WO2013108916A1 - 銀被覆銅合金粉末およびその製造方法 - Google Patents

銀被覆銅合金粉末およびその製造方法 Download PDF

Info

Publication number
WO2013108916A1
WO2013108916A1 PCT/JP2013/051019 JP2013051019W WO2013108916A1 WO 2013108916 A1 WO2013108916 A1 WO 2013108916A1 JP 2013051019 W JP2013051019 W JP 2013051019W WO 2013108916 A1 WO2013108916 A1 WO 2013108916A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
alloy powder
copper alloy
volume resistivity
coated
Prior art date
Application number
PCT/JP2013/051019
Other languages
English (en)
French (fr)
Inventor
井上 健一
孝造 尾木
江原 厚志
優斗 檜山
山田 雄大
上山 俊彦
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to US14/372,789 priority Critical patent/US10062473B2/en
Priority to KR1020147022463A priority patent/KR102011166B1/ko
Priority to SG11201404017YA priority patent/SG11201404017YA/en
Priority to EP13737989.7A priority patent/EP2796228B1/en
Priority to CN201380005692.2A priority patent/CN104066535B/zh
Publication of WO2013108916A1 publication Critical patent/WO2013108916A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to a silver-coated copper alloy powder and a method for producing the same, and more particularly to a silver-coated copper alloy powder used for a conductive paste and the like and a method for producing the same.
  • conductive pastes prepared by blending a conductive metal powder such as silver powder or copper powder with a solvent, resin, dispersant, etc. have been used.
  • silver powder has a very small volume resistivity and is a good conductive material, it is a noble metal powder, and thus costs are high.
  • copper powder has a low volume resistivity and is a good conductive material.
  • it since it is easily oxidized, it has poor storage stability (reliability) compared to silver powder.
  • a silver-coated copper powder in which the surface of the copper powder is coated with silver see, for example, JP 2010-174411 A and JP 2010-077745 A.
  • silver-coated copper alloy powders in which the surface of a copper alloy is coated with silver have been proposed (see, for example, Japanese Patent Laid-Open Nos. 08-311304 and 10-152630).
  • Japanese Patent Laid-Open Nos. 2010-174111 and 2010-077495 if there is a portion that is not coated with silver on the surface of the copper powder, oxidation proceeds from that portion. , Storage stability (reliability) becomes insufficient.
  • the volume resistivity is high (conductivity is low), and the storage stability (reliability) is very low. There is a problem.
  • an object of the present invention is to provide a silver-coated copper alloy powder having a low volume resistivity and excellent storage stability (reliability) and a method for producing the same.
  • the present inventors have developed a copper alloy powder containing at least one of 1 to 50% by mass of nickel and zinc, with the balance being composed of copper and inevitable impurities. By coating with a 50 mass% silver-containing layer, it was found that a silver-coated copper alloy powder having a low volume resistivity and excellent storage stability (reliability) could be produced, and the present invention was completed. It was.
  • the silver-coated copper alloy powder according to the present invention contains 1 to 50% by mass of nickel and zinc, and the copper alloy powder having a composition consisting of copper and inevitable impurities is 7 to 50% by mass of silver. It is covered with a content layer.
  • the silver-containing layer is preferably a layer made of silver or a silver compound.
  • the 50% cumulative particle diameter measured by a laser diffraction type particle size distribution apparatus of the copper alloy powder (D 50 diameter) is preferably from 0.1 ⁇ 15 [mu] m.
  • the rate of increase of the weight of the copper alloy powder is 5% or less when the copper alloy powder is heated from room temperature (25 ° C.) to 300 ° C.
  • the silver-containing layer is a layer made of silver, and the silver-containing copper occupies the entire surface of the silver-coated copper alloy powder calculated from the result of quantifying the atoms on the outermost surface of the silver-coated copper alloy powder with a scanning Auger electron spectrometer
  • the layer ratio is preferably 70 area% or more.
  • the method for producing a silver-coated copper alloy powder according to the present invention comprises 7 to 50% by mass of a copper alloy powder having a composition comprising at least one of 1 to 50% by mass of nickel and zinc, and the balance consisting of copper and inevitable impurities. It is characterized by covering with a silver-containing layer.
  • the copper alloy powder is preferably produced by an atomizing method, and the silver-containing layer is preferably a layer made of silver or a silver compound.
  • the 50% cumulative particle diameter measured by a laser diffraction type particle size distribution apparatus of the copper alloy powder (D 50 diameter) is preferably from 0.1 ⁇ 15 [mu] m.
  • the conductive paste according to the present invention includes a solvent and a resin, and includes the above silver-coated copper alloy powder as a conductive powder.
  • the conductive film according to the present invention is formed by curing the conductive paste. According to the present invention, a silver-coated copper alloy powder having a low volume resistivity and excellent storage stability (reliability) and a method for producing the same can be provided.
  • FIG. 1A is a scanning electron microscope (SEM) photograph of an initial state of the silver-coated copper alloy powder obtained in Example 8.
  • FIG. 1B is an SEM photograph of the silver-coated copper alloy powder obtained in Example 8 after storage for 1 week in an environment of a temperature of 85 ° C. and a humidity of 85%.
  • FIG. 2A is an SEM photograph of an initial state of the silver-coated copper powder obtained in Comparative Example 4.
  • FIG. FIG. 2B is an SEM photograph of the silver-coated copper powder obtained in Comparative Example 4 after storage for 1 week in an environment at a temperature of 85 ° C. and a humidity of 85%.
  • a copper alloy powder having a composition comprising at least one of 1 to 50% by mass of nickel and zinc and the balance consisting of copper and inevitable impurities is (silver-coated copper alloy). It is covered with a silver-containing layer of 7 to 50% by weight (based on the powder).
  • the content of at least one of nickel and zinc in the copper alloy powder is 1 to 50% by mass, preferably 3 to 45% by mass, and more preferably 5 to 40% by mass. If the content of at least one kind of nickel and zinc is less than 1% by mass, copper in the copper alloy powder is significantly oxidized, which causes a problem in oxidation resistance.
  • the shape of the copper alloy powder may be spherical or flaky.
  • Such flaky copper alloy powder can be produced, for example, by flattening a spherical copper alloy powder by mechanically plastically deforming it with a ball mill or the like.
  • Particle size of the copper alloy powder is preferably 50% cumulative particle diameter measured by (Heroes method by) a laser diffraction type particle size distribution apparatus (D 50 diameter) is 0.1 ⁇ 15 [mu] m, at 0.3 ⁇ 10 [mu] m More preferably, it is most preferably 0.5 to 5 ⁇ m.
  • the copper alloy powder is coated with a silver-containing layer of 7 to 50% by mass, preferably 8 to 45% by mass, and more preferably 9 to 40% by mass.
  • the silver-containing layer is preferably a layer made of silver or a silver compound.
  • the atoms on the outermost surface of the silver-coated copper alloy powder are analyzed by a scanning Auger electron spectrometer.
  • the proportion of the silver-containing layer in the entire surface of the silver-coated copper alloy powder calculated from the quantified result is preferably 70 area% or more, more preferably 80 area% or more, and 90 area% or more. Is most preferred.
  • a copper alloy powder having a composition comprising at least one of nickel and zinc of 1 to 50% by mass and the balance consisting of copper and inevitable impurities is covered with a silver-containing layer (shell) of 7 to 50% by mass (relative to the copper alloy powder).
  • the copper alloy powder is preferably produced by a so-called atomizing method, in which the alloy components are melted at a melting temperature or higher and dropped from the lower part of the tundish to make a fine powder by colliding with high-pressure gas or high-pressure water and rapidly solidifying. .
  • copper alloy powder with a small particle size can be obtained by manufacturing by the so-called water atomization method in which high-pressure water is sprayed. Therefore, when copper alloy powder is used in a conductive paste, conductivity due to an increase in contact points between particles is obtained. Can be improved.
  • a silver-containing layer (a coating layer made of silver or a silver compound) is formed on the surface of the copper alloy powder thus produced.
  • a method of depositing silver or a silver compound on the surface of the copper alloy powder by a reduction method using a copper-silver substitution reaction or a reduction method using a reducing agent can be used.
  • a method of depositing silver or a silver compound on the surface of a copper alloy powder while stirring a solution containing the copper alloy powder and silver or a silver compound in the solvent, or a solution and a solvent containing the copper alloy powder and an organic substance in the solvent For example, a method of precipitating silver or a silver compound on the surface of the copper alloy powder while mixing and stirring a solution containing silver or a silver compound and an organic substance can be used.
  • the solvent water, an organic solvent, or a mixture of these can be used.
  • a mixed solvent of water and organic solvent it is necessary to use an organic solvent that becomes liquid at room temperature (20 to 30 ° C.).
  • the mixing ratio of water and organic solvent depends on the organic solvent used. It can be adjusted appropriately.
  • water used as a solvent distilled water, ion-exchanged water, industrial water, or the like can be used as long as there is no fear that impurities are mixed therein.
  • As a raw material for a silver-containing layer a coating layer made of silver or a silver compound
  • a silver nitrate solution in which silver nitrate is dissolved in a solvent (water, an organic solvent or a mixed solvent thereof) instead of solid silver nitrate.
  • the amount of the silver nitrate solution to be used, the concentration of silver nitrate in the silver nitrate solution, and the amount of the organic solvent can be determined according to the amount of the target silver-containing layer (a coating layer made of silver or a silver compound).
  • a chelating agent may be added to the solution.
  • the chelating agent it is preferable to use a chelating agent having a high complex stability constant with respect to copper ions or the like so that copper ions or the like by-produced by substitution reaction between silver ions and metallic copper do not reprecipitate. .
  • the copper alloy powder serving as the core of the silver-coated copper alloy powder contains copper as a main component, it is preferable to select a chelating agent while paying attention to the complex stability constant with copper.
  • a chelating agent selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, diethylenetriamine, triethylenediamine, and salts thereof can be used as the chelating agent.
  • a pH buffer may be added to the solution.
  • this pH buffering agent ammonium carbonate, ammonium hydrogen carbonate, aqueous ammonia, sodium hydrogen carbonate, or the like can be used.
  • the copper alloy powder is put in the solution and stirred, and the solution containing the silver salt is added while the copper alloy powder is sufficiently dispersed in the solution. It is preferable to do this.
  • the reaction temperature during the silver coating reaction may be any temperature that does not allow the reaction solution to solidify or evaporate, but is preferably 20 to 80 ° C., more preferably 25 to 75 ° C., and most preferably 30 to 70 ° C. Set.
  • the reaction time varies depending on the coating amount of silver or silver compound and the reaction temperature, but can be set in the range of 1 minute to 5 hours.
  • examples of the silver-coated copper alloy powder and the method for producing the same according to the present invention will be described in detail.
  • solution 1 in which 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate were dissolved in 720 g of pure water, 263.2 g of EDTA-2Na dihydrate and 526.4 g of ammonium carbonate were purified.
  • a solution (solution 2) obtained by adding a solution obtained by dissolving 87.7 g of silver nitrate in 271 g of pure water to a solution dissolved in 2097 g of water was prepared.
  • 130 g of the obtained copper-nickel alloy powder was added to the solution 1 in a nitrogen atmosphere, and the temperature was raised to 35 ° C. while stirring.
  • the solution 2 is added to the solution in which the copper-nickel alloy powder is dispersed and stirred for 1 hour, followed by filtration, washing with water, and drying to obtain a copper-nickel alloy powder coated with silver (silver-coated copper alloy powder). Obtained.
  • a pellet of copper alloy powder before silver coating was produced by applying a load of 100 kN with a tablet molding compressor (model number BRE-50 manufactured by Maekawa Test Co., Ltd.). ) And set at a measurement position in a fluorescent X-ray analyzer (RIX2000 manufactured by Rigaku Corporation), and the measurement atmosphere was set under reduced pressure (8.0 Pa), and the X-ray output was measured at 50 kV and 50 mA. From the result, it was obtained by automatic calculation with the software attached to the apparatus. As a result, the copper content in the copper alloy powder before silver coating was 90.1% by mass, and the nickel content was 9.9% by mass.
  • the average particle size of the copper alloy powder before the silver coating was determined a cumulative 50% particle diameter (D 50 diameter) measured by a laser diffraction type particle size distribution apparatus, it was 1.7 [mu] m.
  • D 50 diameter cumulative 50% particle diameter measured by a laser diffraction type particle size distribution apparatus
  • the copper alloy powder was elevated from room temperature (25 ° C.) in the atmosphere by using a differential thermothermal gravimetric simultaneous measurement device (EXATERTG / DTA6300 type manufactured by SII Nanotechnology Inc.). Increase rate (%) of the difference between the weight measured by heating up to 300 ° C.
  • the copper content in the silver-coated copper alloy powder was 58.2% by mass
  • the nickel content was 6.6% by mass
  • the silver coating amount was 34.9% by mass.
  • the average particle diameter of the silver-coated copper alloy powder were determined for 50% cumulative particle diameter (D 50 diameter) measured by a laser diffraction type particle size distribution apparatus, it was 4.5 [mu] m.
  • D 50 diameter cumulative particle diameter measured by a laser diffraction type particle size distribution apparatus
  • the volume resistivity (of the green compact) at the time when a load of 20 kN was applied (initial volume resistivity) was measured.
  • the initial volume resistivity of the silver-coated copper alloy powder was 6.7 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
  • Storage stability (reliability) of silver-coated copper alloy powder is silver-coated copper that is stored for 1 week in a test chamber maintained at a constant temperature (85 ° C) and constant humidity (85%) and spread evenly on a petri dish.
  • Rate (volume resistivity after storage for 1 week), volume resistivity change rate (%) ⁇ (volume resistivity after storage for 1 week) ⁇ (initial volume resistivity) ⁇ ⁇ 100 / (initial Volume resistivity).
  • the rate of change in volume resistivity of the silver-coated copper alloy powder after storage for 1 week was 226%
  • the rate of change in volume resistivity of the silver-coated copper alloy powder after storage for 2 weeks evaluated in the same manner 304%.
  • This conductive paste is printed on an alumina substrate by a screen printing method (in a pattern having a line width of 500 ⁇ m and a line length of 37.5 mm), and then baked and cured in the atmosphere at 200 ° C. for 40 minutes to form a conductive film.
  • the volume resistivity of the obtained conductive film was calculated and the storage stability (reliability) was evaluated.
  • the volume resistivity (initial volume resistivity) of the conductive film was 14.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
  • the storage stability (reliability) of the conductive film is the volume resistivity of the conductive film stored for one week in a test chamber maintained at a constant temperature (85 ° C.) and constant humidity (85%) (volume resistance after storage for one week).
  • the volume resistivity change rate (%) ⁇ (volume resistivity after 1 week storage) ⁇ (initial volume resistivity) ⁇ ⁇ 100 / (initial volume resistivity).
  • the change rate of the volume resistivity of the conductive film after storage for 1 week was ⁇ 3%, and the change rate of the volume resistivity of the conductive film after storage for 2 weeks evaluated in the same manner was ⁇ 9%.
  • Example 2 While using the same copper alloy powder (copper-nickel alloy powder) as in Example 1, as a solution 1, a solution obtained by dissolving 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate in 720 g of pure water was used. As a solution 2, a solution obtained by dissolving 307.1 g of EDTA-2Na dihydrate and 153.5 g of ammonium carbonate in 1223 g of pure water was added to a solution of 51.2 g of silver nitrate in 222 g of pure water. A copper-nickel alloy powder (silver-coated copper alloy powder) coated with silver was obtained in the same manner as in Example 1 except that the above solution was used.
  • the silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed.
  • the copper content in the silver-coated copper alloy powder was 69.6% by mass
  • the nickel content was 7.9% by mass
  • the silver coating amount was 22.4% by mass.
  • the average particle size of the silver-coated copper alloy powder was 2.9 ⁇ m.
  • the initial volume resistivity of the silver-coated copper alloy powder is 6.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the rate of change in volume resistivity after storage for 1 week is 147%. Volume resistivity after storage for 2 weeks The change rate of was 202%.
  • volume resistivity (initial volume resistivity) of the conductive film was 12.1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the change rate of the volume resistivity of the conductive film after storage for 1 week was 0% for 2 weeks.
  • the change rate of the volume resistivity of the conductive film after storage was -1%.
  • Example 2 While using the same copper alloy powder (copper-nickel alloy powder) as in Example 1, a solution prepared by dissolving 19 g of EDTA-2Na dihydrate and 19 g of ammonium carbonate in 222 g of pure water was used as the solution 1. 2 except that a solution obtained by adding 252 g of EDTA-2Na dihydrate and 126 g of ammonium carbonate in 1004 g of pure water to a solution obtained by dissolving 42 g of silver nitrate in 100 g of pure water was used. 1 was used to obtain a copper-nickel alloy powder (silver-coated copper alloy powder) coated with silver.
  • the silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed. As a result, the copper content in the silver-coated copper alloy powder was 47.5% by mass, the nickel content was 5.6% by mass, and the silver coating amount was 46.8% by mass. The average particle size of the silver-coated copper alloy powder was 4.9 ⁇ m. Furthermore, the initial volume resistivity of the silver-coated copper alloy powder is 4.6 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, the change rate of the volume resistivity after storage for 1 week is 19%, and the volume resistivity after storage for 2 weeks. The change rate of was 14%.
  • volume resistivity (initial volume resistivity) of the conductive film was 13.6 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the change rate of the volume resistivity of the conductive film after storage for 1 week was ⁇ 4%
  • the rate of change in volume resistivity of the conductive film after weekly storage was -4%.
  • a copper alloy powder (copper-nickel alloy powder) was obtained in the same manner as in Example 1 except that copper 5.6 kg and nickel 2.4 kg were used instead of copper 7.2 kg and nickel 0.8 kg.
  • the composition and average particle diameter were determined by the same method as in Example 1, and the high-temperature stability was evaluated.
  • the copper content in the copper alloy powder was 70.4% by mass, and the nickel content was 29.5% by mass.
  • the average particle size of the copper alloy powder was 1.7 ⁇ m. Furthermore, the rate of increase in the weight of the copper alloy powder was 0.3%.
  • a copper-nickel alloy powder (silver-coated copper alloy powder) coated with silver was obtained in the same manner as in Example 1.
  • the silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed.
  • the copper content in the silver-coated copper alloy powder was 45.9 mass%
  • the nickel content was 19.7 mass%
  • the silver coverage was 34.3 mass%.
  • the average particle size of the silver-coated copper alloy powder was 5.5 ⁇ m.
  • the initial volume resistivity of the silver-coated copper alloy powder is 8.3 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the change rate of the volume resistivity after storage for 1 week is 180%
  • the volume resistivity after storage for 2 weeks was 412%.
  • calculation of volume resistivity and storage stability (reliability) are performed by the same method as Example 1. Evaluation).
  • the volume resistivity (initial volume resistivity) of the conductive film was 15.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the change rate of the volume resistivity of the conductive film after storage for 1 week was ⁇ 1%, 2 The rate of change in volume resistivity of the conductive film after weekly storage was -5%.
  • a copper alloy powder (copper-zinc alloy powder) was obtained in the same manner as in Example 1 except that 7.6 kg of copper and 0.4 kg of zinc were used instead of 7.2 kg of copper and 0.8 kg of nickel.
  • the composition and average particle diameter were determined by the same method as in Example 1, and the high-temperature stability was evaluated.
  • the content of zinc in the copper alloy powder was calculated by the same method as the method for calculating the contents of copper and nickel in the copper alloy powder in Example 1.
  • the copper content in the copper alloy powder was 95.3% by mass, and the zinc content was 4.7% by mass.
  • the average particle size of the copper alloy powder was 2.1 ⁇ m.
  • the rate of increase in the weight of the copper alloy powder was 4.2%.
  • a copper-zinc alloy powder (silver-coated copper alloy powder) coated with silver was obtained in the same manner as in Example 1.
  • the silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed.
  • the zinc content in the silver-coated copper alloy powder was calculated by the same method as the method for calculating the copper and nickel contents in the silver-coated copper alloy powder in Example 1. As a result, the copper content in the silver-coated copper alloy powder was 63.8% by mass, the zinc content was 2.7% by mass, and the silver coating amount was 33.3% by mass.
  • the average particle size of the silver-coated copper alloy powder was 6.6 ⁇ m. Furthermore, the initial volume resistivity of the silver-coated copper alloy powder is 2.4 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, the change rate of the volume resistivity after storage for 1 week is 10%, and the volume resistivity after storage for 2 weeks. The rate of change was 4%. Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering copper alloy powder, calculation of volume resistivity and storage stability (reliability) are performed by the same method as Example 1. Evaluation).
  • the volume resistivity (initial volume resistivity) of the conductive film was 6.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the change rate of the volume resistivity of the conductive film after storage for 1 week was ⁇ 8%, 2 The rate of change in volume resistivity of the conductive film after weekly storage was -7%.
  • a copper alloy powder (copper-zinc alloy powder) was obtained in the same manner as in Example 1 except that 0.8 kg of zinc was used instead of 0.8 kg of nickel.
  • the composition and average particle diameter were determined by the same method as in Example 1, and the high-temperature stability was evaluated.
  • the content of zinc in the copper alloy powder was calculated by the same method as the method for calculating the contents of copper and nickel in the copper alloy powder in Example 1.
  • the copper content in the copper alloy powder was 91.9% by mass, and the zinc content was 7.1% by mass.
  • the average particle size of the copper alloy powder was 2.2 ⁇ m.
  • the rate of increase in the weight of the copper alloy powder was 2.2%.
  • a copper-zinc alloy powder (silver-coated copper alloy powder) coated with silver was obtained in the same manner as in Example 1.
  • the silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed.
  • the zinc content in the silver-coated copper alloy powder was calculated by the same method as the method for calculating the copper and nickel contents in the silver-coated copper alloy powder in Example 1. As a result, the copper content in the silver-coated copper alloy powder was 66.8% by mass, the zinc content was 4.9% by mass, and the silver coating amount was 27.6% by mass.
  • the average particle size of the silver-coated copper alloy powder was 4.6 ⁇ m. Furthermore, the initial volume resistivity of the silver-coated copper alloy powder is 3.3 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the rate of change in volume resistivity after storage for 1 week is 131%, and the volume resistivity after storage for 2 weeks. The change rate of was 78%. Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering copper alloy powder, calculation of volume resistivity and storage stability (reliability) are performed by the same method as Example 1. Evaluation).
  • the volume resistivity (initial volume resistivity) of the conductive film was 10.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the change rate of the volume resistivity of the conductive film after storage for 1 week was ⁇ 6%, 2 The rate of change in volume resistivity of the conductive film after weekly storage was -2%.
  • Example 6 While using the same copper alloy powder (copper-zinc alloy powder) as in Example 6, as a solution 1, a solution in which 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate were dissolved in 720 g of pure water was used. Used as a solution 2 by adding a solution prepared by dissolving 22.9 g of silver nitrate in 70 g of pure water to a solution prepared by dissolving 136.5 g of EDTA-2Na dihydrate and 68.2 g of ammonium carbonate in 544 g of pure water. A copper-zinc alloy powder (silver-coated copper alloy powder) coated with silver was obtained in the same manner as in Example 1 except that the above solution was used.
  • the silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed.
  • the copper content in the silver-coated copper alloy powder was 83.0 mass%
  • the zinc content was 5.7 mass%
  • the silver coverage was 11.0 mass%.
  • the average particle size of the silver-coated copper alloy powder was 3.3 ⁇ m.
  • the initial volume resistivity of the silver-coated copper alloy powder is 3.8 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the change rate of the volume resistivity after storage for 1 week is 4%
  • the volume resistivity after storage for 2 weeks The change rate of was 24%.
  • the volume resistivity (initial volume resistivity) of the conductive film was 7.9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the change rate of the volume resistivity of the conductive film after storage for 1 week was 1% for 2 weeks.
  • the change rate of the volume resistivity of the conductive film after storage was 1%.
  • a copper alloy powder (copper-zinc alloy powder) was obtained in the same manner as in Example 1 except that copper 5.6 kg and zinc 2.4 kg were used instead of copper 7.2 kg and nickel 0.8 kg.
  • the composition and average particle diameter were determined by the same method as in Example 1, and the high-temperature stability was evaluated.
  • the content of zinc in the copper alloy powder was calculated by the same method as the method for calculating the contents of copper and nickel in the copper alloy powder in Example 1.
  • the copper content in the copper alloy powder was 72.8% by mass, and the zinc content was 27.1% by mass.
  • the average particle size of the copper alloy powder was 1.7 ⁇ m.
  • the rate of increase in the weight of the copper alloy powder was 0.1%.
  • a copper-zinc alloy powder (silver-coated copper alloy powder) coated with silver was obtained in the same manner as in Example 1.
  • the silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed.
  • the zinc content in the silver-coated copper alloy powder was calculated by the same method as the method for calculating the copper and nickel contents in the silver-coated copper alloy powder in Example 1. As a result, the copper content in the silver-coated copper alloy powder was 49.3% by mass, the zinc content was 13.4% by mass, and the silver coating amount was 36.9% by mass.
  • the average particle size of the silver-coated copper alloy powder was 5.6 ⁇ m. Furthermore, the initial volume resistivity of the silver-coated copper alloy powder is 3.9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, the rate of change in volume resistivity after storage for 1 week is 6%, and volume resistivity after storage for 2 weeks. The change rate of was -17%. Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering copper alloy powder, calculation of volume resistivity and storage stability (reliability) are performed by the same method as Example 1. Evaluation).
  • the volume resistivity (initial volume resistivity) of the conductive film was 7.1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the change rate of the volume resistivity of the conductive film after storage for 1 week was 0% for 2 weeks.
  • the rate of change in volume resistivity of the conductive film after storage was 0%.
  • a copper alloy powder (copper-zinc alloy powder) was obtained in the same manner as in Example 1 except that 4.0 kg of copper and 4.0 kg of zinc were used instead of 7.2 kg of copper and 0.8 kg of nickel.
  • the composition and average particle diameter were determined by the same method as in Example 1, and the high-temperature stability was evaluated.
  • the content of zinc in the copper alloy powder was calculated by the same method as the method for calculating the contents of copper and nickel in the copper alloy powder in Example 1.
  • the copper content in the copper alloy powder was 67.5% by mass, and the zinc content was 32.2% by mass.
  • the average particle size of the copper alloy powder was 1.8 ⁇ m.
  • the rate of increase in the weight of the copper alloy powder was 0.3%.
  • Example 1 a copper-zinc alloy powder (silver-coated copper alloy powder) coated with silver was obtained in the same manner as in Example 1.
  • the silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed.
  • the zinc content in the silver-coated copper alloy powder was calculated by the same method as the method for calculating the copper and nickel contents in the silver-coated copper alloy powder in Example 1.
  • the content of silver-coated copper alloy powdered copper and copper therein was 46.8% by mass
  • the content of zinc was 17.4% by mass
  • the coating amount of silver was 35.7% by mass.
  • the average particle size of the silver-coated copper alloy powder was 4.7 ⁇ m.
  • the initial volume resistivity of the silver-coated copper alloy powder is 3.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the change rate of the volume resistivity after storage for 1 week is 37%
  • the change rate of was 50%.
  • the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering copper alloy powder calculation of volume resistivity and storage stability (reliability) are performed by the same method as Example 1. Evaluation).
  • the volume resistivity (initial volume resistivity) of the conductive film was 11.8 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the change rate of the volume resistivity of the conductive film after storage for 1 week was ⁇ 7%, 2 The rate of change in volume resistivity of the conductive film after weekly storage was -6%.
  • a copper alloy powder (copper-nickel-zinc) was prepared in the same manner as in Example 1 except that 6.4 kg of copper, 0.8 kg of nickel and 0.8 kg of zinc were used instead of 7.2 kg of copper and 0.8 kg of nickel. Alloy powder) was obtained.
  • the composition and average particle diameter were determined by the same method as in Example 1, and the high-temperature stability was evaluated.
  • the content of zinc in the copper alloy powder was calculated by the same method as the method for calculating the contents of copper and nickel in the copper alloy powder in Example 1. As a result, the copper content in the copper alloy powder was 84.5 mass%, the nickel content was 10.8 mass%, and the zinc content was 4.3 mass%.
  • the average particle size of the copper alloy powder was 1.9 ⁇ m.
  • the rate of increase in the weight of the copper alloy powder was 1.7%. Further, using the obtained copper alloy powder (copper-nickel-zinc alloy powder), copper-nickel-zinc alloy powder (silver-coated copper alloy powder) coated with silver by the same method as in Example 1. Got. The silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed. The zinc content in the silver-coated copper alloy powder was calculated by the same method as the method for calculating the copper and nickel contents in the silver-coated copper alloy powder in Example 1.
  • the copper content in the silver-coated copper alloy powder was 56.0 mass%
  • the nickel content was 7.0 mass%
  • the zinc content was 2.2 mass%
  • the silver coverage was 34. It was 7 mass%.
  • the average particle diameter of the silver-coated copper alloy powder was 6.1 ⁇ m.
  • the initial volume resistivity of the silver-coated copper alloy powder is 4.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the rate of change in volume resistivity after storage for 1 week is 35%
  • the change rate of was 44%.
  • the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering copper alloy powder calculation of volume resistivity and storage stability (reliability) are performed by the same method as Example 1. Evaluation).
  • the volume resistivity (initial volume resistivity) of the conductive film was 8.1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the change rate of the volume resistivity of the conductive film after storage for 1 week was ⁇ 3%, The rate of change in volume resistivity of the conductive film after weekly storage was -5%.
  • a copper alloy powder (copper-zinc alloy powder) was obtained in the same manner as in Example 1 except that 7.6 kg of copper and 0.4 kg of zinc were used instead of 7.2 kg of copper and 0.8 kg of nickel.
  • the composition and average particle diameter were determined by the same method as in Example 1, and the high-temperature stability was evaluated.
  • the content of zinc in the copper alloy powder was calculated by the same method as the method for calculating the contents of copper and nickel in the copper alloy powder in Example 1.
  • the copper content in the copper alloy powder was 95.5% by mass, and the zinc content was 4.5% by mass.
  • the average particle size of the copper alloy powder was 4.7 ⁇ m.
  • the rate of increase in the weight of the copper alloy powder was 2.4%.
  • solution 1 in which 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate were dissolved in 720 g of pure water, 307.1 g of EDTA-2Na dihydrate and 153.5 g of ammonium carbonate were purified.
  • 130 g of the obtained copper alloy powder (copper-zinc alloy powder) was added to the solution 1 in a nitrogen atmosphere, and the temperature was raised to 35 ° C. while stirring.
  • the zinc content in the silver-coated copper alloy powder was calculated by the same method as the method for calculating the copper and nickel contents in the silver-coated copper alloy powder in Example 1.
  • the copper content in the silver-coated copper alloy powder was 79.9% by mass
  • the zinc content was 3.5% by mass
  • the silver coating amount was 16.6% by mass.
  • the average particle size of the silver-coated copper alloy powder was 5.6 ⁇ m.
  • the initial volume resistivity of the silver-coated copper alloy powder is 2.8 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the rate of change in volume resistivity after storage for 1 week is ⁇ 27%. Volume resistance after storage for 2 weeks The rate of change of the rate was -5%.
  • the zinc content in the flaky copper alloy powder was calculated by the same method as the method for calculating the copper and nickel contents in the copper alloy powder in Example 1.
  • the content of copper in the flaky copper alloy powder was 95.5% by mass, and the content of zinc was 4.5% by mass.
  • the average particle diameter of the flaky copper alloy powder was 6.1 ⁇ m.
  • the rate of increase in the weight of the flaky copper alloy powder was 2.9%. Further, using the obtained flaky copper alloy powder (copper-zinc alloy powder), flaky copper-zinc alloy powder (silver-coated flaky copper alloy) coated with silver by the same method as in Example 11. Powder).
  • the composition, the silver coating amount, the average particle diameter and the green compact resistance were obtained by the same method as in Example 1, and the storage stability (reliability) ) was evaluated.
  • the zinc content in the silver-coated flaky copper alloy powder was calculated by the same method as the method for calculating the copper and nickel contents in the silver-coated copper alloy powder in Example 1.
  • the copper content in the silver-coated flaky copper alloy powder was 77.5% by mass
  • the zinc content was 3.3% by mass
  • the silver coating amount was 19.2% by mass.
  • the average particle size of the silver-coated flaky copper alloy powder was 7.2 ⁇ m.
  • the initial volume resistivity of the silver-coated flaky copper alloy powder is 3.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the rate of change in volume resistivity after storage for 1 week is ⁇ 16%, after storage for 2 weeks.
  • the rate of change in volume resistivity was ⁇ 10%.
  • the aspect ratio of the silver-coated flaky copper alloy powder is such that the silver-coated flaky copper alloy powder is mixed with a resin to form a paste, coated on a copper plate and dried to form a coating film, and the side surface of the coating film is a field emission type.
  • volume resistivity initial volume resistivity
  • storage stability by the method similar to Example 1 were carried out. (Reliability) was evaluated.
  • the volume resistivity (initial volume resistivity) of the conductive film was 6.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the change rate of the volume resistivity of the conductive film after storage for 1 week was 4% for 2 weeks.
  • the change rate of the volume resistivity of the conductive film after storage was 4%.
  • Comparative Example 1 As a copper alloy powder not coated with silver, a composition, a silver coating amount, an average particle diameter, and a pressure of the same copper alloy powder (copper-nickel alloy powder) as in Example 1 were obtained in the same manner as in Example 1. The powder resistance was determined. As a result, the copper content in the copper alloy powder was 90.1% by mass, the nickel content was 9.9% by mass, and the silver coating amount was 0% by mass. The average particle size of the silver-coated copper alloy powder was 1.7 ⁇ m. Furthermore, the initial volume resistivity of the copper alloy powder was 3.3 ⁇ 10 4 ⁇ ⁇ cm.
  • Example 2 Moreover, about the electrically conductive film obtained by the method similar to Example 1 using this copper alloy powder, calculation of volume resistivity and evaluation of storage stability (reliability) are performed by the same method as Example 1. Went. As a result, the volume resistivity (initial volume resistivity) of the conductive film was 2146.1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the change rate of the volume resistivity of the conductive film after 1 week storage was 974%. . These results are shown in Tables 1 to 4.
  • Comparative Example 2 While using the same copper alloy powder (copper-nickel alloy powder) as in Example 1, as a solution 1, a solution obtained by dissolving 21.4 g of EDTA-2Na dihydrate and 21.4 g of ammonium carbonate in 249 g of pure water was used. Used as a solution 2 is a solution in which 8.68 g of EDTA-2Na dihydrate and 4.34 g of ammonium carbonate are dissolved in 35 g of pure water, and a solution in which 1.45 g of silver nitrate is dissolved in 4.5 g of pure water is added. A copper-nickel alloy powder (silver-coated copper alloy powder) coated with silver was obtained in the same manner as in Example 1 except that the obtained solution was used.
  • the silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed.
  • the copper content in the silver-coated copper alloy powder was 87.9 mass%
  • the nickel content was 9.9 mass%
  • the silver coverage was 2.2 mass%.
  • the average particle size of the silver-coated copper alloy powder was 1.7 ⁇ m.
  • the initial volume resistivity of the silver-coated copper alloy powder is 70.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the change rate of the volume resistivity after storage for 1 week is 419526798%, and the volume resistivity after storage for 2 weeks.
  • the rate of change was 646498597%.
  • volume resistivity (initial volume resistivity) of the conductive film was 79.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the change rate of the volume resistivity of the conductive film after storage for 1 week was 8% for 2 weeks.
  • the change rate of the volume resistivity of the conductive film after storage was 15%.
  • Comparative Example 3 While using the same copper alloy powder (copper-nickel alloy powder) as in Example 1, as a solution 1, a solution obtained by dissolving 21.4 g of EDTA-2Na dihydrate and 21.4 g of ammonium carbonate in 249 g of pure water was used. Used as a solution 2 is a solution in which 22.4 g of EDTA-2Na dihydrate and 11.2 g of ammonium carbonate are dissolved in 89 g of pure water, and a solution in which 3.73 g of silver nitrate is dissolved in 11.5 g of pure water is added. A copper-nickel alloy powder (silver-coated copper alloy powder) coated with silver was obtained in the same manner as in Example 1 except that the obtained solution was used.
  • the silver-coated copper alloy powder thus obtained was subjected to the same method as in Example 1 to determine the composition, silver coating amount, average particle diameter, and green compact resistance, and storage stability (reliability). Evaluation was performed.
  • the copper content in the silver-coated copper alloy powder was 85.0% by mass
  • the nickel content was 9.5% by mass
  • the silver coating amount was 5.5% by mass.
  • the average particle size of the silver-coated copper alloy powder was 1.8 ⁇ m.
  • the initial volume resistivity of the silver-coated copper alloy powder is 18.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the rate of change in volume resistivity after storage for 1 week is 179844%. Volume resistivity after storage for 2 weeks
  • the change rate of was 318314%.
  • Example 1 Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering copper alloy powder, calculation of volume resistivity and storage stability (reliability) are performed by the same method as Example 1. Evaluation). As a result, the volume resistivity (initial volume resistivity) of the conductive film was 26.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the change rate of the volume resistivity of the conductive film after storage for 1 week was 4% for 2 weeks. The change rate of the volume resistivity of the conductive film after storage was 8%. These results are shown in Tables 1 to 4. Comparative Example 4 Copper powder was obtained in the same manner as in Example 1 except that 8.0 kg of copper was used instead of 7.2 kg of copper and 0.8 kg of nickel.
  • the average particle size was determined by the same method as in Example 1 and the high-temperature stability was evaluated.
  • the average particle size was 2.0 ⁇ m, and the copper powder The rate of weight increase was 8.8%.
  • a copper powder coated with silver (silver-coated copper powder) was obtained in the same manner as in Example 1.
  • the composition, the silver coating amount, the average particle diameter and the green compact resistance were determined by the same method as in Example 1, and the storage stability (reliability) was evaluated. Went.
  • the copper content in the silver-coated copper powder was 72.9% by mass and the silver coating amount was 27.0% by mass.
  • the average particle size of the silver-coated copper alloy powder was 4.7 ⁇ m. Furthermore, the initial volume resistivity of the silver-coated copper powder is 2.9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the rate of change in volume resistivity after storage for 1 week is 912%, that of volume resistivity after storage for 2 weeks. The rate of change was 1709%. Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering copper powder, calculation of volume resistivity and storage stability (reliability) by the method similar to Example 1 were carried out. ) was evaluated.
  • the volume resistivity (initial volume resistivity) of the conductive film was 13.6 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the change rate of the volume resistivity of the conductive film after storage for 1 week was 11% for 2 weeks.
  • the change rate of the volume resistivity of the conductive film after storage was 43%.
  • 2A and 2B show the initial state of the silver-coated copper powder obtained in this comparative example and the SEM photographs after storage for 1 week, respectively.
  • Comparative Example 5 About the commercially available spherical copper powder produced by the atomization method (SF-Cu manufactured by Nippon Atomization Co., Ltd.), the average particle size was determined and the high-temperature stability was evaluated by the same method as in Example 1.
  • the average particle size was 5.7 ⁇ m, and the increase rate of the weight of the copper powder was 3.3%.
  • 120 g of this spherical copper powder was added to 2 mass% dilute hydrochloric acid and stirred for 5 minutes to remove the oxide on the surface of the copper powder, followed by filtration and washing with water.
  • the spherical copper powder from which the surface oxide has been removed in this way is added to a solution containing 408.7 g of pure water, 32.7 g of AgCN and 30.7 g of NaCN, stirred for 60 minutes, filtered, washed with water. And dried to obtain a copper powder coated with silver.
  • the average particle size of the silver-coated flaky copper alloy powder was 9.1 ⁇ m. Furthermore, the initial volume resistivity of the silver-coated copper powder is 8.4 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and the rate of change in volume resistivity after storage for 1 week is 384,900,801%, and the volume resistivity after storage for 2 weeks. The rate of change was 2417391414%. In addition, it was 31 area% when the ratio (silver covering ratio) (area%) of the silver layer which occupies for the whole surface of a silver covering flaky copper powder was computed by the method similar to Example 7. FIG. Further, when the aspect ratio of the silver-coated flaky copper powder was determined by the same method as in Example 12, the aspect ratio of the silver-coated flaky copper powder was 7.
  • volume resistivity (initial volume resistivity) of the conductive film was 144.1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
  • the change rate of the volume resistivity of the conductive film after 1 week storage was 1% for 2 weeks.
  • the change rate of the volume resistivity of the conductive film after storage was -4%.
  • the copper alloy powders used in Examples 1 to 12 and Comparative Examples 1 to 3 and 5 had a weight increase rate of 5% or less when heated to 300 ° C. in the atmosphere.
  • the copper powder used in Comparative Example 4 had a high rate of weight increase of 8.8% when heated to 300 ° C. in the atmosphere, although it was low and the high-temperature stability (against oxidation) was good.
  • the high temperature stability (against oxidation) in the atmosphere was not good.
  • the silver-coated copper alloy powders obtained in Examples 1 to 12 have a low initial volume resistivity of 9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or less, and changes in volume resistivity after one week storage.
  • the silver-coated copper alloy powders obtained in Comparative Examples 2 to 3 had a very high initial volume resistivity of the green compact, but the volume resistivity changed after 1 week storage. The rate was also very high.
  • the silver-coated copper powders obtained in Comparative Examples 4 and 5 had a high rate of change in volume resistivity after storage for 1 week, although the initial volume resistivity of the green compact was low.
  • the conductive film obtained from the conductive paste using the silver-coated copper alloy powder obtained in Examples 1 to 12 has an initial volume resistivity as low as 16 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or less and stored for one week.
  • the conductive film obtained from the conductive paste using the silver-coated copper alloy powder obtained in Comparative Examples 1 to 3 and 5 was The volume resistivity was high and the volume resistivity after storage for 1 week was also high. Further, as can be seen from FIGS. 1A to 1B, the silver-coated copper alloy powder obtained in Example 8 maintained the smoothness of the surface even after storage for 1 week, but was obtained in Comparative Example 4. The silver-coated copper powder lost surface smoothness after storage for 1 week, and the silver-coated copper alloy powder obtained in Example 8 was superior in storage stability.
  • the silver-coated copper alloy powder obtained in Examples 1 to 12 was a silver-coated copper alloy powder having a low volume resistivity and excellent storage stability (reliability).
  • the silver-coated copper alloy powder coated with 30% by mass of silver was observed by SEM photographs, it was found that the surface of these silver-coated copper alloy powders was not smooth even in the initial state, and the surface was patchy. . Since it was confirmed from the composition analysis that silver was present in these alloy powders, it was found that silver covering the surface of the particles was present in the plaques in these alloy powders.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

1~50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末(好ましくはレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1~15μmである銅合金粉末)を7~50質量%の銀含有層、好ましくは銀または銀化合物からなる層により被覆することにより、体積抵抗率が低く且つ保存安定性(信頼性)に優れた銀被覆銅合金粉末を製造する。

Description

銀被覆銅合金粉末およびその製造方法
 本発明は、銀被覆銅合金粉末およびその製造方法に関し、特に、導電ペーストなどに使用する銀被覆銅合金粉末およびその製造方法に関する。
 従来、印刷法などにより電子部品の電極や配線を形成するために、銀粉や銅粉などの導電性の金属粉末に溶剤、樹脂、分散剤などを配合して作製した導電ペーストが使用されている。
 しかし、銀粉は、体積抵抗率が極めて小さく、良好な導電性物質であるが、貴金属の粉末であるため、コストが高くなる。一方、銅粉は、体積抵抗率が低く、良好な導電性物質であるが、酸化され易いため、銀粉に比べて保存安定性(信頼性)に劣っている。
 これらの問題を解消するために、導電ペーストに使用する金属粉末として、銅粉の表面を銀で被覆した銀被覆銅粉(例えば、特開2010−174311号公報および特開2010−077495号公報参照)や、銅合金の表面を銀で被覆した銀被覆銅合金粉が提案されている(例えば、特開平08−311304号公報および特開平10−152630号公報参照)。
 しかし、特開2010−174311号公報および特開2010−077495号公報の銀被覆銅粉では、銅粉の表面に銀で被覆されていない部分が存在すると、その部分から酸化が進行してしまうため、保存安定性(信頼性)が不十分になる。また、特開平08−311304号公報および特開平10−152630号公報の銀被覆銅合金粉では、体積抵抗率が高く(導電性が低く)なり、保存安定性(信頼性)が非常に低下するという問題がある。
 したがって、本発明は、上述した従来の問題点に鑑み、体積抵抗率が低く且つ保存安定性(信頼性)に優れた銀被覆銅合金粉末およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究した結果、1~50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を7~50質量%の銀含有層により被覆することによって、体積抵抗率が低く且つ保存安定性(信頼性)に優れた銀被覆銅合金粉末を製造することができることを見出し、本発明を完成するに至った。
 すなわち、本発明による銀被覆銅合金粉末は、1~50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末が、7~50質量%の銀含有層により被覆されていることを特徴とする。
 この銀被覆銅合金粉末において、銀含有層が銀または銀化合物からなる層であるのが好ましい。また、銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1~15μmであるのが好ましい。また、銅合金粉末を大気中において室温(25℃)から昇温速度5℃/分で300℃まで昇温させたときの銅合金粉末の重量の増加率が5%以下であるのが好ましい。また、銀被覆銅合金粉末を温度85℃、湿度85%の環境下で1週間保存した後に20kNの荷重をかけたときの銀被覆銅合金粉末の体積抵抗率が初期の体積抵抗率の500%以下であるのが好ましい。さらに、銀含有層が銀からなる層であり、銀被覆銅合金粉末の最表面の原子を走査型オージェ電子分光分析装置により定量した結果から算出した銀被覆銅合金粉末の表面全体に占める銀含有層の割合が70面積%以上であるのが好ましい。
 また、本発明による銀被覆銅合金粉末の製造方法は、1~50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を7~50質量%の銀含有層により被覆することを特徴とする。
 この銀被覆銅合金粉末の製造方法において、銅合金粉末をアトマイズ法により製造するのが好ましく、銀含有層が銀または銀化合物からなる層であるのが好ましい。また、銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1~15μmであるのが好ましい。
 さらに、本発明による導電ペーストは、溶剤および樹脂を含み、導電性粉体として上記の銀被覆銅合金粉末を含むことを特徴とする。また、本発明による導電膜は、この導電ペーストが硬化して形成されていることを特徴とする。
 本発明によれば、体積抵抗率が低く且つ保存安定性(信頼性)に優れた銀被覆銅合金粉末およびその製造方法を提供することができる。
 Fig.1Aは、実施例8で得られた銀被覆銅合金粉末の初期状態の走査型電子顕微鏡(SEM)写真である。
 Fig.1Bは、実施例8で得られた銀被覆銅合金粉末を温度85℃、湿度85%の環境下で1週間保存後のSEM写真である。
 Fig.2Aは、比較例4で得られた銀被覆銅粉末の初期状態のSEM写真である。
 Fig.2Bは、比較例4で得られた銀被覆銅粉末を温度85℃、湿度85%の環境下で1週間保存後のSEM写真である。
 本発明による銀被覆銅合金粉末の実施の形態では、1~50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末が、(銀被覆銅合金粉末に対して)7~50質量%の銀含有層により被覆されている。
 銅合金粉末中のニッケルおよび亜鉛の少なくとも一種の含有量は、1~50質量%であり、3~45質量%であるのが好ましく、5~40質量%であるのがさらに好ましい。ニッケルおよび亜鉛の少なくとも一種の含有量が1質量%未満では、銅合金粉末中の銅の酸化が著しく、耐酸化性に問題が生じるので好ましくない。一方、50質量%を超えると、銅合金粉末の導電性に悪影響を及ぼすので好ましくない。銅合金粉末の形状は、球状でもよいし、薄片状(フレーク状)でもよい。このようなフレーク状の銅合金粉末は、例えば、球状の銅合金粉末をボールミルなどで機械的に塑性変形させて偏平化することにより製造することができる。銅合金粉末の粒子径は、(ヘロス法によって)レーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1~15μmであるのが好ましく、0.3~10μmであるのがさらに好ましく、0.5~5μmであるのが最も好ましい。
 また、銅合金粉末は、7~50質量%、好ましくは8~45質量%、さらに好ましくは9~40質量%の銀含有層により被覆されている。この銀含有層は、銀または銀化合物からなる層であるのが好ましく、銀含有層が銀からなる層である場合、銀被覆銅合金粉末の最表面の原子を走査型オージェ電子分光分析装置により定量した結果から算出した銀被覆銅合金粉末の表面全体に占める銀含有層の割合が70面積%以上であるのが好ましく、80面積%以上であるのがさらに好ましく、90面積%以上であるのが最も好ましい。銀被覆銅合金粉末の表面全体に占める銀含有層の割合が70面積%未満では、銀被覆銅合金粉末の酸化が進行し易くなり、保存安定性(信頼性)が低下する。
 本発明による銀被覆銅合金粉末の製造方法の実施の形態では、1~50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を(銀被覆銅合金粉末に対して)7~50質量%の銀含有層(シェル)により被覆する。
 銅合金粉末は、合金成分を溶解温度以上で溶解し、タンディッシュ下部から落下させながら高圧ガスまたは高圧水を衝突させて急冷凝固させることにより微粉末とする、所謂アトマイズ法により製造するのが好ましい。特に、高圧水を吹き付ける、所謂水アトマイズ法により製造すると、粒子径が小さい銅合金粉末を得ることができるので、銅合金粉末を導電ペーストに使用した際に粒子間の接触点の増加による導電性の向上を図ることができる。
 このようにして製造した銅合金粉末の表面に銀含有層(銀または銀化合物からなる被覆層)を形成する。この被覆層を形成する方法として、銅と銀の置換反応を利用した還元法や、還元剤を用いる還元法により、銅合金粉末の表面に銀または銀化合物を析出させる方法を使用することができ、例えば、溶媒中に銅合金粉末と銀または銀化合物を含む溶液を攪拌しながら銅合金粉末の表面に銀または銀化合物を析出させる方法や、溶媒中に銅合金粉末および有機物を含む溶液と溶媒中に銀または銀化合物および有機物を含む溶液とを混合して攪拌しながら銅合金粉末の表面に銀または銀化合物を析出させる方法などを使用することができる。
 溶媒としては、水、有機溶媒またはこれらを混合した溶媒を使用することができる。水と有機溶媒を混合した溶媒を使用する場合には、室温(20~30℃)において液体になる有機溶媒を使用する必要があるが、水と有機溶媒の混合比率は、使用する有機溶媒により適宜調整することができる。また、溶媒として使用する水は、不純物が混入するおそれがなければ、蒸留水、イオン交換水、工業用水などを使用することができる。
 銀含有層(銀または銀化合物からなる被覆層)の原料として、銀イオンを溶液中に存在させる必要があるため、水や多くの有機溶媒に対して高い溶解度を有する硝酸銀を使用するのが好ましい。また、銀被覆反応をできるだけ均一に行うために、固体の硝酸銀ではなく、硝酸銀を溶媒(水、有機溶媒またはこれらを混合した溶媒)に溶解した硝酸銀溶液を使用するのが好ましい。なお、使用する硝酸銀溶液の量、硝酸銀溶液中の硝酸銀の濃度および有機溶媒の量は、目的とする銀含有層(銀または銀化合物からなる被覆層)の量に応じて決定することができる。
 銀含有層(銀または銀化合物からなる被覆層)をより均一に形成するために、溶液中にキレート化剤を添加してもよい。キレート化剤としては、銀イオンと金属銅との置換反応により副生成する銅イオンなどが再析出しないように、銅イオンなどに対して錯安定度定数が高いキレート化剤を使用するのが好ましい。特に、銀被覆銅合金粉末のコアとなる銅合金粉末は主構成要素として銅を含んでいるので、銅との錯安定度定数に留意してキレート化剤を選択するのが好ましい。具体的には、キレート化剤として、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ジエチレントリアミン、トリエチレンジアミンおよびこれらの塩からなる群から選ばれたキレート化剤を使用することができる。
 銀被覆反応を安定かつ安全に行うために、溶液中にpH緩衝剤を添加してもよい。このpH緩衝剤として、炭酸アンモニウム、炭酸水素アンモニウム、アンモニア水、炭酸水素ナトリウムなどを使用することができる。
 銀被覆反応の際には、銀塩を添加する前に溶液中に銅合金粉末を入れて攪拌し、銅合金粉末が溶液中に十分に分散している状態で、銀塩を含む溶液を添加するのが好ましい。この銀被覆反応の際の反応温度は、反応液が凝固または蒸発する温度でなければよいが、好ましくは20~80℃、さらに好ましくは25~75℃、最も好ましくは30~70℃の範囲で設定する。また、反応時間は、銀または銀化合物の被覆量や反応温度によって異なるが、1分~5時間の範囲で設定することができる。
 以下、本発明による銀被覆銅合金粉末およびその製造方法の実施例について詳細に説明する。
 銅7.2kgとニッケル0.8kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、得られた合金粉末をろ過し、水洗し、乾燥し、解砕して、銅合金粉末(銅−ニッケル合金粉末)を得た。
 また、EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA−2Na二水和物263.2gと炭酸アンモニウム526.4gを純水2097gに溶解した溶液に、硝酸銀87.7gを純水271gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。
 次に、窒素雰囲気下において、得られた銅−ニッケル合金粉末130gを溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅−ニッケル合金粉末が分散した溶液に溶液2を加えて1時間攪拌した後、ろ過し、水洗し、乾燥して、銀により被覆された銅−ニッケル合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末の組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、銀被覆銅合金粉末の保存安定性(信頼性)の評価を行った。また、銀被覆前の銅合金粉末の組成および平均粒径を求めるとともに、銀被覆前の銅合金粉末の高温安定性の評価を行った。
 銀被覆前の銅合金粉末中の銅およびニッケルの含有量は、銀被覆前の銅合金粉末(約2.5g)を塩化ビニル製リング(内径3.2cm×厚さ4mm)内に敷き詰めた後、錠剤型成型圧縮機(株式会社前川試験製作所製の型番BRE−50)により100kNの荷重をかけて銀被覆前の銅合金粉末のペレットを作製し、このペレットをサンプルホルダー(開口径3.0cm)に入れて蛍光X線分析装置(株式会社リガク製のRIX2000)内の測定位置にセットし、測定雰囲気を減圧下(8.0Pa)とし、X線出力を50kV、50mAとした条件で測定した結果から、装置に付属のソフトウェアで自動計算することによって求めた。その結果、銀被覆前の銅合金粉末中の銅の含有量は90.1質量%、ニッケルの含有量は9.9質量%であった。
 銀被覆前の銅合金粉末の平均粒径として、レーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)を求めたところ、1.7μmであった。
 銀被覆前の銅合金粉末の高温安定性については、示差熱熱重量同時測定装置(SIIナノテクノロジー株式会社製のEXATERTG/DTA6300型)により、銅合金粉末を大気中において室温(25℃)から昇温速度5℃/分で300℃まで昇温させて計測された重量と加熱前の銅合金粉末の重量の差(加熱により増加した重量)の加熱前の銅合金粉末の重量に対する増加率(%)から、加熱により増加した重量はすべて銅合金粉末の酸化により増加した重量であるとみなして、銅合金粉末の大気中における(酸化に対する)高温安定性を評価した。その結果、銅合金粉末の重量の増加率は2.6%であった。
 これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 銀被覆銅合金粉末中の銅およびニッケルの含有量と、銀被覆銅合金粉末の銀の被覆量は、銀被覆前の銅合金粉末中の銅およびニッケルの含有量と同様の方法により求めた。その結果、銀被覆銅合金粉末中の銅の含有量は58.2質量%、ニッケルの含有量は6.6質量%、銀の被覆量は34.9質量%であった。
 銀被覆銅合金粉末の平均粒径として、レーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)を求めたところ、4.5μmであった。
 銀被覆銅合金粉末の圧粉体抵抗として、銀被覆銅合金粉末6.5gを粉体抵抗測定システムの測定容器(三菱化学アナリテック株式会社製のMCP−PD51型)内に詰めた後に加圧を開始して、20kNの荷重がかかった時点の(圧粉体の)体積抵抗率(初期の体積抵抗率)を測定した。その結果、銀被覆銅合金粉末の初期の体積抵抗率は6.7×10−5Ω・cmであった。
 銀被覆銅合金粉末の保存安定性(信頼性)は、一定温度(85℃)、一定湿度(85%)に保たれた試験室内においてシャーレ上に満遍なく広げた状態で1週間保存した銀被覆銅合金粉末6.5gを粉体抵抗測定システムの測定容器(三菱化学アナリテック株式会社製のMCP−PD51型)内に詰めた後に加圧を開始して、20kNの荷重がかかった時点の体積抵抗率(1週間保存後の体積抵抗率)を測定し、体積抵抗率の変化率(%)={(1週間保存後の体積抵抗率)−(初期の体積抵抗率)}×100/(初期の体積抵抗率)によって評価した。その結果、1週間保存後の銀被覆銅合金粉末の体積抵抗率の変化率は226%であり、同様に評価した2週間保存後の銀被覆銅合金粉末の体積抵抗率の変化率は304%であった。
 これらの結果を表2および表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 次に、得られた銀被覆銅合金粉末65.1gと、フレーク状銀粉(DOWAエレクトロニクス株式会社製のFA−D−6/平均粒子径(D50径)8.3μm)27.9gと、熱硬化型樹脂としてビスフェノールF型エポキシ樹脂(株式会社ADEKA製のアデカレジンEP−4901E)8.2gと、三フッ化ホウ素モノエチルアミン0.41gと、溶媒としてブチルカルビトールアセテート2.5gと、オレイン酸0.1gとを混練脱泡機で混合した後、三本ロールを5回パスして均一に分散させることによって導電ペーストを得た。
 この導電ペーストをスクリーン印刷法によってアルミナ基板上に(線幅500μm、線長37.5mmのパターンに)印刷した後、大気中において200℃で40分間焼成して硬化させることによって導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
 導電膜の体積抵抗率は、得られた導電膜のライン抵抗を二端子型抵抗率計(日置電機株式会社製の3540ミリオームハイテスタ)により測定し、膜厚を表面粗さ形状測定機(株式会社東京精密製のサーフコム1500DX型)により測定して、体積抵抗率(Ω・cm)=ライン抵抗(Ω)×膜厚(cm)×線幅(cm)/線長(cm)により算出した。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は14.5×10−5Ω・cmであった。
 導電膜の保存安定性(信頼性)は、一定温度(85℃)、一定湿度(85%)に保たれた試験室内において1週間保存した導電膜の体積抵抗率(1週間保存後の体積抵抗率)を算出し、体積抵抗率の変化率(%)={(1週間保存後の体積抵抗率)−(初期の体積抵抗率)}×100/(初期の体積抵抗率)によって評価した。その結果、1週間保存後の導電膜の体積抵抗率の変化率は−3%であり、同様に評価した2週間保存後の導電膜の体積抵抗率の変化率は−9%であった。
 これらの結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1と同様の銅合金粉末(銅−ニッケル合金粉末)を使用するとともに、溶液1として、EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液を使用し、溶液2として、EDTA−2Na二水和物307.1gと炭酸アンモニウム153.5gを純水1223gに溶解した溶液に、硝酸銀51.2gを純水222gに溶解した溶液を加えて得られた溶液を使用した以外は、実施例1と同様の方法により、銀により被覆された銅−ニッケル合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。その結果、銀被覆銅合金粉末中の銅の含有量は69.6質量%、ニッケルの含有量は7.9質量%、銀の被覆量は22.4質量%であった。また、銀被覆銅合金粉末の平均粒径は2.9μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は6.5×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は147%、2週間保存後の体積抵抗率の変化率は202%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は12.1×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は0%、2週間保存後の導電膜の体積抵抗率の変化率は−1%であった。
 これらの結果を表1~表4に示す。
 実施例1と同様の銅合金粉末(銅−ニッケル合金粉末)を使用するとともに、溶液1として、EDTA−2Na二水和物19gと炭酸アンモニウム19gを純水222gに溶解した溶液を使用し、溶液2として、EDTA−2Na二水和物252gと炭酸アンモニウム126gを純水1004gに溶解した溶液に、硝酸銀42gを純水100gに溶解した溶液を加えて得られた溶液を使用した以外は、実施例1と同様の方法により、銀により被覆された銅−ニッケル合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。その結果、銀被覆銅合金粉末中の銅の含有量は47.5質量%、ニッケルの含有量は5.6質量%、銀の被覆量は46.8質量%であった。また、銀被覆銅合金粉末の平均粒径は4.9μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は4.6×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は19%、2週間保存後の体積抵抗率の変化率は14%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は13.6×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は−4%、2週間保存後の導電膜の体積抵抗率の変化率は−4%であった。
 これらの結果を表1~表4に示す。
 銅7.2kgとニッケル0.8kgの代わりに銅5.6kgとニッケル2.4kgを使用した以外は、実施例1と同様の方法により、銅合金粉末(銅−ニッケル合金粉末)を得た。
 このようにして得られた銅合金粉末について、実施例1と同様の方法により、組成および平均粒径を求めるとともに、高温安定性の評価を行った。その結果、銅合金粉末中の銅の含有量は70.4質量%、ニッケルの含有量は29.5質量%であった。また、銅合金粉末の平均粒径は1.7μmであった。さらに、銅合金粉末の重量の増加率は0.3%であった。
 また、得られた銅合金粉末(銅−ニッケル合金粉末)を使用して、実施例1と同様の方法により、銀により被覆された銅−ニッケル合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。その結果、銀被覆銅合金粉末中の銅の含有量は45.9質量%、ニッケルの含有量は19.7質量%、銀の被覆量は34.3質量%であった。また、銀被覆銅合金粉末の平均粒径は5.5μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は8.3×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は180%、2週間保存後の体積抵抗率の変化率は412%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は15.5×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は−1%、2週間保存後の導電膜の体積抵抗率の変化率は−5%であった。
 これらの結果を表1~表4に示す。
 銅7.2kgとニッケル0.8kgの代わりに銅7.6kgと亜鉛0.4kgを使用した以外は、実施例1と同様の方法により、銅合金粉末(銅−亜鉛合金粉末)を得た。
 このようにして得られた銅合金粉末について、実施例1と同様の方法により、組成および平均粒径を求めるとともに、高温安定性の評価を行った。なお、銅合金粉末中の亜鉛の含有量は、実施例1において銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銅合金粉末中の銅の含有量は95.3質量%、亜鉛の含有量は4.7質量%であった。また、銅合金粉末の平均粒径は2.1μmであった。さらに、銅合金粉末の重量の増加率は4.2%であった。
 また、得られた銅合金粉末(銅−亜鉛合金粉末)を使用して、実施例1と同様の方法により、銀により被覆された銅−亜鉛合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。なお、銀被覆銅合金粉末中の亜鉛の含有量は、実施例1において銀被覆銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銀被覆銅合金粉末中の銅の含有量は63.8質量%、亜鉛の含有量は2.7質量%、銀の被覆量は33.3質量%であった。また、銀被覆銅合金粉末の平均粒径は6.6μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は2.4×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は10%、2週間保存後の体積抵抗率の変化率は4%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は6.2×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は−8%、2週間保存後の導電膜の体積抵抗率の変化率は−7%であった。
 これらの結果を表1~表4に示す。
 ニッケル0.8kgの代わりに亜鉛0.8kgを使用した以外は、実施例1と同様の方法により、銅合金粉末(銅−亜鉛合金粉末)を得た。
 このようにして得られた銅合金粉末について、実施例1と同様の方法により、組成および平均粒径を求めるとともに、高温安定性の評価を行った。なお、銅合金粉末中の亜鉛の含有量は、実施例1において銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銅合金粉末中の銅の含有量は91.9質量%、亜鉛の含有量は7.1質量%であった。また、銅合金粉末の平均粒径は2.2μmであった。さらに、銅合金粉末の重量の増加率は2.2%であった。
 また、得られた銅合金粉末(銅−亜鉛合金粉末)を使用して、実施例1と同様の方法により、銀により被覆された銅−亜鉛合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。なお、銀被覆銅合金粉末中の亜鉛の含有量は、実施例1において銀被覆銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銀被覆銅合金粉末中の銅の含有量は66.8質量%、亜鉛の含有量は4.9質量%、銀の被覆量は27.6質量%であった。また、銀被覆銅合金粉末の平均粒径は4.6μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は3.3×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は131%、2週間保存後の体積抵抗率の変化率は78%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は10.2×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は−6%、2週間保存後の導電膜の体積抵抗率の変化率は−2%であった。
 これらの結果を表1~表4に示す。
 実施例6と同様の銅合金粉末(銅−亜鉛合金粉末)を使用するとともに、溶液1として、EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液を使用し、溶液2として、EDTA−2Na二水和物136.5gと炭酸アンモニウム68.2gを純水544gに溶解した溶液に、硝酸銀22.9gを純水70gに溶解した溶液を加えて得られた溶液を使用した以外は、実施例1と同様の方法により、銀により被覆された銅−亜鉛合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。その結果、銀被覆銅合金粉末中の銅の含有量83.0質量%、亜鉛の含有量は5.7質量%、銀の被覆量は11.0質量%であった。また、銀被覆銅合金粉末の平均粒径は3.3μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は3.8×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は4%、2週間保存後の体積抵抗率の変化率は24%であった。
 なお、得られた銀被覆銅合金粉末の最表面(分析深さ数nm)の組成を調べるため、走査型オージェ電子分光法による評価を行った。この評価では、走査型オージェ電子分光分析装置(日本電子株式会社製のJAMP−7800型)を使用して、加速電圧10kV、電流値1×10−7A、測定範囲100μmφの条件で、電子のエネルギー分布を測定し、装置に付属する相対感度係数によってAg、Cu、Zn、Niの各々の原子について半定量分析を行った。この半定量分析により得られた各々の原子の分析値から、銀被覆銅合金粉末の表面全体に占める銀層の割合(銀被覆割合)(面積%)(=Ag分析値/(Ag分析値+Cu分析値+Zn分析値+Ni分析値)×100)を算出したところ、73面積%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は7.9×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は1%、2週間保存後の導電膜の体積抵抗率の変化率は1%であった。
 これらの結果を表1~表4に示す。
 銅7.2kgとニッケル0.8kgの代わりに銅5.6kgと亜鉛2.4kgを使用した以外は、実施例1と同様の方法により、銅合金粉末(銅−亜鉛合金粉末)を得た。
 このようにして得られた銅合金粉末について、実施例1と同様の方法により、組成および平均粒径を求めるとともに、高温安定性の評価を行った。なお、銅合金粉末中の亜鉛の含有量は、実施例1において銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銅合金粉末中の銅の含有量は72.8質量%、亜鉛の含有量は27.1質量%であった。また、銅合金粉末の平均粒径は1.7μmであった。さらに、銅合金粉末の重量の増加率は0.1%であった。
 また、得られた銅合金粉末(銅−亜鉛合金粉末)を使用して、実施例1と同様の方法により、銀により被覆された銅−亜鉛合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。なお、銀被覆銅合金粉末中の亜鉛の含有量は、実施例1において銀被覆銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銀被覆銅合金粉末中の銅の含有量は49.3質量%、亜鉛の含有量は13.4質量%、銀の被覆量は36.9質量%であった。また、銀被覆銅合金粉末の平均粒径は5.6μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は3.9×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は6%、2週間保存後の体積抵抗率の変化率は−17%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は7.1×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は0%、2週間保存後の導電膜の体積抵抗率の変化率は0%であった。
 これらの結果を表1~表4に示す。また、本実施例で得られた銀被覆銅合金粉末の初期状態および1週間保存後のSEM写真をそれぞれ図1Aおよび図1Bに示す。
 銅7.2kgとニッケル0.8kgの代わりに銅4.0kgと亜鉛4.0kgを使用した以外は、実施例1と同様の方法により、銅合金粉末(銅−亜鉛合金粉末)を得た。
 このようにして得られた銅合金粉末について、実施例1と同様の方法により、組成および平均粒径を求めるとともに、高温安定性の評価を行った。なお、銅合金粉末中の亜鉛の含有量は、実施例1において銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銅合金粉末中の銅の含有量は67.5質量%、亜鉛の含有量は32.2質量%であった。また、銅合金粉末の平均粒径は1.8μmであった。さらに、銅合金粉末の重量の増加率は0.3%であった。
 また、得られた銅合金粉末(銅−亜鉛合金粉末)を使用して、実施例1と同様の方法により、銀により被覆された銅−亜鉛合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。なお、銀被覆銅合金粉末中の亜鉛の含有量は、実施例1において銀被覆銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銀被覆銅合金粉末銅および中の銅の含有量は46.8質量%、亜鉛の含有量は17.4質量%、銀の被覆量は35.7質量%であった。また、銀被覆銅合金粉末の平均粒径は4.7μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は3.5×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は37%、2週間保存後の体積抵抗率の変化率は50%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は11.8×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は−7%、2週間保存後の導電膜の体積抵抗率の変化率は−6%であった。
 これらの結果を表1~表4に示す。
 銅7.2kgとニッケル0.8kgの代わりに銅6.4kgとニッケル0.8kgと亜鉛0.8kgを使用した以外は、実施例1と同様の方法により、銅合金粉末(銅−ニッケル−亜鉛合金粉末)を得た。
 このようにして得られた銅合金粉末について、実施例1と同様の方法により、組成および平均粒径を求めるとともに、高温安定性の評価を行った。なお、銅合金粉末中の亜鉛の含有量は、実施例1において銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銅合金粉末中の銅の含有量は84.5質量%、ニッケルの含有量は10.8質量%、亜鉛の含有量は4.3質量%であった。また、銅合金粉末の平均粒径は1.9μmであった。さらに、銅合金粉末の重量の増加率は1.7%であった。
 また、得られた銅合金粉末(銅−ニッケル−亜鉛合金粉末)を使用して、実施例1と同様の方法により、銀により被覆された銅−ニッケル−亜鉛合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。なお、銀被覆銅合金粉末中の亜鉛の含有量は、実施例1において銀被覆銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銀被覆銅合金粉末中の銅の含有量は56.0質量%、ニッケルの含有量は7.0質量%、亜鉛の含有量は2.2質量%、銀の被覆量は34.7質量%であった。また、銀被覆銅合金粉末の平均粒径は6.1μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は4.0×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は35%、2週間保存後の体積抵抗率の変化率は44%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は8.1×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は−3%、2週間保存後の導電膜の体積抵抗率の変化率は−5%であった。
 これらの結果を表1~表4に示す。
 銅7.2kgとニッケル0.8kgの代わりに銅7.6kgと亜鉛0.4kgを使用した以外は、実施例1と同様の方法により、銅合金粉末(銅−亜鉛合金粉末)を得た。
 このようにして得られた銅合金粉末について、実施例1と同様の方法により、組成および平均粒径を求めるとともに、高温安定性の評価を行った。なお、銅合金粉末中の亜鉛の含有量は、実施例1において銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銅合金粉末中の銅の含有量は95.5質量%、亜鉛の含有量は4.5質量%であった。また、銅合金粉末の平均粒径は4.7μmであった。さらに、銅合金粉末の重量の増加率は2.4%であった。
 また、EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA−2Na二水和物307.1gと炭酸アンモニウム153.5gを純水1223.2gに溶解した溶液に、硝酸銀51.2gを純水158.2gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。
 次に、窒素雰囲気下において、得られた銅合金粉末(銅−亜鉛合金粉末)130gを溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅合金粉末(銅−亜鉛合金粉末)が分散した溶液に溶液2を加えて1時間攪拌した後、分散剤としてパルミチン酸0.4gを工業用アルコール(日本アルコール販売株式会社製のソルミックスAP7)12.6gに溶解させた溶液を添加し、さらに40分間攪拌し、その後、ろ過し、水洗し、乾燥し、解砕して、銀により被覆された銅−亜鉛合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。なお、銀被覆銅合金粉末中の亜鉛の含有量は、実施例1において銀被覆銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銀被覆銅合金粉末中の銅の含有量は79.9質量%、亜鉛の含有量は3.5質量%、銀の被覆量は16.6質量%であった。また、銀被覆銅合金粉末の平均粒径は5.6μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は2.8×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は−27%、2週間保存後の体積抵抗率の変化率は−5%であった。なお、実施例7と同様の方法により、銀被覆銅合金粉末の表面全体に占める銀層の割合(銀被覆割合)(面積%)を算出したところ、95面積%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は5.1×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は2%、2週間保存後の導電膜の体積抵抗率の変化率は2%であった。
 これらの結果を表1~表4に示す。
 実施例11と同様の銅合金粉末(銅−亜鉛合金粉末)353.7gと、直径1.6mmのステンレスボール2144.7gと、工業用アルコール(日本アルコール販売株式会社製のソルミックスAP7)136.3gを湿式メディア攪拌型ミル(タンク容積1リットル、棒状アーム型の攪拌羽根)に投入し、羽根の周速2.5m/秒で30分間攪拌し、得られたスラリーをろ過し、乾燥して、フレーク状銅合金粉末(フレーク状の銅−亜鉛合金粉末)を得た。
 このようにして得られたフレーク状銅合金粉末について、実施例1と同様の方法により、組成および平均粒径を求めるとともに、高温安定性の評価を行った。なお、フレーク状銅合金粉末中の亜鉛の含有量は、実施例1において銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、フレーク状銅合金粉末中の銅の含有量は95.5質量%、亜鉛の含有量は4.5質量%であった。また、フレーク状銅合金粉末の平均粒径は6.1μmであった。さらに、フレーク状銅合金粉末の重量の増加率は2.9%であった。
 また、得られたフレーク状銅合金粉末(銅−亜鉛合金粉末)を使用して、実施例11と同様の方法により、銀により被覆されたフレーク状銅−亜鉛合金粉末(銀被覆フレーク状銅合金粉末)を得た。
 このようにして得られた銀被覆フレーク状銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。なお、銀被覆フレーク状銅合金粉末中の亜鉛の含有量は、実施例1において銀被覆銅合金粉末中の銅およびニッケルの含有量を算出した方法と同様の方法により算出した。その結果、銀被覆フレーク状銅合金粉末中の銅の含有量は77.5質量%、亜鉛の含有量は3.3質量%、銀の被覆量は19.2質量%であった。また、銀被覆フレーク状銅合金粉末の平均粒径は7.2μmであった。さらに、銀被覆フレーク状銅合金粉末の初期の体積抵抗率は3.0×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は−16%、2週間保存後の体積抵抗率の変化率は−10%であった。なお、実施例7と同様の方法により、銀被覆銅合金粉末の表面全体に占める銀層の割合(銀被覆割合)(面積%)を算出したところ、88面積%であった。
 なお、銀被覆フレーク状銅合金粉末のアスペクト比は、銀被覆フレーク状銅合金粉末を樹脂と混ぜてペースト化し、銅板に塗布して乾燥させて塗膜を作り、その塗膜側面を電界放出型走査電子顕微鏡(FE−SEM)(日立製作所製のS−4700型)によって1000倍の倍率で観察し、その観察した画面に対して垂直に立っている銀被覆フレーク状銅合金粉末の粒子100個について、画像解析式粒度分布測定ソフトウェア(マウンテック社のMac−View Ver4)を用いて、粒子の最長となる長さを測定し、それらを算術平均することにより求めた平均長径Lと、同じ粒子で最短となる長さを測定し、それらを算術平均することにより求めた平均厚さTを用いて、(平均長径L/平均厚さT)をアスペクト比として求めた。その結果、銀被覆フレーク状銅合金粉末のアスペクト比は9であった。
 また、得られた銀被覆フレーク状銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は6.5×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は4%、2週間保存後の導電膜の体積抵抗率の変化率は4%であった。
 これらの結果を表1~表4に示す。
比較例1
 銀による被覆を行わない銅合金粉末として、実施例1と同様の銅合金粉末(銅−ニッケル合金粉末)について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めた。その結果、銅合金粉末中の銅の含有量は90.1質量%、ニッケルの含有量は9.9質量%、銀の被覆量は0質量%であった。また、銀被覆銅合金粉末の平均粒径は1.7μmであった。さらに、銅合金粉末の初期の体積抵抗率は3.3×10Ω・cmであった。
 また、この銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は2146.1×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は974%であった。
 これらの結果を表1~表4に示す。
比較例2
 実施例1と同様の銅合金粉末(銅−ニッケル合金粉末)を使用するとともに、溶液1として、EDTA−2Na二水和物21.4gと炭酸アンモニウム21.4gを純水249gに溶解した溶液を使用し、溶液2として、EDTA−2Na二水和物8.68gと炭酸アンモニウム4.34gを純水35gに溶解した溶液に、硝酸銀1.45gを純水4.5gに溶解した溶液を加えて得られた溶液を使用した以外は、実施例1と同様の方法により、銀により被覆された銅−ニッケル合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。その結果、銀被覆銅合金粉末中の銅の含有量は87.9質量%、ニッケルの含有量9.9質量%、銀の被覆量は2.2質量%であった。また、銀被覆銅合金粉末の平均粒径は1.7μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は70.0×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は419526798%、2週間保存後の体積抵抗率の変化率は646498597%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は79.5×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は8%、2週間保存後の導電膜の体積抵抗率の変化率は15%であった。
 これらの結果を表1~表4に示す。
比較例3
 実施例1と同様の銅合金粉末(銅−ニッケル合金粉末)を使用するとともに、溶液1として、EDTA−2Na二水和物21.4gと炭酸アンモニウム21.4gを純水249gに溶解した溶液を使用し、溶液2として、EDTA−2Na二水和物22.4gと炭酸アンモニウム11.2gを純水89gに溶解した溶液に、硝酸銀3.73gを純水11.5gに溶解した溶液を加えて得られた溶液を使用した以外は、実施例1と同様の方法により、銀により被覆された銅−ニッケル合金粉末(銀被覆銅合金粉末)を得た。
 このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。その結果、銀被覆銅合金粉末中の銅の含有量は85.0質量%、ニッケルの含有量は9.5質量%、銀の被覆量は5.5質量%であった。また、銀被覆銅合金粉末の平均粒径は1.8μmであった。さらに、銀被覆銅合金粉末の初期の体積抵抗率は18.0×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は179844%、2週間保存後の体積抵抗率の変化率は318314%であった。
 また、得られた銀被覆銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は26.0×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は4%、2週間保存後の導電膜の体積抵抗率の変化率は8%であった。
 これらの結果を表1~表4に示す。
比較例4
 銅7.2kgとニッケル0.8kgの代わりに銅8.0kgを使用した以外は、実施例1と同様の方法により、銅粉末を得た。
 このようにして得られた銅粉末について、実施例1と同様の方法により、平均粒径を求めるとともに、高温安定性の評価を行ったところ、平均粒径は2.0μmであり、銅粉末の重量の増加率は8.8%であった。
 また、得られた銅粉末を使用して、実施例1と同様の方法により、銀により被覆された銅粉末(銀被覆銅粉末)を得た。
 このようにして得られた銀被覆銅粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。その結果、銀被覆銅粉末中の銅の含有量は72.9質量%、銀の被覆量は27.0質量%であった。また、銀被覆銅合金粉末の平均粒径は4.7μmであった。さらに、銀被覆銅粉末の初期の体積抵抗率は2.9×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は912%、2週間保存後の体積抵抗率の変化率は1709%であった。
 また、得られた銀被覆銅粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は13.6×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は11%、2週間保存後の導電膜の体積抵抗率の変化率は43%であった。
 これらの結果を表1~表4に示す。また、本比較例で得られた銀被覆銅粉末の初期状態および1週間保存後のSEM写真をそれぞれ図2Aおよび図2Bに示す。
比較例5
 アトマイズ法で作製された市販の球状銅粉(日本アトマイズ加工株式会社製のSF−Cu)について、実施例1と同様の方法により、平均粒径を求めるとともに、高温安定性の評価を行ったところ、平均粒径は5.7μmであり、銅粉の重量の増加率は3.3%であった。
 この球状銅粉120gを2質量%の希塩酸に加えて5分間攪拌させることによって銅粉の表面の酸化物を除去した後、ろ過し、水洗した。このようにして表面の酸化物を除去した球状銅粉を、408.7gの純水と32.7gのAgCNと30.7gのNaCNを含む溶液に加えて60分間攪拌した後、ろ過し、水洗し、乾燥して、銀により被覆された銅粉を得た。
 このようにして得られた銀被覆銅粉96gと直径5mmのジルコニアボール720gをボールミルの容器(容積400mL、直径7.5cm)内に投入し、回転数116rpmで330分間回転させて形状を変形させることにより、銀により被覆されたフレーク状銅粉末(銀被覆フレーク状銅粉末)を得た。
 このようにして得られた銀被覆フレーク状銅粉末について、実施例1と同様の方法により、組成、銀の被覆量、平均粒径および圧粉体抵抗を求めるとともに、保存安定性(信頼性)の評価を行った。その結果、銀被覆フレーク状銅粉末中の銅の含有量は80.4質量%、銀の被覆量は19.6質量%であった。また、銀被覆フレーク状銅合金粉末の平均粒径は9.1μmであった。さらに、銀被覆銅粉末の初期の体積抵抗率は8.4×10−5Ω・cmであり、1週間保存後の体積抵抗率の変化率は38400900801%、2週間保存後の体積抵抗率の変化率は24173914178%であった。なお、実施例7と同様の方法により、銀被覆フレーク状銅粉末の表面全体に占める銀層の割合(銀被覆割合)(面積%)を算出したところ、31面積%であった。また、実施例12と同様の方法により、銀被覆フレーク状銅粉末のアスペクト比を求めたところ、銀被覆フレーク状銅粉末のアスペクト比は7であった。
 また、得られた銀被覆フレーク状銅粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は144.1×10−5Ω・cmであり、1週間保存後の導電膜の体積抵抗率の変化率は1%、2週間保存後の導電膜の体積抵抗率の変化率は−4%であった。
 これらの結果を表1~表4に示す。
 表1~表4からわかるように、実施例1~12および比較例1~3および5で使用した銅合金粉末は、大気中において300℃に加熱した際の重量の増加率は5%以下と低く、大気中における(酸化に対する)高温安定性が良好であったが、比較例4で使用した銅粉末は、大気中において300℃に加熱した際の重量の増加率は8.8%と高く、大気中における(酸化に対する)高温安定性が良好でなかった。
 また、実施例1~12で得られた銀被覆銅合金粉末は、圧粉体の初期の体積抵抗率が9×10−5Ω・cm以下と低く、1週間保存後の体積抵抗率の変化率が500%以下と低かったが、比較例2~3で得られた銀被覆銅合金粉末は、圧粉体の初期の体積抵抗率が非常に高く、1週間保存後の体積抵抗率の変化率も極めて高かった。また、比較例4および5で得られた銀被覆銅粉末は、圧粉体の初期の体積抵抗率が低いものの、1週間保存後の体積抵抗率の変化率が高かった。
 さらに、実施例1~12で得られた銀被覆銅合金粉末を使用した導電ペーストから得られた導電膜は、初期の体積抵抗率が16×10−5Ω・cm以下と低く、1週間保存後の体積抵抗率の変化率が−8%~4%と低かったが、比較例1~3および5で得られた銀被覆銅合金粉末を使用した導電ペーストから得られた導電膜は、初期の体積抵抗率が高く、1週間保存後の体積抵抗率も高かった。
 また、図1A~図1Bからわかるように、実施例8で得られた銀被覆銅合金粉末は、1週間保存後でも、表面の平滑性が保たれていたが、比較例4で得られた銀被覆銅粉末は、1週間保存後に、表面の平滑性が失われており、実施例8で得られた銀被覆銅合金粉末の方が保存安定性に優れていた。
 これらの結果から、実施例1~12で得られた銀被覆銅合金粉末は、体積抵抗率が低く且つ保存安定性(信頼性)に優れた銀被覆銅合金粉末であることがわかった。
 なお、参考例として、70質量%の銅と30質量%の錫の合金粉末を10質量%の銀で被覆した銀被覆銅合金粉末と、90質量%の銅と10質量%のアルミニウムの合金粉末を30質量%の銀で被覆した銀被覆銅合金粉末をSEM写真により観察したところ、これらの銀被覆銅合金粉末では、初期状態でも表面が滑らかでなく、表面に斑模様があることがわかった。組成分析からこれらの合金粉末に銀が存在することが確認されたので、これらの合金粉末には、粒子の表面を被覆する銀が斑に存在することがわかった。

Claims (12)

  1. 1~50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末が、7~50質量%の銀含有層により被覆されていることを特徴とする、銀被覆銅合金粉末。
  2. 前記銀含有層が銀または銀化合物からなる層であることを特徴とする、請求項1に記載の銀被覆銅合金粉末。
  3. 前記銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1~15μmであることを特徴とする、請求項1に記載の銀被覆銅合金粉末。
  4. 前記銅合金粉末を大気中において室温(25℃)から昇温速度5℃/分で300℃まで昇温させたときの前記銅合金粉末の重量の増加率が5%以下であることを特徴とする、請求項1に記載の銀被覆銅合金粉末。
  5. 前記銀被覆銅合金粉末を温度85℃、湿度85%の環境下で1週間保存した後に20kNの荷重をかけたときの前記銀被覆銅合金粉末の体積抵抗率が初期の体積抵抗率の500%以下であることを特徴とする、請求項1に記載の銀被覆銅合金粉末。
  6. 前記銀含有層が銀からなる層であり、前記銀被覆銅合金粉末の最表面の原子を走査型オージェ電子分光分析装置により定量した結果から算出した前記銀被覆銅合金粉末の表面全体に占める銀含有層の割合が70面積%以上であることを特徴とする、請求項1に記載の銀被覆銅合金粉末。
  7. 1~50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を7~50質量%の銀含有層により被覆することを特徴とする、銀被覆銅合金粉末の製造方法。
  8. 前記銅合金粉末をアトマイズ法により製造することを特徴とする、請求項7に記載の銀被覆銅合金粉末の製造方法。
  9. 前記銀含有層が銀または銀化合物からなる層であることを特徴とする、請求項7に記載の銀被覆銅合金粉末の製造方法。
  10. 前記銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1~15μmであることを特徴とする、請求項7に記載の銀被覆銅合金粉末の製造方法。
  11. 溶剤および樹脂を含み、導電性粉体として請求項1乃至6のいずれかの銀被覆銅合金粉末を含むことを特徴とする、導電ペースト。
  12. 請求項11の導電ペーストが硬化して形成されていることを特徴とする、導電膜。
PCT/JP2013/051019 2012-01-17 2013-01-15 銀被覆銅合金粉末およびその製造方法 WO2013108916A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/372,789 US10062473B2 (en) 2012-01-17 2013-01-15 Silver-coated copper alloy powder and method for producing same
KR1020147022463A KR102011166B1 (ko) 2012-01-17 2013-01-15 은 피복 구리 합금 분말 및 그의 제조 방법
SG11201404017YA SG11201404017YA (en) 2012-01-17 2013-01-15 Silver-coated copper alloy powder and method for manufacturing same
EP13737989.7A EP2796228B1 (en) 2012-01-17 2013-01-15 Silver-coated copper alloy powder and method for manufacturing same
CN201380005692.2A CN104066535B (zh) 2012-01-17 2013-01-15 涂银的铜合金粉末及其生产方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012006886 2012-01-17
JP2012-006886 2012-01-17
JP2012-120360 2012-05-28
JP2012120360 2012-05-28

Publications (1)

Publication Number Publication Date
WO2013108916A1 true WO2013108916A1 (ja) 2013-07-25

Family

ID=48799337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051019 WO2013108916A1 (ja) 2012-01-17 2013-01-15 銀被覆銅合金粉末およびその製造方法

Country Status (8)

Country Link
US (1) US10062473B2 (ja)
EP (1) EP2796228B1 (ja)
JP (4) JP2014005531A (ja)
KR (1) KR102011166B1 (ja)
CN (1) CN104066535B (ja)
SG (1) SG11201404017YA (ja)
TW (1) TWI541365B (ja)
WO (1) WO2013108916A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043681A1 (ja) * 2016-08-31 2018-03-08 Dowaエレクトロニクス株式会社 銀被覆合金粉末、導電性ペースト、電子部品及び電気装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160358688A1 (en) * 2014-02-12 2016-12-08 Toray Industries, Inc. Conductive paste, method of producing pattern, method of producing conductive paste, and sensor
JP6567921B2 (ja) * 2014-08-29 2019-08-28 Dowaエレクトロニクス株式会社 銀被覆銅粉およびその製造方法
KR20170031215A (ko) * 2014-09-12 2017-03-20 스미토모 긴조쿠 고잔 가부시키가이샤 은코팅 동분 및 그것을 이용한 도전성 페이스트, 도전성 도료, 도전성 시트
US20160143145A1 (en) * 2014-11-13 2016-05-19 E I Du Pont De Nemours And Company Electrical device
JP6679312B2 (ja) * 2015-01-13 2020-04-15 Dowaエレクトロニクス株式会社 銀被覆銅粉およびその製造方法
JP6001231B1 (ja) * 2015-02-27 2016-10-05 タツタ電線株式会社 導電性ペースト及びこれを用いた多層基板
CN106257978B (zh) * 2015-04-22 2019-09-24 日立金属株式会社 金属颗粒以及它的制造方法、包覆金属颗粒、金属粉体
JP5907301B1 (ja) 2015-05-15 2016-04-26 住友金属鉱山株式会社 銀コート銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銀コート銅粉の製造方法
JP5907302B1 (ja) 2015-05-15 2016-04-26 住友金属鉱山株式会社 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銅粉の製造方法
JP6856350B2 (ja) * 2015-10-30 2021-04-07 Dowaエレクトロニクス株式会社 銀粉およびその製造方法
JP6811080B2 (ja) * 2016-02-03 2021-01-13 Dowaエレクトロニクス株式会社 銀被覆銅粉およびその製造方法
CN105921737B (zh) * 2016-04-28 2018-01-19 中南大学 一种铜银复合粉的制备方法和导电胶
DE102017118386A1 (de) 2017-08-11 2019-02-14 Grohe Ag Kupferlegierung, Verwendung einer Kupferlegierung, Sanitärarmatur und Verfahren zur Herstellung einer Sanitärarmatur
CN111804931A (zh) * 2019-04-11 2020-10-23 香港大学 原位分解辅助的粉末冶金方法制备抗菌不锈钢
KR20220020265A (ko) 2019-06-12 2022-02-18 교토 에렉스 가부시키가이샤 도전성 페이스트 조성물
SG11202112809QA (en) * 2019-06-27 2021-12-30 Dowa Electronics Materials Co Ltd Silver powder and method for producing same
KR102202459B1 (ko) * 2019-11-14 2021-01-13 삼성전기주식회사 전극형성용 도전성 금속 분말, 그 제조방법 및 이를 포함하는 전자부품 외부전극용 도전성 페이스트
CN114783770B (zh) * 2022-06-20 2022-12-13 西安宏星电子浆料科技股份有限公司 一种多层陶瓷电容器外部电极浆料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311304A (ja) 1995-05-16 1996-11-26 Mitsui Kinzoku Toryo Kagaku Kk 銅導電性組成物
JPH10152630A (ja) 1996-08-21 1998-06-09 Hitachi Chem Co Ltd 導電ペースト及び複合導電粉
JP2002332501A (ja) * 2001-05-11 2002-11-22 Mitsui Mining & Smelting Co Ltd 銀コート銅粉の製造方法、その製造方法で得られた銀コート銅粉、その銀コート銅粉を用いた導電性ペースト、及びその導電性ペーストを用いたプリント配線板
JP2003068139A (ja) * 2001-08-23 2003-03-07 Hitachi Chem Co Ltd 導電ペースト
JP2010077495A (ja) 2008-09-26 2010-04-08 Sumitomo Metal Mining Co Ltd 銀被覆銅微粒子とその分散液及びその製造方法
JP2010174311A (ja) 2009-01-28 2010-08-12 Nippon Mining & Metals Co Ltd 銀メッキ銅微粉及び銀メッキ銅微粉を用いて製造した導電ペースト並びに銀メッキ銅微粉の製造方法
JP2012180564A (ja) * 2011-03-01 2012-09-20 Mitsui Mining & Smelting Co Ltd 銅粒子

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119602A (ja) * 1987-11-02 1989-05-11 Mitsui Mining & Smelting Co Ltd 銀被覆銅粉の製造法
JPH0378906A (ja) * 1989-08-23 1991-04-04 Furukawa Electric Co Ltd:The 導電性ペースト
US5951918A (en) * 1995-02-08 1999-09-14 Hitachi Chemical Company, Ltd. Composite electroconductive powder, electroconductive paste, process for producing electroconductive paste, electric circuit and process for producing electric circuit
JP2000169970A (ja) * 1998-12-07 2000-06-20 Yoshinobu Abe 不活性雰囲気めっき方法
JP2001236827A (ja) * 2000-02-23 2001-08-31 Hitachi Chem Co Ltd 導電ペースト
JP2002226973A (ja) * 2001-01-31 2002-08-14 Hitachi Chem Co Ltd 銀めっき銅粉の製造方法
JP4223754B2 (ja) * 2002-07-19 2009-02-12 三井金属鉱業株式会社 銀コート銅粉及びその製造方法
CN1176873C (zh) * 2003-03-20 2004-11-24 浙江大学 连续式粉体化学镀方法及其装置
US7504199B2 (en) * 2003-12-16 2009-03-17 Samsung Electronics Co., Ltd. Method of forming metal pattern having low resistivity
JP4660701B2 (ja) * 2004-12-03 2011-03-30 Dowaエレクトロニクス株式会社 銀被覆銅粉およびその製造方法並びに導電ペースト
JP4613362B2 (ja) * 2005-01-31 2011-01-19 Dowaエレクトロニクス株式会社 導電ペースト用金属粉および導電ペースト
JP5166704B2 (ja) * 2006-05-12 2013-03-21 東炭化工株式会社 金属カーボン複合通電摺動材料
JP2010077501A (ja) * 2008-09-26 2010-04-08 Kyocera Corp ニッケル−銅合金粉末およびその製法、導体ペースト、ならびに電子部品
JP5402350B2 (ja) * 2009-07-24 2014-01-29 藤倉化成株式会社 導電性ペーストの製造方法および導電性ペースト
JP5583572B2 (ja) * 2010-12-28 2014-09-03 株式会社日本触媒 導電性微粒子
JP6194166B2 (ja) * 2012-11-01 2017-09-06 Dowaエレクトロニクス株式会社 銀被覆銅合金粉末の製造方法
TWI722136B (zh) * 2016-03-29 2021-03-21 拓自達電線股份有限公司 導電性塗料及使用其之屏蔽封裝體之製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311304A (ja) 1995-05-16 1996-11-26 Mitsui Kinzoku Toryo Kagaku Kk 銅導電性組成物
JPH10152630A (ja) 1996-08-21 1998-06-09 Hitachi Chem Co Ltd 導電ペースト及び複合導電粉
JP2002332501A (ja) * 2001-05-11 2002-11-22 Mitsui Mining & Smelting Co Ltd 銀コート銅粉の製造方法、その製造方法で得られた銀コート銅粉、その銀コート銅粉を用いた導電性ペースト、及びその導電性ペーストを用いたプリント配線板
JP2003068139A (ja) * 2001-08-23 2003-03-07 Hitachi Chem Co Ltd 導電ペースト
JP2010077495A (ja) 2008-09-26 2010-04-08 Sumitomo Metal Mining Co Ltd 銀被覆銅微粒子とその分散液及びその製造方法
JP2010174311A (ja) 2009-01-28 2010-08-12 Nippon Mining & Metals Co Ltd 銀メッキ銅微粉及び銀メッキ銅微粉を用いて製造した導電ペースト並びに銀メッキ銅微粉の製造方法
JP2012180564A (ja) * 2011-03-01 2012-09-20 Mitsui Mining & Smelting Co Ltd 銅粒子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2796228A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043681A1 (ja) * 2016-08-31 2018-03-08 Dowaエレクトロニクス株式会社 銀被覆合金粉末、導電性ペースト、電子部品及び電気装置
JP2018040056A (ja) * 2016-08-31 2018-03-15 Dowaエレクトロニクス株式会社 銀被覆合金粉末、導電性ペースト、電子部品及び電気装置
US11041229B2 (en) 2016-08-31 2021-06-22 Dowa Electronics Materials Co., Ltd. Silver-coated alloy powder, electrically conductive paste, electronic part, and electric device

Also Published As

Publication number Publication date
EP2796228B1 (en) 2020-10-28
CN104066535A (zh) 2014-09-24
EP2796228A1 (en) 2014-10-29
TW201333226A (zh) 2013-08-16
JP2016020544A (ja) 2016-02-04
US10062473B2 (en) 2018-08-28
TWI541365B (zh) 2016-07-11
SG11201404017YA (en) 2014-09-26
JP2014005531A (ja) 2014-01-16
JP2016145422A (ja) 2016-08-12
CN104066535B (zh) 2016-11-09
US20140346413A1 (en) 2014-11-27
EP2796228A4 (en) 2015-10-14
JP2017150086A (ja) 2017-08-31
KR102011166B1 (ko) 2019-08-14
KR20140123526A (ko) 2014-10-22
JP5934829B2 (ja) 2016-06-15
JP6154507B2 (ja) 2017-06-28

Similar Documents

Publication Publication Date Title
JP6154507B2 (ja) 銀被覆銅合金粉末およびその製造方法
JP6186197B2 (ja) 銀被覆銅合金粉末およびその製造方法
JP4821014B2 (ja) 銅粉の製造法
JP6224933B2 (ja) 銀被覆銅合金粉末およびその製造方法
JP2018040056A (ja) 銀被覆合金粉末、導電性ペースト、電子部品及び電気装置
JP6956459B2 (ja) 銀被覆金属粉末およびその製造方法
JP6194166B2 (ja) 銀被覆銅合金粉末の製造方法
JP4666663B2 (ja) 銀化合物被覆銅粉、その銀化合物被覆銅粉の製造方法、その銀化合物被覆銅粉の保管方法及びその銀化合物被覆銅粉を用いた導電性ペースト
JP6258616B2 (ja) 銀被覆銅合金粉末およびその製造方法
JP3687745B2 (ja) 高分散性の金属粉、その製造方法及び該金属粉を含有する導電ペースト
JP7313195B2 (ja) 金属粉末の製造方法及び銀被覆金属粉末の製造方法
JP4881013B2 (ja) 導電性粉末、導電性ペーストおよび電気回路
JP6577316B2 (ja) 導電性ペースト用銅粉およびその製造方法
JP2017201062A (ja) 銀被覆銅合金粉末の製造方法
JP6722495B2 (ja) 銀被覆銅粉およびその製造方法
JP2019186225A (ja) 導電性ペースト用銅粉およびその製造方法
JP7335768B2 (ja) 銀被覆金属粉末およびその製造方法並びに導電性塗料
WO2019065341A1 (ja) 銀粉およびその製造方法
JP4149410B2 (ja) 銀化合物被覆銅粉、その銀化合物被覆銅粉の製造方法、その銀化合物被覆銅粉の保管方法及びその銀化合物被覆銅粉を用いた導電性ペースト
JP7065676B2 (ja) 銀被覆金属粉末およびその製造方法、銀被覆金属粉末を含む導電性ペースト、並びに導電性ペーストを用いた導電膜の製造方法
JP2017210686A (ja) 銀被覆銅合金粉末およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13737989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14372789

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013737989

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147022463

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE