WO2013118003A1 - Substratbearbeitungsanlage - Google Patents

Substratbearbeitungsanlage Download PDF

Info

Publication number
WO2013118003A1
WO2013118003A1 PCT/IB2013/050414 IB2013050414W WO2013118003A1 WO 2013118003 A1 WO2013118003 A1 WO 2013118003A1 IB 2013050414 W IB2013050414 W IB 2013050414W WO 2013118003 A1 WO2013118003 A1 WO 2013118003A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
carrier
substrate processing
processing system
transfer
Prior art date
Application number
PCT/IB2013/050414
Other languages
English (en)
French (fr)
Inventor
Joachim Mai
Mirko Kehr
Original Assignee
Roth & Rau Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roth & Rau Ag filed Critical Roth & Rau Ag
Priority to JP2014556152A priority Critical patent/JP6282983B2/ja
Priority to EP13709538.6A priority patent/EP2812915B1/de
Priority to EP21177601.8A priority patent/EP3916764B1/de
Priority to PL13709538T priority patent/PL2812915T3/pl
Priority to US14/376,913 priority patent/US10199250B2/en
Priority to ES13709538T priority patent/ES2882593T3/es
Priority to KR1020147023259A priority patent/KR102033694B1/ko
Priority to CN201380008076.2A priority patent/CN104115264B/zh
Publication of WO2013118003A1 publication Critical patent/WO2013118003A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/6773Conveying cassettes, containers or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67754Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67718Changing orientation of the substrate, e.g. from a horizontal position to a vertical position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers

Definitions

  • the present invention relates to a substrate processing system which has at least one substrate in the loading and unloading area for loading and unloading the substrate processing system with at least one substrate, at least one evacuable process chamber, at least one carrier device, with which the at least one substrate by means of at least one carrier transport device in at least a carrier transport region to the at least one process chamber is transportable, and at least one gas-tight closure means between the at least one process chamber and the carrier transport region and at least one gas-tight closure means between the substrate loading and unloading region and the carrier transport region.
  • Continuous coating systems are known in the prior art, which are used, for example, for the mass production of solar cells.
  • For the coating several, for example 42, solar cell wafers are placed on a carrier device in a plane and coated in the continuous system during a continuous pass through this system.
  • Individual processing areas are isolated from each other, for example by gas curtains.
  • the advancement in solar cell technology regularly leads to increased demands on the system technology, for example with regard to the process purity in the substrate processing systems. Fulfilling these growing demands is problematic with conventional continuous flow systems.
  • a problem with batch ovens is that they are usually only suitable for thermal processing and not for plasma-assisted substrate processing.
  • the wafer stack in the boat has a large thermal mass, so in batch ovens relatively large heating and cooling times are to be accepted.
  • a substrate processing system of the type defined above which is characterized in that the substrate loading and unloading area with the carrier transport area through a substrate transfer area with at least one substrate transfer device for transferring the at least one substrate of at least one in the substrate loading and unloading providable substrate cassette, in which substrates in different horizontal cassette levels of the substrate cassette can be arranged on the at least one carrier device with which the at least one substrate in a horizontal carrier plane is durable, coupled, the Substratumlade Rail opposite the substrate loading and unloading is gastight closed ,
  • the substrate processing system according to the invention thus has a substrate loading and unloading area, in which substrate cassettes can be introduced and removed therefrom.
  • the substrate loading and unloading area can be provided both for loading and for unloading.
  • a substrate loading area is provided at the beginning of a continuous line and a substrate unloading area is provided at the end of the continuous line.
  • the substrate box Setten several flat substrates are arranged parallel to each other in different cassette levels in a horizontal position.
  • a substrate transfer area is coupled to the substrate loading and unloading area.
  • a gas-tight closure is provided between the substrate loading and unloading area and the substrate transfer area, which is an obstacle to contamination in the atmosphere, which prevents their carry-over into the process chambers and thus causes increased purity in the substrate processing plant.
  • the substrates are transferred from the substrate cassette to the carrier device provided in the carrier transport region or from the carrier device to the substrate cassette.
  • the carrier device provided in the carrier transport region or from the carrier device to the substrate cassette.
  • different numbers of substrates can be accommodated on the carrier device.
  • only one substrate can be provided on the carrier device.
  • the substrate transfer region forms a type of sluice between the substrate loading and unloading region and the carrier transport region.
  • the gas-tight seal permits operation of the substrate transfer area at a pressure other than the pressure in the substrate loading and unloading area.
  • various measures can be implemented in the substrate transfer area, which serve to increase the purity in the substrate processing plant. For example, rinse cycles may be performed in the substrate transfer area.
  • the substrate transfer region can be filled with inert gas. Due to the Inertgas Stahl prevails in the Substratumlade #2 a defined and clean atmosphere, which is mainly determined by the purity of the inert gas used. Due to the chemical inactivity of the inert gas surface changes to the substrates can be avoided. In the case of solar cell substrates, for example, high surface qualities, which can be measured, for example, at large carrier lifetimes, can be achieved.
  • the substrate transfer region can also be filled with vacuum or with a reactive gas, for example with forming gas.
  • the carrier device has substrate nests arranged in the carrier plane in substrate carrier lines and substrate carrier columns, and the carrier device is in Substrate carrier line direction and / or movable in the substrate carrier gap direction.
  • the available surface of the carrier device is well utilized by the arrangement in rows and columns, so that a high productivity can be achieved.
  • the linear arrangement in rows and columns is also particularly simple, so that provided in the substrate transfer device transport mechanisms for the substrates to reach the substrate nests in the substrate carrier lines and substrate carrier columns can be constructed according to simple.
  • the orthogonal arrangement of substrate carrier lines and substrate carrier columns requires rectangular carrier devices, which are preferably provided for linear movements in the substrate carrier line direction and / or the substrate carrier gap direction.
  • the substrate carrier transport is carried out regularly only in one direction, that is, either in the substrate carrier line direction or in the substrate carrier column direction.
  • the carrier device is movable in two directions, that is, in the substrate carrier line direction and in the substrate carrier gap direction. The substrate nests cause a secure position of the substrates on the carrier device with lateral guidance of the substrates, so that the substrates do not slip during movements of the carrier device.
  • the substrate transfer device has, above the carrier transport region, a substrate storage plane which can be provided parallel to the carrier device, from which the carrier device can be equipped with substrates over the entire surface, in rows or columns.
  • the Substratablageebene is horizontally oriented and is provided above the carrier device.
  • the substrate deposition plane is a convenient tool that allows deposition and alignment of the substrates to an exact position on the support device. From the Substratablagee level from a simple and fast placement of the carrier device is possible.
  • the substrate transfer device has at least one transfer bridge or transfer arm which extends parallel to at least one substrate carrier line or substrate carrier column of the carrier device for loading and unloading this substrate carrier line or substrate carrier column with at least one substrate.
  • the transfer bridge or the transfer arm are preferably provided in the Substratablageebene or in these einbringbar and tobringbar from this. With the help of Umlade Georgia or Umladearmes all substrate nests can be achieved by means of the substrate transfer device. With the transfer bridge or Umladearm all substrate carrier lines or substrate carrier columns of the carrier device can be approached in succession, or it can also be done with multiple Umlebe Georgian or Umladearmen parallel to several substrate carrier lines or substrate carrier columns of the carrier device.
  • the addressing of the different substrate carrier lines or substrate carrier columns can take place in different ways.
  • the reloading bridge or the reloading arm for loading and unloading further substrate carrier lines or substrate carrier columns of the carrier device can be moved along a substrate carrier column direction and / or along a substrate carrier line direction.
  • the substrate transfer device preferably has at least one non-contact, substrate handling device, such as, for example, an ultrasound-assisted Zimmermann ski handling device.
  • substrate handling devices are handling devices that can handle even extremely thin substrates reliably at low risk of breakage for the substrates.
  • the substrates can be pressed for example by their weight force or by, for example, a vacuum suction force against an ultrasonically generated gas cushion, which acts as a spacer to the substrate-handling device. Due to the non-contact functional principle, advantageously no handler impressions occur on the substrates. Furthermore, with such substrate handling devices high Umlade yorken can be realized.
  • the proposed non-contact substrate handling devices do not operate in vacuum, but they require a high gas density to form the gas cushion underlying the operating principle of these handlers.
  • the required gas density is given for example at atmospheric pressure.
  • the substrates can be removed from the substrate cassette in a particularly suitable manner and introduced again into the substrate cassette when the substrate cassette is coupled to a lift system for defined removal and return of the respective uppermost substrate.
  • a further embodiment of the substrate processing system according to the invention has at least two carrier device levels, with carrier devices located in the carrier device levels being movable independently of one another. The presence of multiple carrier levels increases the productivity of the substrate processor. The individual carrier device levels may lead to multiple substrate processing planes. However, the plurality of carrier device levels can also be provided, for example for logistical reasons, only in the carrier transport area of the substrate processing system. In bi-directional carrier logistics, in the presence of multiple carrier levels, one carrier device may dodge another carrier device, so that the carrier devices may be moved without prolonged latencies in the substrate processing line.
  • the substrate processing system according to the invention may also have several loading and unloading planes in addition to the aforementioned plurality of carrier device levels.
  • the individual carrier device levels of the substrate processing system are connected to one another by at least one carrier device lift. With the aid of the carrier device lift, at least one carrier device can be brought into another carrier device plane of the substrate processing system.
  • the carrier device lift forms at least one further carrier device plane adjacent to the carrier transport plane. Thereby, one carrier device can be stored on the carrier device lift while another carrier device is being transported.
  • the substrate processing system according to the invention has at least two process chambers coupled to the carrier transport region and arranged one above the other. With the superimposed process chambers, the production capacity of the substrate processing system can be increased, for example doubled, become. The costs of the substrate processing system thereby increase, in Relation to a substrate processing plant with arranged in only one plane process chambers, less than the production capacity.
  • the carrier transport area is designed such that all process chambers for carrier devices can be reached.
  • the substrate loading and unloading area has a cassette memory in which at least one substrate cassette can be provided and, if necessary, can be coupled to the substrate transfer device.
  • the capacity of the substrate cassettes and the carrier device are not always in an integer relationship to each other.
  • the substrate cassettes have a capacity of 25 wafers and the carrier device has a capacity of 42 wafers, that is, a second substrate cassette can not be completely discharged onto the carrier device.
  • the cassette memory for example, a normal, one-sided reveal substrate cassette may be provided and coupled to the substrate transfer device.
  • a special memory cassette may also be provided in the cassette memory.
  • the particular memory cartridge may have the advantage that, unlike the substrate cassette, it is open on both sides for substrate transport.
  • the cassette memory can be evacuated and / or filled with inert gas.
  • the substrates are stored in the cassette memory during the production process. It is sometimes observed a change in the substrates in the cassette memories. Such effects can be suppressed or at least minimized by filling the cassette memories with inert gas or evacuating them or purging the cassette memories with evacuation and inert gas filling steps.
  • the carrier transport region has at least one tempering device, that is to say at least one heating and / or one cooling.
  • the heating and / or cooling may be provided for reasons of increasing the temperature homogeneity of the substrates and / or increasing the substrate heating or cooling rate.
  • this has a substrate turning device.
  • a two-sided coating of substrates can be carried out, the coatings taking place in standardized process chambers from a substrate side.
  • the substrate turning device the substrates can be rotated so that the front or back side of the substrates is brought to the processing side of the coating chambers.
  • the substrate inverting device is a substrate cassette rotating device.
  • the turning of individual substrates is relatively expensive in practice.
  • the substrate turning can be realized more easily, wherein the substrates are first transferred into substrate cassettes, then the entire substrate cassettes are rotated and then the substrates are reloaded.
  • a substrate transfer station for transferring the at least one substrate from one carrier device to another carrier device is provided between at least two carrier transport regions of the substrate processing system.
  • the substrate transport takes place partially with the aid of the substrate transfer station, wherein the substrates are processed in different parts of the system on different carrier devices. This is favorable, for example, when in a process chamber a carrier device is required, which is conditioned by the substrate processing in this process chamber.
  • the substrate processing system according to the invention has a substrate breakage detection and / or a substrate breakage removal device.
  • substrate break removal devices can be, for example, a simple substrate break suction or robotic arms with special gripper devices.
  • Substrate breaks are not completely avoidable, but they occur with a low probability. In this case, a substrate break may significantly disrupt the production process in a substrate processing system and cause large production losses.
  • the proposed substrate breakage detection and the substrate breaker removal device it is possible to automatically detect a substrate breakage and eliminate its consequences. It is also advantageous if only one substrate breakage detection or only one substrate breakage detection disposal device is present, since it allows the consequences of substrate breakage can be eliminated faster.
  • At least one of the process chambers is physically lockable by the carrier device relative to a process module in which this process chamber is provided.
  • the support device forms a wall, a bottom or a side wall of the process chamber. This is achieved in that the carrier device can be transported back to the process chamber and away from the process chamber again by means of the carrier transport device.
  • the device forms a bottom of the process chamber.
  • the carrier device can be moved by means of the carrier transport device into a region under the process chamber and then pressed by a lifting device vertically upwards against the process chamber to achieve a suitable physical completion of the process chamber with respect to the process chamber surrounding the process module.
  • a carrier transport device can advantageously be used a roller transport system.
  • Alternative carrier transport devices are z. B. linear motor transport systems, fork transport systems, etc.
  • the at least one process chamber according to the present invention comprises one or more devices for processing the substrates.
  • Preferred processing devices are devices for generating plasma.
  • Such a device may, for. B. be a planar RF electrode, which is designed as a gas shower.
  • the support device preferably forms the counter electrode of a parallel plate assembly.
  • the process chambers used according to the invention in each case have all the media supply connections necessary for the operation of the processing devices used and for the substrate processing, such as pump connections, electrical supply connections, gas supply connections and connections for supplying temperature control devices, etc.
  • the latter has at least one process module, each having at least one process chamber, wherein between each of the at least one process module and the carrier transport region a transfer module is provided, which is gastight relative to the process module and to the carrier transport region. is closable.
  • a transfer module is provided, which is gastight relative to the process module and to the carrier transport region. is closable.
  • Such transfer modules can be used particularly effectively if at least two levels are provided for carrier devices in the transfer module.
  • one carrier device can be brought out of an adjacent process module simultaneously or with a time delay, while in another level of the transfer module a further carrier device for the inward transport into the process module is prepared.
  • the substrate processing system has at least two process modules each having at least one process chamber, wherein each process module is assigned its own carrier device.
  • the carrier transport region preferably forms a separation region for the process modules and an exchange region for substrates on respectively different carrier devices.
  • Figure 1 shows schematically an embodiment of a substrate processing system according to the invention with three process modules in a plan view;
  • Figure 2 shows schematically a cross section of a further embodiment of a substrate processing system according to the invention
  • Figure 3 schematically shows a variant of a substrate processing system according to the invention with four process modules, which is designed as a continuous system, in a plan view;
  • Figure 4 shows schematically a different design possibility of a substrate processing system according to the invention with four process modules in a plan view
  • Figure 5 schematically shows yet another example of a substrate processing system according to the invention with four process modules in a plan view
  • Figure 6 shows schematically a development of a substrate processing system according to the invention with four multi-chamber process modules in a plan view;
  • FIG. 7 schematically shows a cross-section of a multi-chamber process module which can be used in the substrate processing system according to the invention
  • Figure 8 shows schematically a cross-section of a further embodiment of a multichamber process module which can be used according to the invention.
  • Figure 9 shows schematically a cross-section of a substrate processing system according to the invention with a multi-chamber process module
  • Figure 10 shows schematically a cross section of a further variant of a substrate processing plant according to the invention.
  • Figure 1 1 shows schematically a cross section of an embodiment of a substrate processing system according to the invention
  • Figure 12 shows schematically an embodiment of a substrate processing system according to the invention in a high expansion stage in a plan view
  • FIG. 13 schematically shows an embodiment of a substrate processing system according to the invention with linear alignments of process modules in a plan view
  • Figure 14 shows schematically another substrate processing system according to the invention with linear arrays of process modules in a plan view
  • Figure 15 schematically a further embodiment of an inventive
  • Substrate processing plant in a plan view shows
  • FIG. 16 schematically shows a further substrate processing installation according to the invention in a design as a cluster substrate processing installation in a plan view
  • Figure 17 shows schematically another substrate processing system according to the invention in an embodiment as a cluster substrate processing system in a plan view
  • FIG. 18 schematically shows a variant of a substrate processing system according to the invention with eight process modules in a plan view.
  • FIG. 1 schematically shows a plan view of an embodiment of a substrate processing installation 1 according to the invention.
  • substrates 3 are introduced into the substrate processing installation 1 via a substrate loading and unloading area 2 in substrate cassettes 13 and removed again from the substrate processing installation 1 after processing.
  • the substrate loading and unloading area 2 is adjoined by a substrate transfer area 11, which can be separated from the substrate loading and unloading area 2 by a gas-tight closure device 10.
  • a transfer of substrates 3 between a substrate cassette 13 and a carrier device 7 located in a carrier transport area 8 takes place by means of a substrate transfer device 12.
  • the carrier device 7 is a so-called carrier with substrate nests into which the substrates 3 are inserted. These substrate nests are arranged in substrate carrier lines and substrate carrier columns.
  • the substrate carrier line with in the present case five substrate nests can be operated by the substrate transfer device 12, which transports substrates 3 in the substrate carrier line direction X to the substrate nests.
  • the substrate transfer device 12 has a transfer bridge 16 which extends parallel to a substrate carrier line of the carrier device 7 and is arranged above the carrier device 7 or a corresponding transfer arm along which the substrates 3 can be transported to the respective substrate nests.
  • the substrate transfer device 12 is movable in the substrate carrier gap direction Y.
  • the substrate transfer device 12 has a contactless substrate handling device 17, with which the substrates 3 can be removed without contact from a substrate cassette 13 and deposited on the carrier device 7 via the transfer bridge 16.
  • a substrate handling device 17 for example, an ultrasound-assisted Zimmermann-Schilt-handling device is suitable.
  • any other suitable substrate handling device may be used to control the carrier device. tion to load 7 with substrates 3 and remove the substrates 3 again from the carrier device 7.
  • the transfer arm or the transfer bridge 16 can be interrupted in the region of the gas-tight closure device 10 and have its own movement drive, as a result of which the substrate transport via the closure device 10 is achieved.
  • Another variant consists in that the transfer arm or the transfer bridge 16 is moved into the carrier transport area 9 only after the closure device 10 has been opened.
  • the closure device 10 can also be omitted between the carrier transport region 9 and the substrate transfer region 11.
  • the carrier device 7 can be moved in the carrier transport region 9 to each of the three process modules 4 provided in the presented embodiment.
  • the process modules 4 each have at least one process chamber 5. In each of the process chambers 5, for example, another coating can be performed.
  • Each process module 4 can also be assigned its own carrier device 7. This is advantageous if, for example, processing takes place in the further process modules 4 of the substrate processing installation 1, in which a carryover of contaminants by the carrier apparatus 7 itself can not be ruled out. Thus, it can be problematic if, for example, in a first process module 4, a first coating is carried out with the addition of dopants and a doped layer is to be deposited in a subsequent processing step carried out in a further process module 4.
  • the carrier transport region 9 then serves at the same time as a separation region of the process modules 4 and as an exchange region of the substrates 3 for other carrier devices 7.
  • the individual carrier devices 7 can then also have different temperatures.
  • the substrate processing unit 1 further has a cassette turning device 15, coupled to the substrate transfer area 11, with which the substrate cassette 13 can be rotated so that, for example, after coating the front side of the substrates 3, the substrates 3 can be rotated and subsequently coating the substrate rear side can take place.
  • the carrier transport region 9 can be separated from the process modules 4 by gas-tight closure devices 10 in each case. As a result, it is possible to operate the process modules 4 with a pressure other than the substrate transfer area 11.
  • FIG. 2 schematically shows a cross section of a further variant of a substrate processing system 1 A according to the invention.
  • identical reference symbols designate the same or similar elements as in the substrate processing system described above
  • a substrate cassette 13 is located in the substrate loading and unloading area
  • the gas-tight shutter 10 is opened and the substrate cartridge 13 is transferred to the substrate transfer section 11.
  • the substrates 3 are transferred from the substrate cassette 13 by means of the substrate transfer device 12 to the carrier device 7 located in the carrier transport area 9.
  • the substrate transfer device 12 has a contactless, ultrasound-supported substrate handling device 17, which is guided on the transfer bridge 16.
  • the substrate handling device 17 can grip substrates 3 without contact and with little force.
  • the lifting force is generated for example by negative pressure in vacuum channels.
  • the necessary distance for contactless transport to the substrate handling device 17 is ensured by an ultrasonically generated gas cushion.
  • the substrate handling device 17 shown operates in principle not at vacuum, but only at elevated pressure, for example at atmospheric pressure.
  • the substrate handling device 17 leaves no handling impressions on the substrates 3 and is therefore suitable for handling substrates 3 which have functional surfaces on both sides of the substrate for which high purity requirements exist. It is advantageous if the substrate cassette 13 is connected for defined removal or return of the respective uppermost substrate 3 with a lift system, not shown.
  • the loaded carrier device 7 is transported by the carrier transport device 8 in the carrier transport region 9 to a process module 4.
  • the carrier Device 7 is also moved by means of the carrier transport device 8 to a process chamber 5, where a processing of the substrates 3 is provided.
  • a carrier transport device 8 a roller transport system is used here by way of example.
  • the carrier device 7 is lifted by a lifting device 14 of the carrier transport device 8 and used as the bottom of the process chamber 5.
  • the position of the carrier device 7 in the closed process chamber 5 is sketched by a dashed line in the process module 4 in Figure 2. After the processing of the substrates 3 in the process chamber 5, the substrates 3 are discharged opposite to the loading process again.
  • FIG. 3 schematically shows a further developed version of a substrate processing system 1 B according to the invention, which has four process modules 4.
  • the substrate processing system 1 B is designed as a continuous system in which substrate cassettes 13 are loaded on the left side of the illustration. Subsequently, the substrates 3 pass through the substrate processing installation 1 B. Finally, on the right side of the illustration, the substrate cassettes 13 are unloaded with processed substrates 3.
  • the substrate processing system 1 B find in the substrate transfer area 1 1 two carrier devices 7 place. With the substrate transfer devices 12, a substrate transport both between a substrate cassette 13 and a carrier device 7 as well as a substrate transport between both carrier devices 7 is possible. Between the two carrier transport regions 9, a substrate cassette rotation device 15 'is arranged, in which three substrate cassettes 13 can be simultaneously rotated in the example shown so that a substrate side can be rotated from bottom to top or vice versa.
  • the substrate processing system 1B of FIG. 3 has substrate break detectors 20, by means of which damaged substrates 3 can be optically identified. If a fragile or broken substrate 3 is detected, this faulty substrate 3 can be disposed of immediately by means of a likewise present substrate fracture evacuation, so that the production process is disturbed only insignificantly.
  • each two cassette memory 19 are arranged. In the cassette memories 19, substrates 3 can be temporarily stored, which accumulate, for example, in the case of unequal capacities of substrate carrier cassettes 13 and carrier devices 7.
  • FIG. 4 schematically shows another embodiment of a substrate processing installation 1 C according to the invention with four process modules 4 in a plan view. In the variant of FIG.
  • the substrate processing installation 1 C has two mutually separate carrier transport regions 9, on each of which a process module 4 in the substrate carrier line direction X and a process module 4 in the substrate carrier column direction Y are arranged.
  • the carrier transport areas 9 there is in each case a carrier device 7, which can be equipped with substrates 3 in each case by means of a substrate transfer device 12.
  • a substrate transfer region 11 is provided, in which the transfer bridge 16 of the substrate transfer devices 12 are displaceable in substrate carrier column direction Y of the carrier devices 7 in order to cover all substrate nests of the carrier devices 7 with substrates 3 or to be able to resume the substrates 3 from the substrate nests ,
  • a carrier device 7 with substrates 3 can either be processed successively in both process modules 4, or two carrier devices 7 are used, which are operated in a pendulum mode, wherein at the same time the processing of a substrate 3 loaded carrier device 7 in a process module 4 and a reloading on another carrier device 7 is provided.
  • the substrates 3 are first introduced into the substrate processing installation 1 C of FIG. 4 into a substrate loading area 2 '. At this stage, the substrates 3 are still within a substrate cassette 13, in which the substrates 3 are arranged in different horizontal cassette levels of the substrate cassette 13. Subsequent to passing through a gas-tight lock, the substrate cassette 13 is introduced into the substrate transfer area 11, where the substrate cassette 13 can be moved along the substrate carrier gap direction Y marked by the arrows in FIG. In this case, by means of the substrate transfer device 12, the substrates 3 located in the substrate cassette 13 are distributed to the carrier devices 7 using the transfer bridges 16. At least one of the carrier devices 7 loaded with substrates 3 is subsequently introduced into one of the process modules 4 with the aid of the carrier transport device 8, which is shown for example in FIG.
  • the processing may be, for example, a layer deposition, but may also be a plasma treatment, an etching step, a temperature treatment and / or another suitable process step.
  • the substrates 3 are rotated by means of a substrate cassette rotation device 15 located between the two carrier transport areas 9. Finally, the substrates 3 are transferred to a substrate cassette 13 and removed from the substrate unloading area 2 ", which is shown on the right side of FIG. 4, from the Substrate processing system 1 C discharged.
  • FIG. 5 shows a further alternative exemplary embodiment of a substrate processing system 1 D according to the invention with four process modules 4 in a plan view.
  • the substrate processing system 1 D two process modules 4 are arranged on both sides next to the carrier transport region 9, parallel to the substrate carrier lines. Two of these process modules 4 are provided for front side coatings of the substrates 3, and the other two of the process modules 4 are designated for rear side coating after the substrates 3 are turned in the substrate cassette rotating device 15 '.
  • the substrate processing system 1 D is not a continuous system, but the substrates 3 are loaded and unloaded here via a single substrate loading and unloading 2.
  • the substrates 3 are first introduced into the substrate processing unit 1 D in a substrate cassette 13 and then placed on at least one carrier device 7 from the substrate cassette 13 using substrate transfer devices 12. With the aid of the carrier device 7, the substrates 3 can then be placed resting on the carrier device 7 in at least one of the process modules 4 in order to be processed in a process chamber located therein. After processing of the substrates 3, the corresponding carrier device 7 is again transported out of the process module 4 by means of the carrier transport device used.
  • the respective carrier device 7 can then be transported, for example, into the process module 4 located on the other side of the carrier transport region 9, again using the carrier transport device.
  • the other process module 4 is also a process chamber, not shown in Figure 5, in which the substrates 3 can be exposed to a further process step. After this processing of the substrates 3, these are transferred again resting on the carrier device 7 into the carrier transport region 9 and can then be introduced again, for example by means of the substrate transfer devices 12, into corresponding substrate cassettes 13.
  • a substrate transfer station 29 for transferring the substrates 3 from one carrier device 7 to another carrier device 7 can be provided between the two carrier transport regions 9.
  • the substrate transfer station 29 can be constructed in a similar manner to the substrate transfer device 12 described above and thus contactlessly receive the substrates 3 from a carrier device 7, move along a transfer arm or a transfer bridge 16 'above the carrier devices 7 and then the substrates 3 on the other carrier device 7 lay down.
  • two parallel substrate transfer devices 12 are provided for each of the two carrier devices 7 in the substrate transfer area 11 in accordance with the high production speed in four process modules.
  • FIG. 6 shows a top view of a further option of a substrate processing system 1 E according to the invention, which has four multi-chamber process modules 6.
  • a substrate processing system 1 E which has four multi-chamber process modules 6.
  • two process chambers 5 are located one above the other in a vertical stack.
  • more than two process chambers 5 can be provided one above the other in the multi-chamber process modules 6.
  • individual ones of the multi-chamber process modules 6 shown in FIG. 6 can also be replaced by simple process modules 5, as shown for example in the aforementioned figures.
  • a transfer module 18 is arranged in each case.
  • the transfer module 18 is separated from the associated multi-chamber process module 6 on the one hand by vacuum-tight gates or closure devices on the one hand and from the carrier transport region 9 on the other hand.
  • heating or cooling of substrates 3 to be processed or already processed in the respective multi-chamber process module 6 can be undertaken.
  • a suitable atmosphere must be set.
  • the transfer module 18 can be evacuated.
  • a carrier device lift can be provided within the transfer module 18, with which the respective carrier device 7 can be brought to a level which corresponds to the respective process chamber 5 in the multi-chamber process module 6, in which the carrier device 7 bears on the carrier device 7. strate 3 should be processed.
  • the carrier device 7 can also be brought to another plane by means of the carrier device lift, in which the respective carrier device 7 can, for example, be moved past another carrier device 7, which is transported on another carrier device plane.
  • FIG. 7 schematically shows a cross-section of a multi-chamber process module 6 that can be used, for example, in the embodiment of FIG. 6.
  • the multi-chamber process module 6 contains two process chambers 5 arranged vertically one above the other. In other embodiments, not shown, the multi-chamber process module 6 can also have more than two process chambers 5 exhibit.
  • the carrier device 7 serves as the bottom of the process chamber 5.
  • the upper carrier device 7 in FIG. 7 is shown in a state during transport on a roller transport system used in the carrier transport device 8. In this state, the bottom of the upper process chamber 5 is missing and the upper process chamber 5 is open to the process module 6.
  • the multi-chamber process module 6 is a lockable chamber which is closed to the environment and to adjacent modules of the substrate processing system 1 E.
  • FIG. 8 schematically shows a cross-section of a further multi-chamber process module 6 'which can be used in the substrate processing installation 1 E of FIG.
  • the process module 6 ' contains a closable isolation chamber 25 for each of the process chambers 5.
  • the sealable isolation chamber 25 can be used, for example, as an additional isolation stage for better thermal and chemical decoupling of the process chamber 5 from the outside atmosphere be provided.
  • the insulating chamber 25 may also be provided as an auxiliary device for a cleaning process of the process chamber 5, in which in a closed isolation chamber 25 a lowered carrier device 7 is cleaned with an open process chamber 5 by an etching plasma. In the lowered position of the carrier device 7, in contrast to a closed process chamber 5, the edge regions of the carrier device 7 are also cleaned.
  • the insulation Chamber 25 prevents the spread of cleaning gases in the process module 6 '.
  • the process chambers 5 preferably contain one or more devices for generating plasma. Such a preferred device may, for. B. be a planar RF electrode, which is designed as a gas shower. In this case, the carrier device 7 forms the counter electrode of a parallel plate assembly.
  • the process chambers 5 then also contain all the necessary media supply connections such as pump connections, electrical supply connections, gas supply connections and temperature control devices.
  • FIG. 9 schematically shows a cross section of a substrate processing system 1 E according to the invention with a multi-chamber process module 6.
  • the multi-chamber process module 6 can be constructed, for example, as in FIG. Reference is made to the above description.
  • FIG. 9 shows an embodiment of a transfer module 18 in more detail.
  • two transport levels for carrier devices 7 are present, which are marked by the sketched transport rollers 26.
  • the carrier devices 7 can be transported into the two transport levels of the multi-chamber process module 6.
  • With a carrier device lift 28, the carrier devices 7 can be moved between the two transport planes.
  • the transport rollers 26 can be moved in the direction of their axes to give the space required for a lifting movement of the support device 7 free.
  • the transfer module 18 also has at least one heating and / or cooling device, such as a heating plate, a radiant heater and / or a cooling unit, for heating and / or cooling the carrier device 7.
  • the transfer module 18 is assigned to the carrier transport region 9 and thus establishes a connection between the substrate transfer region 11 and the multi-chamber process module 6.
  • FIGS. 10 and 11 schematically show cross-sections of substrate processing systems 1 F and 1 G according to the invention.
  • the substrate processing systems 1 F and 1 G have process modules 4 which each contain a process chamber 5.
  • the substrate processing installation 1 G has an insulation chamber 25 for enclosing the process chamber 5.
  • Both substrate processing systems 1 F and 1 G have a transfer module 18 ', which in each case has only one transport plane which can be seen through the illustrated transport rollers 26.
  • the transfer modules 18 ' are designed for handling two carrier devices 7. While a carrier device 7 is located in the transport plane, a second carrier device 7 can be temporarily stored on a carrier device lift 28. By this latching, it is possible to minimize waiting times of carrier devices 7 in the carrier transport area 9. In general, however, other locations in the carrier device lift 28 can also be provided as temporary storage.
  • FIG. 12 schematically shows a further substrate processing system 1 H according to the invention, which has eight multi-chamber process modules 6.
  • the substrate processing system 1 H has accordingly 16 process chambers and has a correspondingly high production throughput.
  • the carrier transport regions 9 are each coupled to four substrate transfer devices 12 in order to meet the high logistical requirements in this substrate processing system 1H.
  • FIG. 13 schematically shows a further embodiment of a substrate processing system 1 1 according to the invention in a plan view.
  • the substrate processing system 1 1 has two linear arrays of a transfer module 18 ', a process module 4' and a process module 4.
  • the process module 4 ' is equipped on two sides with closable passages for the passage of carrier devices 7.
  • the linear arrangement of process modules 4, 4 ' is a relatively simple possibility for the expansion of inventive substrate processing equipment.
  • a disadvantage which must be taken into account in the linear arrangement of process modules 4, 4 ' is the increased logistical expense in the transport of the carrier devices 7.
  • FIG. 15 schematically shows a further option of a substrate processing system 1K according to the invention in a plan view.
  • the substrate transfer device 12 is not formed in the form of a transfer bridge but by a transfer robot 24.
  • the Umladeroboter 24 has a rotatable and linearly extendable robot arm, which can reach all substrates 3 on a support device 7. Furthermore, the substrate processing system 1 K has two transfer modules 18 ", which have a carrier device lift 28 and a buffer for carrier devices 7. The transfer module 18" enables the transport of carrier devices 7 both in the substrate carrier line direction X and in the substrate carrier gap direction Y. In the substrate processing system 1K in each case two process modules 4 are arranged on the transfer modules 18 "in the substrate column direction Y. The carrier transport areas 9, on the other hand, are arranged on the transfer modules 18" along the substrate carrier line direction X. The process modules 4 can also be designed as multi-chamber process modules. This embodiment can generally also be applied to the variants of substrate processing systems according to the invention described below in combination with transfer modules 18 ".
  • FIGS. 16 and 17 further embodiments of substrate processing systems 1 L and 1 M according to the invention are shown schematically in plan views.
  • the substrate processing equipment 1 L demonstrates an embodiment in which a carrier storage 23 is directly coupled to a carrier transport area 9.
  • the substrate processing system 1 M illustrates the option of coupling a carrier device memory 23 to the transfer module 18 ".
  • FIG. 18 schematically illustrates another substrate processing system 1N according to the invention in a plan view.
  • the substrate processing device 1N is a continuous system which has a relatively small width transversely to the direction of passage of the substrates 3 through the substrate processing system 1N.
  • the small width is achieved by the arrangement of the process modules 4 in the substrate carrier column direction Y on the transfer modules 18 ".
  • the illustrated embodiments show that substrate processing systems 1, 1A to 1 N according to the invention can be designed very differently.
  • other embodiments or combinations of the embodiments shown here are possible, which the skilled person can readily form on the basis of the present description and its technical knowledge.

Abstract

Die Erfindung betrifft eine Substratbearbeitungsanlage, welche wenigstens einen Substratbelade- und -entladebereich zum Be- und Entladen der Substratbearbeitungsanlage mit wenigstens einem Substrat, wenigstens eine evakuierbare Prozesskammer, wenigstens eine Trägervorrichtung, mit welcher das wenigstens eine Substrat mittels wenigstens einer Trägertransportvorrichtung in wenigstens einem Trägertransportbereich zu der wenigstens einen Prozesskammer transportierbar ist, und wenigstens eine gasdichte Verschlusseinrichtung zwischen der wenigstens einen Prozesskammer und dem Trägertransportbereich sowie wenigstens eine gasdichte Verschlusseinrichtung zwischen dem Substratbelade- und -entladebereich und dem Trägertransportbereich aufweist. Es ist die Aufgabe der vorliegenden Erfindung, eine Substratbearbeitungsanlage vorzuschlagen, die durch die Bereitstellung einer hohen Prozessreinheit qualitativ hochwertige Substratbearbeitungen erlaubt und die dabei auch durch einen großen Substratdurchsatz für eine Massenproduktion geeignet ist. Die Aufgabe wird durch eine Substratbearbeitungsanla¬ ge der Eingangs definierten Gattung gelöst, die sich dadurch auszeichnet, dass zwi¬ schen dem Substratbelade- und -entladebereich und dem Trägertransportbereich ein Substratumladebereich mit einer Substratumladevorrichtung zum Umladen des wenigstens einen Substrates von wenigstens einer in dem Substratbelade- und -entladebereich vorsehbaren Substratkassette, in welcher Substrate in verschiedenen horizontalen Kassettenebenen der Substratkassette anordbar sind, auf die wenigstens eine Trägervorrichtung, mit der das wenigstens eine Substrat in einer horizontalen Trägerebene haltbar ist, vorgesehen ist, wobei der Substratumladebereich gegenüber dem Substratbelade- und -entladebereich als auch gegenüber dem Trägertransportbereich gasdicht verschließbar ist.

Description

Substratbearbeitungsanlage
Die vorliegende Erfindung betrifft eine Substratbearbeitungsanlage, welche wenigstens einen Substrat bei ade- und -entladebereich zum Be- und Entladen der Substratbearbeitungsanlage mit wenigstens einem Substrat, wenigstens eine evakuierbare Prozesskammer, wenigstens eine Trägervorrichtung, mit welcher das wenigstens eine Substrat mittels wenigstens einer Trägertransportvorrichtung in wenigstens einem Trägertransportbereich zu der wenigstens einen Prozesskammer transportierbar ist, und wenigstens eine gasdichte Verschlusseinrichtung zwischen der wenigstens einen Prozesskammer und dem Trägertransportbereich sowie wenigstens eine gasdichte Verschlusseinrichtung zwischen dem Substratbelade- und -entladebereich und dem Trägertransportbereich aufweist.
Im Stand der Technik sind Durchlaufbeschichtungsanlagen bekannt, die beispielsweise zur Massenproduktion von Solarzellen eingesetzt werden. Für die Beschichtung werden mehrere, beispielsweise 42, Solarzellenwafer auf einer Trägervorrichtung in einer Ebene platziert und in der Durchlaufanlage während eines kontinuierlichen Durchlaufes durch diese Anlage beschichtet. Einzelne Bearbeitungsbereiche werden dabei beispielsweise durch Gasvorhänge voneinander isoliert. Die Weiterentwicklung in der Solarzellentechnologie führt regelmäßig auch zu erhöhten Anforderungen an die Anlagentechnik, beispielsweise bezüglich der Prozessreinheit in den Substratbearbeitungsanlagen. Die Erfüllung dieser wachsenden Anforderungen ist mit herkömmlichen Durchlaufanlagen problematisch.
Im Stand der Technik sind auch verschiedene Typen von Substratbearbeitungsanlagen bekannt, die erhöhte Reinheitsanforderungen erfüllen. Ein Typ solcher Substratbearbeitungsanlagen ist ein Batch-Vertikal-Ofen, der aus der Mikroelektronik-Industrie bekannt ist. Bei dem Batch-Ofen kommt als Trägervorrichtung für Substrate ein Boot zum Einsatz. In das Boot wird eine Vielzahl von Substraten, beispielsweise 150 Wafer, eingebracht. Die Substrate stehen in dem Boot parallel zueinander und voneinander beabstandet. In einigen Batch-Öfen ist das Boot in einem Boottransportraum durch einen Boottransportmechanismus horizontal und vertikal bewegbar und in die Prozesskammer, die auch als Ofenrohr bezeichnet wird, einbringbar. Dabei wird die Prozesskammer bei einigen Öfen vakuumdicht geschlossen. Manche Batch-Öfen weisen gasdichte Verschlusseinrichtungen zwischen dem Substratbelade- und -entladebereich und dem Boottrans- portraum auf. Problematisch an Batch-Öfen ist, dass diese regelmäßig nur zur thermischen Bearbeitung und nicht zur plasmagestützten Substratbearbeitung geeignet sind. Außerdem hat der Waferstapel in dem Boot eine große thermische Masse, sodass bei Batch-Öfen relativ große Aufheiz- und Abkühlzeiten in Kauf zu nehmen sind.
Ein anderer Anlagentyp ist aus der Druckschrift WO 201 1/148924 A1 bekannt. Bei diesem Anlagentyp werden jeweils sechs Wafer parallel zueinander und voneinander beabstandet auf einem Waferträger aufrecht stehend angeordnet. Dieser Waferträger wird aus einer Schleusenkammer durch einen evakuierten Waferträger-Transportraum in quaderförmige Beschichtungskammern gefahren. In den Beschichtungskammern erfolgen plasmagestützte Schichtabscheidungen. Problematisch bei diesem Anlagentyp ist unter anderem, dass gleichzeitig nur sechs Substrate in einer Kammer bearbeitet werden und dass deshalb nur relativ geringe Produktionsgeschwindigkeiten erreicht werden.
Es ist daher die Aufgabe der vorliegenden Erfindung, eine Substratbearbeitungsanlage vorzuschlagen, die durch die Bereitstellung einer hohen Prozessreinheit qualitativ hochwertige Substratbearbeitungen erlaubt und die dabei auch durch einen großen Substratdurchsatz für eine Massenproduktion geeignet ist.
Die Aufgabe wird durch eine Substratbearbeitungsanlage der eingangs definierten Gattung gelöst, die sich dadurch auszeichnet, dass der Substratbelade- und -entladebereich mit dem Trägertransportbereich durch einen Substratumladebereich mit wenigstens einer Substratumladevorrichtung zum Umladen des wenigstens einen Substrates von wenigstens einer in dem Substratbelade- und -entladebereich vorsehbaren Substratkassette, in welcher Substrate in verschiedenen horizontalen Kassettenebenen der Substratkassette anordenbar sind, auf die wenigstens eine Trägervorrichtung, mit der das wenigstens eine Substrat in einer horizontalen Trägerebene haltbar ist, gekoppelt ist, wobei der Substratumladebereich gegenüber dem Substratbelade- und -entladebereich gasdicht verschließbar ist.
Die erfindungsgemäße Substratbearbeitungsanlage weist also einen Substratbelade- und -entladebereich auf, in welchen Substratkassetten eingebracht und aus diesem entnommen werden können. Dabei kann der Substratbelade- und -entladebereich sowohl zum Beladen als auch zum Entladen vorgesehen sein. Es können aber auch mehrere, voneinander getrennte Substratbelade- und -entladebereiche vorgesehen sein, wobei beispielsweise am Anfang einer Durchlaufanlage ein Substratbeladebereich und am Ende der Durchlaufanlage ein Substratentladebereich vorgesehen ist. In den Substratkas- setten sind mehrere flächige Substrate parallel zueinander in verschiedenen Kassettenebenen in horizontaler Lage angeordnet.
Mit dem Substratbelade- und -entladebereich ist ein Substratumladebereich gekoppelt. Dabei ist ein gasdichter Verschluss zwischen dem Substratbelade- und -entladebereich und dem Substratumladebereich vorgesehen, welcher für Verunreinigungen in der Atmosphäre ein Hindernis darstellt, das deren Verschleppung in die Prozesskammern verhindert und so eine erhöhte Reinheit in der Substratbearbeitungsanlage bewirkt.
In dem Substratumladebereich werden die Substrate aus der Substratkassette auf die in dem Trägertransportbereich vorgesehene Trägervorrichtung oder von der Trägervorrichtung in die Substratkassette umgeladen. Je nach Substratgröße finden unterschiedlich viele Substrate auf der Trägervorrichtung Platz. Im Extremfall sehr großer Substrate, mit Abmessungen von mehr als fünf Dezimetern, kann auch nur ein Substrat auf der Trägervorrichtung vorgesehen sein.
Durch den gasdichten Verschluss zwischen dem Substratumladebereich und dem Substratbelade- und -entladebereich bildet der Substratumladebereich eine Art Schleuse zwischen dem Substratbe- und -entladebereich und dem Trägertransportbereich. Außerdem gestattet der gasdichte Verschluss den Betrieb des Substratumladebereiches bei einem anderen Druck als dem Druck in dem Substratbelade- und -entladebereich. Dadurch können in dem Substratumladebereich verschiedene Maßnahmen realisiert werden, die der Erhöhung der Reinheit in der Substratbearbeitungsanlage dienlich sind. Beispielsweise können Spülzyklen in dem Substratumladebereich durchgeführt werden.
In einer vorteilhaften Ausgestaltung der erfindungsgemäßen Substratbearbeitungsanlage ist der Substratumladebereich mit Inertgas befüllbar. Durch die Inertgasfüllung herrscht in dem Substratumladebereich eine definierte und saubere Atmosphäre, die hauptsächlich durch die Reinheit des verwendeten Inertgases bestimmt wird. Durch die chemische Inaktivität des Inertgases können Oberflächenveränderungen an den Substraten vermieden werden. Beispielsweise bei Solarzellsubstraten können dadurch hohe Oberflächenqualitäten, die beispielsweise an großen Ladungsträgerlebensdauern messbar sind, erreicht werden. Alternativ kann der Substratumladebereich jedoch auch mit Vakuum oder mit einem reaktiven Gas, beispielsweise mit Formiergas, gefüllt sein.
Bei einer besonders bevorzugten Ausbildung der erfindungsgemäßen Substratbearbeitungsanlage weist die Trägervorrichtung in der Trägerebene in Substratträgerzeilen und Substratträgerspalten angeordnete Substratnester auf und die Trägervorrichtung ist in Substratträgerzeilenrichtung und/oder in Substratträgerspaltenrichtung bewegbar. Vor allem bei der verbreiteten Verwendung quadratischer Substrate wird durch die Anordnung in Zeilen und Spalten die zur Verfügung stehende Fläche der Trägervorrichtung gut ausgenutzt, sodass eine hohe Produktivität erreichbar ist. Die lineare Anordnung in Zeilen und Spalten ist auch besonders einfach, sodass in der Substratumladevorrichtung vorgesehene Transportmechaniken für die Substrate zum Erreichen der Substratnester in den Substratträgerzeilen und Substratträgerspalten entsprechend einfach aufgebaut sein können. Die orthogonale Anordnung von Substratträgerzeilen und Substratträgerspalten bedingt rechteckige Trägervorrichtungen, die vorzugsweise für lineare Bewegungen in der Substratträgerzeilenrichtung und/oder der Substratträgerspaltenrichtung vorgesehen sind. Bei Durchlaufanlagen erfolgt der Substratträgertransport regelmäßig nur in einer Richtung, das heißt entweder in der Substratträgerzeilenrichtung oder in der Substratträgerspaltenrichtung. Bei Clusteranlagen, bei denen mehrere Bearbeitungsmodule um einen Substratumladebereich herum in der Substratträgerzeilenrichtung und Substratträgerspaltenrichtung vorhanden sind, ist die Trägervorrichtung in zwei Richtungen, das heißt in der Substratträgerzeilenrichtung und in der Substratträgerspaltenrichtung, bewegbar. Die Substratnester bewirken eine sichere Lage der Substrate auf der Trägervorrichtung mit seitlicher Führung der Substrate, sodass die Substrate bei Bewegungen der Trägervorrichtung nicht verrutschen.
Gemäß einer vorteilhaften Ausbildung der erfindungsgemäßen Substratbearbeitungsanlage weist die Substratumladevorrichtung über dem Trägertransportbereich eine parallel zur Trägervorrichtung vorsehbare Substratablageebene auf, von welcher die Trägervorrichtung ganzflächig, zeilen- oder spaltenweise mit Substraten bestückbar ist. Die Substratablageebene ist horizontal orientiert und ist über der Trägervorrichtung vorgesehen. Die Substratablageebene ist ein günstiges Hilfsmittel, welches eine Ablage und Ausrichtung der Substrate auf eine exakte Position auf der Trägervorrichtung erlaubt. Von der Substratablageebene aus ist eine einfache und schnelle Bestückung der Trägervorrichtung möglich.
Entsprechend einer günstigen Ausführungsform der erfindungsgemäßen Substratbearbeitungsanlage weist die Substratumladevorrichtung wenigstens eine Umladebrücke oder einen Umladearm auf, die bzw. der sich parallel wenigstens einer Substratträgerzeile oder Substratträgerspalte der Trägervorrichtung zum Be- und Entladen dieser Substratträgerzeile oder Substratträgerspalte mit wenigstens einem Substrat erstreckt. Die Umladebrücke bzw. der Umladearm sind vorzugsweise in der Substratablageebene vorgesehen bzw. in diese einbringbar und aus dieser herausbringbar. Mit Hilfe der Umladebrücke oder des Umladearmes können alle Substratnester mittels der Substratumladevorrichtung erreicht werden. Mit der Umladebrücke oder dem Umladearm können alle Substratträgerzeilen oder Substratträgerspalten der Trägervorrichtung nacheinander angefahren werden, oder es kann auch mit mehreren Umladebrücken oder Umladearmen parallel an mehreren Substratträgerzeilen oder Substratträgerspalten der Trägervorrichtung gearbeitet werden.
Die Adressierung der unterschiedlichen Substratträgerzeilen bzw. Substratträgerspalten kann auf unterschiedliche Weise erfolgen. In einem besonders günstigen Beispiel ist die Umladebrücke oder der Umladearm zum Be- und Entladen weiterer Substratträgerzeilen oder Substratträgerspalten der Trägervorrichtung längs einer Substratträgerspaltenrich- tung und/oder längs einer Substratträgerzeilenrichtung verfahrbar.
Vorzugsweise weist die Substratumladevorrichtung wenigstens eine berührungslose, Substrat-Handhabungsvorrichtung, wie beispielsweise eine ultraschallgestützte Zimmer- mann-Schilp-Handling-Vorrichtung, auf. Derartige Substrat-Handhabungsvorrichtungen sind Handling-Vorrichtungen, die auch extrem dünne Substrate zuverlässig bei geringer Bruchgefahr für die Substrate handhaben können. Dabei können die Substrate zum Beispiel durch ihre Gewichtskraft oder durch beispielsweise eine Unterdruck-Ansaugkraft gegen ein durch Ultraschall erzeugtes Gaspolster gedrückt werden, welches als Abstandshalter zu der Substrat-Handhabungsvorrichtung wirkt. Durch das berührungsfreie Funktionsprinzip treten auf den Substraten vorteilhafterweise keine Handlerabdrücke auf. Des Weiteren sind mit solchen Substrat-Handhabungsvorrichtungen hohe Umladegeschwindigkeiten realisierbar. Im Unterschied zu anderen Handling-Vorrichtungen, wie beispielsweise elektrostatischen Greifern, arbeiten beispielsweise die vorgeschlagenen berührungslosen Substrat-Handhabungsvorrichtungen nicht im Vakuum, sondern sie benötigen eine hohe Gasdichte zur Ausbildung der dem Funktionsprinzip dieser Handler zugrunde liegenden Gaskissen. Die erforderliche Gasdichte ist beispielsweise bei Atmosphärendruck gegeben.
Die Substrate können nach einer bevorzugten Ausgestaltung der Erfindung mittels der Substratumladevorrichtung aus der Substratkassette besonders geeignet entnommen und in diese wieder eingebracht werden, wenn die Substratkassette zur definierten Entnahme und Zurückgabe des jeweils obersten Substrates mit einem Liftsystem gekoppelt ist. Eine weitere Ausführungsform der erfindungsgemäßen Substratbearbeitungsanlage weist wenigstens zwei Trägervorrichtungsebenen auf, wobei in den Trägervorrichtungsebenen befindliche Trägervorrichtungen unabhängig voneinander bewegbar sind. Durch das Vorhandensein mehrerer Trägervorrichtungsebenen wird die Produktivität der Substratbearbeitungsanlage erhöht. Die einzelnen Trägervorrichtungsebenen können zu mehreren Substratbearbeitungsebenen hinführen. Die mehreren Trägervorrichtungsebenen können aber auch, beispielsweise aus logistischen Gründen, lediglich im Trägertransportbereich der Substratbearbeitungsanlage vorgesehen sein. Bei einer bidirektionalen Trägervorrichtungslogistik kann bei dem Vorhandensein mehrerer Trägervorrichtungsebenen eine Trägervorrichtung einer anderen Trägervorrichtung ausweichen, sodass die Trägervorrichtungen ohne längere Wartezeiten in der Substratbearbeitungsanlage bewegt werden können.
Grundsätzlich kann die erfindungsgemäße Substratbearbeitungsanlage neben den vorgenannten mehreren Trägervorrichtungsebenen auch mehrere Be- und Entladeebenen besitzen.
Es ist besonders günstig, wenn die einzelnen Trägervorrichtungsebenen der Substratbearbeitungsanlage durch wenigstens einen Trägervorrichtungslift miteinander verbunden sind. Mit Hilfe des Trägervorrichtungsliftes kann wenigstens eine Trägervorrichtung in eine andere Trägervorrichtungsebene der Substratbearbeitungsanlage gebracht werden.
Wenn die oben beschriebenen mehreren Trägervorrichtungsebenen nur zum Zwecke des Ausweichens in der Substratbearbeitungsanlage vorgesehen sind, ist es weiter vorteilhaft, wenn der Trägervorrichtungslift wenigstens eine weitere Trägervorrichtungsebene, neben der Trägervorrichtungstransportebene, ausbildet. Dadurch kann auf dem Trägervorrichtungslift eine Trägervorrichtung zwischengelagert werden, während eine andere Trägervorrichtung transportiert wird. In einem anderen Ausführungsbeispiel gibt es wenigstens drei Trägervorrichtungsebenen, das heißt die Haupt-Trägervorrichtungsebene und wenigstens eine darüber und wenigstens eine darunter liegende Trägervorrichtungsebene.
Gemäß einer anderen Weiterbildung weist die erfindungsgemäße Substratbearbeitungsanlage wenigstens zwei mit dem Trägertransportbereich gekoppelte, übereinander angeordnete Prozesskammern auf. Mit den übereinander angeordneten Prozesskammern kann die Produktionsleistung der Substratbearbeitungsanlage vergrößert, beispielsweise verdoppelt, werden. Die Kosten der Substratbearbeitungsanlage erhöhen sich dabei, in Relation zu einer Substratbearbeitungsanlage mit in nur einer Ebene angeordneten Prozesskammern, weniger als die Produktionsleistung. Der Trägertransportbereich ist dabei derart ausgebildet, dass alle Prozesskammern für Trägervorrichtungen erreichbar sind.
In einer vorteilhaften konstruktiven Gestaltung der erfindungsgemäßen Substratbearbeitungsanlage weist der Substratbelade- und -entladebereich einen Kassettenspeicher auf, in welchem wenigstens eine Substratkassette vorsehbar und bei Bedarf mit der Substratumladevorrichtung koppelbar ist. Die Kapazität der Substratkassetten und der Trägervorrichtung stehen nicht immer in einem ganzzahligen Verhältnis zueinander. In einem Beispiel haben die Substratkassetten eine Kapazität von 25 Wafern und die Trägervorrichtung eine Kapazität von 42 Wafern, das heißt, eine zweite Substratkassette kann nicht vollständig auf die Trägervorrichtung entladen werden. Für die übrigen Substrate in der zweiten Substratkassette ist es daher günstig, diese in dem Kassettenspeicher zwischenzulagern und aus dem Kassettenspeicher auf eine andere Trägervorrichtung aufzuladen. In dem Kassettenspeicher kann beispielsweise eine normale, einseitig offenbare Substratkassette vorgesehen sein und mit der Substratumladevorrichtung gekoppelt werden. Alternativ kann in dem Kassettenspeicher auch eine spezielle Speicherkassette vorgesehen sein. Die spezielle Speicherkassette kann beispielsweise den Vorteil haben, dass sie anders als die Substratkassette zweiseitig für den Substrattransport offen ist.
Es ist besonders von Vorteil, wenn der Kassettenspeicher evakuierbar und/oder mit Inertgas befüllbar ist. Die Substrate werden im Kassettenspeicher während des Produktionsprozesses zwischengelagert. Dabei ist mitunter eine Veränderung der Substrate in den Kassettenspeichern zu beobachten. Solche Effekte können unterdrückt oder zumindest minimiert werden, indem die Kassettenspeicher mit Inertgas gefüllt werden oder evakuiert werden oder die Kassettenspeicher mit Evakuier- und Inertgasbefüllschritten gespült werden.
In einer weiteren konstruktiven Ausgestaltung der erfindungsgemäßen Substratbearbeitungsanlage weist der Trägertransportbereich wenigstens eine Temperiervorrichtung, das heißt wenigstens eine Heizung und/oder eine Kühlung auf. Die Heizung und/oder die Kühlung können aus Gründen der Erhöhung der Temperaturhomogenität der Substrate und/oder zur Erhöhung der Substrataufheiz- oder -abkühlgeschwindigkeit vorgesehen sein. Entsprechend einer anderen Option der erfindungsgemäßen Substratbearbeitungsanlage weist diese eine Substratwendevorrichtung auf. In der Substratbearbeitungsanlage kann beispielsweise eine zweiseitige Beschichtung von Substraten durchgeführt werden, wobei die Beschichtungen in standardisierten Prozesskammern von einer Substratseite erfolgen. Durch die vorgeschlagene Substratwendevorrichtung können die Substrate gedreht werden, sodass die Vorderseite oder Rückseite der Substrate auf die Bearbeitungsseite der Beschichtungskammern gebracht wird.
Gemäß einer weiteren Ausführungsform der erfindungsgemäßen Substratbearbeitungsanlage ist die Substratwendeeinrichtung eine Substratkassettendrehvorrichtung. Das Wenden einzelner Substrate gestaltet sich in der Praxis relativ aufwändig. Mit der vorgeschlagenen Ausführungsform kann das Substratwenden einfacher realisiert werden, wobei die Substrate zunächst in Substratkassetten umgeladen werden, dann die gesamten Substratkassetten gedreht werden und anschließend die Substrate wieder umgeladen werden.
In einem nächsten Ausführungsbeispiel der erfindungsgemäßen Substratbearbeitungsanlage ist zwischen wenigstens zwei Trägertransportbereichen der Substratbearbeitungsanlage eine Substratumladestation zum Umladen des wenigstens einen Substrates von einer Trägervorrichtung auf eine andere Trägervorrichtung vorgesehen. Bei dieser Variante erfolgt der Substrattransport teilweise mit Hilfe der Substratumladestation, wobei die Substrate in unterschiedlichen Anlagenteilen auf verschiedenen Trägervorrichtungen bearbeitet werden. Dies ist beispielsweise dann günstig, wenn in einer Prozesskammer eine Trägervorrichtung benötigt wird, die durch die Substratbearbeitung in dieser Prozesskammer konditioniert ist.
Es ist besonders geeignet, wenn die erfindungsgemäße Substratbearbeitungsanlage eine Substratbrucherkennung und/oder eine Substratbruchbeseitigungsvorrichtung aufweist. Derartige Substratbruchbeseitigungsvorrichtungen können beispielsweise eine einfache Substratbruchabsaugung bzw. auch Roboterarme mit speziellen Greifervorrichtungen sein. Substratbrüche sind nicht vollständig zu vermeiden, sondern sie treten mit einer geringen Wahrscheinlichkeit auf. Dabei kann ein Substratbruch den Produktionsprozess in einer Substratbearbeitungsanlage unter Umständen erheblich stören und große Produktionsausfälle verursachen. Mit der vorgeschlagenen Substratbrucherkennung und der Substratbruchbeseitigungsvorrichtung ist es möglich, einen Substratbruch automatisch zu erkennen und seine Folgen zu beseitigen. Es ist auch schon von Vorteil, wenn nur eine Substratbrucherkennung oder nur eine Substratbruch- beseitigungsvorrichtung vorhanden ist, da damit die Folgen des Substratbruches schneller beseitigt werden können.
In einer speziellen Ausgestaltung der erfindungsgemäßen Substratbearbeitungsanlage ist wenigstens eine der Prozesskammern durch die Trägervorrichtung gegenüber einem Prozessmodul, in dem diese Prozesskammer vorgesehen ist, körperlich abschließbar. In diesem Fall bildet die Trägervorrichtung eine Wand, einen Boden oder eine Seitenwand der Prozesskammer aus. Dies wird dadurch erreicht, dass die Trägervorrichtung mittels der Trägertransportvorrichtung zu der Prozesskammer hin und von der Prozesskammer wieder weg transportiert werden kann.
Vorzugsweise bildet die Vorrichtung einen Boden der Prozesskammer aus. Dabei kann die Trägervorrichtung mittels der Trägertransportvorrichtung bis in einen Bereich unter die Prozesskammer bewegt werden und daraufhin mittels einer Hubvorrichtung vertikal nach oben gegen die Prozesskammer gedrückt werden, um einen geeigneten körperlichen Abschluss der Prozesskammer gegenüber dem die Prozesskammer umgebenden Prozessmodul zu erzielen.
Als Trägertransportvorrichtung kann dabei vorteilhaft ein Rollentransportsystem eingesetzt werden. Alternative Trägertransportvorrichtungen sind z. B. Linearmotortransportsysteme, Gabeltransportsysteme usw.
Die wenigstens eine Prozesskammer enthält gemäß der vorliegenden Erfindung eine oder mehrere Vorrichtungen zur Bearbeitung der Substrate. Bevorzugte Bearbeitungsvorrichtungen sind dabei Vorrichtungen zur Erzeugung von Plasma. Eine derartige Vorrichtung kann z. B. eine planare HF-Elektrode sein, die als Gasdusche ausgeführt ist. In diesem Fall bildet die Trägervorrichtung vorzugsweise die Gegenelektrode einer Parallel- Plattenanordnung. Generell besitzen die erfindungsgemäß eingesetzten Prozesskammern jeweils alle für den Betrieb der verwendeten Bearbeitungsvorrichtungen sowie für die Substratbearbeitung notwendigen Medienversorgungsanschlüsse wie Pumpanschlüsse, elektrische Versorgungsanschlüsse, Gasversorgungsanschlüsse und Anschlüsse zur Versorgung von Temperierungsvorrichtungen usw.
Entsprechend einer weiteren möglichen Ausführung der erfindungsgemäßen Substratbearbeitungsanlage weist diese wenigstens ein Prozessmodul mit jeweils wenigstens einer Prozesskammer auf, wobei zwischen dem wenigstens einen Prozessmodul und dem Trägertransportbereich jeweils ein Transfermodul vorgesehen ist, welches gegenüber dem Prozessmodul und gegenüber dem Trägertransportbereich gasdicht ver- schließbar ist. Somit ist es möglich, die Substrate in dem Transfermodul optimal auf die nachfolgende Prozessierung in dem Prozessmodul vorzubereiten. Ferner können bereits in dem Prozessmodul bearbeitete Substrate in dem Transfermodul wieder geeignet an die Bedingungen in dem Trägertransportbereich angepasst werden. Hierfür kann in dem Transfermodul eine geeignete Atmosphäre oder auch Vakuum und/oder eine geeignete Temperatur eingestellt werden.
Solche Transfermodule können besonders effektiv genutzt werden, wenn in dem Transfermodul wenigstens zwei Ebenen für Trägervorrichtungen vorgesehen sind. Auf diese Weise kann in den verschiedenen, typischerweise übereinander vorgesehenen Ebenen beispielsweise gleichzeitig oder zeitversetzt eine Trägervorrichtung aus einem angrenzenden Prozessmodul herausgebracht werden, während in einer anderen Ebene des Transfermoduls eine weitere Trägervorrichtung für den Hineintransport in das Prozessmodul vorbereitet wird.
In einem anderen Aufbau besitzt die erfindungsgemäße Substratbearbeitungsanlage wenigstens zwei Prozessmodule mit jeweils wenigstens einer Prozesskammer, wobei jedem Prozessmodul eine eigene Trägervorrichtung zugeordnet ist. Dabei bildet vorzugsweise der Trägertransportbereich einen Trennbereich für die Prozessmodule und einen Austauschbereich für Substrate auf jeweils andere Trägervorrichtungen.
Bevorzugte Ausführungsformen der vorliegenden Erfindung, deren Aufbau, Funktion und Vorteile sollen im Folgenden anhand von Figuren näher erläutert werden, wobei
Figur 1 schematisch eine Ausführungsform einer erfindungsgemäßen Substratbearbeitungsanlage mit drei Prozessmodulen in einer Draufsicht zeigt;
Figur 2 schematisch einen Querschnitt einer weiteren Ausbildung einer erfindungsgemäßen Substratbearbeitungsanlage zeigt;
Figur 3 schematisch eine Variante einer erfindungsgemäßen Substratbearbeitungsanlage mit vier Prozessmodulen, welche als Durchlaufanlage konzipiert ist, in einer Draufsicht zeigt;
Figur 4 schematisch eine andere Gestaltungsmöglichkeit einer erfindungsgemäßen Substratbearbeitungsanlage mit vier Prozessmodulen in einer Draufsicht zeigt; Figur 5 schematisch noch ein anderes Beispiel einer erfindungsgemäßen Substratbearbeitungsanlage mit vier Prozessmodulen in einer Draufsicht zeigt;
Figur 6 schematisch eine Weiterbildung einer erfindungsgemäßen Substratbearbeitungsanlage mit vier Mehrkammerprozessmodulen in einer Draufsicht zeigt;
Figur 7 schematisch einen Querschnitt eines in der erfindungsgemäßen Substratbearbeitungsanlage einsetzbaren Mehrkammerprozessmodules zeigt;
Figur 8 schematisch einen Querschnitt einer weiteren Ausführungsform eines erfindungsgemäß verwendbaren Mehrkammerprozessmodules zeigt;
Figur 9 schematisch einen Querschnitt einer erfindungsgemäßen Substratbearbeitungsanlage mit einem Mehrkammerprozessmodul zeigt;
Figur 10 schematisch einen Querschnitt einer weiteren Variante einer erfindungsgemäßen Substratbearbeitungsanlage zeigt;
Figur 1 1 schematisch einen Querschnitt einer Ausgestaltung einer erfindungsgemäßen Substratbearbeitungsanlage zeigt;
Figur 12 schematisch eine Ausführungsform einer erfindungsgemäßen Substratbearbeitungsanlage in einer hohen Ausbaustufe in einer Draufsicht zeigt;
Figur 13 schematisch eine Ausbildung einer erfindungsgemäßen Substratbearbeitungsanlage mit linearen Anreihungen von Prozessmodulen in einer Draufsicht zeigt;
Figur 14 schematisch eine andere erfindungsgemäße Substratbearbeitungsanlage mit linearen Anreihungen von Prozessmodulen in einer Draufsicht zeigt;
Figur 15 schematisch eine weitere Ausführungsvariante einer erfindungsgemäßen
Substratbearbeitungsanlage in einer Draufsicht zeigt;
Figur 16 schematisch noch eine weitere erfindungsgemäße Substratbearbeitungsanlage in einer Ausführung als Cluster-Substratbearbeitungsanlage in einer Draufsicht zeigt; Figur 17 schematisch eine andere erfindungsgemäße Substratbearbeitungsanlage in einer Ausführung als Cluster-Substratbearbeitungsanlage in einer Draufsicht zeigt; und
Figur 18 schematisch eine Variante einer erfindungsgemäßen Substratbearbeitungsanlage mit acht Prozessmodulen in einer Draufsicht zeigt.
Figur 1 zeigt schematisch eine Draufsicht auf eine Ausführungsform einer erfindungsgemäßen Substratbearbeitungsanlage 1 . Hier werden Substrate 3 über einen Substratbelade- und -entladebereich 2 in Substratkassetten 13 in die Substratbearbeitungsanlage 1 eingebracht und aus der Substratbearbeitungsanlage 1 nach der Bearbeitung wieder entnommen. An den Substratbelade- und -entladebereich 2 schließt sich ein Substratumladebereich 1 1 an, der von dem Substratbelade- und -entladebereich 2 durch eine gasdichte Verschlusseinrichtung 10 trennbar ist. In dem Substratumladebereich 1 1 erfolgt mittels einer Substratumladevorrichtung 12 ein Umladen von Substraten 3 zwischen einer Substratkassette 13 und einer in einem Trägertransportbereich 8 befindlichen Trägervorrichtung 7.
In dem in Figur 1 gezeigten Ausführungsbeispiel ist die Trägervorrichtung 7 ein sogenannter Carrier mit Substratnestern, in welche die Substrate 3 eingelegt werden. Diese Substratnester sind in Substratträgerzeilen und Substratträgerspalten angeordnet. Die Substratträgerzeile mit vorliegend fünf Substratnestern ist von der Substratumladevorrichtung 12 bedienbar, die Substrate 3 in der Substratträgerzeilenrich- tung X zu den Substratnestern transportiert. Hierfür weist die Substratumladevorrichtung 12 eine parallel zu einer Substratträgerzeile der Trägervorrichtung 7 verlaufende, oberhalb der Trägervorrichtung 7 angeordnete Umladebrücke 16 bzw. einen entsprechenden Umladearm auf, entlang welchem die Substrate 3 zu den jeweiligen Substratnestern transportiert werden können. Zum Beladen aller Substratträgerzeilen ist die Substratumladevorrichtung 12 in der Substratträgerspaltenrichtung Y bewegbar.
In dem in Figur 1 dargestellten Ausführungsbeispiel weist die Substratumladevorrichtung 12 eine berührungslose Substrat-Handhabungsvorrichtung 17 auf, mit welcher die Substrate 3 aus einer Substratkassette 13 berührungslos entnommen werden können und über die Umladebrücke 16 auf die Trägervorrichtung 7 abgelegt werden können. Als eine solche Substrat-Handhabungsvorrichtung 17 eignet sich beispielsweise eine ultraschallgestützte Zimmermann-Schilp-Handling-Vorrichtung. Es kann jedoch auch jede andere geeignete Substrat-Handhabungsvorrichtung verwendet werden, um die Trägervorrich- tung 7 mit Substraten 3 zu beladen bzw. die Substrate 3 wieder von der Trägervorrichtung 7 zu entnehmen.
Der Umladearm bzw. die Umladebrücke 16 kann dafür im Bereich der gasdichten Verschlusseinrichtung 10 unterbrochen sein und einen eigenen Bewegungsantrieb besitzen, wodurch der Substrattransport über die Verschlusseinrichtung 10 hinweg erreicht wird. Eine andere Variante besteht darin, dass der Umladearm bzw. die Umladebrücke 16 erst nach dem Öffnen der Verschlusseinrichtung 10 in den Trägertransportbereich 9 eingefahren wird. In einer weiteren Variante kann auch die Verschlusseinrichtung 10 zwischen dem Trägertransportbereich 9 und dem Substratumladebereich 1 1 weggelassen werden.
Die Trägervorrichtung 7 kann in dem Trägertransportbereich 9 zu jedem der drei, in dem vorgestellten Ausführungsbeispiel vorgesehenen Prozessmodule 4 bewegt werden. Die Prozessmodule 4 weisen neben einer durch den Trägertransportbereich 9 verlaufenden Trägertransportvorrichtung 8 für die Trägervorrichtung 7 jeweils wenigstens eine Prozesskammer 5 auf. In jeder der Prozesskammern 5 kann beispielsweise eine andere Beschichtung ausgeführt werden.
Jedem Prozessmodul 4 kann auch eine eigene Trägervorrichtung 7 zugeordnet sein. Das ist vorteilhaft, wenn beispielsweise in den weiteren Prozessmodulen 4 der Substratbearbeitungsanlage 1 Bearbeitungen stattfinden, bei denen eine Verschleppung von Verunreinigungen, durch die Trägervorrichtung 7 selbst, nicht ausgeschlossen werden kann. So kann es problematisch sein, wenn zum Beispiel in einem ersten Prozessmodul 4 eine erste Beschichtung unter Zugabe von Dotierstoffen erfolgt und in einem in einem weiteren Prozessmodul 4 durchgeführten folgenden Prozessierungsschritt eine dotierte Schicht abgeschieden werden soll. Der Trägertransportbereich 9 dient dann gleichzeitig als Trennbereich der Prozessmodule 4 und als Austauschbereich der Substrate 3 auf jeweils andere Trägervorrichtungen 7. Die einzelnen Trägervorrichtungen 7 können dann auch unterschiedliche Temperaturen besitzen.
Die Substratbearbeitungsanlage 1 weist ferner eine mit dem Substratumladebereich 1 1 gekoppelte Kassettendrehvorrichtung 15 auf, mit welcher die Substratkassette 13 gedreht werden kann, sodass beispielsweise nach einer Beschichtung der Vorderseite der Substrate 3 die Substrate 3 gedreht werden können und anschließend die Beschichtung der Substratrückseite erfolgen kann. Der Trägertransportbereich 9 ist von den Prozessmodulen 4 jeweils durch gasdichte Verschlusseinrichtungen 10 trennbar. Dadurch ist es möglich, die Prozessmodule 4 mit einem anderen Druck als den Substratumladebereich 1 1 zu betreiben.
Figur 2 zeigt schematisch einen Querschnitt einer weiteren Variante einer erfindungsgemäßen Substratbearbeitungsanlage 1 A. Dabei bezeichnen gleiche Bezugszeichen gleiche bzw. ähnliche Elemente wie in der oben beschriebenen Substratbearbeitungsanlage
1 aus Figur 1 , weshalb an dieser Stelle auf obige Beschreibung Bezug genommen wird. Gleiches gilt für die Beschreibung der weiteren Figuren.
Im Substratbelade- und -entladebereich 2 befindet sich in dem in Figur 2 dargestellten Funktionsbeispiel eine Substratkassette 13. In dem Substratbelade- und -entladebereich
2 wird nach dem Einbringen der Substratkassette 13 zunächst durch Evakuieren oder Spülen eine saubere und definierte Atmosphäre geschaffen. Wenn in dem Substratbelade- und -entladebereich 2 eine ausreichende Sauberkeit vorhanden ist, wird die gasdichte Verschlusseinrichtung 10 geöffnet und die Substratkassette 13 wird in den Substratumladebereich 1 1 transferiert. In dem Substratumladebereich 1 1 werden die Substrate 3 aus der Substratkassette 13 mittels der Substratumladevorrichtung 12 auf die in dem Trägertransportbereich 9 befindliche Trägervorrichtung 7 umgeladen.
In dem in Figur 2 dargestellten Ausführungsbeispiel weist die Substratumladevorrichtung 12 eine berührungslose, ultraschallgestützte Substrat-Handhabungsvorrichtung 17 auf, die an der Umladebrücke 16 geführt ist. Die Substrat-Handhabungsvorrichtung 17 kann, wie oben bereits erwähnt, Substrate 3 berührungslos und mit geringen Kräften greifen. Die Hubkraft wird dabei beispielsweise durch Unterdruck in Unterdruckkanälen erzeugt. Der zum berührungslosen Transport nötige Abstand zu der Substrat-Handhabungsvorrichtung 17 wird durch ein ultraschallerzeugtes Gaspolster sichergestellt. Die gezeigte Substrat-Handhabungsvorrichtung 17 arbeitet prinzipbedingt nicht bei Vakuum, sondern nur bei erhöhtem Druck, beispielsweise bei Atmosphärendruck. Die Substrat-Handhabungsvorrichtung 17 hinterlässt auf den Substraten 3 keine Handlingsabdrücke und ist daher zum Handling von Substraten 3 geeignet, die auf beiden Substratseiten funktionelle Oberflächen aufweisen, für welche hohe Reinheitsanforderungen bestehen. Vorteilhaft ist es, wenn die Substratkassette 13 zur definierten Entnahme oder Zurückgabe des jeweils obersten Substrates 3 mit einem nicht dargestellten Liftsystem verbunden ist.
Die beladene Trägervorrichtung 7 wird durch die Trägertransportvorrichtung 8 in dem Trägertransportbereich 9 zu einem Prozessmodul 4 transportiert. Darin wird die Träger- Vorrichtung 7 ebenfalls mittels der Trägertransportvorrichtung 8 zu einer Prozesskammer 5 bewegt, wo eine Bearbeitung der Substrate 3 vorgesehen ist. Als Trägertransportvorrichtung 8 wird hier beispielhaft ein Rollentransportsystem verwendet.
In dem dargestellten Ausführungsbeispiel wird in dem Prozessmodul 4 die Trägervorrichtung 7 von einer Hubvorrichtung 14 von der Trägertransportvorrichtung 8 ausgehoben und als Boden der Prozesskammer 5 verwendet. Die Position der Trägervorrichtung 7 bei geschlossener Prozesskammer 5 ist dabei durch eine Strichlinie in dem Prozessmodul 4 in Figur 2 skizziert. Nach der Bearbeitung der Substrate 3 in der Prozesskammer 5 werden die Substrate 3 entgegengesetzt zum Beladeverfahren wieder entladen.
Figur 3 zeigt schematisch eine weitergebildete Version einer erfindungsgemäßen Substratbearbeitungsanlage 1 B, welche vier Prozessmodule 4 aufweist. Die Substratbearbeitungsanlage 1 B ist als Durchlaufanlage konzipiert, bei welcher auf der linken Seite der Darstellung Substratkassetten 13 eingeladen werden. Anschließend durchlaufen die Substrate 3 die Substratbearbeitungsanlage 1 B. Abschließend werden auf der rechten Seite der Darstellung die Substratkassetten 13 mit bearbeiteten Substraten 3 entladen.
In der Substratbearbeitungsanlage 1 B finden in dem Substratumladebereich 1 1 zwei Trägervorrichtungen 7 Platz. Mit den Substratumladevorrichtungen 12 ist ein Substrattransport sowohl zwischen einer Substratkassette 13 und einer Trägervorrichtung 7 als auch ein Substrattransport zwischen beiden Trägervorrichtungen 7 möglich. Zwischen den beiden Trägertransportbereichen 9 ist eine Substratkassettendrehvorrichtung 15' angeordnet, in der in dem gezeigten Beispiel gleichzeitig drei Substratkassetten 13 gedreht werden können, sodass eine Substratseite von unten nach oben bzw. umgekehrt gedreht werden kann.
Des Weiteren weist die Substratbearbeitungsanlage 1 B aus Figur 3 Substratbrucherkennungen 20 auf, durch welche beschädigte Substrate 3 optisch identifiziert werden können. Wenn ein bruchgefährdetes oder gebrochenes Substrat 3 festgestellt wird, kann dieses fehlerhafte Substrat 3 mittels einer ebenfalls vorhandenen Substratbruchabsau- gung sofort entsorgt werden, sodass der Produktionsprozess nur unwesentlich gestört wird. An den Substratbe- und -entladebereichen 2 sind jeweils zwei Kassettenspeicher 19 angeordnet. In den Kassettenspeichern 19 können Substrate 3 zwischengespeichert werden, die beispielsweise bei ungleichen Kapazitäten von Substratträgerkassetten 13 und Trägervorrichtungen 7 anfallen. Figur 4 zeigt schematisch eine andere Ausführungsform einer erfindungsgemäßen Substratbearbeitungsanlage 1 C mit vier Prozessmodulen 4 in einer Draufsicht. In der Variante von Figur 4 weist die Substratbearbeitungsanlage 1 C zwei voneinander getrennte Trägertransportbereiche 9 auf, an welchen jeweils ein Prozessmodul 4 in Substratträger- zeilenrichtung X und ein Prozessmodul 4 in Substratträgerspaltenrichtung Y angeordnet ist. In den Trägertransportbereichen 9 befindet sich jeweils eine Trägervorrichtung 7, welche jeweils mittels einer Substratumladevorrichtung 12 mit Substraten 3 bestückbar ist. In dem gezeigten Ausführungsbeispiel ist ein Substratumladebereich 1 1 vorgesehen, in dem die Umladebrücke 16 der Substratumladevorrichtungen 12 in Substratträgerspaltenrichtung Y der Trägervorrichtungen 7 verschiebbar sind, um alle Substratnester der Trägervorrichtungen 7 mit Substraten 3 belegen bzw. die Substrate 3 von den Substratnestern wieder aufnehmen zu können.
Dabei kann in der Substratbearbeitungsanlage 1 C eine Trägervorrichtung 7 mit Substraten 3 entweder nacheinander in beiden Prozessmodulen 4 bearbeitet werden, oder es kommen zwei Trägervorrichtungen 7 zum Einsatz, die in einem Pendelbetrieb betrieben werden, wobei gleichzeitig die Bearbeitung einer mit Substraten 3 beladenen Trägervorrichtung 7 in einem Prozessmodul 4 und ein Umladevorgang auf einer anderen Trägervorrichtung 7 vorgesehen ist.
Die Substrate 3 werden in der Substratbearbeitungsanlage 1 C von Figur 4 zunächst in einen Substratbeladebereich 2' eingebracht. In diesem Stadium befinden sich die Substrate 3 noch innerhalb einer Substratkassette 13, in welcher die Substrate 3 in verschiedenen horizontalen Kassettenebenen der Substratkassette 13 angeordnet sind. Die Substratkassette 13 wird nachfolgend nach Durchfahren einer gasdicht verschließbaren Schleuse in den Substratumladebereich 1 1 eingebracht, wo die Substratkassette 13 entlang der durch die Pfeile in Figur 4 markierten Substratträgerspaltenrichtung Y verfahrbar ist. Dabei werden mittels der Substratumladevorrichtung 12 die in der Substratkassette 13 befindlichen Substrate 3 unter Verwendung der Umladebrücken 16 auf die Trägervorrichtungen 7 verteilt. Wenigstens eine der mit Substraten 3 beladenen Trägervorrichtungen 7 wird nachfolgend mit Hilfe der Trägertransportvorrichtung 8, welche beispielsweise in Figur 2 dargestellt ist, in eines der Prozessmodule 4 eingebracht, um in einer darin befindlichen Prozesskammer verarbeitet werden zu können. Die Bearbeitung kann beispielsweise eine Schichtabscheidung sein, kann jedoch auch eine Plasmabehandlung, ein Ätzschritt, eine Temperaturbehandlung und/oder ein anderer geeigneter Prozessschritt sein. Nachdem die Bearbeitung einer Substratseite in der Substratbearbeitungsanlage 1 C beispielsweise in den zwei links dargestellten Prozessmodulen 4 erfolgt ist, werden die Substrate 3 mittels einer zwischen den beiden Trägertransportbereichen 9 befindlichen Substratkassettendrehvorrichtung 15 gedreht. Anschließend erfolgt eine Bearbeitung der zweiten Substratseite in den anderen beiden, in Figur 4 rechts dargestellten Prozessmodulen 4. Abschließend werden die Substrate 3 in eine Substratkassette 13 umgeladen und aus dem Substratentladebereich 2", der auf der rechten Seite von Figur 4 dargestellt ist, aus der Substratbearbeitungsanlage 1 C entladen.
Figur 5 zeigt ein weiteres alternatives Ausführungsbeispiel einer erfindungsgemäßen Substratbearbeitungsanlage 1 D mit vier Prozessmodulen 4 in einer Draufsicht. Bei der Substratbearbeitungsanlage 1 D sind parallel zu den Substratträgerzeilen jeweils zwei Prozessmodule 4 beidseitig neben dem Trägertransportbereich 9 angeordnet. Zwei dieser Prozessmodule 4 sind für Vorderseitenbeschichtungen der Substrate 3 vorgesehen, und die anderen beiden der Prozessmodule 4 sind für die Rückseitenbeschichtung nach dem Wenden der Substrate 3 in der Substratkassettendrehvorrichtung 15' bestimmt.
Die Substratbearbeitungsanlage 1 D ist keine Durchlaufanlage, sondern die Substrate 3 werden hier über einen einzigen Substratbelade- und -entladebereich 2 beladen und entladen. Dabei werden die Substrate 3, ähnlich wie in den vorgenannten Beispielen, zunächst in einer Substratkassette 13 in die Substratbearbeitungsanlage 1 D eingebracht und dann von der Substratkassette 13 unter Verwendung von Substratumladevorrichtungen 12 auf wenigstens eine Trägervorrichtung 7 aufgelegt. Mit Hilfe der Trägervorrichtung 7 können die Substrate 3 dann auf der Trägervorrichtung 7 aufliegend in wenigstens eines der Prozessmodule 4 eingebracht werden, um in einer darin befindlichen Prozesskammer prozessiert werden zu können. Nach erfolgter Bearbeitung der Substrate 3 wird die entsprechende Trägervorrichtung 7 wieder mittels der verwendeten Trägertransportvorrichtung aus dem Prozessmodul 4 heraus transportiert. Daraufhin kann die jeweilige Trägervorrichtung 7 beispielsweise in das auf der anderen Seite des Trägertransportbereiches 9 befindliche Prozessmodul 4, wiederum unter Verwendung der Trägertransportvorrichtung, transportiert werden. In dem anderen Prozessmodul 4 befindet sich ebenfalls eine in Figur 5 nicht gezeigte Prozesskammer, in welcher die Substrate 3 einem weiteren Prozessschritt ausgesetzt werden können. Nach dieser Bearbeitung der Substrate 3 werden diese auf der Trägervorrichtung 7 aufliegend wieder in den Trägertransportbereich 9 überführt und können dann beispielsweise mittels der Substratumladevorrichtungen 12 wieder in entsprechende Substratkassetten 13 eingebracht werden. Wie es in Figur 5 zu sehen ist, kann zwischen den beiden Trägertransportbereichen 9 eine Substratumladestation 29 zum Umladen der Substrate 3 von einer Trägervorrichtung 7 auf eine andere Trägervorrichtung 7 vorgesehen sein. Die Substratumladestation 29 kann dabei ähnlich wie die oben beschriebene Substratumladevorrichtung 12 aufgebaut sein und damit berührungslos die Substrate 3 von einer Trägervorrichtung 7 aufnehmen, entlang eines Umladearmes bzw. einer Umladebrücke 16' oberhalb der Trägervorrichtungen 7 verfahren und die Substrate 3 dann auf der anderen Trägervorrichtung 7 ablegen.
Bei der Substratbearbeitungsanlage 1 D sind entsprechend der hohen Produktionsgeschwindigkeit in vier Prozessmodulen 4 für jede der zwei Trägervorrichtungen 7 in dem Substratumladebereich 1 1 zwei parallel arbeitende Substratumladevorrichtungen 12 vorgesehen.
Figur 6 zeigt eine Draufsicht einer weiteren Option einer erfindungsgemäßen Substratbearbeitungsanlage 1 E, die vier Mehrkammerprozessmodule 6 aufweist. In jedem der Mehrkammerprozessmodule 6 befinden sich in einem vertikalen Stapel zwei Prozesskammern 5 übereinander. In anderen, nicht gezeigten Ausführungsbeispielen der vorliegenden Erfindung können auch mehr als zwei Prozesskammern 5 übereinander in den Mehrkammerprozessmodulen 6 vorgesehen sein. Ferner können einzelne der in Figur 6 dargestellten Mehrkammerprozessmodule 6 auch durch einfache Prozessmodule 5, wie sie beispielsweise in den vorgenannten Figuren dargestellt sind, ersetzt sein.
Zwischen den Trägertransportbereichen 9 und den Mehrkammerprozessmodulen 6 ist jeweils ein Transfermodul 18 angeordnet. Das Transfermodul 18 ist jeweils durch vakuumdichte Tore oder Verschlusseinrichtungen einerseits von dem zugehörigen Mehr- kammerprozessmodul 6 und andererseits von dem Trägertransportbereich 9 getrennt. Innerhalb des Transfermoduls 18 kann beispielsweise eine Erwärmung oder Abkühlung von in dem jeweiligen Mehrkammerprozessmodul 6 zu prozessierenden oder bereits prozessierten Substraten 3 vorgenommen werden. Ferner muss in dem Transfermodul 18 eine geeignete Atmosphäre eingestellt werden. Das Transfermodul 18 kann evakuiert werden.
Innerhalb des Transfermoduls 18 kann ein in Figur 6 nicht dargestellter Trägervorrichtungslift vorgesehen sein, mit welchem die jeweilige Trägervorrichtung 7 auf ein Niveau gebracht werden kann, das der jeweiligen Prozesskammer 5 in dem Mehrkammerprozessmodul 6 entspricht, in welchem die auf der Trägervorrichtung 7 aufliegenden Sub- strate 3 prozessiert werden sollen. Außerdem kann die Trägervorrichtung 7 mittels des Trägervorrichtungsliftes auch auf eine andere Ebene gebracht werden, in welcher die jeweilige Trägervorrichtung 7 beispielsweise an einer anderen Trägervorrichtung 7, welche auf einer anderen Trägervorrichtungsebene transportiert wird, vorbeibewegt werden kann.
Figur 7 zeigt schematisch einen Querschnitt eines beispielsweise in der Ausführungsform von Figur 6 verwendbaren Mehrkammerprozessmodules 6. In dem hier vorgestellten Ausführungsbeispiel beinhaltet das Mehrkammerprozessmodul 6 zwei vertikal übereinander angeordnete Prozesskammern 5. In anderen, nicht dargestellten Ausführungsvarianten kann das Mehrkammerprozessmodul 6 auch mehr als zwei Prozesskammern 5 aufweisen.
Bei den in Figur 7 vorgestellten Prozesskammern 5 dient die Trägervorrichtung 7 als Boden der Prozesskammer 5. Die obere Trägervorrichtung 7 in Figur 7 ist in einem Zustand während des Transportes auf einem in der Trägertransportvorrichtung 8 verwendeten Rollentransportsystem dargestellt. In diesem Zustand fehlt der Boden der oberen Prozesskammer 5 und die obere Prozesskammer 5 ist offen gegenüber dem Prozessmodul 6. Die untere Trägervorrichtung 7 verschließt hingegen die untere Prozesskammer 5, indem sie von einer Hubvorrichtung 14 gegen die untere Prozesskammer 5 gedrückt wird. Das Mehrkammerprozessmodul 6 ist eine abschließbare Kammer, die gegenüber der Umwelt und gegenüber benachbarten Modulen der Substratbearbeitungsanlage 1 E verschließbar ist.
Figur 8 zeigt schematisch einen Querschnitt eines weiteren, in der Substratbearbeitungsanlage 1 E von Figur 6 einsetzbaren Mehrkammerprozessmodules 6'. Das Prozessmodul 6' enthält im Unterschied zu dem Prozessmodul 6, das in Figur 7 gezeigt ist, für jede der Prozesskammern 5 eine verschließbare Isolierkammer 25. Die verschließbare Isolierkammer 25 kann beispielsweise als zusätzliche Isolierstufe zur besseren thermischen und chemischen Entkopplung der Prozesskammer 5 von der Außenatmosphäre vorgesehen sein. In einem anderen Anwendungsfall kann die Isolierkammer 25 auch als Hilfsvorrichtung für einen Reinigungsprozess der Prozesskammer 5 vorgesehen sein, bei welchem in einer geschlossenen Isolierkammer 25 eine abgesenkte Trägervorrichtung 7 bei geöffneter Prozesskammer 5 durch ein Ätzplasma gereinigt wird. In der abgesenkten Stellung der Trägervorrichtung 7 werden im Gegensatz zu einer geschlossenen Prozesskammer 5 auch die Randbereiche der Trägervorrichtung 7 mit gereinigt. Die Isolier- kammer 25 verhindert dabei die Ausbreitung von Reinigungsgasen in das Prozessmodul 6'.
Die Prozesskammern 5 enthalten dabei bevorzugt eine oder mehrere Vorrichtungen zur Erzeugung von Plasma. Eine solche bevorzugte Vorrichtung kann z. B. eine planare RF- Elektrode sein, die als Gasdusche ausgeführt ist. In diesem Fall bildet die Trägervorrichtung 7 die Gegenelektrode einer Parallel-Plattenanordnung. Die Prozesskammern 5 enthalten dann auch alle notwendigen Medienversorgungsanschlüsse wie Pumpanschlüsse, elektrische Versorgungsanschlüsse, Gasversorgungsanschlüsse und Vorrichtungen zur Temperierung.
Figur 9 zeigt schematisch einen Querschnitt einer erfindungsgemäßen Substratbearbeitungsanlage 1 E mit einem Mehrkammerprozessmodul 6. Das Mehrkammerprozessmo- dul 6 kann beispielsweise wie in Figur 7 aufgebaut sein. Auf obige Beschreibung sei verwiesen. In Figur 9 ist ein Ausführungsbeispiel eines Transfermoduls 18 detaillierter dargestellt. In dem gezeigten Transfermodul 18 sind zwei Transportebenen für Trägervorrichtungen 7 vorhanden, die durch die skizzierten Transportrollen 26 markiert sind. Von den beiden Transportebenen in dem Transfermodul 18 können die Trägervorrichtungen 7 in die beiden Transportebenen des Mehrkammerprozessmodules 6 transportiert werden. Mit einem Trägervorrichtungslift 28 können die Trägervorrichtungen 7 zwischen den beiden Transportebenen verfahren werden. Die Transportrollen 26 können dabei in Richtung ihrer Achsen bewegt werden, um den erforderlichen Raum für eine Hubbewegung der Trägervorrichtung 7 frei zu geben. Das Transfermodul 18 weist zudem wenigstens eine Heiz- und/oder Kühlvorrichtung, wie beispielsweise eine Heizplatte, eine Strahlungsheizung und/oder ein Kühlaggregat, zum Heizen und/oder Kühlen der Trägervorrichtung 7 auf. Das Transfermodul 18 ist dem Trägertransportbereich 9 zuzuordnen und stellt somit eine Verbindung zwischen dem Substratumladebereich 1 1 und dem Mehrkammerprozessmodul 6 her.
Die Figuren 10 und 1 1 zeigen schematisch Querschnitte von erfindungsgemäßen Substratbearbeitungsanlagen 1 F und 1 G. Die Substratbearbeitungsanlagen 1 F und 1 G weisen Prozessmodule 4 auf, die jeweils eine Prozesskammer 5 enthalten. Die Substratbearbeitungsanlage 1 G weist im Unterschied zur Substratbearbeitungsanlage 1 F eine Isolierkammer 25 zum Einschluss der Prozesskammer 5 auf. Beide Substratbearbeitungsanlagen 1 F und 1 G weisen ein Transfermodul 18' auf, das jeweils nur eine, durch die dargestellten Transportrollen 26 ersichtliche Transportebene aufweist. Die Transfermodule 18' sind zur Handhabung von zwei Trägervorrichtungen 7 konzipiert. Während sich die eine Trägervorrichtung 7 in der Transportebene befindet, kann eine zweite Trägervorrichtung 7 auf einem Trägervorrichtungslift 28 zwischengespeichert werden. Durch dieses Zwischenspeichern ist es möglich, Wartezeiten von Trägervorrichtungen 7 in dem Trägertransportbereich 9 zu minimieren. Generell können aber auch weitere Plätze im Trägervorrichtungslift 28 als Zwischenspeicher vorgesehen werden.
Figur 12 zeigt schematisch eine weitere erfindungsgemäße Substratbearbeitungsanlage 1 H, die acht Mehrkammerprozessmodule 6 aufweist. Die Substratbearbeitungsanlage 1 H weist entsprechend 16 Prozesskammern auf und verfügt über einen entsprechend hohen Produktionsdurchsatz. Die Trägertransportbereiche 9 sind in dem dargestellten Ausführungsbeispiel jeweils mit vier Substratumladevorrichtungen 12 gekoppelt, um den hohen logistischen Anforderungen in dieser Substratbearbeitungsanlage 1 H gerecht zu werden.
In Figur 13 ist schematisch eine weitere Ausführungsform einer erfindungsgemäßen Substratbearbeitungsanlage 1 1 in einer Draufsicht dargestellt. Die Substratbearbeitungsanlage 1 1 weist zwei lineare Anreihungen eines Transfermodules 18', eines Prozessmodules 4' und eines Prozessmodules 4 auf. Das Prozessmodul 4' ist dabei zweiseitig mit verschließbaren Durchgängen zum Durchgang von Trägervorrichtungen 7 ausgestattet. Die lineare Anreihung von Prozessmodulen 4, 4' ist eine relativ einfache Möglichkeit für den Ausbau erfindungsgemäßer Substratbearbeitungsanlagen. Ein Nachteil, der bei der linearen Anreihung von Prozessmodulen 4, 4' in Kauf genommen werden muss, ist der erhöhte logistische Aufwand bei dem Transport der Trägervorrichtungen 7.
Vorteilhaft ist es, wenn in den Transfermodulen 18, 18' mehrere Ebenen für Trägervorrichtungen 7 enthalten sind. Bei einem Schleusenvorgang können dann entweder gleichzeitig oder nacheinander mehrere Trägervorrichtungen 7 zwischen Atmosphäre und Vakuum ausgetauscht werden und damit die Anzahl anfallender Belüftungen bzw. Evakuierungen des Transfermoduls 18, 18' reduziert werden.
Eine andere erfindungsgemäße Substratbearbeitungsanlage 1 J mit linearen Anreihungen von Prozessmodulen 4' ist in Figur 14 gezeigt. Die Substratbearbeitungsanlage 1 J ist gegenüber der Substratbearbeitungsanlage 1 1 durch Trägervorrichtungsspeicher 23 weitergebildet, die an die äu ßeren Prozessmodule 4' gekoppelt sind. Die Trägervorrichtungsspeicher 23 können Trägervorrichtungen 7 Zwischenspeichern und dadurch logistische Wartezeiten beim Transport von Trägervorrichtungen 7 reduzieren. In Figur 15 ist eine weitere Option einer erfindungsgemäßen Substratbearbeitungsanlage 1 K schematisch in einer Draufsicht dargestellt. Anhand der Substratbearbeitungsanlage 1 K sind weitere Ausführungsoptionen für erfindungsgemäße Substratbearbeitungsanlagen veranschaulicht. Vorliegend ist die Substratumladevorrichtung 12 nicht in Form einer Umladebrücke sondern durch einen Umladeroboter 24 ausgebildet. Der Umladeroboter 24 weist einen verdrehbaren und linear ausfahrbaren Roboterarm auf, der alle Substrate 3 auf einer Trägervorrichtung 7 erreichen kann. Des Weiteren weist die Substratbearbeitungsanlage 1 K zwei Transfermodule 18" auf, welche einen Trägervorrichtungslift 28 und einen Puffer für Trägervorrichtungen 7 aufweisen. Das Transfermodul 18" ermöglicht den Transport von Trägervorrichtungen 7 sowohl in Substratträgerzeilenrichtung X als auch in Substratträgerspaltenrichtung Y. In der Substratbearbeitungsanlage 1 K sind an den Transfermodulen 18" in der Substratspaltenrichtung Y jeweils zwei Prozessmodule 4 angeordnet. Die Trägertransportbereiche 9 sind hingegen an den Transfermodulen 18" entlang der Substratträgerzeilenrichtung X angeordnet. Die Prozessmodule 4 können auch als Mehrkammerprozessmodule ausgeführt sein. Diese Ausführungsform kann generell auch auf die nachfolgend beschriebenen Varianten von erfindungsgemäßen Substratbearbeitungsanlagen in Kombination mit Transfermodulen 18" angewendet werden.
Vorteilhaft kann es auch sein, wenn in den Trägertransportbereichen 9 auch weitere Roboter, zum Beispiel zur Erhöhung des Substratdurchsatzes bzw. auch zur Substratbruchbeseitigung, eingesetzt werden.
In den Figuren 16 und 17 sind weitere Ausführungsmöglichkeiten von erfindungsgemäßen Substratbearbeitungsanlagen 1 L und 1 M schematisch in Draufsichten gezeigt. Die Substratbearbeitungsanlage 1 L demonstriert eine Ausgestaltung, bei welcher ein Trägervorrichtungsspeicher 23 direkt mit einem Trägertransportbereich 9 gekoppelt ist. Die Substratbearbeitungsanlage 1 M veranschaulicht hingegen die Option, an das Transfermodul 18" einen Trägervorrichtungsspeicher 23 zu koppeln.
Figur 18 stellt schematisch eine andere erfindungsgemäße Substratbearbeitungsanlage 1 N in einer Draufsicht dar. Die Substratbearbeitungsanlage 1 N ist eine Durchlaufanlage, die quer zu der Durchlaufrichtung der Substrate 3 durch die Substratbearbeitungsanlage 1 N eine relativ geringe Breite aufweist. Die geringe Breite wird durch die Anordnung der Prozessmodule 4 in Substratträgerspaltenrichtung Y an den Transfermodulen 18" erreicht. Die dargestellten Ausführungsbeispiele zeigen, dass erfindungsgemäße Substratbearbeitungsanlagen 1 , 1A bis 1 N sehr unterschiedlich ausgebildet sein können. Neben den gezeigten Ausführungsbeispielen sind weitere, hier nicht dargestellte Ausführungsformen oder Kombinationen der gezeigten Ausführungsbeispiele möglich, die der einschlägige Fachmann auf Grundlage der vorliegenden Beschreibung und seiner Fachkenntnisse ohne Weiteres ausbilden kann.

Claims

Patentansprüche
1 . Substratbearbeitungsanlage (1 , 1 A bis 1 N), welche
wenigstens einen Substratbelade- und -entladebereich (2) zum Be- und Entladen der Substratbearbeitungsanlage (1 ) mit wenigstens einem Substrat (3),
wenigstens eine evakuierbare Prozesskammer (5),
wenigstens eine Trägervorrichtung (7), mit welcher das wenigstens eine Substrat (3) mittels wenigstens einer Trägertransportvorrichtung (8) in wenigstens einem Trägertransportbereich (9) zu der wenigstens einen Prozesskammer (5) transportierbar ist, und
wenigstens eine gasdichte Verschlusseinrichtung (10) zwischen der wenigstens einen Prozesskammer (5) und dem Trägertransportbereich (9) sowie wenigstens eine gasdichte Verschlusseinrichtung (10) zwischen dem Substratbelade- und -entladebereich (2) und dem Trägertransportbereich (9) aufweist,
dadurch gekennzeichnet,
dass der Substratbelade- und -entladebereich (2) mit dem Trägertransportbereich (9) durch einen Substratumladebereich (1 1 ) mit wenigstens einer Substratumladevorrichtung (12) zum Umladen des wenigstens einen Substrates (3) von wenigstens einer in dem Substratbelade- und -entladebereich (2) vorsehbaren Substratkassette (13), in welcher Substrate (3) in verschiedenen horizontalen Kassettenebenen der Substratkassette (13) anordenbar sind, auf die wenigstens eine Trägervorrichtung (7), mit der das wenigstens eine Substrat (3) in einer horizontalen Trägerebene haltbar ist, gekoppelt ist, wobei der Substratumladebereich (1 1 ) gegenüber dem Substratbelade- und -entladebereich (2) gasdicht verschließbar ist.
2. Substratbearbeitungsanlage nach Anspruch 1 , dadurch gekennzeichnet, dass der Substratumladebereich (1 1 ) mit Inertgas befüllbar ist.
3. Substratbearbeitungsanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trägervorrichtung (7) in der Trägerebene in Substratträgerzeilen und Substratträgerspalten angeordnete Substratnester aufweist und die Trägervorrichtung (7) in Substratträgerzeilenrichtung (X) und/oder in Substratträgerspaltenrichtung (Y) bewegbar ist.
4. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Trägertransportvorrichtung (8) ein Rollentransportsystem aufweist.
5. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substratumladevorrichtung (12) über dem Trägertransportbereich (9) eine parallel zur Trägervorrichtung (7) vorsehbare Substratablageebene, von welcher die Trägervorrichtung (7) ganzflächig, zeilenweise oder spaltenweise mit Substraten (3) bestückbar ist, aufweist.
6. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substratumladevorrichtung (12) wenigstens eine Umladebrücke (16) oder einen Umladearm aufweist, die bzw. der sich parallel zu wenigstens einer Substratträgerzeile oder Substratträgerspalte der Trägervorrichtung (7) zum Be- und Entladen dieser Substratträgerzeile oder Substratträgerspalte mit wenigstens einem Substrat (3) erstreckt.
7. Substratbearbeitungsanlage nach Anspruch 6, dadurch gekennzeichnet, dass die Umladebrücke (16) oder der Umladearm zum Be- und Entladen weiterer Substratträgerzeilen oder Substratträgerspalten der Trägervorrichtung (7) längs einer Sub- stratträgerspaltenrichtung und/oder längs einer Substratträgerzeilenrichtung verfahrbar ist.
8. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substratumladevorrichtung (12) wenigstens eine berührungslose Substrat-Handhabungsvorrichtung (17) aufweist.
9. Substratbearbeitungsanlage nach Anspruch 8, dadurch gekennzeichnet, dass die Substrat-Handhabungsvorrichtung (17) ultraschallgestützt ist.
10. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substratkassette (13) zur definierten Entnahme und Zurückgabe des jeweils obersten Substrates (3) mittels der Substratumladevorrichtung (12) mit einem Liftsystem gekoppelt ist.
1 1. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substratbearbeitungsanlage (1 ) wenigstens zwei Trägervorrichtungsebenen aufweist, wobei in den Trägervorrichtungsebenen befindliche Trägervorrichtungen (7) unabhängig voneinander bewegbar sind.
12. Substratbearbeitungsanlage nach Anspruch 1 1 , dadurch gekennzeichnet, dass zwischen wenigstens zwei der Trägervorrichtungsebenen ein Trägervorrichtungslift (28) vorgesehen ist, mit welchem wenigstens eine Trägervorrichtung (7) in eine andere Trägervorrichtungsebene bringbar ist.
13. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substratbearbeitungsanlage (1 , 1 A bis 1 N) wenigstens zwei mit dem Trägertransportbereich (9) gekoppelte, übereinander angeordnete Prozesskammern (5) aufweist.
14. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Substratbelade- und -entlade-bereich (2) einen Kassettenspeicher (19) aufweist, in welchem wenigstens eine Substratkassette (3) vorsehbar und bei Bedarf mit der Substratumladevorrichtung (12) koppelbar ist.
15. Substratbearbeitungsanlage nach Anspruch 14, dadurch gekennzeichnet, dass der Kassettenspeicher (19) evakuierbar und/oder mit Inertgas befüllbar ist.
16. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Trägertransportbereich (9) wenigstens eine Temperierungsvorrichtung aufweist.
17. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substratbearbeitungsanlage (1 , 1 A bis 1 N) eine Substratwendevorrichtung aufweist.
18. Substratbearbeitungsanlage nach Anspruch 17, dadurch gekennzeichnet, dass die Substratwendeeinrichtung eine Substratkassettendrehvorrichtung (15) ist.
19. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen wenigstens zwei Trägertransportbereichen (9) der Substratbearbeitungsanlage (1 , 1 A bis 1 N) eine Substratumladestation (29) zum Umladen wenigstens eines Substrates (3) von einer Trägervorrichtung (7) auf eine andere Trägervorrichtung (7) vorgesehen ist.
20. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substratbearbeitungsanlage (1 , 1 A bis 1 N) eine Substratbrucherkennung (20) und/oder eine Substratbruchbeseitigungsvorrich- tung (21 ) aufweist.
21 . Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine der Prozesskammern (5) durch die Trägervorrichtung (7) gegenüber einem Prozessmodul (4, 6, 6'), in dem diese Prozesskammer (5) vorgesehen ist, körperlich abschließbar ist.
22. Substratbearbeitungsanlage nach Anspruch 21 , dadurch gekennzeichnet, dass die Trägervorrichtung (7) einen Boden der Prozesskammer (5) ausbildet.
23. Substratbearbeitungsanlage nach Anspruch 22, dadurch gekennzeichnet, dass die Prozesskammer (5) eine als Gasdusche ausgebildete HF-Elektrode aufweist, die gemeinsam mit der Trägervorrichtung (7) eine Parallel-Plattenanordnung bildet.
24. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substratbearbeitungsanlage (1 , 1 A bis 1 N) wenigstens ein Prozessmodul (4, 4', 6, 6') mit jeweils wenigstens einer Prozesskammer (5) aufweist, wobei zwischen dem wenigstens einen Prozessmodul (4, 4', 6, 6') und dem Trägertransportbereich (9) jeweils ein Transfermodul (18, 18', 18") vorgesehen ist, welches gegenüber dem Prozessmodul (4, 4', 6, 6') und gegenüber dem Trägertransportbereich (9) gasdicht verschließbar ist.
25. Substratbearbeitungsanlage nach Anspruch 24, dadurch gekennzeichnet, dass in dem Transfermodul (18, 18', 18") wenigstens zwei Ebenen für Trägervorrichtungen (7) vorgesehen sind.
26. Substratbearbeitungsanlage nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substratbearbeitungsanlage (1 , 1 A bis 1 N) wenigstens zwei Prozessmodule (4, 4', 6, 6') mit jeweils wenigstens einer Prozesskammer (5) aufweist, wobei jedem Prozessmodul (4, 4', 6, 6') eine eigene Trägervorrichtung (7) zugeordnet ist.
27. Substratbearbeitungsanlage nach Anspruch 26, dadurch gekennzeichnet, dass der Trägertransportbereich (9) einen Trennbereich für die Prozessmodule (4, 4', 6, 6') und einen Austauschbereich für Substrate (3) auf jeweils andere Trägervorrichtungen (7) bildet.
PCT/IB2013/050414 2012-02-06 2013-01-17 Substratbearbeitungsanlage WO2013118003A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014556152A JP6282983B2 (ja) 2012-02-06 2013-01-17 基板処理装置
EP13709538.6A EP2812915B1 (de) 2012-02-06 2013-01-17 Substratbearbeitungsanlage
EP21177601.8A EP3916764B1 (de) 2012-02-06 2013-01-17 Substratbearbeitungsanlage
PL13709538T PL2812915T3 (pl) 2012-02-06 2013-01-17 Urządzenie do obróbki substratu
US14/376,913 US10199250B2 (en) 2012-02-06 2013-01-17 Substrate processing device
ES13709538T ES2882593T3 (es) 2012-02-06 2013-01-17 Instalación de tratamiento de sustratos
KR1020147023259A KR102033694B1 (ko) 2012-02-06 2013-01-17 기판 처리 시스템
CN201380008076.2A CN104115264B (zh) 2012-02-06 2013-01-17 基片处理系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012100929A DE102012100929A1 (de) 2012-02-06 2012-02-06 Substratbearbeitungsanlage
DE102012100929.5 2012-02-06

Publications (1)

Publication Number Publication Date
WO2013118003A1 true WO2013118003A1 (de) 2013-08-15

Family

ID=47884424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/050414 WO2013118003A1 (de) 2012-02-06 2013-01-17 Substratbearbeitungsanlage

Country Status (12)

Country Link
US (1) US10199250B2 (de)
EP (2) EP3916764B1 (de)
JP (1) JP6282983B2 (de)
KR (1) KR102033694B1 (de)
CN (1) CN104115264B (de)
DE (1) DE102012100929A1 (de)
ES (1) ES2882593T3 (de)
HU (1) HUE055426T2 (de)
PL (1) PL2812915T3 (de)
PT (1) PT2812915T (de)
TW (1) TWI512878B (de)
WO (1) WO2013118003A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582498A (zh) * 2019-09-30 2021-03-30 中国电子科技集团公司第四十八研究所 一种连续式生产晶体硅太阳能电池的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531679B (zh) * 2015-09-10 2019-10-08 北京北方华创微电子装备有限公司 承载装置及反应腔室
TWI633644B (zh) * 2017-08-17 2018-08-21 矽品精密工業股份有限公司 打印設備
DE102018123523A1 (de) * 2018-09-25 2020-03-26 Meyer Burger (Germany) Gmbh Prozessmodul und Anlage mit wenigstens einem solchen Prozessmodul
CN113130345B (zh) * 2019-12-31 2023-12-08 中微半导体设备(上海)股份有限公司 基片处理系统及其维护方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154145A (ja) * 1990-10-18 1992-05-27 Fuji Electric Co Ltd 半導体ウェハ処理装置
US5788448A (en) * 1994-12-08 1998-08-04 Tokyo Electron Limited Processing apparatus
JP2003142393A (ja) * 2001-11-07 2003-05-16 Tokyo Seimitsu Co Ltd 電子ビーム露光装置
WO2003100848A1 (fr) * 2002-05-23 2003-12-04 Anelva Corporation Dispositif et procede de traitement de substrats
EP1749901A2 (de) * 2005-07-29 2007-02-07 Applied Materials, Inc. CVD-Kammer mit Zweifrequenz-Vorspannung sowie Verfahren zum Herstellen einer Photomaske
WO2011003484A1 (en) * 2009-07-08 2011-01-13 Applied Materials, Inc. Damaged substrate handling apparatus and method for substrate processing systems
WO2011055482A1 (ja) * 2009-11-06 2011-05-12 村田機械株式会社 非接触保持装置、移載装置、及び、非接触保持方法
US20110278205A1 (en) * 2010-05-11 2011-11-17 Tokyo Electron Limited Method and apparatus of conveying objects to be processed and computer-readable storage medium storing program
WO2011148924A1 (ja) 2010-05-24 2011-12-01 株式会社アルバック 成膜装置
US20110313565A1 (en) * 2010-06-17 2011-12-22 Semes Co., Ltd. Substrate Processing Apparatus And Method For Loading And Unloading Substrates

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731539Y2 (ja) * 1989-02-15 1995-07-19 富士通株式会社 基板処理装置
JP2644912B2 (ja) * 1990-08-29 1997-08-25 株式会社日立製作所 真空処理装置及びその運転方法
JP3965343B2 (ja) * 1994-08-19 2007-08-29 東京エレクトロン株式会社 処理装置
US6308818B1 (en) * 1999-08-02 2001-10-30 Asyst Technologies, Inc. Transport system with integrated transport carrier and directors
JP2001135704A (ja) * 1999-11-09 2001-05-18 Sharp Corp 基板処理装置及び基板搬送用トレイの搬送制御方法
US6630053B2 (en) 2000-08-22 2003-10-07 Asm Japan K.K. Semiconductor processing module and apparatus
JP4753224B2 (ja) * 2000-08-22 2011-08-24 日本エー・エス・エム株式会社 ガスラインシステム
JP2002141398A (ja) * 2000-11-02 2002-05-17 Kobe Steel Ltd 表面処理装置および表面処理方法
JP2002261146A (ja) 2001-03-02 2002-09-13 Hitachi Ltd 半導体集積回路装置の製造方法および半導体製造装置
JP2002332570A (ja) 2001-05-08 2002-11-22 Anelva Corp 基板処理装置
JP2004018215A (ja) * 2002-06-18 2004-01-22 Tokyo Electron Ltd フラット・パネル・ディスプレイ用熱処理装置及び熱処理方法
JP4245387B2 (ja) 2003-03-19 2009-03-25 東京エレクトロン株式会社 基板搬送装置及び基板処理装置
JP2004349503A (ja) * 2003-05-22 2004-12-09 Tokyo Electron Ltd 被処理体の処理システム及び処理方法
JP2005142200A (ja) * 2003-11-04 2005-06-02 Sharp Corp 気相成長装置および気相成長方法
US20070269297A1 (en) * 2003-11-10 2007-11-22 Meulen Peter V D Semiconductor wafer handling and transport
JP4376737B2 (ja) 2004-08-31 2009-12-02 学校法人東京理科大学 非接触チャック
JP5330721B2 (ja) 2007-10-23 2013-10-30 オルボテック エルティ ソラー,エルエルシー 処理装置および処理方法
JP4997141B2 (ja) * 2008-02-21 2012-08-08 株式会社アルバック 真空処理装置、基板の温度制御方法
TW201027784A (en) * 2008-10-07 2010-07-16 Applied Materials Inc Advanced platform for processing crystalline silicon solar cells
JP2010109089A (ja) * 2008-10-29 2010-05-13 Kyocera Corp 搬送装置および成膜基板の製造方法
US8246284B2 (en) * 2009-03-05 2012-08-21 Applied Materials, Inc. Stacked load-lock apparatus and method for high throughput solar cell manufacturing
TWI417984B (zh) * 2009-12-10 2013-12-01 Orbotech Lt Solar Llc 自動排序之多方向性直線型處理裝置
US20110245957A1 (en) * 2010-04-06 2011-10-06 Applied Materials, Inc. Advanced platform for processing crystalline silicon solar cells
DE102010016512A1 (de) * 2010-04-19 2011-10-20 Roth & Rau Ag Mehrtagen-Rollenofen
DE102010017497A1 (de) * 2010-06-21 2011-12-22 Roth & Rau Ag Vorrichtung und Verfahren zum Be-und Entladen von Substratträgerarrays
US20130108406A1 (en) * 2011-11-02 2013-05-02 Varian Semiconductor Equipment Associates, Inc. High-throughput workpiece handling

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154145A (ja) * 1990-10-18 1992-05-27 Fuji Electric Co Ltd 半導体ウェハ処理装置
US5788448A (en) * 1994-12-08 1998-08-04 Tokyo Electron Limited Processing apparatus
JP2003142393A (ja) * 2001-11-07 2003-05-16 Tokyo Seimitsu Co Ltd 電子ビーム露光装置
WO2003100848A1 (fr) * 2002-05-23 2003-12-04 Anelva Corporation Dispositif et procede de traitement de substrats
EP1749901A2 (de) * 2005-07-29 2007-02-07 Applied Materials, Inc. CVD-Kammer mit Zweifrequenz-Vorspannung sowie Verfahren zum Herstellen einer Photomaske
WO2011003484A1 (en) * 2009-07-08 2011-01-13 Applied Materials, Inc. Damaged substrate handling apparatus and method for substrate processing systems
WO2011055482A1 (ja) * 2009-11-06 2011-05-12 村田機械株式会社 非接触保持装置、移載装置、及び、非接触保持方法
US20110278205A1 (en) * 2010-05-11 2011-11-17 Tokyo Electron Limited Method and apparatus of conveying objects to be processed and computer-readable storage medium storing program
WO2011148924A1 (ja) 2010-05-24 2011-12-01 株式会社アルバック 成膜装置
US20110313565A1 (en) * 2010-06-17 2011-12-22 Semes Co., Ltd. Substrate Processing Apparatus And Method For Loading And Unloading Substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582498A (zh) * 2019-09-30 2021-03-30 中国电子科技集团公司第四十八研究所 一种连续式生产晶体硅太阳能电池的方法

Also Published As

Publication number Publication date
JP6282983B2 (ja) 2018-02-21
TW201349374A (zh) 2013-12-01
PL2812915T3 (pl) 2021-11-22
TWI512878B (zh) 2015-12-11
EP2812915A1 (de) 2014-12-17
EP2812915B1 (de) 2021-07-07
DE102012100929A1 (de) 2013-08-08
EP3916764A1 (de) 2021-12-01
PT2812915T (pt) 2021-08-19
EP3916764B1 (de) 2022-09-14
HUE055426T2 (hu) 2021-11-29
ES2882593T3 (es) 2021-12-02
US20140369791A1 (en) 2014-12-18
KR20140129038A (ko) 2014-11-06
CN104115264B (zh) 2017-03-22
US10199250B2 (en) 2019-02-05
JP2015512152A (ja) 2015-04-23
CN104115264A (zh) 2014-10-22
KR102033694B1 (ko) 2019-10-17

Similar Documents

Publication Publication Date Title
DE69830905T2 (de) Vorrichtung zur behandlung von einzelnen halbleiterscheiben mit mehreren schleusenkammern und verfahren zum beladen und entladen
DE69133567T2 (de) Vakuumbehandlungsvorrichtung und Arbeitsverfahren dafür
DE69934668T2 (de) Schleusenkammer für zwei wafer für eine waferverarbeitungsvorrichtung und be- und entladeverfahren dafür
DE60024424T2 (de) Halbleiter-Wafer Entwicklungsgerät mit vertikal gestapelte Entwicklungsräume und einachsiges Dual-Wafer Transfer System
DE60214763T2 (de) Waferhandhabungsvorrichtung und verfahren dafür
KR101531428B1 (ko) 기판 처리 장치
DE102007041033A1 (de) Substratverarbeitende Vorrichtung mit einer Puffermechanik und einer Substrattransfervorrichtung
EP3916764B1 (de) Substratbearbeitungsanlage
DE10255688A1 (de) Verfahren und Vorrichtung zum Durchführen von sequentiellen Verfahren, die verschiedene Zeitdauern erfordern, bei der Herstellung von Halbleitervorrichtung
DE112014001586B4 (de) Vorrichtung zur Bearbeitung von zwei oder mehreren Substraten in einem Batch-Prozess
DE04703559T1 (de) Scheibenbeschichtungssystem
US9698036B2 (en) Stacked wafer cassette loading system
DE10296988T5 (de) Bearbeitungsvorrichtung und -verfahren
JPH04190840A (ja) 真空処理装置
WO2019002014A1 (de) Vorrichtung zum transport eines substrats, behandlungsvorrichtung mit einer an einen substratträger einer solchen vorrichtung angepassten aufnahmeplatte und verfahren zum prozessieren eines substrates unter nutzung einer solchen vorrichtung zum transport eines substrats sowie behandlungsanlage
KR101760667B1 (ko) 고생산성 박막증착이 가능한 원자층 증착 시스템
JP2013102235A (ja) 基板処理装置
DE102010016792A1 (de) Bevorratungsmagazin einer CVD-Anlage
EP1299899B1 (de) Speichervorrichtung, insbesondere zur zwischenlagerung von test-wafern
WO2020065425A1 (de) Prozessmodul und anlage mit wenigstens einem solchen prozessmodul
KR101626467B1 (ko) 기판처리장치
EP1194948B1 (de) Handhabungssystem
US20230207358A1 (en) Foup or cassette storage for hybrid substrate bonding system
DE112020001873T5 (de) Dampfabscheidungsvorrichtung und darin verwendeter träger
CN116848629A (zh) 用于支持多个半导体处理模块或腔室的模块化主机布局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13709538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14376913

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147023259

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013709538

Country of ref document: EP