JP2013191630A - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
JP2013191630A
JP2013191630A JP2012054900A JP2012054900A JP2013191630A JP 2013191630 A JP2013191630 A JP 2013191630A JP 2012054900 A JP2012054900 A JP 2012054900A JP 2012054900 A JP2012054900 A JP 2012054900A JP 2013191630 A JP2013191630 A JP 2013191630A
Authority
JP
Japan
Prior art keywords
type semiconductor
photoelectric conversion
solar cell
sulfide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012054900A
Other languages
English (en)
Inventor
Akinobu Hayakawa
明伸 早川
Kazuyuki Ito
和志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012054900A priority Critical patent/JP2013191630A/ja
Publication of JP2013191630A publication Critical patent/JP2013191630A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】光電変換効率が高く、耐久性に優れた太陽電池を提供する。
【解決手段】光電変換層を有する太陽電池であって、前記光電変換層においては、N型半導体とP型半導体とが互いに接しており、前記N型半導体は、周期表15族元素の硫化物を含有し、前記P型半導体は、モリブデン及び/又はスズの硫化物又は酸化物を含有する太陽電池。
【選択図】なし

Description

本発明は、光電変換効率が高く、耐久性に優れた太陽電池に関する。
従来から、N型半導体層とP型半導体層とを積層し、この積層体の両側に電極を設けた光電変換素子が開発されている。また、このような積層体の代わりに、N型半導体とP型半導体とを混合して複合化した複合膜を用いることも検討されている。このような光電変換素子では、光励起によりP型半導体又はN型半導体で光キャリア(電子−ホール対)が生成し、電子がN型半導体を、ホールがP型半導体を移動することで、電界が生じる。
現在、実用化されている光電変換素子の多くは、N型半導体及びP型半導体としてそれぞれ異なる不純物をドーピングしたシリコンを用いて製造される太陽電池である。しかしながら、シリコンを用いて製造される太陽電池は製造にコストがかかるうえ大型化が困難であり、利用範囲が限られてしまうことが問題である。
また、N型半導体及びP型半導体としてそれぞれ異なる無機半導体を用いることも検討されている。特許文献1には、n型半導体と、前記n型半導体に接触する、硫化アンチモンを含む光吸収体と、前記光吸収体に接触するp型半導体を備えている光電池デバイスが記載されており、n型半導体は、TiO、ZnO、SnOのような金属酸化物であることが望ましく、p型半導体は、CuSCN、CuI、CuAlOのようなCu(I)系化合物か、酸化ニッケルのような金属酸化物が望ましいことが記載されている。
しかしながら、例えばCu(I)系化合物を用いて製造される太陽電池は劣化しやすいことから、N型半導体及びP型半導体として、より耐久性の高い材料を選択することが求められている。また、従来の太陽電池では、未だ光電変換効率が不充分である。実用化に耐えうる太陽電池の開発のためには、光電変換効率をより一層高めるとともに、劣化を防ぎ高い光電変換効率を維持することが求められている。
特開2007−273984号公報
本発明は、光電変換効率が高く、耐久性に優れた太陽電池を提供することを目的とする。
本発明は、光電変換層を有する太陽電池であって、前記光電変換層においては、N型半導体とP型半導体とが互いに接しており、前記N型半導体は、周期表15族元素の硫化物を含有し、前記P型半導体は、モリブデン及び/又はスズの硫化物又は酸化物を含有する太陽電池である。
以下、本発明を詳述する。
本発明者は、光電変換層を有する太陽電池において、光電変換層のN型半導体として周期表15族元素の硫化物を用い、かつ、P型半導体としてモリブデン及び/又はスズの硫化物又は酸化物を用いることにより、高い光電変換効率を維持しつつ耐久性を向上させることができることを見出し、本発明を完成させるに至った。
本発明の太陽電池は、光電変換層を有するものであり、該光電変換層においては、N型半導体とP型半導体とが互いに接している。
このような光電変換層においては、光励起によりP型半導体又はN型半導体で光キャリア(電子−ホール対)が生成し、電子がN型半導体を、ホールがP型半導体を移動することで、電界が生じる。
上記N型半導体は、周期表15族元素の硫化物を含有する。また、上記P型半導体は、モリブデン及び/又はスズの硫化物又は酸化物を含有する。
周期表15族元素の硫化物、並びに、モリブデン及び/又はスズの硫化物又は酸化物は耐久性が高いことから、N型半導体及びP型半導体としてこれらの材料を用いることにより、本発明の太陽電池は、耐久性に優れたものとなる。また、N型半導体とP型半導体とがこのような組み合わせであることにより、本発明の太陽電池は電荷分離効率が極めて高くなり、光電変換効率が高くなる。また、N型半導体とP型半導体とが安易に共晶を形成しないため、安定性にも優れると考えられる。
なお、光電変換層は、N型半導体とP型半導体とが互いに接していればよく、N型半導体層とP型半導体層とを含む積層体であってもよいし、N型半導体とP型半導体とを混合して複合化した複合膜であってもよい。
上記周期表15族元素の硫化物は、硫化アンチモン、硫化ビスマスであることが好ましく、硫化アンチモンであることがより好ましい。硫化アンチモンは、P型半導体であるモリブデン及び/又はスズの硫化物又は酸化物とのエネルギー準位の相性がよいため、上記周期表15族元素の硫化物が硫化アンチモンであることにより、太陽電池は、光電変換効率が高くなる。これらの周期表15族元素の硫化物は単独で用いられてもよく、2種以上が併用されてもよい。
上記周期表15族元素の硫化物は、周期表15族元素の2種以上の元素を同一の分子に含有する複合硫化物であってもよい。
上記N型半導体は、本発明の効果を阻害しない範囲内であれば、上記周期表15族元素の硫化物に加えて他の元素を含有していてもよい。上記他の元素は特に限定されないが、周期表の第4周期、第5周期及び第6周期に属する元素が好ましく、具体的には例えば、インジウム、ガリウム、スズ、カドミウム、銅、亜鉛、アルミニウム、ニッケル、銀、チタン、バナジウム、ニオブ、モリブデン、タンタル、鉄、コバルト等が挙げられる。これらの他の元素は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、電子の移動度が高くなることから、インジウム、ガリウム、スズ、カドミウム、亜鉛、銅が好ましい。
上記他の元素の含有量は、上記N型半導体中の好ましい上限が50重量%である。上記含有量が50重量%を超えると、N型半導体とP型半導体の相性が悪くなり、光電変換効率が低下することがある。
上記N型半導体は、結晶性半導体であることが好ましい。N型半導体が結晶性半導体であることにより、電子の移動度が高くなり、光電変換効率が高くなる。
なお、結晶性半導体とは、X線回折測定等で測定し、散乱ピークが検出できる半導体を意味する。
また、上記N型半導体の結晶性の指標として、結晶化度を用いることもできる。上記N型半導体の結晶化度は、好ましい下限が30%である。上記結晶化度が30%未満であると、電子の移動度が低くなり、光電変換が低下することがある。上記結晶化度のより好ましい下限は50%、更に好ましい下限は70%である。
なお、結晶化度は、X線回折測定等により検出された結晶質由来の散乱ピークと、非晶質部由来のハローとをフィッティングにより分離し、それぞれの強度積分を求めて、全体のうちの結晶質部分の比を算出することにより求めることができる。
上記N型半導体の結晶化度を高める方法として、例えば、N型半導体に対して、熱アニール、レーザー又はフラッシュランプ等の強度の強い光の照射、エキシマ光照射、プラズマ照射等を行う方法が挙げられる。なかでも、上記周期表15族元素の硫化物の酸化を低減できることから、強度の強い光の照射、プラズマ照射等を行う方法が好ましい。
上記モリブデン及び/又はスズの硫化物又は酸化物は、モリブデン及び/又はスズの硫化物であることが好ましく、より安定性が高いことから、硫化モリブデンであることがより好ましい。
上記P型半導体は、本発明の効果を阻害しない範囲内であれば、上記モリブデン及び/又はスズの硫化物又は酸化物に加えて他の元素を含有していてもよい。上記他の元素は特に限定されないが、銅、亜鉛、銀、インジウム、カドミウム、アンチモン、ビスマス等が挙げられる。これらの他の元素は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、P型半導体としての電荷移動度が高くなることから、銅、インジウム、亜鉛が好ましい。
上記他の元素の含有量は、上記P型半導体中の好ましい上限が50重量%である。上記含有量が50重量%を超えると、N型半導体とP型半導体の相性が悪くなり、光電変換効率が低下することがある。
上記N型半導体と上記P型半導体との好ましい組み合わせとして、例えば、硫化アンチモンと硫化モリブデンとの組み合わせ、硫化アンチモンと硫化スズとの組み合わせ等が挙げられる。これらの組み合わせであることにより、高い光電変換効率と耐久性とを両立することができる。
本発明の太陽電池は、上述したような光電変換層を、一組の電極間に有することが好ましい。上記電極の材料は特に限定されず、従来公知の材料を用いることができるが、陽極材料として、例えば、金等の金属、CuI、ITO(インジウムスズ酸化物)、SnO、AZO、IZO、GZO等の導電性透明材料、導電性透明ポリマー等が挙げられる。また、陰極材料として、例えば、ナトリウム、ナトリウム−カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム−銀混合物、マグネシウム−インジウム混合物、アルミニウム−リチウム合金、Al/Al混合物、Al/LiF混合物等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。
本発明の太陽電池は、更に、基板、ホール輸送層、電子輸送層等を有していてもよい。上記基板は特に限定されず、例えば、ソーダライムガラス、無アルカリガラス等の透明ガラス基板、セラミック基板、透明プラスチック基板等が挙げられる。
上記ホール輸送層の材料は特に限定されず、例えば、P型導電性高分子、P型低分子有機半導体、P型金属酸化物、P型金属硫化物、界面活性剤等が挙げられ、具体的には例えば、ポリエチレンジオキシチオフェンのポリスチレンスルホン酸付加物、カルボキシル基含有ポリチオフェン、フタロシアニン、ポルフィリン、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ニッケル、酸化銅、酸化スズ、硫化モリブデン、硫化タングステン、硫化銅、硫化スズ等、フルオロ基含有ホスホン酸、カルボニル基含有ホスホン酸等が挙げられる。
上記電子輸送層の材料は特に限定されず、例えば、N型導電性高分子、N型低分子有機半導体、N型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、界面活性剤等が挙げられ、具体的には例えば、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等が挙げられる。
特に、本発明の太陽電池は、一組の電極間に、N型半導体層とP型半導体層とを含む光電変換層を有し、一方の電極とN型半導体層との間に更に電子輸送層を有することが好ましい。更に、一方の電極とN型半導体層との間に更に電子輸送層を、他方の電極とP型半導体層との間に更にホール輸送層を有することがより好ましい。
光電変換層がN型半導体層とP型半導体層とを含む積層体である場合の本発明の太陽電池の一例を図1に模式的に示す。図1に示す太陽電池1においては、基板2、透明電極(陽極)3、P型半導体層4、N型半導体層5、電子輸送層6、電極(陰極)7がこの順で積層されている。
また、光電変換層がN型半導体とP型半導体とを混合して複合化した複合膜である場合の本発明の太陽電池の一例を図2に模式的に示す。図2に示す太陽電池8においては、基板9、透明電極(陽極)10、ホール輸送層11、P型半導体部分12とN型半導体部分13との複合膜14、電子輸送層15、電極(陰極)16がこの順で積層されている。
上記N型半導体層の厚みは、好ましい下限が5nm、好ましい上限が5000nmである。上記厚みが5nm未満であると、充分に光を吸収することができず、光電変換効率が低下することがある。上記厚みが5000nmを超えると、電荷分離できない領域が発生してしまい、光電変換効率の低下につながることがある。上記N型半導体層の厚みのより好ましい下限は10nm、より好ましい上限は1000nmであり、更に好ましい下限は20nm、更に好ましい上限は500nmである。
上記P型半導体層の厚みは、好ましい下限が5nm、好ましい上限が5000nmである。上記厚みが5nm未満であると、充分に光を吸収することができず、光電変換効率が低下することがある。上記厚みが5000nmを超えると、電荷分離できない領域が発生してしまい、光電変換効率の低下につながることがある。上記P型半導体層の厚みのより好ましい下限は10nm、より好ましい上限は2000nmであり、更に好ましい下限は20nm、更に好ましい上限は1000nmである。
上記ホール輸送層の厚みは、好ましい下限は1nm、好ましい上限は200nmである。上記厚みが1nm未満であると、充分に電子をブロックできないことがある。上記厚みが200nmを超えると、ホール輸送の際の抵抗になり、光電変換効率が低下することがある。上記ホール輸送層の厚みのより好ましい下限は3nm、より好ましい上限は150nmであり、更に好ましい下限は5nm、更に好ましい上限は100nmである。
上記電子輸送層の厚みは、好ましい下限が1nm、好ましい上限が200nmである。上記厚みが1nm未満であると、充分にホールをブロックできないことがある。上記厚みが200nmを超えると、電子輸送の際の抵抗になり、光電変換効率が低下することがある。上記電子輸送層の厚みのより好ましい下限は3nm、より好ましい上限は150nmであり、更に好ましい下限は5nm、更に好ましい上限は100nmである。
また、上述したように光電変換層がN型半導体とP型半導体とを混合して複合化した複合膜である場合、上記光電変換層の厚みの好ましい下限は30nm、好ましい上限は3000nmである。上記厚みが30nm未満であると、充分に光を吸収することができず、光電変換効率が低下することがある。上記厚みが3000nmを超えると、電荷が電極に到達できなくなるため、光電変換効率の低下につながることがある。上記光電変換層の厚みのより好ましい下限は40nm、より好ましい上限は2000nmであり、更に好ましい下限は50nm、更に好ましい上限は1000nmである。
上記光電変換層がN型半導体とP型半導体とを混合して複合化した複合膜である場合には、N型半導体とP型半導体との比率が非常に重要である。N型半導体とP型半導体との比率は、1:9〜9:1(体積比)であることが好ましい。上記比率が上記範囲から外れると、ホール又は電子が電極まで到達することができないことがあり、そのため光電変換効率の低下につながることがある。上記比率は、2:8〜8:2(体積比)であることがより好ましい。
本発明の太陽電池を製造する方法は特に限定されないが、本発明の太陽電池は、光電変換層が蒸着法により作製されることが好ましい。
光電変換層がN型半導体層とP型半導体層とを含む積層体である場合、本発明の太陽電池を製造する方法として、例えば、基板上に電極(陽極)を形成した後、この電極(陽極)の表面上に真空蒸着法等によりP型半導体層を成膜し、次いで、このP型半導体層の表面上に真空蒸着法等によりN型半導体層を成膜し、更に、このN型半導体層の表面上に電極(陰極)を形成する方法等が挙げられる。基板上に電極(陰極)を形成した後、N型半導体層、P型半導体層、電極(陽極)をこの順で形成してもよい。
また、蒸着法の代わりに、N型半導体又はP型半導体の前躯体溶液又はナノ分散液をスピンコート法等の印刷法により成膜することもできる。
光電変換層がN型半導体とP型半導体とを混合して複合化した複合膜である場合、本発明の太陽電池を製造する方法として、例えば、N型半導体とP型半導体とを共蒸着することにより複合膜を作製する方法等が挙げられる。また、N型半導体の前躯体溶液又はナノ分散液と、P型半導体の前躯体溶液又はナノ分散液とを混合した混合液を用いて複合膜とすることもできる。
本発明によれば、光電変換効率が高く、耐久性に優れた太陽電池を提供することができる。
光電変換層がN型半導体層とP型半導体層とを含む積層体である場合の本発明の太陽電池の一例を模式的に示す断面図である。 光電変換層がN型半導体とP型半導体とを混合して複合化した複合膜である場合の本発明の太陽電池の一例を模式的に示す断面図である。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
ガラス基板上に、陰極として厚み200nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。ITO膜の表面上に、電子輸送層として酸化チタンナノ粒子分散液を塗布することにより酸化チタン膜を200nmの厚みに成膜し、これを400℃で焼成した。この電子輸送層の表面上に、N型半導体層として硫化アンチモンを蒸着法により40nmの厚みに成膜し、280℃で焼成した。その後、N型半導体層の表面上に、P型半導体層として硫化モリブデンを蒸着法により40nmの厚みに成膜し、更に、P型半導体層の表面上に、陽極として蒸着法により厚み100nmの金膜を形成し、太陽電池を得た。
(実施例2)
P型半導体として硫化モリブデンの代わりに硫化スズを使用したこと以外は実施例1と同様にして、太陽電池を得た。
(実施例3)
P型半導体として硫化モリブデンの代わりに酸化モリブデンを使用したこと以外は実施例1と同様にして、太陽電池を得た。
(比較例1)
P型半導体として硫化モリブデンの代わりに硫化銅(I)を使用したこと以外は実施例1と同様にして、太陽電池を得た。
(比較例2)
P型半導体として硫化モリブデンの代わりに硫化タングステンを使用したこと以外は実施例1と同様にして、太陽電池を得た。
(比較例3)
N型半導体として硫化アンチモンの代わりに酸化チタンを使用したこと以外は実施例1と同様にして、太陽電池を得た。
(比較例4)
N型半導体として硫化アンチモンの代わりに硫化亜鉛を使用し、P型半導体として硫化モリブデンの代わりに硫化スズを使用したこと以外は実施例1と同様にして、太陽電池を得た。
(評価)
<光電変換効率の測定>
太陽電池の電極間に、電源(KEYTHLEY社製、236モデル)を接続し、100mW/cmの強度のソーラーシミュレータ(山下電装社製)を用いて太陽電池の光電変換効率を測定した。比較例3の光電変換効率を1.00として規格化した(相対光電変換効率(比較例1との対比))。
<耐候試験後の光電変換効率の測定>
太陽電池をガラス封止し、温度60℃、湿度35%の状態で60mW/cmの光を4000時間照射して耐候試験を行った。耐候試験前後の光電変換効率を上記と同様にして測定し、初期の光電変換効率(初期値)を1.00としたときの耐候試験後の相対変換効率を求めた。
Figure 2013191630
本発明によれば、光電変換効率が高く、耐久性に優れた太陽電池を提供することができる。
1 太陽電池
2 基板
3 透明電極(陽極)
4 P型半導体層
5 N型半導体層
6 電子輸送層
7 電極(陰極)
8 太陽電池
9 基板
10 透明電極(陽極)
11 ホール輸送層
12 P型半導体部分
13 N型半導体部分
14 複合膜
15 電子輸送層
16 電極(陰極)

Claims (6)

  1. 光電変換層を有する太陽電池であって、
    前記光電変換層においては、N型半導体とP型半導体とが互いに接しており、
    前記N型半導体は、周期表15族元素の硫化物を含有し、
    前記P型半導体は、モリブデン及び/又はスズの硫化物又は酸化物を含有する
    ことを特徴とする太陽電池。
  2. 周期表15族元素の硫化物は、硫化アンチモンであることを特徴とする請求項1記載の太陽電池。
  3. 光電変換層が、N型半導体層とP型半導体層とを含む積層体であることを特徴とする請求項1又は2記載の太陽電池。
  4. 一組の電極間に、N型半導体層とP型半導体層とを含む光電変換層を有し、
    一方の電極と前記N型半導体層との間に更に電子輸送層を、他方の電極と前記P型半導体層との間に更にホール輸送層を有する
    ことを特徴とする請求項3記載の太陽電池。
  5. 光電変換層が、N型半導体とP型半導体とを混合して複合化した複合膜であることを特徴とする請求項1又は2記載の太陽電池。
  6. 光電変換層が蒸着法により作製されることを特徴とする請求項1、2、3、4又は5記載の太陽電池。
JP2012054900A 2012-03-12 2012-03-12 太陽電池 Pending JP2013191630A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012054900A JP2013191630A (ja) 2012-03-12 2012-03-12 太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012054900A JP2013191630A (ja) 2012-03-12 2012-03-12 太陽電池

Publications (1)

Publication Number Publication Date
JP2013191630A true JP2013191630A (ja) 2013-09-26

Family

ID=49391613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012054900A Pending JP2013191630A (ja) 2012-03-12 2012-03-12 太陽電池

Country Status (1)

Country Link
JP (1) JP2013191630A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198229A (ja) * 2014-04-03 2015-11-09 積水化学工業株式会社 薄膜太陽電池及び薄膜太陽電池の製造方法
CN111987183A (zh) * 2020-08-20 2020-11-24 南开大学 一种基于双极性SnOX的晶硅太阳电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198229A (ja) * 2014-04-03 2015-11-09 積水化学工業株式会社 薄膜太陽電池及び薄膜太陽電池の製造方法
CN111987183A (zh) * 2020-08-20 2020-11-24 南开大学 一种基于双极性SnOX的晶硅太阳电池
CN111987183B (zh) * 2020-08-20 2024-03-08 南开大学 一种基于双极性SnOX的晶硅太阳电池

Similar Documents

Publication Publication Date Title
JP5075283B1 (ja) 有機薄膜太陽電池
JP5358751B1 (ja) 有機薄膜太陽電池
JP7088837B2 (ja) 太陽電池
WO2013118795A1 (ja) 有機薄膜太陽電池及び有機薄膜太陽電池の製造方法
JP5596872B1 (ja) 太陽電池
JP2016178290A (ja) 太陽電池
WO2020189615A1 (ja) 太陽電池
JP2016025330A (ja) 薄膜太陽電池及び薄膜太陽電池の製造方法
JP6725221B2 (ja) 薄膜太陽電池
JP6572039B2 (ja) 薄膜太陽電池及び薄膜太陽電池の製造方法
JP5688442B2 (ja) 太陽電池
JP2013191630A (ja) 太陽電池
JP2016082003A (ja) 薄膜太陽電池の製造方法
WO2013118794A1 (ja) 有機薄膜太陽電池
JP2019169684A (ja) 太陽電池
JP2018170477A (ja) 太陽電池
JP2014078692A (ja) 太陽電池及び太陽電池の製造方法
JP2016015409A (ja) 薄膜太陽電池
JP2018046056A (ja) 太陽電池、及び、太陽電池の製造方法
WO2018062307A1 (ja) フレキシブル太陽電池
JP2018046055A (ja) 太陽電池
JP6856821B2 (ja) 光電変換素子、光電変換素子の製造方法及び太陽電池
JP2016115880A (ja) 有機無機ハイブリッド太陽電池
JP6415078B2 (ja) 薄膜太陽電池及び薄膜太陽電池の製造方法
JP2014112610A (ja) 有機薄膜太陽電池