WO2013118530A1 - プラント排水の処理方法及び処理システム - Google Patents

プラント排水の処理方法及び処理システム Download PDF

Info

Publication number
WO2013118530A1
WO2013118530A1 PCT/JP2013/050255 JP2013050255W WO2013118530A1 WO 2013118530 A1 WO2013118530 A1 WO 2013118530A1 JP 2013050255 W JP2013050255 W JP 2013050255W WO 2013118530 A1 WO2013118530 A1 WO 2013118530A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
water
plant
pretreated
plant wastewater
Prior art date
Application number
PCT/JP2013/050255
Other languages
English (en)
French (fr)
Inventor
佳奈子 津田
祐介 篠田
雅世 篠原
和之 手嶋
敦 北中
谷口 雅英
Original Assignee
千代田化工建設株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社, 東レ株式会社 filed Critical 千代田化工建設株式会社
Priority to AP2014007790A priority Critical patent/AP2014007790A0/xx
Priority to CA2864214A priority patent/CA2864214A1/en
Priority to US14/377,529 priority patent/US20150021264A1/en
Priority to EA201491495A priority patent/EA025954B1/ru
Publication of WO2013118530A1 publication Critical patent/WO2013118530A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/002Grey water, e.g. from clothes washers, showers or dishwashers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a plant wastewater treatment method and a treatment system that improve the treatment efficiency when treating a plant wastewater containing an organic compound in a membrane separation activated sludge treatment tank.
  • Patent Document 1 describes that Fischer-Tropsch reaction water is distilled in a primary treatment stage, subjected to anaerobic digestion and / or aerobic digestion in a secondary treatment stage, and solid-liquid separated in a tertiary treatment stage. .
  • the treated water containing acidic oxygenated hydrocarbons separated by distillation is biologically treated in the secondary treatment stage, the activated sludge containing microorganisms becomes active and the sludge collapses (atomization), resulting in atomization.
  • a problem was found in which sludge clogs the separation membrane in the tertiary treatment stage.
  • Patent Document 2 discloses that anaerobic microorganisms and plant wastewater containing organic compounds are passed through anaerobic biological treatment tank, aerobic biological treatment tank, solid-liquid separation means, and reverse osmosis membrane separation device (RO). Biological treatment with aerobic microorganisms is described. However, when the plant wastewater is treated with anaerobic organisms, a lot of suspended matter (SS component) may be generated in the treated water. Even if the suspended matter derived from this anaerobic treatment is treated in the aerobic organism, It was found to remain. As a result, when the aerobic biologically treated wastewater is subjected to solid-liquid separation, the separation membrane is clogged. Therefore, the separation membrane must be washed frequently, and the operable flux in the separation membrane is, for example, 0. Since the level is as low as 2 m 3 / m 2 / day, it is difficult to increase the overall processing efficiency.
  • SS component suspended matter
  • pretreatment means such as distillation and anaerobic biological treatment will reduce the activity of aerobic microorganisms (activated sludge) and lower the treatment efficiency, or atomized activated sludge or floating from anaerobic treatment As the amount of the active substance increases, there is a problem that the operable flux is lowered due to clogging of the separation membrane.
  • An object of the present invention is to provide a plant wastewater treatment method and a treatment system that improve the treatment efficiency when treating a plant wastewater containing an organic compound in a membrane separation activated sludge treatment tank beyond the conventional level. is there.
  • the method for treating plant wastewater of the present invention that achieves the above object is to mix a microorganism activating agent with plant wastewater containing an organic compound discharged from a chemical plant, petroleum plant or petrochemical plant, and discharge it as mixed treated water. It includes at least a mixing treatment step and an aerobic treatment step in which the mixed treatment water is subjected to an aerobic biological treatment and a solid-liquid separation treatment in a membrane separation activated sludge treatment tank.
  • the plant wastewater treatment system of the present invention comprises a mixing means for mixing a microorganism activating agent with a plant wastewater containing an organic compound discharged from a chemical plant, a petroleum plant or a petrochemical plant, and discharging the mixture as treated water, and the mixing treatment. It includes at least a membrane separation activated sludge treatment tank that performs aerobic biological treatment and solid-liquid separation treatment of water.
  • the microbial activator is added to the plant wastewater containing the organic compound and then the aerobic biological treatment in the membrane separation activated sludge treatment tank is performed. Clogging can be suppressed and the operable flux can be greatly improved. The reason for this is not clear, but it is thought that the addition of a microorganism activator increases the activity of activated sludge made of aerobic microorganisms and improves the coagulation of activated sludge.
  • the plant wastewater Prior to the mixing treatment step, contains at least one selected from anaerobic biological treatment, distillation, wet oxidation, dilution, screen filtration, carrier filtration, sand filtration, pH adjustment, oil removal treatment, and activated carbon treatment. It has a pretreatment process in which it is treated by a pretreatment means and discharged as pretreatment water, and the pretreatment water can be supplied to the mixing treatment process.
  • the plant wastewater is supplied to an anaerobic tank, an organic compound is decomposed by anaerobic biological treatment, and discharged as pretreated water, and this pretreated water is supplied to an anaerobic biological treatment tank.
  • Introducing an anaerobic biological treatment that further decomposes the organic compound and discharging the pretreated water may be included.
  • the preliminary treatment step may include a distillation step in which the plant wastewater is subjected to a distillation tower and separated into treated water containing acidic oxygenated hydrocarbons and organic compounds other than the acidic oxygenated hydrocarbons.
  • the water can be treated water containing acidic oxygenated hydrocarbons.
  • the plant wastewater is subjected to a distillation tower to separate the treated water containing acidic oxygenated hydrocarbons into organic compounds other than the acidic oxygenated hydrocarbons, and the acidic oxygenated hydrocarbons.
  • the pretreated water is introduced into a reverse osmosis membrane separator for pretreatment and separated into pretreated RO permeated water and pretreated RO concentrated water, and the pretreated water is Pretreated RO concentrated water can be obtained.
  • a post-treatment RO step in which at least a part of the treated water discharged from the aerobic treatment step is introduced into a reverse osmosis membrane separation device for post-treatment and separated into post-treatment RO permeate and post-treatment RO concentrated water. Can be included.
  • the microorganism activator preferably contains sugar, fat, protein, nitrogen, phosphorus and fibrous substances.
  • the microorganism activator has a pH of 6.0 to 8.0, a biochemical oxygen demand (BOD) of 60 to 1000 mg / l, a total nitrogen content of 15 to 100 mg / l, and a total phosphorus content. It is preferred to use an activator comprising at least a component that is 1.5 to 15 mg / l.
  • the mixing means for adding the microbial activator to the plant wastewater since the mixing means for adding the microbial activator to the plant wastewater is installed, the activated sludge activity and cohesiveness in the downstream membrane separation activated sludge treatment tank are increased. Clogging in the separation membrane can be suppressed, and the operable flux can be greatly improved.
  • the plant wastewater is anaerobic biological treatment tank, distillation tower, wet oxidizer, dilution means, screen filtration means, carrier filtration means, sand filtration means, pH adjustment means, oil removal treatment means, activated carbon treatment.
  • Pretreatment means for treating with at least one selected from the means and discharging as pretreatment water can be provided.
  • the pretreatment means includes an anaerobic organism that performs anaerobic biological treatment of the plant wastewater and discharges it as pretreated water, an anaerobic organism that further performs anaerobic biological treatment of the pretreated water, and discharges pretreated water. It can have a treatment tank.
  • the pretreatment means may be a distillation tower that distills the plant wastewater and separates it into treated water containing acidic oxygenated hydrocarbons and organic compounds other than the acidic oxygenated hydrocarbons. Furthermore, it can have a pretreatment reverse osmosis membrane separation device for separating the treated water containing the acidic oxygen-containing hydrocarbon into pretreated RO permeated water and pretreated RO concentrated water.
  • At least a part of the treated water discharged from the membrane separation activated sludge treatment tank is separated into post-treatment RO permeate and post-treatment RO concentrated water for reverse treatment.
  • a membrane separator can be placed downstream of the membrane separation activated sludge treatment tank.
  • FIG. 1 is a system diagram showing an example of an embodiment of a treatment system used in the plant wastewater treatment method of the present invention.
  • FIG. 2 is a system diagram showing another example of the embodiment of the treatment system used in the plant wastewater treatment method of the present invention.
  • FIG. 3 is a system diagram showing still another example of the embodiment of the treatment system used in the plant wastewater treatment method of the present invention.
  • FIG. 4 is a system diagram showing still another example of the embodiment of the treatment system used in the plant wastewater treatment method of the present invention.
  • FIG. 5 is a system diagram schematically showing the processing system used in Example 2 of the present invention.
  • FIG. 1 is a system diagram showing an example of an embodiment of a plant wastewater treatment method and treatment system according to the present invention.
  • 1 is a preliminary treatment means
  • 2 is a mixing means
  • 3 is a membrane separation activated sludge treatment tank.
  • the plant wastewater treatment system of the present invention necessarily has a mixing means 2 and a membrane separation activated sludge treatment tank 3. Further, as shown in FIG. 1, the preliminary processing means 1 can be provided upstream of the mixing means 2.
  • the mixing means 2 is means for mixing the microorganism activating agent 21 with the pretreated water 12 discharged from the plant waste water 11 or the pretreatment means 1, and may be an independent mixing tank or a mixing device such as a static mixer.
  • the aerobic microorganisms (activated sludge) in the membrane separation activated sludge treatment tank 3 can be activated, and the aggregability thereof can be increased.
  • a membrane separation activated sludge treatment tank 3 is disposed downstream of the mixing means 2 and performs aerobic biological treatment and solid-liquid separation treatment of the mixed treated water 13.
  • the membrane-separated activated sludge treatment tank 3 is an aerobic biological treatment apparatus that is normally used, and has solid-liquid separation means that includes an air diffuser that supplies air into the tank and a separation membrane.
  • the separation membrane may be any separation membrane having a pore size smaller than the size of the aerobic microorganism. For example, an ultrafiltration membrane (UF membrane) and a microfiltration membrane (MF membrane) can be exemplified.
  • the activated sludge is activated by the microorganism activator 21, and the cohesiveness is increased. For this reason, it can suppress that the activity of activated sludge deteriorates or the activated sludge sags (disintegrates).
  • the pretreatment means is a distillation tower, the activated sludge does not sag and does not clog the separation membrane due to disintegration and atomization. Even if the pretreatment means is an anaerobic biological treatment tank, it is considered that the activated sludge highly activated does not clog the separation membrane due to the digestion of the floating substance derived from the anaerobic treatment. . In either case, the operating flux of the separation membrane can be made higher than the conventional level.
  • the aerobic treated water 14 is discharged by the separation membrane.
  • the aerobic treated water 14 can be used as process water (recycled water) such as a cooling tower, water for sprinkling, washing water for flush toilets, and the like. Further, it can be further purified by supplying it to a reverse osmosis membrane separator for post-treatment.
  • the preliminary treatment means 1 can be selected from normal treatment means performed on plant wastewater.
  • the pretreatment means 1 preferably from an anaerobic biological treatment tank, distillation tower, wet oxidizer, dilution means, screen filtration means, carrier filtration means, sand filtration means, pH adjustment means, oil removal treatment means, activated carbon treatment means It may include at least one processing means selected.
  • the pretreatment means 1 can particularly preferably treat the plant wastewater 11 by anaerobic biological treatment and / or distillation to decompose and / or remove organic compounds in the plant wastewater 11.
  • the water treated by the pretreatment means 1 is discharged as pretreatment water 12.
  • FIG. 2 is a system diagram showing another example of the embodiment of the method and system for treating plant wastewater of the present invention.
  • the pretreatment means 1 includes an anoxic tank 4 and an anaerobic biological treatment tank 5.
  • Each of the anaerobic tank 4 and the anaerobic biological treatment tank 5 is a treatment tank that performs anaerobic biological treatment.
  • the upstream treatment tank is referred to as an anaerobic tank
  • the downstream treatment tank is referred to as an anaerobic biological treatment tank.
  • the anaerobic tank 4 is equipped with anaerobic means for anaerobic gas, and anaerobic gas is aerated on the plant wastewater 11 to bring the inside of the tank closer to an anoxic state and perform anaerobic biological treatment of organic compounds.
  • the anoxic tank 4 may have means for adding a part of the extracted sludge 15 and part of the RO concentrated water and a means for adding a compound containing a nitrogen component and a phosphorus component. By ingesting components such as extracted sludge (activated sludge), RO concentrated water, nitrogen component and phosphorus component as nutrients, anaerobic microorganisms in the anaerobic tank 4 are activated and promote anaerobic biological treatment of organic compounds. .
  • An anaerobic biological treatment tank 5 is disposed downstream of the anaerobic tank 4, and the pretreated water 16 discharged from the anaerobic tank 4 is further subjected to anaerobic biological treatment.
  • the anaerobic biological treatment tank 5 can have means for adding the pH adjusting agent 22 and can be adjusted to a pH suitable for anaerobic microorganisms.
  • the anaerobic biological treatment tank 5 is preferably an upward flow anaerobic sludge blanket (UASB). This UASB is a commonly used anaerobic biological treatment apparatus and has high biodegradation efficiency.
  • the water treated in the anaerobic biological treatment tank 5 is discharged as preliminary treated water 12.
  • the pretreated water 12 performs an aerobic biological treatment and a solid-liquid separation treatment in the membrane separation activated sludge treatment tank 3 as in the embodiment of FIG.
  • the membrane-separated activated sludge treatment tank 3 can have a means for adding the pH regulator 23 and can be adjusted to a pH suitable for the aerobic microorganism.
  • a reverse osmosis membrane separation device 6 for post-treatment is disposed downstream of the membrane separation activated sludge treatment tank 3, and a part of the aerobic treated water 14 is separated from the post-treated RO permeate 18 and the post-treated RO. Separated into concentrated water 19.
  • the post-treatment RO permeated water 18 can be used as pure water, drinking water raw water, boiler / cooling tower makeup water, or agricultural water.
  • a part 24 of the post-process RO concentrated water is returned from the reverse osmosis membrane separation device 6 to the anoxic tank 4 and can be added as a nutrient of microorganisms.
  • At least a part of the extracted sludge 15 extracted from the membrane separation activated sludge treatment tank 3 can be returned to the anoxic tank 4, and a solubilizing means for solubilizing the extracted sludge (activated sludge) in the middle of the pipe. (Not shown) can be arranged.
  • FIG. 3 is a system diagram showing still another example of the embodiment of the method and system for treating plant wastewater of the present invention.
  • the pretreatment means 1 includes a distillation column 7.
  • the distillation tower 7 distills the plant waste water 11 to distill off, for example, organic compounds 32 other than the acidic oxygenated hydrocarbons, and discharges the treated water 31 containing the acidic oxygenated hydrocarbons as the pretreated water 12.
  • This pretreated water 12 is treated in the same manner as in the embodiment shown in FIG.
  • Examples of the acidic oxygen-containing hydrocarbon include organic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, and caprylic acid.
  • Examples of the organic compound 32 other than the acidic oxygen-containing hydrocarbon include non-acidic oxygen-containing hydrocarbons and oxygen-free hydrocarbons, and examples thereof include alcohols, aldehydes, ketones, and alkanes.
  • FIG. 4 is a system diagram showing still another example of the embodiment of the method and system for treating plant wastewater according to the present invention.
  • the pretreatment means 1 a distillation tower 7 and a pretreatment reverse osmosis membrane separation device 8 are provided. Including.
  • the distillation tower 7 distills the plant waste water 11, thereby distilling, for example, an organic compound 32 other than the acidic oxygenated hydrocarbon, and discharging the treated water 31 containing the acidic oxygenated hydrocarbon.
  • a pretreatment reverse osmosis membrane separation device 8 is disposed downstream of the distillation column 7 and separates the treated water 31 containing acidic oxygenated hydrocarbons into a pretreated RO permeate 33 and a pretreated RO concentrated water 34.
  • the pretreated RO concentrated water 34 is discharged as the pretreated water 12 and treated in the same manner as in the embodiment shown in FIG.
  • the post-treatment reverse osmosis membrane separation device 6 can be disposed downstream of the membrane separation activated sludge treatment tank 3 as in the embodiment of FIG. Thereby, at least a part of the aerobic treated water 14 can be separated into the post-treated RO permeate 18 and the post-treated RO concentrated water 19.
  • the plant wastewater to be treated is wastewater containing organic compounds discharged from a chemical plant, a petroleum plant or a petrochemical plant.
  • Plant wastewater discharged from chemical plants includes wastewater as a by-product of chemical reactions, such as by-product water produced in plants using the Fischer-Tropsch process, and washing water used when purifying main products. Is exemplified. It is also possible to treat the waste water used to clean the reactor and equipment.
  • Such plant wastewater containing medium and high concentration organic compounds cannot be used as pure water or drinking water or agricultural water. Moreover, the use as industrial water is also restricted.
  • the organic compound include lower hydrocarbons and water-soluble oxygen-containing hydrocarbons, and examples include alkanes, alcohols, ketones, aldehydes, and organic acids. These organic compounds may be a single species or a combination of a plurality of species.
  • the aerobic biological treatment is performed in the aerobic treatment step, followed by the solid-liquid separation treatment and the aerobic treatment. Regenerated as water 14.
  • the mixing process step and the aerobic process step will be described.
  • microorganism activator 21 examples include nutrients and / or fibrous substances taken by aerobic microorganisms.
  • the microorganism activator 21 is preferably exemplified by domestic wastewater, artificial sewage, wastewater from foods and food processing plants, kitchen wastewater, sludge digestion tank detachment liquid and the like. It is particularly preferable to use domestic wastewater.
  • domestic wastewater consists of domestic wastewater and / or human waste.
  • household wastewater includes kitchen wastewater, bath wastewater, laundry wastewater and the like.
  • human waste include flush toilet drainage, which can include fibrous materials such as toilet paper.
  • the microorganism activator 21 preferably contains sugar, fat, protein, nitrogen, phosphorus and fibrous substances. By containing these components, aerobic microorganisms can be activated. Moreover, by including a fibrous substance, this acts as a nucleus and can increase the cohesiveness of activated sludge. For this reason, it can suppress that activated sludge disintegrates and atomizes.
  • Artificial sewage is exemplified as a microbial activator that can be easily prepared to include the above-described nutrients. Table 1 illustrates the composition of artificial sewage.
  • microorganism activator 21 may be a liquid, a solid such as a powder or a granular material. Further, the microbial activator 21 may be mixed with pretreated water as it is, or the microbial activator 21 may be used as a solution or a dispersed suspension in water.
  • the microorganism activator 21 preferably has a pH of 6.0 to 8.0, a biochemical oxygen demand (BOD) of 60 to 1000 mg / l, a total nitrogen content of 15 to 100 mg / l, and a total phosphorus content. It is preferable to include at least a component whose amount is 1.5 to 15 mg / l.
  • the microbial activator 21 may contain components other than those described above as long as the activity of the microorganism is not inhibited.
  • the total nitrogen content is the sum of the contents of organic nitrogen, ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen, and the total phosphorus content is the phosphate phosphorus content.
  • Biochemical oxygen demand (BOD) is JIS K0201 21; organic nitrogen is JIS K0102 44; ammoniacal nitrogen is JIS K0102 42; nitrite nitrogen is JIS K0102 43.1; nitrate nitrogen is JIS K0102 43. 2.
  • the content of phosphate phosphorus shall be the value analyzed based on JIS K0102 46.1.
  • the mixing ratio of the pretreated water 12 and the microorganism activating agent 21 in the mixing treatment step is preferably 1 to 50 parts by weight of the microbial activator 21 and more preferably when the pretreated water 12 is 100 parts by weight. It may be 5 to 15 parts by weight.
  • Microbial activator 21 is added in the mixing treatment step, and the treated water containing nutrients for activated sludge (aerobic microorganisms) and fibrous substances that can be the core of activated sludge is discharged as mixed treated water 13 and is aerobic. Transferred to the process.
  • the mixed treated water 13 is introduced into the membrane separation activated sludge treatment tank 3, and aerobic biological treatment and solid-liquid separation treatment are performed.
  • the pH in the membrane separation activated sludge treatment tank 3 is preferably adjusted to pH 6.5 to 8.0, more preferably pH 7.0 to 8.0.
  • the means for adjusting the pH is not particularly limited, and a normal pH adjusting method can be used, and a pH adjusting agent 23 made of an acid or an alkali can be appropriately added.
  • MLR membrane separation activated sludge treatment tank
  • the MBR has an aeration tube, and by supplying air, the organic compounds remaining in the mixed treated water 13 are decomposed and removed by aerobic biological treatment.
  • the activated sludge in the membrane separation activated sludge treatment tank 3 ingests and activates abundant nutrients contained in the mixed treated water 13. For this reason, it is estimated that, for example, most floating substances derived from anaerobic treatment that may occur in the preliminary treatment step described later will be digested. Moreover, since a fibrous substance is contained, activated sludge becomes easy to aggregate and it is suppressed that it disintegrates or atomizes.
  • the treated water subjected to the aerobic biological treatment is solid-liquid separated by a separation membrane provided in the MBR tank and discharged as aerobic treated water 14 separated from the activated sludge in the tank.
  • the floating substance derived from the anaerobic treatment in the membrane separation activated sludge treatment tank 3 can be almost eliminated, and the coagulation property of the activated sludge can be increased, so that clogging in the separation membrane is suppressed.
  • the operating flux can be greatly improved.
  • the treatment flux of the separation membrane is about 0.2 m 3 / m 2 / day, but the separation treatment flux is 0.6 to 0 by adding the above-mentioned domestic waste water. It can be improved about 3 times or more to .65 m 3 / m 2 / day.
  • the concentration of the activated sludge can be adjusted by extracting a part thereof as the extracted sludge 15. Furthermore, a part of the extracted sludge 15 can be used as a nutrient for anaerobic microorganisms. For this purpose, it is preferable to solubilize the extracted sludge, that is, to destroy or dissolve the shell (cell membrane) of the aerobic microorganism that is the activated sludge so that it can be easily absorbed as a nutrient of the microorganism. As a method for solubilizing the drawn sludge, a usual method can be used.
  • a method of treating drawn sludge with an alkali such as a sodium hydroxide aqueous solution, a method of crushing with a wet mill, a method of freezing, a method of ultrasonic treatment, a method of ozone treatment, and the like can be exemplified.
  • the pretreatment step is at least one selected from anaerobic biological treatment, distillation, wet oxidation, dilution, screen filtration, carrier filtration, sand filtration, pH adjustment, oil removal treatment, and activated carbon treatment.
  • anaerobic biological treatment / distillation treatment for decomposing / removing organic compounds in the plant waste water 11.
  • the organic compound in the plant wastewater 11 is decomposed by the anaerobic treatment shown in FIG. 2 and / or the distillation in the plant wastewater 11 by the distillation shown in FIGS. It is preferable to include a treatment step for removing the organic compound.
  • anaerobic treatment in the anaerobic tank 4 includes an anaerobic treatment in the anaerobic tank 4 and an anaerobic treatment in the anaerobic biological treatment tank 5.
  • plant wastewater 11 is supplied and aerated with anaerobic gas to remove oxygen and to perform a decomposition reaction by stirring and mixing anaerobic microorganisms.
  • the anaerobic gas is a gas that does not contain oxygen, and examples thereof include nitrogen, methane, and carbon dioxide. These gases may be used alone or as a mixture of plural kinds of gases.
  • a mixed gas containing methane and carbon dioxide is preferable. Further, a mixed gas containing methane and carbon dioxide generated by the treatment method of the present invention can be used.
  • Anaerobic microorganisms in this oxygen-free state biodegrade organic compounds in plant effluent, thereby cleaving the main chain of organic compounds to lower the molecular weight or decomposing them into organic acids.
  • a compound containing RO concentrated water, drawn sludge, nitrogen component and phosphorus component can be added to the anoxic tank 4 as a nutrient.
  • the nitrogen component include urea and ammonium salts.
  • phosphorus component phosphoric acid, a phosphate, etc. are good, for example.
  • the treated water in the anoxic tank 4 is discharged as pretreated water 16.
  • the pretreated water 16 is introduced into the anaerobic biological treatment tank 5 and further anaerobic biological treatment is performed.
  • the pretreated water 16 is introduced into the anaerobic biological treatment tank 5, it is preferably adjusted to pH 5.5 to 7.0, more preferably pH 6.0 to 6.7 by the pH adjusting means.
  • the pH adjusting means is not particularly limited, and a normal pH adjusting method can be used, and a pH adjusting agent 22 made of an alkali can be appropriately added.
  • the pH adjuster 22 can be an aqueous NaOH solution. The activity of anaerobic microorganisms can be increased by adding the pH adjuster 22 made of alkali.
  • the pH most suitable for the activity of the anaerobic microorganism is 7.0 to 7.5, but the pH is adjusted to 7.0 to 6.7 by adjusting the pH to 6.0 to 6.7 by the pH adjusting means.
  • the addition amount of the pH adjusting agent 22 can be reduced without significantly impairing the activity of the anaerobic microorganisms, and the purchase cost of the pH adjusting agent 22 can be reduced.
  • the quantity of sodium ion contained in the aerobic treated water 14 can be reduced, and the aerobic treated water 14 can be easily reused.
  • anaerobic biological treatment tank 5 a treatment tank of an upflow anaerobic sludge blanket (UASB) is preferably used.
  • UASB upflow anaerobic sludge blanket
  • the decomposed organic compound is further decomposed into methane and carbon dioxide and discharged as a mixed gas.
  • the surplus anaerobic microorganisms grown in the anaerobic biological treatment tank 5 can be appropriately taken out, stored and reused.
  • the treated water in the anaerobic biological treatment tank 5 is discharged as preliminary treated water 12.
  • the pretreated water 12 is subjected to the aerobic biological treatment and the solid-liquid separation treatment in the aerobic treatment step after the microbial activator 21 is added in the mixing treatment step, and is regenerated as the aerobic treatment water 14.
  • At least a part of the aerobic treated water 14 is supplied to the post-treatment reverse osmosis membrane separation device 6 as a post-treatment RO step.
  • the remainder of the aerobic treated water 14 can be used as process water (recycled water) 17 such as a cooling tower.
  • the aerobic treated water 14 supplied to the post-treatment reverse osmosis membrane separation device 6 is purified as a post-treated RO permeated water 18 from which dissolved substances are removed.
  • This post-process RO permeated water 18 can be used as pure water, raw water for drinking, or agricultural water. Moreover, you may use as boiler water, cooling water, and industrial water.
  • dissolved substances in the aerobic treated water 14 are discharged as post-treated RO concentrated water 19.
  • the dissolved substances include organic compound residues, nitrogen compounds, phosphorus compounds, and the like.
  • At least a portion 24 of the post-treatment RO concentrated water 19 can be returned to the anaerobic tank 4 in the pretreatment step. Since the post-process RO concentrated water 19 contains a nitrogen compound and a phosphorus compound, it can be used as a nutrient for anaerobic microorganisms and aerobic microorganisms.
  • the remainder of the drawn sludge 15 can be introduced into a methane fermentation tank and subjected to anaerobic biological treatment.
  • the extracted sludge is decomposed into a mixed gas containing methane and carbon dioxide and discharged.
  • the mixed gas containing methane and carbon dioxide discharged from the anaerobic biological treatment tank and the methane fermentation tank can be returned to the anoxic tank and aerated as an anaerobic gas. This reduces the cost of biological treatment.
  • the mixed gas may be returned to the main plant consisting of a chemical plant, a petroleum plant or a petrochemical plant.
  • the pretreatment process includes a process of distilling the plant waste water 11 in the distillation tower 7.
  • the supplied plant waste water 11 is distilled with steam, and an organic compound having a lower boiling point than water is distilled off.
  • the organic compound having a lower boiling point than water is the organic compound 32 excluding the acidic oxygen-containing hydrocarbon.
  • the treated water 31 containing acidic oxygenated hydrocarbons mainly contains acidic oxygenated hydrocarbons as organic compounds, but may contain hydrocarbons excluding acidic oxygenated hydrocarbons having a boiling point higher than that of water.
  • the treated water 31 is discharged as the pretreated water 12, and after the microorganism activating agent 21 is added in the mixing treatment step, the aerobic treatment and the solid-liquid separation treatment are performed in the aerobic treatment step. Regenerated as water 14.
  • microorganism activating agent 21 By adding the microorganism activating agent 21 to the treated water 31 containing acidic oxygenated hydrocarbons, it is possible to prevent the activated sludge in the membrane-separated activated sludge treatment tank 3 from dripping and atomizing.
  • the pretreatment step includes a step of distilling the plant waste water 11 with the distillation tower 7 and then performing membrane separation with the pretreatment reverse osmosis membrane separation device 8. Distillation in the distillation column 7 is as described above.
  • the treated water 31 containing acidic oxygenated hydrocarbons discharged from the distillation tower 7 is supplied to the pretreatment reverse osmosis membrane separation device 8 and separated into the pretreated RO permeated water 33 and the pretreated RO condensed water 34.
  • the pretreatment RO permeated water 33 is purified reclaimed water, and can be used as pure water, raw water for drinking, or agricultural water.
  • the pretreated RO condensed water 34 is discharged as the pretreated water 12, and after the microorganism activating agent 21 is added in the mixing treatment step, the aerobic biological treatment and the solid-liquid separation treatment are performed in the aerobic treatment step. It is regenerated as target treated water 14.
  • the pretreated RO condensed water 34 has a stronger action of deactivating, disintegrating and atomizing the activated sludge than the treated water 31 containing acidic oxygenated hydrocarbons discharged from the distillation column 7.
  • the microorganism activating agent 21 it is possible to prevent the activated sludge in the membrane separation activated sludge treatment tank 3 from dripping and atomizing.
  • the aerobic treated water 14 can be supplied to the post-treatment reverse osmosis membrane separation device 6 as a post-treatment RO step.
  • the aerobic treated water 14 supplied to the post-treatment reverse osmosis membrane separation device 6 is separated into a post-treated RO permeated water 18 from which dissolved substances have been removed and a post-treated RO condensed water 19 from which dissolved substances have been condensed. be able to.
  • Example 1 In the plant wastewater treatment system having the configuration shown in FIG. 2, purification of plant water by-produced by the Fischer-Tropsch method was performed. UASB was used as the anaerobic biological treatment tank 5, and MBR was used as the membrane separation activated sludge treatment tank 3.
  • the water quality of the plant wastewater 11 is shown in the column of “Plant wastewater” in Table 2.
  • the plant wastewater 11 was supplied to the anoxic tank 4 at a flow rate of 19.8 mL / min to perform anoxic treatment.
  • the pretreated water 16 discharged from the anoxic tank 4 was introduced into the anaerobic biological treatment tank 5 together with a 5% NaOH aqueous solution 0.4 mL / min.
  • the anaerobic biological treatment tank 5 was stored (residence time: 40.8 hours) while adjusting the pH to 7.0 to 7.5, and anaerobic biological treatment was performed.
  • the quality of the pretreated water 12 discharged from the anaerobic biological treatment tank 5 is shown in the column “UASB treated water” in Table 2.
  • the water quality of the pretreated water 12 was greatly reduced in the content of non-acidic oxidized hydrocarbons such as alcohol and COD Cr .
  • the suspended solid amount (SS) increased almost 55 times.
  • Pretreated water 12 discharged from the anaerobic biological treatment tank 5 was supplied to the mixing means 2 and mixed with the domestic wastewater 21 (2 mL / min) having the water quality shown in Table 3.
  • the resulting mixed treated water 13 was introduced into the membrane separation activated sludge treatment tank 3 together with 0.07 mL / min of 1N hydrochloric acid.
  • the membrane separation activated sludge treatment tank 3 was adjusted to pH 7 to 8 and subjected to aerobic biological treatment, followed by solid-liquid separation by membrane separation.
  • the drawn sludge 15 was extracted from the membrane separation activated sludge treatment tank 3 and a part thereof was returned to the anoxic tank 4.
  • the water quality of the aerobic treated water 14 discharged from the membrane separation activated sludge treatment tank 3 is shown in the column “MBR treated water” in Table 2.
  • the water quality of the aerobic treated water 14 was greatly reduced in the content of all organic components and SS.
  • the treatment flux in the membrane separation was as high and stable as 0.60 m 3 / m 2 / day.
  • the obtained aerobic treated water 14 was supplied to the post-treatment reverse osmosis membrane separator 6 and operated at a water recovery rate of 65%.
  • the water quality of the post-processed RO permeated water 18 and the post-processed RO concentrated water 19 subjected to RO treatment is shown in the columns of “RO Permeated Water” and “RO Concentrated Water” in Table 2.
  • the water quality of the post-treatment RO permeate 18 was clean and was a level that passed the water quality standards of boiler water (48 to 103 bar) and cooling water of EPA'73.
  • a part 24 of the post-process RO concentrated water was circulated to the anoxic tank 4.
  • Example 1 The plant wastewater treatment method of Example 1 does not cause clogging in the separation membrane, and compared with Comparative Example 1 described later, the treatment flux in membrane separation is significantly increased, and the treatment efficiency is improved. Confirmed to do.
  • Comparative Example 1 In the plant wastewater treatment system having the configuration shown in FIG. 2, purification of plant water by-produced by the Fischer-Tropsch method was performed without supplying the domestic wastewater 21 of Example 1 to the mixing means 2.
  • UASB was used as the anaerobic biological treatment tank 5
  • MBR was used as the membrane separation activated sludge treatment tank 3.
  • the water quality of the plant waste water 11 is shown in the column of “Plant waste water” in Table 4.
  • the plant wastewater 11 was supplied to the anoxic tank 4 at a flow rate of 19.8 mL / min to perform anoxic treatment.
  • the pretreated water 16 discharged from the anoxic tank 4 was introduced into the anaerobic biological treatment tank 5 together with a 5% NaOH aqueous solution 0.4 mL / min.
  • the anaerobic biological treatment tank 5 was stored (residence time: 40.8 hours) while adjusting the pH to 7.0 to 7.5, and anaerobic biological treatment was performed.
  • the quality of the pretreated water 12 discharged from the anaerobic biological treatment tank 5 is shown in the column “UASB treated water” in Table 4.
  • the water quality of the pretreated water 12 was greatly reduced in the content of non-acidic oxidized hydrocarbons such as alcohol and COD Cr .
  • suspended solid content (SS) increased almost 40 times.
  • the pretreated water 12 discharged from the anaerobic biological treatment tank 5 was introduced into the membrane separation activated sludge treatment tank 3 together with 1N hydrochloric acid 0.07 mL / min.
  • the membrane separation activated sludge treatment tank 3 was adjusted to pH 7 to 8 and subjected to aerobic biological treatment, followed by solid-liquid separation by membrane separation.
  • the drawn sludge 15 was extracted from the membrane separation activated sludge treatment tank 3 and a part thereof was returned to the anoxic tank 4.
  • the water quality of the aerobic treated water 14 discharged from the membrane separation activated sludge treatment tank 3 is shown in the “MBR treated water” column of Table 4. Although the water quality of the aerobic treated water 14 was reduced in the content of all organic components and SS, the treatment flux in membrane separation was greatly reduced to 0.20 m 3 / m 2 / day.
  • the obtained aerobic treated water 14 was supplied to the post-treatment reverse osmosis membrane separator 6 and operated at a water recovery rate of 65%.
  • the water quality of the RO treated post-treatment RO permeated water 18 and the post-treatment RO concentrated water 19 is shown in the columns of “RO Permeated Water” and “RO Concentrated Water” in Table 4. Further, a part 24 of the RO concentrated water was circulated to the anoxic tank 4.
  • Example 2 In the plant wastewater treatment system having the configuration shown in FIG. 5, purification of plant water by-produced by the Fischer-Tropsch method was performed. Distillation tower 7 and pretreatment reverse osmosis membrane separator 8 were used as pretreatment means 1, and MBR was used as membrane separation activated sludge treatment tank 3.
  • the water quality of the plant wastewater 11 is shown in the “plant wastewater” column of Table 5.
  • the plant waste water 11 was distilled in the distillation tower 7, and 100 L of treated water 31 containing acidic oxygenated hydrocarbon was stored in the water tank 9.
  • the water quality of this treated water 31 is shown in the column of “Distilled treated water” in Table 5.
  • 100 mL of 25% NaOH aqueous solution was added to 100 L of stored water to adjust the pH to 5.5.
  • the stored water whose pH has been adjusted is passed through the pretreatment reverse osmosis membrane separation device 8 at a flow rate ratio of concentrated water amount of 4.9 L / min and permeated water amount of 0.9 L / min. Separated into water 34.
  • the water quality of the pretreated RO permeated water 33 and the pretreated RO concentrated water 34 subjected to RO treatment is shown in the columns of “Pre RO Permeated Water” and “Pre RO Concentrated Water” in Table 5.
  • a circulation operation for returning the pre-RO concentrated water 34 to the water tank 9 was performed, and the pre-treatment RO was operated until the amount of water in the water tank 9 reached 20 L (concentration 5 times). This 5-fold concentration was performed several times, and 90 L of pretreated RO concentrated water 34 was stored in the mixing means 2 to obtain pretreated water.
  • the domestic wastewater 21 was mixed at a ratio of 10 L to 90 L of this pretreated water to obtain a mixed treated water 13 (a domestic wastewater addition rate of 10% by weight).
  • the water quality of the domestic wastewater 21 is shown in the column “Living wastewater” in Table 5, and the water quality of the mixed treated water 13 is shown in the “Mixed treated water” column of Table 5, respectively.
  • a membrane separation activated sludge treatment tank 3 When the sheet was operated, it was possible to operate at a flux of 0.70 m 3 / m 2 / day and it was stable.
  • the water quality of the aerobic treated water 14 discharged from the membrane separation activated sludge treatment tank 3 is shown in the “MBR treated water” column of Table 5.
  • the membrane differential pressure increased to 15 kPa as the operation flux was continued for 30 days.
  • the control value of the film differential pressure was 20 kPa or less.
  • Example 2 The plant wastewater treatment method of Example 2 was confirmed to be significantly higher in operating flux in membrane separation and improved in treatment efficiency compared to Comparative Example 2 described later.
  • Comparative Example 2 In the plant wastewater treatment system having the configuration shown in FIG. 5, the domestic wastewater 21 of the second embodiment is not supplied to the mixing means 2, but instead a nutrient source of nitrogen and phosphorus is added, and the Fischer-Tropsch method is used. The plant water produced as a by-product was purified. Distillation tower 7 and pretreatment reverse osmosis membrane separator 8 were used as pretreatment means 1, and MBR was used as membrane separation activated sludge treatment tank 3.
  • the water quality of the plant wastewater 11 is shown in the “plant wastewater” column of Table 6.
  • the plant waste water 11 was distilled in the distillation tower 7, and 100 L of treated water 31 containing acidic oxygenated hydrocarbon was stored in the water tank 9.
  • the water quality of this treated water 31 is shown in the column of “Distilled treated water” in Table 6.
  • 100 mL of 25% NaOH aqueous solution was added to 100 L of stored water to adjust the pH to 5.5.
  • the stored water whose pH has been adjusted is passed through the pretreatment reverse osmosis membrane separation device 8 at a flow rate of 4.9 L / min of concentrated water and 0.9 L / min of permeated water to concentrate the pretreated RO permeated water 33 and the pretreated RO. Separated into water 34.
  • the water quality of the pretreated RO permeated water 33 and the pretreated RO concentrated water 34 subjected to the RO treatment is shown in the columns “Pre RO Permeated Water” and “Pre RO Concentrated Water” in Table 6.
  • a circulating operation for returning the pretreated RO concentrated water 34 to the water tank 9 was performed, and the pretreated RO was operated until the amount of water in the water tank 9 reached 20 L (concentration 5 times). This 5-fold concentration was performed several times, and 90 L of pretreated RO concentrated water 34 was stored in the mixing means 2 to obtain pretreated water.
  • ammonium chloride nitrogen source: added concentration 287 mg / L
  • potassium dihydrogen phosphate phosphorus source: added concentration 66 mg / L
  • the quality of the mixed water to which the nutrient sources of nitrogen and phosphorus are added is shown in the “mixed water” column of Table 6.
  • the obtained mixed water was passed through the membrane separation activated sludge treatment tank 3 (capacity 30 L) at a flow rate of 16.2 mL / min, filtered for 9 minutes, stopped for 1 minute, with two flat membranes having an area of 0.03 m 2. When operated, the flux was 0.35 m 3 / m 2 / day.
  • the quality of the aerobic treated water 14 discharged from the membrane separation activated sludge treatment tank 3 is shown in the column “MBR treated water” in Table 6.
  • the membrane differential pressure increased to 22 kPa by continuing operation for 15 days with this operation flux. Since the control value of the film differential pressure exceeded 20 kPa, chemical cleaning of the film was required, and the number of times of chemical cleaning was more than twice that of Example 2. Moreover, while the processing speed (flux) fell to half or less compared with the Example, the quality of MBR process water was generally inferior.
  • Pretreatment means 2
  • Mixing means 3
  • Anoxic tank 5 Anaerobic biological treatment tank 6
  • Distillation tower 8 Pretreatment reverse osmosis membrane separation device 11
  • Plant wastewater 12 Preliminary Treated water 13 mixed treated water 14
  • aerobic treated water 15 drawn sludge 16 pretreated water 18 post-treated RO permeate 19 post-treated RO concentrated water 21 microbial activator 22, 23 pH regulator 31 containing acidic oxygenated hydrocarbon Treated water 32
  • Organic compounds excluding acidic oxygenated hydrocarbons 33
  • Pretreated RO permeate 34 Pretreated RO concentrated water

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

 有機物を含むプラント排水を膜分離活性汚泥処理槽で処理する効率を向上するようにしたプラント排水の処理方法及びシステムを提供する。有機化合物を含むプラント排水11に微生物活性化剤21を混合し混合処理水13として排出する混合処理工程と、混合処理水13を、膜分離活性汚泥処理槽3で、好気性生物処理及び固液分離処理する好気的処理工程を少なくとも含むことを特徴とする。

Description

プラント排水の処理方法及び処理システム
 本発明は、有機化合物を含むプラント排水を、膜分離活性汚泥処理槽で処理するときの処理効率を向上するようにしたプラント排水の処理方法及び処理システムに関する。
 近年、水資源の有効利用、特にリサイクル利用が重要視される中で、排水や下水を生物処理により浄化することが提案されている。なかでも有機化合物を含む水に対して活性汚泥処理を施すことにより、有機化合物を分解除去し浄化する方法が知られている。
 例えば特許文献1は、フィッシャー・トロプシュ反応水を、一次処理段階で蒸留し、二次処理段階で嫌気性消化及び/又は好気性消化し、三次処理段階で固液分離することを記載している。しかし蒸留により分離された酸性含酸素炭化水素を含む処理水を、二次処理段階で生物学的処理すると、微生物を含む活性汚泥の活性劣化、汚泥の崩壊(微粒化)を引き起こし、微粒化した汚泥が三次処理段階の分離膜を目詰まりさせる問題が見出された。
 また特許文献2は、有機化合物を含むプラント排水を、嫌気性生物処理槽、好気性生物処理槽、固液分離手段、逆浸透膜分離装置(RO)における各処理工程を通し、嫌気性微生物及び好気性微生物による生物学的処理することを記載している。しかしプラント排水を嫌気性生物処理すると、その処理水中に浮遊性物質(SS成分)が多く発生することがあり、この嫌気性処理由来の浮遊性物質が、好気性生物処理しても処理水中に残ることが見出された。これにより好気性生物処理した排水を固液分離処理するとき、分離膜の目詰まりを引き起こすため、分離膜の洗浄頻度を高くしなければならず、また分離膜における運転可能フラックスが、例えば0.2m3/m2/day程度と、かなり低いレベルになってしまうので、全体の処理効率を高くすることが困難であった。
 したがって、これらは有機化合物を含むプラント排水が、好気性生物処理に適していないことが原因と考えられる。また蒸留、嫌気性生物処理等の予備処理手段で処理することにより、好気性微生物(活性汚泥)の活性がより低下し処理効率が低下したり、微粒化した活性汚泥又は嫌気性処理由来の浮遊性物質が増えることにより、分離膜の目詰まりにより運転可能フラックスが低くなるという問題があった。
国際公開番号WO2003/106354号 国際公開番号WO2011/043144号
 本発明の目的は、有機化合物を含むプラント排水を、膜分離活性汚泥処理槽で処理するときの処理効率を従来レベル以上に向上するようにしたプラント排水の処理方法及び処理システムを提供することにある。
 上記目的を達成する本発明のプラント排水の処理方法は、化学プラント、石油プラント又は石油化学プラントから排出された有機化合物を含むプラント排水に、微生物活性化剤を混合し、混合処理水として排出する混合処理工程と、前記混合処理水を、膜分離活性汚泥処理槽で、好気性生物処理及び固液分離処理する好気的処理工程を少なくとも含むことを特徴とする。
 本発明のプラント排水の処理システムは、化学プラント、石油プラント又は石油化学プラントから排出された有機化合物を含むプラント排水に微生物活性化剤を混合し混合処理水として排出する混合手段と、前記混合処理水を、好気性生物処理及び固液分離処理する膜分離活性汚泥処理槽を少なくとも含むことを特徴とする。
 本発明のプラント排水の処理方法によれば、有機化合物を含むプラント排水に微生物活性化剤を添加してから、膜分離活性汚泥処理槽における好気性生物処理を行うようにしたので、分離膜における目詰まりを抑制し、運転可能フラックスを大幅に改良することができる。この理由は定かでないが、微生物活性化剤の添加により、好気性微生物からなる活性汚泥の活性を高くすると共に、活性汚泥の凝集性を改良したためと考えられる。
 前記微生物活性化剤として、生活排水を使用することが好ましく、コストをかけずに好気性微生物を活性化し、処理効率を従来レベル以上に向上することができる。
 前記混合処理工程の前に、前記プラント排水を嫌気性生物処理、蒸留、湿式酸化、希釈、スクリーンろ過、担体ろ過、砂ろ過、pH調整、油分除去処理、活性炭処理から選ばれる少なくとも1つを含む予備処理手段で処理し、予備処理水として排出する予備処理工程を有し、前記予備処理水を前記混合処理工程へ供給することができる。
 前記予備処理工程としては、前記プラント排水を無酸素槽に供し、嫌気性生物処理により有機化合物を分解し、前処理水として排出する前処理工程と、この前処理水を嫌気性生物処理槽に導入し、前記有機化合物を更に分解する嫌気性生物処理を行い、前記予備処理水として排出する嫌気的処理工程を含むことができる。
 前記予備処理工程は、前記プラント排水を蒸留塔に供し、酸性含酸素炭化水素を含む処理水と、前記酸性含酸素炭化水素以外の有機化合物に分離する蒸留工程を含むことができ、前記予備処理水を、酸性含酸素炭化水素を含む処理水にすることができる。
 また前記予備処理工程として、前記プラント排水を蒸留塔に供し、酸性含酸素炭化水素を含む処理水と、前記酸性含酸素炭化水素以外の有機化合物に分離する蒸留工程と、前記酸性含酸素炭化水素を含む処理水を前処理用の逆浸透膜分離装置へ導入し前処理RO透過水と前処理RO濃縮水とに分離する前処理RO工程とから構成することができ、前記予備処理水を、前処理RO濃縮水にすることができる。
 更に前記好気的処理工程から排出された処理水の少なくとも一部を後処理用の逆浸透膜分離装置へ導入し、後処理RO透過水と後処理RO濃縮水とに分離する後処理RO工程を含むことができる。
 前記微生物活性化剤としては、糖、脂肪、蛋白質、窒素、燐及び繊維状物質を含むことが好ましい。また前記微生物活性化剤として、pHが6.0~8.0、生物化学的酸素要求量(BOD)が60~1000mg/l、全窒素含有量が15~100mg/l、全燐含有量が1.5~15mg/lである成分を少なくとも含む活性化剤を使用することが好ましい。
 本発明のプラント排水の処理システムは、プラント排水に微生物活性化剤を添加する混合手段を設置するようにしたので、下流の膜分離活性汚泥処理槽における活性汚泥の活性及び凝集性を高くして分離膜における目詰まりを抑制し、運転可能フラックスを大幅に改良することができる。
 前記混合手段の上流に、前記プラント排水を嫌気性生物処理槽、蒸留塔、湿式酸化装置、希釈手段、スクリーンろ過手段、担体ろ過手段、砂ろ過手段、pH調整手段、油分除去処理手段、活性炭処理手段から選ばれる少なくとも1つで処理し、予備処理水として排出する予備処理手段を設けることができる。
 前記予備処理手段としては、前記プラント排水の嫌気性生物処理を行い前処理水として排出する無酸素槽と、前記前処理水の嫌気性生物処理を更に行い、予備処理水を排出する嫌気性生物処理槽を有することができる。
 前記予備処理手段は、前記プラント排水を蒸留し、酸性含酸素炭化水素を含む処理水と、前記酸性含酸素炭化水素以外の有機化合物に分離する蒸留塔にすることができる。更に前記酸性含酸素炭化水素を含む処理水を、前処理RO透過水と前処理RO濃縮水とに分離する前処理用の逆浸透膜分離装置を有することができる。
 また前記膜分離活性汚泥処理槽の下流に、膜分離活性汚泥処理槽から排出された処理水の少なくとも一部を、後処理RO透過水と後処理RO濃縮水に分離する後処理用の逆浸透膜分離装置を配置することができる。
図1は、本発明のプラント排水の処理方法に使用する処理システムの実施形態の一例を示す系統図である。 図2は、本発明のプラント排水の処理方法に使用する処理システムの実施形態の他の例を示す系統図である。 図3は、本発明のプラント排水の処理方法に使用する処理システムの実施形態の更に他の例を示す系統図である。 図4は、本発明のプラント排水の処理方法に使用する処理システムの実施形態の更に他の例を示す系統図である。 図5は、本発明の実施例2で使用した処理システムを模式的に示す系統図である。
 図1は、本発明のプラント排水の処理方法及び処理システムの実施形態の一例を示す系統図である。図1において、1は予備処理手段、2は混合手段、3は膜分離活性汚泥処理槽である。
 本発明のプラント排水の処理システムは、混合手段2及び膜分離活性汚泥処理槽3を必ず有する。また図1のように混合手段2の上流に予備処理手段1を設けることができる。
 混合手段2は、プラント排水11または予備処理手段1から排出された予備処理水12に、微生物活性化剤21を混合する手段であり、独立した混合槽でも、スタティックミキサー等の混合装置でもよい。微生物活性化剤21を添加することにより、膜分離活性汚泥処理槽3中の好気性微生物(活性汚泥)を活性化し、その凝集性を高くすることができる。
 膜分離活性汚泥処理槽3が、混合手段2の下流に配置され、混合処理水13の好気性生物処理及び固液分離処理を行う。膜分離活性汚泥処理槽3は、通常使用される好気性生物処理装置であり、槽内に空気を供給する散気管と分離膜からなる固液分離手段を有している。分離膜としては、好気性微生物の大きさより孔径が小さい分離膜であればよい。例えば限外濾過膜(UF膜)、精密濾過膜(MF膜)を例示することができる。
 膜分離活性汚泥処理槽3では、活性汚泥が微生物活性化剤21により活性化され、凝集性が高くなる。このため活性汚泥の活性が劣化したり、活性汚泥がへたる(崩壊する)のを抑制することができる。
 したがって、後述するように予備処理手段が蒸留塔でも活性汚泥がへたること及び崩壊・微粒化して分離膜を目詰まりさせることがないと考えられる。また予備処理手段が嫌気性生物処理槽でも、高活性化した活性汚泥が、嫌気性処理由来の浮遊性物質を消化することにより、浮遊性物質が分離膜を目詰まりさせることがないと考えられる。いずれの場合も分離膜の運転フラックスを従来レベル以上に高くすることができる。
 膜分離活性汚泥処理槽3で生物処理された水は、分離膜により好気的処理水14が排出される。好気的処理水14は、冷却塔などのプロセス水(再利用水)、散水用水、水洗トイレ洗浄水等として使用することができる。また更に後処理用の逆浸透膜分離装置に供給し更に浄化することができる。
 本発明のプラント排水の処理システムにおいて、予備処理手段1は、プラント排水に対して行う通常の処理手段から選択することができる。予備処理手段1として、好ましくは、嫌気性生物処理槽、蒸留塔、湿式酸化装置、希釈手段、スクリーンろ過手段、担体ろ過手段、砂ろ過手段、pH調整手段、油分除去処理手段、活性炭処理手段から選ばれる少なくとも1つの処理手段を含むとよい。予備処理手段1は、特に好ましくはプラント排水11を嫌気性生物処理及び/又は蒸留により処理し、プラント排水11中の有機化合物を分解及び/又は除去することができる。予備処理手段1で処理された水は予備処理水12として排出される。
 図2は、本発明のプラント排水の処理方法及び処理システムの実施形態の他の一例を示す系統図である。図2において、予備処理手段1は、無酸素槽4と嫌気性生物処理槽5を含む。無酸素槽4及び嫌気性生物処理槽5は、いずれも嫌気性生物処理を行う処理槽であり、上流側の処理槽を無酸素槽、下流側の処理槽を嫌気性生物処理槽という。
 無酸素槽4は、嫌気性ガスの曝気手段を備え、プラント排水11に対し嫌気性ガスを曝気することにより槽内を無酸素状態に近づけ、有機化合物の嫌気性生物処理を行う。また無酸素槽4は、引抜き汚泥15の一部やRO濃縮水の一部の添加手段及び窒素成分及びリン成分を含む化合物の添加手段を有することができる。引抜き汚泥(活性汚泥)、RO濃縮水、窒素成分及びリン成分などの成分を栄養分として摂取することにより、無酸素槽4内の嫌気性微生物が活性化し、有機化合物の嫌気性生物処理を促進する。
 嫌気性生物処理槽5が、無酸素槽4の下流に配置され、無酸素槽4から排出された前処理水16を更に嫌気性生物処理する。嫌気性生物処理槽5は、pH調節剤22の添加手段を有することができ、嫌気性微生物に好適なpHになるように調節することができる。嫌気性生物処理槽5は、好ましくは上向流嫌気性スラッジブランケット(UASB)である。このUASBは、通常使用される嫌気性生物処理装置であり、生物分解の効率が高い。嫌気性生物処理槽5で処理された水は、予備処理水12として排出される。予備処理水12は、図1の実施形態と同様に、膜分離活性汚泥処理槽3において好気性生物処理及び固液分離処理を行う。膜分離活性汚泥処理槽3は、pH調節剤23の添加手段を有することができ、好気性微生物に好適なpHになるように調節することができる。
 図2において、後処理用の逆浸透膜分離装置6が、膜分離活性汚泥処理槽3の下流に配置され、好気的処理水14の一部を、後処理RO透過水18及び後処理RO濃縮水19に分離する。後処理RO透過水18は、純水や飲用水の原水やボイラ/冷却塔の補給水や農業用水として利用することができる。また後処理RO濃縮水の一部24が逆浸透膜分離装置6から無酸素槽4へ返送され、微生物の栄養素として添加することができる。
 更に膜分離活性汚泥処理槽3から抜き出された引抜き汚泥15の少なくとも一部を無酸素槽4に返送することができ、その配管の途中に引抜き汚泥(活性汚泥)を可溶化する可溶化手段(図示せず)を配置することができる。
 図3は、本発明のプラント排水の処理方法及び処理システムの実施形態の更に他の一例を示す系統図である。図3において、予備処理手段1は、蒸留塔7を含む。
 蒸留塔7は、プラント排水11を蒸留することにより、例えば酸性含酸素炭化水素以外の有機化合物32を留去し、酸性含酸素炭化水素を含む処理水31を予備処理水12として排出する。この予備処理水12は、図1に示した実施形態と同様に処理される。
 酸性含酸素炭化水素としては、例えばギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸などの有機酸を例示することができる。酸性含酸素炭化水素以外の有機化合物32としては、非酸性含酸素炭化水素、酸素を含まない炭化水素であり、例えばアルコール、アルデヒド、ケトン、アルカンなどを例示することができる。
 図4は、本発明のプラント排水の処理方法及び処理システムの実施形態の更に他の一例を示す系統図であり、予備処理手段1として、蒸留塔7、前処理用逆浸透膜分離装置8を含む。
 図4において、蒸留塔7は、プラント排水11を蒸留することにより、例えば酸性含酸素炭化水素以外の有機化合物32を留去し、酸性含酸素炭化水素を含む処理水31を排出する。前処理用逆浸透膜分離装置8が、蒸留塔7の下流に配置され、酸性含酸素炭化水素を含む処理水31を前処理RO透過水33と前処理RO濃縮水34に分離する。この前処理RO濃縮水34が、予備処理水12として排出され、図1に示した実施形態と同様に処理される。
 図3,4に例示された実施形態において、図2の実施形態と同様に、後処理用の逆浸透膜分離装置6を膜分離活性汚泥処理槽3の下流に配置することができる。これにより好気的処理水14の少なくとも一部を、後処理RO透過水18と後処理RO濃縮水19に分離することができる。
 本発明において、処理対象とするプラント排水は、化学プラント、石油プラント又は石油化学プラントから排出された有機化合物を含む排水である。化学プラントから排出されたプラント排水としては、例えばフィッシャー・トロプシュ法を使用したプラントで製造された副生成水など化学反応の副生物としての排水や、主生成物を精製するときに使用した洗浄水が例示される。また、反応装置や設備を洗浄するのに使用した排水を処理することもできる。
 このような中高濃度の有機化合物を含むプラント排水は、純水や飲用水の原水、或いは農業用水として利用することができない。また、工業用水としての利用も制限される。有機化合物としては、低級炭化水素や水溶性の含酸素炭化水素であり、例えばアルカン、アルコール、ケトン、アルデヒド、有機酸等を例示することができる。これらの有機化合物は、単独種又は複数種の組合せであってもよい。
 これらのプラント排水は、食品工場、飲食店、厨房などからの排水とは異なり、生物処理を担う微生物の主要栄養分をほとんど含んでいない。すなわち化学プラント、石油プラント又は石油化学プラントからのプラント排水には、糖(炭水化物)、脂肪、蛋白質、窒素、リンやカリウム、ナトリウム、カルシウム等の微量金属元素をほとんど含んでいない。このようなプラント排水を、嫌気性生物処理及び/又は蒸留した後、膜分離活性汚泥処理しようとすると、微生物の活性を高くすることができずに活性汚泥がへたり、活性汚泥が崩壊・微粒化したり、嫌気性処理由来の有機化合物の生物学的処理が十分に進まなかったりするため、分離膜の目詰まりが起こったりすることが見出された。本発明は、プラント排水を嫌気性生物処理及び/又は蒸留した後、微生物活性化剤を混合することにより、活性汚泥の活性を高くしたので、活性汚泥のへたりや微粒化(崩壊)を防ぎ、分離膜の目詰まりを抑制し運転フラックスを高くすることができる。
 本発明の処理方法では、混合処理工程においてプラント排水11に微生物活性化剤21が添加された後、好気的処理工程において好気性生物処理が行われ、固液分離処理されて好気的処理水14として再生される。先ず混合処理工程及び好気的処理工程について説明する。
 混合処理工程で添加する微生物活性化剤21としては、好気性微生物が摂取する栄養分及び/又は繊維状物質が挙げられる。微生物活性化剤21としては、好ましくは生活排水、人工下水、食品及び食品加工工場からの排水、厨房排水、汚泥消化槽脱離液等が例示される。特に生活排水を使用することが好ましい。生活排水は、生活雑排水及び/又はし尿からなる。ここで生活雑排水は、台所排水、風呂排水、洗濯排水等からなる。し尿としては、水洗トイレ排水が例示され、トイレットペーパーなどの繊維状物質を含むことができる。微生物活性化剤21を添加することによりコストをかけずに好気性微生物を活性化し、処理効率を従来レベル以上に向上することができる。
 微生物活性化剤21としては、糖、脂肪、蛋白質、窒素、燐及び繊維状物質を含むものがよい。これら成分を含むことにより好気性微生物を活性化することができる。また繊維状物質を含むことにより、これが核として作用し活性汚泥の凝集性を高くすることができる。このため活性汚泥が崩壊し、微粒化するのを抑制することができる。上述した栄養素を含むように容易に調製することができる微生物活性化剤として人工下水が例示される。表1は人工下水の組成を例示するものである。
Figure JPOXMLDOC01-appb-T000001
 なお微生物活性化剤21は、液体、粉末や粒状体などの固体のいずれでもよい。また微生物活性化剤21をそのまま予備処理水と混合してもよいし、或いは微生物活性化剤21を水等に溶かした溶液又は分散させた懸濁液にして使用してもよい。
 また微生物活性化剤21は、pHが好ましくは6.0~8.0、生物化学的酸素要求量(BOD)が60~1000mg/l、全窒素含有量が15~100mg/l、全燐含有量が1.5~15mg/lである成分を少なくとも含むことが好ましい。なお微生物活性化剤21は、微生物の活性を阻害しない範囲において、上記以外の成分を含んでもよい。
 なお本明細書において、全窒素含有量は有機性窒素、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素の各含有量の合計とし、全燐含有量はりん酸態りんの含有量とする。また生物化学的酸素要求量(BOD)はJIS K0201 21、有機性窒素はJIS K0102 44、アンモニア性窒素はJIS K0102 42、亜硝酸性窒素はJIS K0102 43.1、硝酸性窒素はJIS K0102 43.2、りん酸態りんの含有量はJIS K0102 46.1に基づき分析された値とする。
 混合処理工程での予備処理水12と微生物活性化剤21との混合比は、予備処理水12を100重量部にするとき、微生物活性化剤21が好ましくは1~50重量部、より好ましくは5~15重量部になるようにするとよい。
 混合処理工程で微生物活性化剤21が添加され、活性汚泥(好気性微生物)にとっての栄養分、活性汚泥の核になり得る繊維状物質を含んだ処理水は混合処理水13として排出され、好気的処理工程に移送される。
 好気的処理工程では、混合処理水13が、膜分離活性汚泥処理槽3に導入され、好気性生物処理及び固液分離処理が行われる。膜分離活性汚泥処理槽3におけるpHは、好ましくはpH6.5~8.0、より好ましくはpH7.0~8.0に調節される。pHを調節する手段は、特に制限されることはなく、通常のpH調節方法を用いることができ、適宜、酸又はアルカリからなるpH調節剤23を添加することができる。膜分離活性汚泥処理槽3として、分離膜を備えた膜分離活性汚泥処理槽(MBR)を使用することが好ましい。MBRは、散気管を有し、空気を供給することにより、混合処理水13に残存した有機化合物が、好気性生物処理により分解・除去される。また膜分離活性汚泥処理槽3内の活性汚泥は、混合処理水13中に含まれる豊富な栄養分を摂取し活性化する。このため例えば後述する予備処理工程で発生することがある嫌気性処理由来の浮遊性物質をほとんど消化するようになると推測される。また繊維状物質を含むため活性汚泥が凝集し易くなり、崩壊したり微粒化したりするのが抑制される。
 次に好気性生物処理された処理水が、MBRの槽内に備えられた分離膜により固液分離され、槽内の活性汚泥から分離された好気的処理水14として排出される。
 本発明では、膜分離活性汚泥処理槽3内の嫌気性処理由来の浮遊性物質をほとんど消失させることができ、また活性汚泥の凝集性を高くすることができるので、分離膜における目詰まりを抑制し、運転フラックスを大幅に改良することができる。例えば生活排水を添加しないとき分離膜の処理流束が0.2m3/m2/day程度であったのが、上述した生活排水を添加することにより分離の処理流束が0.6~0.65m3/m2/dayへと約3倍以上に改良することができる。
 また、膜分離活性汚泥処理槽3内では、活性汚泥が増えすぎた場合に、その一部を引抜き汚泥15として取出すことにより、活性汚泥の濃度を調整することができる。更に引抜き汚泥15の一部を嫌気性微生物の栄養素として利用することができる。このためには、引抜き汚泥を可溶化処理すること、すなわち活性汚泥である好気性微生物の殻(細胞膜)を破壊或いは溶解して、微生物の栄養素として吸収しやすくすることが好ましい。引抜き汚泥を可溶化処理する方法としては、通常の方法を使用することができる。例えば引抜き汚泥を、水酸化ナトリウム水溶液等のアルカリで処理する方法、湿式ミルにより破砕処理する方法、凍結処理する方法、超音波処理する方法、オゾン処理する方法等を例示することができる。
 本発明の処理方法において、予備処理工程としては、嫌気性生物処理、蒸留、湿式酸化、希釈、スクリーンろ過、担体ろ過、砂ろ過、pH調整、油分除去処理、活性炭処理から選ばれる少なくとも1つで処理することができる。なかでもプラント排水11中の有機化合物を分解/除去する嫌気性生物処理/蒸留処理を行うことが好ましい。
 本発明の処理方法において、予備処理工程としては、図2に示した嫌気性処理によりプラント排水11中の有機化合物を分解し、及び/又は図3,4に示した蒸留によりプラント排水11中の有機化合物を除去する処理工程を含むことが好ましい。
 図2に示した予備処理工程は、無酸素槽4での嫌気性処理及び嫌気性生物処理槽5での嫌気性処理からなる。無酸素槽4では、プラント排水11が供給され、嫌気性ガスで曝気することにより、酸素が除去されると共に、嫌気性微生物の撹拌混合により分解反応が行われる。嫌気性ガスは酸素を含まない気体であり、例えば窒素、メタン、二酸化炭素が例示される。これらの気体は単独でも、複数種の混合ガスでもよい。好ましくはメタン及び二酸化炭素を含む混合ガスであるとよい。また本発明の処理方法により発生したメタン及び二酸化炭素を含む混合ガスを使用することができる。
 この無酸素状態で嫌気性微生物が、プラント排水中の有機化合物を生物分解することにより、有機化合物の主鎖を切断し低分子量化したり、有機酸へ分解したりする。無酸素槽4には、RO濃縮水、引抜き汚泥、窒素成分及びリン成分を含む化合物を栄養素として添加することができる。窒素成分としては、例えば尿素、アンモニウム塩等が例示される。また、リン成分としては、例えばリン酸、リン酸塩等がよい。無酸素槽4での処理水は前処理水16として排出される。
 次に、前処理水16が、嫌気性生物処理槽5に導入され更に嫌気性生物処理が行われる。前処理水16が嫌気性生物処理槽5に導入されると、pH調節手段により、好ましくはpH5.5~7.0、より好ましくはpH6.0~6.7に調節される。pH調節手段は、特に制限されることはなく、通常のpH調節方法を用いることができ、適宜、アルカリからなるpH調節剤22を添加することができる。pH調節剤22はNaOH水溶液とすることができる。アルカリからなるpH調節剤22を添加することにより、嫌気性微生物の活性を高くすることができる。なお、嫌気性微生物の活性に最も適したpHは7.0~7.5であるが、pH調節手段によりpHを6.0~6.7に調節することにより、pHを7.0~7.5に調節する場合と比べて、嫌気性微生物の活性を大きく損ねることなくpH調節剤22の添加量を減らすことができ、pH調節剤22の購入費を低減することができる。また、好気的処理水14中に含まれるナトリウムイオンの量を減らすことができ、好気的処理水14を再利用しやすくすることができる。
 本発明において、嫌気性生物処理槽5としては、上向流嫌気性スラッジブランケット(UASB)の処理槽が好ましく使用される。嫌気性生物処理槽5内の嫌気性生物分解により、分解された有機化合物が、更にメタン及び二酸化炭素に分解され、混合ガスとして排出される。また、嫌気性生物処理槽5内で増殖し、余剰となった嫌気性微生物は、適宜取出して、保存し再利用することができる。嫌気性生物処理槽5での処理水は予備処理水12として排出される。予備処理水12は、上記の通り混合処理工程において微生物活性化剤21が添加された後、好気的処理工程において好気性生物処理、固液分離処理され、好気的処理水14として再生される。
 図2において、好気的処理水14の少なくとも一部は、後処理RO工程として後処理用逆浸透膜分離装置6へ供給される。好気的処理水14の残りは、冷却塔などのプロセス水(再利用水)17として使用することができる。後処理用逆浸透膜分離装置6に供給された好気的処理水14は、溶存物質が除去された後処理RO透過水18として精製される。この後処理RO透過水18は、純水や飲用水の原水や農業用水として利用することができる。また、ボイラ用水、冷却用水、工業用水として使用してもよい。一方、好気的処理水14中の溶存物質は、後処理RO濃縮水19として排出される。溶存物質としては、有機化合物の残存物や窒素化合物、リン化合物等が含まれている。この後処理RO濃縮水19の少なくとも一部24を、前処理工程の無酸素槽4に返送することができる。後処理RO濃縮水19は、窒素化合物及びリン化合物を含有するため、嫌気性微生物及び好気性微生物の栄養素として活用することができる。
 一方、引抜き汚泥15の残部は、メタン発酵槽に導入し嫌気性生物処理することができる。これにより引抜き汚泥がメタン及び二酸化炭素を含む混合ガスに分解され排出される。更に嫌気性生物処理槽やメタン発酵槽から排出したメタン及び二酸化炭素を含む混合ガスは、無酸素槽に返送し嫌気性ガスとして曝気することができる。これにより生物処理のコストが低減する。或いは、混合ガスを化学プラント、石油プラント又は石油化学プラントからなる主プラントに返送してもよい。嫌気性生物処理槽から排出される混合ガスの組成比は、CH4/CO2=8/2~7/3であり、天然ガスからH2/CO=2の合成ガスを製造するフィッシャー・トロプシュ法のリフォーミング反応の原料にそのまま利用することができる。
 図3に示した実施形態において、予備処理工程は、蒸留塔7でプラント排水11を蒸留する工程からなる。蒸留塔7では、供給されたプラント排水11が、スチームで蒸留され、水より低沸点の有機化合物が留去される。水より低沸点の有機化合物は、酸性含酸素炭化水素を除く有機化合物32である。一方、酸性含酸素炭化水素を含む処理水31は、有機化合物として主に酸性含酸素炭化水素を含むが、水より沸点が高い酸性含酸素炭化水素を除く炭化水素を含んでもよい。この処理水31が、予備処理水12として排出され、混合処理工程において微生物活性化剤21が添加された後、好気的処理工程において好気性生物処理、固液分離処理され、好気的処理水14として再生される。
 酸性含酸素炭化水素を含む処理水31に、微生物活性化剤21を添加することにより、膜分離活性汚泥処理槽3における活性汚泥がへたって微粒化するのを防ぐことができる。
 図4に示した実施形態において、予備処理工程は、プラント排水11を蒸留塔7で蒸留し、次いで前処理用逆浸透膜分離装置8で膜分離する工程からなる。蒸留塔7における蒸留は上記の通りである。蒸留塔7から排出された、酸性含酸素炭化水素を含む処理水31は、前処理用逆浸透膜分離装置8に供給され、前処理RO透過水33と前処理RO凝縮水34に分離される。前処理RO透過水33は精製された再生水であり、純水や飲用水の原水や農業用水として利用することができる。前処理RO凝縮水34は、予備処理水12として排出され、混合処理工程において微生物活性化剤21が添加された後、好気的処理工程において好気性生物処理、固液分離処理され、好気的処理水14として再生される。
 従来、前処理RO凝縮水34は、蒸留塔7から排出された酸性含酸素炭化水素を含む処理水31よりも、活性汚泥を不活性化し崩壊・微粒化させる作用が強かったが、本発明の微生物活性化剤21を添加することにより、膜分離活性汚泥処理槽3における活性汚泥がへたって微粒化するのを防ぐことができる。
 なお図3,4には図示されていないが、好気的処理水14の少なくとも一部は、後処理RO工程として後処理用逆浸透膜分離装置6へ供給することができる。後処理用逆浸透膜分離装置6に供給された好気的処理水14は、溶存物質が除去された後処理RO透過水18、及び溶存物質が凝縮された後処理RO凝縮水19に分離することができる。
 以下において実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
   実施例1
 図2に示した構成からなるプラント排水の処理システムにおいて、フィッシャー・トロプシュ法により副生したプラント水の浄化処理を行った。嫌気性生物処理槽5としてUASBを使用し、膜分離活性汚泥処理槽3としてMBRを使用した。
 プラント排水11の水質を表2の「プラント排水」の欄に示した。プラント排水11を無酸素槽4へ19.8mL/分の流量で供給し、無酸素処理した。無酸素槽4から排出した前処理水16を、5%NaOH水溶液0.4mL/分と共に嫌気性生物処理槽5に導入した。これにより嫌気性生物処理槽5をpH7.0~7.5に調節しながら貯留(滞留時間:40.8時間)し、嫌気性生物処理を行った。嫌気性生物処理槽5から排出した予備処理水12の水質を表2の「UASB処理水」の欄に示した。予備処理水12の水質は、アルコール等の非酸性の酸化炭化水素の含有量、CODCrが大幅に低減した。一方、浮遊物質量(SS)はほぼ55倍に増加した。
 嫌気性生物処理槽5から排出した予備処理水12を混合手段2に供給し、表3に示す水質の生活排水21(2mL/分)と混合した。得られた混合処理水13を、1Nの塩酸0.07mL/分と共に、膜分離活性汚泥処理槽3へ導入した。これにより膜分離活性汚泥処理槽3をpH7~8に調節し好気性生物処理を行った後、膜分離により固液分離した。なお膜分離活性汚泥処理槽3から引抜き汚泥15を抜き出し、その一部を無酸素槽4に返送した。膜分離活性汚泥処理槽3から排出した好気的処理水14の水質を表2の「MBR処理水」の欄に示した。好気的処理水14の水質は、すべての有機物成分およびSSの含有量が大幅に削減していた。膜分離における処理流束は0.60m3/m2/dayと高く安定的であった。
 得られた好気的処理水14を後処理用逆浸透膜分離装置6へ供給し、水回収率65%で運転した。RO処理された後処理RO透過水18及び後処理RO濃縮水19の水質を表2の「RO透過水」及び「RO濃縮水」の欄に示した。後処理RO透過水18の水質は清浄であり、EPA‘73のボイラ用水(48~103バール)及び冷却水の水質基準に合格するレベルであった。なお後処理RO濃縮水の一部24を無酸素槽4に循環させた。
 この実施例1のプラント排水の処理方法は、分離膜での目詰まりが発生することなく、また後述する比較例1と比較し、膜分離における処理流束が大幅に高くなり、処理効率が向上することが確認された。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
   比較例1
 図2に示した構成からなるプラント排水の処理システムにおいて、実施例1の生活排水21を混合手段2へ供給しないようにして、フィッシャー・トロプシュ法により副生したプラント水の浄化処理を行った。嫌気性生物処理槽5としてUASBを使用し、膜分離活性汚泥処理槽3としてMBRを使用した。
 プラント排水11の水質を表4の「プラント排水」の欄に示した。プラント排水11を無酸素槽4へ19.8mL/分の流量で供給し、無酸素処理した。無酸素槽4から排出した前処理水16を、5%NaOH水溶液0.4mL/分と共に嫌気性生物処理槽5に導入した。これにより嫌気性生物処理槽5をpH7.0~7.5に調節しながら貯留(滞留時間:40.8時間)し、嫌気性生物処理を行った。嫌気性生物処理槽5から排出した予備処理水12の水質を表4の「UASB処理水」の欄に示した。予備処理水12の水質は、アルコール等の非酸性の酸化炭化水素の含有量、CODCrが大幅に低減した。一方、浮遊物質量(SS)はほぼ40倍に増加した。
 嫌気性生物処理槽5から排出した予備処理水12を、1Nの塩酸0.07mL/分と共に、膜分離活性汚泥処理槽3へ導入した。これにより膜分離活性汚泥処理槽3をpH7~8に調節し好気性生物処理を行った後、膜分離により固液分離した。なお膜分離活性汚泥処理槽3から引抜き汚泥15を抜き出し、その一部を無酸素槽4に返送した。膜分離活性汚泥処理槽3から排出した好気的処理水14の水質を表4の「MBR処理水」の欄に示した。好気的処理水14の水質は、すべての有機物成分およびSSの含有量が削減したが、膜分離における処理流束は0.20m3/m2/dayと大幅に低下した。
 得られた好気的処理水14を後処理用逆浸透膜分離装置6へ供給し、水回収率65%で運転した。RO処理された後処理用RO透過水18及び後処理用RO濃縮水19の水質を表4の「RO透過水」及び「RO濃縮水」の欄に示した。またRO濃縮水の一部24を無酸素槽4に循環させた。
Figure JPOXMLDOC01-appb-T000004
   実施例2
 図5に示した構成からなるプラント排水の処理システムにおいて、フィッシャー・トロプシュ法により副生したプラント水の浄化処理を行った。予備処理手段1として蒸留塔7及び前処理用逆浸透膜分離装置8を使用し、膜分離活性汚泥処理槽3としてMBRを使用した。
 プラント排水11の水質を表5の「プラント排水」の欄に示した。プラント排水11を蒸留塔7で蒸留し、酸性含酸素炭化水素を含む処理水31を水槽9に100L貯留した。この処理水31の水質を表5の「蒸留処理水」の欄に示した。100Lの貯留水に25%NaOH水溶液を100mL添加しpH5.5にした。pH調整した貯留水を前処理用逆浸透膜分離装置8へ濃縮水量4.9L/分、透過水量0.9L/分の流量比で通水し、前処理RO透過水33及び後処理RO濃縮水34に分離した。RO処理された前処理RO透過水33及び前処理RO濃縮水34の水質を表5の「前RO透過水」及び「前RO濃縮水」の欄に示した。前RO濃縮水34を水槽9に戻す循環運転を行い、水槽9内の水量が20Lになるまで前処理ROを運転した(5倍濃縮)。この5倍濃縮を数回行い、前処理RO濃縮水34を混合手段2に90L貯留し、予備処理水とした。
 この予備処理水90Lに対し、生活排水21を10Lの割合で混合し、混合処理水13とした(生活排水添加率10重量%)。生活排水21の水質を表5の「生活排水」の欄、混合処理水13の水質を表5の「混合処理水」の欄にそれぞれ示した。
 得られた混合処理水13を、32.4mL/分の流量で膜分離活性汚泥処理槽3(容量30L)に通水し、9分ろ過、1分停止、面積0.03m2の平膜2枚で運転したところフラックス0.70m3/m2/dayで運転可能で、安定的であった。膜分離活性汚泥処理槽3から排出した好気的処理水14の水質を表5の「MBR処理水」の欄に示した。
 この運転フラックスで30日運転を継続して膜差圧は15kPaまで上昇した。膜差圧の管理値20kPa以下であった。
 この実施例2のプラント排水の処理方法は、後述する比較例2と比較し、膜分離における運転フラックスが大幅に高くなり、処理効率が向上することが確認された。
Figure JPOXMLDOC01-appb-T000005
   比較例2
 図5に示した構成からなるプラント排水の処理システムにおいて、実施例2の生活排水21を混合手段2へ供給せず、代わりに窒素、リンの栄養源を添加するようにして、フィッシャー・トロプシュ法により副生したプラント水の浄化処理を行った。予備処理手段1として蒸留塔7及び前処理用逆浸透膜分離装置8を使用し、膜分離活性汚泥処理槽3としてMBRを使用した。
 プラント排水11の水質を表6の「プラント排水」の欄に示した。プラント排水11を蒸留塔7で蒸留し、酸性含酸素炭化水素を含む処理水31を水槽9に100L貯留した。この処理水31の水質を表6の「蒸留処理水」の欄に示した。100Lの貯留水に25%NaOH水溶液を100mL添加しpH5.5にした。pH調整した貯留水を前処理用逆浸透膜分離装置8へ濃縮水量4.9L/分、透過水量0.9L/分の流量比で通水し、前処理RO透過水33及び前処理RO濃縮水34に分離した。RO処理された前処理RO透過水33及び前処理RO濃縮水34の水質を表6の「前RO透過水」及び「前RO濃縮水」の欄に示した。前処理RO濃縮水34を水槽9に戻す循環運転を行い、水槽9内の水量が20Lになるまで前処理ROを運転した(5倍濃縮)。この5倍濃縮を数回行い、前処理RO濃縮水34を混合手段2に90L貯留し、予備処理水とした。
 この予備処理水に対し、塩化アンモニウム(窒素源:添加濃度287mg/L)及びリン酸二水素カリウム(リン源:添加濃度66mg/L)の割合で添加し、混合水とした。この窒素、リンの栄養源を添加した混合水の水質を表6の「混合水」の欄に示した。
 得られた混合水を、16.2mL/分の流量で膜分離活性汚泥処理槽3(容量30L)に通水し、9分ろ過、1分停止、面積0.03m2の平膜2枚で運転したところフラックスは0.35m3/m2/dayであった。膜分離活性汚泥処理槽3から排出した好気的処理水14の水質を表6の「MBR処理水」の欄に示した。
 この運転フラックスで15日運転を継続して膜差圧は22kPaまで上昇した。膜差圧の管理値20kPaを超えたため、膜の薬品洗浄が必要となり、薬品洗浄回数が実施例2と比べ2倍以上となった。また、処理速度(フラックス)が実施例と比べ半分以下に下がるとともに、MBR処理水の水質が総じて劣った。
Figure JPOXMLDOC01-appb-T000006
  1 予備処理手段
  2 混合手段
  3 膜分離活性汚泥処理槽
  4 無酸素槽
  5 嫌気性生物処理槽
  6 後処理用逆浸透膜分離装置
  7 蒸留塔
  8 前処理用逆浸透膜分離装置
  11 プラント排水
  12 予備処理水
  13 混合処理水
  14 好気的処理水
  15 引抜き汚泥
  16 前処理水
  18 後処理RO透過水
  19 後処理RO濃縮水
  21 微生物活性化剤
  22,23 pH調節剤
  31 酸性含酸素炭化水素を含む処理水
  32 酸性含酸素炭化水素を除く有機化合物
  33 前処理RO透過水
  34 前処理RO濃縮水

Claims (15)

  1.  化学プラント、石油プラント又は石油化学プラントから排出された有機化合物を含むプラント排水に、微生物活性化剤を混合し、混合処理水として排出する混合処理工程と、
     前記混合処理水を、膜分離活性汚泥処理槽で、好気性生物処理及び固液分離処理する好気的処理工程を少なくとも含むことを特徴とするプラント排水の処理方法。
  2.  前記微生物活性化剤として、生活排水を使用することを特徴とする請求項1に記載のプラント排水の処理方法。
  3.  前記混合処理工程の前に、前記プラント排水を嫌気性生物処理、蒸留、湿式酸化、希釈、スクリーンろ過、担体ろ過、砂ろ過、pH調整、油分除去処理、活性炭処理から選ばれる少なくとも1つを含む予備処理手段で処理し、予備処理水として排出する予備処理工程を有し、前記予備処理水を前記混合処理工程へ供給することを特徴とする請求項1又は2に記載のプラント排水の処理方法。
  4.  前記予備処理工程が、前記プラント排水を無酸素槽に供し、嫌気性生物処理により有機化合物を分解し、前処理水として排出する前処理工程と、この前処理水を嫌気性生物処理槽に導入し、前記有機化合物を更に分解する嫌気性生物処理を行い、前記予備処理水として排出する嫌気的処理工程を含むことを特徴とする請求項3に記載のプラント排水の処理方法。
  5.  前記予備処理工程が、前記プラント排水を蒸留塔に供し、酸性含酸素炭化水素を含む処理水と、前記酸性含酸素炭化水素以外の有機化合物に分離する蒸留工程を含み、前記予備処理水が、酸性含酸素炭化水素を含む処理水であることを特徴とする請求項3に記載のプラント排水の処理方法。
  6.  前記予備処理工程が、前記プラント排水を蒸留塔に供し、酸性含酸素炭化水素を含む処理水と、前記酸性含酸素炭化水素以外の有機化合物に分離する蒸留工程と、前記酸性含酸素炭化水素を含む処理水を前処理用の逆浸透膜分離装置へ導入し前処理RO透過水と前処理RO濃縮水とに分離する前処理RO工程を含み、前記予備処理水が、前処理RO濃縮水であることを特徴とする請求項3に記載のプラント排水の処理方法。
  7.  前記好気的処理工程から排出された処理水の少なくとも一部を後処理用の逆浸透膜分離装置へ導入し、後処理RO透過水と後処理RO濃縮水とに分離する後処理RO工程を含むことを特徴とする請求項1~6のいずれかに記載のプラント排水の処理方法。
  8.  前記微生物活性化剤として、糖、脂肪、蛋白質、窒素、燐及び繊維状物質を含む活性化剤を使用することを特徴とする請求項1~7のいずれかに記載のプラント排水の処理方法。
  9.  前記微生物活性化剤として、pHが6.0~8.0、生物化学的酸素要求量(BOD)が60~1000mg/l、全窒素含有量が15~100mg/l、全燐含有量が1.5~15mg/lである成分を少なくとも含む活性化剤を使用することを特徴とする請求項1~8のいずれかに記載のプラント排水の処理方法。
  10.  化学プラント、石油プラント又は石油化学プラントから排出された有機化合物を含むプラント排水に微生物活性化剤を混合し混合処理水として排出する混合手段と、
     前記混合処理水を、好気性生物処理及び固液分離処理する膜分離活性汚泥処理槽を少なくとも含むことを特徴とするプラント排水の処理システム。
  11.  前記混合手段の上流に、前記プラント排水を嫌気性生物処理槽、蒸留塔、湿式酸化装置、希釈手段、スクリーンろ過手段、担体ろ過手段、砂ろ過手段、pH調整手段、油分除去処理手段、活性炭処理手段から選ばれる少なくとも1つで処理し、予備処理水として排出する予備処理手段を有する請求項10に記載のプラント排水の処理システム。
  12.  前記予備処理手段が、前記プラント排水の嫌気性生物処理を行い前処理水として排出する無酸素槽と、前記前処理水の嫌気性生物処理を更に行い、予備処理水を排出する嫌気性生物処理槽を有することを特徴とする請求項11に記載のプラント排水の処理システム。
  13.  前記予備処理手段が、前記プラント排水を蒸留し、酸性含酸素炭化水素を含む処理水と、前記酸性含酸素炭化水素以外の有機化合物に分離する蒸留塔を有することを特徴とする請求項11に記載のプラント排水の処理システム。
  14.  前記予備処理手段が、前記酸性含酸素炭化水素を含む処理水を、前処理RO透過水と前処理RO濃縮水とに分離する前処理用の逆浸透膜分離装置を有することを特徴とする請求項13に記載のプラント排水の処理システム。
  15.  前記膜分離活性汚泥処理槽から排出された処理水の少なくとも一部を、後処理RO透過水と後処理RO濃縮水に分離する後処理用の逆浸透膜分離装置を有することを特徴とする請求項10~14のいずれかに記載のプラント排水の処理システム。
PCT/JP2013/050255 2012-02-09 2013-01-10 プラント排水の処理方法及び処理システム WO2013118530A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AP2014007790A AP2014007790A0 (en) 2012-02-09 2013-01-10 Plant waste water treatment method and treatment system
CA2864214A CA2864214A1 (en) 2012-02-09 2013-01-10 Treatment methods and treatment systems for plant effluents
US14/377,529 US20150021264A1 (en) 2012-02-09 2013-01-10 Treatment methods and treatment systems for plant effluents
EA201491495A EA025954B1 (ru) 2012-02-09 2013-01-10 Способы обработки и системы обработки для заводских сточных вод

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012025710A JP5905283B2 (ja) 2012-02-09 2012-02-09 プラント排水の処理方法及び処理システム
JP2012-025710 2012-10-23

Publications (1)

Publication Number Publication Date
WO2013118530A1 true WO2013118530A1 (ja) 2013-08-15

Family

ID=48947299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050255 WO2013118530A1 (ja) 2012-02-09 2013-01-10 プラント排水の処理方法及び処理システム

Country Status (6)

Country Link
US (1) US20150021264A1 (ja)
JP (1) JP5905283B2 (ja)
AP (1) AP2014007790A0 (ja)
CA (1) CA2864214A1 (ja)
EA (1) EA025954B1 (ja)
WO (1) WO2013118530A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739145A (zh) * 2013-11-15 2014-04-23 安徽省绿巨人环境技术有限公司 一种果葡糖浆生产废水处理工艺
CN103739144A (zh) * 2013-11-15 2014-04-23 安徽省绿巨人环境技术有限公司 一种合成洗涤剂废水处理工艺
CN104556569A (zh) * 2014-12-23 2015-04-29 北京桑德环境工程有限公司 油页岩干馏污水处理的方法及系统
JP2015163389A (ja) * 2014-01-31 2015-09-10 三菱レイヨン株式会社 廃水処理方法および廃水処理システム
CN105254124A (zh) * 2015-10-16 2016-01-20 巢湖市聚源机械有限公司 一种轧钢废水处理方法
CN108706816A (zh) * 2018-05-07 2018-10-26 苏州亚得宝消防设备有限公司 一种生活垃圾污水处理工艺
CN113800703A (zh) * 2021-11-15 2021-12-17 大唐环境产业集团股份有限公司 一种催化剂烟气洗涤废水处理方法和系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP2015008957A0 (en) * 2013-06-27 2015-12-31 Sasol Tech Pty Ltd Production of biomass for use in the treatment of fischer-tropsch reaction water
JP2016117016A (ja) * 2014-12-19 2016-06-30 三浦工業株式会社 回収ろ過ユニット
JP2016117017A (ja) * 2014-12-19 2016-06-30 三浦工業株式会社 回収ろ過ユニット
JP6287876B2 (ja) * 2015-02-03 2018-03-07 富士電機株式会社 排水処理方法及び排水処理装置
CN105253987A (zh) * 2015-10-16 2016-01-20 巢湖市聚源机械有限公司 一种用于轧钢废水处理的发酵处理剂
CN109641769A (zh) * 2016-08-31 2019-04-16 西门子能源有限公司 用于处理高总溶解固体废水的系统和方法
SG11201908136QA (en) * 2017-03-28 2019-10-30 Chromatan Inc Continuous countercurrent spiral chromatography
ES2868952T3 (es) * 2017-06-08 2021-10-22 Lyondell Chemie Nederland B V Método de tratamiento de aguas residuales
US20210114901A1 (en) * 2018-06-11 2021-04-22 William J Cox Method for treating wastewater via a flocculating mineral composition
CN111196666A (zh) * 2020-01-22 2020-05-26 上海环科淙达水务有限公司 一种改进加药位置的模块化mbr生活污水集成处理装置及其方法
CN112441700A (zh) * 2020-11-10 2021-03-05 北京朗新明环保科技有限公司 一种处理含硫酸盐及氟离子矿井水的方法及系统
WO2023288331A1 (en) * 2021-07-16 2023-01-19 Georgia Tech Research Corporation Water oxidation non-sewered single unit toilet system
MX2024000850A (es) * 2021-07-16 2024-06-19 Georgia Tech Res Inst Sistema de tratamiento de orina y aguas residuales.
WO2023288326A1 (en) * 2021-07-16 2023-01-19 Georgia Tech Research Corporation Volume reduction non-sewered single unit toilet system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103375A (en) * 1976-02-27 1977-08-30 Mitsubishi Kakoki Kk Medical liquid injection control apparatus
JPS58202097A (ja) * 1982-05-13 1983-11-25 Nippon Steel Corp 安水の活性汚泥処理方法
JPS59216691A (ja) * 1983-05-24 1984-12-06 Nippon Steel Corp 産業廃水の活性汚泥処理方法
JPH0975977A (ja) * 1995-09-13 1997-03-25 Asutoro:Kk 活性汚泥への栄養剤補給方法および栄養剤組成物
WO2006043726A1 (ja) * 2004-10-22 2006-04-27 Toyo Engineering Corporation 炭化水素もしくは含酸素化合物の製造プラント廃水の処理方法
JP2006514579A (ja) * 2002-06-18 2006-05-11 サソル テクノロジー (ピーティーワイ)リミテッド フィッシャー・トロプシュにより生じる水の精製方法
JP2009039637A (ja) * 2007-08-08 2009-02-26 Jfe Chemical Corp シアン含有排水の浄化方法
WO2009119351A1 (ja) * 2008-03-24 2009-10-01 千代田化工建設株式会社 プロセス水の浄化処理方法
WO2011043144A1 (ja) * 2009-10-09 2011-04-14 千代田化工建設株式会社 プラント排水の処理方法及び処理システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1023695C2 (nl) * 2002-06-18 2004-02-18 Sasol Tech Pty Ltd Werkwijze voor het zuiveren van Fischer-Tropsch-afkomstig water.
GB2391225B (en) * 2002-06-18 2005-10-26 Sasol Technology Method of purifying fischer-tropsch derived water
CA2463120A1 (en) * 2004-04-01 2005-10-01 Global Bioremediation Technologies Inc. Method, process, apparatus, and product for remediation of hydrocarbon contamination
WO2007012181A1 (en) * 2005-07-25 2007-02-01 Zenon Technology Partnership Apparatus and method for treating fgd blowdown or similar liquids

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103375A (en) * 1976-02-27 1977-08-30 Mitsubishi Kakoki Kk Medical liquid injection control apparatus
JPS58202097A (ja) * 1982-05-13 1983-11-25 Nippon Steel Corp 安水の活性汚泥処理方法
JPS59216691A (ja) * 1983-05-24 1984-12-06 Nippon Steel Corp 産業廃水の活性汚泥処理方法
JPH0975977A (ja) * 1995-09-13 1997-03-25 Asutoro:Kk 活性汚泥への栄養剤補給方法および栄養剤組成物
JP2006514579A (ja) * 2002-06-18 2006-05-11 サソル テクノロジー (ピーティーワイ)リミテッド フィッシャー・トロプシュにより生じる水の精製方法
WO2006043726A1 (ja) * 2004-10-22 2006-04-27 Toyo Engineering Corporation 炭化水素もしくは含酸素化合物の製造プラント廃水の処理方法
JP2009039637A (ja) * 2007-08-08 2009-02-26 Jfe Chemical Corp シアン含有排水の浄化方法
WO2009119351A1 (ja) * 2008-03-24 2009-10-01 千代田化工建設株式会社 プロセス水の浄化処理方法
WO2011043144A1 (ja) * 2009-10-09 2011-04-14 千代田化工建設株式会社 プラント排水の処理方法及び処理システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739145A (zh) * 2013-11-15 2014-04-23 安徽省绿巨人环境技术有限公司 一种果葡糖浆生产废水处理工艺
CN103739144A (zh) * 2013-11-15 2014-04-23 安徽省绿巨人环境技术有限公司 一种合成洗涤剂废水处理工艺
JP2015163389A (ja) * 2014-01-31 2015-09-10 三菱レイヨン株式会社 廃水処理方法および廃水処理システム
CN104556569A (zh) * 2014-12-23 2015-04-29 北京桑德环境工程有限公司 油页岩干馏污水处理的方法及系统
CN105254124A (zh) * 2015-10-16 2016-01-20 巢湖市聚源机械有限公司 一种轧钢废水处理方法
CN108706816A (zh) * 2018-05-07 2018-10-26 苏州亚得宝消防设备有限公司 一种生活垃圾污水处理工艺
CN113800703A (zh) * 2021-11-15 2021-12-17 大唐环境产业集团股份有限公司 一种催化剂烟气洗涤废水处理方法和系统

Also Published As

Publication number Publication date
JP2013158760A (ja) 2013-08-19
EA201491495A1 (ru) 2014-11-28
CA2864214A1 (en) 2013-08-15
US20150021264A1 (en) 2015-01-22
EA025954B1 (ru) 2017-02-28
JP5905283B2 (ja) 2016-04-20
AP2014007790A0 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5905283B2 (ja) プラント排水の処理方法及び処理システム
JP5602144B2 (ja) プラント排水の処理方法及び処理システム
CN103974910B (zh) 用于在废水处理系统中进行污泥臭氧化的方法和系统
JP4632356B2 (ja) 生物学的窒素除去方法及びシステム
US7641797B2 (en) Method of treating waste liquid from production plant for hydrocarbons or oxygen-containing compounds
JP6031241B2 (ja) プラント排水の処理方法及び処理システム
US20220177341A1 (en) Sewage treatment method
JP5444684B2 (ja) 有機排水の処理方法及び処理装置
Shi et al. The effect of aeration mode on the operational effectiveness and membrane bioreactors for greywater treatment and membrane fouling
EP1786735A2 (en) Waste activated sludge anaerobic contact waste stream treatment process-recycle
Sheldon et al. Treatment of paper mill effluent using an anaerobic/aerobic hybrid side-stream membrane bioreactor
JP2004501739A (ja) オゾン処理による追加のスラッジ処理を有する廃水処理方法及びそのプラント
Nguyen et al. Performance of low flux sponge membrane bioreactor treating industrial wastewater for reuse purposes
WO2008037429A1 (en) A method and apparatus for the treatment of organic slurry
JP5224502B2 (ja) 被処理物質の生分解処理方法
dos Santos Pereira et al. A critical review on slaughterhouse wastewater: Treatment methods and reuse possibilities
CN103910469A (zh) 食品加工产生的含盐废水的处理工艺
CN113912251A (zh) 一种高浓度难降解腌制废水的处理工艺
CN106007245A (zh) 一种异丙苯氧化制环氧丙烷的污水处理方法
JP2008012476A (ja) 排水処理システム
CN103288305B (zh) 一种碎煤加压气化废水回用的处理方法、处理系统及应用
JP2003103297A (ja) 水処理プラント
Xu et al. Optimization of Fenton combined with membrane bioreactor in the treatment of printing and dyeing wastewater
JP2006110500A (ja) 有機性排水処理の方法及びその装置
CN110590070A (zh) 一种香兰素及其衍生物的生产废水的生物处理的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2864214

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14377529

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201491495

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 13746208

Country of ref document: EP

Kind code of ref document: A1