WO2013114569A1 - 制振制御装置 - Google Patents

制振制御装置 Download PDF

Info

Publication number
WO2013114569A1
WO2013114569A1 PCT/JP2012/052147 JP2012052147W WO2013114569A1 WO 2013114569 A1 WO2013114569 A1 WO 2013114569A1 JP 2012052147 W JP2012052147 W JP 2012052147W WO 2013114569 A1 WO2013114569 A1 WO 2013114569A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
calculated
engine
inertia
suppression control
Prior art date
Application number
PCT/JP2012/052147
Other languages
English (en)
French (fr)
Inventor
晃司 三輪
河合 高志
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013556124A priority Critical patent/JP5790794B2/ja
Priority to PCT/JP2012/052147 priority patent/WO2013114569A1/ja
Priority to CN201280067846.6A priority patent/CN104080675B/zh
Priority to US14/373,966 priority patent/US9440636B2/en
Priority to DE112012005793.7T priority patent/DE112012005793B4/de
Publication of WO2013114569A1 publication Critical patent/WO2013114569A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0695Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a technical field of a vibration damping control device mounted on a vehicle such as a hybrid car.
  • torque fluctuation related to the compression torque of the engine is calculated from the engine crank angle and the engine rotation speed
  • the rotation of the motor / generator is calculated from the calculated torque fluctuation and the moment of inertia of the motor / generator.
  • an apparatus has been proposed in which an output torque per cycle is an engine shaft torque and a value obtained by subtracting an engine inertia torque from the engine shaft torque is an engine output torque (see Patent Document 3).
  • a device that executes vibration suppression control on a torque obtained by adding a generated torque generated according to an engine operating state and a reciprocating inertia torque generated according to an engine rotation speed (see Patent Document 4). ).
  • the present invention has been made in view of, for example, the above-described problems, and an object of the present invention is to provide a vibration suppression control device that can suitably perform vibration suppression control even in a transition period of engine speed.
  • a vibration suppression control device of the present invention is mounted on a hybrid vehicle including an engine and a motor / generator coupled to the engine, and calculates the pulsation torque related to the engine.
  • the damping torque calculating means for calculating the vibration torque and the torque output from the motor / generator And a control means for controlling the motor-generator so that the sum of the click and the calculated damping torque, a.
  • the vibration suppression control device is mounted on a hybrid vehicle including an engine and a motor / generator coupled to the engine.
  • the motor / generator may be connected to the engine via a member such as a damper.
  • the motor / generator is typically a motor / generator for engine control, but may be a motor / generator for driving a hybrid vehicle.
  • pulsation torque calculation means including a memory, a processor, etc. calculates pulsation torque related to the engine.
  • the “pulsation torque” according to the present invention means the sum of the compression torque and the reciprocating inertia torque of the piston system of the engine. Note that various known modes can be applied to the method for calculating the pulsation torque, and the details thereof are omitted.
  • a first inertia torque calculation means including a memory, a processor, and the like calculates a first inertia torque that is an inertia torque related to the engine.
  • the “first inertia torque” according to the present invention means a torque generated with a change in the engine speed. For this reason, the first inertia torque does not occur in a steady state where the engine speed does not change. Note that various known modes can be applied to the first inertia torque calculation method, and the details thereof are omitted.
  • the consumption torque calculation means including a memory, a processor, etc. outputs a value obtained by subtracting the calculated first inertia torque from the calculated pulsation torque as the consumption torque.
  • the damping torque calculation means including a memory, a processor, etc. outputs a value obtained by subtracting the calculated consumption torque from the base torque related to the motor / generator as the shaft torque related to the output shaft of the engine.
  • the damping torque calculation means further calculates a damping torque that is a torque that suppresses the fluctuation of the calculated shaft torque.
  • Base torque means the torque required for the motor / generator in accordance with the state of the hybrid vehicle such as the engine speed, for example. Since various known modes can be applied to the base torque calculation method, details thereof are omitted.
  • control means including a memory, a processor, etc. controls the motor / generator so that the torque output from the motor / generator is the sum of the base torque and the calculated damping torque.
  • the pulsation torque and the first inertia torque are respectively calculated, and the damping torque is obtained based on the calculated pulsation torque and the first inertia torque. For this reason, it is possible to suitably perform the vibration suppression control even in a transition period of the engine speed.
  • the vibration suppression control device further includes second inertia torque calculation means for calculating a second inertia torque that is an inertia torque related to the motor / generator, wherein the consumption torque calculation means is the calculated A value obtained by subtracting (i) the calculated first inertia torque and (ii) the calculated second inertia torque from the pulsation torque is defined as consumption torque.
  • vibration damping control can be suitably performed. This is very advantageous in practice.
  • the “second inertia torque” means a torque generated with a change in the rotational speed of the motor / generator. It should be noted that various known modes can be applied to the method of calculating the second inertia torque, and the details thereof are omitted.
  • the calculated first inertia torque and the calculated second inertia torque are controlled so that the resonance phenomenon caused by the engine speed and the motor / generator speed is suppressed.
  • vibration suppression control can be suitably performed while suppressing the occurrence of a resonance phenomenon, which is very advantageous in practice.
  • the resonance suppression control means further comprises filter means for performing filter processing for removing a specific frequency component from the shaft torque, and the vibration suppression control device includes both the resonance suppression control means and the filter means.
  • the filter means may be prioritized in the case where is applicable.
  • Such a configuration can widen the range of control and is very advantageous in practice.
  • the vibration suppression control device further includes filter means for performing a filter process for removing a specific frequency component from the shaft torque.
  • vibration can be more effectively suppressed, which is very advantageous in practice.
  • the calculated first inertia torque and the calculated second inertia torque are controlled so that the resonance phenomenon caused by the engine speed and the motor / generator speed is suppressed.
  • Resonance suppression control means for performing a predetermined resonance suppression process on at least one of them, and when the vibration suppression control apparatus applies both the filter means and the resonance suppression control means, the filter means You may give priority.
  • Such a configuration can widen the range of control and is very advantageous in practice.
  • FIG. 1 is a schematic configuration diagram illustrating a schematic configuration of a hybrid vehicle according to a first embodiment. It is a figure which shows the vibration suppression control process which concerns on 1st Embodiment. It is an example of time fluctuation of each of pulsation torque, inertia torque, cranking torque, and engine speed. It is a figure which shows the vibration suppression control process which concerns on 2nd Embodiment. It is a figure which shows the vibration suppression control process which concerns on 3rd Embodiment. It is a figure which shows the vibration suppression control process which concerns on 4th Embodiment. It is a figure which shows the vibration suppression control process which concerns on 5th Embodiment. It is a figure which shows the vibration suppression control process which concerns on 6th Embodiment.
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of a hybrid vehicle according to the present embodiment.
  • the hybrid vehicle 1 includes an engine 11, a damper 12, a power split mechanism 14, a motor / generator MG1, a motor / generator MG2, and an ECU (Electronic Control Unit: electronic control unit) 20.
  • an engine 11 a damper 12
  • a power split mechanism 14 a motor / generator MG1, a motor / generator MG2, and an ECU (Electronic Control Unit: electronic control unit) 20.
  • ECU Electronic Control Unit: electronic control unit
  • crankshaft of the engine 11 is connected to one end of the damper 12, and the input shaft 13 is connected to the other end of the damper 12.
  • the power split mechanism 14 includes a sun gear, a pinion gear, a carrier that supports the pinion gear so that it can rotate and revolve, and a ring gear.
  • the sun gear is configured to rotate integrally with the rotor of the motor / generator MG1.
  • the carrier is configured to rotate integrally with the input shaft 13.
  • the power output gear of the power split mechanism 14 transmits power to the power transmission gear 15 via a chain belt (not shown).
  • the power transmitted to the power transmission gear 15 is transmitted to the tire (drive wheel) 17 via the drive shaft 16.
  • the ECU 20 includes, for example, a crank angle sensor (not shown), a resolver (not shown) that detects the rotational speed of the motor / generator MG1, and a resolver (not shown) that detects the rotational speed of the motor / generator MG2. Based on the output signal, the engine 11, the motor / generator MG1, the motor / generator MG2, and the like are controlled.
  • the vibration suppression control device 100 includes an ECU 20. That is, in this embodiment, a part of the functions of the ECU 20 for various electronic controls of the hybrid vehicle 1 is used as a part of the vibration suppression control device 100.
  • cranking torque that is, base torque
  • the cranking torque (that is, base torque) required for the motor / generator MG1 is expressed by the following equation (1).
  • T g is the required cranking torque
  • is the gear ratio
  • T e is the pulsating torque related to the engine 11
  • I g is the inertia related to the motor / generator MG1.
  • D ⁇ g / dt is the rotational angular velocity of the motor / generator MG 1
  • I e is the inertia of the engine 11
  • d ⁇ e / dt is the rotational angular velocity of the engine 11.
  • FIG. 2 is a diagram illustrating a vibration suppression control process according to the present embodiment.
  • the ECU 20 as a part of the vibration damping control device 100 obtains the product of the inertia Ie related to the engine 11 and the rotational acceleration d ⁇ e / dt based on the output signal from the crank angle sensor, and thereby the inertia torque related to the engine 11.
  • the first inertia torque is calculated.
  • inertia torque means torque generated with fluctuations in the rotational speed.
  • the inertia Ie of the engine 11 is a predetermined fixed value.
  • various known aspects can be applied, and thus the details are omitted.
  • ECU 20 calculates the torque ripple T e in accordance with the crank angle or the like based on the output signal from the crank angle sensor.
  • the “pulsation torque T e ” means the sum of the compression torque and the reciprocating inertia torque of the piston system of the engine 11.
  • the pulsating torque T e in addition to the crank angle, such as temperature, also the operating condition of the pressure or the like may be calculated in consideration.
  • the method for calculating the pulsation torque T e are the possible application of the various known aspects, it is omitted for details.
  • ECU 20 from the calculated pulsating torque T e, calculated first value of the inertia torque obtained by subtracting (i.e., "T e -I e ⁇ d ⁇ e / dt") is calculated as a consumer torque. Subsequently, the ECU 20 subtracts the calculated consumption torque from the base torque (that is, the required cranking torque T g ) related to the motor / generator MG1 (that is, “T g ⁇ (T e ⁇ I e ⁇ d ⁇ ). e / dt) ") is calculated as the surplus shaft torque Te, p .
  • the ECU 20 is a damping torque that is a torque that suppresses (time) fluctuations in the calculated surplus shaft torque T e, p (that is, the surplus shaft torque T e, p approaches zero). Is calculated. Subsequently, ECU 20 is a sum of the damping torque calculated based torque T g, as a new requested torque according to the motor-generators MG1, for controlling the motor-generator MG1.
  • FIG. 3 is an example of time fluctuations of pulsation torque, inertia torque, cranking torque, and engine speed.
  • vibration suppression control may not be appropriately performed in a transition period of the engine speed.
  • the damping control is performed based on the first inertia torque and torque ripple T e issued the calculated. For this reason, it is possible to appropriately perform the vibration suppression control even in the transition period of the engine speed where the relationship between the pulsation torque Te and the first inertia torque is not constant.
  • the “ECU 20” includes the “pulsation torque calculation means”, “first inertia torque calculation means”, “consumption torque calculation means”, “damping torque calculation means”, and “control means” according to the present invention. It is an example.
  • the “motor / generator MG1” according to the present embodiment is an example of the “motor / generator” according to the present invention.
  • damping control is required cranking torque
  • the T g according to the motor-generator MG1 is modified (or corrected), for example, by motor-generator MG1, the surplus shaft torque T e, p Torque having the same phase as that of the fluctuation of the torque may be generated, and the motor / generator MG2 may generate torque having a phase opposite to that of the fluctuation of the excess shaft torque Te, p . If comprised in this way, the vibration resulting from the surplus shaft torque Te, p can be suppressed, avoiding the resonance of the power transmission system of the hybrid vehicle 1. Furthermore, considering the inertia torque of the motor / generator MG2, for example, vibration during acceleration and deceleration while the hybrid vehicle 1 is traveling can be appropriately suppressed.
  • FIG. 4 is a diagram illustrating a vibration suppression control process according to the present embodiment having the same purpose as in FIG. 2.
  • the ECU 20 determines a damping gain for a predetermined resonance frequency according to the current rotational speed of the engine 11 based on the output signal from the crank angle sensor. Next, the ECU 20 obtains a product of the calculated first inertia torque and the determined damping gain (hereinafter, referred to as “first inertia torque subjected to resonance suppression as appropriate”). Subsequently, ECU 20 includes a first inertia torque resonance suppression is applied, is subtracted from the calculated pulsating torque T e, and calculates the consumption torque.
  • the damper 12 that is, the spring element
  • the rotational speed of the engine 11 and the motor / generator MG1
  • the inventors of the present application have found that resonance occurs in the power transmission system of the hybrid vehicle 1 due to the twist of the damper 12.
  • the “ECU 20” according to the present embodiment is an example of the “resonance suppression control unit” according to the present invention.
  • FIG. 5 is a diagram showing a vibration suppression control process according to the present embodiment having the same purpose as in FIG. 2.
  • the ECU 20 determines which one of resonance suppression control and torque filtering control described later is to be performed, for example, according to the traveling state of the hybrid vehicle 1.
  • the ECU 20 preferentially performs the torque filtering control. Note that the ECU 20 may perform both resonance suppression control and torque filtering control.
  • the ECU 20 determines a filter for removing the specific frequency component according to the current rotational speed of the engine 11 based on the output signal from the crank angle sensor.
  • ECU 20 calculates the consumption torque by subtracting the first inertia torque according pulsation torque T e of the engine 11 to the engine 11.
  • the ECU 20 further calculates the surplus shaft torque Te, p by subtracting the calculated consumption torque from the base torque Tg related to the motor / generator MG1.
  • the ECU 20 performs a filter process using the determined filter on the fluctuation of the surplus shaft torque Te , p , and calculates the damping torque.
  • ECU 20 If it is determined that carrying out the resonance suppression control, ECU 20 is the product of the first inertia torque and the determined damping gain calculated is subtracted from the calculated pulsating torque T e, calculates the consumption torque . Subsequently, the ECU 20 obtains the surplus shaft torque Te, p by subtracting the calculated consumption torque from the base torque Tg related to the motor / generator MG1. Subsequently, the ECU 20 calculates the damping torque so that the fluctuation of the calculated surplus shaft torque Te, p is suppressed.
  • the “ECU 20” according to the present embodiment is an example of the “filter unit” and the “determination unit” according to the present invention.
  • FIG. 6 is a diagram showing a vibration suppression control process according to the present embodiment having the same purpose as in FIG.
  • ECU 20 is first is an inertial torque of the motor generator MG1 by obtaining the inertia I g of the motor generator MG1, the product of the rotational acceleration d [omega g / dt based on the output signals from the resolver 2 Inertia torque is calculated.
  • the inertia I g of the motor generator MG1 is a fixed value set in advance.
  • the ECU 20 subtracts the calculated consumption torque from the base torque T g related to the motor / generator MG1 (ie, “T g ⁇ (T e ⁇ I e ⁇ d ⁇ e / dt ⁇ I g ⁇ d ⁇ ). g / dt) ”) is calculated as the excess shaft torque Te, p .
  • the “ECU 20” according to the present embodiment is an example of the “second inertia torque calculating unit” according to the present invention.
  • FIG. 7 is a diagram showing a vibration suppression control process according to the present embodiment having the same purpose as in FIG.
  • the ECU 20 determines a damping gain for a predetermined resonance frequency according to the current rotation speed of the motor / generator MG1 based on the output signal from the resolver. Next, the ECU 20 calculates a product of the calculated second inertia torque and the determined damping gain (hereinafter referred to as “second inertia torque subjected to resonance suppression” as appropriate). Subsequently, ECU 20 from the pulsating torque T e of the engine 11 is calculated, calculates the consumption torque by subtracting the second inertia torque first inertia torque and resonance suppressing the resonance suppression has been performed has been performed has been performed.
  • ECU20 from pulsating torque T e of the engine 11 is calculated, calculates the consumption torque by subtracting the first inertia torque and the second inertia torque calculated resonance suppression is applied.
  • ECU20 from pulsating torque T e of the engine 11 is calculated, the first inertia torque and resonance suppression that is calculated to calculate the consumption torque by subtracting the second inertia torque is subjected.
  • FIG. 8 is a diagram showing a vibration suppression control process according to the present embodiment having the same purpose as in FIG.
  • the ECU 20 determines which one of resonance suppression control and torque filtering control is to be performed, for example, according to the traveling state of the hybrid vehicle 1 and the like.
  • the ECU 20 preferentially performs the torque filtering control. Note that the ECU 20 may perform both resonance suppression control and torque filtering control.
  • the ECU 20 determines a filter for removing the specific frequency component according to the current rotational speed of the motor / generator MG1 based on the output signal from the resolver.
  • ECU 20 In parallel with the determination of the filter, ECU 20 from the pulsating torque T e of the engine 11, obtains the consumption torque by subtracting the second inertia torque according to the first inertia torque and the motor generator MG1 according to the engine 11. The ECU 20 further calculates the surplus shaft torque Te, p by subtracting the calculated consumption torque from the base torque Tg related to the motor / generator MG1. Next, the ECU 20 performs a filter process using the determined filter on the fluctuation of the surplus shaft torque Te , p , and calculates the damping torque.
  • the ECU 20 calculates the consumption torque as follows.
  • ECU20 from pulsating torque T e of the engine 11 calculates the consumption torque by subtracting the second inertia torque first inertia torque and resonance suppressing the resonance suppression has been performed has been performed.
  • ECU20 from pulsating torque T e of the engine 11 is calculated, calculates the consumption torque by subtracting the first inertia torque and the second inertia torque calculated resonance suppression is applied.
  • ECU20 from pulsating torque T e of the engine 11 is calculated, the first inertia torque and resonance suppression that is calculated to calculate the consumption torque by subtracting the second inertia torque is subjected.
  • the ECU 20 After the consumption torque is calculated, the ECU 20 obtains the surplus shaft torque T e, p by subtracting the calculated consumption torque from the base torque T g related to the motor / generator MG1. Subsequently, the ECU 20 calculates the damping torque so that the fluctuation of the calculated surplus shaft torque Te, p is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

 制振制御装置(100)は、エンジン(11)と、該エンジンに連結されたモータ・ジェネレータ(MG1)と、を備えるハイブリッド車両(1)に搭載される。該制振制御装置は、エンジンに係る脈動トルクを算出する脈動トルク算出手段(20)と、エンジンに係る慣性トルクである第1慣性トルクを算出する第1慣性トルク算出手段(20)と、算出された脈動トルクから算出された第1慣性トルクを減算した値を消費トルクとする消費トルク算出手段(20)と、モータ・ジェネレータに係るベーストルクから算出された消費トルクを減算した値をエンジンの出力軸に係る軸トルクとし、軸トルクの変動を抑制するトルクである制振トルクを算出する制振トルク算出手段(20)と、モータ・ジェネレータから出力されるトルクが、ベーストルクと算出された制振トルクとの和となるようにモータ・ジェネレータを制御する制御手段(20)と、を備える。

Description

制振制御装置
 本発明は、例えばハイブリッド自動車等の車両に搭載される制振制御装置の技術分野に関する。
 この種の装置として、例えば、エンジンクランク角とエンジン回転速度から、エンジンのコンプレッショントルクに係るトルク変動を算出し、該算出されたトルク変動とモータ・ジェネレータの慣性モーメントから、該モータ・ジェネレータの回転速度変動を算出し、該算出された回転速度変動と目標回転数との和と等しい回転数を維持するようにモータ・ジェネレータを制御する装置が提案されている(特許文献1参照)。
 或いは、エンジンの慣性トルク変動と、モータ・ジェネレータの慣性トルク変動とを算出し、該算出されたエンジンの慣性トルク変動と、算出されたモータ・ジェネレータの慣性トルク変動とを足し合わせたトルクに対して制振制御を実行する装置が提案されている(特許文献2参照)。
 或いは、1サイクル当たりの出力トルクをエンジン軸トルクとし、該エンジン軸トルクからエンジンの慣性トルクを減算した値をエンジン出力トルクとする装置が提案されている(特許文献3参照)。或いは、エンジン運転状態に応じて発生する発生トルクと、エンジン回転速度に応じて発生する往復慣性トルクとを加算したトルクに対して制振制御を実行する装置が提案されている(特許文献4参照)。
特開2010-274875号公報 特開2004-312857号公報 特開2006-232167号公報 特開平11-350998号公報
 しかしながら、上述の背景技術によれば、例えばエンジンの始動時や停止時等のエンジンの回転数の過渡期における制振制御に改良の余地があるという技術的問題点がある。
 本発明は、例えば上記問題点に鑑みてなされたものであり、エンジンの回転数の過渡期においても好適に制振制御を実施することができる制振制御装置を提供することを課題とする。
 本発明の制振制御装置は、上記課題を解決するために、エンジンと、前記エンジンに連結されたモータ・ジェネレータと、を備えるハイブリッド車両に搭載され、前記エンジンに係る脈動トルクを算出する脈動トルク算出手段と、前記エンジンに係る慣性トルクである第1慣性トルクを算出する第1慣性トルク算出手段と、前記算出された脈動トルクから前記算出された第1慣性トルクを減算した値を消費トルクとする消費トルク算出手段と、前記モータ・ジェネレータに係るベーストルクから前記算出された消費トルクを減算した値を前記エンジンの出力軸に係る軸トルクとし、前記軸トルクの変動を抑制するトルクである制振トルクを算出する制振トルク算出手段と、前記モータ・ジェネレータから出力されるトルクが、前記ベーストルクと前記算出された制振トルクとの和となるように前記モータ・ジェネレータを制御する制御手段と、を備える。
 本発明の制振制御装置によれば、当該制振制御装置は、エンジンと、該エンジンに連結されたモータ・ジェネレータとを備えるハイブリッド車両に搭載されている。尚、モータ・ジェネレータは、例えばダンパ等の部材を介してエンジンに連結されていてよい。また、モータ・ジェネレータは、典型的には、エンジン制御用のモータ・ジェネレータであるが、ハイブリッド車両の駆動用のモータ・ジェネレータであってもよい。
 例えばメモリ、プロセッサ等を備えてなる脈動トルク算出手段は、エンジンに係る脈動トルクを算出する。本発明に係る「脈動トルク」とは、コンプレッショントルクと、エンジンのピストン系の往復慣性トルクとの和を意味する。尚、脈動トルクの算出方法には、公知の各種態様を適用可能であるので、その詳細については割愛する。
 例えばメモリ、プロセッサ等を備えてなる第1慣性トルク算出手段は、エンジンに係る慣性トルクである第1慣性トルクを算出する。本発明に係る「第1慣性トルク」とは、エンジンの回転数の変化に伴い生じるトルクを意味する。このため、エンジンの回転数に変化がない定常状態では、第1慣性トルクは生じない。尚、第1慣性トルクの算出方法には、公知の各種態様を適用可能であるので、その詳細については割愛する。
 例えばメモリ、プロセッサ等を備えてなる消費トルク算出手段は、算出された脈動トルクから、算出された第1慣性トルクを減算した値を消費トルクとして出力する。
 例えばメモリ、プロセッサ等を備えてなる制振トルク算出手段は、モータ・ジェネレータに係るベーストルクから、算出された消費トルクを減算した値をエンジンの出力軸に係る軸トルクとして出力する。制振トルク算出手段は、更に、算出された軸トルクの変動を抑制するトルクである制振トルクを算出する。
 「ベーストルク」とは、例えばエンジンの回転数等のハイブリッド車両の状態に応じて、モータ・ジェネレータに対して要求されるトルクを意味する。尚、ベーストルクの算出方法には、公知の各種態様を適用可能であるので、その詳細については割愛する。
 例えばメモリ、プロセッサ等を備える制御手段は、モータ・ジェネレータから出力されるトルクが、ベーストルクと算出された制振トルクとの和となるようにモータ・ジェネレータを制御する。
 ここで、本願発明者の研究によれば、以下の事項が判明している。即ち、エンジンの回転数の変化のない(又は、ほとんどない)定常状態では、エンジンに係る脈動トルクと、該エンジンに係る慣性トルクとの間の関係は一意に決定される。このため、制振制御の際に、脈動トルク及び慣性トルクの一方しか考慮されていないことが多い。しかしながら、エンジンの始動時や停止時等の回転数の変動を伴う状態においては、脈動トルクと慣性トルクとの間の関係が変動するため(即ち、一意ではないため)、脈動トルク及び慣性トルクの一方しか考慮されていないと、制振制御を精度良く実施することが困難になる。
 しかるに本発明では、上述の如く、脈動トルク及び第1慣性トルクが夫々算出され、該算出された脈動トルク及び第1慣性トルクに基づいて制振トルクが求められている。このため、エンジンの回転数の過渡期においても好適に制振制御を実施することができる。
 本発明の制振制御装置の一態様では、前記モータ・ジェネレータに係る慣性トルクである第2慣性トルクを算出する第2慣性トルク算出手段を更に備え、前記消費トルク算出手段は、前記算出された脈動トルクから、(i)前記算出された第1慣性トルク及び(ii)前記算出された第2慣性トルクを減算した値を消費トルクとする。
 この態様によれば、エンジンとモータ・ジェネレータとの間に、例えばダンパ等のバネ要素が配設されている動力伝達系を備えるハイブリッド車両においても、好適に制振制御を実施することができ、実用上非常に有利である。
 本発明に係る「第2慣性トルク」とは、モータ・ジェネレータの回転数の変化に伴い生じるトルクを意味する。尚、第2慣性トルクの算出方法には、公知の各種態様を適用可能であるので、その詳細については割愛する。
 この態様では、前記エンジンの回転数及び前記モータ・ジェネレータの回転数各々に起因して生じる共振現象が抑制されるように、前記算出された第1慣性トルク及び前記算出された第2慣性トルクの少なくとも一方に対して所定の共振抑制処理を実施する共振抑制制御手段を更に備えてよい。
 このように構成すれば、共振現象の発生を抑制しつつ、好適に制振制御を実施することができ、実用上非常に有利である。
 共振抑制制御手段を備える態様では、前記軸トルクから特定周波数成分を除去するためのフィルタ処理を実施するフィルタ手段を更に備え、当該制振制御装置は、前記共振抑制制御手段及び前記フィルタ手段の両方を適用可能な場合には、前記フィルタ手段を優先してよい。
 このように構成すれば、制御の幅を広げることができ、実用上非常に有利である。
 尚、共振抑制制御手段及びフィルタ手段の両方を適用してもよい。
 本発明の制振制御装置の他の態様では、前記軸トルクから特定周波数成分を除去するためのフィルタ処理を実施するフィルタ手段を更に備える。
 この態様によれば、より効果的に振動を抑制することができ、実用上非常に有利である。
 この態様では、前記エンジンの回転数及び前記モータ・ジェネレータの回転数各々に起因して生じる共振現象が抑制されるように、前記算出された第1慣性トルク及び前記算出された第2慣性トルクの少なくとも一方に対して所定の共振抑制処理を実施する共振抑制制御手段を更に備え、当該制振制御装置は、前記フィルタ手段及び前記共振抑制制御手段の両方を適用する場合には、前記フィルタ手段を優先してよい。
 このように構成すれば、制御の幅を広げることができ、実用上非常に有利である。
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。
第1実施形態に係るハイブリッド車両の概略構成を示す概略構成図である。 第1実施形態に係る制振制御処理を示す図である。 脈動トルク、慣性トルク、クランキングトルク、エンジン回転数各々の時間変動の一例である。 第2実施形態に係る制振制御処理を示す図である。 第3実施形態に係る制振制御処理を示す図である。 第4実施形態に係る制振制御処理を示す図である。 第5実施形態に係る制振制御処理を示す図である。 第6実施形態に係る制振制御処理を示す図である。
 以下、本発明の制振制御装置に係る実施形態を、図面に基づいて説明する。
 <第1実施形態>
 本発明の制振制御装置に係る第1実施形態について、図1乃至図3を参照して説明する。
 (車両の構成)
 先ず、本実施形態に係るハイブリッド車両の構成について、図1を参照して説明する。図1は、本実施形態に係るハイブリッド車両の概略構成を示す概略構成図である。
 図1において、ハイブリッド車両1は、エンジン11、ダンパ12、動力分割機構14、モータ・ジェネレータMG1、モータ・ジェネレータMG2、及びECU(Electronic Control Unit:電子制御ユニット)20を備えて構成されている。
 ダンパ12の一端にはエンジン11のクランクシャフトが連結されており、該ダンパ12の他端にはインプットシャフト13が連結されている。
 動力分割機構14は、サンギヤと、ピニオンギヤと、該ピニオンギヤを自転及び公転可能に支持するキャリアと、リングギヤとを備えて構成されている。サンギヤは、モータ・ジェネレータMG1の回転子と一体的に回転するように構成されている。キャリアは、インプットシャフト13と一体的に回転するように構成されている。
 動力分割機構14の動力出力ギヤは、チェーンベルト(図示せず)を介して、動力伝達ギヤ15に動力を伝達する。該動力伝達ギヤ15に伝達された動力は、ドライブシャフト16を介してタイヤ(駆動輪)17に伝達される。
 ECU20は、例えばクランク角センサ(図示せず)、モータ・ジェネレータMG1の回転数を検出するレゾルバ(図示せず)、及びモータ・ジェネレータMG2の回転数を検出するレゾルバ(図示せず)等からの出力信号に基づいて、エンジン11、モータ・ジェネレータMG1及びモータ・ジェネレータMG2等を制御する。
 制振制御装置100は、ECU20を備えて構成されている。つまり、本実施形態では、ハイブリッド車両1の各種電子制御用のECU20の機能の一部を、制振制御装置100の一部として用いている。
 (制振制御処理)
 次に、ハイブリッド車両1の動力伝達系における力のつり合いについて説明する。ここでは、エンジン11の始動時における力のつり合いについて説明する。
 モータ・ジェネレータMG1に要求されるクランキングトルク(即ち、ベーストルク)は、下記式(1)により表わされる。
Figure JPOXMLDOC01-appb-M000001
                           (1)
ここで、“T”は要求クランキングトルクであり、“ρ”はギヤ比であり、“T”はエンジン11に係る脈動トルクであり、“I”はモータ・ジェネレータMG1に係る慣性であり、“dω/dt”はモータ・ジェネレータMG1の回転角速度であり、“I”はエンジン11に係る慣性であり、“dω/dt”はエンジン11の回転角速度である。
 尚、エンジン11とモータ・ジェネレータMG1とが理想的に動作する場合、モータ・ジェネレータMG1の回転角速度は、下記式(2)により表わされる。
Figure JPOXMLDOC01-appb-M000002
                           (2)
 この式(2)を上記式(1)に代入すると、要求クランキングトルクTは、下記式(3)により表わされる。
Figure JPOXMLDOC01-appb-M000003
                           (3)
 上記式(1)を、整理すると、理想のトルクバランスは、下記式(4)により表わされる。
Figure JPOXMLDOC01-appb-M000004
                           (4)
 しかしながら、実際には、式(4)の左辺と右辺とがつり合わないため、余剰な軸トルクが発生する。該余剰な軸トルクは、下記式(5)により表わされる。
Figure JPOXMLDOC01-appb-M000005
                           (5)
ここで、“Te,p”は余剰軸トルクである。
 制振制御装置100は、上記式(5)における余剰軸トルクTe,pがゼロになるように、要求クランキングトルクTを補正することによって制振制御を行う。次に、制振制御装置100が実施する制振制御処理について、図2を参照して具体的に説明する。図2は、本実施形態に係る制振制御処理を示す図である。
 制振制御装置100の一部としてのECU20は、エンジン11に係る慣性Iと、クランク角センサからの出力信号に基づく回転加速度dω/dtとの積を求めることによってエンジン11に係る慣性トルクである第1慣性トルクを算出する。ここで、「慣性トルク」は、回転数の変動に伴って生じるトルクを意味する。尚、エンジン11に係る慣性Iは、予め定められた固定値である。また、慣性トルクのより具体的な算出方法については、公知の各種態様を適用可能であるので、詳細については割愛する。
 慣性トルクの算出と並行して、ECU20は、クランク角センサからの出力信号に基づくクランク角等に応じて脈動トルクTを算出する。ここで、「脈動トルクT」は、コンプレッショントルクと、エンジン11のピストン系の往復慣性トルクとの和を意味する。尚、脈動トルクTは、クランク角に加えて、例えば温度、気圧等の運転状態も考慮して算出されてよい。脈動トルクTの算出方法には、公知の各種態様を適用可能であるので、詳細については割愛する。
 次に、ECU20は、算出された脈動トルクTから、算出された第1慣性トルクを減算した値(即ち、“T-I・dω/dt”)を消費トルクとして算出する。続いて、ECU20は、モータ・ジェネレータMG1に係るベーストルク(即ち、要求クランキングトルクT)から、算出された消費トルクを減算した値(即ち、“T-(T-I・dω/dt)”)を余剰軸トルクTe,pとして算出する。
 次に、ECU20は、算出された余剰軸トルクTe,pの(時間)変動が抑制されるような(つまり、余剰軸トルクTe,pがゼロに近づくような)トルクである制振トルクを算出する。続いて、ECU20は、ベーストルクTと算出された制振トルクとの和を、モータ・ジェネレータMG1に係る新たな要求トルクとして、該モータ・ジェネレータMG1を制御する。
 ここで、本願発明者の研究によれば、以下の事項が判明している。即ち、図3(a)に示すように、エンジン11の回転数(ここでは、“例えば1サイクル等の所定の期間における平均回転数”を意味する)の変動がない場合(即ち、定常状態の場合)、脈動トルクと、該脈動トルクに起因する(即ち、瞬間的な回転数の変化に伴う)慣性トルクとの関係は、一意に決定される。また、図3(b)に示すように、脈動トルクが無い状態(つまり、理論上)では、クランキングトルクと、回転数上昇量との関係は、一意に決定される。
 実際には、エンジンのクランキング時には脈動トルクが発生し、回転数が上昇しつつ、脈動トルクに起因する回転変動が生じるため、慣性トルクの変動が逐次変化する(図3(c)参照)。尚、図3は、脈動トルク、慣性トルク、クランキングトルク、エンジン回転数各々の時間変動の一例である。
 ところで、定常状態の場合、脈動トルクと慣性トルクとの関係が一意に決定されることから、制振制御の際に、脈動トルク及び慣性トルクの一方しか考慮されていないことが多い。すると、例えばエンジンの始動時や停止時等、エンジン回転数の過渡期において制振制御が適切に実施されない可能性がある。
 しかるに本実施形態では、上述の如く、エンジン11に係る第1慣性トルクと脈動トルクTとが算出され、該算出された第1慣性トルク及び脈動トルクTに基づいて制振制御が実施される。このため、脈動トルクTと第1慣性トルクとの関係が一定ではない、エンジン回転数の過渡期においても、適切に制振制御を実施することができる。
 本実施形態に係る「ECU20」は、本発明に係る「脈動トルク算出手段」、「第1慣性トルク算出手段」、「消費トルク算出手段」、「制振トルク算出手段」及び「制御手段」の一例である。本実施形態に係る「モータ・ジェネレータMG1」は、本発明に係る「モータ・ジェネレータ」の一例である。
 尚、本実施形態に係る制振制御では、モータ・ジェネレータMG1に係る要求クランキングトルクTが変更(又は補正)されているが、例えば、モータ・ジェネレータMG1により、余剰軸トルクTe,pの変動と同相のトルクを発生させると共に、モータ・ジェネレータMG2により、余剰軸トルクTe,pの変動と逆相のトルクを発生させてもよい。このように構成すれば、ハイブリッド車両1の動力伝達系の共振を回避しつつ、余剰軸トルクTe,pに起因する振動を抑制することができる。更に、モータ・ジェネレータMG2の慣性トルク等も考慮すれば、例えばハイブリッド車両1の走行中における加速時及び減速時の振動も適切に抑制することができる。
 <第2実施形態>
 本発明の制振制御装置に係る第2実施形態を、図4を参照して説明する。第2実施形態では、制振制御処理が一部異なる以外は、第1実施形態の構成と同様である。よって、第2実施形態について、第1実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ図4を参照して説明する。図4は、図2と同趣旨の、本実施形態に係る制振制御処理を示す図である。
 図4において、ECU20は、クランク角センサからの出力信号に基づく、エンジン11の現在の回転数に応じて、所定の共振周波数に対する制振ゲインを決定する。次に、ECU20は、算出された第1慣性トルクと決定された制振ゲインとの積(以降、適宜“共振抑制が施された第1慣性トルク”と称する)を求める。続いて、ECU20は、共振抑制が施された第1慣性トルクを、算出された脈動トルクTから減算して、消費トルクを算出する。
 ここで、ハイブリッド車両1のように、エンジン11とモータ・ジェネレータMG1との間に、ダンパ12(即ち、バネ要素)が配設されていると、エンジン11(及びモータ・ジェネレータMG1)の回転数によっては、該ダンパ12の捩れに起因して、ハイブリッド車両1の動力伝達系に共振が生じることが、本願発明者の研究により判明している。
 この結果、共振を抑制しつつ、余剰軸トルクTe,pに起因する振動を抑制することができる。尚、共振を抑制するための制御(即ち、共振抑制制御)は、回転数に応じて変化を与える慣性トルクのみに実施される。本実施形態に係る「ECU20」は、本発明に係る「共振抑制制御手段」の一例である。
 <第3実施形態>
 本発明の制振制御装置に係る第3実施形態を、図5を参照して説明する。第3実施形態では、制振制御処理が一部異なる以外は、第2実施形態の構成と同様である。よって、第3実施形態について、第2実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ図5を参照して説明する。図5は、図2と同趣旨の、本実施形態に係る制振制御処理を示す図である。
 図5において、ECU20は、例えばハイブリッド車両1の走行状態等に応じて、共振抑制制御と、後述するトルクフィルタリング制御とのいずれを実施するかを判定する。ここで、共振抑制制御とトルクフィルタリング制御との両方が適用され得る領域では、ECU20は、トルクフィルタリング制御を優先して実施する。尚、ECU20は、共振抑制制御とトルクフィルタリング制御との両方を実施してもよい。
 トルクフィルタリング制御を実施すると判定された場合、ECU20は、クランク角センサからの出力信号に基づくエンジン11の現在の回転数に応じて、特定周波数成分を除去するためのフィルタを決定する。
 フィルタの決定と並行して、ECU20は、エンジン11に係る脈動トルクTから該エンジン11に係る第1慣性トルクを減算することにより消費トルクを求める。ECU20は、更に、該算出された消費トルクを、モータ・ジェネレータMG1に係るベーストルクTから減算することにより余剰軸トルクTe,pを求める。次に、ECU20は、余剰軸トルクTe,pの変動に対して、決定されたフィルタを用いたフィルタ処理を施して、制振トルクを算出する。
 共振抑制制御を実施すると判定された場合、ECU20は、算出された第1慣性トルクと決定された制振ゲインとの積を、算出された脈動トルクTから減算して、消費トルクを算出する。続いて、ECU20は、該算出された消費トルクを、モータ・ジェネレータMG1に係るベーストルクTから減算することにより余剰軸トルクTe,pを求める。続いて、ECU20は、算出された余剰軸トルクTe,pの変動が抑制されるように制振トルクを算出する。
 尚、本実施形態に係る「ECU20」は、本発明に係る「フィルタ手段」及び「判定手段」の一例である。
 <第4実施形態>
 本発明の制振制御装置に係る第4実施形態を、図6を参照して説明する。第4実施形態では、制振制御処理が一部異なる以外は、第1実施形態の構成と同様である。よって、第4実施形態について、第1実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ図6を参照して説明する。図6は、図2と同趣旨の、本実施形態に係る制振制御処理を示す図である。
 図6において、ECU20は、モータ・ジェネレータMG1に係る慣性Iと、レゾルバからの出力信号に基づく回転加速度dω/dtとの積を求めることによってモータ・ジェネレータMG1に係る慣性トルクである第2慣性トルクを算出する。尚、モータ・ジェネレータMG1に係る慣性Iは、予め定められた固定値である。
 次に、ECU20は、算出されたエンジン11に係る脈動トルクTから、エンジン11に係る第1慣性トルク及び算出された第2慣性トルクを減算した値(即ち、“T-I・dω/dt-I・dω/dt”)を、消費トルクとして求める。
 続いて、ECU20は、モータ・ジェネレータMG1に係るベーストルクTから、算出された消費トルクを減算した値(即ち、“T-(T-I・dω/dt-I・dω/dt)”)を余剰軸トルクTe,pとして算出する。
 このように、モータ・ジェネレータMG1に係る第2慣性トルクも考慮することによって、特に、ダンパ12等のバネ要素に起因して、エンジン11に係る回転偏差とモータ・ジェネレータMG1に係る回転偏差とが互いに異なる可能性がある場合にも、適切に制振制御を実施することができる。尚、本実施形態に係る「ECU20」は、本発明に係る「第2慣性トルク算出手段」の一例である。
 <第5実施形態>
 本発明の制振制御装置に係る第5実施形態を、図7を参照して説明する。第5実施形態では、制振制御処理が一部異なる以外は、第4実施形態の構成と同様である。よって、第5実施形態について、第4実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ図7を参照して説明する。図7は、図2と同趣旨の、本実施形態に係る制振制御処理を示す図である。
 (第1慣性トルク及び第2慣性トルクの両方に共振抑制が施される場合)
 図7において、ECU20は、レゾルバからの出力信号に基づく、モータ・ジェネレータMG1の現在の回転数に応じて、所定の共振周波数に対する制振ゲインを決定する。次に、ECU20は、算出された第2慣性トルクと決定された制振ゲインとの積(以降、適宜“共振抑制が施された第2慣性トルク”と称する)を求める。続いて、ECU20は、算出されたエンジン11に係る脈動トルクTから、共振抑制が施された第1慣性トルク及び共振抑制が施された第2慣性トルクを減算して消費トルクを算出する。
 (第1慣性トルクのみに共振抑制制御が施される場合)
 ECU20は、算出されたエンジン11に係る脈動トルクTから、共振抑制が施された第1慣性トルク及び算出された第2慣性トルクを減算して消費トルクを算出する。
 (第2慣性トルクのみに共振抑制制御が施される場合)
 ECU20は、算出されたエンジン11に係る脈動トルクTから、算出された第1慣性トルク及び共振抑制が施された第2慣性トルクを減算して消費トルクを算出する。
 <第6実施形態>
 本発明の制振制御装置に係る第6実施形態を、図8を参照して説明する。第6実施形態では、制振制御処理が一部異なる以外は、第5実施形態の構成と同様である。よって、第6実施形態について、第5実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ図8を参照して説明する。図8は、図2と同趣旨の、本実施形態に係る制振制御処理を示す図である。
 図8において、ECU20は、例えばハイブリッド車両1の走行状態等に応じて、共振抑制制御とトルクフィルタリング制御とのいずれを実施するかを判定する。ここで、共振抑制制御とトルクフィルタリング制御との両方が適用され得る領域では、ECU20は、トルクフィルタリング制御を優先して実施する。尚、ECU20は、共振抑制制御とトルクフィルタリング制御との両方を実施してもよい。
 トルクフィルタリング制御を実施すると判定された場合、ECU20は、レゾルバからの出力信号に基づくモータ・ジェネレータMG1の現在の回転数に応じて、特定周波数成分を除去するためのフィルタを決定する。
 フィルタの決定と並行して、ECU20は、エンジン11に係る脈動トルクTから、エンジン11に係る第1慣性トルク及びモータ・ジェネレータMG1に係る第2慣性トルクを減算することにより消費トルクを求める。ECU20は、更に、該算出された消費トルクを、モータ・ジェネレータMG1に係るベーストルクTから減算することにより余剰軸トルクTe,pを求める。次に、ECU20は、余剰軸トルクTe,pの変動に対して、決定されたフィルタを用いたフィルタ処理を施して、制振トルクを算出する。
 共振抑制制御を実施すると判定された場合、ECU20は、下記のように消費トルクを算出する。
 (第1慣性トルク及び第2慣性トルクの両方に共振抑制が施される場合)
 ECU20は、算出されたエンジン11に係る脈動トルクTから、共振抑制が施された第1慣性トルク及び共振抑制が施された第2慣性トルクを減算して消費トルクを算出する。
 (第1慣性トルクのみに共振抑制制御が施される場合)
 ECU20は、算出されたエンジン11に係る脈動トルクTから、共振抑制が施された第1慣性トルク及び算出された第2慣性トルクを減算して消費トルクを算出する。
 (第2慣性トルクのみに共振抑制制御が施される場合)
 ECU20は、算出されたエンジン11に係る脈動トルクTから、算出された第1慣性トルク及び共振抑制が施された第2慣性トルクを減算して消費トルクを算出する。
 消費トルクが算出された後、ECU20は、該算出された消費トルクを、モータ・ジェネレータMG1に係るベーストルクTから減算することにより余剰軸トルクTe,pを求める。続いて、ECU20は、算出された余剰軸トルクTe,pの変動が抑制されるように制振トルクを算出する。
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う制振制御装置もまた本発明の技術的範囲に含まれるものである。
 1…ハイブリッド車両、11…エンジン、12…ダンパ、13…インプットシャフト、14…動力分割機構、15…動力伝達ギヤ、16…ドライブシャフト、17…タイヤ、20…ECU、100…制振制御装置、MG1、MG2…モータ・ジェネレータ

Claims (6)

  1.  エンジンと、前記エンジンに連結されたモータ・ジェネレータと、を備えるハイブリッド車両に搭載され、
     前記エンジンに係る脈動トルクを算出する脈動トルク算出手段と、
     前記エンジンに係る慣性トルクである第1慣性トルクを算出する第1慣性トルク算出手段と、
     前記算出された脈動トルクから前記算出された第1慣性トルクを減算した値を消費トルクとする消費トルク算出手段と、
     前記モータ・ジェネレータに係るベーストルクから前記算出された消費トルクを減算した値を前記エンジンの出力軸に係る軸トルクとし、前記軸トルクの変動を抑制するトルクである制振トルクを算出する制振トルク算出手段と、
     前記モータ・ジェネレータから出力されるトルクが、前記ベーストルクと前記算出された制振トルクとの和となるように前記モータ・ジェネレータを制御する制御手段と、
     を備えることを特徴とする制振制御装置。
  2.  前記モータ・ジェネレータに係る慣性トルクである第2慣性トルクを算出する第2慣性トルク算出手段を更に備え、
     前記消費トルク算出手段は、前記算出された脈動トルクから、(i)前記算出された第1慣性トルク及び(ii)前記算出された第2慣性トルクを減算した値を消費トルクとする
     ことを特徴とする請求項1に記載の制振制御装置。
  3.  前記エンジンの回転数及び前記モータ・ジェネレータの回転数各々に起因して生じる共振現象が抑制されるように、前記算出された第1慣性トルク及び前記算出された第2慣性トルクの少なくとも一方に対して所定の共振抑制処理を実施する共振抑制制御手段を更に備えることを特徴とする請求項2に記載の制振制御装置。
  4.  前記軸トルクから特定周波数成分を除去するためのフィルタ処理を実施するフィルタ手段を更に備え、
     当該制振制御装置は、前記共振抑制制御手段及び前記フィルタ手段の両方を適用可能な場合には、前記フィルタ手段を優先する
     ことを特徴とする請求項3に記載の制振制御装置。
  5.  前記軸トルクから特定周波数成分を除去するためのフィルタ処理を実施するフィルタ手段を更に備えることを特徴とする請求項2に記載の制振制御装置。
  6.  前記エンジンの回転数及び前記モータ・ジェネレータの回転数各々に起因して生じる共振現象が抑制されるように、前記算出された第1慣性トルク及び前記算出された第2慣性トルクの少なくとも一方に対して所定の共振抑制処理を実施する共振抑制制御手段を更に備え、
     当該制振制御装置は、前記フィルタ手段及び前記共振抑制制御手段の両方を適用可能な場合には、前記フィルタ手段を優先する
     ことを特徴とする請求項5に記載の制振制御装置。
PCT/JP2012/052147 2012-01-31 2012-01-31 制振制御装置 WO2013114569A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013556124A JP5790794B2 (ja) 2012-01-31 2012-01-31 制振制御装置
PCT/JP2012/052147 WO2013114569A1 (ja) 2012-01-31 2012-01-31 制振制御装置
CN201280067846.6A CN104080675B (zh) 2012-01-31 2012-01-31 减振控制装置
US14/373,966 US9440636B2 (en) 2012-01-31 2012-01-31 Vibration damping control apparatus
DE112012005793.7T DE112012005793B4 (de) 2012-01-31 2012-01-31 Schwingungsdämpfungssteuerungsgerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052147 WO2013114569A1 (ja) 2012-01-31 2012-01-31 制振制御装置

Publications (1)

Publication Number Publication Date
WO2013114569A1 true WO2013114569A1 (ja) 2013-08-08

Family

ID=48904648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052147 WO2013114569A1 (ja) 2012-01-31 2012-01-31 制振制御装置

Country Status (5)

Country Link
US (1) US9440636B2 (ja)
JP (1) JP5790794B2 (ja)
CN (1) CN104080675B (ja)
DE (1) DE112012005793B4 (ja)
WO (1) WO2013114569A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105035069A (zh) * 2014-04-22 2015-11-11 丰田自动车株式会社 混合动力车辆的控制装置
CN108216205A (zh) * 2016-12-13 2018-06-29 现代自动车株式会社 用于控制混合动力电动车辆的振动的方法和装置
JP2019031195A (ja) * 2017-08-08 2019-02-28 アイシン精機株式会社 車両の制御装置
US10266170B2 (en) 2013-12-12 2019-04-23 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle
JP2019119405A (ja) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 ハイブリッド自動車

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104859421A (zh) * 2015-05-13 2015-08-26 清华大学 一种混合动力缓冲装置受力实时反馈装置
US10411631B2 (en) * 2016-04-27 2019-09-10 GM Global Technology Operations LLC Method and apparatus for vibration damping in a powertrain system
KR101795285B1 (ko) * 2016-07-11 2017-11-07 현대자동차주식회사 하이브리드 차량의 능동형 진동 저감 제어장치 및 방법
DE102016225316A1 (de) * 2016-12-16 2018-06-21 Volkswagen Aktiengesellschaft Verfahren zur Schwingungsreduktion in einem Hybridantrieb
JP6519956B2 (ja) * 2017-02-23 2019-05-29 マツダ株式会社 ハイブリッド車両の動力制御方法及び動力制御装置
US11247659B2 (en) * 2017-08-08 2022-02-15 Aisin Seiki Kabushiki Kaisha Vehicle control apparatus
JP6911775B2 (ja) * 2018-01-12 2021-07-28 トヨタ自動車株式会社 車両用制御装置
JP7257836B2 (ja) * 2019-03-26 2023-04-14 株式会社Subaru 付着物除去装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350997A (ja) * 1998-06-12 1999-12-21 Nissan Motor Co Ltd ハイブリッド原動機のトルク変動制御装置
JPH11350998A (ja) * 1998-06-12 1999-12-21 Nissan Motor Co Ltd ハイブリッド原動機のトルク変動制御装置
JP2009143360A (ja) * 2007-12-13 2009-07-02 Toyota Motor Corp ハイブリッド車両の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491120B1 (en) * 2002-01-18 2002-12-10 Ford Global Technologies, Inc. Method for operating a hybrid vehicle and a hybrid vehicle incorporating the method
JP3958220B2 (ja) * 2003-01-16 2007-08-15 株式会社豊田中央研究所 トルク伝達装置
JP3801146B2 (ja) * 2003-04-04 2006-07-26 ジヤトコ株式会社 ハイブリッド自動車の制御方法及び制御装置
JP2006232167A (ja) * 2005-02-25 2006-09-07 Toyota Motor Corp 車両の抵抗推定装置
JP2010023790A (ja) * 2008-07-24 2010-02-04 Toyota Central R&D Labs Inc 電動機の制御装置
JP2010221821A (ja) * 2009-03-23 2010-10-07 Toyota Motor Corp 内燃機関の始動制御装置
JP2010274875A (ja) * 2009-06-01 2010-12-09 Nissan Motor Co Ltd ハイブリッド車両の振動制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350997A (ja) * 1998-06-12 1999-12-21 Nissan Motor Co Ltd ハイブリッド原動機のトルク変動制御装置
JPH11350998A (ja) * 1998-06-12 1999-12-21 Nissan Motor Co Ltd ハイブリッド原動機のトルク変動制御装置
JP2009143360A (ja) * 2007-12-13 2009-07-02 Toyota Motor Corp ハイブリッド車両の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10266170B2 (en) 2013-12-12 2019-04-23 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle
DE112014005684B4 (de) 2013-12-12 2022-07-14 Toyota Jidosha Kabushiki Kaisha Steuerung für Hybridfahrzeug
CN105035069A (zh) * 2014-04-22 2015-11-11 丰田自动车株式会社 混合动力车辆的控制装置
JP2015205638A (ja) * 2014-04-22 2015-11-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN108216205A (zh) * 2016-12-13 2018-06-29 现代自动车株式会社 用于控制混合动力电动车辆的振动的方法和装置
JP2019031195A (ja) * 2017-08-08 2019-02-28 アイシン精機株式会社 車両の制御装置
JP2019119405A (ja) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 ハイブリッド自動車
JP7159559B2 (ja) 2018-01-10 2022-10-25 トヨタ自動車株式会社 ハイブリッド自動車

Also Published As

Publication number Publication date
DE112012005793B4 (de) 2017-07-06
JP5790794B2 (ja) 2015-10-07
US9440636B2 (en) 2016-09-13
JPWO2013114569A1 (ja) 2015-05-11
DE112012005793T5 (de) 2014-10-09
CN104080675B (zh) 2016-08-17
CN104080675A (zh) 2014-10-01
US20140371967A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
JP5790794B2 (ja) 制振制御装置
JP5440874B2 (ja) 制御装置
JP5880067B2 (ja) 内燃機関とその制御方法
EP3184354B1 (en) Rotating electric machine control device
JP5761570B2 (ja) 制御装置
JP2010023790A (ja) 電動機の制御装置
JPWO2013175555A1 (ja) 制振制御装置
JP2008024287A (ja) ハイブリッド電気自動車の制御装置
US9517704B2 (en) Apparatus for controlling rotary machine
WO2010143030A1 (en) Control apparatus and control method for vehicle
US9533601B2 (en) Apparatus for controlling rotary machine
US11511629B2 (en) Electrified vehicle system and control method of controlling electrified vehicle
JP2011230521A (ja) 始動制御装置
JP2012205422A (ja) 制御装置
JP6387879B2 (ja) ハイブリッド車両の制御装置
JP2013193514A (ja) ハイブリッド車両の制御装置
JP6017830B2 (ja) ハイブリッド車両の制御装置
JP2012200128A (ja) 制御装置
JP2012145049A (ja) エンジントルク推定装置
JP2012018139A (ja) トルク算出装置
JP2010053804A (ja) エンジントルク変動検出システム
JP2015186373A (ja) 車両の制御装置
JP5989561B2 (ja) 車両の制振制御装置
JP2012131252A (ja) ハイブリッド自動車
JP6954147B2 (ja) ハイブリッド車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556124

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14373966

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005793

Country of ref document: DE

Ref document number: 1120120057937

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867307

Country of ref document: EP

Kind code of ref document: A1