JP3801146B2 - ハイブリッド自動車の制御方法及び制御装置 - Google Patents
ハイブリッド自動車の制御方法及び制御装置 Download PDFInfo
- Publication number
- JP3801146B2 JP3801146B2 JP2003101998A JP2003101998A JP3801146B2 JP 3801146 B2 JP3801146 B2 JP 3801146B2 JP 2003101998 A JP2003101998 A JP 2003101998A JP 2003101998 A JP2003101998 A JP 2003101998A JP 3801146 B2 JP3801146 B2 JP 3801146B2
- Authority
- JP
- Japan
- Prior art keywords
- motor
- component
- generator
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000002485 combustion reaction Methods 0.000 claims abstract description 55
- 230000007246 mechanism Effects 0.000 claims abstract description 14
- 238000004364 calculation method Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 11
- 230000004069 differentiation Effects 0.000 claims 2
- 230000010349 pulsation Effects 0.000 abstract description 41
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 20
- 230000001629 suppression Effects 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 238000013016 damping Methods 0.000 description 6
- 230000002457 bidirectional effect Effects 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 230000000994 depressogenic effect Effects 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Landscapes
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
Description
【発明の属する技術分野】
本発明は、ハイブリッド自動車の制御方法及び制御装置に関し、詳しくは、二つの動力源(内燃機関と電動機)を有するハイブリッド自動車の制御方法及び制御装置であって、特に内燃機関で発生して車体に伝えられる不快な出力トルク変動(脈動)を、電動機の出力トルクを利用して抑制する制御方法及び制御装置に関する。なお、本明細書においては、内燃機関のことを単に“エンジン”ということもある。
【0002】
【従来の技術】
近年、環境に優しい乗り物として電気自動車やハイブリッド自動車が注目されている。電気自動車は、電動機で動くため、空気を汚さない、静粛性に優れているという利点がある反面、バッテリの充電に時間がかかるという欠点がある。なお、充電不要の電気自動車(いわゆる燃料電池車)も存在するが、未だ価格等の点で広く普及する段階には至っていない。
【0003】
一方、ハイブリッド自動車は、内燃機関と電動機の二つの動力源を有する車両であり、電動機をエンジンスタータの代わりに使用できる、内燃機関のみまたは電動機のみの走行も可能である、内燃機関の駆動力を電動機の駆動力で補完して発進性能や加速性能を向上できるなどのメリットを持つほか、電動機は発電機としても利用できるため、内燃機関の駆動力で電動機を回して発電することにより、充電スタンドなどに立ち寄ることなく、バッテリを充電できるという電気自動車にない優れたメリットを有している。
【0004】
さて、ハイブリッド自動車は、内燃機関を備えるため、通常の自動車(内燃機関のみを備えたもの)と同様に、内燃機関の動作行程(吸入、圧縮、爆発及び排気)に同期して発生する周期的な出力トルク変動(脈動)の抑制対策が求められるが、とりわけ、ハイブリッド自動車は、電動機走行時の際立った静粛性と上記の脈動が対比されやすく、わずかの脈動も目立つ存在となり得るため、通常の車両よりも、より高いレベルの脈動対策が求められる。
【0005】
<従来例その1:通常の自動車の脈動対策>
通常の自動車の脈動対策としては、すでに様々の技術が知られている。たとえば、エンジンマウントの内部に、絞り通路を介して連通した二つの流体室を形成し、絞り通路を通過する流体の共振周波数を適正化することにより、エンジンマウントを介して車体に伝達される振動を抑制するようにしたもの(たとえば、特許文献1参照)、自動車のエンジンルーム周りの車体補強構造を工夫して振動を抑制するようにしたもの(たとえば、特許文献2参照)、または、エンジンのシリンダブロックの下部に設けられた剛性強化用プレートにダイナミックダンパーを付設して、そのダイナミックダンパーにより、脈動を抑制するようにしたもの(たとえば、特許文献3参照)などである。
【0006】
しかし、これらの公知技術は、通常の自動車の脈動対策としては十分であるものの、ハイブリッド自動車の脈動対策として見た場合、必ずしも十分とはいえなかった。ハイブリッド自動車には、電気自動車と同等ないしはそれに近いレベルの高い静粛性が求められるからである。
【0007】
<従来例その2:ハイブリッド自動車の脈動対策>
そこで、ハイブリッド自動車に備えられた電動機のトルクを利用して、脈動を打ち消すようにした技術が知られている(たとえば、特許文献4参照)。この技術を詳しく説明する。
【0008】
図6(a)は、同文献に記載されたハイブリッド自動車の概略構成図である。この図において、エンジン1の出力軸1aは、遊星歯車機構2のリングギヤ2aに連結されており、遊星歯車機構2のサンギヤ2bには第1モータ3の回転軸3aが連結されている。そして、遊星歯車機構2のピニオンキャリア2cは、第2モータ4の回転軸4aに連結され、第2モータ4の回転軸4aは駆動軸5及びディファレンシャルギヤ6を介して駆動輪7、7に連結されている。エンジン1には、その出力軸1aの回転角(すなわち、エンジン1のクランク角θc)や、エンジン1の回転数Neを検出するための回転センサ8が設けられており、また、第1モータ3と第2モータ4の各々にも、それらの出力軸3a、4aの回転数Nmを検出するための回転センサー9、10が設けられている。
【0009】
制御部11は、第1モータ3や第2モータ4の回転トルクを制御するものであり、その特徴とする点は、エンジン1の脈動波形と逆位相のトルクを第1モータ3や第2モータで発生させて、不快な脈動を打ち消すことにある。すなわち、エンジン1においては、吸入、圧縮、爆発及び排気の動作行程に同期した周期的な出力トルク変動(脈動)が発生し、それが車体に伝達されて不快な振動として体感されるため、これを打ち消すことにある。
【0010】
図7(a)は、脈動の波形図である。この図に示されているように、脈動はエンジン1の各ピストンが爆発行程の上死点(TDC)から若干下降したときに最大値となり、これを気筒毎に繰り返すため、各気筒の上死点に同期した周期的波形が脈動として観測される。
【0011】
制御部11は、上記の脈動波形に似た特性の補正値(Kθc)テーブルを内部に保持し、その補正値(Kθc)テーブルを用いて第1モータ3や第2モータ4の回転トルクを制御する。
【0012】
図7(b)は、補正値(Kθc)テーブルの特性図である。このテーブルは、エンジン1のクランク角θcを入力変数(横軸)とし、且つ、上記の脈動波形の振幅中心からの出力変動量に比例した補正値(K(θc)を出力変数(縦軸)とするものである。このテーブルに、たとえば、エンジン1の出力変動の振幅中心に対応するクランク角θcを与えたとき、そのときに取り出される補正値(K(θc)は0となる。
【0013】
さて、同文献では、次のとおり、脈動を抑制し得ると解説する。
図7(c)は、第1モータ3や第2モータ4の制御特性図である。この特性図において、第1モータ3や第2モータ4の目標とする回転数(目標回転数)MNmが一定であるとするならば、第1モータ3や第2モータ4の制御回転数SNmの時間軸上の変化特性は、クランク角θcを横軸にとった場合に、目標回転数MNmを中心にして、上記の脈動波形(図7(a))を丁度反転させたような形になる。ゆえに、エンジン1で発生したトルク変動(脈動)を第1モータ3や第2モータ4の回転トルクによって相殺する(打ち消す)ことができる、と解説する。
【0014】
【特許文献1】
特許第2773796号公報
【特許文献2】
実公平7−32345号公報
【特許文献3】
特開平6−185408号公報
【特許文献4】
特開平11−113104号公報(〔0045〕−〔0046〕、第1,5,6図)
【0015】
【発明が解決しようとする課題】
しかしながら、上記の解説は、内燃機関の出力軸と電動機の回転軸との間が剛結されている場合は正しいが、内燃機関のハウジングと電動機のハウジングが一つのパワーブロックとみなすことができる状態になっていて、且つ、内燃機関の出力軸と電動機の回転軸との間が若干の弾性を持って結合されていたり、もしくは全く結合していない場合(以下「非剛結」という。)は必ずしも正しいといえない。なお、上記の“一つのパワーブロックとみなすことができる状態”とは、たとえば、ハウジング同士がボルトで結合されていたり、一体のケースとなっていたりする状態のことを指す。
【0016】
図6(b)は、そのような連結構造(非剛結)を有するハイブリッド自動車の簡略構造図であり、エンジン12の出力軸12aと、電動機13の回転軸13aとは、若干の弾性を有する部材ないしは機構等(たとえば、ダンパー14)によって連結されている。このような非剛結構造においては、エンジン12の回転トルクは、ダンパー14の弾性力により、若干の位相のずれを伴って電動機13の回転軸13aに伝えられる。
【0017】
したがって、上記の解説のように、「目標とするモータ回転数MNmを中心にして、上記の脈動波形(図7(a))を丁度反転させた形」で電動機13の回転トルクを制御したとしても、その制御は、ダンパー14の弾性力による位相のずれを全く考慮しておらず、“丁度反転させた形”となり得ないから、トルクの“相殺(打ち消し)”を期待できないし、さらには、位相のずれの大きさによってはかえって脈動を強めてしまうこともあり得るから、これらの点で、上記の「従来例その2」は未だ解決すべき課題がある。
【0018】
そこで本発明は、内燃機関の出力軸と電動機の回転軸との間が若干の弾性を持って連結(非剛結)されている場合であっても、電動機のトルクでエンジンのトルク変動(脈動)を相殺することができ、車体に伝えられる不快な振動を抑制できるハイブリッド自動車の制御方法または制御装置を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明に係るハイブリッド自動車の制御方法は、駆動力発生源として内燃機関と電動/発電機とを備え、且つ、前記内燃機関の出力軸と前記電動/発電機の回転軸の間が非剛結状態で連結されると共に、前記内燃機関及び電動/発電機を含む機構を一体化したパワーブロックを、エンジンマウントを介して車体に弾性支持させた構造を有するハイブリッド自動車の制御方法において、前記内燃機関の出力軸の回転数Neを検出する第1工程と、前記電動/発電機の回転軸の回転数Nmを検出する第2工程と、前記内燃機関の回転数Neの変動成分または微分成分を演算する第3工程と、前記電動/発電機の回転数Nmの変動成分または微分成分を演算する第4工程と、前記内燃機関の回転数Neの変動成分または微分成分と前記内燃機関のイナーシャIeとの積(Neの変動成分または微分成分×Ie)を演算する第5工程と、前記電動/発電機の回転数Nmの変動成分または微分成分と前記電動/発電機のイナーシャImとの積(Nmの変動成分または微分成分×Im)を演算する第6工程と、前記第5工程の演算結果(Neの変動成分または微分成分×Ie)と前記第6工程の演算結果(Nmの変動成分または微分成分×Im)との和からTe+Tmの変動成分を演算する第7工程と、前記第7工程の演算結果(Te+Tmの変動成分)を0にするための制御量を演算する第8工程と、前記内燃機関の出力軸の回転数Neがアイドリング回転数に相当する所定の回転数範囲内のときに前記制御量に基づいて前記電動/発電機のトルクを制御する第9工程とを含むことを特徴とする。
また、本発明に係るハイブリッド自動車の制御装置は、駆動力発生源として内燃機関と電動/発電機とを備え、且つ、前記内燃機関の出力軸と前記電動/発電機の回転軸の間が非剛結状態で連結されされると共に、前記内燃機関及び電動/発電機を含む機構を一体化したパワーブロックを、エンジンマウントを介して車体に弾性支持させた構造を有するハイブリッド自動車の制御装置において、前記内燃機関の出力軸の回転数Neを検出する第1手段と、前記電動/発電機の回転軸の回転数Nmを検出する第2手段と、前記内燃機関の回転数Neの変動成分または微分成分を演算する第3手段と、前記電動/発電機の回転数Nmの変動成分または微分成分を演算する第4手段と、前記内燃機関の回転数Neの変動成分または微分成分と前記内燃機関のイナーシャIeとの積(Neの変動成分または微分成分×Ie)を演算する第5手段と、前記電動/発電機の回転数Nmの変動成分または微分成分と前記電動/発電機のイナーシャImとの積(Nmの変動成分または微分成分×Im)を演算する第6手段と、前記第5手段の演算結果(Neの変動成分または微分成分×Ie)と前記第6手段の演算結果(Nmの変動成分または微分成分×Im)との和からTe+Tmの変動成分を演算する第7手段と、前記第7工程の演算結果(Te+Tmの変動成分)を0にするための制御量を演算する第8手段と、前記内燃機関の出力軸の回転数Neがアイドリング回転数に相当する所定の回転数範囲内のときに前記制御量に基づいて前記電動/発電機のトルクを制御する第9手段とを備えたことを特徴とする。
この発明では、内燃機関の回転数Neの変動成分または微分成分と内燃機関のイナーシャIeとの積(Neの変動成分または微分成分×Ie)を演算すると共に、電動/発電機の回転数Nmの変動成分または微分成分と電動/発電機のイナーシャImとの積(Nmの変動成分または微分成分×Im)を演算し、それらの積の和からTe+Tmの変動成分を演算することにより、内燃機関の出力軸と電動/発電機の回転軸との間に介在する非剛結機構(たとえば、ダンパー)の影響をまったく受けないパラメータ(Te+Tmの変動成分)を得る。そして、このパラメータ(Te+Tmの変動成分)を0にするための制御量を演算し、前記内燃機関の出力軸の回転数Neがアイドリング回転数に相当する所定の回転数範囲内のときに、この制御量に基づいて電動/発電機のトルクを制御することにより、上記の非剛結機構(たとえば、ダンパー)の存在に関わらず、パワーブロックから車体に伝えられる脈動を効果的に抑制することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を、ハイブリッド自動車の制御方法に適用した一実施例として図面を参照しながら説明する。
【0021】
なお、以下の説明における様々な細部の特定ないし実例および数値や文字列その他の記号の例示は、本発明の思想を明瞭にするための、あくまでも参考であって、それらのすべてまたは一部によって本発明の思想が限定されないことは明らかである。また、周知の手法や周知の手順、あるいは周知のアーキテクチャおよび周知の回路構成等(以下「周知事項」)についてはその細部にわたる説明を避けるが、これも説明を簡潔にするためであって、これら周知事項のすべてまたは一部を意図的に排除するものではない。かかる周知事項は本発明の出願時点で当業者の知り得るところであるので、以下の説明に当然含まれている。
【0022】
(全体の構成)
図1は、本発明の一実施形態を示す概略構成図である。この図において、エンジン(内燃機関)20のハウジング20a、ダンパー21及び電動/発電機22のハウジング22a、変速装置23のハウジング23aは、たとえば、ボルト24aによって剛結されており、これらのハウジング20a、22a及び23aは一体化されたパワーブロック24を構成する。パワーブロック24は、いくつか(図では便宜的に2個)のエンジンマウント25、25を介して弾性的に車体26、26に取り付けられている。エンジン20の出力軸20bは、たとえば、スプリング21cなどで構成されたダンパー21の一方側要素21aに連結され、このダンパー21の他方側要素21bは電動/発電機22の回転軸22bに連結され、一方側要素21aと他方側要素21bとの間にスプリング21cが介在している。さらに、電動/発電機22の回転軸22bは変速装置23の入力軸23bに連結され、変速装置23の出力軸23cは駆動軸27及びディファレンシャルギヤ28を介して駆動輪29、29に連結されている。
【0023】
電動/発電機22は、ハウジング22aに取り付けられた固定子(ステータともいう。)22cと、その固定子22cの内側に回転自在に配設された回転子(ロータともいう。)22dとからなる、たとえば、3相交流誘導モータである。この電動/発電機22は、電動機として、また、発電機としても動作する。モータ/ジェネレータ(略号:M/G)ともいう。つまり、この電動/発電機22は、固定子22cに制御電流を流すことにより、回転子22dを回転させてその回転子22dの軸心に取り付けられた回転軸22bに所要の(制御電流に応じた大きさ)回転トルクを発生させることができると共に、固定子22cに任意の負荷を接続して、回転軸22b(回転子22d)を回転させることにより、固定子22cに起電力を生じさせて負荷に電力を供給することができるものである。
【0024】
電動/発電機22の固定子22cは、双方向駆動回路30に接続されており、この双方向駆動回路30は、たとえば、インバータ回路30aとチョッパー回路30bを含む。双方向駆動回路30は、これらの回路を用い、電動/発電機22を電動機として使用するときには、バッテリ31の直流電圧を、後述の電動機用コントローラ34からの制御信号(DS)に応じた周波数及び位相並びに振幅を有する交流電圧に変換して電動/発電機22の固定子22cに印可する一方、電動/発電機22を発電機として使用するときには、電動/発電機22の固定子22cで発生した交流電圧を直流電圧に変換してバッテリ31に供給する(電動/発電機22は“発電機”として動作する。)。
【0025】
エンジン20はエンジン用コントローラ32によって制御され、変速装置23は変速装置用コントローラ33によって制御される。
【0026】
エンジン20にはエンジン回転数Neやクランク角θcなどを検出する回転センサ35が設けられており、また、電動/発電機22には電動機回転数Nmを検出する回転センサ36が設けられている。さらに、車体の図示しないセレクトレバーには、そのセレクトレバーで選択されたレンジに応じたレンジ信号RSを出力するインヒビタースイッチ37が設けられており、また、図示しないアクセルペダルまたはスロットルバルブには、そのアクセルペダルの踏込みに応じたスロットル開度THを検出するスロットル開度センサ38が設けられている。
【0027】
そして、これらの各センサ(回転センサ35、36、インヒビタースイッチ37、スロットル開度センサ38)で検出された信号が、変速装置用コントローラ33からの信号と共に、電動機用コントローラ34に入力されている。
【0028】
電動機用コントローラ34は、たとえば、入力インタフェース部34aや演算処理部34b及び記憶部34c並びに出力インタフェース部34dなどを含むマイクロコンピュータで構成される。
【0029】
入力インタフェース部34aには、上記の各センサで検出された信号、すなわち、回転センサ35で検出されたエンジン回転数Neやクランク角θc、回転センサ36で検出された電動機回転数Nm、インヒビタースイッチ37で検出されたレンジ信号RS、スロットル開度センサ38で検出されたスロットル開度THなどが、変速装置用コントローラ33からの信号と共に入力されている。
【0030】
演算処理部34bは、記憶部34cにあらかじめ格納されている制御プログラムを実行して、電動/発電機22の動作状態を制御する制御量を演算し、その制御量を表す制御信号DSなどを出力インターフェース部34dを介して、電動/発電機22や双方向駆動回路30に出力する。
【0031】
(原理説明)
図2は、上記の構成における要部のモデル図である。この図(a)において、エンジン回転系39はエンジン20を表し、M/G回転系40は電動/発電機22を表す。また、エンジン回転系39とM/G回転系40との間のスプリング41と制振要素42はダンパー21のダンパーバネ定数K1と減衰定数C1をそれぞれ表す。上記構成の説明のとおり、エンジン20やダンパー21及び電動/発電機22はパワーブロック24に結合されており、パワーブロック24はいくつかのエンジンマウント25、25を介して車体26に伝静的に取り付けられているので、パワーブロック24やエンジンマウント25、25を含むモデル図は、(b)のように示される。すなわち、エンジンブロック系43は、エンジンマウント25、25のダンパーバネ定数K2と減衰定数C2をそれぞれ表すバネ要素44と制振要素45を介して車体46に載置されており、エンジンマウント系43から車体46に伝えられるトルクをTemとするとき、このトルクTemは、次式(1)で与えられる。
【0032】
【数1】
【0033】
・・・・(1)
ここで、sはラプラス演算子、Ieはエンジン回転系39のイナーシャ、ImはM/G回転系40のイナーシャ、Ibはエンジンブロック系43のイナーシャである。
【0034】
式(1)は、以下の計算式(特に最後の式(14)参照)によって導き出される。まず、前記モデル図の運動方程式は、次式(2)〜(5)によって与えられる。
【0035】
<エンジンイナーシャ周り>
【0036】
【数2】
【0037】
・・・・(2)
<M/Gイナーシャ周り>
【0038】
【数3】
【0039】
・・・・(3)
<エンジンブロック周り>
【0040】
【数4】
【0041】
・・・・(4)
<車体周り>
【0042】
【数5】
【0043】
・・・・(5)
次に、エンジンマウントの角速度を演算する。
【0044】
式(4)と、
【0045】
【数6】
【0046】
より、
【0047】
【数7】
【0048】
が得られ、これをラプラス変換すると、
【0049】
【数8】
【0050】
となる。よって、エンジンブロック角速度は、
【0051】
【数9】
【0052】
・・・・(6)
となる。一方、エンジンマウントから車体に伝えられるトルクは、式(4)と式(5)より、
【0053】
【数10】
【0054】
・・・・(7)
となり、ゆえに、エンジンマウントから車体に伝わるトルクTemを減少させるためには、「Te+Tm」の変動成分または微分成分を0にするようにTmを制御することが効果的であることが分かる。なお、エンジンマウントから車体に伝わるトルクTemを減少させるためには、エンジンマウントの特性を変更、たとえば、次式(8)に示す伝達関数を最適化することも考えられるが、これは従来技術(たとえば、特許文献1参照)のカテゴリに入るため、本実施の形態では考えないことにする。
【0055】
【数11】
【0056】
・・・・(8)
「Te+Tm」の変動成分または微分成分を0にするようにTmを制御するという視点に立って、さらに検討を加える。
【0057】
式(2)と式(3)を足し合わせてラプラス変換すると、
【0058】
【数12】
【0059】
・・・・(9)
が得られる。式(9)において、IeとImは既知の値であるが、ωeとωmは車体との相対回転で与えられるため、既知の値ではない。
【0060】
そこで、センサで計測可能なエンジンブロックとの相対回転パラメータ(エンジンとM/Gの回転角速度)を用いることにする。今、エンジンの回転角速度をωe_sとし、M/Gの回転角速度をωm_sとすると、次式(10)が成立する。
【0061】
【数13】
【0062】
・・・・(10)
この式(10)を式(9)に代入すると、
【0063】
【数14】
【0064】
・・・・(11)
となり、ωbを右辺に移動して整理すると、
【0065】
【数15】
【0066】
・・・・(12)
となる。ここで、(Ie×ωe_s+Im×ωm_s)=Xcntとおき、式(6)を代入すると、
【0067】
【数16】
【0068】
よって、
【0069】
【数17】
【0070】
・・・・(13)
となり、これを式(7)に代入すると、
【0071】
【数18】
【0072】
・・・・(14)
が得られる。そして、この式(14)より、エンジンマウントから車体に伝えられるトルクTemを抑制するためには、Xcnt=(Ie×ωe_s+Im×ωm_s)の変動成分または微分成分の振幅を0にすればよいことが分かる。
【0073】
図3は、以上の原理に基づく、脈動抑制処理機能のブロック図である。この図において、第1演算部47はエンジン20の回転数Neの変動成分または微分成分を演算すると共に、この変動成分または微分成分とエンジン回転系39のイナーシャIeとの積(Neの変動成分または微分成分×Ie)を演算し、第2演算部48は電動/発電機22の回転数Nmの変動成分または微分成分を演算すると共に、この変動成分または微分成分とM/G回転系40のイナーシャImとの積(Nmの変動成分または微分成分×Im)を演算する。また、第3演算部49は、第1演算部47の出力(Neの変動成分または微分成分×Ie)と第2演算部48の出力(Nmの変動成分または微分成分×Im)との和(Neの変動成分または微分成分×Ie)+(Nmの変動成分または微分成分×Im)・・・・すなわち、Te+Tmの変動成分または微分成分・・・・を演算し、その演算結果(Te+Tmの変動成分または微分成分)を制御量演算部50に出力する。制御量演算部50は、Te+Tmの変動成分または微分成分を0にするための制御量を演算して、その演算量に対応した制御信号(CS、DS)を、電動/発電機22や双方向駆動回路30に出力する。
【0074】
図示の脈動抑制処理機能は、ハードロジックで構成してもよいが、本実施の形態では、電動機用コントローラ34の演算処理部34bでソフトウェア的に実現するものとする。
【0075】
図4は、電動機用コントローラ34の演算処理部34bで実行される制御プログラムの要部のフローチャートを示す図である。このフローチャートでは、まず、エンジン20が回転中であるか否かを判定する(ステップS11)。そして、エンジン20が回転中でなければ、スタータスイッチが「START」ポジションに回されているか否かを判定し(ステップS12)、「START」ポジション以外であれば、ステップS11に復帰する一方、「START」ポジションであれば、次に、バッテリ31の容量が充分(端子電圧が基準値以上)であるか否かを判定する(ステップS13)。そして、容量充分でなければメータパネルの充電警告灯を点灯するなどの所要の充電警告処理(ステップS14)を行ってから、ステップS11に復帰し、容量充分であれば、電動/発電機22を“電動機”として動作させて、その電動/発電機22の駆動力によりエンジン20を起動(スタート)させた(ステップS15)後、ステップS11に復帰する。
【0076】
他方、ステップS11において、エンジン20の回転中を判定した場合は、次に、その回転数が所定の範囲に収まっているか否かを判定する(ステップS16)。ここで、“所定の範囲”とは、電動/発電機22のトルクを利用してエンジン20のトルク変動(脈動)を抑制し得るエンジン回転数の範囲である。この範囲は大まかにいえばアイドル領域の範囲であるが、より具体的には、600rpm〜800rpmの範囲である。
【0077】
この範囲について、本件発明者らの検討によれば、エンジンのクランク軸とモータとを剛結した状態でエンジン回転変動を小さくするような制振制御を実施したところ、エンジン回転600rpm〜1500rpmの範囲でエンジンマウント振動及びエンジン回転変動を1/30以下にすることができた。そこで、今度は、エンジンのクランク軸とモータとをダンパーを介して接続した非剛結システムにおいて、同様にエンジン回転変動を小さくするような制振制御を実施したところ、エンジン回転600rpm〜800rpmの範囲ではエンジンマウント振動及びエンジン回転変動を1/30以下に低減できたが、それ以上(800rpm以上)のエンジン回転ではエンジン回転変動は小さくできるがエンジンマウント振動が小さくならず、逆に大きくなる場合もあった。そこで、シミュレーション解析を行ったところ、制振効果がダンパーの共振周波数に依存することが判明した。すなわち、エンジントルクの脈動周波数がダンパーの共振周波数以下(800rpm以下)ではエンジンのクランクシャフトとモータはほぼ剛体とみなすことができ、モータで発生するエンジントルク振動を打ち消すトルクがほぼクランク軸にそのまま伝わって制振効果が得られる一方、ダンパーの共周波数転以上(800rpm以上)になるとクランクシャフトとモータは剛体とみなすことができなくなり、モータで発生するエンジントルク振動を打ち消すトルクがダンパを介して伝えられるため、減衰されてしまい、さらには、位相遅れも生じてしまうので、エンジン回転変動を打ち消すためにモータトルクの振幅を増やして且つ位相を進めると逆にエンジンマウント振動を増加させる結果となるからである。
【0078】
以上の知見に従い、ステップS16における“所定の範囲”を600rpm〜800rpmとするが、本発明の思想はこれに限定されない。
【0079】
次に、ステップS16でエンジン20の回転数が所定の範囲に収まっていないことが判定された場合は、スロットル全閉(スロットルペダルが踏み込まれていない状態または同ペダルから足が離れている状態)にあるか否かを判定し(ステップS17)、スロットル全閉であれば、電動/発電機22を“発電機”として動作させて、その発電エネルギーによりバッテリ31を充電(ステップS18)した後、ステップS11に復帰する。
【0080】
スロットル全閉でない場合は、次に、スロットル全開(スロットルペダルが最大ストローク付近まで踏み込まれている状態)にあるか否かを判定し(ステップS19)、スロットル全開であれば、電動/発電機22を“電動機”として動作させて、その駆動力(加速補助のためのアシスト力)によりエンジン20の駆動力を補助(ステップS20)した後、ステップS11に復帰する。
【0081】
スロットル全開でない場合は、次に、スロットル開過渡時(スロットルペダルが踏み込まれつつある状態)にあるか否かを判定し(ステップS21)、スロットル開過渡時であれば、電動/発電機22を“電動機”として動作させて、その駆動力(スロットル応答性改善のためのアシスト力)によりエンジン20の駆動力を補助(ステップS22)した後、ステップS11に復帰する。
【0082】
さて、前記のステップS16において、エンジン20の回転数が所定の範囲(たとえば、600rpm〜800rpm)に収まっていることが判定された場合は、本実施の形態の特徴を含む特有の処理(脈動抑制処理)を実行する(ステップS23)。
【0083】
図5は、脈動抑制処理のフローチャートを示す図である。このフローチャートは、前出の脈動抑制処理機能(図3参照)をソフトウエア的に実現したものである。すなわち、このフローチャートでは、まず、エンジン20の回転数Neと電動/発電機22の回転数Nmとを読み込み(ステップS23a/第1工程、ステップS23b/第2工程)、次に、エンジン20の回転数Neの変動成分または微分成分を演算し、この変動成分または微分成分とエンジン回転系39のイナーシャIeとの積(Neの変動成分または微分成分×Ie)を演算する(ステップS23c/第3工程、第4工程)と共に、電動/発電機22の回転数Nmの変動成分または微分成分を演算し、この変動成分または微分成分とM/G回転系40のイナーシャImとの積(Nmの変動成分または微分成分×Im)を演算する(ステップS23d/第5工程、第6工程)。そして、ステップS23cの演算結果(Neの変動成分または微分成分×Ie)とステップS23dの演算結果(Nmの変動成分または微分成分×Im)との和より、Te+Tmの変動成分または微分成分を演算する(ステップS23e/第7工程)。次に、Te+Tmの変動成分または微分成分を0にするための制御量を演算し(ステップS23f/第8工程)、その演算量に対応した制御信号(CS、DS)を、電動/発電機22や双方向駆動回路30に出力して脈動抑制のためのモータトルク制御を実行する(ステップS23g/第9工程)。
【0084】
このように、本実施の形態においては、前式(14)により、エンジンマウントから車体に伝えられるトルクTemを抑制するためには、Xcnt=(Ie×ωe_s+Im×ωm_s)のAC成分の振幅を0にすればよいという知見に基づき、上記のステップS23eにおいて、そのAC成分に相当する「Te+Tm」の変動成分または微分成分を演算すると共に、ステップS23fにおいて、その「Te+Tm」の変動成分または微分成分を0にするための制御量を演算し、その制御量を用いて電動/発電機22のトルクを制御するので、エンジンマウントから車体に伝えられるトルクTemを効果的に抑制することができるうえ、前式(14)には、ダンパー21の項(K1やC1)が含まれていないから、エンジン20と電動/発電機22の間が非剛結されているシステムにおいても、その脈動制振機能を支障なく発揮することができるという格別有益な効果が得られる。
【0085】
なお、本実施の形態では、エンジンの回転軸と電動機の回転軸との“非剛結”の一例として、間にスプリングが介在するダンパーを例にとって説明したが、これに限られるものではない。たとえば、トルクコンバータ、遊星歯車機構、選択的に締結可能なクラッチ、あるいは全く結合しないいわゆるシリーズハイブリッドタイプのものであっても本発明に含まれることはいうまでもない。
【0086】
【発明の効果】
本発明によれば、内燃機関の回転数Neの変動成分または微分成分と内燃機関のイナーシャIeとの積(Neの変動成分または微分成分×Ie)、及び、電動/発電機の回転数Nmの変動成分または微分成分と電動/発電機のイナーシャImとの積(Nmの変動成分または微分成分×Im)を演算し、それらの積の和より、Te+Tmの変動成分または微分成分を演算することにより、内燃機関の出力軸と電動/発電機の回転軸との間に介在する非剛結機構(たとえば、ダンパー)の影響をまったく受けないパラメータ(Te+Tmの変動成分または微分成分)を得ることができる。そして、このパラメータ(Te+Tmの変動成分または微分成分)を0にするための制御量を演算し、この制御量に基づいて電動/発電機のトルクを制御することにより、上記の非剛結機構(たとえば、ダンパー)の存在に関わらず、パワーブロックから車体に伝えられる脈動を効果的に抑制することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す概略構成図である。
【図2】図1の構成における要部のモデル図である。
【図3】脈動抑制処理機能のブロック図である。
【図4】電動機用コントローラ34の演算処理部34bで実行される制御プログラムの要部のフローチャートを示す図である。
【図5】脈動抑制処理のフローチャートを示す図である。
【図6】従来例のハイブリッド自動車の概略構成図及び非剛結構造を有するハイブリッド自動車の簡略構造図である。
【図7】脈動の波形図、従来例の補正値(Kθc)テーブルの特性図及び第1モータ3や第2モータ4の制御特性図である。
【符号の説明】
20 エンジン(内燃機関)
20b 出力軸
22 電動/発電機
22b 回転軸
S23a ステップ(第1工程)
S23b ステップ(第2工程)
S23c ステップ(第3、4工程)
S23d ステップ(第5、6工程)
S23e ステップ(第7工程)
S23f ステップ(第8工程)
S23g ステップ(第9工程)
Claims (2)
- 駆動力発生源として内燃機関と電動/発電機とを備え、且つ、前記内燃機関の出力軸と前記電動/発電機の回転軸の間が非剛結状態で連結されると共に、前記内燃機関及び電動/発電機を含む機構を一体化したパワーブロックを、エンジンマウントを介して車体に弾性支持させた構造を有するハイブリッド自動車の制御方法において、
前記内燃機関の出力軸の回転数Neを検出する第1工程と、
前記電動/発電機の回転軸の回転数Nmを検出する第2工程と、
前記内燃機関の回転数Neの変動成分または微分成分を演算する第3工程と、
前記電動/発電機の回転数Nmの変動成分または微分成分を演算する第4工程と、
前記内燃機関の回転数Neの変動成分または微分成分と前記内燃機関のイナーシャIeとの積(Neの変動成分または微分成分×Ie)を演算する第5工程と、
前記電動/発電機の回転数Nmの変動成分または微分成分と前記電動/発電機のイナーシャImとの積(Nmの変動成分または微分成分×Im)を演算する第6工程と、
前記第5工程の演算結果(Neの変動成分または微分成分×Ie)と前記第6工程の演算結果(Nmの変動成分または微分成分×Im)との和からTe+Tmの変動成分を演算する第7工程と、
前記第7工程の演算結果(Te+Tmの変動成分)を0にするための制御量を演算する第8工程と、
前記内燃機関の出力軸の回転数Neがアイドリング回転数に相当する所定の回転数範囲内のときに前記制御量に基づいて前記電動/発電機のトルクを制御する第9工程と
を含むことを特徴とするハイブリッド自動車の制御方法。 - 駆動力発生源として内燃機関と電動/発電機とを備え、且つ、前記内燃機関の出力軸と前記電動/発電機の回転軸の間が非剛結状態で連結されされると共に、前記内燃機関及び電動/発電機を含む機構を一体化したパワーブロックを、エンジンマウントを介して車体に弾性支持させた構造を有するハイブリッド自動車の制御装置において、
前記内燃機関の出力軸の回転数Neを検出する第1手段と、
前記電動/発電機の回転軸の回転数Nmを検出する第2手段と、
前記内燃機関の回転数Neの変動成分または微分成分を演算する第3手段と、
前記電動/発電機の回転数Nmの変動成分または微分成分を演算する第4手段と、
前記内燃機関の回転数Neの変動成分または微分成分と前記内燃機関のイナーシャIeとの積(Neの変動成分または微分成分×Ie)を演算する第5手段と、
前記電動/発電機の回転数Nmの変動成分または微分成分と前記電動/発電機のイナーシャImとの積(Nmの変動成分または微分成分×Im)を演算する第6手段と、
前記第5手段の演算結果(Neの変動成分または微分成分×Ie)と前記第6手段の演算結果(Nmの変動成分または微分成分×Im)との和からTe+Tmの変動成分を演算する第7手段と、
前記第7工程の演算結果(Te+Tmの変動成分)を0にするための制御量を演算する第8手段と、
前記内燃機関の出力軸の回転数Neがアイドリング回転数に相当する所定の回転数範囲内のときに前記制御量に基づいて前記電動/発電機のトルクを制御する第9手段と
を備えたことを特徴とするハイブリッド自動車の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003101998A JP3801146B2 (ja) | 2003-04-04 | 2003-04-04 | ハイブリッド自動車の制御方法及び制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003101998A JP3801146B2 (ja) | 2003-04-04 | 2003-04-04 | ハイブリッド自動車の制御方法及び制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004312857A JP2004312857A (ja) | 2004-11-04 |
JP3801146B2 true JP3801146B2 (ja) | 2006-07-26 |
Family
ID=33465620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003101998A Expired - Fee Related JP3801146B2 (ja) | 2003-04-04 | 2003-04-04 | ハイブリッド自動車の制御方法及び制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3801146B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4702169B2 (ja) * | 2006-05-09 | 2011-06-15 | トヨタ自動車株式会社 | 内燃機関装置およびこれを搭載する車両並びに内燃機関の失火判定方法 |
DE102006039400A1 (de) | 2006-08-22 | 2008-03-06 | Robert Bosch Gmbh | Ansteuervorrichtung und Verfahren zum Ansteuern eines Hybridantriebs |
JP4566203B2 (ja) * | 2007-01-23 | 2010-10-20 | 三菱電機株式会社 | 内燃機関の制御装置 |
WO2013057779A1 (ja) * | 2011-10-17 | 2013-04-25 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
CN104080675B (zh) | 2012-01-31 | 2016-08-17 | 丰田自动车株式会社 | 减振控制装置 |
JP2016068676A (ja) * | 2014-09-29 | 2016-05-09 | 株式会社ショーワ | 電動パワーステアリング装置 |
-
2003
- 2003-04-04 JP JP2003101998A patent/JP3801146B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004312857A (ja) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3250483B2 (ja) | 駆動装置 | |
JP3409755B2 (ja) | 駆動装置の制振装置 | |
JP2003301731A (ja) | ハイブリッド車両の制御装置 | |
EP3575167B1 (en) | Driving force control method and device for hybrid vehicle | |
WO2018155625A1 (ja) | ハイブリッド車両の動力制御方法及び動力制御装置 | |
EP3575165B1 (en) | Driving force control method and device for hybrid vehicle | |
EP3575164B1 (en) | Driving force control method and device for hybrid vehicle | |
JP6036990B2 (ja) | 内燃機関の停止制御装置 | |
JP3801146B2 (ja) | ハイブリッド自動車の制御方法及び制御装置 | |
JP2001123857A (ja) | 駆動装置 | |
JP2004011456A (ja) | ハイブリッド車両 | |
Ito et al. | Vibration-reducing motor control for hybrid vehicles | |
EP3575169B1 (en) | Driving force control method and device for hybrid vehicle | |
EP3575166B1 (en) | Driving force control method and device for hybrid vehicle | |
JP3614629B2 (ja) | ハイブリッド車両 | |
JP6852565B2 (ja) | ハイブリッド車両のクランク角度推定方法、クランク角度制御方法およびクランク角度推定装置 | |
JP2012131252A (ja) | ハイブリッド自動車 | |
Park et al. | Vibration control of a P1 mild hybrid powertrain | |
JP2018095246A (ja) | ハイブリッド車両の振動制御装置および方法 | |
JP2020093602A (ja) | ハイブリッド車両 | |
JP2018135049A (ja) | ハイブリッド車両の動力制御方法及び動力制御装置 | |
JP2018135048A (ja) | ハイブリッド車両の動力制御方法及び動力制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060424 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060424 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090512 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140512 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |