面に配置された第1電極5を介して、下側放熱板3へ直接逃げるシンプルな放熱構造となっている。つまり、半導体装置1の構造は、半導体チップ2と放熱板との間に多数の構成材料が配置されていない構造である。また、半導体チップ2と放熱板との間に、熱伝導性の悪い絶縁性樹脂も塗布(配置)されていない。したがって、半導体装置1の構造は、半導体チップ2から発生した熱の放熱性に優れている。
 さらに、以上説明した半導体装置1は、半導体チップ2から発生した熱が、半導体チップ2の上面に配置された電極を介して、上側放熱板4へ直接逃げる構造も併用している。したがって、半導体装置1の構造は、より放熱性のよい構造となっている。
 続いて、上記した半導体装置1の製造方法の一例について説明する。図33は、本実施の形態に係る半導体装置の製造方法の一例の概略を示す工程別断面図である。
 まず、ステップS1において、予め第2凹部21が形成された下側放熱板3の基材が用意される。第2凹部21は、例えばザグリ加工によって形成することが可能である。
 次に、ステップS2において、第2凹部21が形成されている下側放熱板3の基材の上面に、無機材料から成る絶縁層10aが一定の厚みで形成される。これにより、絶縁層10aの表面に第1凹部20が形成される。
 絶縁層10aを形成する方法としては、例えば、陽極酸化処理によって陽極酸化皮膜を形成する方法がある。下側放熱板3の基材がアルミニウムの場合、絶縁層10aとして、アルミニウムの陽極酸化皮膜(アルマイト)が形成される。または、絶縁層10aとして、スパッタ法、蒸着法あるいはCVD法によって、ダイヤモンド薄膜が形成されてもよい。または、絶縁層10aとして、セラミック溶射によってセラミック層が形成されてもよい。セラミック材料は、熱伝導率の良いAlN(窒化アルミニウム)が好ましい。
 次に、ステップS3において、絶縁層10aの余分な部分が除去される。これにより、絶縁層10aが第2凹部21の内面にのみ残り、下側放熱板3の基材の上面が、第2凹部21を除いて露出する。第2凹部21の内面に残った絶縁層10aの上端は、下側放熱板3の基材の上面と同一平面になる。絶縁層10aの不要部分は、例えば、研削によって除去することが可能である。あるいは、絶縁層10aが不要な箇所に予めマスキングをしておき、その後に絶縁層10aを形成してもよい。なお、例えば、カットや研削等の機械加工によって所定の形状に形作られた絶縁部材が、下側放熱板3の基材の第2凹部21内に配置されることにより、第2凹部21内に絶縁層が形成されてもよい。絶縁部材としては、例えばセラミック等が使用される。
 次に、ステップ4において、第1電極5が、例えば部品マウンター設備などによって下側放熱板3上に配置される。詳しくは、絶縁層10aの第1凹部20上に第1電極5が配置される。これにより、絶縁層10aの第1凹部20内に第1電極5の圧接部5aが部分的に収まる。よって、第1電極5の位置が保持される。
 次に、ステップS5において、次の工程(ステップS6)において配置される半導体チップ2の位置決めに使用される複数の第1治具25が、図示しない把持手段によって所定の位置に配置され、その配置された場所に保持される。詳しくは、複数の第1治具25は、半導体チップ2が配置される予定の領域または空間を囲むように保持される。
 次に、ステップS6において、半導体チップ2が、例えば部品マウンター設備などによって第1電極5上に配置される。詳しくは、複数の第1治具25によって囲まれた空間または領域に、半導体チップ2が配置される。第1治具25は、半導体チップ2が配置された後は、その半導体チップ2の位置を保持する。図33は、一つの方向に沿って複数の第1治具25により半導体チップ2が挟まれた状態を示している。但し、第1治具25の数および配置位置は、特に限定されるものではない。第1治具25によって半導体チップ2の位置が保持され、かつ、後の工程において半導体装置1から第1治具25が退避可能であればよい。
 次に、ステップS7において、次の工程(ステップS8)において半導体チップ2の上面に配置される第2電極6および第3電極7の位置決めに使用される複数の第2治具26が、図示しない把持手段によって所定の位置に配置され、その配置された場所に保持される。詳しくは、複数の第2治具26は、第2電極6の圧接部6aおよび第3電極7の圧接部7aがそれぞれ配置される予定の各領域または各空間を囲むように保持される。
 次に、ステップS8において、第2電極6および第3電極7が、例えば部品マウンター設備などによって半導体チップ2上に配置される。詳しくは、複数の第2治具26によって囲まれた各空間または各領域に、第2電極6の圧接部6aと第3電極7の圧接部7aがそれぞれ配置される。第2治具26は、第2電極6および第3電極7が配置された後は、第2電極6および第3電極7の位置を保持する。図33は、一つの方向に沿って複数の第2治具26により第2電極6の圧接部6aと第3電極7の圧接部7aが挟まれた状態を示している。但し、第2治具26の数および配置位置は、特に限定されるものではない。第2治具26によって、半導体チップ2の上面に配置される電極の位置が保持され、かつ、後の工程において半導体装置1から第2治具26が退避可能であればよい。
 次に、ステップS9において、圧接部材の一例である上側放熱板4が、例えば部品マウンター設備などによって、電極6、7の圧接部6a、7aの上面に配置される。このとき、鉛直方向に伸びる各電極5~7の突出部が、上側放熱板4に予め形成されている各穴部にそれぞれ挿入される。図33には、第3電極7の突出部7bのみが図示されている。また、電極6、7の圧接部6a、7aの上面が、上側放熱板4に形成されている絶縁層10aにそれぞれ接触する。
 その後、図示しない圧力発生機構によって、下側放熱板3と上側放熱板4が半導体チップ2へ向けて加圧され、その加圧状態が保持される。この加圧により、第1電極5の圧接部5aは、下側放熱板3と半導体チップ2のそれぞれに圧接接合され、第2電極6の圧接部6aと第3電極7の圧接部7aは共に、半導体チップ2と上側放熱板4のそれぞれに圧接接合される。また、このとき、半導体チップ2の上面に配置された第2電極6の圧接部6aに0.5MPa以上且つ30MPa未満の圧力が付与されるように、圧力発生機構による加圧が行われる。圧力発生機構としては、ネジとスプリングの組み合わせや、クリップなどが使用されてもよい。
 次に、ステップS10において、第1治具25と第2治具26が、図示しない把持手段によって、半導体チップ2に対して水平方向に取り外される。なお、半導体チップ2の上面(第2の主面)に配置される電極の位置を保持する第2治具26は、半導体チップ2に対して鉛直方向に取り外してもよい。この場合、第2治具26が通過できる開口部が上側放熱板4に形成されている必要がある。半導体チップ2の位置を保持する第1治具25も、第2治具24と同様に、鉛直方向に取り外してもよい。
 図34は、本実施の形態に係る半導体装置の製造方法の他例の概略を示す工程別断面図である。図34に示す製造プロセスは、図33に示す製造プロセスのステップS3、つまり絶縁層10aの不要部分を除去する工程が省かれている点のみが、図33に示す製造プロセスと異なる。
 なお、図34および図33に示す製造プロセスで製造される構造とは異なる構造を持つ半導体装置1についても、図34または図33に示す製造プロセスと同様の製造プロセスで製造することが可能である。
 以上説明したように、この実施の形態によれば、電気的接続の信頼性および放熱性の高い半導体装置が得られる。
 本発明の半導体装置及びその製造方法は、半導体チップとその半導体チップ上に配置される電極との接続の信頼性が高い半導体装置を得ることができ、半導体チップの温度幅が大きいパワーモジュール(大電力半導体装置)に有用である。

Claims (15)

  1.  第1の主面とその第1の主面とは反対側の第2の主面を持つ半導体チップと、
     前記第1の主面に対向配置された放熱板と、
     前記第1の主面と前記放熱板との間に配置されて、前記半導体チップに電気的に接続する第1電極と、
     前記第2の主面に対向配置された圧接部材と、
     前記第2の主面と前記圧接部材との間に配置されて、前記半導体チップに電気的に接続する第2電極と、
     前記放熱板と前記半導体チップのそれぞれに前記第1電極を圧接させ、かつ前記圧接部材と前記半導体チップのそれぞれに前記第2電極を圧接させる圧力を発生させる圧力発生機構と、
    を備える半導体装置。
  2.  前記第1電極の前記半導体チップに接触する部分の表面粗さが、前記半導体チップの前記第1電極に接触する部分の表面粗さよりも粗い請求項1記載の半導体装置。
  3.  前記放熱板と前記第1電極との間を絶縁するための絶縁要素をさらに備え、
     前記放熱板の材料が銅またはアルミニウムである
     請求項1記載の半導体装置。
  4.  前記第1電極が、前記半導体チップの前記第1の主面に対向する面を持ち、その前記第1の主面に対向する前記第1電極の面の面積が、前記第1の主面の面積よりも大きく、
     前記第1の主面に対向する前記第1電極の面に投影された前記第1の主面の外周から、前記第1の主面に対向する前記第1電極の面がはみ出すように、前記半導体チップが配置されている
     請求項1記載の半導体装置。
  5.  前記放熱板が、前記半導体チップの前記第1の主面側に開口する第1凹部を持ち、
     前記第1の主面と前記放熱板との間に配置される前記第1電極の少なくとも一部が、前記1凹部に入り込んでいる
     請求項1記載の半導体装置。
  6.  前記第1電極が、前記半導体チップの前記第1の主面側に開口する第2凹部を持ち、
     前記第2凹部に前記半導体チップの一部が入り込んでいる
     請求項1記載の半導体装置。
  7.  前記圧接部材が第2の放熱板である請求項1記載の半導体装置。
  8.  前記第2の放熱板と前記第2電極との間を絶縁するための絶縁要素をさらに備え、
     前記第2の放熱板の材料が銅またはアルミニウムである
     請求項7記載の半導体装置。
  9.  前記放熱板の材料がダイヤモンドまたはセラミックである請求項1記載の半導体装置。
  10.  前記放熱板の材料が、窒化アルミニウム、窒化珪素またはアルミナである請求項9記載の半導体装置。
  11.  前記第2の放熱板の材料がダイヤモンドまたはセラミックである請求項7記載の半導体装置。
  12.  前記第2の放熱板の材料が、窒化アルミニウム、窒化珪素またはアルミナである請求項11記載の半導体装置。
  13.  前記圧接部材と前記半導体チップとの間の、前記第2電極とは異なる場所に配置されて、前記半導体チップに電気的に接続するとともに、前記圧力発生機構によって、前記圧接部材と前記半導体チップのそれぞれに圧接される第3電極をさらに備え、
     前記第2電極に付与される圧力が、前記第3電極に付与される圧力よりも大きくなるように、前記圧力発生機構が圧力を発生させる
     請求項1記載の半導体装置。
  14.  前記半導体チップが、表面電極として、前記第2の主面に形成されたエミッタ電極、ソース電極またはアノード電極を持ち、
     前記第2電極が、前記エミッタ電極、ソース電極またはアノード電極に電気的に接続し、
     前記圧力発生機構によって前記第2電極に付与される圧力が、0.5MPa以上かつ30MPa未満である
     請求項1記載の半導体装置。
  15.  放熱板上に第1電極を配置する工程と、
     前記第1電極上に半導体チップを配置する工程と、
     前記半導体チップ上に第2電極を配置する工程と、
     前記第2電極上に圧接部材を配置する工程と、
     前記放熱板および前記圧接部材から前記半導体チップへ向けて圧力を付与して、前記第1電極を前記半導体チップに圧接するとともに、前記第2電極を前記半導体チップに圧接する工程と、
    を具備する半導体装置の製造方法。
PCT/JP2013/000036 2012-02-14 2013-01-10 半導体装置及びその製造方法 WO2013121691A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380003217.1A CN103843132A (zh) 2012-02-14 2013-01-10 半导体装置及其制造方法
US14/347,177 US9076752B2 (en) 2012-02-14 2013-01-10 Semiconductor device and method for manufacturing the same
EP13749607.1A EP2816594A4 (en) 2012-02-14 2013-01-10 SEMICONDUCTOR COMPONENT AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-029005 2012-02-14
JP2012029005 2012-02-14

Publications (1)

Publication Number Publication Date
WO2013121691A1 true WO2013121691A1 (ja) 2013-08-22

Family

ID=48983833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000036 WO2013121691A1 (ja) 2012-02-14 2013-01-10 半導体装置及びその製造方法

Country Status (5)

Country Link
US (1) US9076752B2 (ja)
EP (1) EP2816594A4 (ja)
JP (1) JPWO2013121691A1 (ja)
CN (1) CN103843132A (ja)
WO (1) WO2013121691A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015025447A1 (ja) * 2013-08-23 2017-03-02 富士電機株式会社 半導体装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819880B2 (ja) * 2013-05-08 2015-11-24 本田技研工業株式会社 平行度調整装置および平行度調整方法
JP6323325B2 (ja) * 2014-04-21 2018-05-16 三菱電機株式会社 半導体装置、半導体装置の製造方法
JP6344215B2 (ja) * 2014-11-21 2018-06-20 株式会社デンソー 半導体装置及びパワーモジュール
JP6112130B2 (ja) 2015-03-25 2017-04-12 トヨタ自動車株式会社 静電ノズル、吐出装置及び半導体モジュールの製造方法
DE102015122250A1 (de) * 2015-12-18 2017-06-22 Karlsruher Institut für Technologie Multifunktionale Modulverbindungsstruktur
CN108701667B (zh) * 2016-06-20 2020-08-28 株洲中车时代电气股份有限公司 半导体设备子组件
US11063495B2 (en) 2019-07-01 2021-07-13 Nidec Motor Corporation Heatsink clamp for multiple electronic components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239556A (ja) * 1988-07-29 1990-02-08 Mitsubishi Electric Corp 半導体装置
JPH0289352A (ja) * 1988-09-26 1990-03-29 Mitsubishi Electric Corp 半導体装置
WO2008123386A1 (ja) 2007-03-22 2008-10-16 Toyota Jidosha Kabushiki Kaisha パワーモジュール及び車両用インバータ
JP2009117428A (ja) * 2007-11-01 2009-05-28 Hitachi Ltd パワー半導体モジュールの製造方法、パワー半導体モジュールの製造装置、パワー半導体モジュール、及び接合方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166446A (en) * 1997-03-18 2000-12-26 Seiko Epson Corporation Semiconductor device and fabrication process thereof
WO1999012197A1 (fr) 1997-08-29 1999-03-11 Hitachi, Ltd. Dispositif a semi-conducteurs colle par compression et convertisseur de courant faisant appel a ce dispositif
JP3364423B2 (ja) * 1998-02-04 2003-01-08 株式会社東芝 半導体スタック
JP4085536B2 (ja) 1998-11-09 2008-05-14 株式会社日本自動車部品総合研究所 電気機器およびその製造方法並びに圧接型半導体装置
US6269864B1 (en) * 2000-02-18 2001-08-07 Intel Corporation Parallel-plate/pin-fin hybrid copper heat sink for cooling high-powered microprocessors
EP1148547B8 (en) * 2000-04-19 2016-01-06 Denso Corporation Coolant cooled type semiconductor device
JP2002026251A (ja) * 2000-07-11 2002-01-25 Toshiba Corp 半導体装置
JP2002270746A (ja) 2001-03-12 2002-09-20 Shibafu Engineering Corp 圧接型半導体装置およびその製造方法
JP2003188346A (ja) 2001-12-13 2003-07-04 Toshiba Corp 半導体装置
US7042086B2 (en) * 2002-10-16 2006-05-09 Nissan Motor Co., Ltd. Stacked semiconductor module and assembling method of the same
JP2005150596A (ja) 2003-11-19 2005-06-09 Nissan Motor Co Ltd 半導体装置及びその製造方法
JP4450230B2 (ja) * 2005-12-26 2010-04-14 株式会社デンソー 半導体装置
JP2007242962A (ja) 2006-03-09 2007-09-20 Mitsubishi Electric Corp 半導体装置
JP4965187B2 (ja) * 2006-08-09 2012-07-04 株式会社日立製作所 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239556A (ja) * 1988-07-29 1990-02-08 Mitsubishi Electric Corp 半導体装置
JPH0289352A (ja) * 1988-09-26 1990-03-29 Mitsubishi Electric Corp 半導体装置
WO2008123386A1 (ja) 2007-03-22 2008-10-16 Toyota Jidosha Kabushiki Kaisha パワーモジュール及び車両用インバータ
JP2009117428A (ja) * 2007-11-01 2009-05-28 Hitachi Ltd パワー半導体モジュールの製造方法、パワー半導体モジュールの製造装置、パワー半導体モジュール、及び接合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Direct lead bonded high performance power module", MITSUBISHI ELECTRIC CORPORATION TECHNICAL REPORT, vol. 84, no. 4, April 2010 (2010-04-01), pages 232
See also references of EP2816594A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015025447A1 (ja) * 2013-08-23 2017-03-02 富士電機株式会社 半導体装置
US9842786B2 (en) 2013-08-23 2017-12-12 Fuji Electric Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
EP2816594A4 (en) 2015-08-12
US20140231981A1 (en) 2014-08-21
CN103843132A (zh) 2014-06-04
JPWO2013121691A1 (ja) 2015-05-11
US9076752B2 (en) 2015-07-07
EP2816594A1 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2013121691A1 (ja) 半導体装置及びその製造方法
JP4569473B2 (ja) 樹脂封止型パワー半導体モジュール
JP6120704B2 (ja) 半導体装置
JP5701377B2 (ja) パワー半導体モジュール及びパワーユニット装置
WO2018194153A1 (ja) 電力用半導体モジュール、電子部品および電力用半導体モジュールの製造方法
US9728484B2 (en) Power module package and method for manufacturing the same
JPWO2020071185A1 (ja) 半導体装置および半導体装置の製造方法
KR101988064B1 (ko) 전력 반도체 모듈 및 전력 반도체 모듈의 제조 방법
WO2016076015A1 (ja) パワー半導体モジュール
US10497586B2 (en) Semiconductor device and a method of manufacturing the same
JP5899952B2 (ja) 半導体モジュール
JP4146888B2 (ja) 半導体モジュールと半導体モジュールの製造方法
US10115699B2 (en) Method for manufacturing wire bonding structure, wire bonding structure, and electronic device
JP6061967B2 (ja) パワー半導体装置
JP6884217B2 (ja) 凹形湾曲部を備えた底部プレートを有する半導体モジュール
CN111354710A (zh) 半导体装置及其制造方法
JP2001267475A (ja) 半導体装置の実装構造およびその実装方法
JP2013179231A (ja) 半導体モジュール
JP2013012641A (ja) パワー半導体モジュール
JP2014116478A (ja) 半導体モジュール及び半導体モジュールの製造方法並びに電力変換装置
JP2015026667A (ja) 半導体モジュール
JP5884625B2 (ja) 半導体デバイス
JP2002076259A (ja) パワーモジュール
WO2023106151A1 (ja) 半導体装置
US20230197561A1 (en) Power semiconductor module comprising a substrate, power semiconductor components and comprising a pressure body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500063

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013749607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013749607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14347177

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE