WO2013121542A1 - 燃料噴射弁及びこれを備えた燃料噴射装置 - Google Patents

燃料噴射弁及びこれを備えた燃料噴射装置 Download PDF

Info

Publication number
WO2013121542A1
WO2013121542A1 PCT/JP2012/053562 JP2012053562W WO2013121542A1 WO 2013121542 A1 WO2013121542 A1 WO 2013121542A1 JP 2012053562 W JP2012053562 W JP 2012053562W WO 2013121542 A1 WO2013121542 A1 WO 2013121542A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel injection
injection valve
valve
spiral groove
Prior art date
Application number
PCT/JP2012/053562
Other languages
English (en)
French (fr)
Inventor
小林辰夫
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/378,243 priority Critical patent/US9556842B2/en
Priority to JP2013558630A priority patent/JP5821974B2/ja
Priority to PCT/JP2012/053562 priority patent/WO2013121542A1/ja
Priority to CN201280069601.7A priority patent/CN104114847B/zh
Priority to EP12868623.5A priority patent/EP2816218A4/en
Publication of WO2013121542A1 publication Critical patent/WO2013121542A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • F02M61/163Means being injection-valves with helically or spirally shaped grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3442Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cone having the same axis as the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the present invention relates to a fuel injection valve and a fuel injection device including the same.
  • a fuel injection nozzle having a spiral passage formed between a wall surface of a hollow hole of a nozzle body and a sliding surface of a needle valve is known (for example, Patent Document 1).
  • the fuel that has passed through the spiral passage becomes a rotating flow.
  • the rotating fuel is injected from the nozzle hole through a gap formed between the needle valve and the nozzle body when the needle valve is lifted.
  • the fuel injection nozzle disclosed in Patent Document 1 is aimed at spray diffusion and mixing with air by being injected from the injection hole while maintaining the rotational flow of the fuel.
  • the fuel passing through the spiral passage is supplied between the needle valve and the nozzle body while maintaining the fuel thickness corresponding to the sectional shape of the spiral passage, that is, the sectional dimension of the fuel flow.
  • the needle valve may hinder the maintenance of the rotational flow of the fuel. That is, there is a concern about a decrease in the fuel turning speed caused by the fuel flow colliding with a part of the needle valve.
  • a fuel injection valve disclosed in the present specification includes a needle valve having a seat surface on a front end side, a seat portion on which the seat surface is seated, and an injection to a downstream side of the seat portion.
  • a nozzle body having a hole, and a swirl flow generating unit having a spiral groove for swirling fuel injected from the nozzle hole, the seat surface including a first contact, and the first contact is When the valve is closed, a line segment that is in contact with the second contact included in the seat portion and connects the first contact and the second contact when the valve is opened is the swirl flow generating portion.
  • the first contact and the second contact are in contact when the needle valve is closed.
  • a line segment connecting the first contact and the second contact is drawn parallel to the central axis of the needle valve.
  • the swirl flow generating section includes a plurality of spiral grooves, and the first groove section and the second groove section may be included in different spiral grooves.
  • the swirl flow generating portion is provided with a plurality of spiral grooves, so that the cross-sectional area of the single spiral groove can be reduced while ensuring a necessary injection amount. More specifically, the depth of the spiral groove can be set shallow so that collision between the fuel flow and the needle valve can be easily avoided.
  • the flow channel area of the spiral groove can be set to be minimum at the outlet. Since the area of the inlet portion of the spiral groove can be set larger than the outlet portion of the spiral groove, the pressure loss of the fuel flow can be reduced. As a result, fuel can be injected at a low fuel pressure.
  • the fuel injection valve disclosed in this specification can be attached to an engine mounted on a vehicle. At this time, the fuel injection valve becomes a part of the fuel injection device.
  • the fuel injection device disclosed in the present specification includes the fuel injection valve and a pressure adjusting unit for fuel supplied to the fuel injection valve, and the injection hole provided in the fuel injection valve is injected by the fuel injection valve.
  • the fuel pressure adjusting means is an engine to which the fuel injection valve is mounted. The fuel pressure is changed according to the operating condition.
  • FIG. 1A is a cross-sectional view showing the tip portion of the fuel injection valve of the first embodiment
  • FIG. 1B is an explanatory view showing the cross-sectional position of FIG. 1A
  • FIG. 2 is a perspective view illustrating a swirl flow generating unit according to the first embodiment.
  • FIG. 3 is an explanatory view showing the vicinity of the seat portion of the fuel injection valve of the first embodiment.
  • FIG. 4 is an explanatory diagram showing the dimensions of the spiral groove and the imaginary straight line drawing of the combustion injection valve of the first embodiment.
  • FIG. 5 is an explanatory diagram for drawing other virtual straight lines.
  • FIG. 6 is an explanatory view showing the vicinity of the sheet portion of the first comparative example.
  • FIG. 7A is an explanatory view schematically showing the P view in FIG.
  • FIG. 7B is an explanatory view schematically showing the P view in FIG.
  • FIG. 8 is a graph showing the relationship between the seat part fuel thickness / maximum lift amount, the fine bubble diameter, the collapse time, and the injection flow rate.
  • FIG. 9A is an explanatory diagram showing the shape of the spiral groove of Example 1
  • FIG. 9B is an explanatory diagram showing the shape of the spiral groove of the second comparative example.
  • FIGS. 10A-1 and 10A-2 are explanatory views showing changes in the spray shape of the fuel injected from the fuel injection valve of the first embodiment.
  • FIGS. 10B-1 and 10-2 are shown in FIGS. ) Is an explanatory view showing a change in the spray shape of the fuel injected from the fuel injection valve of the second comparative example.
  • FIG. 10A-1 and 10A-2 are explanatory views showing changes in the spray shape of the fuel injected from the fuel injection valve of the first embodiment.
  • FIGS. 10B-1 and 10-2 are shown in FIGS. ) Is an
  • FIG. 11 is a graph showing the relationship between the nozzle hole diameter and the set fuel pressure.
  • FIG. 12 is a graph showing the relationship between fuel pressure change, injection flow rate, and fine bubble diameter.
  • FIG. 13 is an explanatory diagram illustrating a cross section of a swirling flow generating unit according to the second embodiment.
  • FIG. 14 is an explanatory diagram illustrating a cross section of a swirling flow generating unit according to the third embodiment.
  • FIG. 1A is a cross-sectional view showing the tip portion of the fuel injection valve 1 of the first embodiment.
  • FIG. 1A is drawn as a cross section taken along line AA in FIG.
  • FIG. 1B shows a state in which the swirl flow generating unit 30 included in the fuel injection valve 1 is viewed from the front end side of the fuel injection valve 1.
  • FIG. 2 is a perspective view showing the swirl flow generator 30.
  • the fuel injection valve 1 includes a swirl flow generation unit 30 and imparts a swirl flow to the injected fuel.
  • the first embodiment is an example of a fuel injection valve that performs fuel injection using such a swirling flow, but is suitable for atomizing the fuel.
  • the principle of atomization of fuel is as follows. When a swirl flow having a fast swirl speed is formed in the fuel injection valve and the swirl flow is introduced into the nozzle hole, a negative pressure is generated at the swirl center of the strong swirl flow.
  • the fuel flow and the bubble mixed flow form a cone-like spray that diffuses from the center due to the centrifugal force of the swirling flow. Therefore, since the diameter of the cone-shaped spray increases as the distance from the nozzle hole increases, the spray liquid film is stretched and thinned. Then, it cannot be maintained as a liquid film and splits. Thereafter, the spray after the splitting is reduced in diameter by the self-pressurizing effect of the fine bubbles, collapses and becomes an ultrafine spray.
  • the fuel injection valve 1 according to the first embodiment adopts the fuel injection mode as described above.
  • the fuel injection valve 1 is incorporated in the fuel injection device 100 and is mounted on an engine mounted on a vehicle.
  • the fuel injection valve 1 includes a needle valve 10 having a seat surface 11 on the tip side, and a nozzle body 20 having a seat portion 21 on which the seat surface 11 is seated and an injection hole 22 on the downstream side of the seat portion 21.
  • the nozzle hole 22 is a single nozzle hole, and the nozzle hole diameter is set to ⁇ a.
  • a drive mechanism that performs drive control of the needle valve 10 is provided.
  • the drive mechanism is a conventionally known mechanism including components suitable for the operation of the needle valve 10 such as an actuator using a piezoelectric element, an electromagnet, or an elastic member that applies an appropriate pressure to the needle valve 10.
  • the fuel injection valve 1 includes a swirl flow generating unit 30 having a spiral groove 32 that swirls fuel injected from the injection hole 22.
  • the swirl flow generating unit 30 is a member housed in the nozzle body 20, and has three spiral grooves, a first spiral groove 32a, a second spiral groove 32b, and a third spiral groove 32c, in a conical portion formed at the tip. It has.
  • the number of spiral grooves is not limited to three, but it is desirable that a plurality of spiral grooves be provided. By using a plurality of spiral grooves, the degree of freedom in determining the cross-sectional area of each spiral groove (flow channel area) is increased while securing the entire injection flow rate.
  • the rotation angle from the inlet portion to the outlet portion of the spiral groove is preferably set to 180 ° or more. By setting the rotation angle to 180 ° or more, a swirl flow can be imparted to the fuel introduced into the nozzle hole 22. Also in the fuel injection valve 1 of the first embodiment, the rotation angle from the inlet portion 32a1 to the outlet portion 32a2 of the first spiral groove 32a is set to 180 ° or more. Similarly, the rotation angle from the inlet 32b1 to the outlet 32b2 of the second spiral groove 32b is set to 180 ° or more. Further, the rotation angle from the inlet portion 32c1 to the outlet portion 32c2 of the third spiral groove 32c is set to 180 ° or more.
  • the depth of the first spiral groove 32a gradually decreases from the inlet 32a1 toward the outlet 32a2. And the flow-path area of the 1st spiral groove 32a becomes small gradually as it goes to the exit part 32a2 from the entrance part 32a1.
  • the flow passage area of the first spiral groove 32a is the smallest at the outlet portion 32a2. The same applies to the second spiral groove 32b and the third spiral groove 32c.
  • the swirl flow generating unit 30 includes a plurality of fuel supply grooves 33 extending from the proximal end side toward the distal end side.
  • the fuel supply groove 33 forms a fuel flow path with the inner peripheral wall surface of the nozzle body 20.
  • the swirl flow generating unit 30 includes a pressure chamber 44 on the downstream side of the fuel supply groove 33. The fuel that has passed through the fuel supply groove 33 is once introduced into the pressure chamber 44 and then supplied to the first spiral groove 32a to the third spiral groove 32c.
  • Fuel is supplied to the fuel injection valve 1 through a fuel pump Po included in the fuel injection device 100.
  • the fuel pump Po includes a first pump Po1 and a second pump Po2 connected in series.
  • the fuel pump Po is electrically connected to an ECU (Electronic control unit) 40.
  • the ECU 40 selects whether to drive only the first pump Po1 or both the first pump Po1 and the second pump Po2 according to the operating state of the engine. That is, the fuel pump Po and the ECU 40 have a function as fuel pressure adjusting means.
  • the fuel pressure adjusting means is not limited to this form, and may be any form such as employing a regulator.
  • the fuel injection valve 1 includes the needle valve 10, the nozzle body 20, and the swirl flow generator 30 having the first spiral groove 32a to the third spiral groove 32c.
  • the relationship between elements will be described in more detail.
  • FIG. 3 is an explanatory view showing, in an enlarged manner, the vicinity of the seat portion 21 of the fuel injection valve 1 of the first embodiment, specifically, the portion B in FIG.
  • the sheet surface 11 includes a first contact P1.
  • the first contact P1 is in contact with the second contact P2 included in the seat portion 21 when the valve is closed.
  • the first contact P1 and the second contact P2 are separated when the valve is opened.
  • FIG. 1A is a cross-sectional view taken along the line AA in FIG. 1B.
  • This cross-sectional view shows the swirl flow generating unit 30 on the plane including the central axis AX of the needle valve 10. It is a cross section.
  • the swirl flow generating portion 30 has such a cross section, the first groove portion on the most downstream side and the second groove portion appearing on the upstream side of the first stage appear in the cross section.
  • a first spiral groove 32a, a third spiral groove 32c, and a second spiral groove 32b appear on the right side of the central axis AX in FIG.
  • the 1st spiral groove 32a is equivalent to the 1st slot
  • the 3rd spiral slot 32c is equivalent to the 2nd slot.
  • which spiral groove corresponds to the first groove portion and the second groove portion depends on the number of spiral grooves and the rotational angle of the spiral groove.
  • the first groove portion and the second groove portion are included in different spiral grooves.
  • the line segment L1 is the virtual straight line L2.
  • the seat portion fuel thickness Sf is equal to the length of the line segment L1 corresponding to the lift amount of the needle valve 10, that is, from the first contact point P1 to the second contact point when the valve is opened.
  • the distance is smaller than the distance S L to P2.
  • the sheet unit fuel thickness S f can be the second contact P2 is defined as a distance to the intersection P3 between the line segment L1 and the virtual straight line L2.
  • the setting of the virtual straight line L2 in the first embodiment will be described.
  • the deepest depth D1 in the portion having the deepest depth D1 and in the third spiral groove 32c corresponding to the second groove portion It is set to pass through the part.
  • the bottom surface angle ⁇ 2 formed by the virtual straight line L2 drawn in this way and the central axis AX is smaller than the seat angle ⁇ 1, which is an angle formed by the central axis AX and the inclined surface of the seat portion 21.
  • the depth of the first spiral groove 32a gradually decreases from the inlet portion 32a1 toward the outlet portion 32a2. For this reason, in the 1st spiral groove 32a which appears in a cross section, the location with the most groove depth becomes the most upstream. The same applies to the third spiral groove 32c.
  • the virtual straight line L2 that passes through the portion having the deepest groove depth is employed.
  • a virtual straight line drawn using another reference may be used.
  • an imaginary straight line L3 passing through a point that is the shortest distance from the central axis AX to each spiral groove may be employed.
  • FIG. 6 is an explanatory view showing the vicinity of the seat portion of the fuel injection valve 200 as the first comparative example.
  • FIG. 6 shows a valve open state in which the needle valve 210 is lifted.
  • FIG. 7A is an explanatory view schematically showing the P view in FIG. 3
  • FIG. 7B is an explanatory view schematically showing the P view in FIG. 6.
  • a virtual straight line L ⁇ b> 4 drawn by the same method as in the first embodiment intersects with the needle valve 210.
  • the seat portion the fuel thickness S f becomes smaller than the lift amount S L. For this reason, as shown in FIG.
  • the fuel injection valve 1 injects fuel that has passed through the swirl flow generation unit 30.
  • the fuel that has passed through the swirl flow generation unit 30 and turned into a swirl flow receives a force that is pressed against the inner peripheral surface of the nozzle body 20 by the centrifugal force.
  • the fuel injection valve 1 has a relationship in which the line segment L1 and the virtual straight line L2 intersect. For this reason, the fuel can easily pass through the gap between the needle valve 10 and the nozzle body 20 from the initial stage when the lift amount of the needle valve 10 is small.
  • the cross-sectional area is reduced toward the first spiral groove 32a and the inlet portion 32a1 and the outlet portion 32a2. For this reason, the fuel passing through the first spiral groove 32a is compressed. Even after being ejected from the outlet portion 32a2, the contraction effect by the centrifugal force resulting from the swirling is maintained, and further, the fuel thickness is continuously reduced to pass between the seat surface 11 and the seat portion 21. And it introduce
  • FIG. 8 is a graph showing the relationship between the seat fuel thickness / maximum lift amount, the fine bubble diameter, the collapse time, and the injection flow rate.
  • the horizontal axis represents the seat portion fuel thickness / maximum lift amount.
  • the vertical axis represents the fine bubble diameter, the collapse time, and the fuel flow rate.
  • the fuel injected from the fuel injection valve 1 includes fine bubbles, and the fine bubbles are crushed to reduce the size of the fuel.
  • the seat part fuel thickness / maximum lift amount is 1 or less, the fine bubble diameter, the crushing time, and the injection flow rate are almost constant values. This is because the collision between the fuel flow and the needle valve 10 is avoided.
  • the seat portion fuel thickness / maximum lift amount is greater than 1, the fine bubble diameter, the crushing time, and the injection flow rate all change in the worsening direction. That is, the fine bubble diameter is increased, and the crushing time is greatly prolonged accordingly. Moreover, the fuel flow rate is also decreasing. This is because as the value of the seat portion fuel thickness / maximum lift amount increases, the interference between the fuel flow and the needle valve 10 increases, the fuel flow is hindered, and the fuel turning speed and fuel flow rate decrease. is there. The fine bubble diameter increases due to a decrease in the turning speed.
  • the line segment L1 and the virtual straight line L2 intersect, and the seat portion fuel thickness / maximum lift amount is set to 1 or less, so a good spray form is realized. can do.
  • the length of the spiral groove can be shortened.
  • the fuel injection valve according to the first embodiment 1 can maintain the fuel turning speed for generating fine bubbles without increasing the length of the spiral groove.
  • the pressure loss in the spiral groove can be suppressed, and the fuel pressure can be reduced. For this reason, the drive loss at the time of using a high-pressure fuel pump can be reduced, and cost reduction can also be achieved.
  • EFI Electric Fuel Injection
  • the fuel injection valve 1 includes three spiral grooves from the first spiral groove 32a to the third spiral groove 32c.
  • the provision of the plurality of spiral grooves increases the number of fuel outlets to the downstream side of the seat portion 21.
  • a homogeneous swirl flow can be generated, and the distribution of fine bubbles in the fuel injected from the injection holes 22 is less likely to be dense.
  • the wave-like injection is also suppressed, and the particle size distribution is made uniform.
  • the fine bubbles are also diffused uniformly, and the air-fuel mixture is homogenized.
  • FIG. 9A is an explanatory diagram showing the shape of the spiral groove of Example 1
  • FIG. 9B is an explanatory diagram showing the shape of the spiral groove of the second comparative example.
  • FIGS. 10A-1 and 10A-2 are explanatory views showing changes in the spray shape of the fuel injected from the fuel injection valve 1 of the first embodiment.
  • FIGS. 10B-1 and 10-B 2) is an explanatory view showing a change in the spray shape of the fuel injected from the fuel injection valve of the second comparative example.
  • the spraying was performed under atmospheric pressure.
  • FIGS. 10A-1 and 10B-1 show the state of 0.5 ms after the injection, respectively
  • FIGS. 10A-2 and 10B-2 show the states, respectively. 1 shows a state of 1 ms after injection.
  • Example 1 shown in FIG. 9A the depth Dn of the spiral groove is gradually reduced.
  • the width W0 of the spiral groove is constant.
  • the second comparative example shown in FIG. 9B not only the width W0 of the spiral groove is constant, but also the depth of the spiral groove is constant at D0. Both are set so that the turning speed is the same.
  • FIG. 10 (B-1) a rod-like spray was confirmed. This is because the fuel in the spiral groove is stationary before the needle valve is opened, and immediately after the needle valve is opened, there is a run-up section for the fuel in the spiral groove that is closest to the seat to turn. Due to not. As a result, the fuel cannot be swirled and is injected from the nozzle hole to form a rod-like spray. Referring to FIG. 10B-2, it can be confirmed that the swirl flow is stable and becomes a conical spray. However, even in this state, a rod-like spray due to the swirling failure still remains in the vicinity of the center of the spray. Thus, spray sprayed in a state of poor rotation immediately after valve opening cannot achieve sufficient atomization and may generate coarse droplets.
  • a conical spray is confirmed even immediately after the valve is opened, and further, a neat conical spray can be confirmed with reference to FIG. 10 (A-2).
  • the volume of the fuel stored in the vicinity of the seat part to be swirled is small because the cross-sectional area of the spiral groove is the smallest at the outlet part.
  • the fuel is subjected to compression and contraction effects toward the outlet, and the flow velocity at the outlet of the spiral groove is increased even if the running section is relatively short.
  • the fuel stored in the vicinity of the outlet can be accelerated by being pushed out by the subsequent fuel, and can turn immediately after the valve is opened.
  • the fuel injection valve 1 according to the first embodiment can immediately increase the turning speed itself.
  • a decrease in fuel flow velocity is suppressed in combination with avoidance of collision between the fuel flow and the needle valve.
  • the fuel injection device 100 including the fuel injection valve 1 as described above will be described.
  • fuel is supplied to the fuel injection valve 1 through the fuel pump Po included in the fuel injection device 100.
  • the fuel injection device 100 is incorporated in an engine mounted on a vehicle.
  • the fuel injection device 100 includes the fuel injection valve 1, the fuel pump Po corresponding to the fuel pressure adjusting means, and the ECU 40.
  • the nozzle hole diameter of the nozzle hole 22 provided in the fuel injection valve 1 is set as follows. That is, the nozzle hole diameter is set so that the set fuel pressure is the lowest while satisfying the condition that the bubbles generated in the fuel injected by the fuel injection valve 1 are crushed in a desired time.
  • the fuel pump Po and the ECU 40 change the fuel pressure according to the operating state of the engine to which the fuel injection valve 1 is mounted.
  • FIG. 11 is a graph showing the relationship between the nozzle hole diameter and the set fuel pressure.
  • FIG. 12 is a graph showing the relationship between fuel pressure change, injection flow rate, and fine bubble diameter.
  • the fuel injection valve 1 is applicable to port injection.
  • port injection considering the effect of promoting vaporization due to the air flow of the intake valve and the suppression of vaporization (increase ⁇ V) in the port, the bubble collapse time is set to 20 ms, and the fuel flow rate is set to 11 mm 3 / ms. The condition under which the set fuel pressure is the lowest is determined.
  • the set fuel pressure that satisfies the above-described collapse time (20 ms) and fuel flow rate (11 mm 3 / ms) has a minimum value depending on the nozzle hole diameter. Referring to FIG. 11, at the nozzle hole diameter ⁇ 0.63, the minimum value of the set fuel pressure is 0.95 MPa. Thus, if the nozzle hole diameter is 0.63, injection at 1 MPa or less is possible. Therefore, in Example 1, the nozzle hole diameter is set to ⁇ 0.63.
  • 0.95 MPa is the maximum fuel pressure of the electronically controlled fuel injection device.
  • the maximum fuel pressure is 0.95 MPa
  • the fine bubble diameter is 9.7 ⁇ m
  • the fuel flow rate is 11 mm 3 / ms.
  • a fine bubble diameter of 9.7 ⁇ m is a value corresponding to a collapse time of 20 ms.
  • the fine bubble diameter is approximately 13 ⁇ m, but since it is a bubble spray having a film thickness of about 1.2 ⁇ m including bubbles, it is a liquid spray. In comparison, the surface area / mass ratio is large, and it is considered that vaporization can be promoted.
  • the fuel pressure is approximately 0.4 MPa
  • the fuel flow rate is a minimum of 4.3 mm 3 / ms
  • the fine bubble diameter is approximately 16 ⁇ m.
  • the fine bubble diameter is large in the idle state, it is considered that sufficient atomization can be achieved considering that the conventional bubble diameter is 70 ⁇ m.
  • the fine bubble diameter can be about 6.6 ⁇ m and the fuel flow rate can be 15 mm 3 / ms.
  • FIG. 13 is an explanatory diagram illustrating a cross-section of the swirling flow generating unit 330 according to the second embodiment.
  • the difference between the swirl flow generation unit 330 of the second embodiment and the swirl flow generation unit 30 of the first embodiment is the shape of a spiral groove. That is, in Example 1, the cross-sectional shape of the spiral groove is substantially rectangular, but in Example 2, the spiral groove has an arc-shaped cross-sectional shape.
  • the virtual straight line L5 corresponding to the virtual straight line L2 in the first embodiment is determined as follows.
  • a tangent line between the first spiral groove 322a corresponding to the first groove portion and the third spiral groove 322c corresponding to the second groove portion is drawn, and this is defined as a virtual straight line L5.
  • the virtual straight line L5 intersects with the line segment L1 as in the first embodiment.
  • the fuel injection valve disclosed in this specification can be applied regardless of the shape of the spiral groove provided in the swirl flow generating portion. That is, the degree of freedom in design is high.
  • the effect of fuel contraction can be adjusted.
  • a fuel injection valve that operates at a low fuel pressure such as a port injection valve
  • the area of the inlet can be increased, the contraction effect can be increased, and the pressure loss can be reduced.
  • fuel containing fine bubbles can be injected uniformly.
  • FIG. 14 is an explanatory diagram illustrating a cross section of the swirling flow generating unit 430 according to the third embodiment.
  • the difference between the swirl flow generation unit 430 of the third embodiment and the swirl flow generation unit 30 of the first embodiment is the arrangement of spiral grooves. That is, in Example 1, the bottoms of the spiral grooves were arranged substantially linearly. On the other hand, in Example 3, the bottoms of the spiral grooves are arranged along the curve R as shown in FIG. In such a case, the virtual straight line L6 corresponding to the virtual straight line L2 in the first embodiment is determined as follows.
  • a tangent line between the first spiral groove 422a corresponding to the first groove portion and the third spiral groove 422c corresponding to the second groove portion is drawn, and this is defined as a virtual straight line L6.
  • the virtual straight line L6 intersects with the line segment L1 as in the case of the first embodiment. As described above, the arrangement of the spiral grooves can be variously changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 燃料噴射弁は、先端側にシート面を有するニードル弁と、前記シート面が着座するシート部を有すると共に前記シート部の下流側に噴孔を有するノズルボディと、前記噴孔から噴射される燃料を旋回させる螺旋溝を有する旋回流生成部と、を有する。前記シート面は第1の接点を含み、前記第1の接点は、閉弁時において、前記シート部に含まれる第2の接点と接触し、開弁時に、前記第1の接点と前記第2の接点とを結んで描かれる線分は、前記旋回流生成部を前記ニードル弁の中心軸を含む面で断面としたときに、前記断面において最も下流側に現れる第1の溝部の底部と、前記第1の溝部よりも一段上流側に現れる第2の溝部の底部とを通過する仮想直線と交差する。これにより、螺旋溝を通過することによって縮流される燃料は、ニードル弁との衝突を回避し、螺旋溝を通過して旋回する燃料の流速低下が抑制される。 

Description

燃料噴射弁及びこれを備えた燃料噴射装置
 本発明は、燃料噴射弁及びこれを備えた燃料噴射装置に関する。
 従来、ノズル本体の中空穴の壁面とニードル弁の摺動面との間に形成された螺旋状通路を備えた燃料噴射ノズルが知られている(例えば、特許文献1)。このような燃料噴射ノズルでは、螺旋状通路を通過した燃料が回転流となる。回転流となった燃料は、ニードル弁がリフトすることにより、ニードル弁とノズル本体との間に形成される隙間を通じて噴孔から噴射される。
特開平10-141183号公報
 前記特許文献1に開示された燃料噴射ノズルは、燃料の回転流を維持したまま噴孔から噴射されることにより、噴霧の拡散、空気と混合されることを狙っている。ところで、螺旋状通路を通過する燃料は、その螺旋状通路の断面形状に応じた燃料厚さ、すなわち、燃料流の断面寸法を維持した状態でニードル弁とノズル本体との間に供給される。このため、燃料厚さが、ニードル弁の最大リフト量よりも大きくなる場合、ニードル弁が、燃料の回転流維持を阻害するおそれがある。すなわち、燃料流がニードル弁の一部に衝突することに起因する燃料の旋回速度の低下が懸念される。
 そこで、本明細書開示の燃料噴射弁は、螺旋溝を通過して旋回する燃料の流速低下を抑制することを課題とする。
 かかる課題を解決するために、本明細書に開示された燃料噴射弁は、先端側にシート面を有するニードル弁と、前記シート面が着座するシート部を有すると共に前記シート部の下流側に噴孔を有するノズルボディと、前記噴孔から噴射される燃料を旋回させる螺旋溝を有する旋回流生成部と、を有し、前記シート面は第1の接点を含み、前記第1の接点は、閉弁時において、前記シート部に含まれる第2の接点と接触し、開弁時に、前記第1の接点と前記第2の接点とを結んで描かれる線分は、前記旋回流生成部を前記ニードル弁の中心軸を含む面で断面としたときに、前記断面において最も下流側に現れる第1の溝部の底部と、前記第1の溝部よりも一段上流側に現れる第2の溝部の底部とを通過する仮想直線と交差する。
 第1の接点と第2の接点とは、ニードル弁の閉弁時において接触している。そして、ニードル弁がリフトして開弁状態となると、第1の接点と第2の接点とを結ぶ線分が、ニードル弁の中心軸と平行して描かれる。このような線分が仮想直線と交差するように設定されることにより、螺旋溝を通過して旋回流となった燃料流れが、ニードル弁との衝突を回避することができる。この結果、燃料流の旋回速度の低下が抑制される。
 前記旋回流生成部は、複数条の前記螺旋溝を有し、前記第1の溝部と前記第2の溝部とは、異なる螺旋溝に包含されることができる。
 旋回流生成部が複数条の螺旋溝を備えることにより、必要な噴射量を確保しつつ、一条の螺旋溝の断面積を小さくすることができる。より具体的に、螺旋溝の深さを浅く設定し、燃料流れとニードル弁との衝突を回避し易くすることができる。
 前記螺旋溝の流路面積は、出口部において最小となるように設定することができる。螺旋溝の出口部に対して、螺旋溝の入口部の面積を大きく設定することができるため、燃料流れの圧損を低減することができる。この結果、低燃圧での燃料の噴射が可能となる。
 本明細書に開示された燃料噴射弁は、車両に搭載されるエンジンに装着することができる。この際、燃料噴射弁は、燃料噴射装置の一部となる。本明細書開示の燃料噴射装置は、前記の燃料噴射弁と、前記燃料噴射弁に供給する燃料の圧力調整手段とを備え、前記燃料噴射弁が備える前記噴孔は、前記燃料噴射弁により噴射される燃料中に生成される気泡を所望の時間で圧壊させる条件を満たすとともに、設定燃圧が最も低くなる噴孔径に設定され、前記燃料の圧力調整手段は、前記燃料噴射弁が装着されるエンジンの運転状態に応じて燃圧を変更する。
 エンジンの運転状態に応じて燃圧を変更することにより、例えば、燃料ポンプで消費されるエネルギを低減しつつ、燃料の微粒化の効果を維持することができる。
 本明細書開示の燃料噴射弁によれば、螺旋溝を通過して旋回する燃料の流速低下を抑制することができる。
図1(A)は実施例1の燃料噴射弁の先端部分を示す断面図であり、図1(B)は図1(A)の断面位置を示す説明図である。 図2は実施例1の旋回流生成部を示す斜視図である。 図3は実施例1の燃料噴射弁のシート部近傍を示す説明図である。 図4は実施例1の燃焼噴射弁の螺旋溝の寸法及び仮想直線の作図について示す説明図である。 図5は他の仮想直線の作図について説明図である。 図6は第1の比較例のシート部近傍を示す説明図である。 図7(A)は図3におけるP視を模式的に示す説明図であり、図7(B)は図6におけるP視を模式的に示す説明図である。 図8はシート部燃料厚さ/最大リフト量と微細気泡径、圧壊時間及び噴射流量との関係を示すグラフである。 図9(A)は実施例1の螺旋溝の形状を示す説明図であり、図9(B)は第2の比較例の螺旋溝の形状を示す説明図である。 図10(A-1)、(A-2)は実施例1の燃料噴射弁から噴射された燃料の噴霧形状の変化を示す説明図であり、図10(B-1)、(B-2)は第2の比較例の燃料噴射弁から噴射された燃料の噴霧形状の変化を示す説明図である。 図11は噴孔径と設定燃圧との関係を示すグラフである。 図12は燃圧変化と噴射流量及び微細気泡径との関係を示すグラフである。 図13は実施例2における旋回流生成部の断面を示す説明図である。 図14は実施例3における旋回流生成部の断面を示す説明図である。
 以下、本発明の実施形態について、添付図面を参照しつつ説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。また、図面によっては細部が省略されて描かれている場合もある。
 図1(A)は、実施例1の燃料噴射弁1の先端部分を示す断面図である。図1(A)は、図1(B)におけるA-A線に沿った断面として描かれている。図1(B)は、燃料噴射弁1に含まれる旋回流生成部30を燃料噴射弁1の先端側からみた状態を示している。図2は旋回流生成部30を示す斜視図である。
 まず、実施例1の燃料噴射弁1の詳細な構成について説明する前に、燃料噴射弁1によって実現される噴霧の状態について説明する。燃料噴射弁1は、後に詳述するように、旋回流生成部30を備え、噴射される燃料に旋回流を付与する。旋回流を付与する目的として、燃料の良好な拡散や燃料の微粒化を上げることができる。実施例1は、このような旋回流を利用した燃料噴射を行う燃料噴射弁の一例であるが、燃料の微粒化を図る上で好適である。燃料の微粒化の原理は以下の如くである。燃料噴射弁内で旋回速度の速い旋回流が形成され、その旋回流が噴孔に導入されると、その強い旋回流の旋回中心に負圧が発生する。負圧が発生すると燃料噴射弁1の外部の空気が噴孔内に吸引される。これにより噴孔内に気柱が発生する。こうして発生した気柱と燃料との界面において気泡が生成する。生成した気泡は気柱の周囲を流れる燃料に混入し、気泡混入流として外周側を流れる燃料流とともに噴射される。
 このとき燃料流及び気泡混入流は、旋回流の遠心力により、中心から拡散するコーン状の噴霧が形成される。従って、噴孔から離れるほどコーン状の噴霧の径は大きくなるため、噴霧液膜が引き伸ばされて薄くなる。そして、液膜として維持できなくなり分裂する。この後、分裂後の噴霧は微細気泡の自己加圧効果によって径が小さくなり崩壊に至り超微細化噴霧となる。このように、燃料噴射弁1により噴射された燃料の噴霧が微粒化されるため、燃焼室内における速やかな火炎伝播が実現され、安定した燃焼が行われる。実施例1の燃料噴射弁1は、以上説明したような燃料噴射形態を採る。
 燃料噴射弁1は、燃料噴射装置100に組み込まれ、車両に搭載されるエンジンに装着される。燃料噴射弁1は、先端側にシート面11を有するニードル弁10と、シート面11が着座するシート部21を有すると共にシート部21の下流側に噴孔22を有するノズルボディ20を備える。噴孔22は単噴孔であり、噴孔径は、φaに設定されている。また、ニードル弁10の駆動制御を行う駆動機構を備える。駆動機構は、圧電素子、電磁石などを用いたアクチュエータやニードル弁10へ適切な圧力を付与する弾性部材など、ニードル弁10が動作するのに適する部品を備えた従来から知られる機構である。
 燃料噴射弁1は、噴孔22から噴射される燃料を旋回させる螺旋溝32を有する旋回流生成部30を備える。旋回流生成部30は、ノズルボディ20内に収容される部材で、先端部に形成された円錐状部に第1螺旋溝32a、第2螺旋溝32b及び第3螺旋溝32cの三条の螺旋溝を備えている。螺旋溝の条数は、三条に限定されないが、複数条設けられていることが望ましい。複数条の螺旋溝とすることにより、全体の噴射流量を確保しつつ、各螺旋溝(流路面積)の断面積を決定する自由度が増す。また、螺旋溝の入口部から出口部までの回転角は、180°以上に設定されていることが望ましい。回転角を180°以上とすることにより、噴孔22に導入される燃料に旋回流を付与することができる。実施例1の燃料噴射弁1においても、第1螺旋溝32aの入口部32a1から出口部32a2までの回転角は180°以上に設定されている。同様に、第2螺旋溝32bの入口部32b1から出口部32b2までの回転角は180°以上に設定されている。さらに、第3螺旋溝32cの入口部32c1から出口部32c2までの回転角は180°以上に設定されている。
 第1螺旋溝32aは、入口部32a1から出口部32a2に向かうに従って、その深さが徐々に浅くなっている。そして、第1螺旋溝32aの流路面積は、入口部32a1から出口部32a2に向かうに従って、徐々に小さくなっている。第1螺旋溝32aの流路面積は、出口部32a2で最小となっている。これらの点は、第2螺旋溝32b及び第3螺旋溝32cにおいても同様である。
 図2を参照すると、旋回流生成部30は、基端側から先端側に向かって延びる複数の燃料供給溝33を備えている。この燃料供給溝33は、ノズルボディ20の内周壁面との間に燃料流路を形成する。また、旋回流生成部30は、燃料供給溝33の下流側に圧力室44を備えている。燃料供給溝33を通過した燃料は、一旦、圧力室44内に導入され、その後、第1螺旋溝32a~第3螺旋溝32cへ供給される。
 燃料噴射弁1には、燃料噴射装置100に含まれる燃料ポンプPoを通じて燃料が供給される。燃料ポンプPoは、直列に接続された第1ポンプPo1と第2ポンプPo2を含んでいる。燃料ポンプPoはECU(Electronic control unit)40と電気的に接続されている。ECU40は、エンジンの運転状態に応じて、第1ポンプPo1のみを駆動するのか、第1ポンプPo1及び第2ポンプPo2の双方を駆動するのかを選択する。すなわち、燃料ポンプPoとECU40は、燃料の圧力調整手段としての機能を有する。なお、燃料の圧力調整手段は、この形態に限定されるものではなく、例えば、レギュレータを採用する等、どのような態様であってもよい。
 以上説明したように、実施例1の燃料噴射弁1は、ニードル弁10、ノズルボディ20及び第1螺旋溝32a~第3螺旋溝32cを有する旋回流生成部30を備えるが、以下、これらの要素の関係について、さらに詳細に説明する。
 図3は実施例1の燃料噴射弁1のシート部21近傍、具体的に、図1(A)におけるB部を拡大して示す説明図である。シート面11は第1の接点P1を含む。この第1の接点P1は、閉弁時において、シート部21に含まれる第2の接点P2と接触する。第1の接点P1と第2の接点P2とは開弁時に離間する。そして、開弁時に、第1の接点P1と第2の接点P2とを結んで描かれる線分L1は、以下の条件を満たす。
 上述のように、図1(A)は、図1(B)におけるA-A線断面図であるが、この断面図は、旋回流生成部30をニードル弁10の中心軸線AXを含む面で断面としたものである。旋回流生成部30をこのような断面としたときに、その断面には、最も下流側の第1の溝部と、その一段上流側に現れる第2の溝部が現れる。図1を参照すると、図1において中心軸線AXよりも右側には、先端側より順に、第1螺旋溝32a、第3螺旋溝32c、第2螺旋溝32bが現れる。このため、実施例1において、第1螺旋溝32aが第1の溝部に相当し、第3螺旋溝32cが第2の溝部に相当する。なお、どの螺旋溝が第1の溝部、第2の溝部に相当するかは、螺旋溝の条数や、螺旋溝の回転角の大きさによって異なる。本実施例においては第1の溝部と第2の溝部とは、異なる螺旋溝に包含されている。
 第1の溝部に相当する第1螺旋溝32aの底部と、第2の溝部に相当する第3螺旋溝32cの底部とを通過する仮想直線L2を描くとき、線分L1は、仮想直線L2と交差する。このような条件を満たすことにより、シート部燃料厚さSは、ニードル弁10のリフト量に相当する線分L1の長さ、すなわち、開弁時の第1の接点P1から第2の接点P2までの距離Sよりも、小さい値をとる。この結果、螺旋溝を通過し、旋回流となった燃料流れが、ニードル弁10に衝突することが回避される。これにより、燃料の流速低下が抑制される。なお、シート部燃料厚さSは、第2の接点P2から線分L1と仮想直線L2との交点P3までの距離と定義することができる。
 ここで、実施例1における仮想直線L2の設定について説明する。図4を参照すると、第1の溝部に相当する第1螺旋溝32aにおいて、最も深い深さD1となる箇所と、第2の溝部に相当する第3螺旋溝32cにおいて最も深い深さD2となる部分を通過するように設定されている。このようにして描かれる仮想直線L2と中心軸線AXとがなす底面角θ2は、中心軸線AXとシート部21の傾斜面とがなす角であるシート角θ1よりも小さい。底面角θ2を調整することにより、線分L1と仮想直線L2とを交差させることができる。上述のように、第1螺旋溝32aは、入口部32a1から出口部32a2に向かうに従って、その深さが徐々に浅くなっている。このため、断面に現れる第1螺旋溝32aにおいて、最も溝深さがある箇所は、最も上流となる。第3螺旋溝32cも同様である。実施例1では、このように、溝深さが最も深い箇所を通過する仮想直線L2を採用している。
 仮想直線L2に代えて、他の基準を用いて描いた仮想直線を用いることもできる。例えば、図5を参照すると、中心軸線AXから各螺旋溝までの最短距離となる点を通過する仮想直線L3を採用することもできる。
 以上のような燃料噴射弁1の効果につき、比較例と共に説明する。図6は、第1の比較例である燃料噴射弁200のシート部近傍を示す説明図である。図6はニードル弁210がリフトした開弁状態を示している。図7(A)は、図3におけるP視を模式的に示す説明図であり、図7(B)は図6におけるP視を模式的に示す説明図である。図6を参照すると、実施例1と同様の手法で描かれた仮想直線L4は、ニードル弁210と交差している。この結果、シート部燃料厚さSがリフト量Sよりも小さい値となっている。このため、図7(B)に示すように有効燃料流路の一部が閉塞された状態となる。このため、燃料流れが阻害され、燃料の流速、旋回速度、流量が低下する。これに対し、図7(A)に示すように、実施例1の燃料噴射弁1では、有効燃料流路が阻害されることなく確保されている。この結果、燃料の流速、旋回速度、流量の低下が抑制されている。
 実施例1の燃料噴射弁1は、旋回流生成部30を通過した燃料を噴射する。旋回流生成部30を通過し、旋回流となった燃料は、その遠心力によって、ノズルボディ20の内周面に押し付けられるような力を受ける。さらに、燃料噴射弁1は、線分L1と仮想直線L2とが交差する関係を有する。このため、ニードル弁10のリフト量が小さい開弁初期からニードル弁10とノズルボディ20との隙間を燃料が通過し易い状態となる。
 第1螺旋溝32a、入口部32a1出口部32a2に向かって、その断面積を縮小させている。このため、第1螺旋溝32aを通過する燃料は、圧縮流とされる。出口部32a2から噴出された後もその旋回に起因する遠心力による縮流効果を維持し、さらに、燃料厚さの縮小を継続してシート面11とシート部21と間を通過する。そして、旋回流の速度を維持したまま、噴孔22へ導入される。第2螺旋溝32b、第3螺旋溝32を通過する燃料も同様に圧縮流とされ、噴孔22へ導入される。
 図8はシート部燃料厚さ/最大リフト量と微細気泡径、圧壊時間及び噴射流量との関係を示すグラフである。図8において、横軸は、シート部燃料厚さ/最大リフト量である。縦軸は、微細気泡径、圧壊時間と燃料流量である。上述のように、燃料噴射弁1から噴射される燃料には微細気泡が包含され、この微細気泡が圧壊することにより、燃料の微細化が図られる。図8から明らかなように、シート部燃料厚さ/最大リフト量が1以下であるときは、微細気泡径、圧壊時間及び噴射流量は、それぞれほぼ一定値を示す。これは、燃料流とニードル弁10との衝突が回避されているからである。これに対し、シート部燃料厚さ/最大リフト量が1よりも大きくなると、微細気泡径、圧壊時間及び噴射流量は、いずれも、悪化方向に変化する。すなわち、微細気泡径は大きくなり、これに伴って、圧壊時間は大幅に長期化している。また、燃料流量も低下している。これは、シート部燃料厚さ/最大リフト量の値が大きくなるほど、燃料流とニードル弁10との干渉が大きくなり、燃料の流れが妨げられ、燃料の旋回速度、燃料流量が低下するからである。微細気泡径は、旋回速度の低下に起因してその径が大きくなる。
 このように、実施例1の燃料噴射弁では、線分L1と仮想直線L2とが交差し、シート部燃料厚さ/最大リフト量が1以下に設定されているため、良好な噴霧形態を実現することができる。
 実施例1の燃料噴射弁1では、旋回流の旋回速度の低下が抑制されるため、螺旋溝の長さを短くすることができる。燃料中に微細気泡を発生させるためには、燃料の旋回速度を高める必要がある。旋回速度を高めるためには、螺旋溝の長さを長くすることが考えられる。しかしながら、螺旋溝の長さが長くなると、圧損が増大する。これに対し、実施例1の燃料噴射弁は1、螺旋溝の長さを長くしなくても微細気泡を発生させるための燃料の旋回速度を維持することができる。この結果、螺旋溝における圧損を抑制し、低燃圧化を図ることができる。このため、高圧燃料ポンプを用いた際の駆動損失を低減することができ、低コスト化を図ることもできる。
 このように、高圧燃料ポンプを用いることなく、微細気泡を発生させることが可能となることから、電子制御燃料噴射装置(EFI:Electric Fuel Injection)に適用することも可能となる。
 さらに、エンジン始動時のように、燃料ポンプの昇圧過程であって、燃圧が低い状態であっても、微細気泡を発生させる旋回流を発生させることができる。このため、エンジン始動直後から、微細気泡を包含する燃料を噴射することができ、燃料の微粒化を図ることができる。
 なお、実施例1の燃料噴射弁1は、第1螺旋溝32a~第3螺旋溝32cまでの3条の螺旋溝を備えている。このように、複数条の螺旋溝を備えることにより、シート部21の下流側への燃料の吹出箇所が多くなる。この結果、均質な旋回流を生成することができ、噴孔22から噴射される燃料中の微細気泡の分布に粗密が生じにくい。また、波状噴射も抑制され、粒径分布の均一化が図られる。また、微細気泡も均一に拡散され、混合気の均質化が図られる。
 燃料噴射弁1の効果につき、さらに、第2の比較例と共に説明する。図9(A)は実施例1の螺旋溝の形状を示す説明図であり、図9(B)は第2の比較例の螺旋溝の形状を示す説明図である。図10(A-1)、(A-2)は実施例1の燃料噴射弁1から噴射された燃料の噴霧形状の変化を示す説明図であり、図10(B-1)、(B-2)は第2の比較例の燃料噴射弁から噴射された燃料の噴霧形状の変化を示す説明図である。噴霧は、大気圧下で行った。図10(A-1)及び図10(B-1)は、それぞれ、噴射後、0.5msの状態を示しており、図10(A-2)及び図10(B-2)は、それぞれ、噴射後、1msの状態を示している。
 図9(A)に示す実施例1では、螺旋溝の深さDnは徐々に縮小されている。螺旋溝の幅W0は一定である。一方、図9(B)に示す第2の比較例では、螺旋溝の幅W0が一定であるだけでなく、螺旋溝深さもD0で一定である。両者は、旋回速度が同一となるように設定されている。
 図10(B-1)を参照すると、棒状の噴霧が確認された。これは、ニードル弁が開弁する前は、螺旋溝内の燃料は静止しており、ニードル弁の開弁直後において、シート部に最も近い螺旋溝内の燃料が旋回するための助走区間が存在しないことに起因する。この結果、燃料は旋回することができないまま、噴孔より噴射され、棒状の噴霧となる。図10(B-2)を参照すると、旋回流が安定し、円錐状の噴霧となることが確認できる。しかしながら、この状態となっても、未だ、噴霧の中央部付近には旋回不良に起因する棒状の噴霧も残存する。このように、開弁直後における旋回不良の状態で噴射された噴霧では、十分な微粒化が図れず、粗大液滴を発生させるおそれがある。
 一方、図10(A-1)を参照すると、開弁直後であっても円錐状の噴霧が確認され、さらに、図10(A-2)を参照すると、整った円錐形状の噴霧が確認できる。この理由として、まず、螺旋溝の断面積が、出口部において最も小さいため、旋回不良の対象となるシート部付近に貯留される燃料の体積が小さいことが挙げられる。さらに、出口部に向かって燃料が圧縮及び縮流効果を受け、助走区間が比較的短くても螺旋溝の出口部での流速が高くなることも理由となる。出口部近傍に貯留されていた燃料は、後続の燃料に押し出されて加速し、開弁直後より旋回することができる。このように、実施例1の燃料噴射弁1は、旋回速度自体を即座に高めることができる。実施例1の燃料噴射弁1は、燃料流れとニードル弁との衝突が回避されることと相俟って、燃料の流速低下が抑制される。
 つぎに、以上のような燃料噴射弁1を備えた燃料噴射装置100について説明する。上述のように、燃料噴射弁1には、燃料噴射装置100に含まれる燃料ポンプPoを通じて燃料が供給される。燃料噴射装置100は、車両に搭載されるエンジンに組み込まれる。上述のように、燃料噴射装置100は、燃料噴射弁1と、燃料の圧力調整手段に相当する燃料ポンプPoとECU40を備える。ここで、燃料噴射弁1が備える噴孔22の噴孔径は、以下のように設定される。すなわち、噴孔径は燃料噴射弁1により噴射される燃料中に生成される気泡を所望の時間で圧壊させる条件を満たすとともに、設定燃圧が最も低くなるように設定される。そして、燃料ポンプPoとECU40は、燃料噴射弁1が装着されるエンジンの運転状態に応じて燃圧を変更する。
 ここで、図11と図12を参照しつつ、噴孔径と設定燃圧の一例について説明する。図11は噴孔径と設定燃圧との関係を示すグラフである。図12は燃圧変化と噴射流量及び微細気泡径との関係を示すグラフである。ここでは、燃料噴射弁1をポート噴射に適用可能なものとして考える。ポート噴射では、吸気弁の空気流に起因する気化促進効果と、ポート内での気化抑制(ηV向上)を考慮して、気泡の圧壊時間を長めの20msとし、燃料流量を11mm/msとして設定燃圧が最も低くなる条件を求めることとする。噴孔径の大きさによって、飽和燃圧での燃料流量と燃圧はともに大きくなる。上記の圧壊時間(20ms)と燃料流量(11mm/ms)を満足する設定燃圧は、噴孔径によって極小値が存在する。図11を参照すると、噴孔径φ0.63において、設定燃圧の極小値0.95MPaとなる。このように、噴孔径φ0.63とすれば、1MPa以下での噴射が可能となる。そこで、実施例1では、噴孔径φ0.63としている。
 ここで、0.95MPaは、電子制御燃料噴射装置の最高燃圧となる。以上のような設定としたとき、最高燃圧0.95MPaで、微細気泡径9.7μm、燃料流量11mm/msとなる。微細気泡径9.7μmは、圧壊時間20msに対応した値である。電子制御燃料噴射装置を用いた場合に、最高燃圧である0.95MPa、または、これに近い状態で運転するときは、燃料ポンプPoは、第1ポンプPo1及び第2ポンプPo2の双方を駆動する。しかしながら、第1ポンプPo1及び第2ポンプPo2の双方が駆動されると、エネルギ消費量も増し、燃費悪化となる。
 そこで、多量の燃料流量が必要となる場合、例えば、WOT(Wide Open Throttle)時や、気化促進が求められる冷間時のときに、最高燃圧、または、これに近い燃圧で駆動することとする。そして、パーシャル状態では、例えば、0.6MPaの燃圧とする。これにより、エネルギ消費を抑制し、ひいては、燃費悪化を抑制することができる。
 図12を参照すると、燃圧を0.6MPaとした場合、微細気泡径は、概ね13μmとなるが、気泡を内包する膜厚約1.2μmのバブル噴霧であるため、液的噴霧である場合と比較して、表面積/質量の比が大きく、気化促進が図れるものと考えられる。
 また、エンジンのアイドル状態では、燃圧は概ね0.4MPaで、燃料流量は、最小の4.3mm/ms、微細気泡径は、約16μmとなる。このようにアイドル状態では微細気泡径が大きくなるが、従来みられた気泡径が70μmであることを考慮すると、十分な微粒化が図れるものと考えられる。
 このような燃料噴射弁1を筒内直噴に用いる場合、燃圧を1.8MPaまで上昇させることで微細気泡径を約6.6μmとし、燃料流量を15mm/msとすることができる。
 つぎに、実施例2につき、図13を参照しつつ説明する。図13は、実施例2における旋回流生成部330の断面を示す説明図である。実施例2の旋回流生成部330が、実施例1の旋回流生成部30と異なる点は、螺旋溝の形状である。すなわち、実施例1では、螺旋溝の断面形状は、ほぼ矩形であるが、実施例2では、螺旋溝は、円弧状の断面形状を有している。このような場合、実施例1における仮想直線L2に相当する仮想直線L5は以下のように定められる。すなわち、第1の溝部に相当する第1螺旋溝322aと第2の溝部に相当する第3螺旋溝322cの接線を描き、これを仮想直線L5とする。仮想直線L5は、実施例1の場合と同様に、線分L1と交差する。
 このように、本明細書開示の燃料噴射弁は、旋回流生成部に設けられた螺旋溝の形状がどのようなものであっても適用することができる。すなわち、設計自由度が高い。螺旋溝の断面形状を種々調整することにより、燃料の縮流効果を調整することができる。例えば、ポート噴射弁のように低燃圧で作動させる燃料噴射弁では、入口部の面積を大きくし、縮流効果を大きくすると共に、圧損も小さくすることができる。この結果、低燃圧でも噴孔に十分な旋回速度を保った燃料を導入することができる。これにより、均一に微細気泡を含んだ燃料を噴射することができる。
 つぎに、実施例3につき、図14を参照しつつ説明する。図14は実施例3における旋回流生成部430の断面を示す説明図である。実施例3の旋回流生成部430が、実施例1の旋回流生成部30と異なる点は、螺旋溝の配列である。すなわち、実施例1では、螺旋溝の底部は、ほぼ直線状に配列されていた。これに対し、実施例3では、図14に示すように、曲線Rに沿って螺旋溝の底部が配列されている。このような場合、実施例1における仮想直線L2に相当する仮想直線L6は以下のように定められる。すなわち、第1の溝部に相当する第1螺旋溝422aと第2の溝部に相当する第3螺旋溝422cの接線を描き、これを仮想直線L6とする。仮想直線L6は、実施例1の場合と同様に、線分L1と交差する。このように、螺旋溝の配列は種々変更することができる。
 上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。
 1 燃料噴射弁
 10 ニードル弁
 11 シート面
 20 ノズルボディ
 21 シート部
 22 噴孔
 W1 シート径
 30 旋回流生成部
 31 摺動面
 32a 第1螺旋溝
 32a1 入口部
 32a2 出口部
 32b 第2螺旋溝
 32b1 入口部
 32b2 出口部
 32c 第3螺旋溝
 32c1 入口部
 32c2 出口部
 33 燃料供給溝
 34 圧力室
 40 ECU
 Po1 第1ポンプ
 Po2 第2ポンプ
 L1 線分
 L2~L6 仮想直線

Claims (4)

  1.  先端側にシート面を有するニードル弁と、
     前記シート面が着座するシート部を有すると共に前記シート部の下流側に噴孔を有するノズルボディと、
     前記噴孔から噴射される燃料を旋回させる螺旋溝を有する旋回流生成部と、
    を有し、
     前記シート面は第1の接点を含み、前記第1の接点は、閉弁時において、前記シート部に含まれる第2の接点と接触し、
     開弁時に、前記第1の接点と前記第2の接点とを結んで描かれる線分は、
     前記旋回流生成部を前記ニードル弁の中心軸を含む面で断面としたときに、前記断面において最も下流側に現れる第1の溝部の底部と、前記第1の溝部よりも一段上流側に現れる第2の溝部の底部とを通過する仮想直線と交差する
    燃料噴射弁。
  2.  前記旋回流生成部は、複数条の前記螺旋溝を有し、
     前記第1の溝部と前記第2の溝部とは、異なる螺旋溝に包含される請求項1記載の燃料噴射弁。
  3.  前記螺旋溝の流路面積は、出口部において最小となる請求項1又は2記載の燃料噴射弁。
  4.  請求項1乃至3のいずれか一項に記載の燃料噴射弁と、
     前記燃料噴射弁に供給する燃料の圧力調整手段とを備え、
     前記燃料噴射弁が備える前記噴孔は、
     前記燃料噴射弁により噴射される燃料中に生成される気泡を所望の時間で圧壊させる条件を満たすとともに、設定燃圧が最も低くなる噴孔径に設定され、
     前記燃料の圧力調整手段は、前記燃料噴射弁が装着されるエンジンの運転状態に応じて燃圧を変更する燃料噴射装置。
PCT/JP2012/053562 2012-02-15 2012-02-15 燃料噴射弁及びこれを備えた燃料噴射装置 WO2013121542A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/378,243 US9556842B2 (en) 2012-02-15 2012-02-15 Fuel injection valve, and fuel injection apparatus provided with the same
JP2013558630A JP5821974B2 (ja) 2012-02-15 2012-02-15 燃料噴射弁及びこれを備えた燃料噴射装置
PCT/JP2012/053562 WO2013121542A1 (ja) 2012-02-15 2012-02-15 燃料噴射弁及びこれを備えた燃料噴射装置
CN201280069601.7A CN104114847B (zh) 2012-02-15 2012-02-15 燃料喷射阀和具有该燃料喷射阀的燃料喷射装置
EP12868623.5A EP2816218A4 (en) 2012-02-15 2012-02-15 FUEL INJECTION VALVE AND FUEL INJECTION APPARATUS EQUIPPED WITH SAID VALVE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053562 WO2013121542A1 (ja) 2012-02-15 2012-02-15 燃料噴射弁及びこれを備えた燃料噴射装置

Publications (1)

Publication Number Publication Date
WO2013121542A1 true WO2013121542A1 (ja) 2013-08-22

Family

ID=48983703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053562 WO2013121542A1 (ja) 2012-02-15 2012-02-15 燃料噴射弁及びこれを備えた燃料噴射装置

Country Status (5)

Country Link
US (1) US9556842B2 (ja)
EP (1) EP2816218A4 (ja)
JP (1) JP5821974B2 (ja)
CN (1) CN104114847B (ja)
WO (1) WO2013121542A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106489023A (zh) * 2014-09-18 2017-03-08 日立汽车系统株式会社 燃料喷射阀

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132032A (ja) * 2015-01-22 2016-07-25 株式会社デンソー 孔開け加工装置
KR101588017B1 (ko) * 2015-08-31 2016-01-25 이구환 고압력 분사용 디스펜서노즐
JP6634255B2 (ja) * 2015-09-30 2020-01-22 株式会社吉野工業所 ノズルチップを有する吐出器
US10876477B2 (en) 2016-09-16 2020-12-29 Delavan Inc Nozzles with internal manifolding
EP3470659B1 (en) * 2017-10-13 2020-09-09 Vitesco Technologies GmbH Anti-reflection device for fuel injection valve and fuel injection valve
US20190186742A1 (en) * 2017-12-15 2019-06-20 Delavan, Inc. Tapered helical fuel distributor
JP7206601B2 (ja) * 2018-03-08 2023-01-18 株式会社デンソー 燃料噴射弁および燃料噴射システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111958U (ja) * 1983-12-22 1984-07-28 株式会社豊田中央研究所 間欠式渦巻噴射弁
JPS60142051A (ja) * 1983-12-28 1985-07-27 Toyota Motor Corp 内燃機関の燃料噴射弁
JPH08158989A (ja) * 1994-12-07 1996-06-18 Nippondenso Co Ltd 燃料噴射ノズル
JPH10141183A (ja) 1996-11-15 1998-05-26 Isuzu Motors Ltd 燃料噴射ノズル
JPH10311264A (ja) * 1997-05-10 1998-11-24 Unisia Jecs Corp フューエルインジェクタ
JP2000179425A (ja) * 1998-12-15 2000-06-27 Denso Corp 燃料噴射装置
JP2002357169A (ja) * 2001-03-29 2002-12-13 Denso Corp 燃料噴射装置
JP2003013823A (ja) * 1994-05-23 2003-01-15 Nissan Motor Co Ltd 内燃機関の燃料噴射弁

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1146394A (en) * 1913-06-11 1915-07-13 William N Best Mechanical atomizer.
GB1440435A (en) * 1972-07-20 1976-06-23 Cav Ltd Fuel injection nozzle units
US4365746A (en) * 1979-06-20 1982-12-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Swirl injection valve
DE19518950B4 (de) * 1994-05-23 2007-03-29 Nissan Motor Co., Ltd., Yokohama Kraftstoffeinspritzdüse
JP3344134B2 (ja) 1994-12-28 2002-11-11 トヨタ自動車株式会社 内燃機関の燃料噴射装置
DE19736684A1 (de) * 1997-08-22 1999-02-25 Bosch Gmbh Robert Brennstoffeinspritzventil
US6302080B1 (en) * 1998-07-31 2001-10-16 Denso Corporation Fuel injection system having pre-injection and main injection
JP4158541B2 (ja) 2003-01-31 2008-10-01 トヨタ自動車株式会社 内燃機関の燃料噴射装置
KR100468207B1 (ko) 2003-08-14 2005-01-26 곽쌍신 연료분사장치
JP3989495B2 (ja) 2004-09-22 2007-10-10 トヨタ自動車株式会社 燃料噴射装置
US20130270368A1 (en) 2010-12-20 2013-10-17 Toyota Jidosha Kabushiki Kaisha Fuel injection valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111958U (ja) * 1983-12-22 1984-07-28 株式会社豊田中央研究所 間欠式渦巻噴射弁
JPS60142051A (ja) * 1983-12-28 1985-07-27 Toyota Motor Corp 内燃機関の燃料噴射弁
JP2003013823A (ja) * 1994-05-23 2003-01-15 Nissan Motor Co Ltd 内燃機関の燃料噴射弁
JPH08158989A (ja) * 1994-12-07 1996-06-18 Nippondenso Co Ltd 燃料噴射ノズル
JPH10141183A (ja) 1996-11-15 1998-05-26 Isuzu Motors Ltd 燃料噴射ノズル
JPH10311264A (ja) * 1997-05-10 1998-11-24 Unisia Jecs Corp フューエルインジェクタ
JP2000179425A (ja) * 1998-12-15 2000-06-27 Denso Corp 燃料噴射装置
JP2002357169A (ja) * 2001-03-29 2002-12-13 Denso Corp 燃料噴射装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2816218A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106489023A (zh) * 2014-09-18 2017-03-08 日立汽车系统株式会社 燃料喷射阀

Also Published As

Publication number Publication date
EP2816218A4 (en) 2015-04-15
JPWO2013121542A1 (ja) 2015-05-11
EP2816218A1 (en) 2014-12-24
CN104114847A (zh) 2014-10-22
US9556842B2 (en) 2017-01-31
US20150014444A1 (en) 2015-01-15
CN104114847B (zh) 2016-10-05
JP5821974B2 (ja) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5821974B2 (ja) 燃料噴射弁及びこれを備えた燃料噴射装置
JP5115659B2 (ja) 燃料噴射弁
KR102267574B1 (ko) 가스 보조식 유체 분무 분사기
WO2012086003A1 (ja) 燃料噴射弁
US7104475B2 (en) Low pressure fuel injector nozzle
JP2004204806A (ja) 燃料噴射装置
JP2012179518A (ja) ドライミスト噴射ノズル
JP6892458B2 (ja) 燃料噴射装置
KR20150046347A (ko) 연료 분사 밸브
JPH11117830A (ja) インジェクタ
JP6741959B1 (ja) スプレーノズル
JP5593796B2 (ja) 燃料噴射ノズルおよび直接噴射式燃料噴射弁
JP2013217324A (ja) 燃料噴射弁
JP7502775B2 (ja) 噴霧ノズル
JP2012132366A (ja) 燃料噴射弁
JP2022014193A (ja) 噴霧ノズル
JP2022014190A (ja) 噴霧ノズル
JP2583461B2 (ja) 燃料噴射装置
JP2014156794A (ja) 燃料噴射弁
JP2593102B2 (ja) 燃料噴射装置
JP2593104B2 (ja) 燃料噴射装置
JP2000130287A (ja) 電子制御燃料噴射弁
JP2001254658A (ja) 燃料噴射弁
JP2020084795A (ja) 燃料噴射装置
JP2014047665A (ja) 燃料噴射弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013558630

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012868623

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14378243

Country of ref document: US

Ref document number: 2012868623

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE