WO2013118263A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2013118263A1
WO2013118263A1 PCT/JP2012/052889 JP2012052889W WO2013118263A1 WO 2013118263 A1 WO2013118263 A1 WO 2013118263A1 JP 2012052889 W JP2012052889 W JP 2012052889W WO 2013118263 A1 WO2013118263 A1 WO 2013118263A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmospheric pressure
load factor
steady
throttle
throttle opening
Prior art date
Application number
PCT/JP2012/052889
Other languages
English (en)
French (fr)
Inventor
中坂 幸博
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013557284A priority Critical patent/JP5786970B2/ja
Priority to US14/377,286 priority patent/US9416722B2/en
Priority to EP12867766.3A priority patent/EP2813690B1/en
Priority to CN201280069095.1A priority patent/CN104093956B/zh
Priority to PCT/JP2012/052889 priority patent/WO2013118263A1/ja
Publication of WO2013118263A1 publication Critical patent/WO2013118263A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B2037/122Control of rotational speed of the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B2037/125Control for avoiding pump stall or surge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for an internal combustion engine, and more particularly, to control a supercharger-equipped internal combustion engine that includes a turbocharger and a wastegate valve that opens and closes an exhaust bypass passage that bypasses the turbine of the turbocharger. Relates to the device.
  • Patent Document 1 discloses a control device for an internal combustion engine with a turbocharger that includes a waste gate valve that opens and closes an exhaust bypass passage that bypasses a turbine.
  • the throttle valve is opened to a substantially fully opened position.
  • the waste gate valve is opened so that a target boost pressure corresponding to the detected operation amount of the accelerator pedal and the engine speed is obtained.
  • the supercharging pressure is controlled by adjusting the degree.
  • the intake air amount (equivalent to an equivalent intake air amount (for example, a standard state such as 1 atm) is higher than when the atmospheric pressure is high (for example, a standard state such as 1 atmosphere).
  • the pressure ratio (outlet pressure / inlet pressure) of the compressor of the turbocharger in a state where the engine load factor is obtained becomes high. That is, under the condition where the atmospheric pressure is low, the control range of the intake pressure by the turbocharger when obtaining the same supercharging pressure is larger than in the state where the atmospheric pressure is high.
  • the response of the intake air amount control by the turbocharger is lower than the response of the intake air amount control by the throttle valve.
  • the present invention has been made to solve the above-described problems, and includes a turbocharger and a wastegate valve that opens and closes an exhaust bypass passage that bypasses the turbine of the turbocharger.
  • An object of the present invention is to provide a control device for an internal combustion engine that can improve the responsiveness of the intake air amount during acceleration under low atmospheric pressure.
  • the present invention is a control device for an internal combustion engine, comprising a turbocharger, a throttle valve, an exhaust bypass passage, a waste gate valve, a steady characteristic switching means, a first throttle control means, and a second throttle control. Means and WGV control means.
  • the turbocharger includes a compressor that is disposed in the intake passage and supercharges intake air, and a turbine that is disposed in the exhaust passage and operates by exhaust energy.
  • the throttle valve is disposed in the intake passage and adjusts the intake air amount.
  • the exhaust bypass passage is configured to branch from the exhaust passage on the upstream side of the turbine and to rejoin the exhaust passage on the downstream side of the turbine.
  • the waste gate valve is configured to be able to open and close the exhaust bypass passage.
  • the steady-state characteristic switching means is a steady-state characteristic that defines the relationship between the engine load factor and the throttle opening in the steady state, and the high-atmospheric pressure steady-state characteristic that is used at a high atmospheric pressure where the atmospheric pressure is higher than a predetermined value.
  • a low atmospheric pressure steady state characteristic that is used under a low atmospheric pressure that is less than or equal to the predetermined value, and depending on whether atmospheric pressure is higher than the predetermined value, the high atmospheric pressure steady state characteristic and the low atmospheric pressure The steady-state characteristic is switched between the steady-state characteristics at atmospheric pressure.
  • the first throttle control means is configured to select the high atmospheric pressure steady characteristic or the low atmospheric pressure selected by the steady characteristic switching means when a request is made to increase the intake air amount at a change speed lower than a predetermined speed.
  • the throttle opening is controlled so that the target throttle opening obtained based on the steady characteristics and the target engine load factor in this case is obtained.
  • the second throttle control means is configured to select the low atmospheric pressure selected by the steady-state characteristic switching means when a request is made to increase the intake air amount at a change speed equal to or higher than the predetermined speed under the low atmospheric pressure.
  • the throttle opening is controlled so that the target throttle opening is larger than the value obtained based on the steady state characteristics and the target engine load factor in this case.
  • the steady state characteristic at low atmospheric pressure is such that the throttle opening corresponding to the same engine load factor is set smaller in the medium load factor region than the steady property at high atmospheric pressure, and the load is higher than in the medium load factor region.
  • the throttle opening is set so as to increase as the engine load factor increases toward the full load in the rate-side region. Further, the WGV control means has a smaller throttle opening corresponding to the same engine load factor in the medium load factor region than in the high atmospheric pressure steady property in a situation where the low atmospheric pressure steady property is used. Along with the control, the opening degree of the waste gate valve is controlled to a value on the closing side.
  • the steady characteristics that define the relationship between the engine load factor and the throttle opening are the steady characteristics at the high atmospheric pressure and the steady characteristics at the low atmospheric pressure. Switch between properties.
  • the throttle opening is controlled according to the steady characteristic at the low atmospheric pressure.
  • a control allowance for the intake air amount (intake pipe pressure) by the throttle valve is ensured in the medium load factor to high load factor region. For this reason, when the increase request
  • the responsiveness is relatively low at low atmospheric pressure, where the control dependence of the intake air amount to the turbocharger with low response is high.
  • the second throttle control means in the present invention may limit the operating speed of the throttle valve so as not to exceed a predetermined upper limit value when the throttle opening is enlarged.
  • expansion of the throttle opening at an excessive operating speed does not cause a decrease in the compressor outlet pressure at the initial stage of acceleration, and when the increase in the intake air amount is requested, the response speed of the intake air amount is the fastest and the compressor outlet pressure and The throttle downstream pressure can be raised toward the target value.
  • the low atmospheric pressure steady state characteristic of the present invention may be set so that the throttle opening becomes smaller as the engine load factor becomes higher in the medium load factor region.
  • the control allowance for the intake air amount (intake pipe pressure) by the throttle valve can be further ensured in an area that is equal to or greater than the medium load factor area.
  • the response of the intake air amount can be further improved when a request to increase the intake air amount at the predetermined speed or higher is issued under a low atmospheric pressure.
  • FIG. 4 is a diagram for explaining a problem related to the response of the intake air amount during acceleration under a low atmospheric pressure, and is referred to for comparison with the setting of steady characteristics in the first embodiment of the present invention shown in FIG. 3. It represents the characteristics.
  • FIG. 6 is a diagram for explaining two types of load factor—throttle steady characteristic and load factor—WGV steady characteristic that are switched according to the level of atmospheric pressure in the first embodiment of the present invention. It is a flowchart of the routine performed in Embodiment 1 of the present invention.
  • FIG. 1 is a schematic diagram for explaining a system configuration of an internal combustion engine 10 according to a first embodiment of the present invention.
  • the system of this embodiment includes a spark ignition type internal combustion engine (a gasoline engine as an example) 10.
  • a combustion chamber 12 is formed in the cylinder of the internal combustion engine 10.
  • An intake passage 14 and an exhaust passage 16 communicate with the combustion chamber 12.
  • An air cleaner 18 is attached in the vicinity of the inlet of the intake passage 14.
  • An air flow meter 20 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 14 is provided in the vicinity of the downstream side of the air cleaner 18.
  • a compressor 22 a of the turbocharger 22 is installed downstream of the air flow meter 20.
  • the compressor 22a is integrally connected to a turbine 22b disposed in the exhaust passage 16 via a connecting shaft (not shown).
  • An intercooler 24 for cooling the compressed air is provided downstream of the compressor 22a.
  • An electronically controlled throttle valve 26 is provided downstream of the intercooler 24.
  • a throttle opening sensor 28 for detecting the throttle opening is attached.
  • a throttle upstream pressure sensor 30 for detecting the intake pressure (throttle upstream pressure) at this portion is attached to the intake passage 14 upstream of the throttle valve 26 and downstream of the compressor 22a (and the intercooler 24).
  • a throttle downstream pressure sensor 32 for detecting the intake pressure (throttle downstream pressure) at this portion is attached to the intake passage 14 (collection portion (surge tank portion) of the intake manifold) on the downstream side of the throttle valve 26. ing.
  • Each cylinder of the internal combustion engine 10 is provided with a fuel injection valve 34 for injecting fuel into the cylinder and an ignition device 36 for igniting the air-fuel mixture.
  • the exhaust passage 16 is connected to an exhaust bypass passage 38 configured to branch from the exhaust passage 16 at a portion upstream of the turbine 22b and to rejoin the exhaust passage 16 downstream of the turbine 22b.
  • a waste gate valve (WGV) 40 that can open and close the exhaust bypass passage 38 is provided in the middle of the exhaust bypass passage 38.
  • WGV 40 is configured to be adjustable to an arbitrary opening degree by an electric motor (not shown).
  • the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 50.
  • the ECU 50 includes a crank angle sensor 52 for detecting the engine speed and the crank angle, an engine coolant temperature, and the like.
  • Various sensors for detecting the operating state of the internal combustion engine 10 such as a water temperature sensor 54 for detecting the above are connected.
  • the ECU 50 includes an atmospheric pressure sensor 56 for detecting the atmospheric pressure, and an accelerator opening sensor 58 for detecting the amount of depression of the accelerator pedal (accelerator opening) of the vehicle on which the internal combustion engine 10 is mounted. It is connected.
  • the ECU 50 is connected to various actuators for controlling the operating state of the internal combustion engine 10 such as the throttle valve 26, the fuel injection valve 34, the ignition device 36, and the WGV 40 described above.
  • the ECU 50 controls the operating state of the internal combustion engine 10 by operating various actuators according to a predetermined program based on the outputs of the various sensors described above.
  • FIG. 2 is a diagram for explaining a problem relating to the responsiveness of the intake air amount at the time of acceleration under a low atmospheric pressure, for comparison with the setting of steady characteristics (see FIG. 3 described later) in the present embodiment. It represents the steady characteristics to be referred to. More specifically, FIG. 2 is at a predetermined engine speed.
  • FIG. 2A is a diagram showing steady characteristics between the engine load factor KL and the intake pipe pressure (the throttle upstream pressure and the throttle downstream pressure) under a low atmospheric pressure.
  • FIG. 2B shows a steady characteristic (hereinafter simply referred to as “load factor—WGV steady characteristic”) between the engine load factor KL and the WGV opening degree.
  • FIG. 1 load factor—WGV steady characteristic
  • FIG. 2C is a diagram showing a steady characteristic between the engine load factor KL and the throttle opening (hereinafter simply referred to as “load factor-throttle steady characteristic”).
  • the waveform indicated by the broken line in FIG. 2 is obtained when the atmospheric pressure is in the standard state (approximately 1 atm), and the waveform indicated by the solid line in FIG. Atmospheric pressure.
  • the engine load factor KL here is the ratio of the current intake air amount to the maximum intake air amount (intake air amount at full load) corresponding to each engine speed, and the intake air amount. And the engine speed can be calculated.
  • the load factor-throttle steady state characteristic in the standard state is such that the throttle opening degree (here, as the shift from the extremely low load factor region to the region on the high load factor side).
  • the throttle opening is set to be constant at the fully opened position after reaching the fully opened position (maximum opening for control).
  • the load factor-WGV steady state characteristic in the standard state indicates that the WGV opening is lower in the region on the low load factor side where the throttle opening is smaller than the fully opened opening.
  • the WGV opening is small (closed side). In this way, the intake air amount that realizes each engine load factor KL can be obtained by using the control of the WGV opening degree.
  • the steady characteristics set based on the same idea as the steady characteristics in the standard state described above for the low atmospheric pressure condition where the atmospheric pressure is lower than the standard state are as follows. That is, in the case where the intake air amount is adjusted using the throttle valve 26 under a low atmospheric pressure, in order to obtain the same intake air amount (engine load factor KL) as in the standard state, the throttle is compared with the standard state. It is necessary to widen the opening. Therefore, as indicated by the “solid line” in FIG. 2 (C), in the region on the low load factor side of the load factor-throttle steady state characteristic under low atmospheric pressure, the engine load factor is higher than the standard state. As KL increases, the throttle opening is largely controlled toward the fully open opening.
  • the engine load factor KL at which the throttle opening reaches the fully open opening becomes a value on the low load factor side as compared with the standard state. Accordingly, as indicated by the “solid line” in FIG. 2B, the load factor-WGV steady state characteristic under the low atmospheric pressure starts to close at a lower engine load factor KL than in the standard state. Therefore, the WGV opening degree is controlled.
  • the throttle downstream pressure increases the throttle opening or WGV opening as the engine load factor KL increases. As the degree decreases, it rises.
  • the throttle upstream pressure in this case is constant at the atmospheric pressure value in this case because the WGV 40 is sufficiently opened and supercharging is not performed in the region until the throttle opening reaches the full opening. Transition to. Thereafter, supercharging is started and increases with an increase in the engine load factor KL at a value substantially equal to the throttle downstream pressure. Note that the steady characteristics of the throttle upstream pressure and the downstream pressure with respect to the engine load factor KL are the same in trend, although there are differences in values even under standard atmospheric pressure.
  • the intake air amount equivalent to a high atmospheric pressure such as a high altitude
  • a high atmospheric pressure standard state
  • the pressure ratio (outlet pressure / inlet pressure) of the compressor of the turbocharger in a state where (engine load factor KL) is obtained increases. That is, under the condition where the atmospheric pressure is low, the control range of the intake pressure by the turbocharger when obtaining the same supercharging pressure is larger than that in the standard state.
  • the response of the intake air amount control by the turbocharger is lower than the response of the intake air amount control by the throttle valve.
  • the suction is performed using the opening adjustment of the WGV 40.
  • the amount of air (supercharging pressure) is controlled. That is, in the above steady characteristics, the control allowance for the intake air amount (intake pipe pressure) by the throttle valve 26 is ensured in the region on the higher load factor side than the engine load factor KL when the throttle opening reaches the fully open opening. Therefore, the intake air amount control depending on the turbocharger 22 having low responsiveness is executed. Under low atmospheric pressure, as shown in FIG.
  • the load factor region in which it is necessary to perform intake air amount control depending on the turbocharger 22 is larger than that in the standard state, as compared with the standard state. . For this reason, under low atmospheric pressure, the responsiveness of the intake air amount during acceleration tends to be lower than in the standard state.
  • FIG. 3 is a diagram for explaining two types of load factor—throttle steady characteristic and load factor—WGV steady characteristic that are switched according to the level of atmospheric pressure in the first embodiment of the present invention. More specifically, FIG. 3 is at a predetermined engine speed.
  • FIG. 3A is a diagram showing steady characteristics between the engine load factor KL and the intake pipe pressure (the throttle upstream pressure and the throttle downstream pressure) under a low atmospheric pressure.
  • FIG. 3B is a diagram showing the load factor-WGV steady state characteristic.
  • FIG. 3C shows the load factor-throttle steady state characteristic.
  • the waveform indicated by the broken line in FIG. 3 is obtained when the atmospheric pressure is in the standard state (approximately 1 atm), and the waveform indicated by the solid line in FIG. 3 is a low and high atmospheric pressure lower than the standard state. Atmospheric pressure.
  • the steady characteristics shown in FIGS. 3B and 3C change according to the engine speed. For this reason, in the present embodiment, as these steady-state characteristics, the setting tendency itself is the same as that shown in FIG. 3 below for each predetermined engine speed.
  • the load factor-throttle steady state characteristic (hereinafter sometimes referred to as “throttle high atmospheric pressure steady state characteristic”) when the atmospheric pressure is higher than a predetermined value (standard state) and
  • the load factor-WGV steady characteristics (WGV steady characteristics at high atmospheric pressure) are the same as those shown in FIG.
  • the load factor-throttle steady state characteristic (hereinafter sometimes referred to as “throttle steady state characteristic at low atmospheric pressure”) in a low atmospheric pressure state where the atmospheric pressure is not more than the predetermined value is shown in FIG.
  • the throttle opening corresponding to the same engine load factor KL is set smaller in the medium load factor region (KL1 to KL3) than the steady-state characteristic at high atmospheric pressure of the throttle.
  • the steady-state characteristics of the throttle at low atmospheric pressure indicate that the engine load factor KL increases toward the full load (KL4) in the region (KL3 to KL4 (100%)) on the higher load factor side than the intermediate load factor region.
  • the throttle opening is set so as to increase toward the fully open position. More specifically, in the example shown in FIG.
  • the throttle opening in the medium load factor region (KL1 to KL3) is set to a predetermined constant opening TA1 that is smaller than the fully open opening.
  • the reason why the change rate of the throttle opening with respect to the engine load factor KL is set higher at the low atmospheric pressure than in the standard state is as described above.
  • the steady state characteristic of WGV at low atmospheric pressure the steady state characteristic of WGV at high atmospheric pressure at the end (KL1) on the low load factor side of the medium load factor region (KL1 to KL3) where the throttle opening adjustment is stopped.
  • the WGV 40 is set so as to start to close from the engine load factor KL on the lower load factor side.
  • the WGV opening in the medium load factor region (KL1 to KL3) is more closed as the engine load factor KL increases with the throttle opening kept constant. This is to compensate for the insufficient intake air amount compared to the standard state due to the steady characteristic of the throttle at low atmospheric pressure.
  • the WGV opening in the region (KL3 to KL4) on the higher load factor side than the middle load factor region is approximately the value at the engine load factor KL3 (a predetermined value opened from the surge line of the compressor 22a). It is set to be constant.
  • the throttle downstream pressure when the throttle and WGV steady-state characteristics at low atmospheric pressure are used increases the throttle opening or the WGV opening as the engine load factor KL increases. It rises with the decrease of.
  • the throttle upstream pressure in this case remains constant at the atmospheric pressure value in this case because supercharging is not performed until the engine load factor KL1 at which the WGV 40 starts to close is reached. Thereafter, as the WGV 40 is closed, the turbine rotational speed becomes higher and supercharging proceeds. That is, according to this setting, at the engine load factor KL1 corresponding to the throttle opening TA1 smaller than the fully opened opening, expansion of the throttle opening corresponding to the increase in the engine load factor KL is stopped, and the WGV 40 starts to close. As a result, unlike the setting shown in FIG. 2, a significant difference is ensured between the throttle upstream pressure and the throttle downstream pressure.
  • the WGV 40 is closed as the engine load factor KL increases. Therefore, the difference between the throttle upstream pressure and the throttle downstream pressure is maintained. Also in the region on the higher load factor side than the medium load factor region (KL1 to KL3), the throttle upstream pressure rises as the engine load factor KL increases. However, since the WGV opening is made substantially constant and the throttle valve 26 is opened, the throttle upstream pressure in this region becomes more gradual than the medium load factor region (KL1 to KL3) as the engine load factor KL increases. To rise. Further, in this region, since the throttle valve 26 is set to be opened toward the fully open position as the engine load factor KL increases, the throttle upstream pressure and the throttle valve are increased as the throttle opening increases. The difference with the downstream pressure becomes smaller.
  • the throttle opening is determined from the medium load factor at which the throttle opening is fully opened when the steady characteristic shown in FIG. 2 is used.
  • the high load factor region a significant difference between the throttle upstream pressure and the throttle downstream pressure, that is, a control allowance for the intake air amount (intake pipe pressure) by the throttle valve 26 can be secured.
  • the turbine rotational speed can be made higher than when the lower load factor side region is used as compared with the high atmospheric pressure steady state characteristic.
  • the air pressure is used depending on whether the atmospheric pressure is higher than a predetermined value.
  • the steady characteristics of the throttle and WGV to be switched are switched. Specifically, under high atmospheric pressure (standard state) where the atmospheric pressure is higher than the predetermined value, steady characteristics at high atmospheric pressure of the throttle and WGV (waveforms indicated by broken lines in FIG. 3) are selected, and the atmospheric pressure is Under a low atmospheric pressure that is equal to or lower than the predetermined value, a steady characteristic at low atmospheric pressure (a waveform indicated by a solid line in FIG. 3) of the throttle and WGV is selected.
  • the target throttle opening is set to a value larger than the throttle opening obtained by referring to the steady characteristic of the throttle at the low atmospheric pressure as a value corresponding to the target engine load factor (target intake air amount) at the time of this acceleration.
  • the degree is calculated.
  • the target WGV opening in this case is calculated as a value corresponding to the target engine load factor (target intake air amount) at the time of the current acceleration with reference to the steady characteristics of the WGV at the low atmospheric pressure.
  • FIG. 4 is a flowchart showing a control routine executed by the ECU 50 in the first embodiment in order to realize the throttle and WGV control described above. This routine is repeatedly executed every predetermined control cycle.
  • step 100 the state of the vehicle on which the internal combustion engine 10 is mounted and various parameters indicating the engine state are detected. Specifically, in the present step 100, the various vehicle sensors shown in FIG. 1 and the various sensors not shown are used, and the vehicle speed and the accelerator opening as the request information from the driver A shift position of a transmission (not shown) is acquired. Further, as the engine state, an engine speed, an intake air amount, an engine coolant temperature, a compression ratio, and the like are acquired.
  • step 102 it is determined whether the atmospheric pressure is higher than a predetermined value using the atmospheric pressure sensor 56 (step 102).
  • the target engine load factor A target intake air amount is calculated (step 104).
  • the target throttle opening and the target WGV opening are calculated using the target engine load factor calculated in step 104 and the steady-state characteristics of the throttle and WGV during high atmospheric pressure (the waveforms shown by the broken lines in FIG. 3). Are respectively calculated (step 106).
  • the throttle valve 26 and the WGV 40 are respectively controlled according to the calculated target throttle opening and target WGV opening (step 108).
  • Step 110 Specifically, the determination in step 110 is performed by comprehensively determining the amount and speed of depression of the accelerator pedal, the shift position of the transmission, and the like.
  • step 110 determines whether the increase in intake air amount with a high response is not requested (when a slow acceleration request is issued). If the determination in step 110 is not established, that is, if the increase in intake air amount with a high response is not requested (when a slow acceleration request is issued), the accelerator opening and the engine speed are Based on the above, a target engine load factor (target intake air amount) is calculated (step 112).
  • step 114 using the target engine load factor calculated in step 112 and the steady state characteristics of the throttle and WGV during low atmospheric pressure (the waveform shown by the solid line in FIG. 3), the target throttle opening and target WGV open Each degree is calculated (step 114).
  • throttle valve 26 and WGV 40 are respectively controlled according to the calculated target throttle opening and target WGV opening (step 116).
  • step 118 the target throttle opening is set to a value larger than the value calculated by substituting the target engine load factor at the time of the high response request this time into the low atmospheric pressure steady state characteristic.
  • the target throttle opening is set to a value larger than the value calculated by substituting the target engine load factor at the time of the high response request this time into the low atmospheric pressure steady state characteristic.
  • the fully opened opening degree is acquired as the target throttle opening degree.
  • the target WGV opening is calculated by substituting the target engine load factor at the time of the high response request this time into the low atmospheric pressure steady state characteristic.
  • the target WGV opening obtained in this case has a margin for the compressor surge on the steady characteristic at low atmospheric pressure in relation to the current target engine load factor, the compressor surge is avoided. It may be the minimum opening that can be obtained.
  • the throttle valve 26 and the WGV 40 are respectively controlled according to the calculated target throttle opening and target WGV opening (step 120).
  • the steady characteristic at high atmospheric pressure or the steady characteristic at low atmospheric pressure is selected as the steady characteristic of the throttle and WGV depending on whether the atmospheric pressure is higher than the predetermined value. Is done.
  • the throttle opening and the WGV opening are controlled according to the steady characteristic at low atmospheric pressure.
  • a control allowance for the intake air amount (intake pipe pressure) by the throttle valve 26 is ensured in the medium load factor to high load factor region. For this reason, when a request to increase the amount of intake air with a high response is issued thereafter, the amount of intake air can be controlled using the secured control margin by the throttle valve 26.
  • the response to the turbocharger 22 with low response is relatively low under low atmospheric pressure where the control dependence of the intake air amount to the turbocharger 22 is high.
  • the steady state for securing the control amount of the intake air amount by the throttle valve 26 Character setting and control using it are not executed.
  • the control at the time of requesting an increase in the intake air amount with a high response described above under a low atmospheric pressure is a control that deviates from the operating point at which the fuel efficiency is optimal. For this reason, in the present embodiment, such control is performed only at low atmospheric pressure, which has a large effect on the responsiveness of the intake air amount.
  • the present embodiment in the control of the intake air amount using the throttle opening and the WGV opening, it is considered that the frequency of deviation from the optimum fuel efficiency operating point is reduced.
  • the throttle opening used in the medium load factor region (KL1 to KL3) under the low atmospheric pressure is set to a predetermined constant opening TA1.
  • the throttle opening used in the medium load factor region under the low atmospheric pressure is, for example, before and after the throttle valve 26 in order to prevent excessively responsiveness of the intake air amount under the low atmospheric pressure.
  • the engine load factor KL intake air amount increases as the pressure ratio (pressure drop rate) becomes constant at a predetermined value (preferably the current atmospheric pressure / standard atmospheric pressure). It may be set as follows.
  • the low atmospheric pressure steady state characteristic used in the present invention under a low atmospheric pressure is not limited to a single setting. That is, the steady state characteristic at low atmospheric pressure in the present invention is stepwise so that, for example, under low atmospheric pressure, when the atmospheric pressure is low, the throttle opening in the medium load factor region is smaller than when the atmospheric pressure is high. It may be set to change to, or continuously set so that the throttle opening in the medium load factor region becomes smaller as the atmospheric pressure becomes lower at low atmospheric pressure. It may be.
  • the ECU 50 selectively executes one of the processes of the steps 106 and 114 in accordance with the determination result of the step 102, thereby “steady characteristic switching means” in the present invention. Is realized, and the ECU 50 executes the processing of the above steps 104 to 108 or the above steps 110 to 116, thereby realizing the “first throttle control means” in the present invention, and the ECU 50 establishes the determination of the above step 110.
  • the “second throttle control means” in the present invention is realized, and the ECU 50 executes the processing of steps 104 to 108 or steps 118 to 120.
  • the “WGV control means” in the present invention is realized. .
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIG.
  • the system of the present embodiment has the hardware configuration shown in FIG. 1 and executes the same control as that of the first embodiment described above.
  • the operation speed of the throttle valve 26 as described below is regulated as necessary.
  • FIG. 5 is a time chart for explaining the control executed in the second embodiment of the present invention when a request for increasing the intake air amount with a high response is issued under a low atmospheric pressure.
  • the intake air amount (intake pipe pressure) secured by the throttle valve 26 when a request to increase the intake air amount with a high response is issued.
  • the control allowance it is possible to improve the responsiveness of the intake air amount.
  • the operation speed of the throttle valve 26 is limited so as not to exceed a predetermined upper limit value. did. Specifically, the operating speed of the throttle valve 26 is limited as shown by a thick solid line in FIG. 5C so as not to cause the above-described decrease in the compressor outlet pressure by opening the throttle valve 26 quickly. Is done.
  • FIG. 6 is a diagram showing a load factor-throttle steady characteristic and a load factor-WGV steady characteristic used in the third embodiment of the present invention.
  • the system according to the present embodiment is the same as the system according to the first embodiment described above except for the points described later with reference to FIG.
  • the throttle opening used in the medium load factor region (KL1 to KL3) under the low atmospheric pressure is set to a predetermined constant opening TA1.
  • the throttle opening used in this medium load factor region under a low atmospheric pressure becomes smaller as the engine load factor KL becomes higher as shown by the thick solid line in FIG. It is set to be.
  • the WGV opening is the engine load factor KL3 on the lower load factor side than the full load (KL4) as shown by the thick solid line in FIG. It is set so that the minimum opening is obtained with a smaller value (close side). More specifically, the WGV opening in the medium load factor region becomes smaller as the engine load factor KL increases toward the minimum opening at the engine load factor KL3. And in the area
  • the medium load factor region (KL1 to KL3) is a region where the engine load factor KL (intake air amount) is adjusted mainly by the WGV opening. Therefore, according to the setting of the present embodiment, as compared with the setting of the first embodiment described above, as shown in FIG. 6 (A), the amount of intake air by the throttle valve 26 in the region above the medium load factor region. A larger control allowance for (intake pipe pressure) can be secured. This makes it possible to further improve the responsiveness of the intake air amount when a request is made to increase the intake air amount with a high response under low atmospheric pressure.

Abstract

 本発明における内燃機関の制御装置は、大気圧が所定値よりも高いか低いかに応じて、機関負荷率とスロットル開度との関係を定めた定常特性を、高大気圧時定常特性と低大気圧時定常特性との間で切り替える。この低大気圧時定常特性は、中負荷率領域において高大気圧時定常特性と比べて同一の機関負荷率に対応するスロットル開度が小さく設定され、かつ、当該中負荷率領域よりも高負荷率側の領域において全負荷に向けて機関負荷率が高くなるほどスロットル開度が大きくなるように設定されている。上記制御装置は、低大気圧下において高応答での吸気量の増加要求が出されていない場合には、低大気圧時定常特性を参照して、目標機関負荷率に対応する目標スロットル開度を算出し、一方、低大気圧下において高応答での吸気量の増加要求が出された場合には、上記のように算出される目標スロットル開度よりも大きな値となるように、目標スロットル開度を設定する。

Description

内燃機関の制御装置
 この発明は、内燃機関の制御装置に係り、特に、ターボ過給機と、当該ターボ過給機のタービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブとを備える過給機付き内燃機関の制御装置に関する。
 従来、例えば特許文献1には、タービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブを備えるターボ過給機付きの内燃機関の制御装置が開示されている。この従来の制御装置では、アクセルペダルが所定操作量まで操作されたときに、スロットルバルブを実質的な全開位置まで開くようにしている。そのうえで、アクセルペダルが上記所定操作量よりも大きい開度に操作されたときには、検出したアクセルペダルの操作量とエンジン回転数とに応じた目標過給圧が得られるように、ウェイストゲートバルブの開度調整によって過給圧が制御される。
 ところで、ターボ過給機を備えた内燃機関において、高地などの大気圧が低い状態では、大気圧が高い状態(例えば、1気圧のような標準的な状態)と比べ、同等の吸入空気量(機関負荷率)が得られる状態におけるターボ過給機のコンプレッサの圧力比(出口圧力/入口圧力)が高くなる。つまり、大気圧が低い状況下では、大気圧が高い状態と比べ、同等の過給圧を得る際のターボ過給機による吸気圧力の制御範囲が大きくなる。また、一般的に、ターボ過給機による吸入空気量制御の応答性は、スロットルバルブによる吸入空気量制御の応答性よりも低い。
 上述した特許文献1に記載の技術によれば、アクセルペダルが上記所定操作量よりも大きい開度に操作された場合には、ウェイストゲートバルブの開度調整を用いて過給圧(吸入空気量)が制御される。つまり、この場合には、スロットルバルブによる吸入空気量(吸気管圧力)の制御代が確保できないため、応答性の低いターボ過給機に依存した吸入空気量制御が実行されることになる。低大気圧下においては、標準状態と比べ、同一の吸入空気量(機関負荷率)を得るために必要なスロットル開度が大きくなる。このため、低大気圧下においては、ターボ過給機に依存した吸入空気量制御を行う必要の生ずる負荷率領域が、標準状態と比べて大きくなってしまう。その結果、低大気圧下においては、標準状態と比べ、加速時の吸入空気量の応答性が低下し易くなる。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
日本特開平5-141258号公報 日本特開2010-14050号公報 日本特開2006-152821号公報 日本特開2006-125352号公報 日本特開2004-124745号公報 日本特開平9-53457号公報 日本特開2002-213247号公報
 この発明は、上述のような課題を解決するためになされたもので、ターボ過給機と、当該ターボ過給機のタービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブとを備えている場合において、低大気圧下における加速時の吸入空気量の応答性を向上させることのできる内燃機関の制御装置を提供することを目的とする。
 本発明は、内燃機関の制御装置であって、ターボ過給機と、スロットルバルブと、排気バイパス通路と、ウェイストゲートバルブと、定常特性切替手段と、第1スロットル制御手段と、第2スロットル制御手段と、WGV制御手段とを備えている。
 ターボ過給機は、吸気通路に配置され、吸入空気を過給するコンプレッサと、排気通路に配置され、排気エネルギーにより作動するタービンとを備えている。
 スロットルバルブは、前記吸気通路に配置され、吸入空気量を調整するものである。
 排気バイパス通路は、前記タービンの上流側において前記排気通路から分岐し、前記タービンの下流側において前記排気通路に再び合流するように構成されている。
 ウェイストゲートバルブは、前記排気バイパス通路を開閉可能に構成されている。
 定常特性切替手段は、定常状態における機関負荷率とスロットル開度との関係を定めた定常特性として、大気圧が所定値よりも高い高大気圧下で使用する高大気圧時定常特性と、大気圧が前記所定値以下となる低大気圧下で使用する低大気圧時定常特性とを有し、大気圧が前記所定値よりも高いか否かに応じて、前記高大気圧時定常特性と前記低大気圧時定常特性との間で前記定常特性を切り替えるものである。
 第1スロットル制御手段は、所定速度よりも低い変化速度で吸入空気量を増加させる要求が出された場合に、前記定常特性切替手段によって選択された前記高大気圧時定常特性または前記低大気圧時定常特性とこの場合の目標機関負荷率とに基づいて得られる目標スロットル開度となるように、スロットル開度を制御するものである。
 第2スロットル制御手段は、前記低大気圧下であって前記所定速度以上の変化速度で吸入空気量を増加させる要求が出された場合に、前記定常特性切替手段によって選択された前記低大気圧時定常特性とこの場合の目標機関負荷率とに基づいて得られる値よりも大きな目標スロットル開度となるように、スロットル開度を制御するものである。
 前記低大気圧時定常特性は、中負荷率領域において前記高大気圧時定常特性と比べて同一の機関負荷率に対応するスロットル開度が小さく設定され、かつ、前記中負荷率領域よりも高負荷率側の領域において全負荷に向けて機関負荷率が高くなるほどスロットル開度が大きくなるように設定されている。
 更に、WGV制御手段は、前記低大気圧時定常特性が使用される状況下において、前記中負荷率領域において前記高大気圧時定常特性と比べて同一の機関負荷率に対応するスロットル開度が小さく制御されることに伴って、前記ウェイストゲートバルブの開度を閉じ側の値に制御するものである。
 本発明によれば、大気圧が上記所定値よりも高いか否かに応じて、機関負荷率とスロットル開度との関係を定めた定常特性が、高大気圧時定常特性と低大気圧時定常特性との間で切り替えられる。そして、低大気圧下において上記所定速度以上での吸入空気量の増加要求が出されていない場合には、低大気圧時定常特性に従ってスロットル開度が制御される。これにより、中負荷率から高負荷率領域において、スロットルバルブによる吸入空気量(吸気管圧力)の制御代が確保される。このため、その後に上記所定速度以上での吸入空気量の増加要求が出された場合に、確保されたスロットルバルブによる制御代を利用して吸入空気量を制御することができる。これにより、上記低大気圧時定常特性を有していない場合であれば応答性の低いターボ過給機への吸入空気量の制御依存度が高くなる低大気圧下において、相対的に応答性の高いスロットルバルブによる吸入空気量の制御によって、中負荷率から高負荷率領域への加速時の吸入空気量の応答性を向上させることができる。
 また、本発明における前記第2スロットル制御手段は、スロットル開度を拡大する際に、所定の上限値を超えないように前記スロットルバルブの動作速度を制限するものであってもよい。
 これにより、過剰な動作速度でのスロットル開度の拡大によって加速初期におけるコンプレッサ出口圧の低下を招くことなく、吸入空気量の増加要求時に、吸入空気量の応答速度としては最速でコンプレッサ出口圧およびスロットル下流圧を目標値に向けて立ち上げていくことができる。
 また、本発明における前記低大気圧時定常特性は、前記中負荷率領域において、機関負荷率が高くなるほどスロットル開度が小さくなるように設定されているものであってもよい。
 これにより、上記中負荷率領域以上の領域において、スロットルバルブによる吸入空気量(吸気管圧力)の制御代を更に大きく確保することができる。これにより、低大気圧下において上記所定速度以上での吸入空気量の増加要求が出された際に、吸入空気量の応答性を更に向上させることができる。
本発明の実施の形態1の内燃機関のシステム構成を説明するための模式図である。 低大気圧下における加速時の吸入空気量の応答性に関する課題を説明するための図であり、図3に示す本発明の実施の形態1における定常特性の設定との対比のために参照する定常特性を表したものである。 本発明の実施の形態1において大気圧の高低に応じて切り替えられる2通りの負荷率-スロットル定常特性および負荷率-WGV定常特性を説明するための図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 低大気圧下において高応答での吸入空気量の増加要求が出された場合に本発明の実施の形態2において実行される制御を説明するためのタイムチャートである。 本発明の実施の形態3において用いられる、負荷率-スロットル定常特性および負荷率-WGV定常特性を表した図である。
実施の形態1.
[システム構成の説明]
 図1は、本発明の実施の形態1の内燃機関10のシステム構成を説明するための模式図である。本実施形態のシステムは、火花点火式の内燃機関(一例としてガソリンエンジン)10を備えている。内燃機関10の筒内には、燃焼室12が形成されている。燃焼室12には、吸気通路14および排気通路16が連通している。
 吸気通路14の入口近傍には、エアクリーナ18が取り付けられている。エアクリーナ18の下流近傍には、吸気通路14に吸入される空気の流量に応じた信号を出力するエアフローメータ20が設けられている。エアフローメータ20の下流には、ターボ過給機22のコンプレッサ22aが設置されている。コンプレッサ22aは、排気通路16に配置されたタービン22bと連結軸(図示省略)を介して一体的に連結されている。
 コンプレッサ22aの下流には、圧縮された空気を冷却するインタークーラ24が設けられている。インタークーラ24の下流には、電子制御式のスロットルバルブ26が設けられている。スロットルバルブ26の近傍には、スロットル開度を検出するためのスロットル開度センサ28が取り付けられている。また、スロットルバルブ26の上流側であって、コンプレッサ22a(およびインタークーラ24)の下流側の吸気通路14には、この部位における吸気圧力(スロットル上流圧)を検出するスロットル上流圧センサ30が取り付けられており、スロットルバルブ26の下流側の吸気通路14(吸気マニホールドの集合部(サージタンク部))には、この部位における吸気圧力(スロットル下流圧)を検出するスロットル下流圧センサ32が取り付けられている。
 内燃機関10の各気筒には、筒内に燃料を噴射するための燃料噴射弁34と、混合気に点火するための点火装置36とがそれぞれ設置されている。また、排気通路16には、タービン22bよりも上流側の部位において排気通路16から分岐し、タービン22bよりも下流側において排気通路16と再び合流するように構成された排気バイパス通路38が接続されている。排気バイパス通路38の途中には、排気バイパス通路38を開閉可能なウェイストゲートバルブ(WGV)40が設けられている。WGV40は、ここでは、電動モータ(図示省略)によって任意の開度に調整可能に構成されているものとする。
 更に、図1に示すシステムは、ECU(Electronic Control Unit)50を備えている。ECU50には、上述したエアフローメータ20、スロットル開度センサ28、スロットル上流圧センサ30およびスロットル下流圧センサ32に加え、エンジン回転数やクランク角度を検出するためのクランク角センサ52、エンジン冷却水温度を検出するための水温センサ54等の内燃機関10の運転状態を検知するための各種センサが接続されている。また、ECU50には、大気圧を検出するための大気圧センサ56、および、内燃機関10を搭載する車両のアクセルペダルの踏み込み量(アクセル開度)を検出するためのアクセル開度センサ58がそれぞれ接続されている。また、ECU50には、上述したスロットルバルブ26、燃料噴射弁34、点火装置36およびWGV40等の内燃機関10の運転状態を制御するための各種アクチュエータが接続されている。ECU50は、上述した各種センサの出力に基づき、所定のプログラムに従って各種アクチュエータを作動させることにより、内燃機関10の運転状態を制御するものである。
[低大気圧下における加速時の吸入空気量の応答性に関する課題]
 図2は、低大気圧下における加速時の吸入空気量の応答性に関する課題を説明するための図であり、本実施形態における定常特性の設定(後述の図3参照)との対比のために参照する定常特性を表したものである。より具体的には、図2は、所定のエンジン回転数におけるものである。図2(A)は、低大気圧下における、機関負荷率KLと吸気管圧力(スロットル上流圧およびスロットル下流圧)との間の定常特性を表した図である。図2(B)は、機関負荷率KLとWGV開度との間の定常特性(以下、単に、「負荷率-WGV定常特性」と称する)を表した図である。図2(C)は、機関負荷率KLとスロットル開度との間の定常特性(以下、単に、「負荷率-スロットル定常特性」と称する)を表した図である。尚、図2中に破線で示す波形は、大気圧が標準状態(略1気圧)にある時のものであり、同図中に実線で示す波形は、大気圧が標準状態よりも低い低大気圧状態のものである。また、ここでいう機関負荷率KLとは、各エンジン回転数に対応した吸入空気量の最大値(全負荷時の吸入空気量)に対する現在の吸入空気量の比率のことであり、吸入空気量とエンジン回転数とに基づいて算出することができる。
 図2(C)中に「破線」で示すように、標準状態における負荷率-スロットル定常特性は、極低負荷率領域から高負荷率側の領域に移行するにつれ、スロットル開度が(ここでは、一例として一定の変化率で)全開開度(制御上の最大開度)に向けて大きくなり、かつ、全開開度に達した後はスロットル開度が全開開度で一定となるように設定されている。一方、図2(B)中に「破線」で示すように、標準状態における負荷率-WGV定常特性は、スロットル開度が全開開度よりも小さい低負荷率側の領域では、WGV開度が所定の最大開度(WGV開度の所定の制御範囲における最大値)となり、かつ、スロットル開度が全開開度となった後の高負荷率側の領域では、WGV開度が小さく(閉じ側に)制御されることによって、WGV開度の制御を利用して各機関負荷率KLを実現する吸入空気量が得られるようになっている。
 標準状態よりも大気圧の低い低大気圧条件に対して、上述した標準状態における定常特性と同じ考えに基づいて設定される定常特性は、次のようになる。すなわち、低大気圧下においてスロットルバルブ26を用いて吸入空気量を調整している場合において、標準状態と同一の吸入空気量(機関負荷率KL)を得るためには、標準状態と比べてスロットル開度を大きく開く必要がある。このため、図2(C)中に「実線」で示すように、低大気圧下における負荷率-スロットル定常特性の低負荷率側の領域では、標準状態よりも高い変化率で、機関負荷率KLが高くなるにつれてスロットル開度が全開開度に向けて大きく制御されることになる。その結果、スロットル開度が全開開度に到達する機関負荷率KLが標準状態と比べて低負荷率側の値となる。そして、これに伴い、図2(B)中に「実線」で示すように、低大気圧下における負荷率-WGV定常特性では、標準状態と比べてより低い機関負荷率KLから閉じ始めるように、WGV開度が制御されることになる。
 低大気圧下において上記の定常特性を有している場合には、図2(A)に示すように、スロットル下流圧は、機関負荷率KLの増加に伴う、スロットル開度の拡大またはWGV開度の減少に伴って上昇する。一方、この場合のスロットル上流圧は、スロットル開度が全開開度になるまでの領域ではWGV40が十分に開かれており、過給が行われていないので、この場合の大気圧値で一定で推移する。その後、過給が開始され、スロットル下流圧とほぼ等しい値で機関負荷率KLの上昇に伴って上昇する。尚、このような機関負荷率KLに対するスロットル上流圧および下流圧の定常特性は、標準大気圧下においても、値において違いはあるが、傾向において同様である。
 ところで、本実施形態の内燃機関10のようにターボ過給機を備えた内燃機関において、高地などの大気圧が低い状態では、大気圧が高い状態(標準状態)と比べ、同等の吸入空気量(機関負荷率KL)が得られる状態におけるターボ過給機のコンプレッサの圧力比(出口圧力/入口圧力)が高くなる。つまり、大気圧が低い状況下では、標準状態と比べ、同等の過給圧を得る際のターボ過給機による吸気圧力の制御範囲が大きくなる。また、一般的に、ターボ過給機による吸入空気量制御の応答性は、スロットルバルブによる吸入空気量制御の応答性よりも低い。
 上記図2に示す負荷率-スロットル定常特性の設定によれば、スロットル開度が全開開度に達した機関負荷率KLよりも高負荷率側の領域では、WGV40の開度調整を用いて吸入空気量(過給圧)が制御されることになる。つまり、上記定常特性においては、スロットル開度が全開開度に達する時の機関負荷率KLよりも高負荷率側の領域では、スロットルバルブ26による吸入空気量(吸気管圧力)の制御代が確保できないため、応答性の低いターボ過給機22に依存した吸入空気量制御が実行されることになる。低大気圧下においては、図2に示すように、標準状態と比べ、ターボ過給機22に依存した吸入空気量制御を行う必要の生ずる負荷率領域が、標準状態と比べて大きくなってしまう。このため、低大気圧下においては、標準状態と比べ、加速時の吸入空気量の応答性が低下し易くなる。
[実施の形態1における特徴的な負荷率-スロットル定常特性および負荷率-WGV定常特性の設定]
 図3は、本発明の実施の形態1において大気圧の高低に応じて切り替えられる2通りの負荷率-スロットル定常特性および負荷率-WGV定常特性を説明するための図である。より具体的には、図3は、所定のエンジン回転数におけるものである。図3(A)は、低大気圧下における、機関負荷率KLと吸気管圧力(スロットル上流圧およびスロットル下流圧)との間の定常特性を表した図である。図3(B)は、負荷率-WGV定常特性を表した図である。図3(C)は、負荷率-スロットル定常特性を表した図である。尚、図3中に破線で示す波形は、大気圧が標準状態(略1気圧)にある時のものであり、同図中に実線で示す波形は、大気圧が標準状態よりも低い低大気圧状態のものである。図3(B)および(C)に示す定常特性は、エンジン回転数に応じて変化するものである。このため、本実施形態では、これらの定常特性として、設定の傾向自体は下記の図3と同じものを、所定のエンジン回転数毎に備えているものとする。
 図3中に破線で示すように、大気圧が所定値よりも高い状態(標準状態)における、負荷率-スロットル定常特性(以下、「スロットルの高大気圧時定常特性」と称することがある)および負荷率-WGV定常特性(WGVの高大気圧時定常特性)は、図2に示すものと同じである。
 一方、大気圧が上記所定値以下となる低大気圧状態における負荷率-スロットル定常特性(以下、「スロットルの低大気圧時定常特性」と称することがある)は、図3(C)に示すように、中負荷率領域(KL1~KL3)においてスロットルの高大気圧時定常特性と比べて同一の機関負荷率KLに対応するスロットル開度が小さく設定されている。更に、スロットルの低大気圧時定常特性は、当該中負荷率領域よりも高負荷率側の領域(KL3~KL4(100%))において全負荷(KL4)に向けて機関負荷率KLが高くなるほど、スロットル開度が全開開度に向けて大きくなるように設定されている。より具体的には、図3に示す一例では、中負荷率領域(KL1~KL3)におけるスロットル開度は、全開開度よりも小さい所定の一定開度TA1に設定されている。尚、機関負荷率KL1よりも低い低負荷率領域において、低大気圧時の方が標準状態よりも機関負荷率KLに対するスロットル開度の変化率が高く設定されている理由は、既述したように、標準状態と同一の吸入空気量(機関負荷率KL)を得るためには、標準状態と比べてスロットル開度を大きく制御する必要があるためである。
 また、WGVの低大気圧時定常特性では、スロットル開度の調整が中止される中負荷率領域(KL1~KL3)の低負荷率側の端部(KL1)において、WGVの高大気圧時定常特性と比べてより低負荷率側の機関負荷率KLからWGV40が閉じ始めるように設定されている。そして、中負荷率領域(KL1~KL3)におけるWGV開度は、スロットル開度が一定の下で機関負荷率KLが高くなるに従ってより大きく閉じられるようになっている。これは、スロットルの低大気圧時定常特性によって標準状態と比べて不足する吸入空気量を補うためである。また、この中負荷率領域よりも高負荷率側の領域(KL3~KL4)におけるWGV開度は、機関負荷率KL3の時の値(コンプレッサ22aのサージラインよりは開いた所定の値)で略一定となるように設定されている。
 スロットルおよびWGVの低大気圧時定常特性が使用されている場合のスロットル下流圧は、図3(A)に示すように、機関負荷率KLの増加に伴う、スロットル開度の拡大またはWGV開度の減少に伴って上昇する。一方、この場合のスロットル上流圧は、WGV40が閉じ始める機関負荷率KL1に達するまでは、過給が行われていないので、この場合の大気圧値で一定で推移する。その後は、WGV40が閉じられていくことに伴ってタービン回転数がより高い状態となり、過給が進む。つまり、本設定によれば、全開開度よりも小さいスロットル開度TA1に対応する機関負荷率KL1において機関負荷率KLの増大に応じたスロットル開度の拡大が中止され、かつ、WGV40が閉じ始められることで、上記図2に示す設定とは異なり、スロットル上流圧とスロットル下流圧との間に有意な差が確保されるようになる。
 そして、図3に示す一例では、中負荷率領域(KL1~KL3)においてはスロットルバルブ26の開度調整に代えて機関負荷率KLの増大に伴ってWGV40が閉じられていく設定となっているので、スロットル上流圧とスロットル下流圧との差が維持される。また、中負荷率領域(KL1~KL3)よりも高負荷率側の領域においても、スロットル上流圧は機関負荷率KLの増大に伴って上昇する。しかしながら、WGV開度が略一定とされ、かつスロットルバルブ26が開かれるため、この領域におけるスロットル上流圧は、機関負荷率KLの増大に伴って中負荷率領域(KL1~KL3)よりも緩やかに上昇する。また、この領域では、機関負荷率KLの増大に伴ってスロットルバルブ26が全開開度に向けて開かれていく設定を有しているので、スロットル開度の拡大に伴ってスロットル上流圧とスロットル下流圧との差が小さくなっていく。
 上述したように、本実施形態におけるスロットルおよびWGVの低大気圧時定常特性によれば、上記図2に示す定常特性の使用時であればスロットル開度が全開開度とされる中負荷率から高負荷率の領域において、スロットル上流圧とスロットル下流圧との有意な差、すなわち、スロットルバルブ26による吸入空気量(吸気管圧力)の制御代を確保できるようになる。また、この低大気圧時定常特性によれば、高大気圧時定常特性と比べて、より低負荷率側の領域の使用時から、タービン回転数を高い状態とすることができる。
 本実施形態では、所定速度よりも低い変化速度で吸入空気量を増加させる要求が出された場合(緩加速要求時)には、大気圧が所定値よりも高いか否かに応じて、使用するスロットルおよびWGVの定常特性が切り替えられる。具体的には、大気圧が上記所定値よりも高い高大気圧(標準状態)下においては、スロットルおよびWGVの高大気圧時定常特性(図3中に破線で示す波形)が選択され、大気圧が上記所定値以下となる低大気圧下においては、スロットルおよびWGVの低大気圧時定常特性(図3中に実線で示す波形)が選択される。そして、上記所定速度よりも低い変化速度で吸入空気量を増加させる要求が出された場合(緩加速要求時)には、選択された高大気圧時または低大気圧時の定常特性を参照して、今回の加速時の目標機関負荷率(目標吸入空気量)に対応する目標スロットル開度および目標WGV開度が算出される。そして、これらの目標スロットル開度および目標WGV開度が得られるようにスロットルバルブ26およびWGV40が制御される。
 一方、本実施形態では、上記所定速度以上の変化速度で吸入空気量を増加させる要求が出された場合(急加速要求時)であって、大気圧が上記所定値以下となる低大気圧下においては、今回の加速時の目標機関負荷率(目標吸入空気量)に対応する値としてスロットルの低大気圧時定常特性を参照して取得されるスロットル開度よりも大きな値として、目標スロットル開度が算出される。また、この場合の目標WGV開度は、WGVの低大気圧時の定常特性を参照して、今回の加速時の目標機関負荷率(目標吸入空気量)に対応する値として算出される。
 図4は、上述したスロットルおよびWGV制御を実現するために、本実施の形態1においてはECU50が実行する制御ルーチンを示すフローチャートである。尚、本ルーチンは、所定の制御周期毎に繰り返し実行されるものとする。
 図4に示すルーチンでは、先ず、内燃機関10を搭載する車両の状態、およびエンジン状態を示す各種パラメータが検出される(ステップ100)。具体的には、本ステップ100では、上記図1中に示した各種センサおよび図示を省略した各種センサを利用して、車両状態に関しては、車速、およびドライバーからの要求情報としてのアクセル開度および変速機(図示省略)のシフトポジションなどが取得される。また、エンジン状態としては、エンジン回転数、吸入空気量、エンジン冷却水温度および圧縮比などが取得される。
 次に、大気圧センサ56を利用して、大気圧が所定値よりも高いか否かが判定される(ステップ102)。その結果、大気圧が上記所定値よりも高いと判定された場合、すなわち、例えば、大気圧が標準状態である場合には、アクセル開度とエンジン回転数とに基づいて、目標機関負荷率(目標吸入空気量)が算出される(ステップ104)。
 次に、上記ステップ104において算出された目標機関負荷率と、スロットルおよびWGVの高大気圧時定常特性(図3中に破線で示す波形)とを利用して、目標スロットル開度および目標WGV開度がそれぞれ算出される(ステップ106)。次いで、算出された目標スロットル開度および目標WGV開度に従って、スロットルバルブ26およびWGV40がそれぞれ制御される(ステップ108)。
 一方、上記ステップ102において大気圧が上記所定値以下となる低大気圧状態であると判定された場合には、次いで、上記所定速度以上で吸入空気量を増加させる要求があるか否かが判定される(ステップ110)。具体的には、本ステップ110の判定は、アクセルペダルの踏み込み量および踏み込み速度、並びに変速機のシフトポジション等を総合的に判断して行われる。
 上記ステップ110の判定が不成立である場合、すなわち、高応答での吸入空気量の増加が要求されていない場合(緩加速要求が出されている場合)には、アクセル開度とエンジン回転数とに基づいて、目標機関負荷率(目標吸入空気量)が算出される(ステップ112)。
 次に、上記ステップ112において算出された目標機関負荷率と、スロットルおよびWGVの低大気圧時定常特性(図3中に実線で示す波形)とを利用して、目標スロットル開度および目標WGV開度がそれぞれ算出される(ステップ114)。次いで、算出された目標スロットル開度および目標WGV開度に従って、スロットルバルブ26およびWGV40がそれぞれ制御される(ステップ116)。
 一方、上記ステップ110の判定が成立する場合、すなわち、高応答での吸入空気量の増加が要求されている場合(急加速要求が出されている場合)には、高応答要求に対応する目標スロットル開度および目標WGV開度がそれぞれ算出される(ステップ118)。具体的には、本ステップ118では、今回の高応答要求時の目標機関負荷率を低大気圧時定常特性に代入して算出される値よりも大きな値となるように、目標スロットル開度が算出される。例えば、目標スロットル開度として全開開度が取得される。目標WGV開度については、今回の高応答要求時の目標機関負荷率を低大気圧時定常特性に代入することによって算出される。ただし、この場合に取得される目標WGV開度は、今回の目標機関負荷率との関係において低大気圧時定常特性上でコンプレッササージに対して余裕がある状態であれば、コンプレッササージを回避し得る最小開度であってもよい。次いで、算出された目標スロットル開度および目標WGV開度に従って、スロットルバルブ26およびWGV40がそれぞれ制御される(ステップ120)。
 以上説明した図4に示すルーチンによれば、大気圧が上記所定値よりも高いか否かに応じて、スロットルおよびWGVの定常特性として、高大気圧時定常特性または低大気圧時定常特性が選択される。そして、低大気圧下において高応答での吸入空気量の増加要求が出されていない場合には、低大気圧時定常特性に従ってスロットル開度およびWGV開度が制御される。これにより、中負荷率から高負荷率領域において、スロットルバルブ26による吸入空気量(吸気管圧力)の制御代が確保される。このため、その後に高応答での吸入空気量の増加要求が出された場合に、確保されたスロットルバルブ26による制御代を利用して吸入空気量を制御することができる。これにより、上記低大気圧時定常特性を有していない場合であれば応答性の低いターボ過給機22への吸入空気量の制御依存度が高くなる低大気圧下において、相対的に応答性の高いスロットルバルブ26による吸入空気量の制御によって、中負荷率から高負荷率領域への加速時の吸入空気量の応答性を向上させることができる。
 また、上記ルーチンによれば、大気圧が上記所定値よりも高い状態(標準状態など)においては、低大気圧下とは異なり、スロットルバルブ26による吸入空気量の制御代を確保するための定常特性の設定およびそれを利用した制御は実行されない。低大気圧下における上述した高応答での吸入空気量の増加要求時の制御は、燃費が最適となる動作点から外れる制御である。このため、本実施形態では、このような制御は、吸入空気量の応答性に影響の大きい低大気圧時に限定して実施されるようになっている。このように、本実施形態では、スロットル開度およびWGV開度を用いた吸入空気量の制御において、燃費最適動作点からの乖離の頻度が小さくなるように考慮されている。
 上述した実施の形態1においては、低大気圧下において中負荷率領域(KL1~KL3)で使用するスロットル開度は、所定の一定開度TA1に設定されている。ところで、このような低大気圧下において上記中負荷率領域におけるスロットル開度をより小さくすることで(かつ、それに応じてWGV開度をより小さくすることで)、スロットル上流圧とスロットル下流圧との差を大きくし、スロットルバルブ26による吸入空気量の制御代をより大きく確保できるようになる。しかしながら、当該制御代を大きく確保し過ぎることは、吸入空気量の応答性を過剰に確保する結果となるとともに、スロットルバルブ26を大きく閉じることによる燃費悪化を招くことにもなる。そこで、低大気圧下において上記中負荷率領域で使用するスロットル開度は、低大気圧下における吸入空気量の応答性を過剰に確保しないようにするために、例えば、スロットルバルブ26の前後の圧力比(圧力降下率)が所定値(好ましくは、現在の大気圧/標準大気圧)で一定となるように、機関負荷率KL(吸入空気量)が高くなる(多くなる)ほど、大きくなるように設定されていてもよい。
 また、上述した実施の形態1においては、大気圧が上記所定値よりも高いか否かに応じて、高大気圧時定常特性および低大気圧時定常特性という2種類の定常特性を使い分けるようにしている。しかしながら、本発明において低大気圧下において使用される低大気圧時定常特性は、単一の設定によるものに限らない。すなわち、本発明における低大気圧時定常特性は、例えば、低大気圧下において、大気圧が低い場合にはそれが高い場合よりも中負荷率領域におけるスロットル開度がより小さくなるように段階的に変化するものとして設定されたものであってもよく、或いは、低大気圧下において、大気圧がより低いほど中負荷率領域におけるスロットル開度がより小さくなるように連続的に設定されたものであってもよい。
 尚、上述した実施の形態1においては、ECU50が上記ステップ102の判定結果に応じて上記ステップ106および114の処理の一方が択一的に実行されることにより本発明における「定常特性切替手段」が実現され、ECU50が上記ステップ104~108、または上記ステップ110~116の処理を実行することにより本発明における「第1スロットル制御手段」が実現され、ECU50が上記ステップ110の判定が成立する場合に上記ステップ118および120の処理を実行することにより本発明における「第2スロットル制御手段」が実現され、そして、ECU50が上記ステップ104~108、または上記ステップ118~120の処理を実行することにより本発明における「WGV制御手段」が実現されている。
 実施の形態2.
 次に、図5を参照して、本発明の実施の形態2について説明する。
 本実施形態のシステムは、前提として、図1に示すハードウェア構成を備え、上述した実施の形態1と同様の制御を実行するものである。そのうえで、本実施形態では、以下に示すようなスロットルバルブ26の動作速度の規制を必要に応じて行うようにしている。
 図5は、低大気圧下において高応答での吸入空気量の増加要求が出された場合に本発明の実施の形態2において実行される制御を説明するためのタイムチャートである。
 上述した実施の形態1における低大気圧時の制御によれば、高応答での吸入空気量の増加要求が出された際に、確保されているスロットルバルブ26による吸入空気量(吸気管圧力)の制御代を利用することで、吸入空気量の応答性の向上を図ることができる。
 しかしながら、高応答での吸入空気量の増加要求時にスロットルバルブ26を開く速度が速すぎると、以下に示すように、吸入空気量の応答速度が逆に悪化してしまう。すなわち、図5(D)に示すように急加速を要求するアクセルペダルの踏み込みが検知された場合において、図5(A)中に破線で示す目標サージタンク圧(スロットル下流圧)に最速で到達するために、図5(C)中の細い実線および図5(B)に示すように、スロットル開度およびWGV開度を最高の動作速度で制御させると、次のような問題が生ずる。
 上記のようにスロットル開度およびWGV開度をともに最速で動作させた場合には、スロットルバルブ26を開く速度が速すぎて、タービン回転数が上昇する前にコンプレッサ22aの下流の圧縮された空気が吸気され易くなる。その結果、図5(A)中に細い一点鎖線で示すように、加速初期においてコンプレッサ出口圧(≒スロットル上流圧)が下がってしまう。そして、図5(A)中に細い実線で示すように、サージタンク圧(スロットル下流圧)は加速初期においては応答良く立ち上がるが、過給が追いつかないため、その後の圧力上昇が一旦停滞してしまう。このような現象によって、吸入空気量の応答速度が逆に悪化してしまう。
 そこで、本実施形態では、低大気圧下において高応答での吸入空気量の増加要求が出された場合には、所定の上限値を超えないようにスロットルバルブ26の動作速度に制限するようにした。具体的には、スロットルバルブ26を素早く開くことによる上述したコンプレッサ出口圧の低下を招かないようにするために、図5(C)中に太い実線で示すようにスロットルバルブ26の動作速度が制限される。
 以上説明した本実施形態の制御によれば、図5(A)中に太い一点鎖線および太い実線で示すように、加速初期におけるコンプレッサ出口圧の低下を招くことなく、吸入空気量の増加要求時に、吸入空気量の応答速度としては最速でコンプレッサ出口圧およびサージタンク圧を目標値に向けて立ち上げていくことができる。
実施の形態3.
 次に、図6を参照して、本発明の実施の形態3について説明する。
 図6は、本発明の実施の形態3において用いられる、負荷率-スロットル定常特性および負荷率-WGV定常特性を表した図である。尚、本実施形態のシステムは、図6を参照して後述する点を除き、上述した実施の形態1のシステムと同じであるものとする。
 上述した実施の形態1(および2)においては、低大気圧下において中負荷率領域(KL1~KL3)で使用するスロットル開度は、所定の一定開度TA1に設定されている。これに対し、本実施形態では、低大気圧下においてこの中負荷率領域で使用するスロットル開度は、図6(C)中に太い実線で示すように、機関負荷率KLが高くなるほど、小さくなるように設定されている。
 また、これに伴い、WGV開度は、図6(B)中に太い実線で示すように、全負荷時(KL4)よりも低負荷率側の機関負荷率KL3において、上述した実施の形態1よりも小さい(閉じ側の)値で、最小開度が得られるように設定されている。より具体的には、上記中負荷率領域におけるWGV開度は、機関負荷率KL3の時の最小開度に向けて、機関負荷率KLが高くなるほど、より小さくなるようになっている。そして、当該中負荷率領域よりも高負荷率側の領域では、機関負荷率KLが高くなるほど、WGV開度がより大きくなるように設定されている。
 以上説明した定常特性の設定によれば、低大気圧下において中負荷率領域(KL1~KL3)で使用するスロットル開度が、機関負荷率KLが高くなるほど、小さくなっている。中負荷率領域(KL1~KL3)は、主としてWGV開度によって機関負荷率KL(吸入空気量)が調整される領域である。このため、本実施形態の設定によれば、上述した実施の形態1の設定と比べ、図6(A)に示すように、上記中負荷率領域以上の領域において、スロットルバルブ26による吸入空気量(吸気管圧力)の制御代を更に大きく確保することができる。これにより、低大気圧下において高応答で吸入空気量を増加する要求が出された際に、吸入空気量の応答性を更に向上させることができる。
10 内燃機関
12 燃焼室
14 吸気通路
16 排気通路
18 エアクリーナ
20 エアフローメータ
22 ターボ過給機
22a ターボ過給機のコンプレッサ
22b ターボ過給機のタービン
24 インタークーラ
26 スロットルバルブ
28 スロットル開度センサ
30 スロットル上流圧センサ
32 スロットル下流圧センサ
34 燃料噴射弁
36 点火装置
38 排気バイパス通路
40 ウェイストゲートバルブ(WGV)
50 ECU(Electronic Control Unit)
52 クランク角センサ
54 水温センサ
56 大気圧センサ
58 アクセル開度センサ

Claims (3)

  1.  吸気通路に配置され、吸入空気を過給するコンプレッサと、排気通路に配置され、排気エネルギーにより作動するタービンとを備えるターボ過給機と、
     前記吸気通路に配置され、吸入空気量を調整するスロットルバルブと、
     前記タービンの上流側において前記排気通路から分岐し、前記タービンの下流側において前記排気通路に再び合流する排気バイパス通路と、
     前記排気バイパス通路を開閉可能なウェイストゲートバルブと、
     定常状態における機関負荷率とスロットル開度との関係を定めた定常特性として、大気圧が所定値よりも高い高大気圧下で使用する高大気圧時定常特性と、大気圧が前記所定値以下となる低大気圧下で使用する低大気圧時定常特性とを有し、大気圧が前記所定値よりも高いか否かに応じて、前記高大気圧時定常特性と前記低大気圧時定常特性との間で前記定常特性を切り替える定常特性切替手段と、
     所定速度よりも低い変化速度で吸入空気量を増加させる要求が出された場合に、前記定常特性切替手段によって選択された前記高大気圧時定常特性または前記低大気圧時定常特性とこの場合の目標機関負荷率とに基づいて得られる目標スロットル開度となるように、スロットル開度を制御する第1スロットル制御手段と、
     前記低大気圧下であって前記所定速度以上の変化速度で吸入空気量を増加させる要求が出された場合に、前記定常特性切替手段によって選択された前記低大気圧時定常特性とこの場合の目標機関負荷率とに基づいて得られる値よりも大きな目標スロットル開度となるように、スロットル開度を制御する第2スロットル制御手段と、
     を備え、
     前記低大気圧時定常特性は、中負荷率領域において前記高大気圧時定常特性と比べて同一の機関負荷率に対応するスロットル開度が小さく設定され、かつ、前記中負荷率領域よりも高負荷率側の領域において全負荷に向けて機関負荷率が高くなるほどスロットル開度が大きくなるように設定されており、
     前記低大気圧時定常特性が使用される状況下において、前記中負荷率領域において前記高大気圧時定常特性と比べて同一の機関負荷率に対応するスロットル開度が小さく制御されることに伴って、前記ウェイストゲートバルブの開度を閉じ側の値に制御するWGV制御手段を更に備えることを特徴とする内燃機関の制御装置。
  2.  前記第2スロットル制御手段は、スロットル開度を拡大する際に、所定の上限値を超えないように前記スロットルバルブの動作速度を制限することを特徴とする請求項1記載の内燃機関の制御装置。
  3.  前記低大気圧時定常特性は、前記中負荷率領域において、機関負荷率が高くなるほどスロットル開度が小さくなるように設定されていることを特徴とする請求項1または2記載の内燃機関の制御装置。
PCT/JP2012/052889 2012-02-08 2012-02-08 内燃機関の制御装置 WO2013118263A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013557284A JP5786970B2 (ja) 2012-02-08 2012-02-08 内燃機関の制御装置
US14/377,286 US9416722B2 (en) 2012-02-08 2012-02-08 Control apparatus for internal combustion engine
EP12867766.3A EP2813690B1 (en) 2012-02-08 2012-02-08 Control apparatus for internal combustion engine
CN201280069095.1A CN104093956B (zh) 2012-02-08 2012-02-08 内燃机的控制装置
PCT/JP2012/052889 WO2013118263A1 (ja) 2012-02-08 2012-02-08 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052889 WO2013118263A1 (ja) 2012-02-08 2012-02-08 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2013118263A1 true WO2013118263A1 (ja) 2013-08-15

Family

ID=48947067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052889 WO2013118263A1 (ja) 2012-02-08 2012-02-08 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US9416722B2 (ja)
EP (1) EP2813690B1 (ja)
JP (1) JP5786970B2 (ja)
CN (1) CN104093956B (ja)
WO (1) WO2013118263A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169692A (ja) * 2013-02-08 2014-09-18 Osaka Gas Co Ltd ターボ過給式エンジン及びその負荷投入方法
JP2016098653A (ja) * 2014-11-18 2016-05-30 三菱自動車工業株式会社 可変容量型過給機付きエンジン
JP2016098654A (ja) * 2014-11-18 2016-05-30 三菱自動車工業株式会社 可変容量型過給機付きエンジン
JP2016125366A (ja) * 2014-12-26 2016-07-11 ダイハツ工業株式会社 内燃機関
US9890718B2 (en) 2012-01-11 2018-02-13 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322618B2 (ja) * 2015-12-07 2018-05-09 本田技研工業株式会社 内燃機関の制御装置
JP6280537B2 (ja) * 2015-12-25 2018-02-14 本田技研工業株式会社 内燃機関の制御装置
CN117108407B (zh) * 2023-10-16 2024-02-20 潍柴动力股份有限公司 节气门关闭速率控制方法、装置、发动机控制系统和汽车

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113543A (ja) * 1987-10-26 1989-05-02 Mazda Motor Corp エンジンの制御装置
JPH05141258A (ja) 1991-11-19 1993-06-08 Mitsubishi Motors Corp ターボチヤージヤを備える内燃エンジンの過給圧制御方法
JPH062606A (ja) * 1992-02-28 1994-01-11 Mazda Motor Corp エンジンの制御装置
JPH0953457A (ja) 1995-08-15 1997-02-25 Toyota Motor Corp 過給機付内燃機関の過給圧制御装置
JP2000220501A (ja) * 1999-01-29 2000-08-08 Nissan Motor Co Ltd エンジンの制御装置
JP2002213247A (ja) 2001-01-18 2002-07-31 Suzuki Motor Corp 内燃機関の過給圧制御装置
JP2004124745A (ja) 2002-09-30 2004-04-22 Mazda Motor Corp ターボ過給機付エンジン
JP2006125352A (ja) 2004-11-01 2006-05-18 Denso Corp 過給機付き内燃機関の制御装置
JP2006152932A (ja) * 2004-11-30 2006-06-15 Denso Corp 内燃機関の制御装置
JP2006152821A (ja) 2004-11-25 2006-06-15 Denso Corp 過給機付き内燃機関の制御装置
JP2008014289A (ja) * 2006-07-10 2008-01-24 Mitsubishi Motors Corp 車両走行用エンジンの制御装置
JP2010014050A (ja) 2008-07-04 2010-01-21 Toyota Motor Corp 内燃機関の過給システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081425A (ja) * 1983-10-13 1985-05-09 Honda Motor Co Ltd タ−ボチヤ−ジヤ付内燃機関の過給圧制御装置
JP3551590B2 (ja) * 1995-12-26 2004-08-11 トヨタ自動車株式会社 過給機付内燃機関
JPH09177555A (ja) * 1995-12-27 1997-07-08 Toyota Motor Corp 過給機の過給圧制御装置
JP3430764B2 (ja) * 1995-12-28 2003-07-28 トヨタ自動車株式会社 過給機の過給圧制御装置
JPH09195782A (ja) * 1996-01-16 1997-07-29 Toyota Motor Corp 過給機の過給圧制御装置
DE19620778C1 (de) * 1996-05-23 1997-08-21 Daimler Benz Ag Verfahren zur Regelung des Druckes im Ansaugkanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE19730578A1 (de) * 1997-07-17 1999-01-21 Bosch Gmbh Robert Verfahren und Vorrichtung zum Schutz eines Turboladers
JPH11255199A (ja) * 1998-03-10 1999-09-21 Toyota Motor Corp 航空機の推力制御装置
US6367447B1 (en) * 2001-02-21 2002-04-09 Ford Global Technologies, Inc. Adjustment of driver demand for atmospheric conditions
JP2006274831A (ja) * 2005-03-28 2006-10-12 Denso Corp ターボチャージャ付き内燃機関の制御装置
US7677227B2 (en) * 2005-07-04 2010-03-16 Denso Corporation Apparatus and method of abnormality diagnosis for supercharging pressure control system
JP4650321B2 (ja) * 2006-03-28 2011-03-16 トヨタ自動車株式会社 制御装置
DE102006033460B3 (de) * 2006-07-19 2007-10-31 Siemens Ag Verfahren und Vorrichtung zur Bestimmung des Umgebungsdrucks mit Hilfe eines Ladedrucksensors bei einem Turbomotor
US8573181B2 (en) * 2008-12-22 2013-11-05 GM Global Technology Operations LLC Throttle control systems and methods for internal combustion engines to reduce throttle oscillations
US8090522B2 (en) * 2009-11-23 2012-01-03 GM Global Technology Operations LLC Air pressure control systems and methods for turbocharger systems
US9890718B2 (en) * 2012-01-11 2018-02-13 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113543A (ja) * 1987-10-26 1989-05-02 Mazda Motor Corp エンジンの制御装置
JPH05141258A (ja) 1991-11-19 1993-06-08 Mitsubishi Motors Corp ターボチヤージヤを備える内燃エンジンの過給圧制御方法
JPH062606A (ja) * 1992-02-28 1994-01-11 Mazda Motor Corp エンジンの制御装置
JPH0953457A (ja) 1995-08-15 1997-02-25 Toyota Motor Corp 過給機付内燃機関の過給圧制御装置
JP2000220501A (ja) * 1999-01-29 2000-08-08 Nissan Motor Co Ltd エンジンの制御装置
JP2002213247A (ja) 2001-01-18 2002-07-31 Suzuki Motor Corp 内燃機関の過給圧制御装置
JP2004124745A (ja) 2002-09-30 2004-04-22 Mazda Motor Corp ターボ過給機付エンジン
JP2006125352A (ja) 2004-11-01 2006-05-18 Denso Corp 過給機付き内燃機関の制御装置
JP2006152821A (ja) 2004-11-25 2006-06-15 Denso Corp 過給機付き内燃機関の制御装置
JP2006152932A (ja) * 2004-11-30 2006-06-15 Denso Corp 内燃機関の制御装置
JP2008014289A (ja) * 2006-07-10 2008-01-24 Mitsubishi Motors Corp 車両走行用エンジンの制御装置
JP2010014050A (ja) 2008-07-04 2010-01-21 Toyota Motor Corp 内燃機関の過給システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9890718B2 (en) 2012-01-11 2018-02-13 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2014169692A (ja) * 2013-02-08 2014-09-18 Osaka Gas Co Ltd ターボ過給式エンジン及びその負荷投入方法
JP2016098653A (ja) * 2014-11-18 2016-05-30 三菱自動車工業株式会社 可変容量型過給機付きエンジン
JP2016098654A (ja) * 2014-11-18 2016-05-30 三菱自動車工業株式会社 可変容量型過給機付きエンジン
JP2016125366A (ja) * 2014-12-26 2016-07-11 ダイハツ工業株式会社 内燃機関

Also Published As

Publication number Publication date
US20150013331A1 (en) 2015-01-15
EP2813690A4 (en) 2017-10-18
EP2813690A1 (en) 2014-12-17
JPWO2013118263A1 (ja) 2015-05-11
JP5786970B2 (ja) 2015-09-30
CN104093956B (zh) 2016-08-24
EP2813690B1 (en) 2019-08-21
CN104093956A (zh) 2014-10-08
US9416722B2 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
US10087822B2 (en) Control apparatus for internal combustion engine
JP5786970B2 (ja) 内燃機関の制御装置
US10190484B2 (en) Control apparatus for internal combustion engine
US9890718B2 (en) Control apparatus for internal combustion engine
JP5680169B1 (ja) 内燃機関の制御装置および制御方法
JP5389238B1 (ja) 内燃機関のウェイストゲートバルブ制御装置
KR101826551B1 (ko) 엔진 제어 장치 및 방법
KR101020390B1 (ko) 터보차지 엔진에서 차지 압력 센서에 의해 주위 압력을 결정하기 위한 방법 및 장치
JP6540815B2 (ja) 内燃機関の制御装置及び内燃機関の制御方法
WO2012049744A1 (ja) 内燃機関の制御装置
US9303553B2 (en) Turbo speed control for mode transitions in a dual turbo system
CN108026840B (zh) 内燃机的控制装置以及内燃机的控制方法
US9038384B2 (en) Control apparatus for internal combustion engine equipped with supercharger
JP2006152821A (ja) 過給機付き内燃機関の制御装置
JP5531987B2 (ja) 過給機付き内燃機関の制御装置
US10711689B2 (en) Control device of internal combustion engine
EP3006702A1 (en) Internal combustion engine and control device thereof
JP2016130489A (ja) 内燃機関の制御装置
JP5245470B2 (ja) 過給機付き内燃機関の制御装置
JP2006125352A (ja) 過給機付き内燃機関の制御装置
JP6201439B2 (ja) 内燃機関の制御装置および制御方法
JP2019039405A (ja) エンジンの制御装置
JP6154232B2 (ja) 過給機付きエンジンの制御装置
WO2013168247A1 (ja) 過給機付き内燃機関の制御装置
JP2006070751A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557284

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012867766

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14377286

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE