WO2013118793A1 - 有機薄膜太陽電池 - Google Patents

有機薄膜太陽電池 Download PDF

Info

Publication number
WO2013118793A1
WO2013118793A1 PCT/JP2013/052793 JP2013052793W WO2013118793A1 WO 2013118793 A1 WO2013118793 A1 WO 2013118793A1 JP 2013052793 W JP2013052793 W JP 2013052793W WO 2013118793 A1 WO2013118793 A1 WO 2013118793A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfide
solar cell
photoelectric conversion
group
layer
Prior art date
Application number
PCT/JP2013/052793
Other languages
English (en)
French (fr)
Inventor
明伸 早川
和志 伊藤
孫 仁徳
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201380008248.6A priority Critical patent/CN104094432A/zh
Priority to EP13746641.3A priority patent/EP2814077A4/en
Priority to AU2013218710A priority patent/AU2013218710A1/en
Priority to US14/374,025 priority patent/US20140366948A1/en
Publication of WO2013118793A1 publication Critical patent/WO2013118793A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic thin film solar cell having high photoelectric conversion efficiency and excellent durability.
  • each semiconductor functions as a P-type semiconductor or an N-type semiconductor
  • photocarriers electron-hole pairs
  • electrons form the N-type semiconductor.
  • an electric field is generated.
  • inorganic solar cells manufactured using an inorganic semiconductor such as silicon.
  • inorganic solar cells are expensive to manufacture and difficult to increase in size, and the range of use is limited, organic solar cells manufactured using organic semiconductors instead of inorganic semiconductors are attracting attention. .
  • Fullerene In organic solar cells, fullerene is almost always used. Fullerenes are known to work mainly as N-type semiconductors.
  • Patent Document 1 describes a semiconductor heterojunction film formed using an organic compound that becomes a P-type semiconductor and fullerenes.
  • the cause of deterioration is fullerenes (for example, see Non-Patent Document 1), and a material having higher durability than fullerenes should be selected. Is required.
  • Patent Document 2 describes an organic solar cell in which an active layer containing an organic electron donor and a compound semiconductor crystal is provided between two electrodes.
  • zinc oxide, titanium oxide or the like is used, sufficient durability cannot be obtained, and there is also a problem that the photoelectric conversion efficiency is lowered as compared with the case of using fullerene.
  • JP 2006-344794 A Japanese Patent No. 4120362
  • An object of the present invention is to provide an organic thin film solar cell having high photoelectric conversion efficiency and excellent durability.
  • the present invention is an organic thin-film solar cell having a photoelectric conversion layer, wherein in the photoelectric conversion layer, a portion containing a sulfide of a periodic table 15 group element and an organic semiconductor portion are in contact with each other, and the organic semiconductor
  • the organic semiconductor constituting the part is an organic thin film solar cell that is a polythiophene derivative, a phthalocyanine derivative, a naphthalocyanine derivative, or a benzoborphyrin derivative.
  • the photoelectric conversion layer includes a portion containing a sulfide of a group 15 element of the periodic table and an organic semiconductor portion, and an organic constituting the organic semiconductor portion It has been found that by using a polythiophene derivative, a phthalocyanine derivative, a naphthalocyanine derivative or a benzoborphyrin derivative as a semiconductor, durability can be improved while maintaining high photoelectric conversion efficiency, and the present invention has been completed.
  • the organic thin-film solar cell of this invention has a photoelectric converting layer, and in this photoelectric converting layer, the site
  • the part containing the sulfide of the Group 15 element of the periodic table mainly functions as an N-type semiconductor
  • the organic semiconductor part mainly functions as a P-type semiconductor.
  • Optical carriers (electron-hole pairs) are generated in a semiconductor or an N-type semiconductor, and electrons move through the N-type semiconductor and holes move through the P-type semiconductor, thereby generating an electric field.
  • the part containing the sulfide of the Group 15 element of the periodic table may partially function as a P-type semiconductor, or the organic semiconductor part may partially function as an N-type semiconductor. Good.
  • the organic thin film solar cell of the present invention is excellent in durability by using the sulfide of the group 15 element of the periodic table. Further, by using an organic semiconductor, the organic thin film solar cell of the present invention is excellent in impact resistance, flexibility, and the like. Further, when both the N-type semiconductor and the P-type semiconductor are inorganic semiconductors, these solid solutions may be precipitated at the interface, whereas in the organic thin film solar cell of the present invention, there is no precipitation of the solid solution, High stability can be obtained even at high temperatures.
  • the portion containing the sulfide of the periodic table group 15 element and the organic semiconductor portion may be in contact with each other, and the layer containing the sulfide of the periodic table group 15 element and the organic semiconductor layer are combined. It may be a laminated body or a composite film in which a part containing a sulfide of a group 15 element of the periodic table and an organic semiconductor part are mixed to form a composite film, but the charge separation efficiency of the organic semiconductor part Therefore, a composite membrane is more preferable.
  • the sulfide of the Group 15 element of the periodic table is preferably antimony sulfide or bismuth sulfide, and more preferably antimony sulfide.
  • Antimony sulfide has a good energy level compatibility with an organic semiconductor, and absorbs more visible light than conventional zinc oxide, titanium oxide, and the like. For this reason, when the sulfide of the group 15 element of the periodic table is antimony sulfide, the organic thin film solar cell has high photoelectric conversion efficiency.
  • These group 15 element sulfides may be used alone or in combination of two or more.
  • the sulfide of the group 15 element of the periodic table may be a composite sulfide containing two or more elements of the group 15 element of the periodic table in the same molecule.
  • part containing the sulfide of the said periodic table 15 group element is in the range which does not inhibit the effect of this invention, in addition to the sulfide of the said periodic table 15 group element, it may contain another element. .
  • the other elements are not particularly limited, elements belonging to the fourth period, the fifth period, and the sixth period of the periodic table are preferable.
  • indium, gallium, tin, cadmium, copper, zinc, aluminum examples thereof include nickel, silver, titanium, vanadium, niobium, molybdenum, tantalum, iron, and cobalt.
  • These other elements may be used independently and 2 or more types may be used together.
  • indium, gallium, tin, cadmium, zinc, and copper are preferable because of high electron mobility.
  • the upper limit of the content of the other elements is preferably 50% by weight in the portion containing the sulfide of the Group 15 element of the periodic table.
  • the content is 50% by weight or less, it is possible to suppress a decrease in compatibility between the portion containing the sulfide of the group 15 element of the periodic table and the organic semiconductor, and the photoelectric conversion efficiency is increased.
  • the part containing the sulfide of the group 15 element of the periodic table is preferably a crystalline semiconductor.
  • part containing the sulfide of the said periodic table 15 group element is a crystalline semiconductor, the mobility of an electron becomes high and photoelectric conversion efficiency becomes high.
  • a crystalline semiconductor means a semiconductor that can be measured by X-ray diffraction measurement or the like and from which a scattering peak can be detected.
  • the degree of crystallinity can be used as an index of crystallinity of the portion containing the sulfide of the group 15 element of the periodic table.
  • the preferable lower limit of the degree of crystallinity of the portion containing the sulfide of the group 15 element of the periodic table is 30%. When the crystallinity is 30% or more, the mobility of electrons increases and the photoelectric conversion efficiency increases. A more preferred lower limit of the crystallinity is 50%, and a more preferred lower limit is 70%.
  • the crystallinity is determined by separating the scattering peak derived from the crystalline substance detected by X-ray diffraction measurement and the like from the halo derived from the amorphous part by fitting, and obtaining the intensity integral of each, It can be determined by calculating the ratio of the crystalline part.
  • the strength of the region containing the sulfide of the group 15 element of the periodic table such as thermal annealing, laser or flash lamp
  • irradiation with strong light, excimer light irradiation, plasma irradiation, or the like for example, a method of performing irradiation with strong light, plasma irradiation, or the like is preferable because oxidation of the sulfide of the group 15 element of the periodic table can be reduced.
  • the organic semiconductor constituting the organic semiconductor part is a polythiophene derivative, a phthalocyanine derivative, a naphthalocyanine derivative, or a benzoborphyrin derivative.
  • the organic thin film solar cell of the present invention has extremely high charge separation efficiency and high photoelectric conversion efficiency due to a synergistic effect with the use of sulfides of Group 15 elements of the periodic table. In addition, the durability is excellent.
  • the polythiophene derivative only needs to have a thiophene skeleton in the molecule.
  • polyalkylthiophene, polycarboxythiophene, polybenzothiophene, polybisbenzothiophene, polythienothiophene, thiophene-thienothiophene copolymer examples thereof include a ketopyrrolopyrrole-thiophene copolymer, a diketopyrrolopyrrole-bisbenzothiophene copolymer, a benzothiadiazole-thiophene copolymer, and a dithienopyrrole-thiophene copolymer.
  • These polythiophene derivatives may be used alone or in combination of two or more.
  • the phthalocyanine derivative only needs to have a phthalocyanine skeleton in the molecule.
  • a precursor of a phthalocyanine derivative that is, a compound whose chemical structure is changed by a stimulus such as heating or light irradiation and converted into a phthalocyanine derivative can also be used.
  • phthalocyanine derivatives may be used alone or in combination of two or more.
  • the naphthalocyanine derivative only needs to have a naphthalocyanine skeleton in the molecule.
  • a metal unsubstituted naphthalocyanine, copper naphthalocyanine, zinc naphthalocyanine, magnesium naphthalocyanine, manganese naphthalocyanine, ⁇ -alkyl group substituted naphthalocyanine examples include phthalocyanine, ⁇ -alkyl group-substituted naphthalocyanine, ⁇ -phenyl group-substituted naphthalocyanine, ⁇ -phenyl group-substituted naphthalocyanine, ⁇ -alkoxy group-substituted naphthalocyanine, ⁇ -alkoxy group-substituted naphthalocyanine, and halogen-substituted naphthalocyanine.
  • naphthalocyanine derivative that is, a compound that is converted into a naphthalocyanine derivative by changing its chemical structure by stimulation such as heating or light irradiation can also be used.
  • naphthalocyanine derivatives may be used alone or in combination of two or more.
  • the benzoporphyrin derivative may have a benzoporphyrin skeleton in the molecule.
  • a metal-unsubstituted benzoporphyrin, copper benzoporphyrin, zinc benzoporphyrin, magnesium benzoporphyrin, ⁇ -alkyl group-substituted benzoporphyrin, ⁇ - Examples include alkyl group-substituted benzoporphyrin, ⁇ -phenyl group-substituted benzoporphyrin, ⁇ -phenyl group-substituted benzoporphyrin, ⁇ -alkoxy group-substituted benzoporphyrin, ⁇ -alkoxy group-substituted benzoporphyrin, halogen-substituted benzoporphyrin and the like.
  • a precursor of a benzoporphyrin derivative that is, a compound that is converted into a benzoporphyrin derivative by changing its chemical structure by stimulation such as heating or light irradiation can also be used.
  • a precursor of such a precursor include bicycloporphyrin.
  • the organic semiconductor is more preferably a donor-acceptor type because it can absorb light in a long wavelength region.
  • donor-acceptor type polythiophene derivatives and naphthalocyanine derivatives are more preferable, and among donor-acceptor type polythiophene derivatives, a thiophene-diketopyrrolopyrrole copolymer is particularly preferable from the viewpoint of light absorption wavelength.
  • the organic thin film solar cell of the present invention preferably has the photoelectric conversion layer as described above between a pair of electrodes.
  • the material of the electrode is not particularly limited, and a conventionally known material can be used.
  • the anode material include metals such as gold, CuI, ITO (indium tin oxide), SnO 2 , AZO (aluminum zinc oxide). Material), conductive transparent materials such as IZO (indium zinc oxide) and GZO (gallium zinc oxide), and conductive transparent polymers.
  • the cathode material include sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / Al 2 O 3 mixture, Al / LiF mixture, and the like. Can be mentioned. These materials may be used alone or in combination of two or more.
  • the organic thin film solar cell of the present invention may further have a substrate, a hole transport layer, an electron transport layer, and the like.
  • substrate is not specifically limited, For example, transparent glass substrates, such as soda-lime glass and an alkali free glass, a ceramic substrate, a transparent plastic substrate, etc. are mentioned.
  • the material of the hole transport layer is not particularly limited, and examples thereof include a P-type conductive polymer, a P-type low molecular organic semiconductor, a P-type metal oxide, a P-type metal sulfide, and a surfactant.
  • examples include polystyrene sulfonic acid adduct of polyethylene dioxythiophene, carboxyl group-containing polythiophene, phthalocyanine, porphyrin, molybdenum oxide, vanadium oxide, tungsten oxide, nickel oxide, copper oxide, tin oxide, molybdenum sulfide, tungsten sulfide, copper sulfide. , Tin sulfide and the like, fluoro group-containing phosphonic acid, carbonyl group-containing phosphonic acid and the like.
  • the material of the electron transport layer is not particularly limited.
  • N-type conductive polymer, N-type low molecular organic semiconductor, N-type metal oxide, N-type metal sulfide, alkali metal halide, alkali metal, surface activity examples include cyano group-containing polyphenylene vinylene, boron-containing polymer, bathocuproine, bathophenanthrene, hydroxyquinolinato aluminum, oxadiazole compound, benzimidazole compound, naphthalene tetracarboxylic acid compound, perylene derivative, Examples include phosphine oxide compounds, phosphine sulfide compounds, fluoro group-containing phthalocyanines, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, and zinc sulfide.
  • the organic thin-film solar cell of the present invention has a photoelectric conversion layer including a layer containing a group 15 element sulfide and an organic semiconductor layer between a pair of electrodes. It is preferable to further have an electron transport layer between the layer containing the sulfide of the group 15 element. Further, it is more preferable that an electron transport layer is further provided between one electrode and the layer containing a group 15 element sulfide, and a hole transport layer be further provided between the other electrode and the organic semiconductor layer.
  • An example of the organic thin-film solar cell of this invention in case a photoelectric converting layer is a laminated body is typically shown in FIG. In the organic thin film solar cell 1 shown in FIG. 1, a substrate 2, a transparent electrode (anode) 3, an organic semiconductor layer 4, a layer 5 containing a group 15 element sulfide, an electron transport layer 6, and an electrode (cathode). 7 are stacked in this order.
  • the organic thin film solar cell of the present invention has a photoelectric conversion layer that is a composite film in which a portion containing a sulfide of a group 15 element of a periodic table and an organic semiconductor portion are mixed between a pair of electrodes. And it is preferable to have an electron carrying layer further between one electrode and a photoelectric converting layer. Furthermore, it is preferable that an electron transport layer is further provided between one electrode and the photoelectric conversion layer, and a hole transport layer is further provided between the other electrode and the photoelectric conversion layer.
  • An example of the organic thin film solar cell of the present invention when the photoelectric conversion layer is a composite film is schematically shown in FIG. In the organic thin film solar cell 8 shown in FIG.
  • a composite film 14 of a substrate 9 a transparent electrode (anode) 10, a hole transport layer 11, an organic semiconductor portion 12 and a portion 13 containing a sulfide of a Group 15 element of the periodic table.
  • the electron transport layer 15 and the electrode (cathode) 16 are laminated in this order.
  • the said photoelectric converting layer is a laminated body
  • a preferable minimum is 5 nm and a preferable upper limit is 5000 nm.
  • the thickness is 5 nm or more, light can be absorbed more sufficiently, and the photoelectric conversion efficiency is increased.
  • region which cannot carry out electric charge separation can be suppressed as the said thickness is 5000 nm or less, and the fall of photoelectric conversion efficiency can be prevented.
  • a more preferable lower limit of the thickness of the layer containing a sulfide of the Group 15 element of the periodic table is 10 nm, a more preferable upper limit is 1000 nm, a still more preferable lower limit is 20 nm, and a further preferable upper limit is 500 nm.
  • a preferable minimum is 5 nm and a preferable upper limit is 1000 nm.
  • the thickness is 5 nm or more, light can be absorbed more sufficiently, and the photoelectric conversion efficiency is increased.
  • region which cannot carry out charge separation can be suppressed as the said thickness is 1000 nm or less, and the fall of a photoelectric conversion efficiency can be prevented.
  • the more preferable lower limit of the thickness of the organic semiconductor layer is 10 nm, the more preferable upper limit is 500 nm, the still more preferable lower limit is 20 nm, and the still more preferable upper limit is 200 nm.
  • the preferable lower limit of the thickness of the hole transport layer is 1 nm, and the preferable upper limit is 200 nm.
  • the thickness is 1 nm or more, electrons can be more sufficiently blocked.
  • the thickness is 200 nm or less, resistance during hole transportation is difficult to be obtained, and the photoelectric conversion efficiency is increased.
  • the more preferable lower limit of the thickness of the hole transport layer is 3 nm, the more preferable upper limit is 150 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 100 nm.
  • a preferable lower limit of the thickness of the electron transport layer is 1 nm, and a preferable upper limit is 200 nm.
  • a preferable lower limit of the thickness of the electron transport layer is 1 nm or more, holes can be blocked more sufficiently.
  • the thickness is 200 nm or less, resistance during electron transportation is unlikely to occur, and the photoelectric conversion efficiency is increased.
  • the more preferable lower limit of the thickness of the electron transport layer is 3 nm, the more preferable upper limit is 150 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 100 nm.
  • the preferable lower limit of the thickness of the photoelectric conversion layer is 30 nm, and the preferable upper limit is 3000 nm.
  • the thickness is 30 nm or more, light can be absorbed more sufficiently, and the photoelectric conversion efficiency is increased.
  • the thickness is 3000 nm or less, electric charges easily reach the electrode, and the photoelectric conversion efficiency is increased.
  • the more preferable lower limit of the thickness of the photoelectric conversion layer is 40 nm
  • the more preferable upper limit is 1000 nm
  • the still more preferable lower limit is 50 nm
  • the still more preferable upper limit is 500 nm.
  • the ratio of the site containing the sulfide of the group 15 element of the periodic table to the organic semiconductor site is very important.
  • the ratio of the portion containing the sulfide of the Group 15 element of the periodic table to the organic semiconductor portion is preferably 1: 9 to 9: 1 (volume ratio).
  • the ratio is more preferably 2: 8 to 8: 2 (volume ratio).
  • the method for producing the organic thin film solar cell of the present invention is not particularly limited.
  • an electrode (anode) is formed on the substrate, and then the surface of the electrode (anode) is formed.
  • An organic semiconductor layer is formed by a printing method such as a spin coating method, and then a layer containing a sulfide of a group 15 element of the periodic table is formed on the surface of the organic semiconductor layer by a vacuum evaporation method or the like. Examples thereof include a method of forming an electrode (cathode) on the surface of the layer containing a sulfide of the Group 15 element of the periodic table.
  • a layer containing a sulfide of a group 15 element of the periodic table, an organic semiconductor layer, and an electrode (anode) may be formed in this order.
  • the organic semiconductor layer can be stably and easily formed by a printing method such as a spin coating method, so that the formation cost of the organic semiconductor layer can be reduced.
  • the precursor solution of the group 15 element sulfide or the sulfide of the group 15 element of the periodic table is used instead of the vacuum deposition method.
  • the nanoparticle dispersion liquid can also be formed by a printing method such as a spin coating method.
  • the photoelectric conversion layer is a composite film
  • an organic semiconductor and a precursor solution of a group 15 element sulfide or a nanoparticle dispersion of a group 15 element sulfide are included.
  • a mixed film can be used to form a composite membrane.
  • a composite film can also be produced by co-evaporating a sulfide of a group 15 element of the periodic table and an organic semiconductor.
  • an organic thin film solar cell having high photoelectric conversion efficiency and excellent durability can be provided.
  • Examples 1 to 12 and Comparative Examples 1 to 10 below show the production of organic thin-film solar cells when the photoelectric conversion layer is a laminate.
  • Example 1 An ITO film having a thickness of 240 nm was formed as an anode on a glass substrate, and ultrasonic cleaning was performed for 10 minutes each using acetone, methanol and isopropyl alcohol in this order, followed by drying.
  • PEDOT: PSS polyethylene dioxide thiophene: polystyrene sulfonate
  • antimony sulfide was formed to a thickness of 40 nm as a layer containing sulfides of Group 15 elements of the periodic table (mainly acting as an N-type semiconductor) by vacuum deposition.
  • ⁇ Electron transport layer> On the surface of the layer containing a sulfide of the Group 15 element of the periodic table, a dispersion of zinc oxide nanoparticles as an electron transport layer is formed to a thickness of 50 nm by spin coating, and annealed at 260 ° C. for 2 minutes. It was.
  • ⁇ Cathode> On the surface of the electron transport layer, an aluminum film having a thickness of 100 nm was formed as a cathode by vacuum vapor deposition to obtain an organic thin film solar cell.
  • Example 2 An ITO film having a thickness of 240 nm was formed as a cathode on a glass substrate, and was ultrasonically cleaned for 10 minutes each using acetone, methanol and isopropyl alcohol in this order, and then dried.
  • ⁇ Electron transport layer> On the surface of the ITO film, a dispersion of zinc oxide nanoparticles as an electron transport layer was formed to a thickness of 50 nm by spin coating.
  • antimony sulfide was deposited to a thickness of 40 nm by vacuum deposition as a layer containing a Group 15 element sulfide, and annealed at 260 ° C. for 2 minutes.
  • poly-3-hexylthiophene was formed as an organic semiconductor layer to a thickness of 40 nm on the surface of the layer containing the group 15 element sulfide by spin coating.
  • ⁇ Hole transport layer> On the surface of the organic semiconductor layer, polyethylene dioxide thiophene: polystyrene sulfonate (PEDOT: PSS) was formed as a hole transport layer to a thickness of 50 nm by a spin coating method.
  • PEDOT polystyrene sulfonate
  • a gold film having a thickness of 100 nm was formed as an anode by vacuum vapor deposition to obtain an organic thin film solar cell.
  • Example 3 An ITO film having a thickness of 240 nm was formed as a cathode on a glass substrate, and was ultrasonically cleaned for 10 minutes each using acetone, methanol and isopropyl alcohol in this order, and then dried.
  • antimony sulfide was deposited to a thickness of 40 nm by vacuum deposition as a layer containing a Group 15 element sulfide, and annealed at 260 ° C. for 2 minutes.
  • poly-3-hexylthiophene was formed as an organic semiconductor layer to a thickness of 40 nm on the surface of the layer containing the group 15 element sulfide by spin coating.
  • ⁇ Hole transport layer> On the surface of the organic semiconductor layer, polyethylene dioxide thiophene: polystyrene sulfonate (PEDOT: PSS) was formed as a hole transport layer to a thickness of 50 nm by a spin coating method.
  • PEDOT polystyrene sulfonate
  • a gold film having a thickness of 100 nm was formed as an anode by vacuum vapor deposition to obtain an organic thin film solar cell.
  • Example 4 An organic thin film solar cell was obtained in the same manner as in Example 2 except that bismuth sulfide was used instead of antimony sulfide.
  • Example 5 An organic thin-film solar cell was obtained in the same manner as in Example 2 except that the annealing temperature at the time of forming the layer containing the sulfide of the group 15 element of the periodic table was changed to 240 ° C.
  • Example 6 An organic thin-film solar cell was obtained in the same manner as in Example 2 except that the annealing temperature during the formation of the layer containing the sulfide of the Group 15 element of the periodic table was changed to 200 ° C.
  • Example 7 An organic thin film solar cell was obtained in the same manner as in Example 2 except that a donor-acceptor type conductive polymer (PBDTTTT-CF, manufactured by 1-Material) was used instead of poly-3-hexylthiophene.
  • PBDTTTT-CF donor-acceptor type conductive polymer
  • Example 8 An organic thin-film solar cell was obtained in the same manner as in Example 2 except that copper phthalocyanine was used instead of poly-3-hexylthiophene and a film was formed to a thickness of 30 nm by vapor deposition.
  • Example 9 An organic thin film solar cell was obtained in the same manner as in Example 2 except that zinc phthalocyanine was used instead of poly-3-hexylthiophene and a film was formed to a thickness of 30 nm by vapor deposition.
  • Example 10 Examples except that ⁇ -alkyl group-substituted phthalocyanine (zinc 1,4,8,11,15,18,22,25-octabutoxy-29H, 31H-phthalocyanine) was used instead of poly-3-hexylthiophene In the same manner as in Example 2, an organic thin film solar cell was obtained.
  • ⁇ -alkyl group-substituted phthalocyanine zinc 1,4,8,11,15,18,22,25-octabutoxy-29H, 31H-phthalocyanine
  • Example 11 An organic thin film solar cell was obtained in the same manner as in Example 2 except that benzoporphyrin was used instead of poly-3-hexylthiophene and a film was formed to a thickness of 30 nm by vapor deposition.
  • Example 12 An organic thin film solar cell was prepared in the same manner as in Example 2 except that bicycloporphyrin was used instead of poly-3-hexylthiophene and bicycloporphyrin was converted to benzoporphyrin by heat treatment at 180 ° C. to form a benzoporphyrin layer. Obtained.
  • Comparative Example 2 An organic thin film solar cell was obtained in the same manner as in Comparative Example 1 except that the annealing temperature at the time of fullerene layer formation was changed to 180 ° C.
  • Comparative Example 3 An organic thin film solar cell was obtained in the same manner as in Comparative Example 1 except that the annealing during the formation of the fullerene layer was not performed.
  • Example 4 An organic thin film solar cell was obtained in the same manner as in Example 2 except that zinc oxide nanoparticles were used instead of antimony sulfide and a film was formed by spin coating.
  • Example 6 An organic thin film solar cell was obtained in the same manner as in Example 2 except that zinc sulfide nanoparticles were used instead of antimony sulfide and the film was formed by spin coating.
  • Example 7 An organic thin film solar cell was obtained in the same manner as in Example 1 except that copper sulfide was used instead of PEDOT: PSS and the film was formed by vacuum deposition.
  • Example 8 Example 2 except that poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1,4-phenylenevinylene] (MDMO-PPV) was used instead of poly-3-hexylthiophene In the same manner, an organic thin film solar cell was obtained.
  • MDMO-PPV poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1,4-phenylenevinylene]
  • Examples 13 to 14 and Comparative Examples 11 to 13 below show the production of organic thin-film solar cells when the photoelectric conversion layer is a composite film.
  • Example 13 A composite film of antimony sulfide (mainly acting as an N-type semiconductor) and copper phthalocyanine (mainly acting as a P-type semiconductor) was formed to a thickness of 100 nm by co-evaporation, and then annealed at 260 ° C. for 2 minutes. Except for this, an organic thin film solar cell was obtained in the same manner as in Example 2. The volume ratio of antimony sulfide to copper phthalocyanine was 8: 2.
  • Example 14 An organic thin film solar cell was obtained in the same manner as in Example 2 except that a composite film of antimony sulfide and copper phthalocyanine was formed to a thickness of 160 nm by a co-evaporation method and then annealed at 260 ° C. for 2 minutes. .
  • the volume ratio of antimony sulfide to copper phthalocyanine was 6: 4.
  • ⁇ Photoelectric conversion layer (composite film)> 8 parts by weight of a fullerene derivative (PCBM, manufactured by American Dye Source) and 10 parts by weight of poly-3-hexylthiophene were dispersed and dissolved in 600 parts by weight of chlorobenzene to prepare a mixed solution. This mixed solution was applied on the surface of the hole transport layer and formed into a film having a thickness of 150 nm to obtain a composite film.
  • ⁇ Electron transport layer> On the surface of the photoelectric conversion layer, a dispersion of zinc oxide nanoparticles as an electron transport layer was formed to a thickness of 50 nm by spin coating.
  • ⁇ Cathode> On the surface of the electron transport layer, an aluminum film having a thickness of 100 nm was formed as a cathode by vacuum vapor deposition to obtain an organic thin film solar cell.
  • Comparative Example 12 An organic thin-film solar cell was obtained in the same manner as in Comparative Example 11 except that zinc oxide nanoparticles were used instead of the fullerene derivative.
  • Comparative Example 13 An organic thin-film solar cell was obtained in the same manner as in Comparative Example 11 except that zinc sulfide nanoparticles were used instead of the fullerene derivative.
  • ⁇ Measurement of photoelectric conversion efficiency after weathering test> The organic thin film solar cell was glass-sealed, and a weather resistance test was performed by irradiating light of 60 mW / cm 2 for 24 hours at a temperature of 60 ° C. and a humidity of 35%.
  • the photoelectric conversion efficiency before and after the weather resistance test was measured in the same manner as described above, and the relative conversion efficiency after the weather resistance test when the initial photoelectric conversion efficiency (initial value) was 1.00 was determined.
  • ⁇ Comprehensive evaluation> Evaluation was made according to the following criteria. X Relative photoelectric conversion efficiency (comparison with Comparative Example 3) was 1 or less, or the relative conversion efficiency after weathering test (comparison with the initial value) was 0.8 or less.
  • Relative photoelectric conversion efficiency (Comparative Example 3) ) was greater than 1 and less than or equal to 5 and the relative conversion efficiency after weathering test (comparison with the initial value) exceeded 0.8.
  • an organic thin film solar cell having high photoelectric conversion efficiency and excellent durability can be provided.

Abstract

本発明は、光電変換効率が高く、耐久性に優れた有機薄膜太陽電池を提供することを目的とする。本発明は、光電変換層を有する有機薄膜太陽電池であって、前記光電変換層においては、周期表15族元素の硫化物を含有する部位と有機半導体部位とが互いに接しており、前記有機半導体部位を構成する有機半導体は、ポリチオフェン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体又はベンゾボルフィリン誘導体である有機薄膜太陽電池である。

Description

有機薄膜太陽電池
本発明は、光電変換効率が高く、耐久性に優れた有機薄膜太陽電池に関する。
従来から、複数種の半導体を積層し、この積層体の両側に電極を設けた光電変換素子が開発されている。また、このような積層体の代わりに、複数種の半導体を混合して複合化した複合膜を用いることも検討されている。このような光電変換素子では、各半導体がP型半導体又はN型半導体として働き、光励起によりP型半導体又はN型半導体で光キャリア(電子-ホール対)が生成し、電子がN型半導体を、ホールがP型半導体を移動することで、電界が生じる。
現在、実用化されている光電変換素子の多くは、シリコン等の無機半導体を用いて製造される無機太陽電池である。しかしながら、無機太陽電池は製造にコストがかかるうえ大型化が困難であり、利用範囲が限られてしまうことから、無機半導体の代わりに有機半導体を用いて製造される有機太陽電池が注目されている。
有機太陽電池においては、ほとんどの場合フラーレンが用いられている。フラーレンは、主にN型半導体として働くことが知られている。例えば、特許文献1には、P型半導体となる有機化合物とフラーレン類とを用いて形成された半導体ヘテロ接合膜が記載されている。しかしながら、フラーレンを用いて製造される有機太陽電池において、その劣化の原因はフラーレンであることが知られており(例えば、非特許文献1参照)、フラーレンよりも耐久性の高い材料を選択することが求められている。
また、フラーレンに代わる優秀な有機半導体は少ないことから、フラーレンの代わりに無機半導体を用い、有機半導体と無機半導体とを併用した有機太陽電池も検討されており、無機半導体として、例えば、酸化亜鉛、酸化チタン等が用いられている。このような有機太陽電池として、例えば、特許文献2には、有機電子供与体と化合物半導体結晶とを含有する活性層を二つの電極の間に設けた有機太陽電池が記載されている。しかしながら、酸化亜鉛、酸化チタン等を用いても、充分な耐久性は得られず、また、フラーレンを用いた場合と比べて光電変換効率が低下するという問題もある。
特開2006-344794号公報 特許第4120362号公報
Reese et al.,Adv.Funct.Mater.,20,3476-3483(2010)
本発明は、光電変換効率が高く、耐久性に優れた有機薄膜太陽電池を提供することを目的とする。
本発明は、光電変換層を有する有機薄膜太陽電池であって、前記光電変換層においては、周期表15族元素の硫化物を含有する部位と有機半導体部位とが互いに接しており、前記有機半導体部位を構成する有機半導体は、ポリチオフェン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体又はベンゾボルフィリン誘導体である有機薄膜太陽電池である。
以下、本発明を詳述する。
本発明者は、光電変換層を有する有機薄膜太陽電池において、光電変換層を、周期表15族元素の硫化物を含有する部位と、有機半導体部位とを含むものとし、有機半導体部位を構成する有機半導体としてポリチオフェン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体又はベンゾボルフィリン誘導体を用いることにより、高い光電変換効率を維持しつつ耐久性を向上させることができることを見出し、本発明を完成させるに至った。
本発明の有機薄膜太陽電池は、光電変換層を有するものであり、該光電変換層においては、周期表15族元素の硫化物を含有する部位と、有機半導体部位とが互いに接している。
このような光電変換層においては、上記周期表15族元素の硫化物を含有する部位が主にN型半導体として、上記有機半導体部位が主にP型半導体として働くと推測され、光励起によりP型半導体又はN型半導体で光キャリア(電子-ホール対)が生成し、電子がN型半導体を、ホールがP型半導体を移動することで、電界が生じる。ただし、上記周期表15族元素の硫化物を含有する部位は、部分的にはP型半導体として働いていてもよいし、上記有機半導体部位は、部分的にはN型半導体として働いていてもよい。
周期表15族元素の硫化物は耐久性が高いことから、周期表15族元素の硫化物を用いることにより、本発明の有機薄膜太陽電池は、耐久性に優れたものとなる。
また、有機半導体を用いることにより、本発明の有機薄膜太陽電池は、耐衝撃性、フレキシビリティ等にも優れたものとなる。
また、N型半導体とP型半導体とがいずれも無機半導体である場合はこれらの固溶体が界面で析出する可能性があるのに対し、本発明の有機薄膜太陽電池においては固溶体の析出がなく、高温時においても高い安定性を得ることができる。
なお、光電変換層は、周期表15族元素の硫化物を含有する部位と有機半導体部位とが互いに接していればよく、周期表15族元素の硫化物を含有する層と有機半導体層とを含む積層体であってもよいし、周期表15族元素の硫化物を含有する部位と有機半導体部位とを混合して複合化した複合膜であってもよいが、有機半導体部位の電荷分離効率を向上させることができるため、複合膜であることがより好ましい。
上記周期表15族元素の硫化物は、硫化アンチモン、硫化ビスマスであることが好ましく、硫化アンチモンであることがより好ましい。硫化アンチモンは、有機半導体とのエネルギー準位の相性がよく、かつ、従来の酸化亜鉛、酸化チタン等より可視光に対する吸収が大きい。このため、上記周期表15族元素の硫化物が硫化アンチモンであることにより、有機薄膜太陽電池は、光電変換効率が高くなる。これらの周期表15族元素の硫化物は単独で用いられてもよく、2種以上が併用されてもよい。
上記周期表15族元素の硫化物は、周期表15族元素の2種以上の元素を同一の分子に含有する複合硫化物であってもよい。
上記周期表15族元素の硫化物を含有する部位は、本発明の効果を阻害しない範囲内であれば、上記周期表15族元素の硫化物に加えて他の元素を含有していてもよい。上記他の元素は特に限定されないが、周期表の第4周期、第5周期及び第6周期に属する元素が好ましく、具体的には例えば、インジウム、ガリウム、スズ、カドミウム、銅、亜鉛、アルミニウム、ニッケル、銀、チタン、バナジウム、ニオブ、モリブデン、タンタル、鉄、コバルト等が挙げられる。これらの他の元素は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、電子の移動度が高くなることから、インジウム、ガリウム、スズ、カドミウム、亜鉛、銅が好ましい。
上記他の元素の含有量は、上記周期表15族元素の硫化物を含有する部位中の好ましい上限が50重量%である。上記含有量が50重量%以下であると、周期表15族元素の硫化物を含有する部位と有機半導体との相性の低下を抑制することができ、光電変換効率が高くなる。
上記周期表15族元素の硫化物を含有する部位は、結晶性半導体であることが好ましい。上記周期表15族元素の硫化物を含有する部位が結晶性半導体であることにより、電子の移動度が高くなり、光電変換効率が高くなる。
なお、結晶性半導体とは、X線回折測定等で測定し、散乱ピークが検出できる半導体を意味する。
また、上記周期表15族元素の硫化物を含有する部位の結晶性の指標として、結晶化度を用いることもできる。上記周期表15族元素の硫化物を含有する部位の結晶化度は、好ましい下限が30%である。上記結晶化度が30%以上であると、電子の移動度が高くなり、光電変換効率が高くなる。上記結晶化度のより好ましい下限は50%、更に好ましい下限は70%である。
なお、結晶化度は、X線回折測定等により検出された結晶質由来の散乱ピークと、非晶質部由来のハローとをフィッティングにより分離し、それぞれの強度積分を求めて、全体のうちの結晶質部分の比を算出することにより求めることができる。
上記周期表15族元素の硫化物を含有する部位の結晶化度を高める方法として、例えば、周期表15族元素の硫化物を含有する部位に対して、熱アニール、レーザー又はフラッシュランプ等の強度の強い光の照射、エキシマ光照射、プラズマ照射等を行う方法が挙げられる。なかでも、上記周期表15族元素の硫化物の酸化を低減できることから、強度の強い光の照射、プラズマ照射等を行う方法が好ましい。
上記有機半導体部位を構成する有機半導体は、ポリチオフェン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体又はベンゾボルフィリン誘導体である。これらの有機半導体を用いることにより、上記周期表15族元素の硫化物を用いることとの相乗効果で、本発明の有機薄膜太陽電池は電荷分離効率が極めて高くなり、光電変換効率が高くなるとともに、耐久性にも優れたものとなる。
上記ポリチオフェン誘導体は、分子内にチオフェン骨格を有していればよく、例えば、ポリアルキルチオフェン、ポリカルボキシチオフェン、ポリベンゾチオフェン、ポリビスベンゾチオフェン、ポリチエノチオフェン、チオフェン-チエノチオフェン共重合体、ジケトピロロピロール-チオフェン共重合体、ジケトピロロピロール-ビスベンゾチオフェン共重合体、ベンゾチアジアゾール-チオフェン共重合体、ジチエノピロール-チオフェン共重合体等が挙げられる。これらのポリチオフェン誘導体は単独で用いられてもよく、2種以上が併用されてもよい。
上記フタロシアニン誘導体は、分子内にフタロシアニン骨格を有していればよく、例えば、金属無置換フタロシアニン、銅フタロシアニン、亜鉛フタロシアニン、マグネシウムフタロシアニン、マンガンフタロシアニン、α-アルキル基置換フタロシアニン、β-アルキル基置換フタロシアニン、α-フェニル基置換フタロシアニン、β-フェニル基置換フタロシアニン、α-アルコキシ基置換フタロシアニン、β-アルコキシ基置換フタロシアニン、ハロゲン置換フタロシアニン等が挙げられる。また、フタロシアニン誘導体の前駆体、即ち、例えば加熱、光照射等の刺激により化学構造が変化してフタロシアニン誘導体に変換される化合物を用いることもできる。これらのフタロシアニン誘導体は単独で用いられてもよく、2種以上が併用されてもよい。
上記ナフタロシアニン誘導体は、分子内にナフタロシアニン骨格を有していればよく、例えば、金属無置換ナフタロシアニン、銅ナフタロシアニン、亜鉛ナフタロシアニン、マグネシウムナフタロシアニン、マンガンナフタロシアニン、α-アルキル基置換ナフタロシアニン、β-アルキル基置換ナフタロシアニン、α-フェニル基置換ナフタロシアニン、β-フェニル基置換ナフタロシアニン、α-アルコキシ基置換ナフタロシアニン、β-アルコキシ基置換ナフタロシアニン、ハロゲン置換ナフタロシアニン等が挙げられる。また、ナフタロシアニン誘導体の前駆体、即ち、例えば加熱、光照射等の刺激により化学構造が変化してナフタロシアニン誘導体に変換される化合物を用いることもできる。これらのナフタロシアニン誘導体は単独で用いられてもよく、2種以上が併用されてもよい。
上記ベンゾポルフィリン誘導体は、分子内にベンゾポルフィリン骨格を有していればよく、例えば、金属無置換ベンゾポルフィリン、銅ベンゾポルフィリン、亜鉛ベンゾポルフィリン、マグネシウムベンゾポルフィリン、α-アルキル基置換ベンゾポルフィリン、β-アルキル基置換ベンゾポルフィリン、α-フェニル基置換ベンゾポルフィリン、β-フェニル基置換ベンゾポルフィリン、α-アルコキシ基置換ベンゾポルフィリン、β-アルコキシ基置換ベンゾポルフィリン、ハロゲン置換ベンゾポルフィリン等が挙げられる。また、ベンゾポルフィリン誘導体の前駆体、即ち、例えば加熱、光照射等の刺激により化学構造が変化してベンゾポルフィリン誘導体に変換される化合物を用いることもできる。このような前駆体として、例えば、ビシクロポルフィリン等が挙げられる。これらのベンゾポルフィリン誘導体は単独で用いられてもよく、2種以上が併用されてもよい。
上記有機半導体は、長波長領域の光を吸収できることから、ドナー-アクセプター型であることがより好ましい。なかでも、ドナー-アクセプター型のポリチオフェン誘導体、ナフタロシアニン誘導体がより好ましく、ドナー-アクセプター型のポリチオフェン誘導体のなかでも、光吸収波長の観点から、チオフェン-ジケトピロロピロール共重合体が特に好ましい。
本発明の有機薄膜太陽電池は、上述したような光電変換層を、一組の電極間に有することが好ましい。上記電極の材料は特に限定されず、従来公知の材料を用いることができるが、陽極材料として、例えば、金等の金属、CuI、ITO(インジウムスズ酸化物)、SnO、AZO(アルミニウム亜鉛酸化物)、IZO(インジウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)等の導電性透明材料、導電性透明ポリマー等が挙げられる。また、陰極材料として、例えば、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al混合物、Al/LiF混合物等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。
本発明の有機薄膜太陽電池は、更に、基板、ホール輸送層、電子輸送層等を有していてもよい。上記基板は特に限定されず、例えば、ソーダライムガラス、無アルカリガラス等の透明ガラス基板、セラミック基板、透明プラスチック基板等が挙げられる。
上記ホール輸送層の材料は特に限定されず、例えば、P型導電性高分子、P型低分子有機半導体、P型金属酸化物、P型金属硫化物、界面活性剤等が挙げられ、具体的には例えば、ポリエチレンジオキシチオフェンのポリスチレンスルホン酸付加物、カルボキシル基含有ポリチオフェン、フタロシアニン、ポルフィリン、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ニッケル、酸化銅、酸化スズ、硫化モリブデン、硫化タングステン、硫化銅、硫化スズ等、フルオロ基含有ホスホン酸、カルボニル基含有ホスホン酸等が挙げられる。
上記電子輸送層の材料は特に限定されず、例えば、N型導電性高分子、N型低分子有機半導体、N型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、界面活性剤等が挙げられ、具体的には例えば、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等が挙げられる。
特に、本発明の有機薄膜太陽電池は、一組の電極間に、周期表15族元素の硫化物を含有する層と有機半導体層とを含む光電変換層を有し、一方の電極と周期表15族元素の硫化物を含有する層との間に更に電子輸送層を有することが好ましい。更に、一方の電極と周期表15族元素の硫化物を含有する層との間に更に電子輸送層を、他方の電極と有機半導体層との間に更にホール輸送層を有することがより好ましい。
光電変換層が積層体である場合の本発明の有機薄膜太陽電池の一例を図1に模式的に示す。図1に示す有機薄膜太陽電池1においては、基板2、透明電極(陽極)3、有機半導体層4、周期表15族元素の硫化物を含有する層5、電子輸送層6、電極(陰極)7がこの順で積層されている。
また、本発明の有機薄膜太陽電池は、一組の電極間に、周期表15族元素の硫化物を含有する部位と有機半導体部位とを混合した複合化した複合膜である光電変換層を有し、一方の電極と光電変換層との間に更に電子輸送層を有することが好ましい。更に、一方の電極と光電変換層との間に更に電子輸送層を、他方の電極と光電変換層との間に更にホール輸送層を有することが好ましい。
光電変換層が複合膜である場合の本発明の有機薄膜太陽電池の一例を図2に模式的に示す。図2に示す有機薄膜太陽電池8においては、基板9、透明電極(陽極)10、ホール輸送層11、有機半導体部位12と周期表15族元素の硫化物を含有する部位13との複合膜14、電子輸送層15、電極(陰極)16がこの順で積層されている。
上記光電変換層が積層体である場合、上記周期表15族元素の硫化物を含有する層の厚みは、好ましい下限が5nm、好ましい上限が5000nmである。上記厚みが5nm以上であると、より充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが5000nm以下であると、電荷分離できない領域の発生を抑制することができ、光電変換効率の低下を防ぐことができる。上記周期表15族元素の硫化物を含有する層の厚みのより好ましい下限は10nm、より好ましい上限は1000nmであり、更に好ましい下限は20nm、更に好ましい上限は500nmである。
上記光電変換層が積層体である場合、上記有機半導体層の厚みは、好ましい下限が5nm、好ましい上限が1000nmである。上記厚みが5nm以上であると、より充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが1000nm以下であると、電荷分離できない領域の発生を抑制することができ、光電変換効率の低下を防ぐことができる。上記有機半導体層の厚みのより好ましい下限は10nm、より好ましい上限は500nmであり、更に好ましい下限は20nm、更に好ましい上限は200nmである。
上記ホール輸送層の厚みは、好ましい下限は1nm、好ましい上限は200nmである。上記厚みが1nm以上であると、より充分に電子をブロックすることができるようになる。上記厚みが200nm以下であると、ホール輸送の際の抵抗になりにくく、光電変換効率が高くなる。上記ホール輸送層の厚みのより好ましい下限は3nm、より好ましい上限は150nmであり、更に好ましい下限は5nm、更に好ましい上限は100nmである。
上記電子輸送層の厚みは、好ましい下限が1nm、好ましい上限が200nmである。上記厚みが1nm以上であると、より充分にホールをブロックすることができるようになる。上記厚みが200nm以下であると、電子輸送の際の抵抗になりにくく、光電変換効率が高くなる。上記電子輸送層の厚みのより好ましい下限は3nm、より好ましい上限は150nmであり、更に好ましい下限は5nm、更に好ましい上限は100nmである。
また、上述したように光電変換層が複合膜である場合、上記光電変換層の厚みの好ましい下限は30nm、好ましい上限は3000nmである。上記厚みが30nm以上であると、より充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが3000nm以下であると、電荷が電極に到達しやすくなり、光電変換効率が高くなる。上記光電変換層の厚みのより好ましい下限は40nm、より好ましい上限は1000nmであり、更に好ましい下限は50nm、更に好ましい上限は500nmである。
上記光電変換層が複合膜である場合には、周期表15族元素の硫化物を含有する部位と有機半導体部位との比率が非常に重要である。周期表15族元素の硫化物を含有する部位と有機半導体部位との比率は、1:9~9:1(体積比)であることが好ましい。上記比率が上記範囲内であると、ホール又は電子が電極まで到達しやすくなり、そのため光電変換効率の向上につながる。上記比率は、2:8~8:2(体積比)であることがより好ましい。
本発明の有機薄膜太陽電池を製造する方法は特に限定されず、例えば、光電変換層が積層体である場合、基板上に電極(陽極)を形成した後、この電極(陽極)の表面上に有機半導体層をスピンコート法等の印刷法により成膜し、次いで、この有機半導体層の表面上に真空蒸着法等により周期表15族元素の硫化物を含有する層を成膜し、更に、この周期表15族元素の硫化物を含有する層の表面上に電極(陰極)を形成する方法等が挙げられる。また、基板上に電極(陰極)を形成した後、周期表15族元素の硫化物を含有する層、有機半導体層、電極(陽極)をこの順で形成してもよい。
本発明の有機薄膜太陽電池を製造する際には、スピンコート法等の印刷法により安定的かつ簡便に有機半導体層を形成することができるため、有機半導体層の形成コストを削減することができる。上記周期表15族元素の硫化物を含有する層を形成する際にも、真空蒸着法の代わりに、周期表15族元素の硫化物の前躯体溶液、又は、周期表15族元素の硫化物のナノ粒子分散液をスピンコート法等の印刷法により成膜することもできる。
また、例えば、光電変換層が複合膜である場合には、有機半導体と、周期表15族元素の硫化物の前躯体溶液、又は、周期表15族元素の硫化物のナノ粒子分散液とを混合した混合液を用いて複合膜とすることができる。また、周期表15族元素の硫化物と有機半導体とを共蒸着することにより複合膜を作製することもできる。
本発明によれば、光電変換効率が高く、耐久性に優れた有機薄膜太陽電池を提供することができる。
光電変換層が積層体である場合の本発明の有機薄膜太陽電池の一例を模式的に示す断面図である。 光電変換層が複合膜である場合の本発明の有機薄膜太陽電池の一例を模式的に示す断面図である。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
以下の実施例1~12及び比較例1~10には、光電変換層が積層体である場合の有機薄膜太陽電池の製造を示す。
(実施例1)
<陽極>
ガラス基板上に、陽極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。
<光電変換層(積層体)>
ITO膜の表面上に、有機半導体層(主にP型半導体として働く)としてポリエチレンジオキサイドチオフェン:ポリスチレンスルフォネート(PEDOT:PSS)をスピンコート法により50nmの厚みに成膜した。次いで、この有機半導体層の表面上に、周期表15族元素の硫化物を含有する層(主にN型半導体として働く)として硫化アンチモンを真空蒸着法により40nmの厚みに成膜した。
<電子輸送層>
周期表15族元素の硫化物を含有する層の表面上に、電子輸送層として酸化亜鉛ナノ粒子の分散液をスピンコート法により50nmの厚みに成膜して、260℃で2分アニーリングを行った。
<陰極>
電子輸送層の表面上に、陰極として真空蒸着により厚み100nmのアルミニウム膜を形成し、有機薄膜太陽電池を得た。
(実施例2)
<陰極>
ガラス基板上に、陰極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。
<電子輸送層>
ITO膜の表面上に、電子輸送層として酸化亜鉛ナノ粒子の分散液をスピンコート法により50nmの厚みに成膜した。
<光電変換層(積層体)>
電子輸送層の表面上に、周期表15族元素の硫化物を含有する層として硫化アンチモンを真空蒸着法により40nmの厚みに成膜して、260℃で2分アニーリングを行った。更に、この周期表15族元素の硫化物を含有する層の表面上に、有機半導体層としてポリ-3-ヘキシルチオフェンをスピンコート法により40nmの厚みに成膜した。
<ホール輸送層>
有機半導体層の表面上に、ホール輸送層としてポリエチレンジオキサイドチオフェン:ポリスチレンスルフォネート(PEDOT:PSS)をスピンコート法により50nmの厚みに成膜した。
<陽極>
ホール輸送層の表面上に、陽極として真空蒸着により厚み100nmの金膜を形成し、有機薄膜太陽電池を得た。
(実施例3)
<陰極>
ガラス基板上に、陰極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。
<光電変換層(積層体)>
ITO膜の表面上に、周期表15族元素の硫化物を含有する層として硫化アンチモンを真空蒸着法により40nmの厚みに成膜して、260℃で2分アニーリングを行った。更に、この周期表15族元素の硫化物を含有する層の表面上に、有機半導体層としてポリ-3-ヘキシルチオフェンをスピンコート法により40nmの厚みに成膜した。
<ホール輸送層>
有機半導体層の表面上に、ホール輸送層としてポリエチレンジオキサイドチオフェン:ポリスチレンスルフォネート(PEDOT:PSS)をスピンコート法により50nmの厚みに成膜した。
<陽極>
ホール輸送層の表面上に、陽極として真空蒸着により厚み100nmの金膜を形成し、有機薄膜太陽電池を得た。
(実施例4)
硫化アンチモンの代わりに硫化ビスマスを用いたこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(実施例5)
周期表15族元素の硫化物を含有する層形成時のアニール温度を240℃に変更したこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(実施例6)
周期表15族元素の硫化物を含有する層形成時のアニール温度を200℃に変更したこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(実施例7)
ポリ-3-ヘキシルチオフェンの代わりにドナー-アクセプター型導電性高分子(PBDTTT-CF、1-Material社製)を用いたこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(実施例8)
ポリ-3-ヘキシルチオフェンの代わりに銅フタロシアニンを用い、蒸着法により厚み30nmに成膜したこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(実施例9)
ポリ-3-ヘキシルチオフェンの代わりに亜鉛フタロシアニンを用い、蒸着法により厚み30nmに成膜したこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(実施例10)
ポリ-3-ヘキシルチオフェンの代わりにα-アルキル基置換フタロシアニン(亜鉛1,4,8,11,15,18,22,25-オクタブトキシ-29H,31H-フタロシアニン)を用いたこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(実施例11)
ポリ-3-ヘキシルチオフェンの代わりにベンゾポルフィリンを用い、蒸着法により厚み30nmに成膜したこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(実施例12)
ポリ-3-ヘキシルチオフェンの代わりにビシクロポルフィリンを用い、180℃の熱処理によりビシクロポルフィリンをベンゾポルフィリンに変換してベンゾポルフィリン層を形成したこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(比較例1)
硫化アンチモンの代わりにフラーレンを用いたこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(比較例2)
フラーレン層形成時のアニール温度を180℃に変更したこと以外は比較例1と同様にして、有機薄膜太陽電池を得た。
(比較例3)
フラーレン層形成時のアニーリングを行わなかったこと以外は比較例1と同様にして、有機薄膜太陽電池を得た。
(比較例4)
硫化アンチモンの代わりに酸化亜鉛ナノ粒子を用い、スピンコート法により成膜したこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(比較例5)
硫化アンチモンの代わりに硫化スズを用いたこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(比較例6)
硫化アンチモンの代わりに硫化亜鉛ナノ粒子を用い、スピンコート法により成膜したこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(比較例7)
PEDOT:PSSの代わりに硫化銅を用い、真空蒸着法により成膜したこと以外は実施例1と同様にして、有機薄膜太陽電池を得た。
(比較例8)
ポリ-3-ヘキシルチオフェンの代わりにポリ[2-メトキシ-5-(3’,7’-ジメチルオクチロキシ)-1,4-フェニレンビニレン](MDMO-PPV)を用いたこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(比較例9)
ポリ-3-ヘキシルチオフェンの代わりにポリ[2-メトキシ-5-(3’,7’-エチルヘキシル)-1,4-フェニレンビニレン](MEH-PPV)を用いたこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
(比較例10)
ポリ-3-ヘキシルチオフェンの代わりにポリ[(9,9-ジ-n-オクチルフルオレニル-2,7-ジイル)-オルト-(ベンゾ〔2,1,3〕チアジアゾール-4,8-ジイル)](F8BT)を用いたこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。
以下の実施例13~14及び比較例11~13には、光電変換層が複合膜である場合の有機薄膜太陽電池の製造を示す。
(実施例13)
共蒸着法により硫化アンチモン(主にN型半導体として働く)と銅フタロシアニン(主にP型半導体として働く)との複合膜を厚み100nmに成膜し、その後、260℃で2分アニーリングを行ったこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。硫化アンチモンと銅フタロシアニンとの体積比は8:2であった。
(実施例14)
共蒸着法により硫化アンチモンと銅フタロシアニンとの複合膜を厚み160nmに成膜し、その後、260℃で2分アニーリングを行ったこと以外は実施例2と同様にして、有機薄膜太陽電池を得た。硫化アンチモンと銅フタロシアニンとの体積比は6:4であった。
(比較例11)
<陽極>
ガラス基板上に、陽極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。
<ホール輸送層>
ITO膜の表面上に、ホール輸送層としてポリエチレンジオキサイドチオフェン:ポリスチレンスルフォネート(PEDOT:PSS)をスピンコート法により50nmの厚みに成膜した。
<光電変換層(複合膜)>
8重量部のフラーレン誘導体(PCBM、アメリカンダイソース社製)と、10重量部のポリ-3-ヘキシルチオフェンとを、600重量部のクロロベンゼンに分散及び溶解させて、混合溶液を調製した。この混合溶液を、ホール輸送層の表面上に塗布して150nmの厚みに成膜し、複合膜とした。
<電子輸送層>
光電変換層の表面上に、電子輸送層として酸化亜鉛ナノ粒子の分散液をスピンコート法により50nmの厚みに成膜した。
<陰極>
電子輸送層の表面上に、陰極として真空蒸着により厚み100nmのアルミニウム膜を形成し、有機薄膜太陽電池を得た。
(比較例12)
フラーレン誘導体の代わりに酸化亜鉛ナノ粒子を用いたこと以外は比較例11と同様にして、有機薄膜太陽電池を得た。
(比較例13)
フラーレン誘導体の代わりに硫化亜鉛ナノ粒子を用いたこと以外は比較例11と同様にして、有機薄膜太陽電池を得た。
(評価)
<光電変換効率の測定>
有機薄膜太陽電池の電極間に、電源(KEITHLEY社製、236モデル)を接続し、100mW/cmの強度のソーラーシミュレータ(山下電装社製)を用いて有機薄膜太陽電池の光電変換効率を測定した。比較例3の光電変換効率を1.00として規格化した(相対光電変換効率(比較例3との対比))。
<耐候試験後の光電変換効率の測定>
有機薄膜太陽電池をガラス封止し、温度60℃、湿度35%の状態で60mW/cmの光を24時間照射して耐候試験を行った。耐候試験前後の光電変換効率を上記と同様にして測定し、初期の光電変換効率(初期値)を1.00としたときの耐候試験後の相対変換効率を求めた。
<総合評価>
下記の基準で評価した。
× 相対光電変換効率(比較例3との対比)が1以下、又は、耐候試験後の相対変換効率(初期値との対比)が0.8以下であった
○ 相対光電変換効率(比較例3との対比)が1を超えて5以下、かつ、耐候試験後の相対変換効率(初期値との対比)が0.8を超えていた
◎ 相対光電変換効率(比較例3との対比)が5を超えており、かつ、耐候試験後の相対変換効率(初期値との対比)が0.8を超えていた
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
本発明によれば、光電変換効率が高く、耐久性に優れた有機薄膜太陽電池を提供することができる。
1 有機薄膜太陽電池
2 基板
3 透明電極(陽極)
4 有機半導体層
5 周期表15族元素の硫化物を含有する層
6 電子輸送層
7 電極(陰極)
8 有機薄膜太陽電池
9 基板
10 透明電極(陽極)
11 ホール輸送層
12 有機半導体部位
13 周期表15族元素の硫化物を含有する部位
14 複合膜
15 電子輸送層
16 電極(陰極)

Claims (6)

  1. 光電変換層を有する有機薄膜太陽電池であって、
    前記光電変換層においては、周期表15族元素の硫化物を含有する部位と有機半導体部位とが互いに接しており、
    前記有機半導体部位を構成する有機半導体は、ポリチオフェン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体又はベンゾボルフィリン誘導体である
    ことを特徴とする有機薄膜太陽電池。
  2. 周期表15族元素の硫化物は、硫化アンチモンであることを特徴とする請求項1記載の有機薄膜太陽電池。
  3. 光電変換層が、周期表15族元素の硫化物を含有する層と有機半導体層とを含む積層体であることを特徴とする請求項1又は2記載の有機薄膜太陽電池。
  4. 一組の電極間に、周期表15族元素の硫化物を含有する層と有機半導体層とを含む光電変換層を有し、
    一方の電極と前記周期表15族元素の硫化物を含有する層との間に更に電子輸送層を、他方の電極と前記有機半導体層との間に更にホール輸送層を有することを特徴とする請求項3記載の有機薄膜太陽電池。
  5. 光電変換層が、周期表15族元素の硫化物を含有する部位と有機半導体部位とを混合して複合化した複合膜であることを特徴とする請求項1又は2記載の有機薄膜太陽電池。
  6. 一組の電極間に、周期表15族元素の硫化物を含有する部位と有機半導体部位とを混合した複合化した複合膜である光電変換層を有し、
    一方の電極と前記光電変換層との間に更に電子輸送層を、他方の電極と前記光電変換層との間に更にホール輸送層を有することを特徴とする請求項5記載の有機薄膜太陽電池。
PCT/JP2013/052793 2012-02-07 2013-02-07 有機薄膜太陽電池 WO2013118793A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380008248.6A CN104094432A (zh) 2012-02-07 2013-02-07 有机薄膜太阳能电池
EP13746641.3A EP2814077A4 (en) 2012-02-07 2013-02-07 SOLAR CELL IN ORGANIC THIN LAYERS
AU2013218710A AU2013218710A1 (en) 2012-02-07 2013-02-07 Organic thin film solar cell
US14/374,025 US20140366948A1 (en) 2012-02-07 2013-02-07 Organic thin film solar cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012024451 2012-02-07
JP2012-024451 2012-02-07
JP2012063910A JP5075283B1 (ja) 2012-02-07 2012-03-21 有機薄膜太陽電池
JP2012-063910 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013118793A1 true WO2013118793A1 (ja) 2013-08-15

Family

ID=47435453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052793 WO2013118793A1 (ja) 2012-02-07 2013-02-07 有機薄膜太陽電池

Country Status (7)

Country Link
US (1) US20140366948A1 (ja)
EP (1) EP2814077A4 (ja)
JP (1) JP5075283B1 (ja)
CN (1) CN104094432A (ja)
AU (1) AU2013218710A1 (ja)
TW (1) TWI581475B (ja)
WO (1) WO2013118793A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087917A1 (ja) * 2013-12-11 2015-06-18 積水化学工業株式会社 薄膜太陽電池及び薄膜太陽電池の製造方法
JP2015198229A (ja) * 2014-04-03 2015-11-09 積水化学工業株式会社 薄膜太陽電池及び薄膜太陽電池の製造方法
JP2016092278A (ja) * 2014-11-07 2016-05-23 住友化学株式会社 有機光電変換素子
GB2557635A (en) * 2016-12-14 2018-06-27 Protean Electric Ltd A stator for an electric motor or generator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112610A (ja) * 2012-12-05 2014-06-19 Sekisui Chem Co Ltd 有機薄膜太陽電池
CN105556694A (zh) * 2013-09-25 2016-05-04 积水化学工业株式会社 薄膜太阳能电池、半导体薄膜、及半导体形成用涂布液
JP6572039B2 (ja) * 2015-07-22 2019-09-04 積水化学工業株式会社 薄膜太陽電池及び薄膜太陽電池の製造方法
ES2654807T3 (es) 2015-08-20 2018-02-15 Wegmann Automotive Gmbh & Co. Kg Terminal de batería con protección antitorsión interna
CN106179513A (zh) * 2016-08-22 2016-12-07 燕山大学 复合光催化剂及其制备方法
CN109244248A (zh) * 2018-10-15 2019-01-18 湖南师范大学 一种以CuI/PbPc薄膜作为空穴传输层的硫化锑太阳能电池及其制备方法
CN109504939B (zh) * 2018-12-19 2021-11-30 中南大学 一种硫化锑薄膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344794A (ja) 2005-06-09 2006-12-21 Mitsubishi Chemicals Corp フラーレン類含有半導体ヘテロ接合膜
US20080092946A1 (en) * 2006-10-24 2008-04-24 Applied Quantum Technology Llc Semiconductor Grain Microstructures for Photovoltaic Cells
JP4120362B2 (ja) 2002-11-14 2008-07-16 松下電工株式会社 有機太陽電池
WO2012002246A1 (ja) * 2010-07-02 2012-01-05 コニカミノルタホールディングス株式会社 有機光電変換素子およびそれを用いた太陽電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783054A (en) * 1980-11-12 1982-05-24 Nippon Telegr & Teleph Corp <Ntt> Manufacture of conductive organic coloring thin film
US20110049504A1 (en) * 2008-05-13 2011-03-03 Sumitomo Chemical Company, Limited Photoelectric conversion element
US20100294368A1 (en) * 2009-05-22 2010-11-25 Konica Minolta Business Technologies, Inc. Photoelectric conversion element and solar cell
US20120312375A1 (en) * 2010-02-18 2012-12-13 Korea Research Institute Of Chemical Technology All-Solid-State Heterojunction Solar Cell
CN102088060A (zh) * 2010-12-06 2011-06-08 电子科技大学 一种叠层有机薄膜太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120362B2 (ja) 2002-11-14 2008-07-16 松下電工株式会社 有機太陽電池
JP2006344794A (ja) 2005-06-09 2006-12-21 Mitsubishi Chemicals Corp フラーレン類含有半導体ヘテロ接合膜
US20080092946A1 (en) * 2006-10-24 2008-04-24 Applied Quantum Technology Llc Semiconductor Grain Microstructures for Photovoltaic Cells
WO2012002246A1 (ja) * 2010-07-02 2012-01-05 コニカミノルタホールディングス株式会社 有機光電変換素子およびそれを用いた太陽電池

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JEONG AH CHANG: "High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells", NANO LETTERS, vol. 10, no. 7, 28 May 2010 (2010-05-28), pages 2609 - 2612, XP055098216 *
O.SAVADOGO: "Low-cost technique for preparing n-Sb2S3/p-Si heterojunction solar cells", APPLIED PHYSICS LETTERS, vol. 63, no. 2, 12 July 1993 (1993-07-12), pages 228 - 230, XP000382533 *
REESE ET AL., ADV.FUNCT.MATER., vol. 20, 2010, pages 3476 - 3483
See also references of EP2814077A4
Z.WANG: "Influence of interface modification on the performance of polymer/Bi2S3 nanorods bulk heterojunction solar cells", APPLIED SURFACE SCIENCE, vol. 257, no. 2, 1 November 2010 (2010-11-01), pages 423 - 428, XP028818978 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087917A1 (ja) * 2013-12-11 2015-06-18 積水化学工業株式会社 薄膜太陽電池及び薄膜太陽電池の製造方法
JP2015198229A (ja) * 2014-04-03 2015-11-09 積水化学工業株式会社 薄膜太陽電池及び薄膜太陽電池の製造方法
JP2016092278A (ja) * 2014-11-07 2016-05-23 住友化学株式会社 有機光電変換素子
GB2557635A (en) * 2016-12-14 2018-06-27 Protean Electric Ltd A stator for an electric motor or generator

Also Published As

Publication number Publication date
EP2814077A4 (en) 2015-11-04
EP2814077A1 (en) 2014-12-17
TW201345010A (zh) 2013-11-01
TWI581475B (zh) 2017-05-01
CN104094432A (zh) 2014-10-08
AU2013218710A1 (en) 2014-08-14
US20140366948A1 (en) 2014-12-18
JP2014112575A (ja) 2014-06-19
JP5075283B1 (ja) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5075283B1 (ja) 有機薄膜太陽電池
JP5651606B2 (ja) 複数の電子供与体を有する光電池
US9722197B2 (en) Inverted organic electronic device and method for manufacturing the same
JP5358751B1 (ja) 有機薄膜太陽電池
WO2013118795A1 (ja) 有機薄膜太陽電池及び有機薄膜太陽電池の製造方法
KR101704109B1 (ko) 유기 태양 전지 및 이의 제조방법
KR102106669B1 (ko) 유기 태양 전지
JP2009267196A (ja) タンデム型光起電力素子
JP5688442B2 (ja) 太陽電池
WO2012160911A1 (ja) 有機発電素子
CN113261126A (zh) 太阳能电池
JP5238898B1 (ja) 有機薄膜太陽電池
JP2014078692A (ja) 太陽電池及び太陽電池の製造方法
KR101784069B1 (ko) 유기 태양 전지의 제조방법 및 이로부터 제조된 유기 태양 전지
JP2013191630A (ja) 太陽電池
JP2018046056A (ja) 太陽電池、及び、太陽電池の製造方法
JP2014103275A (ja) 光電変換素子材料、光電変換素子材料の製造方法、太陽電池、及び、太陽電池の製造方法
KR101719028B1 (ko) 유기 태양 전지 및 이의 제조방법
TW201408755A (zh) 光伏元件
JP2014112610A (ja) 有機薄膜太陽電池
JP2016015408A (ja) 薄膜太陽電池
JP2014192373A (ja) 有機薄膜太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746641

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14374025

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013218710

Country of ref document: AU

Date of ref document: 20130207

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013746641

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP